

IMPLEMENTATION AND SIMULATION OF SECURE SOCKETS LAYER (SSL) IN

WINDOWS PRESENTATION FOUNDATION

by

Harsh Vachharajani

A Thesis

Submitted to the

Graduate Faculty

of

George Mason University

in Partial Fulfillment of

The Requirements for the Degree

of

Master of Science

Information Security and Assurance

Committee:

 Dr. Kris Gaj, Thesis Director

 Dr. Jim Jones, Committee Member

 Dr. Robert Simon, Committee Member

 Dr. Sanjeev Setia, Department Chair

 Dr. Kenneth S. Ball, Dean, The Volgenau

School of Engineering

Date: Summer Semester 2015

George Mason University

Fairfax, VA

Implementation and Simulation of Secure Sockets Layer (SSL) in Windows Presentation

Foundation

A Thesis submitted in partial fulfillment of the requirements for the degree of Master of

Science at George Mason University

by

Harsh Vachharajani

Bachelor of Technology

Ganpat University, India, 2013

Director: Kris Gaj, Associate Professor

Department of Electrical and Computer Engineering

Summer Semester 2015

George Mason University

Fairfax, VA

ii

Copyright 2015 © Harsh Vachharajani

All Rights Reserved

iii

ACKNOWLEDGEMENTS

I would not miss this opportunity to thank many people involved with my successful

completion of the thesis, without whom I could not possibly think of having achieved this

goal. My biggest gratitude goes to my thesis director Dr. Kris Gaj, under whom I initiated

my research work, further extending it into a thesis, who guided and helped me at each

and every step and had a great contribution toward my successful completion of the

thesis. Drs. Jones and Simon, the other two members of my committee were of invaluable

help in my research. I would like to especially thank two of my friends, Vikram Gawade

and Tejas Dakve, for their invaluable input and contribution of their selfless help to my

research, implementation, and solving any issues when I was stuck. A big thanks also

goes to Devin Kim, a student under Dr. Gaj’s supervision, who helped to review some

portions of my thesis for improvements.

iv

TABLE OF CONTENTS

Page

List of Tables ... vi

List of Figures ... vii

List of Abbreviations ... viii

Abstract .. ix

Chapter 1: Introduction ... 1

Chapter 2: Previous Work ... 4

2.1 CrypTool .. 4

2.1.1 CrypTool 1 .. 4

2.1.2 CrypTool 2 (CT2) ... 6

2.1.3 JCrypTool ... 7

2.1.4 CrypTool Online (CTO) ... 9

2.2 MAGMA .. 10

2.3 SageMath .. 11

2.4 GnuPG .. 12

Chapter 3: Background Of SSL/TLS and Attacks on it .. 14

3.1 Differences between SSL and TLS .. 15

3.1.1 TLS 1.0 ... 17

3.1.2 TLS 1.1 ... 17

3.1.3 TLS 1.2 ... 18

3.2 Different public-key exchange methods supported in SSL/TLS 19

3.2.1 RSA ... 19

3.2.2 Fixed Diffie-Hellman (DH) .. 20

3.2.3 Ephemeral Diffie-Hellman (EDH) .. 20

3.2.4 Anonymous Diffie-Hellman ... 21

3.3 Use of MAC and HMAC ... 21

3.4 Use of Symmetric cipher suites .. 23

v

3.5 SSL Handshake .. 24

3.6 SSL Record Layer .. 27

3.7 Attacks on SSL / TLS... 29

3.7.1 Cipher Suite Rollback Attack ... 29

3.7.2 Version Rollback Attack ... 30

3.7.3 BEAST .. 30

3.7.4 POODLE ... 31

3.7.5 HeartBleed Attack ... 31

Chapter 4: Development Tools and Libraries ... 33

4.1 OpenSSL .. 35

4.2 MSDN Library ... 36

4.3 Mentalis .. 37

Chapter 5: Implementation ... 40

5.1 The Handshake Phase... 40

5.1.1 Welcome Screen ... 40

5.1.2 Generation of Certificate... 41

5.1.3 Mode Selection ... 44

5.1.4 The Handshake Protocol ... 44

5.1.5 The Record Protocol ... 46

5.2 Use of library functions in the implementation .. 50

Chapter 6: Conclusion and Future work ... 53

References ... 55

vi

LIST OF TABLES

Table Page

Table 1: Difference between SSL version 2 and SSL version 3 15
Table 2: Library functions used in our program, .. 50

vii

LIST OF FIGURES

Figure Page

Figure 1: Without SSL [16] .. 1
Figure 2: Insecure communication – example [15] .. 2

Figure 3: With SSL [16] ... 3
Figure 4: CrypTool 1: Example of a histogram representing relative frequencies of letters

in English language. .. 5
Figure 5: CrypTool 2: Example of encryption, decryption, and comparison between the

original and decrypted message. ... 7
Figure 6: JCrypTool GUI. ... 8

Figure 7: Fixed Diffie-Hellman .. 20
Figure 8: Ephemeral Diffie-Hellman .. 21

Figure 9: CBC-MAC... 22
Figure 10: HMAC ... 23
Figure 11: SSL Handshake steps [13] ... 24

Figure 12: SSL Record Protocol [8] ... 28
Figure 13 MSDN library hierarchy example .. 36

Figure 14 MSDN library hierarchy example .. 39
Figure 15: Welcome Screen .. 41

Figure 16: Certificate Generation ... 42
Figure 17: Certificate Generation – Server Details window ... 43

Figure 18: Mode Selection window .. 44
Figure 19: Demo mode Handshake window ... 45

Figure 20: The Record Protocol .. 46
Figure 21: Attack selection window ... 47
Figure 22: Handshake window for Man-in-the-middle attack .. 49

viii

LIST OF ABBREVIATIONS

Advanced Encryption Standard ... AES

Application Programming Interface ... API

Certification Authority ... CA

Cipher Block Chaining ..CBC

Data Encryption Standard .. DES

Digital Signature Algorithm ..DSA

Hashed Message Authentication Code ..HMAC

Hyper-Text Transfer Protocol Secure ... HTTPS

Hyper-Text Transfer Protocol ..HTTP

Initialization Vector .. IV

Message Authentication Code ... MAC

Message Digest ... MD

Microsoft Developer Network ... MSDN

Secure Hash Algorithm ..SHA

Secure Sockets Layer .. SSL

Transport Layer Security ... TLS

Windows Presentation Foundation ... WPF

World Wide Web ... WWW

ix

ABSTRACT

IMPLEMENTATION AND SIMULATION OF SECURE SOCKETS LAYER (SSL) IN

WINDOWS PRESENTATION FOUNDATION

Harsh Vachharajani, M.S.

George Mason University, 2015

Thesis Director: Dr. Kris Gaj

SSL (Secure Sockets Layer) and TLS (Transport Layer Security) are

cryptographic protocols designed to provide secure communication between a web server

and a web browser. This thesis introduces a unique approach to understanding SSL and

TLS by visualizing these protocols through simulation in WPF (Windows Presentation

Foundation). This approach is intended to help students to get a clearer picture of how

these protocols actually work by clearly illustrating all steps of SSL and TLS, including

the handshake and the record protocols.

1

CHAPTER 1: INTRODUCTION

In the rapidly growing technology era, WWW (World Wide Web) provides a

platform for exchanging data, such as text, images, videos, etc. There is a growing need

to protect this data, as the exchanged information might be sensitive or confidential. An

attacker might intercept the data and try to manipulate it by modifying it, thus violating

confidentiality and/or integrity of the message.

Figure 1: Without SSL [16]

2

Figure 2: Insecure communication – example [15]

As shown in Fig. 2, a user may be sending a message to the recipient on the

opposite side via Gmail, and the recipient may be receiving it using his Yahoo account.

Then, the connection between the User and the Gmail server, connection between the

Gmail server and the Yahoo server, and the connection between the Yahoo server and the

Recipient’s computer can be all sniffed by an attacker, such as a hacker, if they are not

secured.

In order to protect data being transmitted, we use SSL or TLS, which are

cryptographic protocols providing security for the communication over an insecure

channel. These protocols establish an encrypted and authenticated connection between a

web server and a web browser. With the use of SSL/TLS, an attacker can still intercept

the data, however, as the data is encrypted, the attacker is not able to extract any useful

information from transmitted packets. Thus, the confidentiality and integrity of the

message are preserved.

3

Figure 3: With SSL [16]

As a part of this thesis, I will try to illustrate the operation of SSL/TLS in a

practical manner, visualizing the SSL handshake and the record layer protocols through

simulation, with the help of a desktop-based application, developed in C# programming

language, using WPF (Windows Presentation Foundation), working in Visual Studio

2013. To enhance this application’s functionality, I have made use of inbuilt MSDN

cryptographic library along with the external SSL library named Mentalis Security

Library, also developed in C#, which explicitly provides various security related

functions, grouped into SecureSocket Library, CertificateServices Library and Crypto

Library.

4

CHAPTER 2: PREVIOUS WORK

There exist several open-source programs, which can be used for teaching cryptography.

The most important ones include CrypTool, MAGMA, SageMath, and GnuPG (Gnu

Privacy Guard).

2.1 CrypTool

CrypTool is an open-source e-learning software, available for free. The system

allows users to experiment with various cryptographic algorithms. The CrypTool project

develops the world most-widespread free e-learning programs in the area of cryptography

and cryptanalysis.

The CrypTool Portal is devoted to several different versions of software, such as

CrypTool 1 (CT1), CrypTool 2 (CT2), JCrypTool (JCT), and CrypTool Online (CTO).

2.1.1 CrypTool 1

CrypTool 1 (CT1) was the first version of CrypTool. It was released in 1998 and allows

to experiment with various cryptographic algorithms. CT1 is written in C++ and runs

under Windows OS.

It is available in 5 languages, and is the most wide-spread e-learning software of its kind.

It can be used for educational purposes in schools and universities.

5

In particular, CrypTool 1 includes implementations of:

 Numerous classical and modern cryptographic algorithms (encryption,

decryption, and key generation)

 Visualization of several algorithms and cryptographic schemes (Caesar, Enigma,

RSA, Diffie-Hellman, digital signatures, AES, etc.)

 Cryptanalysis of several algorithms (e.g., Vigenère and RSA with small moduli

sizes)

 Cryptanalytical methods (e.g., calculations of entropy, n-grams, autocorrelation,

etc.)

 Related auxiliary methods (primality tests, factorization, base64 encoding, etc.)

Figure 4: CrypTool 1: Example of a histogram representing relative frequencies of letters

in English language.

6

2.1.2 CrypTool 2 (CT2)

CrypTool 2 is the modern successor to CrypTool 1 and supports visual programming and

execution of cascades of cryptographic operations. CT2 also runs under Windows.

CT2 provides various functionalities such as,

Modern Plug’n’Play Interface / Visual Programming - CrypTool 2 provides a

graphical user interface for visual programming, and its workflows can be visualized and

controlled to enable intuitive manipulation and interaction among various cryptographic

functions. The vector-oriented GUI is based on the Windows Presentation Foundation

(WPF), which enables users to visualize the functionality of a particular module and

understand it in a better way. CrypTool 2 has been developed using C# language. It is

based on .NET Framework, and has a pure-plugin architecture, which makes it very easy

to develop new additional functions.

Comprehensive Cryptanalysis Functions – CrypTool 2 provides a variety of

cryptanalytical tools to analyze or even break classical and modern ciphers. With the

current version one can, for instance, apply a ciphertext-only attack on an Enigma-

encrypted ciphertext. Plenty of other cryptanalysis functions are also available, such as

performing frequency tests to find n-grams and assessing the length of a codeword used

for a polyalphabetic cipher.

7

Figure 5: CrypTool 2: Example of encryption, decryption, and comparison between the

original and decrypted message.

CT2 also is an open-source project, licensed under Apache Open Source License 2.0, and

anyone is welcome to contribute to this project.

2.1.3 JCrypTool

JCrypTool (JCT) is an open-source e-learning platform that allows users to experiment

comprehensively with cryptography on Linux, MAC OS X, and Windows. The program

enables analysing cryptographic algorithms in a modern, easy-to-use application. JCT

platform creates a new way for the users to develop their own cryptographic plug-ins and

extend the JCrypTool platform in new directions.

8

JCT is written in Java and has an Eclipse Rich Client Platform. It includes plenty of

cryptographic mechanisms, such as classical, symmetric, and asymmetric ciphers, hash

functions, analysis tools, visualizations, and crypto games.

JCT is divided into two parts: JCrypTool Core and JCrypTool Crypto.

The JCrypTool Core Project takes care of the JCrypTool platform, which contains

the bare runtime functions, editors, and crypto procedures, as well as core functionality,

such as the Crypto Explorer view or the Actions view.

The JCrypTool Crypto Project’s aim is to develop new crypto plug-ins

(algorithms, analysis, games, visualizations and others) and integrate them into the

JCrypTool.

Figure 6: JCrypTool GUI.

9

2.1.4 CrypTool Online (CTO)

CrypTool Online, released in 2009, is the online version of the free e-learning program

CrypTool. It allows users to try out different algorithms in a browser or on a smartphone.

It provides a huge variety of encryption methods and analysis tools, including many

illustrated by examples.

It encrypts directly within a browser and provides an exciting insight into the

world of cryptology. CrypTool Online is primarily intended for studying the

fundamentals of classical ciphers. The download version of CrypTool is also suitable for

working with longer texts and conducting high performance analyses on encrypted

messages.

Additionally, CTO includes a Password generator which provides a user with a safe key.

The user can also learn about what a “good” password is and how to remember a

seemingly complicated password without a problem.

We looked at different open source projects in the area of cryptology. The software

which matches most closely the work being done in this thesis is CrypTool. Comparing

different versions of CrypTool, CT2 is the best version in terms of visualization of

algorithms through simulation, where a user can understand the algorithm / protocol in a

much better way, which is the main goal of any educational software. However neither

SSL nor TLS protocols have been incorporated in this tool. Hence, our initial idea was to

develop their implementations in CT2. Unfortunately, due to the way CT2 operates, this

task appeared to be impossible to accomplish, without a substantial redesign of the

program. As a result, I decided to develop an educational program devoted to SSL/TLS

10

as a standalone application, which would serve the same purpose as CrypTool, in order to

maintain the goal of demonstrating / learning the protocol in an interactive matter. This

application was developed with the help of the same development tools, namely, the

Windows Presentation Foundation (WPF).

2.2 MAGMA

Magma (also known as Matrix Algebra on GPU and Multicore Architectures) is a freely

available software, designed for computations in algebra, number theory, algebraic

geometry, and algebraic combinatorics. Magma provides an environment for working

with structures such as groups, rings, fields, modules, algebras, schemes, curves, graphs,

designs, codes and many others. The main feature is to be able to construct canonical

representations of structures, hence making operations such as membership testing, the

determination of structural properties, and isomorphism testing, possible.

Magma contains implementation of structures in five branches of algebra: group theory,

ring theory, field theory, module theory, and the theory of algebras.

The main features of the Magma include:

 Algebraic Design Philosophy

 Universality

 Integration

 Performance.

Magma can be used to easily encode all public key operations used in SSL and TLS, but

it lacks support for secret-key cryptography.

11

2.3 SageMath

SageMath is a free open-source mathematics software system, which supports research

and teaching in algebra, geometry, number theory, cryptography, numerical computation,

and related areas. The system is licensed under the GPL. It builds on top of many existing

open-source packages: NumPy, SciPy, matplotlib, Sympy, Maxima, GAP, FLINT, R, and

many more. SageMath uses the Python programming language, supporting procedural,

functional, and object-oriented constructs.

The main purpose of SageMath was to create a viable open-source alternative to Magma,

Maple, Mathematica, and Matlab.

Some of the features of SageMath include:

 A text-based command-line interface using IPython

 Support for parallel processing using multi-core processors, multiple processors, or

distributed computing

 Libraries of elementary and special mathematical functions

 Libraries of number theory functions

 Support for complex numbers, arbitrary precision, and symbolic computation.

Sage integrates many specialized mathematics software packages into a common

interface, for which a user needs to know only Python. However, Sage contains hundreds

of thousands of unique lines of code, adding new functions, and creating the interface

between its components.

12

Both binaries and source code for SageMath are available from the download page [30,

31]. SageMath is available for multiple operating systems, including Windows, Linux,

OS X, and Solaris.

Similarly to Magma, SageMath can be used to easily encode all public key operations

used in SSL and TLS, but it lacks support for secret-key cryptography.

2.4 GnuPG

GnuPG (also known as Gnu Privacy Guard) is a free software replacement for the PGP

suite of Symantec software. It is a complete and free implementation of the OpenPGP

standard, designed to interoperate with PGP; the e-mail encryption program.

GnuPG is a hybrid encryption software program in that it uses a combination of

conventional symmetric-key cryptography for speed, and public-key cryptography for

ease of secure key exchange, typically by using the recipient's public key to encrypt a

session key, which is used only once.

There are different versions of GnuPG. GnuPG 2.x series use Libgcrypt as an

encryption library, while GnuPG 1.x series use an integrated library.

GnuPG encrypts messages using asymmetric key pairs, individually generated by

GnuPG users. Public keys may be exchanged with other users in various ways, e.g., using

Internet key servers. It is also possible to add a cryptographic digital signature to a

message, so the message integrity and sender identity can be verified.

GnuPG also supports symmetric encryption algorithms.

At the time of writing this thesis, GnuPG supports the following algorithms:

13

 Public key: RSA, ElGamal, DSA

 Secret key: IDEA, 3DES, CAST5, Blowfish, AES-128, AES-192, AES-256,

Twofish, Camellia-128, Camellia-192, Camellia-256

 Hash: MD5, SHA-1, RIPEMD-160, SHA-256, SHA-384, SHA-512, SHA-224

 Compression: ZIP, ZLIB, BZIP2.

Some of the applications that support GPG includes:

Claws mail – an email client with GPG plugin

GPG4win - a Windows package with tools and manuals for email and file

encryption

GPGMail – an OS X Mail.app plug-in

GPGTools – an OS X package with tools for email and file encryption (GPGMail,

GPG Keychain Access, MacGPG2, GPG Services, etc.).

The source codes of GnuPG could be used as a basis for our program, however using

them would require a substantial effort devoted to rewriting some functions (as the

OpenPGP protocol is different than SSL/TLS) and mixing code written in different

programming languages.

14

CHAPTER 3: BACKGROUND OF SSL/TLS AND ATTACKS ON IT

SSL (Secure Sockets Layer) is a cryptographic protocol designed to provide secure

communication over a computer network. It is a standard technology that establishes an

encrypted link between a server and a client – typically a web server and a browser.

HTTPS (also called HTTP over TLS) is HTTP (Hypertext Transfer Protocol) protected

by SSL or TLS.

The SSL protocol includes two sub-protocols: the SSL record protocol and the

SSL handshake protocol. The SSL record protocol defines the format used to exchange

data. The SSL handshake protocol involves a series of messages being exchanged

between an SSL-enabled server and an SSL-enabled client, when they first establish an

SSL connection, which happens before the SSL record protocol.

This exchange of messages serves the following purposes:

• Authenticate the server to the client.

• Allow the client and server to select the cryptographic algorithms, or ciphers,

that they both support.

• Optionally authenticate the client to the server.

• Use public-key encryption techniques to generate shared secrets.

• Establish an encrypted SSL connection.

15

The SSL protocol supports a variety of different cryptographic algorithms. It allows

various algorithms to be used in operations, such as, authenticating the server and client

to each other, exchanging certificates, and establishing session keys. Clients and servers

may support different sets of cipher suites, depending on the SSL version they support.

Among its other functions, the SSL handshake protocol determines how the server and

client will decide on which cipher suites they will use to authenticate each other, to

exchange certificates, and to establish session keys.

The protocol combines the following three points to provide communication security:

Privacy - connection through encryption,

Identity authentication – identification through certificates,

Reliability – dependable maintenance of a secure connection through message

integrity checking.

3.1 Differences between SSL and TLS

SSL was developed by Netscape. The first version, named SSL v1.0, was not released

and version 2.0 had a number of security flaws, which led to the release of SSL v3.0. The

differences between versions 2.0 and 3.0 are summarized in Table 1.

Table 1: Difference between SSL version 2 and SSL version 3

SSL version 2 SSL version 3

Security

Improvements

Vulnerable to a "man-in-the-

middle" attack. An active attacker

can invisibly edit the list of

Defends against this attack by having

the last handshake message include a

hash of all the previous handshake

16

SSL version 2 SSL version 3

ciphersuite preferences in the

“hello messages” to invisibly force

both client and server to use 40-bit

encryption.

messages.

Uses a weak MAC construction Uses a strong MAC construction.

Feeds padding bytes into the MAC

in block cipher modes, but leaves

the padding-length field

unauthenticated, which could allow

active attackers to delete bytes

from the end of messages.

Fixed the issue of leaving the

padding-length field unauthenticated.

Message Authentication uses only

40 bits when using an Export

cipher.

The Message Authentication Hash

uses a full 128 bits of keying

material, even when using an Export

cipher.

Functionality

Improvements

The client can only initiate a

handshake at the beginning of the

connection.

The client can initiate a handshake

routine even in the middle of an open

session. A server can request that the

client starts a new handshake. Thus,

the parties can change the algorithms

and keys used whenever they want.

Does not allow the server and

client to send chains of certificates.

Allows the server and client to send

chains of certificates. This allows

organizations to use a certificate

hierarchy that is more than two

certifications deep.

Does not allow for record

compression and decompression.

Allows for record compression and

decompression

Backward

Compatibility

SSL 3.0 can recognize an SSL 2.0 “client hello” and fall back to SSL 2.0.

An SSL 3.0 client can also generate an SSL 2.0 “client hello” with the

version set to SSL 3.0, so SSL 3.0 servers will continue the handshake in

SSL 3.0, and SSL 2.0 server will cause the client to fall back to SSL 2.0.

Other

SSL 3.0 separates the transport of data from the message layer. In 2.0, each

packet contained only one handshake message. In 3.0, a record may contain

part of a message, a whole message, or several messages. This requires

different logic to process packets into handshake messages. Therefore, the

formatting of the packets had to be completely changed.

Cipher specifications, handshake messages, and other constants are

different.

17

3.1.1 TLS 1.0

This TLS protocol was first defined in January 1999 as an upgrade to SSL v3.0. Some of

the major differences are:

- Key derivation functions are different

- MACs are different - SSL 3.0 uses a modification of an early HMAC, while

TLS 1.0 uses HMAC.

- The Finished messages are different

- TLS has more alerts

- TLS requires DSS/DH support.

3.1.2 TLS 1.1

This version of TLS was defined in April 2006 as an upgrade to TLS v1.0. Some of the

major differences are:

- The Implicit Initialization Vector (IV) is replaced with an explicit IV to protect

against Cipher Block Chaining (CBC) attacks.

- Handling of padded errors is changed to use the bad_record_mac alert rather

than the decryption_failed alert to protect against CBC attacks.

- IANA registries are defined for protocol parameters

- No longer prematurely closes to cause a session to be non-resumable.

18

3.1.3 TLS 1.2

This TLS version was defined in August 2008. It contained improved flexibility

compared to TLS v1.1. Some of the major differences are:

- The MD5/SHA-1 combination in the pseudorandom function (PRF) is replaced

with cipher-suite-specified PRFs.

- The MD5/SHA-1 combination in the digitally-signed element is replaced with a

single hash. Signed elements include a field explicitly specifying the hash

algorithm used.

- Substantial cleanup of the client's and server's ability to specify which hash and

signature algorithms they will accept.

- Addition of support for authenticated encryption with additional data modes.

- TLS Extensions definition and AES Cipher Suites were merged in.

- Tighter checking of EncryptedPreMasterSecret version numbers.

- Verify_data length depends on the cipher suite.

-Description of Bleichenbacher/Dlima attack defenses cleaned up.

With attacks, such as POODLE [20], SSL v3.0 is no longer considered as secure to use.

Organizations that still use SSL v3.0 for securing their websites are at a great risk of

major attacks.

Subsequent versions of TLS — v1.1 and v1.2 are significantly more secure and

fix many vulnerabilities present in SSL v3.0 and TLS v1.0. For example, the BEAST

attack can completely break web sites running on SSL v3.0 and TLS v1.0 protocols. The

19

newer TLS versions prevent the BEAST, and provide many stronger ciphers and

encryption methods.

Taking setting up an e-mail application as an example, different options, such as “no

encryption,” “SSL,” and “TLS”, indicate how secure the connection to be initiated will

be.

3.2 Different public-key exchange methods supported in SSL/TLS

The key exchange method defines how the shared key used for application data transfer

will be agreed upon by the client and the server. SSL 2.0 uses RSA key exchange only,

while SSL 3.0 and all subsequent TLS versions support the choice of a key exchange

scheme, including variants of the RSA key exchange and the Diffie-Hellman key

exchange. We review these methods shortly in the following subsections.

3.2.1 RSA

The secret key that is to be used for encryption of messages in the Record Layer is

generated at random by a sender, and encrypted with the receiver’s RSA public key. The

public key certificate for the server and, optionally, for the client include the RSA

generated public keys.

20

3.2.2 Fixed Diffie-Hellman (DH)

In this key-exchange method, the public-key certificate contains the Diffie-Hellman

public parameters signed by the certificate authority (CA). The client provides its Diffie-

Hellman public-key parameters either in a certificate, if client authentication is required,

or in a key exchange message. This method results in a fixed secret key between two

peers based on the Diffie-Hellman calculation using the fixed public keys.

Figure 7: Fixed Diffie-Hellman

3.2.3 Ephemeral Diffie-Hellman (EDH)

This method is used to create temporary secret keys. Each instance of the protocol uses a

different key, hence the same key is never used twice. In this method, the DH public keys

are exchanged, signed using the sender’s private RSA or DSS key. The receiver can use

the corresponding public key to verify the signature. Certificates are used to authenticate

21

the public keys. This method is the most secure method as it results in a temporary,

authenticated key.

Figure 8: Ephemeral Diffie-Hellman

3.2.4 Anonymous Diffie-Hellman

This method does not use any kind of authentication. Each side sends its public Diffie-

Hellman parameters to the other with no authentication. This method is not secure as it

can be vulnerable to man-in-the-middle attacks.

3.3 Use of MAC and HMAC

There are different MAC schemes that are used for SSL/TLS. MACs are used to provide

data integrity during the transmission of data in the Record Layer. MAC takes the secret

22

key and the arbitrary-length message to be authenticated as the input, and outputs a MAC

of a fixed size length. It protects both message integrity as well as its authenticity.

A keyed-hash message authentication code (HMAC) is a specific construction for

calculating a message authentication code (MAC) involving a cryptographic hash

function in combination with a secret cryptographic key. Any cryptographic hash

function, such as MD5 (128-bits) or SHA-1 (160-bits), may be used in the calculation of

an HMAC; the resulting MAC algorithm is termed HMAC-MD5 or HMAC-SHA1,

accordingly. The cryptographic strength of the HMAC depends on the cryptographic

strength of the underlying hash function, the size of its hash output, and on the size and

quality of the key.

Figure 9: CBC-MAC

23

 Figure 10: HMAC

3.4 Use of Symmetric cipher suites

Symmetric cipher suites are used to encrypt/decrypt data transmitted in the Record Layer

phase, using symmetric-key algorithms selected by the server and the client in the

Handshake phase.

Some of the symmetric-key algorithms used are listed below:

DES – Data Encryption Standard (Key size – 56 bits)

3DES – DES used 3 times to ensure more security than DES.

AES – Advanced Encryption Standard (key size – 128 / 192 / 256 bits)

RC2-40 (key size – 40 bits)

24

3.5 SSL Handshake

An SSL session always begins with an exchange of data using the SSL handshake. The

handshake allows the server to authenticate itself to the client using public-key

techniques.

Figure 11: SSL Handshake steps [13]

25

 The client sends the SSL version number, the cipher suites supported, a random

number, and other information needed to communicate to the server.

 The server also sends the SSL version number, the strongest cipher suites chosen and

supported by it, a random number, and other information needed to communicate to

the client. The server also sends its own certificate. If the client is requesting a server

resource that requires client authentication, the server requests the client's certificate.

 The client uses the certificate sent by the server to authenticate the server. If the

server cannot be authenticated, the user is informed that an encrypted and

authenticated connection cannot be established. If the server can be successfully

authenticated, the client moves on to the next step.

 Using all data generated in the handshake so far, the client creates the premaster

secret for the session, encrypts it with the server's public key (which is obtained from

the server's public key certificate), and sends the encrypted premaster secret to the

server.

 If the server has requested client authentication (which is an optional step in the

handshake), the client also signs another piece of data with its private key, which is

unique to this handshake and known by both the client and server. In this case, the

client sends both the signed data and the client's own certificate to the server along

with the encrypted premaster secret.

 If the server has requested client authentication, the server also tries to authenticate

the client. If the client cannot be authenticated, the session is terminated. If the client

can be successfully authenticated, the server uses its private key to decrypt the

26

premaster secret, then performs a series of steps (which the client also performs,

starting from the same premaster secret) to generate the master secret.

 Both the client and the server use the master secret to generate the session keys,

which are symmetric keys used to encrypt and decrypt information exchanged during

the SSL session and to verify its integrity-that is, to detect any changes in the data

between the time it was sent and the time it is received over the SSL connection.

 The client sends a message to the server informing it that future messages from the

client will be encrypted with the session key. It then sends a separate encrypted

message indicating that the client portion of the handshake is finished.

 The server sends a message to the client informing it that future messages from the

server will be encrypted with the session key. It then sends a separate encrypted

message indicating that the server portion of the handshake is finished.

The SSL handshake is now complete, and the SSL session has begun. The client and the

server use the session keys to encrypt and decrypt data they send to each other and to

validate its integrity.

There are six different keys generated for each side; the client and the server. These keys

are:

 Server_write_MAC_secret: The secret key used in MAC operations on data sent by

the server.

 Client_write_MAC_secret: The client key used in MAC operations on data sent by

the client.

27

 Server_write_key: The symmetric encryption key used for data encrypted by the

server and decrypted by the client.

 Client_write_key: The symmetric encryption key used for data encrypted by the

client and decrypted by the server.

 Server_IV: Initialization vector maintained by the server for each key when CBC

mode is used.

 Client_IV: Initialization vector maintained by the client for each key when CBC

mode is used. The client informs the server that all the future messages from client

are encrypted with the generated Client_write key. It then sends a separate encrypted

message indicating that the client portion of the handshake is finished.

The server sends a message to client informing that future messages from server

are encrypted with the generated Server_write key. It then sends a separate encrypted

message indicating that the server portion of the handshake is finished.

The client sends a message to the server informing that future messages from client are

encrypted with the generated Client_write key. It then sends a separate encrypted

message indicating that the client portion of the handshake is finished.

3.6 SSL Record Layer

Communication between the client and the server takes place with the help of SSL

Record Protocol. The SSL Record Protocol provides three services for SSL connections:

confidentiality, by encrypting application data; and message integrity and authentication,

by using MAC.

28

The following figure illustrates the overall operation of the SSL Record Protocol. The

Record Protocol takes the application data to be transmitted, fragments the data into

blocks, optionally compresses the data, adds MAC to it, encrypts, appends SSL Record

Header, and transmits the resulting unit. On the receiver’s side, the received data gets

decrypted, verified by computing MAC, decompressed, reassembled, and then gets

delivered to the calling application on receiver’s side.

Figure 12: SSL Record Protocol [8]

The first step is fragmentation. Every application data gets fragmented into fixed sized

blocks. Next, compression is optionally applied. No compression algorithm is specified in

SSL version 3.0, so the default compression algorithm is null. However, depending on

the implementation, Record Protocol may include a compression algorithm.

In the next step, a message authentication code gets computed over a compressed data. A

hash code gets calculated by a combination of the compressed data, a secret key, and

29

some padding. For this purpose, the Client_write_MAC_secret and

Server_write_MAC_secret keys are used. The receiver performs the same calculation and

compares the computed MAC value with the incoming MAC value. If the two values

match, the receiver is assured that the message has not been altered in transit. Also, by

applying MAC, the receiver will have the certainty about the authenticity of the sender.

Next, the compressed data and attached MAC are encrypted using a symmetric key

cipher. Finally, the SSL Record Protocol prepends an SSL Record Header and transmits

the entire resulting unit to the receiver.

3.7 Attacks on SSL / TLS

We will now have a look at several types of attacks that have been developed against

SSL/TLS:

3.7.1 Cipher Suite Rollback Attack

This attack aims at limiting the offered cipher-suite list provided by the client to a weaker

one or the one composed of NULL-ciphers. A Man-in-the-middle (MITM) attacker may

alter the ClientHello message (sent by the initiator of the connection), strip the

undesirable cipher-suites or completely replace the cipher-suite list with a weak one, and

pass the manipulated message to the desired recipient. The server has no real choice - it

can either reject the connection or accept the weaker cipher-suite.

30

This problem was fixed with the release of SSL 3.0, through authenticating all messages

of the Handshake protocol, by including the hash value of all messages sent and received

by the client in the ClientFinished message.

3.7.2 Version Rollback Attack

In a version rollback attack, a ClientHello message of SSL 3.0 is modified to look like a

ClientHello message of SSL 2.0. This forces the server to switch back to the more

vulnerable SSL 2.0. As a prevention, the SSL/TLS version is also contained in the

PreMasterSecret of the ClientKeyExchange message.

3.7.3 BEAST

BEAST leverages a type of cryptographic attack called a chosen-plaintext attack. The

CBC vulnerability can enable man-in-the-middle (MITM) attacks against SSL in order to

silently decrypt and obtain authentication tokens, providing hackers with access to the

data passed between a Web server and the Web browser.

The attacker mounts the attack by choosing a guess for the plaintext that is

associated with a known ciphertext. To check if a guess is correct, the attacker needs

access to an encryption oracle to see if the encryption of the plaintext guess matches the

known ciphertext. An attacker observing 2 consecutive ciphertext blocks C0, C1 can test

if the plaintext block P1 is equal to x by choosing the next plaintext block

P2 = x C0 C1. Due to the way how CBC works, C2 will be equal to C1 if x = P1.

31

The vulnerability of the attack had been fixed with TLS 1.1 in 2006, but TLS 1.1 had not

seen wide adoption prior to this attack demonstration. As a preventive measure, RC4 is

used as it is immune to BEAST attack, hence it was used to mitigate this attack on the

server side.

3.7.4 POODLE

This attack, named as Padding Oracle On Downgraded Legacy Encryption, is a

vulnerability in the design of SSL 3.0, which makes CBC mode with SSL 3.0 vulnerable

to a padding attack. POODLE allows a man-in-the-middle attack, through means of a

malicious Wi-Fi hotspot or a compromised ISP to extract data from secure HTTP

connections, which could allow the attacker to access online banking and use the victim’s

session for malicious purposes. The attackers only need to make 256 SSL 3.0 requests to

reveal one byte of encrypted messages.

 As this vulnerability exists only in SSL v3.0, and currently most of the browsers

use TLS 1.0 and above, this attack works only if the attacker can successfully conduct a

version rollback attack first. To overcome this attack, the users need to disable SSL v3.0

in their browsers and enable TLS 1.0.

3.7.5 HeartBleed Attack

The Heartbleed bug is a serious vulnerability specific to the implementation of SSL/TLS

in the popular OpenSSL cryptographic software library. This weakness allows attackers

32

to steal private keys from servers that should normally be protected. The Heartbleed bug

allows anyone on the Internet to read the memory of the systems protected by the

vulnerable versions of the OpenSSL software. This flaw in the code was related to the

bad input validation with the data length, meaning that the length of the data sent was not

properly validated against the SSL3_RECORD’s length field because of which the

attacker was successfully able to overrun the memory, thus adding his malicious code to

it. This attack compromised the secret and private keys, the names and passwords of the

users, and the sensitive information stored on the users computers. The attack allowed

attackers to eavesdrop on communication between the browser and the server, steal data

directly from services and users, and impersonate services and users. It should be stressed

that, this vulnerability was a bug in the OpenSSL software, rather than any error in the

SSL or TLS protocol specification.

33

CHAPTER 4: DEVELOPMENT TOOLS AND LIBRARIES

In terms of the development tools, I have tried to use the same development platform and

the programming language as used in CrypTool 2, namely C# as the programming

language with .NET Framework 4.0 in Visual Studio 2013, and WPF as a user interface

(UI).

C# is an object-oriented language that provides developers a way to build robust

and secure applications which run on .NET framework. C# is used to create Windows

client applications, XML Web services, distributed components, client-server

applications, database applications, etc. C# provides language constructs to directly

support these concepts, making it a very natural language in which to create and use

software components. C# supports generic methods and types, which provide an

improved safety and performance, and iterators, which enable the components that

implements the collection classes to define iterative behaviors that are simple to use by

client code.

To ensure that C# programs and libraries can evolve over time in a compatible manner,

much emphasis has been placed on versioning in C# design. Many programming

languages pay little attention to this issue, and, as a result, programs written in those

languages break more often than necessary when newer versions of dependent libraries

are introduced.

34

WPF, introduced in .NET framework 3.0 provides a platform for the development of

highly functional rich client applications. It is a GUI framework that allows programmers

to create an application with a wide range of elements, like labels, textboxes, and other

well-known elements. Over the period of time, WPF has become answer for software

developers and graphic designers who want to create modern user experiences without

having to master several different technologies. As applied to the .NET Framework

programming model, XAML simplifies creating a UI for .NET framework applications.

There are built-in controls provided as part of WPF, such as buttons, menus, grids, and

list boxes.

WPF provides an integrated system for building user interfaces with common media

elements, like vector and raster images, audio, and video. WPF also provides an

animation system and a 2D/3D rendering system.

The reason WPF was chosen for the implementation was due to its rich

composition and customization. As my goal was to develop a simulation program in

order to visualize the exchange of messages, WPF provided a variety of options as well

as support for XAML markup language. XAML can be used to create custom controls,

graphics, 3D images, animations and many more modules that are included.

There are different libraries that provide us with some built-in functionalities that might

be useful in implementing our application. In my work too, I have used a few libraries

which provide some of the built-in cryptographic functionalities related to SSL/TLS.

35

4.1 OpenSSL

OpenSSL is a general-purpose cryptography library that provides an open-source

implementation of SSL/TLS protocols. It is a robust, full-featured toolkit implementing

SSL and TLS.

The core library is written in C programming language and implements basic

cryptographic algorithms and schemes. There are different versions available for multiple

operating systems, such as Linux, Mac OS X, Solaris, and Windows. The source code for

OpenSSL is available from the download page [50].

OpenSSL offers a Command Line Interface (CLI) that is used to generate and manage

private and public keys, creation of certificates, calculating message digests, handling of

S/MIME signed or encrypted mail.

OpenSSL is used in:

 Generating public and private key pairs

 Generating a Certificate Signing Request (CSR)

 Sending the request to CA and getting the public certificate

 Using the certificate for authentication purposes.

There are different data structures used by the OpenSSL library functions:

 SSL_METHOD

 SSL_CIPHER

 SSL_CTX

 SSL_SESSION

 SSL.

36

4.2 MSDN Library

MSDN is a set of functions that help developers write applications using various APIs

that come along with Microsoft products. This library contains technical documentation

and content intended for developers using Microsoft Windows. The library has APIs,

source code, technical articles, and other programming information. It can be freely

downloaded as a package with Microsoft development tools, like Visual Studio, and can

be used when developing applications.

Every version of Visual Studio has an integrated help viewer that helps you to

access the then current edition of MSDN library. The library contains different classes,

which has constructors, methods, and properties that as a whole provide you with the

functionality that the developer is looking for.

Figure 13 describes the tree structure of MSDN library, which defines its hierarchy.

Figure 13 MSDN library hierarchy example

37

4.3 Mentalis

Mentalis is a free open-source software available online that contains several security

libraries called Mentalis.org security library, which is an add-on for .NET framework.

The main purpose of this security library is to provide security related functions and tools

in C# for VB.NET development.

The library supports the following:

 Authentication

o A password validation library enables you to check a user password

according to set of validation rules.

 Cryptography

o The algorithms such as HMAC and RC4.

 Smart Cards

o Offers a framework to connect and communicate with smart cards.

There are several different subprojects that the library consists of:

 SecureSocket Library (SSL and TLS support)

o This is a free and open source library that implements SSL v3.0 and TLS

v1.0. This library contains a SecureSocket class that encrypts and decrypts

the data passed through it. It has several other classes that internally

implement algorithms and protocols that help in the functioning of

SSL/TLS.

38

 CertificateServices Library (Certificate Management support)

o This library is an implementation of Certificate API that includes the

following features:

 Methods of X509Certificate class, loading private key files,

loading certificates from certificate stores, etc.

 Building a certificate chain and verifying it

 Encrypting and decrypting data with respective public and private

parameters of the certificates

 Methods pertaining to creating certificates, revoking certificates,

deleting certificates, etc.

 Crypto Library (Cryptographic Transformations support)

o This library implements several cryptographic algorithms such as RC4,

AES, HMAC, etc.

o It covers Asymmetric Cryptography, Hashing, and Symmetric

Cryptography classes and methods.

Figure 14 describes the hierarchy/tree structure of the functionality provided by Mentalis

library.

39

Figure 14 MSDN library hierarchy example

40

CHAPTER 5: IMPLEMENTATION

Having described the background of SSL/TLS theoretically in the previous sections,

which helps us to understand each and every aspect of SSL/TLS and the functions

associated with it, we shall now have a look at the original work, a working model of

SSL/TLS, developed as a part of this thesis.

Let us have a look at the implementation and flow of the program.

5.1 The Handshake Phase

5.1.1 Welcome Screen

Right before entering the handshake phase, the tool starts with an introductory welcome

screen, which displays a brief introduction about the program and also talks in short

about the user manual, from which a user can receive help required to understand the

functionality of the program in a detailed manner.

41

Figure 15: Welcome Screen

5.1.2 Generation of Certificate

Moving ahead from the welcome screen, the next part is the certificate generation

window where the public key certificate for both, the server and the client is generated.

This public key certificate is provided during the handshake phase by the server to the

client for authentication purposes, where the client verifies the certificate by using the

CA’s public key.

42

Figure 16: Certificate Generation

As seen in the above image, there are two options provided; one for generating

server’s public certificate and another for generating the client’s certificate (which is

optional in real scenario). Clicking the “Generate Server Certificate” button redirects the

flow to a window that is shown in Figure 17. As shown in this figure, there is an

exchange of messages taking place between the server and the CA. First the server

provides his details, which includes the public key of a specific size that the server

chooses. These details are then sent over to the CA where the CA will create a public key

certificate, signs it with its private key, and sends back to the server. Now the server has

his public certificate, which can be used at the handshake phase to authenticate himself to

the client.

In this simulation program, it may not be possible to show how the CA actually

verifies whether the certificate requesting server is a legitimate/trusted server or not. In

reality, the CA generally carries out a two-step validation process:

43

 Domain name validation: Verifying the authenticity of the domain name

owned by the requesting server.

 Verifying whether the server is a legitimate server or not.

Figure 17: Certificate Generation – Server Details window

In the certificate generation step of the developed program shown in Figure 17, the

requesting server is already considered legitimate by the CA because the primary purpose

of demonstrating the certificate generation step is just to help the user acquire knowledge

about the details of the public-key certificate that will be sent by the server to the client

during the handshake phase.

In the similar manner as explained above, the client public certificate is generated,

which is usually optional, as normally the client (i.e., the browser in a real scenario) does

not need to always authenticate itself to the server.

44

5.1.3 Mode Selection

After the certificate generation step is done, the flow of the program moves ahead toward

the mode selection window, where the user is given an option of selecting one of the two

modes – the Demo mode or the Attack mode. Selecting any one of them opens up the

corresponding handshake window that demonstrates the inner workings of the handshake

protocol.

Figure 18: Mode Selection window

5.1.4 The Handshake Protocol

The implementation of the handshake protocol is done in a similar manner to the

explanation of this protocol provided in Section 3.5. The image shown below is the actual

implementation snapshot of the handshake, which is developed as a part of the thesis.

45

Figure 19: Demo mode Handshake window

The actual working of the program can be seen by clicking on subsequent buttons, shown

in Figure 19.

Starting at the client’s side, clicking on “Generate Random” button, a 32-byte random

number is generated for the client. Moving ahead and clicking on the “Select

Parameters” button, a window opens up that has cipher suites options to be selected

from, such as SSL/TLS version, Asymmetric key algorithms, Symmetric key algorithms

46

and Hashing algorithms. At the end of this step, the “Client Hello” message is sent to the

server. Then, the user clicks on “Proceed” button and the blue colored text block with

the text Client Hello slides across towards the server side, which indicates that the client

hello message has been sent over to the server. The sliding of the text block is possible

due to the animation feature provided by WPF.

The rest of the program flows in the similar manner, where clicking on a certain button

slides a text block to the opposite end, indicating that the message has been sent over to

the receiving end.

At the end of the handshake phase, there are six session keys generated that are

used for communication between the client and the server in the record protocol. Having

obtained the session keys at the end of the handshake phase, the flow of the program

moves to the record protocol, where the client-server communication is shown.

5.1.5 The Record Protocol

Figure 20: The Record Protocol

47

Figure 20 is the snapshot of the record protocol window. The client can select any

data/file to be sent to the server. Clicking on “Enter Data” button on the client side opens

up a new window that allows you to choose a file from your system such as a text file,

word file, pdf file, etc. After the selection of the file and before sending it, the file goes

through the entire process of Fragments Compression Adding HMAC

Encryption. It is then sent over to the server where the server does the whole process in a

reverse manner (Decryption Compare HMAC Decompression Assembling

the fragments) to get back the original file.

Considering the implementation of the program, the server follows the same process, as

mentioned in the above paragraph. Hence, this process goes on till the client and the

server want to communicate.

Talking about the other mode – Attack mode, there are three types of attacks

demonstrated, due to which many other attacks are possible.

1. Cipher Suite Rollback Attack

2. Version Rollback attack

3. Man-in-the-middle attack

Figure 21: Attack selection window

48

As seen from the above image, this window opens up by selecting “Attack Mode” from

the mode selection window. Selecting any of these attacks directs the program to open

the handshake window with additional functionalities available compared to the Demo

mode.

Figure 22 displays the Man-in-the-middle attack handshake window, where there is an

“Interceptor” button that can be seen. This particular flow of the program is shown from

the attacker’s perspective. The attacker as a middle man can intercept the communication

that is going on between the client and the server. By clicking on the “Intercept” button,

the attacker stops the “client hello” message that is sent by the client and instead drafts its

own message and sends it to the server, thus impersonating the client. The server on the

other side treats this message as coming from the actual client, and sends his response

back to the client. The attacker does the same thing here as well; keeps the server

message and generates its own server message, thus impersonating the server.

Hence, with this attack demonstrated, a conclusion can be drawn that all the

communication thereafter can be intercepted and decrypted by the attacker, thus creating

a security breach and violating confidentiality and integrity services.

 Continuing this attack with the record protocol, the attacker can actually modify

the content of any message as a middle man, and intercept the whole communication of

messages exchanged between the client and the server. In this way, the integrity of the

message is no more preserved.

49

Figure 22: Handshake window for Man-in-the-middle attack

In the similar manner, there are other attacks implemented, like cipher suite

rollback attack and version rollback attack. In the cipher suite rollback attack, an intruder

tries to intercept the message and modify the cipher suite to weaker ones in order to open

the way for several other exploits that might be possible with certain weaker cipher

suites.

50

The same goes with the version rollback attack, where the attacker intercepts the

“client hello” message and downgrades the SSL/TLS version, thus allowing several other

attacks to proceed.

5.2 Use of library functions in the implementation

This implementation uses several cryptographic library functions provided by MSDN, as

well as external security library, called Mentalis.

Table 2 describes the entire usage of libraries in our program by specifying what

functionality of the program uses which library function.

Table 2: Library functions used in our program,

Button
Library

used
Underlying Class

Function defined under the

class

Primary function

associated with the

button: Certify()

MSDN

RSACryptoServiceProvider

RSAParameters

ImportParameters(RSAPara

meters parameters)

ExportParameters(bool

IncludePrivateParameters)

Primary Function

associated with the

button:

verifySignature(byt

e[] signedData,

string name)

MSDN

RSACryptoServiceProvider

RSAParameters

ImportParameters(RSAPara

meters parameters)

ExportParameters(bool

IncludePrivateParameters)

51

Button
Library

used
Underlying Class

Function defined under the

class

Primary Function

associated with the

button:

signData(byte[]

DataToSign,

RSAParameters

key)

MSDN

RSACryptoServiceProvider

RSAParameters

ImportParameters(RSAPara

meters parameters)

ExportParameters(bool

IncludePrivateParameters)

SignData(byte[] buffer,

object halg)

 SHA1CryptoServiceProvider SHA1CryptoServiceProvider()

Primary Function

associated with the

button:

verifySignature(byt

e[] DataToVerify,

byte[] SignedData,

RSAParameters

Key)

MSDN

RSACryptoServiceProvider

RSAParameters

ImportParameters(RSAPara

meters parameters)

ExportParameters(bool

IncludePrivateParameters)

VerifyData(byte[] buffer,

object halg, byte[] signature)

 SHA1CryptoServiceProvider SHA1CryptoServiceProvider()

Primary Function

associated with the

button:

encryptPreMaster()

MSDN

RSACryptoServiceProvider

RSAParameters

ImportParameters(RSAPara

meters parameters)

ExportParameters(bool

IncludePrivateParameters)

Encrypt(byte[] rgb, bool

fOAEP)

Primary function

associated with the

button:

genmastersecret_cli

ent_click()

Mentalis

.org

Ssl3CipherSuites

GenerateMasterSecret

(byte[] premaster, byte[]

clientRandom, byte[]

serverRandom)

 Ssl3DeriveBytes Ssl3DeriveBytes(byte[]

52

Button
Library

used
Underlying Class

Function defined under the

class

secret, byte[] clientRandom,

byte[] serverRandom, bool

clientServer)

GetBytes(int cb)

Primary function

associated with the

button:

ApplyHashMACCli

ent()

HMACMD5

HMACSHA1

HMACSHA256

HMACSHA384

HMACSHA512

HashAlgorithm

HMACMD5(byte[] key)

HMACSHA1(byte[] key)

HMACSHA256(byte[] key)

HMACSHA384(byte[] key)

HMACSHA512(byte[] key)

ComputeHash(byte[] buffer)

DataEncryptClient()
 DESCryptoServiceProvider

CreateEncryptor(byte[]

rgbKey, byte[] rgbIV)

MSDN AESCryptoServiceProvider

CreateEncryptor(byte[] key,

byte[] iv)

DataDecryptServer

()
 DESCryptoServiceProvider

CreateDecryptor(byte[]

rgbKey, byte[] rgbIV)

 AESCryptoServiceProvider

CreateDecryptor(byte[] key,

byte[] iv)

CompareHashServ

er()

HMACMD5

HMACSHA1

HMACSHA256

HMACSHA384

HMACSHA512

HashAlgorithm

HMACMD5(byte[] key)

HMACSHA1(byte[] key)

HMACSHA256(byte[] key)

HMACSHA384(byte[] key)

HMACSHA512(byte[] key)

ComputeHash(byte[] buffer)

53

CHAPTER 6: CONCLUSION AND FUTURE WORK

With the development of this application, we can be assured of one thing that,

visualizing the whole protocol gives us better understanding in addition to the theoretical

knowledge of SSL/TLS. One could use our program to develop a laboratory exercise to

teach students about the protocol. Similarly, students after learning about SSL/TLS from

the theoretical perspective could use our program as an educational tool to get the clear

picture of the protocol. The use of the available security libraries made the flow and

implementation of the program easier and dynamic, where writing the entire piece of

code from scratch was replaced by the library function call that provided already built in

functionality.

As it is the case for every newly developed application, there are certain

limitations of the current version of the program. The implementation of the protocol is

purely for educational purposes and thus cannot be used in the actual browser for the

communication. Also, our implementation cannot be used to exchange data between two

machines using socket communication. Being developed with Microsoft IDE (Visual

Studio), this application might not be platform independent and may only work on

Windows.

54

Considering some features and functionalities, the attacks demonstrated in this program,

such as cipher suite rollback and version rollback, could be used as a base for some other

exploits that are more complex to implement. This attacks includes POODLE attack,

which is based on the version rollback attack, but is really very complex and difficult to

demonstrate as a part of our program.

Furthermore, I have been able to implement the handshake and the record layer

protocols, however as the future work is concerned, this development could also be

extended by implementing the “alert protocol” and the “change cipher spec protocol,”

which would complete the entire SSL/TLS implementation.

55

REFERENCES

[1] W. Chou. “Inside SSL: the secure sockets layer protocol”. IT Professional, vol. 4, no.

4, pp. 47–52, Jul. 2002

[2] T. Elgamal. “The Secure Sockets Layer Protocol (SSL)”. Internet:

http://www.ietf.org/proceedings/95apr/sec/cat.elgamal.slides.html, Apr. 1995 [Mar.

03, 2003]

[3] J. K. Harris. “Understanding SSL/TLS”. Internet:

https://computing.ece.vt.edu/~jkh/Understanding_SSL_TLS.pdf, Oct. 2008 [Sep. 16,

2014]

[4] Introduction to SSL,” Mozilla Developer Network. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Introduction_to_SSL.

[5] What is the difference between SSL 2.0 and 3.0?” [Online]. Available:

http://stason.org/TULARC/security/ssl-talk/4-11-What-is-the-difference-between-

SSL-2-0-and-3-0.html#.VVtZw0beM6l.

[6] Differences between SSL and TLS Protocol Versions.” [Online]. Available:

https://www.yassl.com/yaSSL/Blog/Entries/2010/10/7_Differences_between_SSL_an

d_TLS_Protocol_Versions.html.

[7] H. Krawczyk. “The Order of Encryption and Authentication for Protecting

Communications (or: How Secure Is SSL?)” in Advances in Cryptology — CRYPTO

2001. J. Kilian, Ed. Springer Berlin Heidelberg, 2001, pp. 310–331 [11] Martin,

Franck. “SSL Certificates HOWTO”. Internet: http://www.tldp.org/HOWTO/SSL-

CertificatesHOWTO/, Oct. 20, 2002 [Mar. 14, 2003]

[8] SSL: Foundation for Web Security - The Internet Protocol Journal - Volume 1, No.

1,” Cisco. [Online]. Available:

http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_1-1/ssl.html.

[9] S. Adamovic. Video Lecture. Topic: “Authentication Using Public Keys – Lab 3”.

Nov. 06, 2012

[10] System.Security.Cryptography Namespace (). [Online]. Available:

https://msdn.microsoft.com/en-us/library/system.security.cryptography(v=vs.110).aspx.

56

[11] SSL, TLS and PCT classes for C# and VB.NET. [Online]. Available:

http://www.mentalis.org/soft/projects/ssocket/.

[12] A. Freier, P. Karlton, and P. Kocher, “The Secure Sockets Layer (SSL) Protocol

Version 3.0.” [Online]. Available: https://tools.ietf.org/html/rfc6101

[13] SSL handshake, online, available at,

http://commons.wikimedia.org/wiki/File:Ssl_handshake_with_two_way_authenti

cation_with_certificates.png

[14] SSL/TLS in Detail, http://technet.microsoft.com/en-

us/library/cc785811%28v=ws.10%29.aspx

[15] Illustration Image Reference, https://vpnreviewer.com/wp-

content/uploads/2015/01/insecure-email.jpg

[16] Introduction to SSL Image Reference, http://www.goclio.com/2009/06/19/10-

things-every-lawyer-should-know-about-legal-saas-part-4-security/

[17] C# tutorial, http://csharp.net-tutorials.com/

[18] C# WPF video, https://www.youtube.com/watch?v=krxYDsee2cQ

[19] SSL Handshake steps in detail, www.pierobon.org/ssl/ch2/detail.htm

[20] POODLE - Definition, detection and remediation.” [Online]. Available:

http://learning.criticalwatch.com/poodle/

[21] CRYPTOOL PORTAL - CRYPTOOL1 - HOME.” [Online]. Available:

https://www.cryptool.org/en/cryptool1-en

[22] CRYPTOOL PORTAL - CRYPTOOL2 - HOME.” [Online]. Available:

https://www.cryptool.org/en/cryptool2-en

[23] CRYPTOOL PORTAL - CRYPTOOL-ONLINE - HOME.” [Online]. Available:

https://www.cryptool.org/en/cryptool-online-en

[24] CRYPTOOL PORTAL - JCRYPTOOL - HOME.” [Online]. Available:

https://www.cryptool.org/en/jcryptool-en

[25] GnuPG Tutorial.” [Online]. Available: http://bitflop.com/tutorials/gnupg-

tutorial.html

[26] GNU Privacy Guard,” Wikipedia, the free encyclopedia

57

[27] MAGMA.” [Online]. Available: http://icl.cs.utk.edu/magma/

[28] Magma (algebra),” Wikipedia, the free encyclopedia

[29] Magma Computational Algebra System.” [Online]. Available:

http://magma.maths.usyd.edu.au/magma/

[30] SageMath - Download Binaries for Microsoft Windows.” [Online]. Available:

http://www.sagemath.org/download-windows.html

[31] SageMath - Source Code Distribution.” [Online]. Available:

http://www.sagemath.org/download-source.html

[32] SageMath,” Wikipedia, the free encyclopedia

[33] SageMath, Inc.” [Online]. Available: http://www.sagemath.com/

[34] SageMath Mathematical Software System - Sage,” SageMath Mathematical

Software System

[35] ECE646_lecture11_hash_MAC_2.pdf.” [Online]. Available:

http://ece.gmu.edu/coursewebpages/ECE/ECE646/F14/viewgraphs_F14/ECE646

_lecture11_hash_MAC_2.pdf.

[36] SSL/TLS Strong Encryption: An Introduction - Apache HTTP Server Version

2.4.” [Online]. Available: http://httpd.apache.org/docs/2.4/ssl/ssl_intro.html

[37] Why use Ephemeral Diffie-Hellman - Knowledge Base - mbed TLS (Previously

PolarSSL).” [Online]. Available: https://tls.mbed.org/kb/cryptography/ephemeral-

diffie-hellman

[38] Web application - What key exchange mechanism should be used in TLS? -

Information Security Stack Exchange.” [Online]. Available:

http://security.stackexchange.com/questions/8343/what-key-exchange-

mechanism-should-be-used-in-tls

[39] An Introduction to OpenSSL, Part Four: The SSL and TLS Protocols | Symantec

Connect.” [Online]. Available:

http://www.symantec.com/connect/articles/introduction-openssl-part-four-ssl-and-

tls-protocols

[40] Working with App.xaml - The complete WPF tutorial.” [Online]. Available:

http://www.wpf-tutorial.com/wpf-application/working-with-app-xaml/

58

[41] WPF Tutorial : Beginning - CodeProject.” [Online]. Available:

http://www.codeproject.com/Articles/140611/WPF-Tutorial-Beginning

[42] Differences between SSL and TLS Protocol Versions.” [Online]. Available:

https://www.wolfssl.com/wolfSSL/Blog/Entries/2010/10/7_Differences_between

_SSL_and_TLS_Protocol_Versions.html.

[43] Security - What are the exact protocol level differences between SSL and TLS? –

Server Fault.” [Online]. Available: http://serverfault.com/questions/178561/what-

are-the-exact-protocol-level-differences-between-ssl-and-tls

[44] SSL versus TLS - What’s the difference?, LuxSci FYI.

[45] About SSL/TLS.” [Online]. Available:

https://www.cs.bham.ac.uk/~mdr/teaching/modules03/security/students/SS8a/SSL

TLS.html

[46] A brief chronology of SSL/TLS attacks | Java Security and Related Topics.

[47] Why is TLS susceptible to protocol downgrade attacks? - Cryptography Stack

Exchange.” [Online]. Available:

http://crypto.stackexchange.com/questions/10493/why-is-tls-susceptible-to-

protocol-downgrade-attacks

[48] OpenSSL: The Open Source toolkit for SSL/TLS.” [Online]. Available:

https://www.openssl.org/

[49] OpenSSL,” Wikipedia, the free encyclopedia

[50] OpenSSL: Source, Tarballs.” [Online]. Available:

https://www.openssl.org/source/

[51] OpenSSL PKI Tutorial v1.1 — OpenSSL PKI Tutorial.” [Online]. Available:

https://pki-tutorial.readthedocs.org/en/latest/

[52] OpenSSL Essentials: Working with SSL Certificates, Private Keys and CSRs,”

DigitalOcean. [Online]. Available:

https://www.digitalocean.com/community/tutorials/openssl-essentials-working-

with-ssl-certificates-private-keys-and-csrs

[53] Cryptography - What are the differences between the versions of TLS? –

Information Security Stack Exchange.” [Online]. Available:

http://security.stackexchange.com/questions/705/what-are-the-differences-

between-the-versions-of-tls

59

BIOGRAPHY

Harsh Vachharajani was born in October of 1991 in Gandhinagar, Gujarat, India. He

graduated from Infocity Junior Science College, Gujarat, India, in 2009. He received his

Bachelor of Technology in Information Technology from Ganpat University, Mehsana,

India, in 2013. He further continued his studies pursuing his Master of Science degree in

Information Security and Assurance from George Mason University, Fairfax, USA, in

2015. During his course of studies, he worked as a Research Assistant in the

Cryptographic Engineering Research Group (CERG). His research interest include

software implementation of cryptographic algorithms and protocols, and vulnerability

assessment for securing software applications.

