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ABSTRACT 

DETECTION OF EARLY CHANGES IN WHITE MATTER DEGENERATION 
USING TEXTURE ANALYSIS OF MAGNETIC RESONANCE IMAGES 

Debosmita Biswas, M.S. 

George Mason University, 2013 

Thesis Director: Dr. Vasiliki Ikonomidou 

 

 In the absence of permanent cure, early detection and diagnosis of 

neurodegenerative diseases are of utmost importance to  make use of palliative measures 

for enhancing the quality of life of millions of Americans. However, a large number of 

people are not diagnosed at an early enough stage where medications can delay the full 

onset of the diseases (NIA 2013). While various techniques to analyze brain images of 

subjects have been proposed to address this challenge, none of the techniques provide a 

robust and reliable solution. In this thesis, we present a novel technique using texture 

analysis of T2 magnetic resonance (MR) images to lay the foundation for an effective 

solution, using Alzheimer's disease (AD) as the case study. The technique consists of the 

following four steps. First, we utilize the textural property of the MR images to obtain a 

set of features that encode statistically meaningful information about the spatial 

distributions of the gray tone variations. Second, we compute texture feature maps (a 

feature value stored at every image voxel) on the white matter regions of the images that 
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are segmented into regions of interest (ROIs) based on the anatomical structure of the 

brain. Third, we identify the subset of relevant and uncorrelated features from our  initial 

feature set by using statistical measures like mean, coefficient of variance, and mutual 

information. These features yield statistically different values in the different ROIs and 

also in the different subjects for the same ROI,  and the variations in the values are 

independent of each other. Thus, they are expected to afford better predictive powers in 

terms of detecting early signs of AD than the complementary set of features. Last, we 

validate the utility of the relevant features by carrying out statistical hypothesis tests on 

two groups of subjects, where the first group consists of subjects who have the APOE ε4 

genes that are often found in AD patients, and the other group comprises of subjects who 

do not have the APOE ε4 genes. Results show that the entropy-type features yield 

promising results and are able to distinguish between the two types of subjects in many 

cases. It is hypothesized that the lack of statistical differences for certain subjects 

belonging to the two groups is due to the non-advent of neurodegeneration in those 

subjects. Hence, we believe that this technique provides a valuable first step towards 

early detection of neurodegenerative diseases without requiring genetic information and 

functional imaging modalities. Further work will involve more effective feature set 

generation and extensive validation and verification using ground truth information and 

long-duration trials involving monitoring of subjects who are predicted to have early 

symptoms of the diseases.   
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CHAPTER 1: INTRODUCTION 

This Chapter is arranged in the following manner. Section 1.1 gives an overview 

of medical imaging in general and magnetic resonance imaging in particular, Section 1.2 

discusses neurodegenerative diseases in general and Alzheimer’s disease in particular, 

Section 1.3 presents the motivation behind the research undertaken in this thesis, Section 

1.4 briefly discusses the research issues and Section 1.5 describes the outline of this 

thesis.  

1.1 Magnetic Resonance Imaging 
 

Medical imaging refers to the technique of creating images of parts of the human 

body for clinical processes, such as diagnosis and prognosis, or research studies. It differs 

from biopsy in the sense that organs and tissues do not have to be removed from the 

body. There are various methods for acquiring the images including radiography, 

magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), 

computed axial tomography (CAT), positron emission tomography (PET), scintigraph, 

single photon emission computed tomography (SPECT), ultrasonography (USG) etc.  

Measurement techniques that do not generate images, but produce data that can be 

represented as spatial maps like electroencephalography (EEG), 

magnetoencephalography (MEG), and electrocardiography (ECG), are also regarded as 

forms of medical imaging.  
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Figure 1.1: Normal human brain using different imaging modalities (Image sources: 

http://cache2.allpostersimages.com/p/LRG/30/3040/5RSBF00Z/posters/human-brain-

normal-ct-scan.jpg, 

http://upload.wikimedia.org/wikipedia/commons/2/20/PET_Normal_brain.jpg, and 

http://www.sciencephoto.com/image/307058/350wm/P3320430-

Healthy_brain,_SPECT_scan-SPL.jpg) 

 

CT 
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image 
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image 

http://cache2.allpostersimages.com/p/LRG/30/3040/5RSBF00Z/posters/human-brain-normal-ct-scan.jpg
http://cache2.allpostersimages.com/p/LRG/30/3040/5RSBF00Z/posters/human-brain-normal-ct-scan.jpg
http://upload.wikimedia.org/wikipedia/commons/2/20/PET_Normal_brain.jpg
http://www.sciencephoto.com/image/307058/350wm/P3320430-Healthy_brain,_SPECT_scan-SPL.jpg
http://www.sciencephoto.com/image/307058/350wm/P3320430-Healthy_brain,_SPECT_scan-SPL.jpg
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Processing the acquired images, referred to as medical image processing, is 

currently one of the most potent tools to perceive and understand the healthy and 

pathological processes of a human body. Mathematically speaking, it amounts to the 

solution of an inverse problem, where the cause, namely the property of living tissue, is 

estimated or inferred from the effect measured from the observed signal. In particular, it 

is being used ubiquitously for understanding the structure and function of the brain. 

While structural imaging deals with the brain structure and is useful for the diagnosis of 

large-scale intra-cranial diseases and injuries, functional imaging attempts to understand 

the relationships between brain region activities and mental functions to diagnose 

diseases and lesions on a finer scale. Thus, functional imaging provides more information 

for the diagnosis of neurodegenerative diseases like Alzheimer’s as compared to 

structural imaging at the expense of requiring more costly and sophisticated 

instrumentation. PET, fMRI, EEG, MEG, and SPECT are all types of functional imaging 

techniques or modalities, whereas CAT, MRI, and USG are examples of structural 

imaging modalities. Examples of the normal brain using three different imaging 

modalities, one structural and two functional, are shown in Figure 1.1. 

MRI is one of the most commonly used techniques of brain imaging as it does not 

involve ionizing radiation (as for X-ray) or radioactive tracers (as in PET). Moreover, it 

provides better tissue contrast than both CAT and USG. It uses magnetic fields and radio 

waves to generate three-dimensional (3D) images of the brain by leveraging the 

phenomena of nuclear magnetic resonance in which the nuclei of atoms in the brain 

absorb and re-emit electromagnetic radiation at a specific resonance frequency in the 
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presence of a magnetic field, where the frequency depends on the magnetic field strength 

and the magnetic properties of the atom isotopes.  

 

 

Figure 1.2: Schematic illustration of an MRI machine (Image source: 

http://www.magnet.fsu.edu/education/tutorials/magnetacademy/mri/images/mri-

scanner.jpg) 

 

MR imaging is performed by an MRI scanner, as shown in Figure 1.2, in which 

the subject is placed inside a large and powerful magnet that generates radio frequency 

magnetic waves with intensities of 1.5T to 8T for humans. When the subject is introduced 

in this field, the spins of the hydrogen nuclei protons that are present in the water 

molecules in the brain tissue align with the direction of the field of the scanner magnet. 

When the spins align, a magnetic moment is created parallel to the direction to the 

applied magnetic field. A radio-frequency (RF) pulse, of the same frequency as the 

http://www.magnet.fsu.edu/education/tutorials/magnetacademy/mri/images/mri-scanner.jpg
http://www.magnet.fsu.edu/education/tutorials/magnetacademy/mri/images/mri-scanner.jpg
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resonance frequency of the hydrogen protons, is then applied perpendicular to the scanner 

magnetic field. This causes absorption and flipping of the spins of the protons, resulting 

in tilting of the magnetic moment away from the magnetic field of the scanner. When the 

RF pulse is removed, the magnetic moment returns to thermodynamic equilibrium, i.e., it 

again becomes parallel to the magnetic field of the scanner. This process is called 

relaxation. During relaxation, the protons lose energy by emitting their own RF signals. 

This signal is called the free induction decay (FID) signal. The FID signal is measured by 

placing coils around the subject. This measurement is processed using Fourier transform 

to give MR images.  

Different contrasts, such as T1-weighted (or simply T1), T1 -MP RAGE, T2-

weighted (or simply T2), T2 -FLAIR, proton density (PD), and diffusion tensor imaging 

(DTI), are obtained by varying the RF pulse sequences, namely the pulse echo time and 

the inter-pulse repetition time. Specifically, in the case of the brain, T1 images result in 

dark-colored cerebrospinal fluid (CSF), and T2 images yield light-colored CSF with 

darker-colored white matter. Thus, T1 images are useful for studying the normal anatomy, 

whereas T2 images are well-suited for visualizing pathological anatomy (Butler et al. 

2007). PD images show the CSF as very bright, with the gray matter being brighter than 

the white matter. The FLAIR contrast is most useful for examining the white matter 

plaques near the ventricles. fMRI measures the hemodynamic response (change in 

cerebral blood flow)  related to any neuronal activity using the variation in the 

magnetization between oxygen-rich and oxygen-poor blood. Thus, it is most useful for 

understanding the functioning of normal, diseased, and injured brains by identifying the 
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regions that are closely associated with our critical functions such as speech, movement, 

sensing, and decision making. In summary, each of the contrasts gives unique 

information about the brain or a region of interest (ROI) therein. The variations in brain 

images using the different MR contrasts are shown in Figure 1.3.  

 

 

Figure 1.3: Normal human brain images using different MRI modalities (Image sources: 

http://blog.radiology.ucsf.edu/wp-content/uploads/2012/04/MRI_brain.jpg and 

http://psychcentral.com/lib/img/fmri_scan.jpg) 

 

 

 

 
 

http://blog.radiology.ucsf.edu/wp-content/uploads/2012/04/MRI_brain.jpg
http://psychcentral.com/lib/img/fmri_scan.jpg


19 
 

1.2 Alzheimer’s Disease  
 

Neurodegenerative diseases are increasingly becoming a severe cause for concern 

globally due to the rising number of patients, and worryingly, due to the lack of cure, 

effective diagnosis, detection, and knowledge of the reasons for occurrences. That is why, 

a lot of research is currently geared toward understanding the reasons and symptoms, and 

developing effective methods for early detection, diagnosis, and cure. In any 

neurodegenerative disease, there is a progressive loss of structure or function of neurons, 

eventually leading to their deaths. The four most commonly occurring forms are 

Alzheimer’s, Parkinson’s, Huntington’s, and Amytrophic Lateral Sclerosis (ALS). 

Parkinson’s disease manifests itself in the form of rigidity, resting tremor, and posture 

instability, and is caused by the deaths of dopamine-generating cells in the mid-brain 

region. Huntington’s disease degrades muscle coordination and leads to cognitive decline 

and psychiatric problems; it is caused by an autosomal dominant mutation in either of the 

two copies of a gene named Huntingtin. ALS results in the degeneration of motor 

neurons selectively, which is believed to occur due to antioxidant enzyme Cu/Zn 

superoxide dismutase 1 (SOD1) mutations on astrocytes, the most abundant cells in the 

brain that provides biochemical support to endothelial cells, nutrients to the nervous 

tissue, extracellular ion balance, and repair following traumatic injuries.   

Alzheimer’s disease (AD) is the most commonly occurring neurodegenerative 

disease, which leads to dementia, a severe loss of global cognitive capabilities like 

memory, attention, speech, and decision making. In its early stages, AD results in 

difficulty in recollecting recent events. As it progresses, symptoms include aggression, 
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confusion, irritability, mood swings, and long-term memory loss. An estimated 5.4 

million Americans suffer from AD (Alzheimer’s Association 2012). The number is 

expected to increase as the number of people above the age of 65 increases. About two-

thirds of all the people suffering from AD are women. The main reason is because 

women live longer than men. Other than that, there is no gender specific proneness. As 

with other neurodegenerative diseases, unfortunately, there is no permanent cure, and on 

an average, the life expectancy after diagnosis is only about seven years. Furthermore, 

diagnosis is very challenging due to the fact that the disease is somewhat different for 

every person and the symptoms are quite varied with many symptoms not clearly 

distinguishable from the effects of normal aging (Alzheimer’s Association 2012).  

From a neurological perspective, in the case of AD, the information transfer at 

synapses (nerve cell junctions) begins to fail and neurons start dying. As illustrated in 

Figure 1.4, the scans of patients with advanced AD show shrunken brains due to neuronal 

deaths. While the exact causes are not known definitively, it is believed that toxic 

changes occur in the brain during the pre-diagnosed stage due to abnormal deposits of 

proteins forming amyloid plaques and tau tangles (NIA 2013). Early-onset AD, which is 

a rare form of the disease that occurs in people belonging to the age group of 30-60, is 

believed to be caused by mutations in one of the three genes inherited from a parent. The 

much more predominant late-onset AD that affects people over the age of 60 has been 

linked to the apolipoprotein E (APOE) gene. In particular, APOE ε4 (to a large extent) 

and ε3 (to a smaller extent) gene forms (alleles) have been found to increase the risk of 

having late-onset AD (Farrer et al. 1997). More specifically, persons with the genotype 
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APOE ε4ε4 are at the highest risk for AD at an early age, followed by those with the 

genotype APOE ε3ε4. Persons with the genotype APOE ε3ε3 are considered to have 

normal risks, whereas those with genotype APOE ε2ε3 are regarded to have the lowest 

risks. It should be noted though that carrying this gene does not necessarily mean that the 

person will develop AD (NIA Genetics 2013).  

 

 

Figure 1.4: Comparison of MRI images of normal brain with AD brain (Image source: 

http://www.doctortipster.com/wp-content/uploads/2012/02/MRI-Alzheimer.jpg) 

 

1.3 Motivation 
 

Early detection of Alzheimer’s disease using a combination of texture analysis 

and statistical testing of structural MR images: Detecting Alzheimer’s disease before 

http://www.doctortipster.com/wp-content/uploads/2012/02/MRI-Alzheimer.jpg
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clinically significant symptoms of decline start to occur in a patient is very vital. 

Medications such as cholinesterase inhibitors can then be prescribed that will delay the 

full onset of the disease. Such treatment gives the patients and their immediate family 

members time to plan for their futures (NIA Medication 2013).  

It is clear from our discussion in Section 1.2 that there is a strong need to develop 

an effective and robust technique for early detection of AD in the pre-diagnosis phase 

during the formation of the abnormal protein deposits. To address this need, an 

exploratory study is conducted, wherein statistical metrics are applied to examine the 

degree of dependence between different texture analysis measures on T2-weighted images 

from a dataset consisting of 26 middle-aged subjects (45-65 years old), all of whom have 

been genotyped for the APOE gene. The aim of this thesis is to possibly detect 

differences in white matter characteristics between the carriers and non-carriers of the 

APOE ε4 gene, a known risk factor for AD discussed in the previous Section. While the 

subjects are all neurologically healthy adults, they do show signs of early 

neurodegeneration in white matter regions of their brains (Ikonomidou et al. 2008), which 

in some cases reaches the point of gliosis. This white matter neurodegeneration provides 

a good range of variation for our data fitting and classification methods.  

Following our discussion in Section 1.1, MRI is the best choice among the 

different structural imaging modalities due to its ability to provide good contrast between 

normal and pathological (lesion, plaque-filled etc.) tissue, and non-usage of ionizing 

radiation. Furthermore, T2 is selected over other MR contrasts as it shows the white 

matter of the brain in darker shade as compared to other regions, thereby making it more 
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amenable for detecting early stage anomalies that typically occur in the white matter 

regions. fMRI and other functional imaging modalities are avoided to develop a 

technique that does not have to rely on the expensive, and, thus often unavailable or 

inaccessible, instrumentation and testing associated with such modalities.  

Very slow deterioration of the brain tissue starts long before there are any 

apparent symptoms that can be associated with AD or any form of dementia. 

Unfortunately, detecting any change by direct inspection of a T2 image is nearly 

impossible at this stage. However, statistical analysis of the pixel intensity distribution of 

the image can reveal the deteriorations (minute changes from normal brain tissue) where 

visual inspection is not helpful. (Herlidou et al. 1999, Bernasconi et al. 2001, and 

Mahmud et al. 2003). This image processing technique is referred to as texture analysis, 

which, thus, forms a suitable choice for detecting AD in its earliest stages. Other 

researchers have also started exploring texture analysis of T2 -weighted MR images as a 

parallel and possibly complementary option to analysis of diffusion tensor images 

(Zhang, Brown, & Metz 2013). 

Statistical measures are applied to ascertain trends and significant differences 

between the texture analyzed images of the subjects with and without APOE ε4 genes. 

Apart from examining the means and mutual information values of the texture maps, 

voxel-based analysis (VBA) is also used that involves processing and comparing images 

on a voxel by voxel basis. VBA is utilized as it provides better resolution than traditional 

morphometric methods that rely on volumetric calculations of large ROIs representing 

unambiguous structures such as hippocampi or the ventricles. However, there are a 
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number of morphometric features that may be more difficult to quantify by inspection, 

meaning that many structural differences may be overlooked. The benefit of VBA lies in 

the fact that it is not biased toward one particular structure and provides an even handed 

and comprehensive assessment of the anatomical differences throughout the brain 

(Ashburner and Friston 2000). In its basic form, any VBA method involves the following 

four steps: normalizing all the subject images in the same stereotactic space, segmenting 

and smoothing the gray matter segments, performing voxel-wise parametric statistical 

tests of the smoothed segments that are divided into groups, and performing corrections 

for multiple comparisons using Gaussian random fields. 

Lastly, although the technique is validated by evaluating the differences in the 

processed images of subjects with and without the APOE genes, the technique itself does 

not use any genetic information. Thus, the technique can be used even when such 

information is unavailable, or as an additional measure of evaluating the onset of AD 

when such information is available since the presence of the APOE genes is not a 

guaranteed indicator of the future occurrence of AD.  

1.4 Research Issues 
 
 There are two main research issues in addressing the problem discussed in the 

previous Section. They are described as follows:   

 
• Identification of features that encode meaningful information about the onset of 

Alzheimer’s disease from MR images: Identifying useful features or key attributes is 

always challenging for any real-world image processing problem. This identification 
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is usually done using a combination of feature selection and feature extraction. The 

former refers to the selection of a subset of features from much larger feature set, 

whereas the latter denotes the process of extracting features from the raw images 

using mathematical operations. Principal component analysis, independent 

component analysis, edge and contour detection, optical flow-based motion detection, 

thresholding, and Hough transforms are some of the common methods for feature 

extraction in image processing. While these methods work well for images of 

physical objects, they are found to be less useful for medical images. Instead, we will 

need to investigate alternative methods like texture analysis to provide a set of 

features that encodes relevant information about the intensity and contrast variations 

between healthy and AD-affected tissue. Henceforth, we will have to use statistical 

methods like mutual information as the evaluation metric to identify a smaller set of 

relevant features from the extracted feature set.  

 

• Validating the use of the identified features in providing statistically significant 

differences in certain brain region for subjects with and without Alzheimer’s disease 

causing genes: The primary challenge lies in obtaining the regions of interest (ROIs) 

where the identified features need to show statistically significant differences between 

subjects with and without the APOE ε4 genes. Based on the prior discussion that the 

effects of the onset of AD in the form of abnormal protein formation are expected to 

be more pronounced in the white matter region of the brain, we will investigate a 

suitable way to segment the brain into white matter ROIs based on anatomical 
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distinctions. Considering that such segmentation is already available for the standard 

brain atlas using T1 MR images, we will need to develop a non-linear registration 

approach to first map the T2 MR images of our subjects into the standard brain space 

before obtaining the desired ROIs. The actual validation step then has to be 

performed using a combination of two standard approaches: two-sample t test that is 

universally applied for testing whether the two sample means are equal, and voxel-

based morphometry that is regularly employed in medical image processing for 

comparing images on a voxel-by-voxel basis.  

1.5 Thesis Outline 
 

The remainder of the thesis is organized as follows. Chapter 2 discusses the 

literature on medical image processing for early detection of neurodegenerative diseases. 

Chapter 3 describes the technical approach for detecting Alzheimer’s disease using MR 

images. Chapter 4 presents the experimental results on a set of subjects divided into two 

groups based on the presence of APOE genes that are commonly associated with the 

Alzheimer’s disease. Chapter 5 summarizes the conclusions reached from this research, 

highlights the anticipated benefits, and provides suggestions for future extensions of this 

work.  
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CHAPTER 2: RELATED WORK 

 This Chapter reviews the literature in the emerging field of processing MR 

images for early detection of neurodegenerative diseases. It is organized in the following 

manner. Section 2.1 discusses the works that perform texture analysis on MR images, 

Section 2.2 presents the literature on voxel-based analysis, Section 2.3 discusses the 

articles on using machine learning for image processing, Section 2.4 surveys the literature 

on other miscellaneous image analysis techniques, and Section 2.5 summarizes the 

successes and limitations of the existing methods.  

2.1 Texture Analysis of MR Images 

An early review of the role of texture analysis (TA) in medical image processing 

can be found in Castellano et al. (2004). The authors categorized the TA techniques into 

three types, namely, statistical (such as histograms and co-occurrence matrices), 

transform-based (such as wavelets), and model-based (such as auto-regression). They 

also discussed some of the successful applications of TA in segmenting anatomical 

structures, detecting lesions, and differentiating between pathological and healthy tissues 

in several human organs. A more recent survey of the advances in this field is given by 

Kassner & Thornhill (2010), where the authors also discussed the successful use of this 

technology in longitudinal monitoring of disease or recovery, and pointed out some of the 

common pitfalls in performing TA, and strategies on how to avoid them.  A related 
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survey of the volumetric and TA-based techniques for early detection of AD in transgenic 

mouse models is provided in Muskulus et al. (2009).    

The use of TA for early detection of neurodegenerative diseases using human 

brain images is a very recent and upcoming research area. Li et al. (2010) conducted a 

study on analyzing the hippocampus region using 4 textural features, namely energy, 

entropy, gray level nonuniformity, and run length nonuniformity, for three groups of 

subjects – AD patients, mild cognitive impairment (MCI) patients, and normal controls. 

The authors found that statistically significant differences existed among the AD, MCI, 

and normal controls for all the features except energy using the 3-way ANOVA test. 

They also observed that the texture features were correlated to the mini-mental 

examination scores, which suggested that these features could be used for describing the 

pathological changes in the hippocampus for early stage MCI and AD patients.    

A related study was performed by Zhou et al. (2010) using three groups consisting 

of AD patients, elderly controls (ECs), and young controls (YCs). The results showed 

that significant differences existed between the AD and EC groups for three texture 

features, namely sum average, difference variance, and gray level non-uniformity. 

However, no significant differences could be found between the EC and YC groups for 

the same set of features. These results again indicated that texture analysis might capture 

the essential pathological changes in the hippocampus, thereby rendering it useful for 

early detection of AD. 

A similar study was conducted on the corpus callosum of AD patients and normal 

controls (NCs) of different genders using 8 different textural features by Wang et al. 
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(2012). Statistical significance tests showed that the features were different not only 

between the AD and NC groups, but exhibited varying characteristics based on gender as 

well. These results indicated that gender-specific TA might be more useful for early 

detection of AD.  

de Oliveira et al. (2011) computed a set of 11 textural features using co-

occurrence matrices (COMs) after segmenting the corpus callosum and the thalamus 

regions of the human brain based on anatomical structures by manual mouse-clicking (the 

segments were later verified by a neurologist though). 4 different distances and angular 

directions were used to construct the COMs, resulting in a total of 176 textural 

descriptors for each segment or region of interest (ROI). The human subjects consisted of 

three types: those with amnestic MCI (aMCI), those with mild AD (mAD), and normally 

aging (controls). Pair-wise comparisons among the three groups using the Mann-Whitney 

U test showed significant differences between AD-control and aMCI-AD for the corpus 

callosum, and between AD-control, aMCI-AD, and aMCI-control for the thalamus 

segments.   

Aggarwal & Agrawal (2012) compared the performance of 1st and 2nd order 

statistical texture features with wavelet-based features for classification of images into 

normal and AD groups with respect to sensitivity, specificity, accuracy, training, and test 

time. Experiments showed that the texture features outperformed the wavelet features 

when used in conjunction with any standard classifier such as support vector machines or 

k-nearest neighbors for all the performance metrics. These results further demonstrated 

the utility of TA as a valuable image processing technique for AD detection.    
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2.2 Voxel-based Analysis of MR Images 

 As discussed earlier in Section 1.3, voxel-based analysis (VBA)  has emerged as a 

powerful technique over the past few years by providing better resolution than traditional 

morphometric methods that relied on volumetric calculations of large ROIs. We now 

discuss some of the representative works on this topic.  

Stricker et al. (2008) used tract-based spatial statistics, wherein fractional 

anisotropy (FA) images are first computed from MR diffusion images to quantify the 

directionality of the local white matter tract structures, and a combination of non-linear 

registration and projection of FA images onto an alignment-invariant representation is 

performed for more accurate voxel wise comparisons across images. Experiments 

showed significantly lower FA in AD patients as compared to healthy older subjects in 

late-myelinating (inferior longitudinal fasciculus, superior longitudinal fasciculus) but not 

in early-myelinating (posterior limb of internal capsule, cerebral peduncles) fiber 

pathways. These results indicated that knowledge about white matter microstructural 

changes might provide valuable contribution toward early detection of AD.       

Zhang et al. (2009) performed a similar analysis on FA images to distinguish 

between frontotemporal dementia (FTD) and AD (that is quite difficult to do clinically 

due to common symptoms) by identifying varying levels of white matter degradation. 

Experiments showed that FTD patients had reduced FA in frontal and temporal regions, 

whereas AD patients had reduced FA in parietal, frontal, and temporal regions as 

compared to normal controls. Furthermore, FTD patients showed greater FA reductions 

in the frontal region as compared to AD patients. Thus, the two results taken together 
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indicated that VBA might play a vital role in improving the diagnostic differentiation 

between FTD and AD.   

Another similar study was conducted by Smith et al. (2010), who used VBA on 

FA images of two groups of women, one carrying APOE ε4 genes and having a family 

history of dementia, and the other without either of the two risk factors. Experiments 

showed reduced FA in several white matter regions for the first group.  
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2.3 Machine Learning-based Analysis of MR Images 

 Data classification forms one of the most fundamental and widely-studied 

problems in machine learning. Several supervised learning techniques, where training 

sets of correctly-labeled observations are available, such as support vector machines 

(SVMs), random forests (RFs), classification trees (CTs), boosting, and nearest neighbors 

(NNs) are commonly used for image classification, both at the overall scenario level and 

at the lower object or ROI level. Of late, these classifiers are being increasingly used for 

processing MR images to help in differentiating the key structural elements between 

healthy controls and those who already have or run the risks of having neurodegenerative 

diseases in the future. Representative works include the application of SVMs for 

separating the AD probable and normal controls by Duchesne et al. (2008), the combined 

use of RFs and SVMs in classifying the medial atrophy lobe regions to predict the 

probability of progressing to AD from MCI by Chincarini et al. (2011), the adoption of 

SVMs in classifying MCI patients from normal controls using a combination of MRI, 

FDG-PET, and CSF biomarkers by Zhang et al. (2011), and the use of a heterogeneous 

suite of classifiers in conjunction with mutual information-based feature selection to 

distinguish between healthy, MCI, and AD controls by Estella et al. (2012).  
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2.4 Miscellaneous Analysis Techniques of MR Images 

 Several other MR image analysis techniques that fall outside of the three broad 

categories discussed in the previous Sections have been used for early detection of 

neurodegenerative diseases. Most of these analyses are volumetric, while a few utilize 

other forms of geometric and topological information. Some representative volumetric 

works include the volume calculation method in predicting the progression from MCI to 

AD by Devanand et al. (2007), the use of medial temporal lobe morphometric measures 

such as entorhinal and perirhinal boundary thinning to differentiate between normal aging 

and onset of AD by Dickerson et al. (2009), the ventricular volume measurement method 

to demonstrate the complementary role of MRI and Pittsburgh compound B positron 

emission tomography in AD detection by Jack et al. (2009), the hippocampal volume 

estimation method to detect the onset of MCI and AD by Schuff et al. (2009), and the 

striatal and white matter region volume calculation procedure for early diagnosis of 

Huntington’s disease by Paulsen et al. (2010). Representative non-volumetric works 

include the combined shape and probabilistic diffusion tractography-based connectivity 

analysis for thalamic degradation in AD patients by Zarei et al. (2009), and the anatomic 

segmentation procedure for healthy subjects, as well as MCI and AD patients, by 

Heckemann et al. (2011). 

2.5 Summary 
 

To summarize it can be said that the various image analysis techniques have 

shown promise in identification of neurodegenerative diseases in general, and AD in 
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particular, by identifying the differences in volumetric or morphological features between 

those carrying the risk of having AD in future or those who already have AD and healthy 

or normal controls. Interestingly though, the different techniques provide complementary 

capabilities, which implies that no single technique can be used profitably for the entire 

analysis sequence ranging from feature definition to image classification and comparison. 

While TA provides useful features containing statistically relevant information, VBA is 

suitable for final comparison of images based on the selected features, and the ML 

methods are designed for effective image classification into meaningful groups with 

varying feature levels. Thus, a hybrid approach that combines the key characteristics of 

multiple analysis techniques may lead to more accurate and robust detection of AD at the 

very early or potential risk stages.  
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CHAPTER 3:  TECHNICAL APPROACH 

This Chapter is arranged in the following manner. Section 3.1 describes the 

procedure for generating texture feature maps for T2 weighted MR images that encode 

useful statistical information, Section 3.2 presents the procedure for computing the 

feature maps on segmented images where only the white matter is present for more 

accurate image clustering, Section 3.3 describes the technique for selecting the set of 

relevant features, and Section 3.4 presents the approach for statistical comparison of the 

white matter masked texture maps that are clustered into two groups, one for subjects 

with APOE ε4 genes present and the other for subjects with APOE ε4 genes absent, based 

on the relevant features.  

3.1 Texture Feature Map Generation 
  

Texture Analysis (TA) is used for recognizing valuable patterns in images as 

texture is an innate property of virtually all kinds of surfaces. It is observed in Castellano 

et al. (2004) that “Textural features contain information about the spatial distribution of 

tonal variations” within an image. We use a statistical approach to TA using the co-

occurrence matrix (COM) or spatial dependence matrix (SDM) (Castellano et al. 2004, 

Haralick et al., 1973). The COM helps in extracting key statistical information or features 

from an image using the distribution of gray tones in pixel pairs. It is computed by 

defining a distance d and a direction θ, and analyzing the pairs of pixels that are separated 
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by this distance across the defined direction. A count is then made of the number of pairs 

of pixels that possess a given distribution of gray level values. For example, if a 4 X 4 

image matrix has gray tone values of 0-3 as given by 
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technique that uses a combination of affine transformations, namely, translation, 

rotation, scaling, and shearing, to align one image with another.  

2) Remove the non-brain tissue from 
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3.3 Relevant Feature Identification 
 
 We compute forty texture feature maps, one for each of the ten feature types and 

four SDM directions corresponding to a feature type, on every ROI of the white matter 

masked T2 - weighted image. To facilitate the process of clustering the images of 

different human subjects based on whether early stages of AD are detected, we now want 

to identify the set of independent or relevant features. This identification is done in two 

ways. First, we compute the mean values of all the forty white matter masked texture 

feature maps for every ROI (each image voxel stores a particular feature value). We then 

observe the variations among the mean values both across all the different ROIs and 

across the four directions for a particular feature type. A feature, namely feature type – 

SDM direction pair, is termed as relevant if significant variations are observed across 

both ROIs and directions. The conclusion is strengthened by verifying that the 

corresponding standard deviation values are significantly smaller so that the coefficient 

of variation, given by the ratio of the mean and the standard deviation, is quite high 

(usually more than ten).  

Second, we use the principle of mutual information. For any two discrete random 

variables X and Y, mutual information I(X,Y) is given by  
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type and ROI. It is reasonable to assume here that the individual samples are independent, 

identically distributed, and drawn from two normal distributions. We use the Levene’s 

test to first check the equality of the variances of the two samples. Since our samples are 

of unequal sizes, for the case of equal variances, the t statistic is given by 
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pairs of relevant features of the two subject groups are equal. The alternative hypothesis 

states that the sample mean for the subject group with APOE ε4 genes is lower indicating 

that the relevant features are more strongly uncorrelated for this group with the genes 

than the other group without the genes.  

Second, voxel-based morphometry (VBM) is used for comparing the texture maps 

both within and between the two groups. VBM registers every image (texture map) to a 

standard template, and smoothens it so that each voxel represents an average value of 

itself and its neighbors. These operations, consequently, enable comparisons across 

images, voxel by voxel, where the voxel size can be selected suitably based on the 

application domain. The VBM outputs were then statistically analyzed for significant 

differences (p < 0.05) in their mean values for every relevant feature type again using the 

two-sample t test.  
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CHAPTER 4: RESULTS AND DISCUSSION 

This Chapter is arranged in the following manner. Section 4.1 describes the 

experimental set-up, Section 4.2 presents the texture feature maps computed from the T2 

MR images, Section 4.3 presents instances of the white matter masked T2 MR images 

with regions of interest marked, Section 4.4 discusses the results that enable the 

identification of relevant and uncorrelated features, and Section 4.5 presents some 

statistical significant tests to distinguish between the subjects with and without the 

presence of APOE ε4 genes. 

4.1 Experimental Set-Up 
 

Twenty six (26) middle-aged persons in the age group of 45-65 years were used 

as subjects for the study. They were tested for all forms of dementia and found to be 

healthy. However, they could be divided into two categories based on whether they 

possessed the common genes that are observed in AD patients. Fifteen subjects (15) 

carried the APOE ε3ε4 (fourteen) or ε4ε4 (one) genes, while the remaining eleven (11) 

subjects did not carry APOE ε4 genes (instead they had ε2ε3 or ε3ε3 genes). We 

sometimes refer to the two subject group as carriers and non-carriers respectively. No 

information about the race, gender, or ethnicity of any of the subjects was available. They 

were all part of an IRB approved, cross-sectional study going on at the Krasnow Institute 

in George Mason University, where all the participating subjects provided written 
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consents. The MRI scanner was a Siemens MAGNETOM Allegra of field strength 3.0 

Tesla. The format used to store images was .nii that was developed by the Neuroimaging 

Informatics Technology Initiative (NIfTI). The dimensions of the T2 - weighted images 

for each of the subjects were either 208 X 256 X 42 or 208 X 256 X 34. The texture 

feature map generation and relevant feature identification code were implemented in 

MATLAB R2011a. The two-sample t test was run using the statistical software package 

R v3.0.0. VBM was computed using the SPM8 toolbox (SPM 2013). All the processes 

were run on Centos 6.0 OS in an Intel i7 2620M quad core CPU with 2.7 GHz processor 

speed and 4 GB of RAM.     

4.2 Texture Feature Maps of T2 MR Images 
 
 We now present the raw T2 MR images and the processed texture feature maps for 

two representative subjects, one without the APOE genes (Figure 4.1) and the other with 

the APOE genes (Figure 4.2), to highlight the differences among the images for the two 

subject types while avoiding redundancy. Each figure shows a set of eleven axial views 

of the brain, one for the T2 image and the rest for the ten textural features discussed in the 

previous Chapter. 0° is chosen as the SDM direction for generating all the features maps. 

Certain broad trends are observed from the two Figures. First and foremost, 

differences are seen in the spatial distributions of gray level intensities in the two sets of 

images. All the images for the subject with the genes have a higher level of overall 

brightness with larger regions of lighter intensities as compared to the images for the 

subject without the genes. Since in the T2 mode, non-white matter portions of the brain 

are shown with lighter intensities, the presence of such portions within the white matter 
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regions indicate the possibility of anomalies in the brains of the subjects with the APOE 

ε4 genes. These anomalies potentially correspond to abnormal protein growth (amyloid 

plaque and tau tangles) in the brains of the gene-carrying subject. Furthermore, the 

differences are more pronounced among the texture feature maps as compared to the 

original T2 images, thereby validating the choice of texture analysis for detecting early 

signs of AD. Last but not the least, the intensity differences are more marked for feature 

maps corresponding to contrast, correlation, sum average, sum variance, and entropy as 

compared to the other feature types. Identical trends are found on comparing the mean, 

standard deviation, and mutual information values for the two subject groups in Section 

4.4, enabling us to identify the set of relevant and uncorrelated features that afford the 

best potentials for detecting AD in its early stages.   
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Figure 4.1: Raw T2 MR Image and processed texture feature maps with SDM direction of 

0° for a subject without APOE ε4 genes 
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Figure 4.2: Raw T2 MR Image and processed texture feature maps with SDM direction of 

0° for a subject with APOE ε4 genes 

  

Figures 4.3 and 4.4 show the texture maps using correlation (one of the features 

where marked differences are observed in Figures 4.1 and 4.2) as the feature type for all 

the four SDM directions of 0°, 45°, 90°, and 135°, and for the same two subjects used 

earlier. While intensity variations are seen between any two pairs of images 

corresponding to different subjects, no clear distinctions are observed among the maps 
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for the same subject with varying SDM directions, indicating that the direction does not 

play a very important role in causing the intensity differences.   

 

 

Figure 4.3: Correlation feature maps with varying SDM directions for a subject without 

APOE ε4 genes 

Figure 4.4: Correlation feature maps with varying SDM directions for a subject with 

APOE ε4 genes 

4.3 White Matter Masked T2 MR Images 
 

As described in Section 4.2, the texture feature maps are computed on the white 

matter regions of the brain as these regions are usually first affected by AD. To compute 

these maps, the white matter regions are masked out from the rest of the brain image, and 

then registered to common brain space to segment the masked image into 50 ROIs based 
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on the anatomical structures of the brain.  The final segmented white matter masked 

images in the standard MNI brain space (discussed in Section 4.2) are shown in Figure 

4.5. Certain ROIs are labeled in the Figure, namely, fornix, left inferior fronto-occipital 

fasciculus, right uncinate fasciculus, and right and left tapetum corresponding to ROIs 6, 

46, 47, 49 and 50 respectively. These ROIs are marked due to the fact that maximum 

differences in the feature values are observed in these regions as evident from the results 

presented in the next two Sections.   

 

 
 

Figure 4.5: White matter regions of interest in standard brain space 
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4.4 Relevant and Uncorrelated Features for T2 MR Images  
 

 We now present statistical measures of the white matter masked texture 

feature maps in specific ROIs for the two types of subjects. Tables 4.1 and 4.2 present the 

mean and standard deviation values of the relevant features, namely, contrast, correlation, 

sum average, sum variance, and entropy, for five ROIs, two SDM directions of 0° and 

45°, and a representative subject without the APOE ε4 genes (same one as used earlier). 

These features are relevant in the sense that they are able to encode useful statistical 

information about the variations of gray levels in the white matter regions of interest. 

Several trends are seen from these two Tables. First, the mean values vary substantially 

among the different ROIs for every feature type. Second, the mean values are quite 

different from one feature type to another. Third, the mean values vary between the two 

SDM directions for a given feature type, although this variation is smaller than the 

variations observed across the feature types. And last, the standard deviation values are 

less than the mean values, indicating that the variability in capturing the relevant 

information is smaller than the actual value of the information. Table 4.3 presents the 

mean values for the other five non-relevant features, namely, ASM, IDM, sum entropy, 

difference variance, and difference entropy. As opposed to Table 4.1, there are much less 

(sometimes no) variations in the values from one ROI to another and from one SDM 

direction to another for s particular feature type, indicating that this feature is not 

effective in encoding spatial variations in gray level intensities.  
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Table 4.1: Mean values of relevant features in regions of interest for a subject without 

APOE ε4 genes 

ROI 

Features 

Contrast Correlation Sum average Sum variance Entropy 

0° 45° 0° 45° 0° 45° 0° 45° 0° 45° 

6 1.24e-8 5.06e-8 0.202 0.207 3.21e-8 2.93e-8 2.4e-6 2.15e-6 1.21e-10 4.15e-10 

46 6.45e-9 8.33e-9 0.019 0.019 1.67e-8 1.51e-8 4.59e-7 3.93e-7 2.87e-10 5.86e-10 

47 1.13e-8 1.15e-8 0.036 0.038 1.72e-8 1.57e-8 5.33e-7 4.79e-7 2.58e-10 5.41e-10 

49 1.78e-8 6.85e-8 0.148 0.153 3.11e-8 2.8e-8 2.5e-8 2.16e-6 2.26e-10 4.99e-10 

50 5.15e-9 2.27e-8 0.039 0.034 1.95e-8 1.71e-8 9.26e-7 7.39e-7 3.82e-10 6.38e-10 

 

 

Table 4.2: Standard deviation values of relevant features in regions of interest for a 

subject without APOE ε4 genes 

ROI 

Features 

Contrast Correlation Sum average Sum variance Entropy 

0° 45° 0° 45° 0° 45° 0° 45° 0° 45° 

6 
7.24E-09 2.63E-08 0.131 0.131 1.22E-08 1.09E-08 1.64E-06 1.47E-06 7.09E-11 5.60E-11 

46 
4.09E-09 5.37E-09 0.026 0.027 2.75E-09 2.39E-09 2.43E-07 2.01E-07 1.05E-10 8.78E-11 

47 
7.74E-09 8.04E-09 0.044 0.046 4.12E-09 3.75E-09 3.54E-07 3.23E-07 1.68E-10 1.20E-10 

49 
1.05E-08 2.78E-08 0.100 0.105 9.34E-09 8.82E-09 1.23E-06 1.16E-06 1.02E-10 8.07E-11 

50 
2.12E-09 1.34E-08 0.041 0.044 5.59E-09 5.05E-09 6.68E-07 5.82E-07 1.31E-10 1.17E-10 
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Table 4.3: Mean values of non-relevant features in regions of interest for a subject 

without APOE ε4 genes 

ROI 

Features 

ASM IDM Sum entropy Diff variance Diff entropy 

0° 45° 0° 45° 0° 45° 0° 45° 0° 45° 

6 
3.18E-09 3.17E-09 3.33E-09 3.24E-09 5.99E-09 5.70E-09 3.17E-09 3.17E-09 5.29E-09 5.39E-09 

46 
3.18E-09 3.18E-09 3.38E-09 3.32E-09 5.71E-09 5.43E-09 3.17E-09 3.17E-09 5.09E-09 5.02E-09 

47 
3.18E-09 3.18E-09 3.35E-09 3.32E-09 5.76E-09 5.49E-09 3.17E-09 3.17E-09 5.20E-09 5.09E-09 

49 
3.18E-09 3.18E-09 3.37E-09 3.28E-09 5.89E-09 5.63E-09 3.17E-09 3.17E-09 5.21E-09 5.28E-09 

50 
3.18E-09 3.18E-09 3.41E-09 3.33E-09 5.70E-09 5.45E-09 3.17E-09 3.17E-09 4.98E-09 5.11E-09 

 

 

Tables 4.4-4.6 are analogues of Tables 4.1-4.3 with the exception that these 

Tables present the result for a representative subject with the APOE ε4 genes (same one 

as used in the Section 4.2). While most of the broad trends in these Tables are identical to 

those discussed earlier, the actual values vary much more between the two subjects for 

the relevant features as compared to the other features, demonstrating the potential of the 

relevant features in distinguishing between the two subject types. 
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Table 4.4: Mean values of relevant features in regions of interest for a subject with APOE 

ε4 genes 

ROI 

Features 

Contrast Correlation Sum average Sum variance Entropy 

0° 45° 0° 45° 0° 45° 0° 45° 0° 45° 

6 
1.50E-08 4.26E-08 0.213 0.219 3.04E-08 2.80E-08 2.04E-06 1.87E-06 9.62E-11 4.08E-10 

46 
6.07E-09 9.03E-09 0.015 0.015 1.68E-08 1.52E-08 4.52E-07 3.86E-07 3.90E-10 6.48E-10 

47 
7.09E-09 6.11E-09 0.008 0.009 1.38E-08 1.27E-08 2.69E-07 2.40E-07 4.42E-10 7.07E-10 

49 
1.93E-08 6.17E-08 0.172 0.179 2.77E-08 2.54E-08 1.73E-06 1.54E-06 1.40E-10 4.41E-10 

50 
6.11E-09 1.67E-08 0.032 0.031 1.76E-08 1.55E-08 6.72E-07 5.30E-07 4.15E-10 6.90E-10 

 

 

Table 4.5: Standard deviation values of relevant features in regions of interest for a 

subject with APOE ε4 genes 

ROI 

Features 

Contrast Correlation Sum average Sum variance Entropy 

0° 45° 0° 45° 0° 45° 0° 45° 0° 45° 

6 
6.44E-09 2.39E-08 0.133 0.137 7.93E-09 7.57E-09 1.11E-06 1.05E-06 4.55E-11 2.95E-11 

46 
3.77E-09 8.76E-09 0.012 0.011 2.49E-09 2.18E-09 1.98E-07 1.63E-07 1.15E-10 9.26E-11 

47 
5.06E-09 3.39E-09 0.009 0.011 2.14E-09 1.91E-09 1.30E-07 1.18E-07 2.34E-10 1.97E-10 

49 
7.18E-09 3.05E-08 0.134 0.135 6.86E-09 6.38E-09 8.37E-07 7.64E-07 9.54E-11 7.42E-11 

50 
3.74E-09 1.12E-08 0.041 0.043 4.51E-09 4.06E-09 4.80E-07 4.13E-07 1.82E-10 1.55E-10 
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Table 4.6: Mean values of non-relevant features in regions of interest for a subject with 

APOE ε4 genes 

ROI 

Features 

ASM IDM Sum entropy Diff variance Diff entropy 

0° 45° 0° 45° 0° 45° 0° 45° 0° 45° 

6 
3.25E-09 3.25E-09 3.38E-09 3.33E-09 6.20E-09 5.89E-09 3.25E-09 3.25E-09 5.53E-09 5.53E-09 

46 
3.25E-09 3.25E-09 3.50E-09 3.43E-09 5.81E-09 5.53E-09 3.25E-09 3.25E-09 5.12E-09 5.03E-09 

47 
3.25E-09 3.25E-09 3.48E-09 3.43E-09 5.69E-09 5.42E-09 3.25E-09 3.25E-09 5.17E-09 5.04E-09 

49 
3.25E-09 3.25E-09 3.39E-09 3.33E-09 6.14E-09 5.87E-09 3.25E-09 3.25E-09 5.53E-09 5.53E-09 

50 
3.25E-09 3.25E-09 3.50E-09 3.42E-09 5.84E-09 5.57E-09 3.25E-09 3.25E-09 5.13E-09 5.17E-09 

 

 

Figures 4.6-4.14 show the plots of the mean values of the various features for all 

the 26 subjects that are divided into groups based on the presence and absence of APOE 

ε4 genes in three regions of interest. Figures 4.6-4.8 are drawn for the fornix region (ROI 

number 6), Figures 4.9-4.11 are drawn for the left inferior fronto-occipital fasciculus 

region (ROI number 46), and Figures 4.12-4.11 are drawn for the right uncinate 

fasciculus region (ROI number 47). The mean values of all the features except correlation 

and sum variance are shown in the same plot. Correlation and sum variance means are 

plotted separately due to the orders of magnitude differences in the actual values. The 

values for the 15 carrier subjects with the APOE ε4 genes are shown with green symbols 

and the values for the other 11 non-carrier subjects without the genes are depicted with 

red symbols. Certain key trends are observed in all the Figures. First, the values are 

dispersed only for contrast, correlation, sum average, and sum variance feature types; for 

all the other feature types, the values are tightly clustered together indicating that they are 
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unable to distinguish among the subjects in either of the two regions of interest. Second, 

the values for the carriers tend to be higher on an average for the relevant feature types 

where dispersion occurs. This trend indicates the ability of the relevant feature types to 

distinguish between carrier and non-carrier subject types. And, third, the separation of the 

values for the two subject types varies based on the relevant feature type and the ROI. 

For instance, the values are clearly separated for correlation in the fornix region, for 

contrast and sum variance in the left inferior fronto-occipital fasciculus region, and for 

contrast and correlation in the right uncinate fasciculus region. These trends are also 

demonstrated using two-sample t test in the next Section.  
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Figure 4.6: Mean values of various features for subjects with and without APOE ε4 genes 

in fornix region (Green and red indicates non-carriers and carriers respectively.) 
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Figure 4.7: Mean values of correlation feature for subjects with and without APOE ε4 

genes in fornix region 
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Figure 4.8: Mean values of sum variance feature for subjects with and without APOE ε4 

genes in fornix region 
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Figure 4.9: Mean values of various features for subjects with and without APOE ε4 genes 

in left inferior fronto-occipital fasciculus region 
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Figure 4.10: Mean values of correlation feature for subjects with and without APOE ε4 

genes in left inferior fronto-occipital fasciculus region 
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Figure 4.11: Mean values of sum variance feature for subjects with and without APOE ε4 

genes in left inferior fronto-occipital fasciculus region 
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Figure 4.12: Mean values of various features for subjects with and without APOE ε4 

genes in right uncinate fasciculus region 
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Figure 4.13: Mean values of correlation feature for subjects with and without APOE ε4 

genes in right uncinate fasciculus region 
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Figure 4.14: Mean values of sum variance feature for subjects with and without APOE ε4 

genes in right uncinate fasciculus region 
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 Tables 4.7 and 4.8 show all the mutual information values for pairwise 

comparison of all the features, both relevant and non-relevant, in a specific ROI 

numbered 6 and using SDM direction of 0°, for the same two representative subjects used 

earlier. The values are different in the two tables. While all the values are always greater 

than 0.001 in the table for the subject without the APOE ε4 genes, 11 pairs of values 

(marked in bold) are less than 0.001 in the table for the subject with the APOE ε4 genes. 

Not only does this indicate the ability of the features to distinguish between the two types 

of subjects (lower values denote greater degree of independence or lack of correlation 

among the two random variables), these pairs of features correspond to the ones that we 

have identified as relevant from the feature map images and the mean and standard 

deviation tables. Thus, our relevant features are also uncorrelated, indicating that this 

entire set of features is potentially useful in detecting early signs of neurodegeneration.    
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Table 4.7: Mutual information values for pairwise comparison of features (all 0 degrees) 

in fornix region for a subject without APOE ε4 genes 

 ASM Contrast Correlation IDM Sum average Sum variance Sum entropy Entropy Diff variance Diff entropy 

ASM  0.0017 0.0016 0.0018 0.0017 0.0017 0.0018 0.0015 0.0018 0.0018 

Contrast   0.0011 0.0020 0.0013 0.0012 0.0020 0.0014 0.0017 0.0021 

Correlation    0.0020 0.0011 0.0010 0.0020 0.0013 0.0017 0.0020 

IDM     0.0020 0.0020 0.0020 0.0020 0.0017 0.0020 

Sum average      0.0012 0.0020 0.0015 0.0017 0.0021 

Sum variance       0.0020 0.0013 0.0017 0.0020 

Sum entropy        0.0017 0.0018 0.0020 

Entropy         0.0015 0.0017 

Diff variance          0.0018 

 

 

Table 4.8: Mutual information values for pairwise comparison of features (all 0 degrees) 

in fornix region for a subject with APOE ε4 genes 

 ASM Contrast Correlation IDM Sum average Sum variance Sum entropy Entropy Diff variance Diff entropy 

ASM  0.0012 0.0011 0.0012 0.0012 0.0012 0.0012 0.000974 0.0012 0.0012 

Contrast   0.00042 0.0013 0.00053 0.0004 0.0013 0.000816 0.0011 0.0013 

Correlation    0.0013 0.00045 0.0004 0.0013 0.000812 0.0011 0.0012 

IDM     0.0013 0.0013 0.0013 0.001094 0.0012 0.0013 

Sum average      0.00051 0.0013 0.000883 0.0012 0.0013 

Sum variance       0.0013 0.000808 0.0012 0.0013 

Sum entropy        0.0011 0.0012 0.0013 

Entropy         0.0010 0.0011 

Diff variance          0.0012 
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Figure 4.15: Mutual information values of pairs of uncorrelated features for subjects with 

and without APOE ε4 genes in fornix region  
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Figure 4.16: Mutual information values of pairs of uncorrelated features for subjects with 

and without APOE ε4 genes in left inferior fronto-occipital fasciculus region 

 

Figures 4.15 and 4.16 plot the mutual information values of all the pairs of 

uncorrelated features identified in Table 4.8 for a the subjects in the fornix and the left 

inferior fronto-occipital fasciculus region respectively. As earlier, the values for the 

carrier subjects are shown with green symbols, whereas the values for the non-carrier 

subjects are depicted with red symbols. It is observed that the values for the non-carriers 



71 
 

are higher on an average than the corresponding values for the carriers. Thus, we can 

conclude that the uncorrelated set of features show a greater degree of independence 

when they are computed for the carriers, thereby providing the possibility of being able to 

successfully identify anomalies in the brain for those subjects independent of each other. 

This trend is corroborated using statistical testing in the next Section.  

4.5 Statistical Comparison of Texture Feature Maps for Subjects With 
and Without APOE ε4 genes 

 

Table 4.9 shows the p-values obtained by performing two-sample t test on all the 

subjects that are divided into two groups based on the presence and absence of the APOE 

genes using the mean values of the relevant features. This testing is done to validate the 

alternative hypothesis that the two group or sample means are unequal. Indeed, we 

observe that the p-values are less than 0.05 (marked in bold) for certain features in some 

of the ROIs, and between 0.05 and 0.1 (shown in italicized) in some other cases. It is 

worthwhile to note here that for all the ROIs there is at least one p value that is less than 

0.05, indicating that all of them potentially contain early signs of neurodegeneration. 

We are able to detect trends and borderline significant results for periventricular 

ROIs as well as the uncinate fasciculus and the inferior fronto-occipital fasciculus (please 

note that due to the exploratory nature of the analysis, no correction for multiple 

comparisons was applied). One needs to take into account the challenges of this analysis 

– these are neurologically healthy adults, middle aged (45-65 years of age at the time of 

the scan), long before any potential AD symptoms; additionally, the presence of the 

ApoE ε4 gene increases the probability, but does not mean that the person will, indeed, 
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get AD. So, differences, if any, are expected to be very small. Of clinical interest in these 

results is the uncinate fasciculus, a tract connected to the hippocampus and the last tract 

to mature in the human brain, both characteristics that make it particularly interesting for 

AD. Of further clinical significance is the inferior fronto-occipital fasciculus, a tract that 

together with the uncinate fasciculus has been implicated in aging-related white matter 

degeneration.(Teipel et al. 2010).  

 

Table 4.9: p-values from two sample t test on mean values of relevant features for all the 

subjects with and without APOE ε4 genes in regions of interest 

ROI 

Features 

Contrast Correlation Sum average Sum variance Entropy 

0° 45° 0° 45° 0° 45° 0° 45° 0° 45° 

Fornix 0.031 0.260 0.024 0.029 0.166 0.163 0.195 0.192 0.037 0.091 

Left inferior fronto-occipital fasciculus 0.159 0.210 0.059 0.065 0.096 0.100 0.040 0.040 0.283 0.287 

Right uncinate fasciculus 0.048 0.068 0.087 0.079 0.167 0.163 0.166 0.096 0.227 0.200 

Right tapetum 0.053 0.025 0.203 0.194 0.419 0.412 0.484 0.489 0.078 0.101 

Left tapetum 0.008 0.089 0.177 0.170 0.118 0.116 0.107 0.103 0.101 0.128 

 

 

Table 4.10 presents the p-values from the two sample t test on the pairs of 

relevant and uncorrelated features that have mutual information values of less than 0.001 

as shown in Table 4.8 using the two subject groups, one with APOE ε4 genes and the 

other without APOE ε4 genes. Based on our hypothesis, if different texture analysis 

features measure different aspects of heterogeneity that do not change concurrently, then 

early changes will be strongly reflected in changes in the relationship between them, as 
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reflected by the mutual information values. While the limited number of subjects does not 

allow our results to reach formal significance levels, a strong trend for group differences 

is observed. Several p values are between 0.05 and 0.1 and the means for the carrier 

group are lower than the non-carrier group, indicating a trend of greater independence 

among the relevant feature pairs in encoding intensity variations in the carrier group. In 

future, we plan to repeat this analysis using a much larger set of subjects.  

 

Table 4.10: Statistics computed on mutual information values of pairs of relevant features 

for all the subjects with and without APOE ε4 genes in regions of interest  

ROI Statistic 

Relevant feature pairs 

Contrast Correlation Sum average 

Correlation 
Sum 

average 

Sum 

variance 

Sum 

average 

Sum 

variance 

Sum 

variance 

Fornix 
Mean, carriers 0.0008 0.0009 0.0008 0.0009 0.0008 0.0016 

Mean, non-carriers 0.0012 0.0012 0.0011 0.0011 0.0011 0.0018 
p value 0.096 0.143 0.095 0.158 0.123 0.139 

Left inferior  
fronto-occipital fasciculus 

Mean, carriers 0.0031 0.0032 0.0031 0.0032 0.0031 0.0033 
Mean, non-carriers 0.0036 0.0037 0.0037 0.0037 0.0036 0.0039 

p value 0.067 0.073 0.072 0.063 0.062 0.068 
 

 

Figures 4.15 and 4.16 demonstrate what a lower mutual information value means 

in this context: expansion of the range of values in one variable creates a new populated 

area on the right side of Figure 4.16 that drops mutual information values. Notice that the 

creation of an area with a distinct relationship between the two measures occurs in the 

case of the APOE ε4 carrier. Such changes in the case of texture analysis features are 
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interesting because they are derived from a single matrix, which makes a certain degree 

of dependency expected. However, our results demonstrate that there are changes that 

interfere with this relationship. Furthermore, the presence of such changes that reach 

statistical significance in the case of small changes, like the ones in our preliminary 

study, may justify such an analysis as confirmatory result or strengthen the performance 

of a classifier-based diagnostic system as additional relevant features.  

 

 

Figure 4.17: Scatter plot of contrast versus sum average features for a subject without 

APOE ε4 genes in left inferior fronto-occipital fasciculus region 
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Figure 4.16: Scatter plot of contrast versus sum average features for a subject with APOE 

ε4 genes in left inferior fronto-occipital fasciculus region 

 

Figures 4.19 shows the VBM result on comparing the two subject groups, one  

comprising of the APOE ε4 carriers and the other consisting of the non-carriers, using 

correlation as the texture feature. White matter masking is not employed as the ROIs are 

automatically identified in this procedure. However, the non-linear registration step 

described in Section 4.2 is employed to transform every correlation feature map from the 

T2 space to the MNI standard brain space. The parameters are set based on the 

recommended values prescribed in the VBM manual (VBM 2013). Since VBM uses a 

two-sample t test, we need to select a value for p (equal to 100% - confidence level) using 

the familywise error correction method that bounds the number of false positive regions. 

It is chosen as 0.05. The two groups are assigned contrast values of +1 and -1 

respectively. The figure shows a single dark colored region within the white background 
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of the brain; this region corresponds to a white matter ROI where correlation has been 

able to detect statistically significant differences between the subject groups. The p value 

in the identified region is lower than the set thresholds and the corresponding Z value is 

greater than 4.5. However, only one such region is identified using VBM unlike in the 

case of feature means and mutual information values. The other identified regions have 

high p values, and are, thus, deemed to have no statistically significant differences. 
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Figure 4.19: VBM result on subjects with and without APOE ε4 genes using correlation  
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CHAPTER 5: CONCLUSIONS 

 This chapter has been arranged in the following manner. Section 5.1 presents the 

contributions of this research work. Section 5.2 describes the benefits of the work 

presented in this thesis. Finally Section 5.3 describes the possible future work in this 

field. 

5.1 Contributions 
 

A new technique to provide the foundation for early detection of Alzheimer’s 

disease (AD) by processing magnetic resonance (MR) images has been presented in this 

thesis. The major contributions of this work are summarized as follows.  

1. Using textural features to extract meaningful information from T2 –weighted MR 

images of subjects with and without APOE ε4 genes: Texture analysis is used to 

extract a set of ten statistical features, namely angular second moment, contrast, 

correlation, inverse difference moment, sum average, sum variance, sum entropy, 

entropy, difference variance, and difference entropy, that contain information about 

the spatial distribution of tonal variations in the MR images. Half of the texture 

feature maps (with a particular feature value for every image voxel) show clear 

group-wise differences in the gray tonal distributions of the MR images for a majority 

of the subjects divided into two groups based on the presence and absence of the 

APOE ε4 genes that are commonly found among AD patients. These group-wise 
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differences indicate the potential of the corresponding textural features in early 

identification of the onset of AD.   

2. Improving differentiation between subjects with and without APOE ε4 genes by 

computing textural feature maps on white matter masked T2 –weighted MR images 

segmented into regions of interest: The white matter regions of the T2 MR images 

were segregated from the entire brain by a manual non-linear registration technique to 

map the T2 images into a standard brain atlas. This registration also enabled 

segmentation of the white matter into regions of interest (ROIs) based on the 

anatomical structure of the brain. The texture feature maps were then computed on 

just the white matter regions to better capture the group-wise differences in the gray 

tone distributions among subjects with and without APOE ε4 genes. Enhancement of 

the differences is consistent with the medical research finding that the early effects of 

AD are evident in the white matter portions of the brain.   

3. Identifying most relevant and uncorrelated textural features from the overall feature 

set using statistical measures: A combination of statistical measures is used to 

identify the subset of uncorrelated textural features that yield significantly more 

group-wise differences than the ones that are not included in this subset. In other 

words, this step enables us to obtain the set of relevant features that can 

independently provide a good prediction about the early onset of AD. The statistical 

measures consist of mean, coefficient of variance, and mutual information. The mean 

is the simplest measure, and yet it is powerful enough to indicate whether a particular 

feature is able to yield significantly different values from one white matter ROI to 
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another and from one subject with APOE ε4 genes to another subject without APOE 

ε4 genes. The coefficient of variance shows whether the variability of the feature that 

does yield significantly different values is substantially lower than the average 

indicating that the results are meaningful. Mutual information is utilized to ensure 

that the relevant features are uncorrelated, thereby establishing the need to retain all 

the relevant features as potential predictors of the early onset of AD.  

4. Validating the ability of the relevant and uncorrelated textural features to distinguish 

between subjects with and without APOE ε4 genes using statistical significance tests: 

Validation of the ability of the relevant textural features to identify early signs of the 

onset of AD is done in a surrogate manner by performing statistical hypothesis testing 

on the two subject groups. The standard two-sample t test with unequal sample sizes 

is used to evaluate whether the sample means of the mean relevant feature values and 

the mutual information values of the pairs of uncorrelated features are equal for 

specific ROIs. While the hypotheses testing often lead to inconclusive results when 

all the subjects are included, they, indeed, show significant differences for a large 

subset of the subjects. The inconclusive results can be due to the fact that not all of 

the subjects with APOE ε4 genes have already developed or ever will develop AD. 

Thus, the overall results are promising in the sense that a certain set of uncorrelated 

textural features are able to detect early signs of AD (identify true positives) and may 

also be able to avoid unnecessary diagnosis of subjects without any signs of AD 

(discard false positives).     
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5.2 Benefits 
 

Currently, early detection of AD from structural MR images remains a major 

challenge for the medical research community. According to the AD Report (Alzheimer’s 

Association 2012), more than half of an estimated 5.4 million Americans (of all ages) 

having AD are not diagnosed properly early enough. Every 1 out of 85 persons is 

expected to have AD by the year 2050. While researchers are still searching for 

permanent cures, palliative measures comprising of medications, psychosocial 

interventions, and assistive caregiving can substantially improve the quality of life of AD 

patients. Hence, there is an immense need for robust and reliable diagnosis of AD in its 

early stages to positively affect the lives of millions of people.    

Although various image processing techniques like texture analysis, clustering 

and classification, and voxel-based analysis have shown some promise, none of the 

techniques has been shown to be capable of addressing the challenge satisfactorily. It is 

anticipated that this work, which uses texture analysis in conjunction with statistical 

feature selection and voxel-based morphometry, will provide a feasible path toward 

overcoming this challenge without requiring genetic information and rather expensive 

and sometimes inaccessible functional imaging modalities.   

5.3 Future Work 
 

While the current work provides a foundation for early detection of AD from T2 –

weighted MR images, further work needs to be done in the following areas to address the 

problem in its entirety.  
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1. Effective feature generation: A fixed set of textural features is chosen to encode 

meaningful information from the MR images, and a subset of the chosen set is 

identified as the potential predictors of the early onset of AD. Thus, feature selection 

is performed by first defining an initial set based on prior success in image 

classification and then applying statistical metrics to obtain a smaller set of features 

with significantly better predictive powers than the others in the initial set. While this 

feature generation method shows promising results, it is reasonable to believe that the 

quality of the results can be further enhanced by adopting more involved feature 

generation approaches. For instance, it may be useful to investigate whether a 

combination of features (n-tuples like pairs or triples) can yield better results. It may 

also be useful to examine whether feature selection can be combined with feature 

extraction for generating higher-quality results. In feature extraction, dimensionality 

reduction techniques such as principal component analysis or shape analysis 

techniques like Hough transform are used to detect features from raw images, thereby 

providing a potentially broader and richer set of initial features than the one used in 

the thesis.    

2. Extensive validation and verification: While the results in this work are promising, 

they are sometimes not conclusive. More specifically, even though some of the 

textural features show statistically significant differences in certain ROIs when a 

subset of the subjects is divided into two groups, one with APOE ε4 genes and the 

other without APOE ε4 genes, certain trends cannot be conclusively explained. First, 

we are unable to fully rationalize why certain features show differences in a particular 
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ROI, whereas the other uncorrelated features do not show differences in the same 

ROI but shows differences in some other ROI. Second, we cannot be certain if the 

lack of significant differences when all the subjects are included is because of the 

absence of AD in many subjects that have the APOE genes or due to the inherent 

limitations of the presented technique. Hence, it is imperative to conduct further 

experimental trials for validating and verifying the technique. Verification will 

require ground truth knowledge, i.e., accurate information about the actual onset of 

AD in its early stage in the subjects instead of the surrogate measure of having the 

APOE genes. For validation, several long-duration trials have to be performed to test 

whether the subjects, who are predicted to have early symptoms of AD, indeed, get 

diagnosed for AD after a few months or even years. Further basic clinical research is 

also needed to obtain strong correlations among white matter ROIs and early stages 

of AD, which will then enable us to assess the accuracy and general applicability of 

the predictions of the individual features.   
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