
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

8-2016

Improving the Efficiency of CI with Uber-commits
Matias Waterloo
University of Nebraska - Lincoln, waterloo.matias@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Computer Engineering Commons, and the Software Engineering Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Waterloo, Matias, "Improving the Efficiency of CI with Uber-commits" (2016). Computer Science and Engineering: Theses, Dissertations,
and Student Research. 110.
http://digitalcommons.unl.edu/computerscidiss/110

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/110?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages

IMPROVING THE EFFICIENCY OF CI WITH UBER-COMMITS

by

Matias Waterloo

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Sebastian Elbaum and Suzette Person

Lincoln, Nebraska

August, 2016

IMPROVING THE EFFICIENCY OF CI WITH UBER-COMMITS

Matias Waterloo, M.S.

University of Nebraska, 2016

Advisor: Sebastian Elbaum and Suzette Person

Continuous Integration (CI) is a software engineering practice where developers break

their coding tasks into small changes that can be integrated with the shared code

repository on a frequent basis. The primary objectives of CI are to avoid integration

problems caused by large change sets and to provide prompt developer feedback so

that if a problem is detected, it can be easily and quickly resolved. In this thesis, we

argue that while keeping changes small and integrating often is a wise approach for

developers, the CI server may be more efficient operating on a different scale. In our

approach, the CI server monitors the queue of commits to be integrated and merges

multiple commits into a single Uber commit, thus avoiding the redundant operations,

e.g., testing, associated with integrating each commit individually. If an Uber commit

fails during the merge, build or test process, our approach uses a culprit analysis to

find the commit(s) causing the failure. An analysis of our approach on an open source

project shows that Uber commits can improve both CI server efficiency by 7% to 11%,

and reduce developer feedback time by 7% to 30%.

iii

ACKNOWLEDGMENTS

I would like to thank Dr. Sebastian Elbaum and Dr. Suzette Person for their support,

encouragement and guidance. I will always be grateful for what I have learned working

with you in the last two years. I also thank Dr. Myra Cohen for agreeing to serve on

my committee. Special thanks to my family for their unconditional love and support

and a thanks to all my friends in Lincoln for making this experience much more fun.

This work was partially supported by an Argentine Presidential Fellowship Award

and the National Science Foundation under awards #1526652 and #1218265.

iv

Contents

Contents iv

List of Figures vi

1 Introduction 1

2 Background & Motivation 5

2.1 Continuous Integration . 5

2.2 Motivating Example . 7

3 Our Approach 13

3.1 Problem Definition . 13

3.2 Reducing Developer Feedback Time 16

3.3 When CU Fails: Culprit Analysis . 19

4 Simulation Framework 22

4.1 Architecture . 22

4.2 Design Decisions . 25

5 Study Design 28

5.1 Research questions . 28

v

5.2 Design . 29

5.3 Metrics . 30

5.4 Artifacts . 31

5.5 Data Sanitization process . 33

5.6 Threats to validity . 34

6 Study Results 36

6.1 How often could Uber commits be generated 36

6.2 What are the benefits of Uber commits over individual commits? . . . 38

6.3 How realistic are the Uber commits presented in the simulations? . . 48

7 Applicability of the approach 52

7.1 Study Implications . 52

7.2 Challenges . 53

8 Related work 56

9 Conclusion 60

Bibliography 62

vi

List of Figures

2.1 CI Server workflow for traditional (solid line) and Uber approach (dashed

line). 9

2.2 (a): Traditional CI server approach for processing code change. All

submissions are processed in 31 minutes. (b): CI server processing code

change as an Uber commit. All submissions are processed in 12 minutes. 10

2.3 Example of loss in precision on culprit detection by changing the integration

scale. Same example used in Fig. 2.2 but C4 fails in this case. 11

4.1 Diagram of the architecture of the simulator framework. 23

6.1 Uber commit size for the different experiments. 37

6.2 Percentage per Uber commit of the numbers of commits in the queue taking

part in this Uber commit. 38

6.3 Server execution cumulative time difference between traditional and Uber

approaches for Joomla project. The solid and dashed lines show the values

for the Uber approach with bounded and unbounded culprit analysis. . . 39

6.4 Server execution cumulative time difference between traditional and Uber

approaches with the bounded culprit analysis for Code.org project. . . . 40

vii

6.5 Server execution cumulative time difference between traditional and Uber

approaches for Rails project. The solid and dashed lines show the values

for the Uber approach with bounded and unbounded culprit analysis. The

final values are not shown. The difference for the Uber approach with

the bounded analysis keeps dropping until reaching the value of -567.09

hours on September 2016 and the difference for the Uber approach with

unbounded analysis drops until reaching -4155.89 hours on January 2017. 42

6.6 Feedback time difference between traditional and Uber approaches applying

the bounded (top) and unbounded (bottom) culprit analysis for Joomla

project. The highest peak and lowest valley in the middle of both graphics

are partially shown. They real values for the top one are 191.09 hours and

-192.037 hours respectively and 192.09 hours and -193.09 hours for the other. 43

6.7 Cumulative Feedback time difference between traditional and Uber ap-

proaches applying the bounded (solid line) and unbounded (dashed line)

culprit analysis for Joomla project. 43

6.8 Feedback time difference between traditional and Uber approaches applying

the bounded (solid line) and unbounded (dashed line) culprit analysis for

Rails project. 45

6.9 Cumulative Feedback time difference between traditional and Uber ap-

proaches applying the bounded (solid line) and unbounded (dashed line)

culprit analysis for Rails project. 45

6.10 Feedback time difference between traditional and Uber approaches applying

the bounded culprit analysis for Code.org project. 46

6.11 Cumulative Feedback time difference between traditional and Uber ap-

proaches applying the bounded culprit analysis for Code.org project. . . 46

viii

6.12 Average feedback time savings achieved per commit by being part of an

Uber commit. Top and middle plots show the savings on hours while the

last one shows the percentage. 47

6.13 Savings achieved by Uber commits with respect the individual run of their

composing commits. Joomla experiments present 857 (bounded ca) and

861 (unbounded ca) Uber commits. Rails experiments present 98 (bounded

ca) and 129 (unbounded ca) Uber commits. Code.org experiment presents

674 (bounded ca) Uber commits. UC introducing overhead are excluded. 49

6.14 Overhead introduced by Uber commits with respect the individual run of

their composing commits. Joomla experiments present 394 (bounded ca)

and 352 (unbounded ca) Uber commits. Rails experiments present 315

(bounded ca) and 284 (unbounded ca) Uber commits. Code.org experiment

presents 493 (bounded ca) UC introducing savings are excluded. 49

6.15 Server execution cumulative time difference between traditional and Uber

approaches for Joomla project. The solid and dashed lines show the values

for the Uber approach with bounded culprit analysis with 89% and 100%

of Uber commit success probability. 51

6.16 Cumulative Feedback time difference between traditional and Uber ap-

proaches applying the bounded culprit analysis for Joomla project with

89% (solid line) and 100% (dashed line) of Uber commit success probability. 51

1

Chapter 1

Introduction

Integration testing exposes defects in the interactions between software components.

Prior to the practice of Continuous Integration (CI) [1, 2, 3], integration testing was

performed at the end of a development cycle, which could last anywhere from a day to

a period of weeks or months. Even when developers faithfully perform unit testing on

their code changes prior to integration, long periods of time between integration testing

have the potential to increase the risk of code change conflicts. Moreover, multiple

changes from multiple developers increase the difficulty of locating and resolving any

problems that are detected during integration testing.

Continuous Integration aims to reduce integration problems and to provide prompt

developer feedback so that if a problem is detected, it can be easily and quickly resolved.

By leveraging build servers and powerful testing frameworks, CI environments enable

developers to break development tasks into small code changes that can be integrated

and automatically tested with the mainline codebase at frequent time intervals. This

approach to continuous quality control can reduce the amount of rework and improve

developer productivity, ultimately enabling organizations to deliver software more

rapidly. CI servers have also provided tremendous value to open-source projects

2

by enabling core team members to vet changes from large numbers of contributors

through pull requests that are automatically built and tested before they are reviewed

by a core developer.

Despite sophisticated tool support and the pervasive adoption of CI by a wide

range of organizations including Google, Facebook, Netflix, Amazon, Twitter and tens

of thousands of open source projects, CI environments continue to face challenges. One

significant challenge is the staggering pace at which code changes occur, especially when

developers are encouraged to commit their changes early and often. For example, a few

years ago, Amazon reported one code commit every 11 seconds [4], Google reported

an average of 20 code commits per minute [5], Facebook reported approximately 500

commits per day affecting thousands of files [6], and LibreOffice has had peak days

with 12 commits per minute [7].

For each commit, the CI server builds the code and then runs potentially huge

numbers of test cases. Some of the tests analyze the changed code, while other tests

analyze the interactions of changed code with other affected code. At Google, this

amounts to over 100 million individual test case executions per day [8]. Even when

organizations utilize huge server farms to run tests in parallel, or execute tests in

the “cloud,” projects have a tendency to expand the testing phase to utilize all of the

available resources. And then they continue to expand beyond that [8], ultimately

causing the CI server to become a bottleneck when large numbers of changes are

committed in a short period of time.

Various techniques have been developed to improve feedback time in CI environ-

ments, however, existing techniques have primarily focused on optimizing builds at

the individual level by improving their activities [25] or eliminating unnecessary work

(i.e., test activities [9, 10], compilation [11, 12, 13]) or by applying parallelization when

3

optimizing at the global level [14, 15, 16], which is scalable as long as you have the

necessary machinery.

In this work, we introduce a technique that aims to improve the efficiency of CI

servers to reduce the bottleneck of building and testing changes, while maintaining

timely feedback to the developers. The key insight of our work is that while small

changes and frequent integration is a wise approach for developers, CI servers need

not follow the same workflow as the developers. Instead, when the CI server queue

contains multiple commits for integration, the CI server workflow can be modified in

a way that improves developer feedback, but yet is transparent to the developers. In

the modified CI server workflow, commits in the queue are first merged into an Uber

commit that is built and tested as a single unit of work, eliminating the redundancies

associated with building and testing each commit individually. If an Uber commit

fails during the merging process, each commit is processed individually with only the

overhead of the attempted code merge. If the Uber commit fails during the build or

test phase, our approach applies a culprit analysis to find the commit(s) causing the

failure.

The primary contributions of our work are:

• A novel approach to improve the efficiency of CI servers that is transparent

to developers and leverages the redundancies in building and testing multiple

commits while maintaining timely feedback to developers. Our approach is also

complementary to other techniques focused on increasing the resources available

to the CI server.

• A novel approach, based on culprit analysis, to process the case where an Uber

commit fails during the build or test process. It provides results with adjustable

precision.

4

• A simulation of our approach on the version history of three open source projects

that demonstrates that Uber commits can improve CI server efficiency and

developer feedback time. Our experiments show improvements in both, CI server

efficiency (7% to 11%) and developer feedback time (7% to 30%).

5

Chapter 2

Background & Motivation

2.1 Continuous Integration

Fowler [2] defines CI as:

Continuous Integration is a software development practice where mem-

bers of a team integrate their work frequently, usually each person integrates

at least daily - leading to multiple integrations per day. Each integration

is verified by an automated build (including test) to detect integration

errors as quickly as possible.

Although the practice of CI does not require any special tooling to deploy, CI

services have facilitated its wide adoption. Servers like Travis-CI [17], Jenkins [18] and

CircleCI [19] can be used with popular source code hosting services such as Github [20].

Staahl and Bosch provide a systematic overview of continuous integration practices

and how they vary [21]. In this section, we briefly describe the common elements

found in CI servers that are most relevant to our approach.

6

In general, a CI environment is composed of one or more servers waiting for event

notifications to trigger builds. CI servers are generally configured for each project

individually, however, the most common configuration is for the server to trigger

a build when a new commit has been submitted to the project’s code repository.

Nonetheless, builds could be also triggered manually by a developer, by a cron process

or by another build. The CI server then creates a temporary copy of the updated code

from the source code repository, starts a build of the code and monitors the state of

the build. The build script can include commands to test the build, deploy the code,

build documentation, and perform clean-up, all depending on the status of the build.

Most CI servers provide multiple build configuration options to provide flexibility

in how the project is built. For example, it is possible to trigger multiple builds from a

single commit to test the resulting product on multiple machines or operating system

configuration, e.g., one build may be executed on a Microsoft Windows machine and

another on a Unix machine. In addition, most CI servers make use of parallelization

to reduce the amount of time a developer waits for the results of the build and test

phases.

In terms of workflow practices, Fowler describes two types of builds that should

be common in CI environments [2]. First, there should be builds that are triggered

on every submitted commit and execute a series of fast tests to validate no obvious

bugs are being introduced in the software. Then, there should be others that are

triggered less frequently, which are built on the last available commit, and execute

more expensive tests to have a complete validation of the system. Nightly builds are

a classic example of this type. These types illustrate the need to differentiate builds

and adjust the workflow in order to accelerate developer’s feedback. Builds of the first

type are run on each commit because it is assumed that including two or more into a

single build leads to a loss in precision on finding changes that introduce faults [22,23].

7

Builds of the second type, however, include all commits since the previous execution

into a single build. In this case the loss in precision is accepted because this practice

reduces the resource utilization for these builds allowing more builds of the first type

to get executed and because the risk on failure is lower for this type of builds, commits

have already passed the first series of tests.

In this thesis, we argue the CI server could also benefit of reduction of resource

utilization when working with the first type of builds by including two or more commits

pending on the queue into single builds. We show the loss in precision can be mitigated

with small extensions to the CI process. In the next section, we provide an example of

how the processing of individual commits can impact the time it takes for the server

to provide feedback to developers and how the impact can be reduced by merging

commits into an Uber commit that is built and tested as a single unit of work.

2.2 Motivating Example

In a traditional CI development environment, developers typically build and test the

changes locally prior to integration with the mainline codebase. Once the changes

pass local tests, the developer then updates her working copy of the project with any

changes that were made to the mainline code while she was working on her changes.

This step ensures the compatibility of her changes with changes committed by other

developers. Once her working copy is synchronized with the mainline codebase, she

then commits her changes or creates a pull request, which triggers a build job on the

CI server. Depending on the CI server load, her job may be processed immediately

and the feedback time of her changes, which is the time she will have to wait to have

results, will include only the amount of time necessary to process her job. When the

CI server is busy, i.e., multiple commits or pull requests are waiting to be processed,

8

the feedback time will include not only the time to process her job, but also the time

to process all of the jobs waiting in the queue ahead of her job. Depending on factors

such as the culture of the project, the phase in the development cycle, and the size

of the project, multiple jobs may be queued at any given time. In a sample of 100

projects from Travis, and 100 of their builds1, we found that 30% of the projects

reported having more than one commit in the queue for at least 20% of the time the

server was about to pick a new commit to be processed.

Various techniques have been proposed to deal with a large number of commits

such as parallelizing the execution of independent builds [3,14,15,24], minimizing and

parallelizing activities inside the build [9,25], scoping the compilation and test execution

to the parts of the system that were affected by changes [10,11,12,26] and efficient

handling of the propagation effect of new builds over dependent projects [13,16].

In spite of these efforts, large companies are reporting problems to trigger a build

on each change because their code change frequency is too high for this approach to

be feasible [8, 24]. We believe our approach can provide benefits to these companies

because it aims to eliminate redundancies between builds already in the queue and

reduce the number of builds the server needs to process. These redundancies especially

occur when all builds are successful since the same results can be obtained by executing

a single build containing all changes. Such redundancies are common, we found in the

sample of 100 projects from Travis that 32% of the projects report a low failure rate

(20% or less) for commits processed by the CI server.

In this thesis, we propose to modify the way commits and pull requests are built

and tested by adding an option to the CI server that would enable it to merge the next
1100 projects were randomly selected from all available projects on Travis-CI on May 17, 2016

that reported more than 1000 builds, 10 or more Github contributors and a Test Suite. Either
the last 10000 builds or builds from the last 6 months were selected for each project. Builds were
collected on July 13, 2016.

9

Figure 2.1: CI Server workflow for traditional (solid line) and Uber approach (dashed
line).

commit to be processed, i.e., the head of the queue, with other compatible commits

in the queue to form an Uber commit. Fig. 2.1 shows the workflow of a CI server

applying this approach and compares it with the traditional. In the later, shown in

solid lines, the server monitors the queue and always picks the commit in the head

to be processed individually. The selected commit is then built and tested and the

results of these operations are finally reported to the developers. Under the Uber

approach, the server workflow, shown in dashed lines, is extended with a selection and

culprit analysis processes. The first one is applied to select candidates commits that

will take part of an Uber commit and the second to identify the commits that make

the build fail.

Applying the new workflow would be transparent to the developers and can be

employed as needed, based on the server load. Uber commits do not affect the developer

workflow, but have the potential to improve developer feedback time and reduce the

10

Figure 2.2: (a): Traditional CI server approach for processing code change. All
submissions are processed in 31 minutes. (b): CI server processing code change as an
Uber commit. All submissions are processed in 12 minutes.

number of CI server cycles that would have been spent building and testing each

commit individually. This additional processing first requires that candidate commits

are checked for compatibility. When commits are determined to be compatible, the

source code is then merged, and the processing of the Uber commit proceeds in the

same manner as processing as traditional CI server processing.

Figure 2.2 illustrates both the traditional approach (a), and our proposed approach

(b), when multiple jobs are waiting in the queue for processing. In the figure, each

state represents the state of the environment at a particular point of time and all

together show the evolution of the environment over the progression of time. Queue

and server represent the commits available on the queue or being processed by the

server at a given state. In both examples, three commits (jobs) are waiting in the

queue for processing. The traditional CI server will process each commit individually,

consuming 31 minutes. By creating an Uber commit, i.e. merging the commits, the

proposed approach can process all three commits in 12 minutes. The merging process

11

Figure 2.3: Example of loss in precision on culprit detection by changing the integration
scale. Same example used in Fig. 2.2 but C4 fails in this case.

adds a small amount of overhead (1 minute) but there is a saving in the cost of

building and testing each commit individually. All commits are assumed to take 10

minutes to be run and introduced changes are assumed to be small for CU to also take

10 minutes of execution time.

It is possible that not all Uber commits will successfully build and pass the testing

phase. Figure 2.3 shows an example of this situation. The traditional approach is

able to identify the change which caused the failure, i.e., the culprit. In order to

match such capability, the Uber approach also needs a culprit analysis to identify

what change(s) introduce the fault. In Section 3.3, we propose an analysis to handle

this situation, however, identifying compatible commits before the build and testing

phases has lower overhead, and can be done using information about the project and

changes to reduce the risk of failure. For example, by choosing commits that, based

on project history, are not likely to fail. As seen before, 32% of the sample projects

report a low failure rate (20% or less) for commits processed by the CI server.

In spite of the challenges introduced by Uber commits, the potential savings in

developer feedback time and the transparency of processing Uber commits to the

developers, suggests that our approach to continue integration has the potential to

12

improve developer feedback time and improve CI server efficiency. To the best of

our knowledge, no previous work has been done to modify the CI server workflow to

remove its dependency on the developer workflow in order to reduce the bottleneck

created by the server when multiple jobs are waiting for processing without losing the

precision of results.

13

Chapter 3

Our Approach

The primary objective of our approach is reducing the amount of time developers wait

for feedback from the CI server when the queue contains multiple jobs to be processed.

In this chapter, we first define the underlying problem and then describe our insights

that led to using Uber commits to improve developer feedback time.

3.1 Problem Definition

Let S represent a CI server configured to build and test code; and, CS = ch, ..., ct, be

the queue of commits waiting to be built and tested on S, where ch is the next commit

to be processed, i.e., the head of the queue, and ct is the last commit submitted for

processing by S. In a traditional CI server environment, where each commit in the

queue is processed individually, the total time necessary for S to build, test and return

the results, rch , ..., rct , for all of the commits in CS is tCS
= tch + ...+ tct . We refer to

each tci as the developer feedback time for ci.

Key insight: for CI projects, each developer feedback time, tc, includes the

time a commit spends waiting in the queue, plus the time necessary to process the

14

commit. For CI projects where most commits can be successfully built and tested

on the first attempt, and where the CI server is unable to process jobs as soon as

they arrive in the queue (|CS| > 1), we assert that it is possible to omit redundant

processing steps resulting from processing individual commits which can lead to faster

feedback to developers and improve the efficiency of the CI server. Our approach

avoids these redundancies by merging the first commit to be processed, i.e., ch, with

other compatible commits waiting in the queue, to create an Uber commit that is

built, tested, and integrated as a whole, thus avoiding the redundancies associated

with building and testing each commit individually.

The underlying challenge of our approach is to find a transformation function,

fc(CS)→ CU , that identifies and merges compatible commits waiting to be processed,

ch, ..., ct, 1 such that tCU
< tCS

, and rCU
= pass, and ∀rc∗ = pass. In other words, fc

must be able to successfully merge commits in the queue into an Uber commit, CU ,

to reduce the overall building, testing, and integration time while retaining the same

results as if the commits were integrated and tested individually.

For our process to build and test an Uber commit, three conditions must hold:

Condition 1: The queue of commits waiting to be processed must be greater

than one, i.e., |CS| > 1. As the number of commits waiting in the queue increases,

the potential to incorporate more commits into an Uber commit improves, thereby

improving the chance to reduce the number of redundant steps, and ultimately reduce

the developer feedback time. As we saw earlier, for a sample of projects, almost 30%

report queued commits for 20% of the time or more a server picks a new commit to be

processed, which supports the presence of this condition in current CI environments.

When |CS| ≤ 1, applying fc is equivalent to operating according to the current CI
1Without loss of generality, CU can include just a subset of the commits. We include all commits

to simplify the presentation.

15

practices, where every commit is built, tested, and integrated individually. The best

opportunity for improving response time occurs when |CS| is large and all commits

in the queue can be successfully merged into CU . However, the cost of the culprit

analysis increases as the number of merged commits in an Uber commit increases.

Similarly, the probability of a successful merging decreases as |CS| increases.

Condition 2: Candidate commits must target the same development branch and

be executed under the same configuration. The branch condition can be verified by

the CI server with an inexpensive comparison of the branch or tag identifier contained

in the event notification data for each commit. An alternative approach would be

to establish separate queues on the CI server for each branch. The test for the

configuration condition is also an inexpensive comparison. In this case, comparing a

hash of the build script for each commit.

Condition 3: Candidate commits must merge without source code conflicts.

Conceptually, we perform the merge of candidate commits based on the arrival order

in the queue, beginning with the commit at the head of the queue, ch, stopping when

a conflict is detected or the end of the queue is reached. This approach enables us to

rollback to the previous version with low overhead when a conflict is detected. Keeping

order also increases the probability of successful merge and maintains fairness in the

queue, i.e. commits tend to be processed in the order they arrived to the queue.

For our Uber approach to provide gains, candidate commits should share some

portion of the build and test processes as the approach is based on reducing the

redundancies in them. If there is no overlap between the build and test processes

among commits then the CU best possible performance can only be CS. In practice,

we see that many commits tend to trigger similar dependencies, leading to overlap

in the builds, and also execute similar batches of tests, rendering support for this

condition.

16

Additionally, Uber commits that fail to build or tests will need to be analyzed

and partitioned such that each partition is treated independently, a process known

as culprit analysis which we describe in Section 3.3. This analysis introduces extra

overhead that is often small but in some cases could erase potential gains. Therefore,

low failure occurrence is expected for this approach to improve the CI process. As we

saw earlier for a sample of projects, almost 32% have failure rates under 20%, which

supports the presence of this condition in current CI environments.

In the next section, we decribe the components of developer feedback time and

how modifying the CI server to process Uber commits can reduce this time.

3.2 Reducing Developer Feedback Time

The are four main elements contributing to the developer feedback time for each

commit, tc, processed by the CI server:

• t_wait : the amount of time a commit spends waiting in the queue until S is

available

• t_fetch: the amount of time for S to fetch the code

• t_build : the amount of time to build the code

• t_test : the amount of time to test the build, (this time may also include

additional time for other analyses, e.g., static analysis).

The time for the CI server to process an Uber commit, tCS
includes time for

fetching, building and testing the Uber commit. It also include the overhead of

performing the transformation function, tfc, which is composed of:

• t_ident : the time spent identifying the commits to be merged

17

• t_merge: the time spent merging the commits into CU .

In the remainder of our discussion, we omit t_wait and t_fetch from further

consideration. The amount of time a commit spends waiting in the queue for processing

depends on the rate of incoming commits and the CI server’s available resources. Since

we cannot control the rate of incoming commits, we focus on reducing the amount

of time spent building and testing commits, and thus omit t_wait. t_fetch can also

be omitted from further consideration as its value will be the same regardless of the

approach; CI processing of traditional commits and CI processing of Uber commits

both require each commit to be fetched once.

Then, in order for Uber commits to reduce developer feedback time, it must be

the case that:

tfc + t_build(CU) + t_test(CU) <
∑
c∈CS

(t_build(c) + t_test(c)) (3.1)

To better understand why and when Uber commits can improve over traditional

CI server processing, we analyze each of the remaining times individually.

The build activity can be viewed as three main steps: 1) obtain the dependencies,

2) compile the source code, and 3) generate packages to be distributed (with some

variations, depending on the project). We can assume the execution time to get

dependencies is constant across commits. The time required by compilation and

distribution, however, depends primarily on the amount of code committed and

its dependencies. When commits share code, merging them into a CU can avoid

recompiling the shared code (and their dependencies). Even when code is not shared

across commits, they may share dependencies that are recompiled (although this

can be mitigated with sophisticated catching mechanisms that avoid unnecessary

recompilations).

18

Similarly, the test activity can benefit from processing Uber commits when there is

overlap between the tests triggered by different commits. The counter argument also

holds in this case: our approach cannot improve on commits that trigger distinct tests.

However, it is common for projects to include test suites that are used to exercise

every commit. More concretely, it is almost standard to have a set of smoke-like tests

used on every pull-request before it is considered for integration into the main branch.

In such cases, the proposed approach would save time by executing those tests only

once for CU .

Processing Uber commits has the additional overhead of applying the transfor-

mation function, fc. We note that the commit queue in a CI server often contains

commits that belong to different development branches which means that they are not

amenable to be merged as an Uber commit as they operate on different code bases.

Similarly, some commits are submitted with different target testing configurations. In

the former case, the function fc then needs to differentiate among branches either by

maintaining independent queues or by performing a selection before merging. In the

later case, when the differences are just the configurations, fc can merge the commits,

but it must exercise the CU with the conjunction of the test configurations.

The cost of this function has two components, 1) the time spent identifying

commits for merging into CU , and 2) the time spent performing the merge. In the

worst case, commit identification should involve a linear scan of commits in the queue

and performing an evaluation on each one checking data already in memory. The

merge process is delegated to the VSC working with the server because modern systems

already implement a merge operation. Commits are merged incrementally from the

earliest, Ch, to the newest until all commits are merged or a conflict if found. In the

last case, a rollback operation is performed to remove conflicted changes from the

Uber commit. If the first commit is part of a branch intended to be merged with

19

another, i.e. the target branch, it is merged with the last available commit from the

this branch at the time of its submission. In a MacBook Pro with 2.6 GHz Intel Core

i5 and 8 GB of Memory, merging 2, 10 and 100 commits from a local Git repository

for project Joomla took 1.98 sec, 3.21 sec and 31.07 sec respectively.

All these fc activities are relatively light weight, and although they consume time,

it is insignificant compared with the potential savings of avoiding building and testing

redundancies.

3.3 When CU Fails: Culprit Analysis

Despite a successful merge, a CU may fail at either the build or test stage requiring an

additional step, i.e., a culprit analysis, to determine which commit or commits caused

the problem. Ideally, the analysis must be capable of detecting culprit commits with

the same accuracy of processing individual commits, and it must be able to detect

faults that are introduced by individual commits as well those caused by integration

issues. Algorithm 1 provides a high-level description of a culprit analysis. At its

core, the analysis partitions the CU recursively, searching for smaller CUs that can

be built and tested successfully. If a search bound is reached, the approach resorts to

processing the commits individually through standardCI() (line 11). The analysis

calls the partition function (line 3) on a failed CU to divide it into parts. Each part

can contain multiple commits, which are then merged into a new CU (line 5) that is

built and tested (line 6). If the new CU fails, then it is subjected to further analysis

by calling ca again (line 7). The effect of the culprit analysis to localize the source

of the problem(s) by partitioning CU into multiple groups for processing by the CI

server. Each partition can vary in size, depending on the number of failures in CU

and their locations.

20

Algorithm 1 Culprit Analysis
1: function ca(failedCU , bound)
2: if bound > 0 then
3: CUparts[]← partition(failedCU)
4: for each part in CUparts[] do
5: CU ← mergeElementsIn(part)
6: if ¬success(build(CU), test(CU)) then
7: ca(CU , bound− 1)
8: end if
9: end for

10: else
11: standardCI(failedCU) . Reached bound
12: end if
13: end function

We note that the partition function is configurable and can implement various

strategies in terms of the number of partitions and how they are selected. Our

implementation of Algorithm 1 follows a binary search process, similar to that of

finding the input inducing failure [27], with the addition of a temporal element as

the commits submission sequence is known. The cost of this algorithm will depend

on the number of commits included in the Uber commit and the failure rate of these

commits.

The bound argument in Algorithm 1 is used to control the cost of the culprit analysis

by limiting the depth of the partitioning process. When CU fails, assuming a binary

search implementation, the culprit analysis partitions failedCU into two partitions,

i.e., two Uber commits, introducing t_build(CUi) + t_test(CUi) + t_build(CUi+1) +

t_test(CUi+1). Since we do not know in advance when those costs will accumulate

to surpass tCS
, bound is set empirically to control the cost of the culprit analysis. If

bound is set to 0, then the proposed approach performs a single attempt at forming a

CU , and if it fails it resorts to traditional CI. When bound is set to log2 n, where n

21

is the maximum number of commits in a queue, then ca will partition CU all the way

down to individual commits, if necessary.

22

Chapter 4

Simulation Framework

To analyze the effects of Uber commits on developer feedback time and study various

instantiations of the proposed approach, we developed a simulation framework that

mimics a continuous integration environment. Designing and implementing our own

simulation framework was necessary to enable us to explore drastic changes that could

have, and often did have, negative effects on the integration and testing outcomes. It

also allowed us to repeat our simulations in order to develop a better understanding

of how the proposed approach affects CI server processing.

4.1 Architecture

Fig. 4.1 shows a diagram of the architecture of the framework. It has four key

components: the Data collector, the Data repository, the Model generator and the

Simulator. The first component enables the consumption of data from existing CI

servers. The current implementation can retrieve data from Travis-CI [17], Github [20]

and CircleCI [19], utilizing a combination of web service (WS) or the API as needed.

For example, the process of data collection starts by first fetching Request records for

23

Figure 4.1: Diagram of the architecture of the simulator framework.

a selected repository through the WS. The component obtains these records from the

url http://api.travis-ci.org/requests using an HTTP client. They are retrieved

sequentially from the newest to the oldest, and records not associated with a build,

i.e., the field build_id is empty, are discarded. With this id, the component uses the

Ruby client library to obtain the Build record and concatenate it with the request.

Records from builds that are currently running, i.e., state equal to created or started,

are also discarded. It also concatenates the Job records associated this build together

with the execution logs attached to each job record. Working with CircleCI is simpler

because the Web Service provides a single entity, the Build, with all of the data needed

to generate the input for the simulator. In the end, the data-collector generates a

csv-file, which is saved in the Data repository, containing raw data such as the build-id,

commit sha, branch, configuration, arrival time, and whether it failed while at building

or testing time, as well as data that requires some basic computation such as the time

spent on building and testing activities, which are extracted from the execution logs.

http://api.travis-ci.org/requests

24

The data stored in the Data repository can be consumed by either the Simulator or

the Model generator. The latter will consume this data to generate statistical models

that mimic real CI environments but can be tuned to modify their behavior. The

component provides tools to help you choose which model fits better the input data.

For example, we explored the CI environment for Rails using a model consisting of a

binomial distribution for modeling the failure outcome of the commit, two different

gamma distributions for modeling the build and test duration, a weibull distribution

for modeling the arrival-time between commits and a multinomial distribution for

modeling the branch of the commit.

The simulator component performs a walk through the data stored in the Data

repository or provided by the Model generator according to an integration strategy,

while collecting the assessment metrics. Conceptually, it supports two basic policies

described in the previous section traditional and Uber, applying the appropriate

workflow as shown in Fig. 2.1.

This component has 8 key subcomponents: the Data reader that is responsible for

reading the input data from the Data repository or Model generator and generating

the proper data structures in memory. The Queue that simulates a queue in the CI

environment. The Event generator that is responsible for simulating the arrival of new

commits to the queue and notify the Commit selector that new commits are pending

in the queue and the Builder is idle. The Selector inspects the queue and selects

candidate commits to be part of an Uber commit. The Merger takes these commits and

performs the actual merge on a git repository. Commits that are merged successfully

are given to the Builder subcomponent and those that are remaining after a conflict

was found are returned to the queue. The Builder takes commits or Uber commits and

simulates their build executions using the execution times and build statuses provided

in the input dataset, no build or test is actually run. In the case of a regular commits,

25

the value of these fields are directly used for calculating the results of the simulation.

In the case of an Uber commit, the values for these fields are calculated based on the

largest values among the candidates before calculating the results of the simulation.

Builds that are failing after the Builder has completed their simulation are taken by

the Culprit analysis subcomponent to identify individual commits causing the failure

status on the Uber commit. This subcomponent implements Alg. 1 and interacts with

the Builder to simulate the build execution for partitions generated by the algorithm.

Finally, the last subcomponent is the Metric collector that is responsible for collecting

the metrics from the different subcomponents and writing them down in a file.

The Simulator component can work with different implementations of these sub-

components. In practice, the two basic policies are implemented as different imple-

mentations of the Commit selector. We have also experimented with a few Culprit

analysis and Merger implementations.

4.2 Design Decisions

The simulator follows the approach as described in the previous section, but there

are a few design decisions we made that require further explanation as they affect the

fidelity of the simulation.

First, the simulator linearizes the execution of builds, serializing all parallel execu-

tion of jobs or threads. This choice was mainly made because we wanted to study this

approach in a simple set up first, before moving to more complex scenarios. We can

understand better the effect of this approach without parallelization. However, we

need not consider the approaches to be exclusive and we will explore their combination

in future work. Additionally, Travis-CI overwrites part of its history when builds

26

are re-executed by a manual trigger, limiting the possibility of recreating the actual

execution history.

Second, our implementation for fc collects from the queue commits with the same

branch value and same set of configuration ids (there is an id for each job). Then

it relies on the git merge command to create the Uber commit and detect conflicts.

Merges are performed one commit at a time in queue-arrival order and stop as soon

as a conflict is found, which is reverted with the command git reset –merge. The

checkout time for an Uber commit is calculated as the sum of the checkout out time

of all jobs. The checkout time of an Uber commit job, which runs on configuration c,

is calculated as the maximum repo_checkout_duration field value among all jobs from

the individual commits that run on c plus the sum of pr_fetch_duration field value

from the same jobs. However, when two or more commits come from the same pull

request, the pr_fetch_duration value is included just once by selecting the maximum

value. Note that we are considering the time of the merge operation to be zero. This

decision was made because we cannot obtain this value from Travis-CI and we have

already seen in Section 3.2 that this value is very low. If a commit cannot be found

on the git repository, it will be considered as not mergable and will be marked to be

run individually.

Third, this framework does not build the Uber commit nor execute its related

tests. It also assumes there will not be an integration issue if git does not detect an

integration conflict. In section 6.3 we present an experiment to validate how realistic

our results are. The server time for an Uber commit is approximated using the values

of the individual commits. The building time for an Uber commit is calculated as the

sum of its jobs’ building time and the value for each job is calculated as the maximum

building_duration field value among jobs from individual commits that run on the

same configuration. Similarly, for testing results we utilize the results of individual

27

commits. The testing time for an Uber commit is calculated similarly. However, when

an Uber commit contains individual commits whose builds were canceled, the building

(and similarly the testing time) is calculated as the sum of building time of canceled

commits plus the building time of the Uber commit as if canceled builds were removed

from it.

Finally, our implementation for the culprit analysis follows a binary search strategy,

every partition generates two parts, and relies on the build status field of the individual

builds to decide if the Uber commit has issues or not. A new partition is not executed

immediately, it is returned to the queue in the position of the commit that is first in

the queue and is also part of this partition.

28

Chapter 5

Study Design

5.1 Research questions

We applied our simulation framework to a set of projects working with real CI

environments. We started collecting data from projects working with Travis-CI

or CircleCI that presented characteristics that should support the Uber commit

generation, i.e. low failure rate, commits being queued up and overlap of source and

test code, and we performed simulations of the operations of CI server applying the

traditional and our proposed approach. Our first goal of the study was to verify if

Uber commits could be constructed as frequent as we expected them to be. Then, we

verified whether the application of Uber commits could improve the efficiency of the

CI environments. We divided the study into the following research questions:

RQ1: How often could Uber commits be generated? This question was aimed to

understand the frequency in which Uber commits could be generated by the simulation

using data from real CI environments and their characteristics.

RQ2: What are the benefits of Uber commits over individual commits? This

question was aimed to understand what benefits, if any, can provide the application

29

of Uber commits. We had in mind two aspects: the developer feedback time and the

resource utilization of the server.

RQ3: How realistic are the Uber commits presented in the simulations? This

question was aimed to verify if simulation results could be translated to real CI

environments since simulations could not reproduce completely these environments.

5.2 Design

We designed two experiments, Traditional CI vs Bounded Uber CI and Traditional

CI vs Unbounded Uber CI, involving the simulations of a CI server operating over a

series of commits collected from a real project. In both experiments two simulations

are performed for the same input: one of the server applying the traditional approach

to CI and another applying our approach. The main difference between the two

experiments is the configuration for the culprit analysis, in particular, the parameter

bound of Alg. 3.3. In one case this analysis is bounded, bound = 0, to stop after the

first the execution of an Uber commit fails and to execute its commits individually.

In the other case, the analysis is unbounded, bound = log2 |CU |, making the server

to create partitions (smaller Uber commits) as along as it is possible in order to find

the culprit commit(s).

It is important to highlight the simulations, as explained in Chapter 4, do not

compile code or execute tests. We made this decision to avoid the complexity of

recreating the environments required for projects to work. This allowed us to potentially

perform simulations on several projects and a great volume of commits, especially

old ones. However, this imposes a limitation on the experiments, Uber commits can

only be evaluated with respect to the merge success at the text-merge level, command

git merge, but not at the build or test level. RQ3 was proposed to address this issue

30

and we designed a new experiment to mitigate this limitation. We can sample Uber

commits resulting from the simulation of a project for which we can reproduce its

environment on Travis-CI, submit these commits to the server and then compare the

results to verify whether Travis-CI would behave as the simulation or not.

5.3 Metrics

The simulation framework generates a set of metrics in order to understand the

behavior of the server. The relevant metrics for this study are the following:

• Uber commit individual commits: the commits taking part of each Uber commit.

• Uber commit creation time: The time the server started the selection process

that ended up in a new Uber commit.

• Uber commits reporting failures: calculated as Uber commits that triggered the

culprit analysis process.

• Queue size: the number of builds in the queue before picking a new commit or

commits in the case of an Uber commit.

• Feedback time of a commit: calculated as the time the server reports the results

for this commit minus the time it was added to the server queue.

• Server execution time for commits or Uber commits: calculated as the time the

server reports the results for this commit minus the time it was selected by the

server.

The first four metrics are used for measuring frequency of occurrence of Uber com-

mits and their characteristics and the others are use for measuring their performance

either from developer or resource utilization perspective.

31

Note, the results of a successful Uber commit will be used as the results for

its individual commits, while the culprit analysis will provide individual results for

commits after the execution of the Uber commit.

5.4 Artifacts

We started exploring the ideas of this thesis with Ruby on Rails, the Web application

framework. We inherited it from a previous project and we considered it was good

candidate to work with because it is a well-know project, it is a mature project

with an active development on Github, it contains several satellite projects around

it and it works with Travis-CI. At the time of this writing, it reports 27 branches,

58951 commits, 3112 contributors and 16948 Pull-Requests (631 are still open) on

Github. This repository has been active for 4209 days (11 years approximately) and

it reports 36512 builds executed on Travis-CI. We soon realized the Uber approach

would not work all the cases and decided to pick two more project. At that time,

the Uber approach was presenting positive results on Rails. We wanted to pick one

candidate for which the Uber approach could not work and other for which it could

excel. We obtained a list of all projects available on Travis-CI with the number of

executed builds between May 13, 2016 and May 17, 2016. We inspected the top 25

projects and selected Joomla and Code.org. These two projects were met the criteria

of reporting low failure rate, having more activity than Rails, being well-know projects

and reporting good results with the Uber approach. Since simulations for Rails started

to report bad performance of the Uber approach when we removed a few assumptions

from the simulator, we decided to select Rails as the bad candidate.

Joomla is a Content Management System. We selected it because it is well-known

project in the Web community, has high activity in Travis-CI and Github, is a mature

32

project, reports code coverage and we can re-execute its builds on Travis-CI by forking

the project. At the time of this writing, it reports three branches, 26767 commits, 486

contributors and 8247 Pull-Requests (303 are still open) on Github. This repository

has been active for 3950 days (11 years approximately). 25880 builds have been

executed on Travis-CI and 4424 builds on their Jenkins server. New commits or PR

are submitted to the staging branch, which is tested on Travis-CI, and if they are

successful, they are merged to the branch master, which is tested on Jenkins. Its latest

reports show test coverage of 46.9%.

Code.org project contains the source code for the website and the Code Studio

Platform that is used for teaching Computer Science. We selected it because Uber

approach reports good results for it, it was one of the most active project on Github

and Travis-CI, it was also well-known project in the community and it presented

reports of code coverage. At the time of this writing, it reports 261 branches, 36298

commits, 46 contributors and 9733 Pull-Requests (46 are still open) on Github. This

repository has been active for 700 days (2 years approximately). 45340 builds have

been executed on Travis-CI. However, CircleCI is the main environment where most

of the tests gets executed. Its latest reports show test coverage of 88%.

In the case of Rails, we inherited a dataset with 4006 builds extracted from Travis-

CI. These are builds between ids #53890000 and #84190000. We calculated form

this sample that builds contain 28 job on average, commits or Pull-Requests are

submitted every 1.26 hours on average, build last 3 hours on average after linearizing

the execution and failure rate is 28.45%.

For Joomla, we started collecting build data from Travis-CI from the last available

build until we had 10000. At the end we collected 10042 builds with ids between

#54100398 and #130600329. We decided to gather this amount of builds in order to

capture different periods of the development process. We obtained from this sample

33

that a commit or Pull-Request is submitted every 11 minutes and builds last 22

minutes on average. The failure rate for these builds is 16% and each build contains

5.2 jobs on average.

Finally, we extended our simulation framework to work with CircleCI and gathered

data from Code.org. We collected the last 10000 executed builds, which were those

between ids #2902 and #13750. This dataset reported builds with single jobs, arrivals

of new commits or Pull-Requests every 25.6 minutes, build execution times of 21

minutes on average and failure rate of 13.8%.

5.5 Data Sanitization process

While most records for the input dataset of our framework were obtained without

issues, some inconsistencies were found and we had to apply a sanitization process.

Twenty-three and 73 execution logs reported parsing errors on Joomla and Rails

respectively. These issues may be the result of infrastructure failures where the job

was halted before logging the required data. We also found cases where Travis-CI

logs are erroneous even for passing builds. For instance, the logs present an invalid

format or their build duration and finish time are incomplete even though they have

finished successfully. Nineteen and 49 builds were affected by these issues on each

of the projects. We decided to deleted these job records as we could not obtain the

real value. Note, this decision is biased against our approach because it reduces the

execution time for these builds as well as the possibility of commits to queue up.

Besides, we made sure to keep the failure status on builds that any of their jobs was

reporting failures and was selected to be deleted.

A second kind of issue involved jobs reporting a negative duration. This is common

on canceled jobs that could not get to execute but there are also records where

34

Travis-CI failed to save the real value. We converted the value of these records to

zero since this is the intended value for jobs that do not get to execute and then we

proceed to delete all job record whose testing duration lasted longer than its own

execution. This issue affected 190 and 138 jobs (40 and 18 build) from Joomla and

Rails respectively.

Code.org did not present any issue on the data collection stage but sanitization

was required when mapping the CircleCI states for build outcome to the framework

states. In particular, there is one state called no_test that is related to builds that are

intentionally triggered to build commits without test execution. This state is reported

when these operations complete successfully. It was not clear if the purpose of these

builds was to perform a light test, to check if the code compiles, or to generate builds

for other purpose than testing. In the last case, providing an Uber commit instead

of the specified build may not adequate. Therefore, we opted to be conservative and

mark them to be executed individually on our simulations.

5.6 Threats to validity

Our results were obtained through a simulation process and, although our framework

tries to mimic real CI environments, simplification were made to make it practical

to obtain results. For instance, we are not building or testing the code. Therefore,

results may differ in practice. This also implies that the approach may have to be

revised when attempting to implement it on real environments since there are aspects

that cannot be captured by the simulator, like integration issues.

We are excluding from this study other techniques to improve the CI efficiency, not

even standard practices such as parallelization and test selection and prioritization.

These other techniques may reduce the size of the queue considerable to make our

35

approach inapplicable. Moreover, the applicability and adoption of this approach on

real CI environments will be limited if it is not extended to work with other techniques.

We are assuming a 100% of redundancy of source and test code between commits

that take part in the same Uber commit.

We explored this idea with three projects that were selected purposefully. Although

they differ to each other and provide insights of how the Uber approach would perform

under different contexts, findings may not generalize to other projects working on

CI environments because they may not share the same characteristics, which are

shaped by factors such as the development process, the number of developers and

contributors, popularity of the project, type of software, if the project is open source

or private, understanding of CI practices and the reported failure rates and rate of

change. Additionally, we tested out approach on the ecosystem of Travis-CI and

Github but there are many CI technologies that can be integrated with several Version

Control, Building and Testing Systems. Some CI servers provide interfaces to extend

the functionality through plugins. We cannot guarantee our approach will work on all

possible CI environments.

Finally, the examination of Uber commits on Travis-CI was based on build results

and the code was not inspected. There is a risk that integration issues went undetected

making the Uber commits generated by the simulation less realistic than they appear

to be. Moreover, Joomla Test suites report a Code coverage of 46.9% that seems to

be reasonable to developers but it is not high enough to mitigate concerns that tests

may not be good enough to detect integration issues that could result of generating

Uber commits.

36

Chapter 6

Study Results

We focus on the results for the research questions in this section and we discuss their

implication in the next section.

6.1 How often could Uber commits be generated

Simulations with Joomla reported 1251 and 1213 Uber commits could be generated on

the experiments with bounded and unbounded culprit analysis respectively involving

4898 and 5076 builds on each experiment. These commits account for the 48.77% and

50.54% of the builds under study in each case. In the case of Rails, 413 Uber commits

could be created in simulations applying both the bounded and unbounded culprit

analysis. While this number may appear small, these Uber commits were generated

from 3745 of the 4006 the commits used in the simulations. Finally, 1167 Uber commits

were reported for Code.org simulation with the bounded culprit analysis1 involving

9084 (83%) of the commits processed in the simulation.
1Results for the Uber approach with unbounded culprit analysis for Code.org could not be

provided in this work because the simulation was still running after 200 hours of execution and only
3740 commits were processed.

37

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

25

50

75

Code.org bounded ca Joomla bounded ca Joomla unbounded ca Rails bounded ca Rails unbounded ca
Experiments

#c
om

m
its

Figure 6.1: Uber commit size for the different experiments.

These results show commits queue often and they can be transformed in Uber

commits but note some of the commits taking part of these Uber commits ended up

running individually due to failures reported by the latter. This is the particular case

for Rails in which 76.5% of Uber commits reported failures. We will discuss below

that this phenomenon is significant because it affects dramatically the performance of

the Uber approach. In the case of Joomla, 31.65% and 32.23% of the Uber commits

presented failures for the simulations with bounded and unbounded culprit analysis

respectively and 42.3% for Code.org with bounded culprit analysis.

Fig 6.1 shows the number of commits involved on each Uber commit on each of

the simulations. In most of the cases, this number is small, the average number on

each case range between 3.91 and 9 commits, but values above 40 are reported. It can

be observed that Joomla presents smaller Uber commits than the other projects and

Rails presents the largest ones. Nonetheless, Fig 6.2 shows the percentage of commits

from the queue that ended up taking part of each Uber commit. It can be seen that

most of the time the Uber commits from Joomla are formed with 83% of commits in

38

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●●

●●●

●●●●

●

●

●

●

●

●●

●●
●

●
●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●●●

●●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

0

25

50

75

100

Code.org bounded ca Joomla bounded ca Joomla unbounded ca Rails bounded ca Rails unbounded ca
Experiments

P
er

ce
nt

ag
e

Figure 6.2: Percentage per Uber commit of the numbers of commits in the queue
taking part in this Uber commit.

the queue, 25.83% of commits in the case of Code.org but only 1.5% of commits in

the case of Rails.

6.2 What are the benefits of Uber commits over

individual commits?

In the case of Joomla, the simulations reported 3870.66 hours of execution for the server,

i.e. the amount of time the server was processing commits, applying the traditional

approach, 3423.15 hours for the Uber approach with bounded culprit analysis and

3577.87 hours for the Uber approach with unbounded analysis. The difference of the

traditional with each of the other simulation results are 447.5 hours and 292.79 hours

respectively, representing the 11.56% and 7.56% of the server execution time for the

traditional approach. Fig. 6.3 shows the difference between the cumulative server

execution time for the traditional approach and those obtained for the Uber approach

with bounded (solid line) and unbounded (dashed line) culprit analysis on each case.

39

0

100

200

300

400

Apr 2015 Jul 2015 Oct 2015 Jan 2016 Apr 2016
Timeline

Tr
ad

iti
on

al
 C

I −
 U

be
r

C
I (

ho
ur

s)

Figure 6.3: Server execution cumulative time difference between traditional and Uber
approaches for Joomla project. The solid and dashed lines show the values for the
Uber approach with bounded and unbounded culprit analysis.

Both curves present non-negative values with increasing tendency that show the Uber

approach reduces the resource utilization. The solid curve presents no significant

decreasing periods, in which the traditional approach utilized less resources than the

Uber approach, but there are periods where the difference remains approximately

constant, which means the same amount of resources were utilized for both approaches.

The dashed curve shows a slower growth, periods of approximately constant value last

longer. It also presents one decreasing period of significant value around July 2015.

Code.org reported similar results, the traditional approach required 3776.419 server

execution hours to process all the commits while the Uber approach required only

3380.207 hours. The saving achieved by applying the Uber approach with bounded

culprit analysis is 396.21 hours, which represents the 10.5% of the server time required

by the traditional approach. Fig. 6.4 is similar to Fig. 6.3 from Joomla, the cumulative

difference presents no negative value and an increasing tendency showing the Uber

approach in general consumes less resources than the traditional. However, this figure

40

0

100

200

300

400

Nov Dec Jan Feb Mar Apr May
Timeline

Tr
ad

iti
on

al
 C

I −
 B

ou
nd

ed
 U

be
r

C
I (

ho
ur

s)

Figure 6.4: Server execution cumulative time difference between traditional and Uber
approaches with the bounded culprit analysis for Code.org project.

presents longer periods where the difference is constant, in which both approaches

consumes the same resources, and two periods were the difference was reduced on

middle January and March.

Rails presented a different scenario, the Uber approach was not able to produce

saving. The traditional approach required 12324.66 hours of server execution while

the Uber approach required 12891.75 hours and 16480.55 hours with the bounded

and unbound culprit analysis. The overhead introduced by the approach applying the

bounded analysis was small, 567.09 hours (4.6%) but the one introduced by the Uber

approach with the unbounded analysis is significant, 4155.89 extra hours of server

execution (33.72%) were required to process all commits. Fig. 6.5 shows the server

cumulative time difference between the traditional approach and the Uber approach

was negative for most parts of the simulations and was oscillating around value -5

hours until July 2016. At that point, the difference abruptly dropped until getting

to the final values, -567.09 hours and -4155.89 hours on each of the cases. In order

to understand this behavior, we need to understand how the linearization of build

41

execution affected Rails. The dataset used as input for the simulations reports that

on average 19 commit are submitted per day. Travis-CI can process this amount in a

single day because builds are completed on 40 minutes on average. Note this time is

achieved by applying techniques, like paralllelization, to reduce the execution time of

builds. The simulator does not apply these techniques and builds require on average 3

hours to be processed. The simulator is not able to process all the commits that arrive

on a single day and they start queuing. As a result, the server is constantly working

since the queue is constantly growing. The oscillation reported on Fig. 6.5 is caused

by this behavior. The cumulative difference does not grow because none of the server

is idle during this period. The main difference between these servers is that the one

working with the traditional approach processes individual commits while the other

also processes Uber commits. However, most of the time the server spends on Uber

commits is wasted because of the failures and the overhead introduced by the culprit

analysis. In general the culprit analysis introduces a small overhead that is usually

insignificant but it starts accumulating if a series of Uber commits are executed one

after the other and most of them incur into the culprit analysis. We have seen this is

the context of Rails since 93.49% of the commits were part of an Uber commit and

76.5% of the Uber commits reported failures. Consequently, on July 2016, the server

under the traditional approach is done while the other is still working due to the delay

introduced by the culprit analysis.

The overhead on server execution time could be tolerated if there are significant

gains on feedback time of processed commits. Fig. 6.6 presents the developer feedback

time difference between the traditional approach and the Uber approach for Joomla

applying bounded (top graphic) and unbound (bottom graphic) culprit analysis. Note

this is a similar metric to the server execution time but it also accounts for the period

commits were waiting in the queue. This metric is used for measuring how much time

42

−40

−20

0

2015−07 2016−01 2016−07 2017−01
Timeline

Tr
ad

iti
on

al
 C

I −
 U

be
r

C
I (

ho
ur

s)

Figure 6.5: Server execution cumulative time difference between traditional and Uber
approaches for Rails project. The solid and dashed lines show the values for the Uber
approach with bounded and unbounded culprit analysis. The final values are not
shown. The difference for the Uber approach with the bounded analysis keeps dropping
until reaching the value of -567.09 hours on September 2016 and the difference for
the Uber approach with unbounded analysis drops until reaching -4155.89 hours on
January 2017.

developers need to wait to receive results from the server. The x-axis can be thought

as a timeline since every point is a build and they are ordered by their queue-arrival

time. Fig. 6.7 shows the cumulative feedback time difference, which is the same data

with a different perspective. The experiment with bounded culprit analysis reports

savings of 19034.85 hours (30.92%) while the other reports savings of 4307.09 hours

(7%). These two figures also show that Uber commits occurrences are distributed

along the timeline and are not focused on a single point of time. Nonetheless, most

significant savings were achieved at the beginning and at the end of the simulations.

A build reports positive value when its wait time is reduced, which can be caused

by two effects, either the server reports a shorter execution time by applying the

Uber approach for any of the commits in the queue that are in front of the commit

of this build or its commit is promoted to be executed as an Uber commit with the

43

−50

−25

0

25

50

0 2500 5000 7500 10000
Builds

Tr
ad

iti
on

al
 C

I −
 B

ou
nd

ed
 U

be
r

C
I (

ho
ur

s)

−50

−25

0

25

50

0 2500 5000 7500 10000
Builds

Tr
ad

iti
on

al
 C

I −
 U

nb
ou

nd
ed

 U
be

r
C

I (
ho

ur
s)

Figure 6.6: Feedback time difference between traditional and Uber approaches applying
the bounded (top) and unbounded (bottom) culprit analysis for Joomla project. The
highest peak and lowest valley in the middle of both graphics are partially shown.
They real values for the top one are 191.09 hours and -192.037 hours respectively and
192.09 hours and -193.09 hours for the other.

0

5000

10000

15000

20000

0 2500 5000 7500 10000
Builds

Tr
ad

iti
on

al
 C

I −
 U

be
r

C
I (

ho
ur

s)

Figure 6.7: Cumulative Feedback time difference between traditional and Uber ap-
proaches applying the bounded (solid line) and unbounded (dashed line) culprit
analysis for Joomla project.

44

first commit in the queue. The positive peak of 191 hours shown in Fig. 6.6(top) is

caused by the second effect. In the traditional approach this commit is executed after

a commit taking 190 hours but, in the Uber approach, it is able to avoid waiting for

this commit to be over by taking part of an Uber commit that is executed first.

The negative results in Fig. 6.6(bottom) are also caused by a high failure rate and

the overhead introduced by the culprit analysis. ca performs the analysis until all

commits are executed individually. As a result, the execution of partitions provides

anything but extra overhead to the process. This overhead will cause more commits

to queue up and the cycle will repeat until the failure rate decreases. Negative values

in Fig. 6.6(top) are also caused by the overhead introduced by the culprit analysis but

in this case the depth of the analysis is bounded. Additionally, commits could suffer a

penalization if they are the first in the queue and merged with another commit that

requires much more server time and all of them are selected to be part of an Uber

commit. This occurs because the simulator calculates the cost of the Uber commit

based on the highest values reported by the candidates. This penalization is usually

small in comparison to the overhead introduced by the culprit analysis. The large

negative valley of value -192 hours in Fig. 6.6(top) is an example of a significant

penalization caused by this phenomenon. In this case, a few commits in front of the

commit requiring 190 hours of server time are selected to be part of an Uber commit

with this one suffering an unnecessary delay.

Figures 6.8 and 6.9 show the cumulative and non-cumulative developer feedback

time difference between the traditional approach and the Uber approach for Rails

project. They are a clear example that the Uber approach cannot be applied blindly

since they show how commits are being delayed as Uber commits trigger the culprit

analysis. At the end of the simulations, the Uber approach introduced delays of 1533033

hours (8.66%) and 9354617 hours (52.87%) under the bounded and unbounded culprit

45

−4000

−2000

0

0 1000 2000 3000 4000
Builds

Tr
ad

iti
on

al
 C

I −
 U

be
r

C
I (

ho
ur

s)

Figure 6.8: Feedback time difference between traditional and Uber approaches applying
the bounded (solid line) and unbounded (dashed line) culprit analysis for Rails project.

−7500000

−5000000

−2500000

0

0 1000 2000 3000 4000
Builds

Tr
ad

iti
on

al
 C

I −
 U

be
r

C
I (

ho
ur

s)

Figure 6.9: Cumulative Feedback time difference between traditional and Uber ap-
proaches applying the bounded (solid line) and unbounded (dashed line) culprit
analysis for Rails project.

analyses respectively. On the other hand, Figures 6.10 and 6.11 show a total saving of

63047.65 hours (21%) for project Code.org. Although this saving is smaller that the

one achieved for Joomla, the figures show significant gains are distributed through all

the simulation period.

46

0

40

80

0 3000 6000 9000
Builds

Tr
ad

iti
on

al
 C

I −
 B

ou
nd

ed
 U

be
r

C
I (

ho
ur

s)

Figure 6.10: Feedback time difference between traditional and Uber approaches
applying the bounded culprit analysis for Code.org project.

0

20000

40000

60000

0 3000 6000 9000
Builds

Tr
ad

iti
on

al
 C

I −
 B

ou
nd

ed
 U

be
r

C
I (

ho
ur

s)

Figure 6.11: Cumulative Feedback time difference between traditional and Uber
approaches applying the bounded culprit analysis for Code.org project.

47

●●●
●●●
●●
●
●●
●●●●

●

●

●●●

●

●
●

●

●

●

●●
●●
●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●
●

●●

●●

●●

●●●●
●

●

●●

●

●●
●●●
●

●

●

●

●
●
●●

●

●

●●
●●

●

●

●

●
●●●

●

●

●
●
●

●

●●●

●
●

●

●●

●●●
●

●●
●

●
●

●

●

●

●

●
●
●●

●

●●●
●
●●
●
●

●●
●●●
●●
●
●

●

●

●

●

●●●

●

●
●

●●●
●
●

●

●

●●
●●
●●●
●●
●●

●

●●
●●●

●

●●

●
●

●●

●●

●

●●●
●

●

●

●
●

●●

●
●

●

●●

●●

●
●
●●
●

●●●
●
●
●●●

●

●●

●●●
●
●
●
●
●●

●●
●●
●
●●●

●

●
●

●

●

●

●●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●
●
●●
●●●
●

●

●

●●
●●
●

●

●

●

●
●
●

●
●
●

●
●

●

●

●

●
●●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●
●●
●

●

●

●
●●

●
●

●

●●

●

●

●●●
●
●
●

●

●●
●

●
●

●●●●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●●●
●●
●
●

●
●●
●

●●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●
●

●●
●●
●●●
●●
●●

●

●●
●●
●

●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●●

●

●

●

●

●

●
●●
●●

0

10

20

Code.org bounded ca Joomla bounded ca Joomla unbounded ca
Experiments

F
B

T
 d

iff
 (

ho
ur

s)

●●●●●●●●
●
●●●●

●●

●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●

●

−4000
−3000
−2000
−1000

0

Rails bounded ca Rails unbounded ca
Experiments

F
B

T
 d

iff
 (

ho
ur

s)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●●●●●●●●
●●●●●●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●●
●●●●●●

●

●●●●●●●●●

●
●
●

●●
●●●
●
●●
●

●●●●●●●●

●
●●
●●●●●●●●

●

●

−100
−50

0
50

100

Code.org bounded ca Joomla bounded ca Joomla unbounded ca Rails bounded ca Rails unbounded ca
Experiments

P
er

ce
nt

ag
e

Figure 6.12: Average feedback time savings achieved per commit by being part of an
Uber commit. Top and middle plots show the savings on hours while the last one
shows the percentage.

Previous figures showed the global effect of applying the Uber approach. We

can understand better the local effect by looking at Uber commits individually. Fig.

6.12 presents the savings on developer feedback time achieved per commit by taking

part of an Uber commit. The top and middle box-plots show the savings (negative

values are overhead) achieved per commit in concrete hours and the last box-plot

show the percentage that these savings represent. On average Joomla reports per

commit savings of 13.73% and 1.92 hours for the Uber approach with bounded culprit

analysis and -23% and 43.2 minutes for with the unbounded approach. Rails reports

-7.96% and -372.1 hours for the first case and -48.33% and -2243 hours for the second.

Finally, Code.org reports 26.95% and 6.56 hours for the Uber approach with the

bounded analysis. It can be observed in the figure that savings achieved for Rails are

outliers and that the Uber approach provides similar gains on percentage to Joomla

and Code.org. In concrete hours, larger gains are provided for Code.org.

We can also inspect the server execution time for Uber commits and their individual

commit execution to understand the local effect of the former on resource utilization.

The Uber approach applying the bounded and unbounded culprit analysis presents

48

average savings per commit of 26.08% and 22.31% respectively on Joomla, -6.13%

and -30.72% on Rails and 21.06% on Code.org. In concrete hours, the savings are

21 minutes and 14.4 minutes on Joomla, -1.37 hours and -10.06 hours on Rails and

20.4 minutes on Code.org. Fig. 6.13 shows the distribution of the savings reported

by Uber commits. 857 (68.5%) and 861 (70.98%) Uber commits reported savings for

each type of culprit analysis on simulations for Joomla, 98 (23.7%) and 129 (31.23%)

for Rails and 674 (57.75%) for Code.org. Observe, Uber commits presenting savings

with the bounded analysis are those that do not report failure and do not report

overhead for the merging process while commits reporting savings with the unbounded

analysis be also include failing Uber commits that the culprit analysis could identify

without incurring into overhead. This is group is small, only 9.9% of failing Uber

commits reported for Joomla and 10.12% for Rails. On the other hand 394 (31.49%)

and 352 (29.01%) Uber commits introduced overhead to the server when the bounded

and unbounded culprit analysis were applied respectively on Joomla simulations, 315

(76.27%) and 284 (68.76%) on Rails and 493 (42.24%) on Code.org. Fig 6.14 shows the

percentages of the overhead introduced by these Uber commits. It can be observed the

unbounded culprit analysis introduces more overhead than the bounded one, reporting

values even higher than 100%.

6.3 How realistic are the Uber commits presented

in the simulations?

We sampled 100 Uber commits from the 1251 reported by Joomla with the bounded

analysis and reproduced them manually on Travis-CI through a Github fork. All the

commits involved in an Uber commit were merged, following the proper order, into a

49

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●
●
●

●
●

●
●

●

●

●

●●
●

●●

●●
●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●●
●

●

●

0

5

10

15

Code.org bounded ca Joomla bounded ca Joomla unbounded ca Rails bounded ca Rails unbounded ca
Experiments

S
av

in
gs

 (
ho

ur
s)

●●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●0

25

50

75

100

Code.org bounded ca Joomla bounded ca Joomla unbounded ca Rails bounded ca Rails unbounded ca
Experiments

P
er

ce
nt

ag
e

Figure 6.13: Savings achieved by Uber commits with respect the individual run of
their composing commits. Joomla experiments present 857 (bounded ca) and 861
(unbounded ca) Uber commits. Rails experiments present 98 (bounded ca) and 129
(unbounded ca) Uber commits. Code.org experiment presents 674 (bounded ca) Uber
commits. UC introducing overhead are excluded.

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●●●●●●

●
●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

●

0
1
2
3
4
5

Code.org bounded ca Joomla bounded ca Joomla unbounded ca
Experiments

O
ve

rh
ea

d
(h

ou
rs

)

●

●

●
●●
●
●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0

40

80

120

Rails bounded ca Rails unbounded ca
Experiments

O
ve

rh
ea

d
(h

ou
rs

)

●●●
●●●●
●
●●

●

●●●●●●●●

●
●

●

●

●
●

●
●●●●
●●●●●
●●●●●●●●●●●

●●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0

200

400

600

Code.org bounded ca Joomla bounded ca Joomla unbounded ca Rails bounded ca Rails unbounded ca
Experiments

P
er

ce
nt

ag
e

Figure 6.14: Overhead introduced by Uber commits with respect the individual run
of their composing commits. Joomla experiments present 394 (bounded ca) and 352
(unbounded ca) Uber commits. Rails experiments present 315 (bounded ca) and 284
(unbounded ca) Uber commits. Code.org experiment presents 493 (bounded ca) UC
introducing savings are excluded.

50

new branch of this fork and a build was triggered on Travis-CI for this branch when

the merge process was completed. Note the simulator generates the build status for

Uber commits based on the build status of their individual commits. Therefore, we

also needed to execute these commits individually on Travis-CI to check if they still

reported the same build status. An Uber commit could only be reproduced successfully

if all the individual commits reported the same build status on the simulation and

our Travis-CI environment. 27 of the Uber commits could not be reproduced because

either the original builds reported temporal infrastructure errors or the new commits

could not find all the necessary dependencies to work. For those Uber commits that

could be reproduced successfully, 89% of the Uber commits reported the same results

as the simulation, 1.36% (1 Uber commit) reported integration issues, two commits

that passed when run individually report failure as part of an Uber commit. Finally,

9.58% reported fixes, i.e. when two commits are part of an Uber commit and one

introduces a fault but the other provides the fix, that the simulation is not able to

detect.

Once we completed this experiment, we wanted to know if the Uber approach

would still provide significant gains if only the 89% of the attempts to create an Uber

commit were successful. We adapted the simulator to make the Uber commit creation

process to fail following a probability of failure provided as parameter. We run a

new and more realistic experiment comparing the traditional approach with the Uber

approach with bounded culprit analysis. In this case only the 89% of the attempts to

create an Uber commit could succeed. Figures 6.15 and 6.16 show the Uber approach

performing better than the traditional approach but, as expected, gains are lower than

the one obtained the Uber approach with 100% success probability.

51

0

100

200

300

400

Apr 2015 Jul 2015 Oct 2015 Jan 2016 Apr 2016
Timeline

Tr
ad

iti
on

al
 C

I −
 U

be
r

C
I (

ho
ur

s)

Figure 6.15: Server execution cumulative time difference between traditional and Uber
approaches for Joomla project. The solid and dashed lines show the values for the
Uber approach with bounded culprit analysis with 89% and 100% of Uber commit
success probability.

0

5000

10000

15000

0 2500 5000 7500 10000
Builds

Tr
ad

iti
on

al
 C

I −
 U

be
r

C
I (

ho
ur

s)

Figure 6.16: Cumulative Feedback time difference between traditional and Uber
approaches applying the bounded culprit analysis for Joomla project with 89% (solid
line) and 100% (dashed line) of Uber commit success probability.

52

Chapter 7

Applicability of the approach

7.1 Study Implications

Uber commits were present on all the simulations involving between 50% to 90% of the

commits under study. This suggests we can expect to generate Uber commits on other

projects with similar characteristics (high commit activity, low failure rate). RQ2

showed that when the conditions are given it can produce significant improvements

(reductions of 30% on feedback time and 11% on resource utilization). However, this

approach cannot be applied blindly because doing it under the wrong conditions

will result on overhead. This behavior was seen on every simulation, not only Rails

simulations. More work is required on the culprit analysis in order to break the high

failure rate barrier. This was the goal of the unbounded analysis version but only

worked 10% of the time. Note localized failure rate is the real problem. 42.3% of

the Uber commits failed on the simulation for Code.org and a reduction of 20% on

feedback time was still obtained. The Uber approach was only negatively affected on

the periods where faults were concentrated.

This highlights another direction further work should focus, the selection process.

53

The results show the Uber approach with bounded culprit analysis can be effective as

it is but it could be even more if the selection process were able to avoid candidates

that are likely to introduce overhead. This could be achieved by collecting historical

data but also exploring other simple heuristics for this process. For example, one idea

inspired by Joomla results that reports small Uber commits but achieved the best

gains is limiting the size of Uber commits. It is clear that more redundancies are likely

to be reduced when more candidates are considered to be part of an Uber commit,

assuming they are compatible, however, there are also more risks to find integration

conflicts or failures as well.

Finally, the experiment to reproduce Uber commits on Travis-CI reported that

Uber commits are slightly less frequent on this environment, only 89% of the Uber

commits reported the same results as in the simulation. However, a new simulation

was carried out on Section 6.3 to simulate an Uber approach on which only the 89%

of the time Uber commits are created successfully to measure if gains could still be

achieved with less Uber commits. This simulation shows a good performance of the

Uber approach as well.

7.2 Challenges

In addition to the issues highlighted on the previous section, there will be challenges

when trying to implement this approach on a real CI environment. They can be divided

into two categories, technical and social. The first category includes the challenges

related to combining this approach with other techniques set in place to improve the

environment and the stack of technologies that compose it. The first challenge will be

adapting the culprit analysis to work with integration issues since the implementation

used on the simulations is not aware of them. Similarly, commits on the environment

54

may not be as homogeneous as assumed on the simulations, i.e. the redundancies

between them may be small or their processing time may vary significantly. One

possible approach to deal with these issues is to apply a cheap analysis to detect

commits that are likely to be problematic and exclude them as candidates. Other

approach may allow the user to interact with Uber commits or the candidates. For

instance, candidates can be reviewed by developers before executing the Uber commit

and this one can also be reviewed if it fails before applying the culprit analysis. These

approaches may not be feasible on large environments since they may add more

overhead to the process but may be useful if they could be performed faster and with

better accuracy than the our selection and culprit analysis implementations. The

other technical challenge is how to combine the Uber approach with other techniques

such as parallelization. In this case the server needs to decide how to make good use of

all the techniques and resources. However, making this decision should not introduce

more overhead than the savings obtained.

Among the social challenges, we tried to make the approach as transparent as

possible to the developers but aspects of the environment will change and developers

may react to them in different ways. First, if feedback time and resource utilization

are reduced as result of applying Uber commits, developers may change their workflow

since the may have room for extra work. Second, the developers will have to accept

that results for some commits could get delayed with the Uber approach in order to

improve the overall system performance. For example, the commit at the head of

the queue does not benefit from being part of an Uber commit but doing it so can

reduce the server utilization and feedback time of other commits in the queue. In

fact, it is likely this commit have been benefited from previous Uber commits. Finally,

users may not want this process to be transparent because they may find other useful

applications for Uber commits that were not considered in this work. For instance,

55

they may believe the best approach to work with Uber commits is interacting with

them manually. In other words, they could control when to trigger them and which

commit candidates would be taking part of them. They could also inspect failing ones

before applying the culprit analysis as mentioned before.

56

Chapter 8

Related work

To the best of our knowledge, only two other works describe a CI approach involving

the merging of queued commits to improve the efficiency of the server. Lacoste presents

the success story of implementing a CI environment [28]. A few ideas are described in

the paper. One of them, similar to our approach, was to include queued commits on a

single build before being built and tested. However, it is briefly explained in the paper

and, even though the author presented a quantitative evidence of the improvements

of achieved with the application of a CI environment, there is no individual analysis

focusing on the applicability or savings achieved by this idea in particular. He presents

a figure showing the number of integrations performed per day together with the

number of errors and tests failures found on each day before and after implementing the

CI environment. The figure shows a significant improvement but there is no analysis

of the impact of each applied idea to the final results. The second work is Openstack’s

Zuul project [24], the gating system developed and used by the organization in its

CI environments. This approach improves the efficiency of the server by parallelizing

the execution of builds in the queue. Uber-commit-like elements are used for keeping

the dependencies of commits with those in front of them in the queue. For instance,

57

if three commits are pending on the queue, the server will executed them on three

different job at the same time. The first job will exercise a copy of the master branch

integrated with the first commit, the second job will work on a copy of the master

branch integrated with the first two commits and the third job will exercise the copy

with three commits. The three commits are merged if the three jobs are successful.

If the first job fails, the other two are re-executed without the changes introduced

by this commit. The Uber approach, in comparison, would execute a single job with

the three commits together and the other two would be executed only if the culprit

analysis requires them. Similar to [28], the approach is not explained formally and

no quantitative analysis is provided to understand the benefits over the traditional

approach.

Other works have proposed improvements to CI environments but are not based

on changing the server integration workflow. Many authors [3, 29, 30, 31, 32, 33]

propose applying different types of builds with different frequency and target. With

these approaches only the fastest tests are executed on every commit and the rest

of the tests will be executed later with less frequency keeping a balance between

executing expensive tests and providing fast feedback. Frequently these ideas come

from industry consultants and do not provide a quantitative analysis of their benefit.

Kawalerowicz [30] proposed four types of builds, one that is triggered on each commit

and executes unit tests, a nightly build that executes unit tests and possibly some

acceptance tests, a weekly build that executes unit tests and acceptance tests and a

release build that performs a complete testing of the system. Modesto [32] takes ideas

from Larman et al. [33] and proposes a software development process around CI. In

this development process CI is applied at component, subsystem and product levels.

Each successful build on one level triggers builds at the level on top of it. Tests at the

58

lower level are fast but exercise a small part of the system and tests at the upper level

are slow and exercise the whole system.

A few authors propose implementing local CI environments for particular teams or

components [3,13,29,30]. Related to this idea, Van der Storm [11] proposed triggering

builds at the component level and executing only those that have been affected by

the last change. In addition, a backtracking approach is applied to always provide

working version of the system. This approach was evaluated in a period of 32 weeks

and reported that the development speed decreased, the number of commit decreased

one third, but the number of failing builds also decreased 43%. Dosinger et al. [16]

propose a communication system between servers in order to improve the effectiveness

of testing activities. Every time a build of a project is completed successfully, the CI

server sends a notification to CI servers of projects depending on this one to validate

if the introduced changes break the builds of these projects. The goal is to detect

issues before a new version of the product is released.

Eyl et al. [12] propose an approach to reduce feedback time by saving binaries

on the code repository so it can be used as a cache and triggering only the tests

that have been affected by a change. Roberts also proposed, in [13], to use binary

dependencies together with modularization to facilitate the development of related

software components with independent life-cycles.

Popular CI tools [18, 34, 35] provide mechanism to parallelize build executions.

Beaumont et al. [15], propose an approach to improve the scheduling of parallel builds

to provide faster feedback. Gambi et al. [14] present an approach with a similar

reasoning to ours, they propose to eliminate infrastructure redundancies in cloud-base

CI.

Finally, the research community has presented several works focused on the indi-

vidual tasks composing CI like Testing activities [9, 10] and Building Systems [26].

59

Improvements on individual areas are likely to improve the overall performance of the

CI environment.

60

Chapter 9

Conclusion

We presented a novel approach to improve the efficiency of CI server based on changing

the integration scale of the server that is transparent to the developers and can provide

gains in the resource utilization and feedback time for developers. We carried out

a study to assess this approach by simulating a real CI environment. We obtained

promising results that suggest this approach could benefit real projects as it is but

further studies are required to improve its applicability.

In terms of future work, this work can be extended in the following directions:

• Similar experiments should be carried out on new projects to analyze the

performance of this approach under different toolsets, development processes

and types of software.

• New experiments should consider the combination of this approach with standard

optimization approaches, such as parallelization and test selection. We believe

further improvements could be achieved.

• Improvements to fc and ca should be studied to reduce the overhead introduced

on the worst case scenarios. For instance, an fc implementation could learn from

61

failure history to determine if an Uber commit would incur into an expensive

culprit analysis overhead and avoid the merge of commits.

• The simulator could be improved to make it more realistic in order to obtain

more accurate results. In particular, it should be extended to consider different

degrees of overlap of source and test code among commits.

• New experiments should explore the balance between size of Uber commits and

the risk of incurring into integration issues.

• The long term goal is to have at least one implementation working on one or

more real CI environments to study the actual benefits of the approach, detect

the main challenges to bring this approach into practice and collect new ideas of

how to extend the it.

62

Bibliography

[1] K. Beck, Extreme programming explained: embrace change. addison-wesley

professional, 2000.

[2] M. Fowler and M. Foemmel, “Continuous integration,” Thought-Works)

http://www. thoughtworks. com/Continuous Integration. pdf, p. 122, 2006.

[3] P. M. Duvall, S. Matyas, and A. Glover, Continuous integration: improving

software quality and reducing risk. Pearson Education, 2007.

[4] https://www.youtube.com/watch?v=dxk8b9rSKOo.

[5] P. Gupta, M. Ivey, and P. J., “Testing at the speed and scale of google,” http://

googletesting.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html.

[6] D. Feitelson, E. Frachtenberg, and K. Beck, “Development and deployment at

facebook,” IEEE Internet Computing, vol. 17(4), pp. 8–17, 2013.

[7] http://www.libreoffice.org.

[8] J. Micco, “Continuous integration at google scale,” http://eclipsecon.org/

2013/sites/eclipsecon.org.2013/files/2013-03-24%20Continuous%20Integration%

20at%20Google%20Scale.pdf, 2013.

https://www.youtube.com/watch?v=dxk8b9rSKOo
http://googletesting.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
http://googletesting.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
http://www.libreoffice.org
http://eclipsecon.org/2013/sites/eclipsecon.org.2013/files/2013-03-24%20Continuous%20Integration%20at%20Google%20Scale.pdf
http://eclipsecon.org/2013/sites/eclipsecon.org.2013/files/2013-03-24%20Continuous%20Integration%20at%20Google%20Scale.pdf
http://eclipsecon.org/2013/sites/eclipsecon.org.2013/files/2013-03-24%20Continuous%20Integration%20at%20Google%20Scale.pdf

63

[9] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving regression

testing in continuous integration development environments,” in Proceedings of

the 22nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering. ACM, 2014, pp. 235–245.

[10] E. Knauss, M. Staron, W. Meding, O. Söder, A. Nilsson, and M. Castell, “Sup-

porting continuous integration by code-churn based test selection,” in Proceedings

of the Second International Workshop on Rapid Continuous Software Engineering.

IEEE Press, 2015, pp. 19–25.

[11] T. Van Der Storm, “Backtracking incremental continuous integration,” in Software

Maintenance and Reengineering, 2008. CSMR 2008. 12th European Conference

on. IEEE, 2008, pp. 233–242.

[12] M. Eyl, C. Reichmann, and K. Müller-Glaser, “Fast feedback from automated tests

executed with the product build,” in Software Quality. The Future of Systems-and

Software Development. Springer, 2016, pp. 199–210.

[13] M. Roberts, “Enterprise continuous integration using binary dependencies,” in In-

ternational Conference on Extreme Programming and Agile Processes in Software

Engineering. Springer, 2004, pp. 194–201.

[14] A. Gambi, Z. Rostyslav, and S. Dustdar, “Poster: Improving cloud-based contin-

uous integration environments,” in 2015 IEEE/ACM 37th IEEE International

Conference on Software Engineering, vol. 2. IEEE, 2015, pp. 797–798.

[15] O. Beaumont, N. Bonichon, L. Courtès, E. Dolstra, and X. Hanin, “Mixed

data-parallel scheduling for distributed continuous integration,” in Parallel and

Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012

IEEE 26th International. IEEE, 2012, pp. 91–98.

64

[16] S. Dösinger, R. Mordinyi, and S. Biffl, “Communicating continuous integration

servers for increasing effectiveness of automated testing,” in Proceedings of the

27th IEEE/ACM International Conference on Automated Software Engineering.

ACM, 2012, pp. 374–377.

[17] “Travis-ci,” https://travis-ci.org.

[18] “Jenkins,” https://jenkins.io/.

[19] “Circleci,” https://circleci.com/.

[20] https://github.com/.

[21] D. Ståhl and J. Bosch, “Modeling continuous integration practice differences in

industry software development,” Journal of Systems and Software, vol. 87, pp.

48–59, 2014.

[22] A. Miller, “A hundred days of continuous integration,” in Agile, 2008. AGILE’08.

Conference. IEEE, 2008, pp. 289–293.

[23] B. Adams and S. McIntosh, “Modern release engineering in a nutshell–why

researchers should care,” in 2016 IEEE 23rd International Conference on Software

Analysis, Evolution, and Reengineering (SANER), vol. 5. IEEE, 2016, pp. 78–90.

[24] “Openstack zuul documentation,” http://docs.openstack.org/infra/zuul/gating.

html.

[25] J. Rasmusson, “Long build trouble shooting guide,” in Conference on Extreme

Programming and Agile Methods. Springer, 2004, pp. 13–21.

https://travis-ci.org
https://jenkins.io/
https://circleci.com/
https://github.com/
http://docs.openstack.org/infra/zuul/gating.html
http://docs.openstack.org/infra/zuul/gating.html

65

[26] M. Vakilian, R. Sauciuc, J. D. Morgenthaler, and V. Mirrokni, “Automated

decomposition of build targets,” in 2015 IEEE/ACM 37th IEEE International

Conference on Software Engineering, vol. 1. IEEE, 2015, pp. 123–133.

[27] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing input,”

IEEE Transactions on Software Engineering, vol. 28, no. 2, pp. 183–200, 2002.

[28] F. J. Lacoste, “Killing the gatekeeper: Introducing a continuous integration

system,” in Agile Conference, 2009. AGILE’09. IEEE, 2009, pp. 387–392.

[29] R. O. Rogers, “Scaling continuous integration,” in International Conference on

Extreme Programming and Agile Processes in Software Engineering. Springer,

2004, pp. 68–76.

[30] M. Kawalerowicz and C. Berntson, Continuous integration in. NET. Manning,

2011.

[31] J. Humble and D. Farley, Continuous delivery: reliable software releases through

build, test, and deployment automation. Pearson Education, 2010.

[32] R. Modesto de Abreu, “Multi-stage continuous integration: Leveraging scalability

on agile software development,” 2013.

[33] C. Larman and B. Vodde, Practices for scaling lean & Agile development: large,

multisite, and offshore product development with large-scale scrum. Pearson

Education, 2010.

[34] “Teamcity,” https://www.jetbrains.com/teamcity/.

[35] “Atlassian bamboo,” https://www.atlassian.com/software/bamboo.

https://www.jetbrains.com/teamcity/
https://www.atlassian.com/software/bamboo

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	8-2016

	Improving the Efficiency of CI with Uber-commits
	Matias Waterloo

	Contents
	List of Figures
	Introduction
	Background & Motivation
	Continuous Integration
	Motivating Example

	Our Approach
	Problem Definition
	Reducing Developer Feedback Time
	When CU Fails: Culprit Analysis

	Simulation Framework
	Architecture
	Design Decisions

	Study Design
	Research questions
	Design
	Metrics
	Artifacts
	Data Sanitization process
	Threats to validity

	Study Results
	How often could Uber commits be generated
	What are the benefits of Uber commits over individual commits?
	How realistic are the Uber commits presented in the simulations?

	Applicability of the approach
	Study Implications
	Challenges

	Related work
	Conclusion
	Bibliography

