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ABSTRACT 

Inflammation is implicated in cancer development, degenerative diseases, 

allergies as well as artherosecelorsis. Dysregulated immune responses lead to chronic 

inflammation and tissue damage. Finding the ways to terminate inflammatory responses 

when no longer needed, demands further investigation.  Herein, we investigated the 

modulation of acute and chronic inflammatory disease models by inducing anti-

inflammatory state. Acute inflammatory model was induced with SEB, an enterotoxin 

produced by a ubiquitous Gram-positive coccus, Staphylococcus aureus (S. aureus), 

which exerts profound toxic effects on the immune system, which leads to the cytokine 

storm and adverse immune response. SEB is the main cause of nosocomial infections, 

acute and fatal respiratory distress and toxic shock syndrome. 

 Regulatory T cells (Tregs) are well characterized for their role in maintaining 

immunological tolerance and immune homeostasis. The immunosuppressive function of 

T regulatory cells correlates with the expression of the forkhead transcription factor 

(Foxp3) in these cells.  However, the precise regulatory mechanisms which govern the 

expression of Foxp3 remain unclear. Herein, for the first time, we uncovered the complex 

interaction of DNA methyltransferase (DNMT) and/or histone deacetylase (HDAC) 

which leads to the reactivation of transcription of Foxp3 mRNA and induction of Tregs. 

More specifically, for the first time, we demonstrated the differential regulation of 

microRNA following administration of an immuno-suppressive environmental 

contaminant, 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) in SEB-primed mice.  We
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identified the dual role of miR-31 in induction of Tregs by targeting Foxp3 and CYP-1A. 

Because there is a growing incidence of obesity in the last 25 years which defines  

it as an epidemic condition all over the world, we characterized the mechanism of chronic 

inflammatory disease in Diet-Induced Obesity (DIO) model.  Chronic low-grade, 

systematic inflammation associated with obesity plays a major role in the development of 

various chronic disease states, including type 2 diabetes, metabolic syndrome and 

atherosclerotic cardiovascular disease, which contribute to high rates of mortality and 

morbidity.  

Endocannabinoid system consisting of exogenous and endogenous ligands as well 

as associated receptors, play a major role in diet intake, energy balance, and regulating of 

immune functions. In the current study, we offer a better understanding in the underlying 

mechanism of blockade of cannabinoid CB1 receptor with SR141761A in attenuation of 

DIO phenotype. We revealed that modulation of neuroimmune guidance cue (Netrin-1) 

and its related receptor (Unc5b), via blockade of cannabinoid CB1 receptor, leads to less 

retention of macrophages in adipose tissue, and subsequently causes improvement in 

metabolic functions. In the current study, we have attempted to investigate the impact of 

CB1 receptor antagonist, on gut microbial community in DIO phenotype. Herein, for the 

first time, we identified a rise in Akkermansia muciniphila bacterial community, 

following blockade of CB1 receptor. Interestingly, we uncovered that therapeutic 

properties of SR141716A at microbial level can be attributed to the suppression of 

immunogenic bacteria, Lanchnospiraceace and Erysipelotrichaceae community, in DIO 

phenotype. Furthermore, we found that SR141716A altered microRNA profile in adipose 

tissue macrophages and skewed the balance of adipose tissue macrophages to more anti-
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inflammatory M2 macrophages. These studies provide novel mechanistic information on 

how microbiota and microRNA can be modulated to suppress acute and chronic 

inflammation thereby providing new tools to prevent and treat inflammatory diseases.  
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CHAPTER I: INTRODUCTION 

 
1.1 STAPHYLOCOCCAL ENTEROTOXIN B (SEB)-INDUCED ACUTE 

INFLAMMATION 

SEB, is an enterotoxin produced by a ubiquitous Gram-positive coccus, 

Staphylococcus aureus (S. aureus), which has been classified as a super antigen 1that 

exerts profound toxic effects on the immune system, which leads to the cytokine storm 

and adverse immune response 2. SEB is listed as a category B priority agent by Center for 

Disease Control and Prevention due to its usage in a bioterrorist attack 3. SEB is the main 

cause of nosocomial infections, acute and fatal respiratory distress and toxic shock 

syndrome4,5,6.  SEB can activate ~ 20% of T cells by binding both to the non-

polymorphic regions of the Major Histocompatibility Molecules (MHC)II on Antigen 

Presenting Cells (APC), and to the variable region of the β chain of the T cell receptor 

(TCR) such as Vβ8 TCR 7.   

Activation of Mitogen-activated protein kinase (MAPK), extracellular signal 

regulated kinase (ERK),and c-Jun N-terminal kinase (JNK) , and NF-κB pathway in 

triggered T cells leads to massive systematic release of pro-inflammatory cytokines such 

as IL-1β, TNF-α, IFN-γ, IL-2 and IL-4 following exposure to SEB 8.Consequently, the 

circulating leukocytes are attracted to the site of inflammation and cause more damage to 

the tissue 9. Therefore, in order to uncover the immunosuppressive properties of TCDD 
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on robust T cell responses, we designed an acute-inflammatory model by sensitizing in 

vivo with SEB.  

1.2 REGULATORY T CELLS AND 2,3,7,8-TETRACHLORODIBENZO-P-

DIOXIN (TCDD) 

Regulatory T cells (Tregs), formerly known as suppressor T cells, are well 

characterized for their role in maintaining immunological tolerance to the self- antigen 

and immune homeostasis, the essential allies in regulating autoimmunity, cancer, as well 

as inflammatory diseases. Depletion of Tregs is associated with breakdown in immune 

tolerance and sever autoimmunity 10,11,12,13,14,15. Tregs are characterized as small 

proportion of CD4+ T cells (5-10%). Thymus-derived natural Treg (nTreg) and the 

peripherally induced Tregs, are subpopulations of T cells with immunosuppressive 

function. Genetically hypoplasic thymus in DiGeorge syndrome and neonatal 

thymectomy in mice causes defects in Tregs differentiation and peripheral tolerance 16,17. 

Scurfy mutant mice (Foxp3 knock-out) can be rescued from lymphoproliferative 

autoimmune syndrome by bone marrow reconstitution from wild type mice 18,19.   

Cortical epithelial cells in thymus interact with naïve CD4 T cells with their 

MHC-II molecules, and facilitate their differentiation into nTregs 20.  Other stimulatory 

signals from co-stimulatory molecules ( CD40 ligand, and CD28), and cytokines (TNF-α, 

and TGF-β ) are involved in Tregs expansion 21. TGF-β is also known as an essential 

cytokine in mediating peripheral Treg differentiation from the mature conventional T 

cells, and their homeostasis 22. IL-2 is a master regulator of Tregs survival in periphery 

23,24.  
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Numerous surface markers are associated with Tregs such as CD25 (the IL-2 

receptor α-chain), CTL-associated antigen 4 (CTLA4), and glucocorticoid-induced TNF 

receptor (GITR). However, these markers cannot be considered as exclusive markers for 

Tregs.  For example, other immune cells such as activated B cells, T cells and 

macrophages also express surface marker CD25. The forkhead/winged-helix family 

transcription factor (Foxp3), which contributes to development and immunosuppressive 

function of T regulatory cells, is being considered as an exclusive and specific marker for 

Tregs 25,26. However, the precise regulatory mechanisms which govern the stable 

expression of Foxp3 remain unclear. Accessible demethylated locus of Foxp3 gene for 

transcription factors, and other epigenetic regulators such as Histone deacetylases 

(HDAC), phosphorylase and ubiquitin ligase are integral mediator for the stable 

expression of immunosuppressive Tregs 27,28,29,30,31. Tregs can trigger suppression of 

immune responses in direct-contact manner with target cells, Granzyme/perforin 

mediated apoptosis of target cells, or by secreting anti-inflammatory cytokines such as 

IL-10 or TGF-β 32.  

Recently, the role of Aryl hydrocarbon receptor (AhR) in the induction of Foxp3 

in Tregs has generated significant interest 33,34.  AhR was characterized as a ligand-

activated transcription factor involved in xenobiotic metabolism but more recently, it has 

also been shown to play a critical role in the regulation of T cell differentiation, 

specifically induction of Tregs. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a 

ubiquitous environmental contaminant which causes immunosuppression and 

carcinogenesis 35.  TCDD is a potent ligand for AhR because of which it is widely used to 

study the effect of AhR activation in the regulation of immune response.  Induction of 
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functional Tregs and immune-modulatory effect of TCDD in different disease models 

such as Experimental Autoimmune Encephalomyelitis (EAE) and Non-Obese Diabetic 

was well established 36,37. Thus, AhR activation by TCDD-like ligands will provide a 

better understanding in underlying mechanism of Treg induction and their 

immunosuppressive function in immune system activation. 

                            

1.3 DIET-INDUCED OBESITY (DIO), CHRONIC INFLAMMATION 

 The growing incidence of obesity in the last 25 years defines it as an epidemic; 

with estimates upwards of 1.45 billion overweight adults in the world, of which 

approximately 500 million are obese 38. Moreover, a maintenance of childhood obesity at 

16% prevalence from 2006-2010 and a significant increase in obesity prevalence over a 

12-year period in males aged 2-19 years was observed39.  

Chronic low-grade, systematic inflammation associated with obesity plays a 

major role in the development of various chronic disease states, including type 2 diabetes, 

metabolic syndrome and atherosclerotic cardiovascular disease, which contribute to high 

rates of mortality and morbidity 40.   

Stromovascular fraction of adipose tissue is aggregated with immune cells during 

obesity41. In particular, with intense migration of Macrophages (Mɸ) in adipose tissue, 

Adipose Tissue Macrophages (ATMs) have been shown to be integral to the obesity-

triggered inflammation in adipose tissue 42,43,44,  and their recruitment to adipose tissue 

correlates with the production of  pro-inflammatory molecules , including tumor necrosis 

factor-α (TNF-α) 45, interleukin-1β (IL-1β) and IL-6 46,47 that potentiate insulin resistance 

48. Macrophages are phagocytic cells, which show incredible heterogeneity in phenotype 



 
 

5 

and function, as local milieu factors determine their activation state and subsequent 

properties. Mɸs are thought to be activated in two separate pathways becoming polarized 

to M1 or M2 states. With over-nutrition, M1 are said to be “classically activated” mɸs 

induced by LPS and IFNγ that secrete pro-inflammatory cytokines (TNF-α, IL-6, IL-12) 

and generate nitric oxide (NO, a reactive oxygen species) via iNOS activation 49,50. 

However, “alternatively activated” mɸs or M2 that populate lean adipose tissue are 

activated by IL-4 and IL-13, secrete anti-inflammatory cytokines, and have upregulated 

arginase which opposes NO production 51. However, studies have shown that the M1 and 

M2 macrophage phenotypes are not clearly defined, the key signaling molecules such as 

DNA methyltransferase 3b (DNMT3b) and peroxisome proliferator activated receptor-

γ(PPAR-γ) deregulate ATMs polarization, inflammation and insulin insensitivity 50,51 .  

In the current study, we utilized diet-induced obese (DIO) mice as the chronic 

inflammatory disease model. In order to have a better understanding in underlying 

chronic inflammatory mechanism of DIO phenotype and its associated metabolic 

dysfunction, we mainly focused on adipose tissue macrophages (ATMs). For the first 

time we uncovered the regulatory mechanism in induction of anti-inflammatory state in 

adipose tissue by triggering adipose tissue macrophages. The current study may represent 

a novel avenue in treatment of obesity-associated inflammation and metabolic syndrome. 

Outstandingly, our findings can be considered in therapeutic approaches for macrophage-

related inflammatory disease models such as atherosclerotic cardiovascular disease and 

cancer, which contribute to high rates of mortality and morbidity. 
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1.4 THE ENDOCANNABINOID (EC) SYSTEM AND IMMUNE 

REGULATION 

 The onset of medical application of Canabbis sativa or marijuana plant is evident 

from Far Eastern folklore medicine. The Endocannabinoid (EC) system consists of 

classical (CB1, CB2) and non-classical (TRPV1, GPR55, etc) receptors and their 

endogenous and exogenous ligands. In the early 1900’s, British scientists initiated the 

scientific approaches towards cannabis, and made efforts for extracting the principal 

active ingredient of the plant that exert psychoactive effects 54. The preliminary 

experiments of cannabis, in a range of illnesses including cholera, rheumatic diseases, 

delirium tremens and infantile convulsions was conducted to test the possible therapeutic 

properties of the plant. 

Eventually, the natural compounds of cannabis including (–)-Δ9-

tetrahydrocannabinol (THC), with psychotropic activity, and cannabidiol (CBD), non-

psychotropic, were extracted from the plant 55,56. The extraction of the fundamental and 

active ingredient of the plant conveyed attentions to their endogenous binding sites in 

human body. Cannbinoid CB1 receptor was discovered by cloning rhodopsin class	G-

protein-coupled receptors (GPCRs) and experimenting THC for finding its potential 

binding site. Later on, Cannabinoid CB2 receptor was uncovered at Cambridge Medical 

Research Council in UK 54,57. GPCRs are the largest membrane receptors, comprising of 

7 transmembrane helices, and intervening loop N-terminus (an extracellular) and C-

terminus (an intracellular) 58 . 

Ligands for non-classical receptors of Endocannabinoid system such as vanilloid 

(TRPV1) receptor and orphan GPR55 receptors, are comprised of cannabinoid and non-
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cannabinoind (capsaicin) compounds. Vanilloid receptor can also be stimulated by 

voltage, heat, and proton 59,60,61.Therefore, non-classical receptors are not exclusively 

considered  part of endocannabinoid system.  Various organs in human body express 

classical EC receptors (CB1and CB2) with different patterns of intensity. For example, 

central nervous system (CNS) is rich in CB1 receptors. However, CB2 receptors are more 

abundant in periphery and immune system-related cells 62,63. Meanwhile, CB2 receptors 

can also be found in CNS with lesser intensity 63. Macrophages and activated T cells can 

express CB1 receptors as well 64.  Besides CB1/CB2 classical receptors and GPR55, non-

classical receptors of EC, the structures and properties of new EC receptors which 

express on hippocampus and GPR119, remain elusive 65,66. 

 The rhodopsin x-ray crystal structure of CB1 receptors demonstrated the 

existence of hydrophobic binding pocket which requires carbon fatty acid chain with 20-

22 length, saturation of the last five carbons in acyl chain, and the least three double 

bonded carbons (C=C) 67 . Alteration in binding affinity of different ligands and 

cannabinoid receptors is due to the polymorphism in single nucleotide binding site. 

Peptide sequence of CB1 and CB2 receptors revealed 44% similarities between them 

68,69,70,71.   

Investigations for detection of the potential endocannabinoid ligands (endogenous 

ligands), initiated in Raphael Mechoulam's lab led to the discovery of lipid based N-

Arachidonoyl ethanol amine (Anandamide or AEA) in porcine brain in 1992 72,73. The 

plant source of Anadamide was reported in chocolate beans 74. Anadamide is present in 

nearly all tissue and possess anti-inflammatory and orexigenic (appetite stimulant) 

properties 75,76 . 2-Arachidonoylglycerol (2-AG), the second lipid based endogenous 
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ligand of EC system, with the equal binding affinity to both CB1 and CB2 receptors is 

more concentrated in brain than Anadamide 77,78.  2-AG is known as the strong GPCR 

stimulant based on in vitro findings, but the in vivo properties of 2-AG is yet elusive 

because of physiological complexity 79.  Fatty acid amide hydrolysis (FAAH) and 

monoacylglyceride lipase (MAGL), maintain EC levels of AEA and 2-AG respectively 

80,81,82. N-Arachidonoyl dopamine (NADA), Virodhamine (OAE), and 2-Arachidonyl 

glyceryl ether (noladin ether) are the other endogenous ligands in EC systems 79,83,84,85.  

Discovery of EC system was followed by laboratory synthesis of different 

cannabinoids based on the herbal cannabinoid structure. The pioneers in synthetic 

cannabinoid were Roger Adams (1941) and Raphael Mechoulam’s group. The findings of 

the endogenous ligand of EC systems led to the synthesis of new ligands for 

endocannabinoid receptors 86. The synthetic ligands were structured in agonist or 

antagonist (inverse agonist) modes for specific endocannabinoid receptors 87.  

SR141716A also known as Rimonabant, Acomplia , and Zimulti was the first 

selective CB1 receptor blocker (inverse agonist) to be approved for use as an anti-obesity 

drug 88. The therapeutic effect of Rimonabant is not restricted to its anorectic properties, 

secession of smoking and addiction behaviors, improvement of short term memory, 

improvement of human sperms motility and viability, as well as inversing the 

psychoactive and cardiovascular effect of THC are considered as Rimonabant therapeutic 

applications 89,90,91,92,93.  

Endocannabinoid system possess Neuro-protective and immune-modulatory 

effects. Immuno-modulatory effect of endocannabinoid and cannabinoid systems, is 

reliant on the intensities of cannabinoid receptor expression in blood immune cells (with 
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the following rank order: B cells > NK cells > monocytes/macrophages > 

polymorphonuclear neutrophils > CD8 lymphocytes > CD4 lymphocytes) 94  . Activation 

of endocannabinoid system in experimental autoimmune encephalomyelitis (EAE), an 

animal model of multiple sclerosis and MS patient (High level of Anandamide) was 

recognized. The intervention treatment with anandamide uptake inhibitor UCM707 can 

significantly ameliorates the pathological score of the disease 95,96,97 .  Anti-tumor activity 

of Anadamide on Molt-4 human tumor cells, and murine EL-4 tumor T cells, was 

established by demonstrating its ability to trigger significant level of apoptosis 98. Thus, 

management of endocannabinoids system may establish an innovative treatment modality 

against inflammatory disorders. 

                                        

                                       

1.5 MICROBIOTA AND IMMUNE SYSTEM 

Microbial community of gut is consisting of symbionts (beneficial), neutral 

(commensals) as well as detrimental (pathobionts) microorganisms. The homeostasis of 

these essential allies can modulate the host health and function.   

Age, genetic, physiology, diet, environment are the main factors impacting gut 

microbiota 99. Gut community becomes more stable, diverse, and highly complex by age 

100. Diet is the most potent manipulator of the gut microbial compositions. Previous 

studies have shown that both long term diet habit as well as short term changes in diet 

can lead to shift in gut microbiota 101,102. Dietary pattern of more protein consumption is 

associated with more prevalence of Bacteroides versus more carbohydrates in diet is 

correlated with remarked gut Prevotella entrotype. Short term changes in diet also can 
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introduce rapid changes in the abundancee of gut microbiome 103. Previous studies 

demonstrate that antibiotic treatment leads to disturbance of gut community and the 

repeated administration of antibiotic leads to profound and more permanent alteration in 

gut community 104. The presence, absence and variations in particular genes also correlate 

with abundances of specific genera of gut microorganism. Break-down of tolerance to 

intestinal microbial community in IL-10 deficient mice, resulted in impulsive 

enterocolitis, adenocarcinoma, and subsequently spontaneous development of 

inflammatory bowel syndrome 105.  

Hormone level, metabolism, immune system function and other physiological 

factors can also alter intestinal microbiota 106,107,108,109,110. Dysbiosis of gut microbial 

community is associated with chronic inflammatory diseases including ulcerative colitis, 

diet-induced obesity and metabolic syndrome. Gut immune system determines 

colonization of microbial community in gut and contributes to the interaction of host-

microbiome 111.  Dysregulation in innate (antibacterial peptide of Paneth cells and 

enterocytes) and adoptive (IgA production in mucosal associated lymphoid tissue) 

immune system function of gut also caused by the damage in gut barrier, leads to collapse 

in homeostatic state of intestinal host-microorganisms 112,113,114. 

Thus, the potential therapeutic approaches to alter microbiota to treat a wide range 

of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to 

autoimmune diseases (such as inflammatory bowel disease and colitis), cancer, 

neurodevelopmental disorders (e.g. autism), and even allergies (Food poising, asthma), 

remains an exciting possibility that remains to be further explored. Taken together, 
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studies on gut microbiota, its manipulation, and fecal transplantation is considered as a 

potential therapeutic strategy for many disorders.  

 

                                      1.6 MICRORNA (MIR) 

MicroRNAs (miRNAs) are a class of small non-coding RNAs (~18-22 

nucleotides) with highly conserved RNA sequences 115. miRNAs are capable of 

regulating gene expression at post-transcriptional and post-translational level. The first 

miRNA discovered in C.elegans in 1993, was named lin4 116. Several miRNAs have been 

involved in regulating innate and adoptive immune systems. Dysregulated miRNA 

profile in several disorders including cancer, inflammatory disease, and autoimmune 

illness has been reported 115. For instance, two different miRNA (miR-155 and miR-182) 

were implicated in SEB-induced Acute Lung Injury (ALI) 117,118.  

miRNAs which are known as the negative regulator of gene expression, can bind 

to the complementary sequences of the 3′ untranslated region (3′ UTR) of their target 

genes, and lead to mRNA degradation or translational cessation 119,120.  

Different algorithms (miRmap, TargetScan, and miRwalk, etc) for target 

prediction are available. Ingenuity systems such as Ingenuity Pathway Analysis (Qiagen, 

Valencia, CA) tools and its modules, are a powerful system in prediction of differentially 

altered miRNA, their down-stream and up-stream effects, and top affected canonical 

pathways. Importing the differentially expressed genes into Cytoscape (ClueGo module) 

or other gene ontology software help predict the most implicated pathways.  

In the current study, we investigated the role of the miRNA in amelioration of 

acute (SEB-primed mice) or chronic (Diet-Induced Obesity, DIO) disease models. We 
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identified the unique miRNAs which are the key regulators in modulating the immune 

responses and maintaining the immune homeostasis during the inflammatory disorders.  

 

                          1.7 STATEMENT OF HYPOTHESIS AND AIMS 

Because of the growing rise in autoimmunity and inflammatory disorders that are 

causing public health crisis, further investigation is critically needed to understand the 

mechanisms of pathogenesis as well as finding novel therapeutic approaches such as new 

non-toxic immunosuppressive drugs and other biologicals.  Furthermore, chronic 

inflammation is implicated in a large number of immuno-pathological disorders including 

cardiovascular, neurodegenerative, cancer, diabetes, and metabolic disorders.  Thus, 

understanding the underlying basic mechanisms of acute and chronic inflammation will 

open up new avenues for better targeted therapeutics for inflammatory disorders and their 

complications.  

In the current study, we tested the central hypothesis that inflammation is 

regulated by complex interactions between epigenome and microbiome.  Thus, agents 

that alter microRNA in immune cells and gut microbiota, can be used effectively to 

attenuate acute and chronic inflammation.    

To test this hypothesis, in the first part of this study, we investigated the 

molecular mechanism of induction of immunosuppressive regulatory T cells(Tregs), after 

AhR activation with TCDD.  Our data uncovered novel regulatory pathways mediated by 

microRNA that are induced following AhR activation that trigger inducible regulatory T 

cells, and attenuate acute inflammation.   
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In the second part of our study, we developed diet-induced obesity (DIO) 

phenotype as the model to study chronic inflammation.  We targeted the endocannabinoid 

system in DIO by blocking the cannabinoid receptors and investigated its effect on  

miRNA profile and gut microbiota.  Our data identified novel miRNA that targeted pro-

inflammatory M1 macrophages and promoted their differentiation into anti-inflammatory 

M2 macrophages.  Also, such a treatment to block cannabinoid receptors led to altered 

microbiota that promoted anti-inflammatory phenotype.  Finally, we discovered a novel 

interaction of with neuroimmune guidance cue receptors and their related ligands which 

regulate macrophages chemotaxis, thereby attenuating inflammation and DIO phenotype. 

Together, the current study has identified how targeting AhR and Cannabinoid receptors 

leads to alterations in microRNA and microbiota profiles, which in turn attenuate 

inflammation.   These studies form the basis for developing novel therapeutic regimen to 

treat inflammatory diseases. 
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CHAPTER II:  ROLE OF MICRORNA IN EPIGENETIC REGULATION OF 2, 3, 

7, 8-TETRACHLORODIBENZO-P-DIOXIN (TCDD)-MEDIATED INDUCTION 

OF FOXP3 IN T CELLS ACTIVATED BY STAPHYLOCOCCAL 

ENTEROTOXIN B 

                                           

2.1 INTRODUCTION 

 Regulatory T cells (Tregs) are well characterized for their role in maintaining 

immunological tolerance and immune homeostasis 121,122. The immunosuppressive 

function of T regulatory cells correlates with the expression of the forkhead transcription 

factor (Foxp3) in them 123,124 , however, the precise regulatory mechanisms which govern 

the expression of Foxp3 remain unclear. Recently, the role of Aryl hydrocarbon receptor 

(AhR) in the induction of Foxp3 in Tregs has generated significant interest 125,126.  AhR 

was characterized as a ligand-activated transcription factor involved in xenobiotic 

metabolism but more recently, it has also been shown to play a critical role in the 

regulation of  T cell differentiation, specifically induction of Tregs. 2,3,7,8-

Tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitous environmental contaminant which 

causes immunosuppression and carcinogenesis 127.  TCDD is a potent ligand for AhR 

because of which it is widely used to study the effect of AhR activation in the regulation 

of immune response.    
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Epigenetic modifications such as DNA methylation of regulatory sequences, 

histone modifications and post-transcriptional and post-translational repression by 

microRNA are key players which direct the overall immune response 128,129.  Considering 

that AhR activation regulates Treg differentiation, and our previous studies 

demonstrating the ability of TCDD to modulate miR profile as well as cause epigenetic 

changes in immune cells, we were interested in knowing if there is any cross talk between 

these pathways that impact Treg differentiation during antigen exposure.  It is known that 

the majority regulation of gene expression is mediated by various transcriptional factors 

via binding to their recognition sequences in the upstream of enhancer region of gene.  

Regulation of methylation of CpG dinucleotides in the gene regulatory region and 

acetylation of histones in nucleosome structure  modifies the transcription pattern of 

genes by modulating the access of the transcription factors to their recognition sequences. 

Previously, it has been shown that TCR activation leads to the accumulation of Methyl-

binding proteins MBD, MeCP1, MeCP2, and DNA methyltransferases (DNMTs) in 

Foxp3 promoter region, which results in repression of Foxp3 transcription 130,131. 

Treatment of activated T cells with DNA methyltransferase (DNMT) and/or histone 

deacetylase (HDAC) inhibitors leads to the reactivation of transcription of Foxp3 mRNA  

and induction of Tregs 132,133. Suppression of DNA methyltransferases at the regulatory 

regions of the gene is followed by less recruitment of histone deacetylases (HDACs)22 . 

HDACs enzymes catalyze the removal of the acetyl groups from the lysine residue in 

histones and thus results in closed chromatin configuration, which limits the access of the 

transcription factors to their recognition sequences 134,135.  
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In order to have a broader view of epigenetic mechanism regulating gene 

expression with TCDD treatment, we performed high throughput analysis of microRNAs 

which identified several pathways, including DNA methylation, Histone acetylation, Aryl 

hydrocarbon receptor (AhR) signaling, and differentiation of Tregs.  Furthermore, our 

data demonstrated that TCDD influences the accessibility of Foxp3 transcription factor 

binding sequences by triggering DNMTs and HDACs in T cells activated by SEB.   

  

                               

2.2 MATERIALS AND METHODS 

Animals- 

Female C57BL/6 mice (aged 6-8 weeks) were purchased from the Jackson 

laboratory (Bar Harbor, ME). Foxp3/GFP knock-in mice, encoding a GFP-Foxp3 fusion 

protein were purchased from Jackson laboratory (Bar Harbor, ME). All mice were housed 

at the (American Association for the Accreditation of Laboratory Animal Care ( 

AAALAC)-accredited animal facility at the University of South Carolina, School of 

Medicine (Columbia, SC).  All procedures were performed according to NIH guidelines 

under protocols approved by the Institutional Animal Care and Use Committee. 

 

Effects of TCDD on mice primed with SEB in vivo- 

To determine the effect of TCDD on T cell response to SEB, mice were injected 

with SEB, in sterile phosphate-buffered saline (PBS), or PBS alone as a vehicle, into hind 

footpads of mice (10ug/footpad) once, as previously described (24200994) SEB was 

obtained from Toxin Technologies (Sarasota, FL).  TCDD, kindly provided by Dr. Steve 
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Safe (Texas A & M Health Science Center, Collage Station, Texas), was administered 

immediately after SEB, intraperitonally (ip) at 10µg/kg in a total volume of 100ul in 

vehicle (corn oil) as previously described 136 .The draining popliteal lymph nodes (PLN) 

were excised from mice and made into single-cell suspensions by a tissue homogenizer. 

Cells were subjected to red blood cell lysis, counted, and stained with antibodies 

purchased from Biolegend (San Diego, CA) against CD3, Vβ8, Foxp3 and CD4, and 

analyzed by Beckman Coulter FC500 flow cytometer  (Indianapolis, IN) 

 

Measurement of cytokines from collected serum- 

Cytokines levels were analyzed in the serum using enzyme-linked immunosorbent 

assay (ELISA) kits for interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), 

transforming growth factor-β (TGF-β) interleukin-6 (IL-6), and IL-10 purchased from 

Biolegend (San Diego, CA), as described 137.  All ELISAs were performed as per the 

manufacturer’s instructions. 

 

Total RNA isolation- 

Total RNA (including small RNAs) was isolated from selected CD4+ cells 

(EasySep TM PE Positive Selection kit, Stem Cell Signaling, Vancouver, BC) from PLNs 

using the miRNeasy kit from Qiagen (Valencia, CA) by following the manufacturer's 

instructions. The purity and concentration of the RNA was confirmed 

spectrophotometrically with Nanodrop (Thermo Scientific, Waltham, MA) 
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miRs expression profiling and analysis- 

The expression profile of miRs was assessed in the PLN cells by Affymetrix 

GeneChip miRNA 1.0 array platform 138. The array contains 609 murine-specific probes 

from Sanger miRBase . Total RNA was labeled with FlashTag biotin HSR hybridization 

(Genisphere, Hatfield, PA) as described in manufacturer's instructions (Affymetrix, Santa 

Clara, CA). Correlation of the hybridization signal intensities of all the expressed 

miRNAs were log transformed and visualized in the form of a heatmap.  Ward’s method 

was assessed for hierarchical clustering of differentially expressed miRs. miRNA QC 

Tool (Affymetrix Inc), a software for data summarization, Log2 transformation, 

normalization and quality control, was used as described previously 139  . 

 

Purification and analysis of mouse T regulatory Cells (Tregs) and T cells- 

Tregs were sorted from Foxp3/GFP knock-in mice. The LN cells were sorted for 

GFP using flow cytometry to isolate Foxp3+  Tregs.   regulatory cells by sorting with. In 

some experiments, CD4+ T cells were purified using EasySep TM PE Positive Selection 

kit (Stem Cell Signaling, Vancouver, BC) and CD4 PE antibody (BioLegend, San Diego, 

CA).  

 

Chromatin immunoprecipitation (ChIP) assay-  

ChIP assay was performed using the ChIP kit (Cell Signaling, Danvers, MA), as 

described 140. The DNA which was immuno-precipitated was amplified by qRT-PCR. 

Antibodies against the molecules used were as follows:  DNMT3a, DNMT3b, DNMT1 

and MeCP1 from NovusBio (Littleton,CO); KLF10 and AcH3 from Active Motif 
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(Carlsbad, CA); Sp1 from Abcam (Cambridge, MA); H3K9 from Cell Signaling 

(Danvers, MA). The primers sequences used for the upstream Foxp3 enhancer CpG site 

and Foxp3 proximal promoter were the same as previously described 141. 

UpstreamFoxp3 enhancer CpG site were 5#-GCGGAGAGGGATCGGGAAA-3# 

(forward) and 5#-ATGAGGAAGACGATGGCGAGGAT-3# (reverse), and the primers 

for the Foxp3 proximal promoter were 5#-CCTTGGCAACATGATGGTGGTGAT-3# 

(forward) and 5#-AAGAAGGGATCAGAAGCCTGCCAT-3# (reverse). 

 

Bioinformatics analysis- 

The differentially expressed miRNA target genes were assessed by three of the 

leading miRNA target prediction algorithms: miRwalk (http://www.umm.uni-

heidelberg.de/apps/zmf/mirwalk/), microRNA.org 

(http://www.microrna.org/microrna/home.do) and TargetScan 

(http://www.targetscan.org/).  

To carry out an enrichment analysis of predicted target genes of miRs in 

biological pathways, we used, Ingenuity Pathway analysis (IPA), (Mountain View, CA, 

USA.).  IPA predicts the top affected Canonical Pathways, causal connections between 

differentially altered miRs and their target genes, downstream effect along with their 

upstream regulators. The Molecular Activity Predictor (MAP) feature of IPA was 

performed to predict the downstream effect of the differentially expressed miRs which 

were overlaid to the dataset including miRs probes, fold changes and the p Values. 
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qReal Time PCR(qRT-PCR)-  

Expression of mature miRNAs and target genes was determined by quantitative 

qRT-PCR. Total RNA was converted to cDNA using the miScript cDNA synthesis kit 

(Qiagen, Valencia, CA) according to the manufacturer's instructions. For miRNA 

validation, the miScript SYBR green PCR kit (Qiagen, Valencia, CA) was used, and fold 

change of miRNA was determined by using the 2−ΔΔCT method. Snord96a was used as 

small RNA endogenous control. For mRNA validation, an SSO advanced SYBR green 

PCR kit from Bio-Rad (Hercules, CA) was used according to the manufacturer's 

instructions, and GAPDH was used as an endogenous control. The following primers 

were used:  GAPDH forward (F) (5′-AATGGATTTGGACGCATTGGT -3′) and reverse 

(R) (5′-TTTGCACTGGTACGTGTTGAT -3′); Foxp3 F (5′-

CACCTATGCCACCCTTATCCG-3′) and R (5′-CATGCGAGTAAACCAATGGTAGA-

3′) and CYP1A1 F (5′-CAATGAGTTTGGGGAGGTTACTG-3′) and R (5′-

CCCTTCTCAAATGTCCTGTAGTG-3′), KLF10 F (5′-

GTGACCGTCGGTTTATGAGGA-3′), and R (5′-AGCTTCTTGGCTGATAGGTGG-

3′), Sp1 F (5′-ATCACTATGGTTGCGATGGACT-3′), and R (5′-

GCCGATCCAGTTACGGGAG-3′), DNMT1 F (5′- 

AAGAATGGTGTTGTCTACCGAC-3′), and R (5′-CATCCAGGTTGCTCCCCTTG-3′), 

DNMT3A F (5′-GAGGGAACTGAGACCCCAC-3′), and R (5′-

CTGGAAGGTGAGTCTTGGCA-3′), DNMT3B F (5′-

AGCGGGTATGAGGAGTGCAT-3′), and R (5′-GGGAGCATCCTTCGTGTCTG-3′), 

Mecp2 F (5′- ATGGTAGCTGGGATGTTAGGG-3′), and R (5′- 

TGAGCTTTCTGATGTTTCTGCTT-3′) 
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Transfection with miR-31 mimic, inhibitor, Foxp3 target gene protector and 

CYP1A1 target gene protector- 

  Lymph nodes from naive C57BL/6 mice were harvested and cultured in 10 ml of 

complete medium at 37°C and 5% CO2. Complete medium was comprised of RPMI 

1640 medium (Gibco Laboratories, Grand Island, NY) supplemented with 10% fetal 

bovine serum (FBS), 10 mM L-glutamine, 10 mM HEPES, 50 µM β-mercaptoethanol, 

and10 U/mL Penicillin/streptomycin. Cells were seeded at 4 × 105 cells in 24-well plates 

and transfected with either 40 nM synthetic mmu-miR-31-5p miScript miRNA mimic 

(AGGCAAGAUGCUGGCAUAGCUG) or AllStar negative-control small interfering 

RNA (siRNA). For inhibiting the miR-31, cells were treated with 100 nM anti-mmu-

miR-31-5p miScript miRNA inhibitor (AGGCAAGAUGCUGGCAUAGCUG) or 

miScript AllStar negative control for 24 h using HiperFect transfection reagent (Qiagen, 

Valencia, CA) according to the manufacturer's instructions.  To assess a reliable 

verification of miRNA-targeted genes, the transfection of the cells with miScript target 

protector for Foxp3 gene and CYP1A1 genes was performed. Target Protectors was used 

provide evidence that a gene is regulated by a particular miRNA. Foxp3miScript target 

protector was designed as: 

CTGCAATTCTGGAGACAGCA 

AGAATACAAGGCTTGCACCT 

This target protector was aimed to detect several transcripts of the same gene 

(Foxp3): NM_001199348, NM_001199347, NM_054039 

CYP1A1 miScript target protector was designed as: 

TTCTGGCACAGAGGTGCTCT 
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TGCCACCTGCTGAGGCTAAA 

This target protector was aimed to detect several transcripts of the same gene (Cyp1a1): 

NM_001136059, NM_009992. 

In these experiments, All-star negative control and negative control miScript Target 

protector were used.   

 

Statistical Analysis- 

For the in vivo mouse experiments, 5or 4 mice were used per experimental group, 

unless otherwise specified. In vitro experiments were performed in triplicate.  For 

statistical differences, one-way ANOVA was calculated for each experiment.  Tukey’s 

post-hoc test was performed to analyze differences between groups.  A p value of ≤ 0.05 

was considered statistically significant. 

 

 

2.3 RESULTS 

 

TCDD decreases induction of SEB-driven Vβ8+ T cells and pro-inflammatory 

cytokines. 

SEB is known to selectively trigger a strong Vβ8+ T cell response and the 

cytokines storm. We investigated the effect of TCDD on SEB-induced inflammatory 

response in vivo. Our lab had previously shown that a single dose of 10µg/kg of TCDD 

was able to markedly decrease lymphocyte infiltration into colon lumen in the mouse 

model of colitis127.  Thus, to investigate the efficacy of TCDD in amelioration of SEB-

induced inflammation, we used the same dose.  We treated mice with ip injections of 
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TCDD at the same time as the administration of SEB into footpads. In order to determine 

if TCDD could suppress SEB-induced T cell proliferation in draining PLN, we analyzed 

the cells on day 3, the peak of the response 131.  Because SEB activates Vβ8 TCR+ T cells 

142, we examined their percentage and absolute cell numbers by staining the cells for CD3 

and Vβ8 and analyzing them by flow cytometry.  The data showed that in SEB+TCDD 

treated mice, there was marked decrease in the percentages of Vβ8+ T cells (8.3%) when 

compared SEB+Vehicle treated mice (14.1%) (Fig 2.1A).  TCDD treatment also caused a 

significant decrease in the total cell numbers (Fig 2.1B). 

Because SEB triggers cytokine storm143, we next investigate the effect of TCDD 

on pro-inflammatory cytokine production both in the serum and in the draining lymph 

node (LN) following SEB administration.  The data showed that TCDD treatment caused 

significant decrease in inflammatory cytokines, including IFN-γ, TNF-α, and IL-6 both in 

the serum (Fig 2.1C) as well as in the PLN culture supernatants (Fig 2.1 D), when 

compared to controls.  

 

TCDD induces T regulatory cells and anti-inflammatory cytokines. 

We next determined whether TCDD induces, Tregs in popliteal LNs of SEB 

primed mice.  We noted a significant increase in the frequency of Tregs in the popliteal 

lymph node in SEB+TCDD group when compared to SEB+vehicle group (Fig 2.2A).  

Also, TCDD treatment induced significant increase in anti-inflammatory cytokines, 

including IL-10, TGF-β (Fig 2.2B).  

Next, we determined if TCDD would enhance the induction of Tregs that were 

antigen (SEB)-specific.  To test this, we used Foxp3/GFP knock-in mice, which were 
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immunized with SEB and treated with vehicle or TCDD.  Three days later, the level of 

expression of Foxp3 within Vβ8+  T cells was analyzed by flow cytometry. Interestingly, 

TCDD caused significant induction of Foxp3 + Vβ8+ T cells, thereby suggesting that 

TCDD does induce antigen-specific T cells (Fig 2.2C) 

To confirm that the TCDD-treated Tregs were indeed able to suppress SEB-

activated T cell proliferation and cytokine production, we performed cell-mixing 

experiments.  Tregs were isolated from the Foxp3/GFP knock-in mice and treated with 

100 nM TCDD as previously described 127.  Cell-mixing experiments were performed by 

co-culturing Tregs and SEB-activated LN cells. Our results demonstrated that TCDD-

derived Tregs suppressed the SEB-activated T cell proliferation in a dose-related manner 

(Fig 2.2D).  In these co-culture supernatants, when we measured cytokines, we observed 

significant suppression of the pro-inflammatory cytokines (TNF-α, IFNγ, and IL-6) and 

induction of anti-inflammatory cytokines (Fig 2.2E) 

 

 

TCDD administration profoundly changes the miR profile. 

To investigate the role of miRs in TCDD-mediated decrease in anti-SEB T cell 

response differential expression of miRs was assessed using Affymetrix GeneChip® 

array of SEB-activated T cells, following vehicle or TCDD treatment. Cluster analysis of 

609 miRs was analyzed by unsupervised hierarchical clustering and visualized in the 

form of dendrogram (Fig 2.3A).  SEB+TCDD group showed distinct miR expression 

profile when compared to SEB+vehicle treated group.   We performed further analysis 

and identified 37 miRs that were significantly upregulated and 51 miRs that were 

significantly downregulated in SEB+TCDD groups when compared to SEB+vehicle 
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treatment group (Fig 2.3B). Next, we used Ingenuity Pathway (IPA) software application 

to identify the candidate targets for filtered miRs, which are shown in (Table 1), along 

with their seed sequence and respective fold change. A comprehensive network showing 

the interaction of the miRs and their target genes was generated by IPA (Fig 2.3C).   

TCDD-mediated alterations in the expression of miRs were linked to many pathways 

including AhR signaling (ARNT), apoptosis (Fas, FasL, caspases, BCL2), epigenetic 

(DNMTs and HDACs), and Tregs (Foxp3).   

 

Over-expression of miR-148a and miR-491 upon TCDD administration, ameliorates 

demethylation of Foxp3 promoter regions. 

The critical role of DNA Methyltransferases (DNMTs) within regulatory regions 

of Foxp3 was stressed by studies showing that conditional deletion of DNMT1in mice 

resulted in lethal autoimmunity, which can be reversed by the exogenous transfer of 

Tregs 144.  Interestingly, in the affymetrix microarray, we noticed that miR-148a and 

miR-491 were up-regulated upon TCDD exposure.  We validated these findings with 

qRT-PCR, in which we showed that miR-148a and miR-491 were up-regulated in 

SEB+TCDD treated groups when compared to SEB+vehicle controls (Fig 2.4 A, and 2.4 

B).  We determined by Ingenuity Pathway Analysis that miR 148a and miR-491 target 

DNA methyltransferase, DNMT1, DNMT3a, and DNMT3b by binding to their 3’UTRs 

with significant mirSVR scores. Our results demonstrated the inverse correlation between 

miR-148a, miR-491 with DNMTs, in which over expression of miR-148a, miR-491 

following TCDD treatment in activated T cells resulted in significant reduction in 

DNMT3a, DNMT3b and DNMT1 (Fig 2.4C, 2.4D, and 2.4E).  
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In order to investigate the interaction of DNMTs with Foxp3 promoter region, 

which contains the recognition binding sequences for transcription factors, we performed 

CHIP assays for DNMTs.  We used purified Tregs from Foxp3/GFP knock-in mice as 

described in Methods.  Our results demonstrated that Tregs from SEB+TCDD mice 

exhibited significant decrease in DNMT1 and DNMT3b binding to Foxp3 promoter CpG 

island when compared with SEB+Vehicle group (Fig 2.4 F, 2.4G).  Whereas, there was 

no significant difference in DNMT3a and MeCP2 binding to Foxp3 promoter (Fig 2.4 H, 

2.4 I). These data suggested that TCDD may inhibit DNA methyltransferase (DNMTs) in 

activated T cells, which may result from up-regulation of miR-491 and miR-148a. 

 

miR-34a regulates Histone H3 acetylation in Tregs via HDAC1. 

Previous studies from our laboratory demonstrated the involvement of HDAC-I 

family in SEB-activated T cells, in which HDAC-I was highly up-regulated in T cells 

upon SEB activation when compared to naïve T cells 131 .  Data obtained from high 

throughput analysis, showed significant over expression of miR-34a (> 2.2) in 

TCDD+SEB group compared with Vehicle+SEB. Furthermore, we validated these 

findings with qRT-PCR, in which miR-34a was markedly up-regulated in TCDD+SEB 

group compared to Vehicle+SEB (Fig 2.5A). HDAC1, a target gene of miR-34a was 

significantly suppressed upon TCDD administration in SEB-activated T cells (Fig 2.5B). 

Next, we tested whether the decreased HDAC-1 triggers acetylation of H3.  As before, 

we isolated Tregs, from Foxp3/GFP knock-in mice using the two groups: SEB+TCDD 

and SEB+vehicle.  Chip assay was conducted for acetylation of histone 3 (AcH3) 

upstream of Foxp3 enhancer region. Our data demonstrated that Foxp3 regulatory region 

was significantly more acetylated in TCDD+SEB group compared with Vehicle+SEB 
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group (Fig 2.5C). Chip assay was performed for acetylation of H3K9 in Foxp3 promoter 

region and our data showed higher acetylation of H3K9 in Foxp3 regulatory region (Fig 

2.5D). Taken together, our data suggested that decreased HDAC expression in SEB 

activated T cells which were treated with TCDD, correlated with increased acetylation of 

H3K9. The promoter region of actively transcribed gene is often acetylated at histone H3 

lysine 9. Therefore; TCDD causes Tregs induction through the important epigenetic 

modification (HDAC/H3K9). 

 

TCDD regulates the active binding of Sp1/KLF10 in Treg promoter via epigenetic 

mechanism. 

Active role of the transcription factor Sp1 (specificity protein 1) in protection of 

CpG islands from de novo methylation is well established 145,146,147.  KLF10, a member of 

the Krüppel-like family of transcription factors, binds to Sp-1-GC rich DNA sequences 

and regulates the transcription of a number of genes 148.  In the present study, we 

therefore evaluated the expression level of KLF10 and Sp1 following TCDD 

administration in SEB-activated T cell with real time qRT-PCR, and the data showed that 

they were markedly up-regulated compared with SEB-activated T cell (Fig 2.6A, 2.6B).  

We then studied the predicted miRs regulators of Sp1 and KLF10 by Ingenuity Pathway 

Analysis (IPA) software.  miR-31 is predicted to target Sp1 expression with mirSVR 

score: -0.1127 , and PhastCons score: 0.5983, while miR-26b is predicted to regulate 

KLF10 expression with mirSVR score: -0.6935, and PhastCons score:0.6217. 

Furthermore, we noticed that in affymetrix microarray, miR-31 (Fold change: -

1.60) and miR-26b (Fold change: -1.80) were down-regulated in SEB+TCDD group 

compared with SEB+vehicle group. We confirmed these findings by conducting qRT-
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PCR, in which miR-31 was found to be down-regulated ~10 times and miR-26b was 

down-regulated ~3 times compared to vehicle treated group (Fig 2.6C, 2.6D).  Next, Chip 

assay was used to show interaction of KLF10/Sp1 with upstream of Foxp3 enhancer 

region, using Tregs isolated from Foxp3/GFP knock-in mice, as before. Our data 

demonstrated that upon TCDD treatment in SEB-activated T cells there was more 

interaction of KLF10/Sp1 with Foxp3 promoter region compared to SEB+vehicle-

activated T cells (Fig 2.6E. 2.6F), which led to the higher induction of Foxp3. 

 

Dual role of miR-31 in TCDD-mediated upregulation of CYP1A1 and Foxp3 in 

activated T cells. 

We we explored the putative target genes of miR-31 by using the comprehensive 

pipeline of ten different reliable algorithms miRWalk 2.0 149,150, interestingly, we noted 

that  Foxp3 was also identified as the highly predicted target gene for miR-31 ( p <0.05) 

using at least 5 different databases (miRwalk2.0, miRTarBase, miRecords, and TarBase 

7.0, and PICTAR 2.0) We next  utilized the miR functional analysis to investigate the 

effect of decreased expression of miR-31 in induction of functional and suppressive 

Tregs. Efficient inhibition of miR-31 activity in T cells was achieved by transfecting the 

SEB-activated T cells with customized inhibitor for miR-31.  The data showed that the 

expression level of Foxp3 was significantly higher in transfected T cells with miR-31 

inhibitor when compared to the mock (Fig 2.7A). Finally, we tested whether miR-31 

regulates the expression of Foxp3 by directly targeting its 3’ untranslated region or 

targets any negative or positive intermediate regulator of Foxp3 gene. For this purpose, 

we transfected SEB-activated T cells with miR-31 mimic and specific custom-designed 
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Foxp3 target protector. Our results demonstrated that while miR-31 mimic suppressed the 

expression level of Foxp3, co-transfection with miR-31mimic and Foxp3 target protector, 

resulted in higher expression of Foxp3 when compared to the mimic (Fig 2.7B, 2.7 C). 

Taken together, these data suggested Foxp3 as the direct target gene for miR-31.  

Interestingly, using 4 different databases (miRWalk 2.0, microrna.org,miRBase, 

and Target Scan), we also identified CYP1A1 as the highly predicted target gene for 

miR-31. Transcription of  CYP1A1 was markedly suppressed  in transfected SEB-

activated T cells with synthetic mimic for miR-31 , while co-transfection of SEB-

activated T cells with mimic-31 and CYP1A1 target protector, rescued CYP1A1 from 

suppressive function of mir-31 mimic (Fig 2.7D). These data demonstrated that miR-31 

can also directly regulate the transcription of CYP1A1.   

 

TCDD induces AhR signaling by altering miR profile in SEB-activated T cells. 

In the data assessed from affymetrix microarray, we also distinguished a group of 

18 miRs, that were implicated in AhR signaling pathway. Using IPA software, we 

overlaid the AhR signaling canonical pathway with differentially expressed miRs and 

explored for meaningful paths by applying the Molecular Activity Predictor (MAP) 

feature to have an overview of the downstream effect of the differentially expressed miRs 

(Fig 2.8A). Among these miRs, we focused on the differential expression of miR-455, 

and miR-351 using qRT-PCR, and found that both miRs were significantly down-

regulated in SEB+TCDD group compared with SEB+vehicle (Fig 2.8A, 2.8B).  Also, 

ARNT, the target gene for miR-455, along with the CYP-1A1, the target gene for miR-

351, were significantly up-regulated in SEB activated T cells upon TCDD treatment (Fig 
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2.8C, 2.8D), when compared to controls. These data demonstrated that TCDD–mediated 

differential expression of miRs can also play a critical role in AhR-signaling pathway.   

 

                                                2.4 DISCUSSION 

 

In the current study we investigated the effect of 2,3,7,8-Tetrachlorodibenzo-p-

dioxin (TCDD), an environmental contaminant, on T cell response to Staphylococcal 

Enterotoxin B (SEB), which is classified as the super antigen. In the mouse, SEB 

activates T cells that express the TCR, Vβ8.  Thus, by studying Vβ8+T cells, one can 

investigate the direct effect of TCDD on antigen-specific T cells. In the current study we 

observed that TCDD suppressed pro-inflammatory (IFN-γ, TNF-α, and IL-6) and induced 

anti-inflammatory (IL-10, and TGF-β) cytokines. Moreover, TCDD also induced to Tregs 

that were antigen-specific (Vβ8+Foxp3+) and immunosuppressive.  

Interestingly, miR analysis in TCDD- treated T cells revealed significant 

alterations in the expression of miRs that were directed towards induction of Foxp3+ 

Tregs.  Our data suggested that TCDD-induced over-expression of miR-491 and miR-

148a may cause demethylation within Foxp3 promoter region by targeting DNMT3a and 

DNMT3b, and consequent acetylation of histone H3. Increase in acetylated histone H3 

may lead to the interaction of KLF10/SP-1 and potential induction of Foxp3.  

Interestingly, miR-31, which was down regulated following TCDD treatment, was found 

to be complementary to the 3’-UTR of Foxp3, CYP1A1 and SP-1. Importantly, miR-31 

directly targeted Foxp3 as shown using transfection experiments.  Moreover, miR-26b, 

which targets KLF10, was also down regulated in TCDD treated groups.  Together, our 
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studies identified TCDD-mediated alterations in the expression of several miRs that 

either directly or through epigenetic pathways, induce the expression of Foxp3 in 

antigen-activated T cells.   

In the current study, we used SEB, an enterotoxin produced by a ubiquitous 

Gram-positive coccus, Staphylococcus aureus (S. aureus), which has been classified as a 

super antigen 151 to study the effect of TCDD on Tregs.  SEB is listed as a category B 

priority agent by Center for Disease Control and Prevention due to its potential usage in a 

bioterrorist attack 152. SEB is the main cause of nosocomial infections, acute and fatal 

respiratory distress and toxic shock syndrome153,154,155.  SEB can activate ~ 20% of T 

cells by binding both to the non-polymorphic regions of the Major Histocompatibility 

Molecules (MHC) class-II on Antigen Presenting Cells (APC) , and to the variable region 

of the β chain of the T cell receptor (TCR)  such as Vβ8 TCR 156.  Thus, in addition to 

studying the effect of AhR activation on the enterotoxin, use of SEB provided us an 

opportunity to directly study antigen-specific Tregs that were Foxp3+ and Vβ8 TCR+. 

We also used Foxp3/GFP knock-in mice so that we could sort the Foxp3+ Tregs 

there by giving us a tool to study the epigenetic changes in purified Treg population.   

Numerous chemicals can activate AhR including environmental contaminants such as 

TCDD, and other compounds such as tryptophan derivatives, flavonoids and biphenyls 

[1-4]. AhR ligands can be divided into nonbiological/synthetic or biological compounds 

resulting from natural processes 157 . FICZ is a tryptophan photoproduct, with structural 

similarity to a high affinity natural AhR ligand, FICZ. While AhR was identified in the 

context of xenobiotic metabolism and toxicity, its role in immune system regulation is 

beginning to unravel 158.  The ability of TCDD to induces suppressor T cells was 
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demonstrated as early as 1984, using mouse chimeras 159. However, further studies were 

limited because no specific marker was identified on such suppressor T cells until the 

discovery of Foxp3, on CD4+ T cells, which were then designated as Tregs 160 .   

There have been conflicting reports on the nature of TCDD-induced Tregs.  One 

group suggested that the Tregs induced by TCDD are CD4+CD25+ but may not express 

Foxp3 161.  Studies from our own lab also showed that TCDD triggers Tregs that are 

Foxp3+  162.  The differences in these studies can be explained by the nature of disease 

models studied.  For example, in the study that found TCDD to not induce Tregs that 

were Foxp3+, the authors used graft-vs-host response  161 whereas in the study where 

TCDD was shown to induce Foxp3+ Tregs, EAE was used as a model 162.  In EAE, it is 

well established that the clinical disease primarily rests on the balance between Tregs and 

Th17 cells.  In the current study, we clearly demonstrated the induction of Foxp3 on SEB 

antigen-activated  Vβ8+ T cells following TCDD treatment.  

miRs have emerged as important regulators of gene expression. In the current 

study, we explored the differential expression of miRs in the presence of TCDD during 

super-antigen-induced activation of T cells. We first carried out an affymetrix analysis of 

miR expression followed by Molecular Activity Predictor (MAP) feature in Ingenuity 

Pathway Analysis (IPA) software to identify the down-stream effect of differential of 

miR expression.  Such an approach provided a global analysis of differentially regulated 

miRs in TCDD induced immunosuppression. Specifically, we also identified two 

miRs___miR-184a, and miR-491___ as the important regulators of TCDD-induced Tregs in 

super-antigen- activated T cells because of their ability to modulate DNMT expression 

and modification of chromatin configuration.  The connection between miR-148a and 



 
 

33 

DNMT1 expression has been studied in cancer models.  For example, a recent study 

reported the dramatic suppression of miR-148a in pancreatic cancer tissues and that there 

was an increase seen in DNMT1 expression 163.  Over-expression of miR-148a in ASPC-

1 cancer cells led to a decreased level of DNMT1 and suppression of metastasis. Also, 

over-expression of miR-148a was seen in CD4+ T cells in both patients with lupus and 

lupus-prone MRL/lpr mice characterized with demethylation of  promoter of 

autoimmune-associated methylation-sensitive genes, such as CD70 and LFA-1.  In the 

current study, we found that up-regulation of miR-148a upon TCDD administration 

contributed to hypo-methylation at Foxp3 regulatory region by potentially targeting 

DNMTs, which may lead to increased Foxp3 induction.  We also noted that over-

expression of miR-34a following TCDD treatment in SEB-activated T cell, led to 

suppression of HDAC1 and subsequently resulted in H3 acetylation at Foxp3 regulatory 

region. Another study elucidated the therapeutic manipulation of miR-34a in breast 

cancer cases, by demonstrating HDAC1 as the potent target for miR-34a, which led to 

deacetylation of HSP70/K246 and subsequently resulted in inhibiting autophagic cell 

death and cancer cell survival 164. In agreement with the previous findings, we uncovered 

the HDAC-1 inhibitory function of TCDD at Foxp3 promoter region via miR-34a 

differential regulation. 

Several epigenetic markers, such as histone methylation and acetylation, cytosine 

residue methylation in CpG dinucleotides of the promoter regions, have been identified 

as gene transcriptional regulators 165,166,167.  We investigated the methylation status of 

conserved CpG dinucleotides in the upstream of FoxP3 enhancer regions of TCDD-

exposed SEB-activated Tregs and found it to be hypomethylated when compared to 
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vehicle controls.  In a recent report, Kim et al identified the differential methylation state 

at Foxp3 regulatory region, and demonstrated that inhibiting the methylation with 5-

azacytidine or using a lentiviral vector and siRNA to knock down DNMT1 in 

CD4+CD25− cells, resulted in demethylation of Foxp3 promoter and subsequently led to 

elevated Foxp3 expression 168. Furthermore, when they examined the methylation status 

of Foxp3 promoter under Treg differentiation condition by addition of TGF-β, they found 

demethylation at both the mouse promoter and the cAMP response element binding 

protein (CREB) binding region 168  .In contrast, Janson et al. reported that human TGF-β 

induced-Tregs did not exhibit demethylation of human Foxp3 promoter region 169. 

Previous studies from our laboratory demonstrated that TCDD induces 

demethylation of Foxp3 promoter region which leads to Foxp3 upregulation and 

enhanced Treg differentiation 162.   In the current study, we uncovered additional 

mechanistic effect of TCDD on methylation profile of Foxp3 regulatory region of 

activated-Tcells and introduced TCDD as the potent DNMT inhibitor in SEB-activated T 

cells. Our data revealed that DNMT inhibitory function of TCDD leads to hypo-

methylation of Foxp3 regulatory region in SEB-activated T cells and increased Foxp3 

induction. Busbee et al. reported that HDAC inhibitors were able to suppress SEB-

induced inflammation and that HDAC1 was one the most significantly modified HDACs 

131.   Interestingly, we also found HDAC-1 to be highly suppressed upon TCDD treatment 

in SEB-activated T cells. 

In the current study, we found hypo-methylation and H3 acetylation of Foxp3 

regulatory region.  We believe that this opens the chromatin configuration and enables  

KLF10/Sp1 transcription factors to bind to their recognition sequences and subsequently 
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cause stable expression of Foxp3. The active role of the transcription factor Sp1 is 

protection of  CpG islands from  de novo methylation, which is well established in earlier 

studies 145,146,147.  Previous study demonstrated that deletion of Sp1binding site in mouse 

adenine phosphoribosyhransferase (aprt) gene resulted in hyper-methylation of CpG 

islands in transgenic mice 170. Thus, Sp1 involved in many cellular processes including 

cell differentiation, cell growth and development, immune function and inflammation, by 

triggering chromatin remodeling. KLF10, a member of the Krüppel-like family of 

transcription factors, binds to Sp-1-GC rich DNA sequences and regulates the 

transcription of a number of genes 148. Other studies revealed the critical role of KLF10 in 

regulation of Foxp3 expression in Tregs by interacting with transcription factor Sp1 171. 

Deletion of KLF10 in Tregs fosters atherosclerosis in ApoE(-/-) mice with increased  

peripheral inflammation.  

We also validated the miRs regulating the expression of these transcriptional 

factors. We demonstrated down-regulation of miR-26b and miR-31 following TCDD 

exposure in SEB-activated T cells which led to re-expression of KLF10/Sp1 and Foxp3 

induction.  Interestingly, for the first time we identified the specific dual role of miR-31 

in TCDD-mediated upregulation of CYP1A1 and Foxp3. Furthermore, we conducted 

transfection studies with synthetic miR mimic and particular customized target gene 

protector to validate the direct targeting of CYP1A1 and Foxp3 with miR-31. To our 

knowledge, this study is the first to report the functional role of miR-31 in regulation of 

inducible Tregs with TCDD. The comprehensive report of differential expression of 

miRs, which influences different canonical pathways, following TCDD administration in 

SEB-activated T cells, has been provided in supplementary data.  
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Collectively, this study has identified several complex epigenetic regulatory 

pathways of Foxp3 induction by TCDD, which also helps in the better understanding of 

mechanisms employed by epigenetic markers to promote differentiation of 

immunosuppressive Tregs.  

 

 

 
 

 

FIGURE 2.1 Treatment with TCDD in vivo reduces percentage and number of 
SEB-specific Vβ8 T cells. (A) Groups of 5 C57BL/6 mice were given injections of 10ug 
of SEB in each hind footpad only once. Mice were given ip injection of TCDD (10μg/kg) 
simultaneously with SEB injection. On the peak response day 3, PLN were analyzed. The 
ratio (A) and total cell number (B) of Vβ8+  CD3+T cells is depicted as mean+/- SEM.  
Cytokines were measured in the serum (C) of mice or in the supernatants (D) of the 
cultured-popliteal lymphocytes using ELISA.  Data represent mean+/- SEM.  
SEB+TCDD vs SEB+Vehicle, *p< 0.05 by Student’s t-test.   
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FIGURE 2.2 TCDD induces Tregs and anti-inflammatory cytokines against SEB 
C57BL/6 mice were treated with SEB and TCDD, as described in Figure 1 legend.(A) 
flow cytometric analysis CD4+Foxp3+ Tregs in PLN. (B) Cytokines  were measured in 
the supernatants of the cultured-popliteal lymphocytes using ELISA.  (C)Regulatory T 
cells were isolated by sorting from the Foxp3/GFP knock-in mice, treated with 100 nM 
TCDD and added to co-cultures of LN cells activated with SEB at two different ratios of 
Tregs: SEB-activated T cells (1:4, and 1:8). Cell proliferation was measured by 3H-
thymidine uptake assay (D) Cytokines were measured in the supernatants of the co-
cultures as described above.  (E) PLN cells stained for Vβ8 in Foxp3/GPF gated 
population. SEB+TCDD vs SEB+Vehicle, *p< 0.05 by Student’s t-test.   
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FIGURE 2.3.  miR expression profile in SEB-injected mice treated with TCDD  
miRs was isolated from CD4+ PLN  cells from mice exposed to Vehicle+SEB or 
TCDD+SEB  (A) Differential expression heat map of 609 miRNAs between SEB+TCDD 
or SEB+Vehicle groups. (B) Cluster analysis of microRNAs shows that 37 miRs were up 
regulated while 51 were down-regulated in SEB+TCDD mice compared to SEB+vehicle 
group. (C) Interaction between the microRNAs and their target genes was assessed by 
ingenuity pathway analysis (IPA) software. Fig Several pathways are affected with target 
genes and microRNA differentially regulated upon TCDD exposure. 
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FIGURE 2.4 In vivo miR expression and target gene expression for miR-148a and 
miR-491.Mice were exposed to SEB+TCDD or SEB+Vehicle as described in Fig 1 
legend. Total RNA was isolated from popliteal CD4+ T cells and expression levels were 
measured by qRT-PCR. (A) miR-148a (B) miR-491 (C) DNMT3b (D) DNMT3a (E) 
DNMT1. ChIP assay on Foxp3 enhancer elements using GFP+ cells from Foxp3/GFP 
knock in mice with (F) anti-DNMT1, (G) anti-DNMT3b, (H) anti-DNMT3a, and (I) anti-
MeCP2. Data shown are representative of 2-3 independent experiments for each panel 
(Mean+/- SEM, Student’s t-test *, p <0.05) 

             

FIGURE 2.5 miR-34a regulates Histone H3 acetylation in Tregs via HDAC1 
Mice were exposed to SEB+TCDD or SEB+Vehicle as described in Fig 1 legend. Total 
RNA was isolated from popliteal CD4+ T cells and expression levels were measured by 
qRT-PCR. (A) miR-34a (B) HDAC1. ChIP assay on upstream of Foxp3 enhancer using 
the isolated GFP+ cells from Foxp3/GFP knock in mice with (C) anti-AcH3 and (D) anti-
H3K9. Data shown are representative of 2-3 independent experiments for each panel.( 
Mean+/- SEM, Student t-test *, p <0.05) 
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FIGURE 2.6 Foxp3 promoter of TCDD-induced Tregs is transcriptionally active. 
Mice were exposed to SEB+TCDD or SEB+Vehicle as described in Fig 1 legend. Total 
RNA was isolated from popliteal CD4+ T cells and expression levels were assayed using 
qRT-PCR. (A) miR-31 (B) miR-26b (C) KLF10 (D) Sp1.  ChIP assay upstream of Foxp3 
enhancer using the GFP+ cells isolated from Foxp3/GFP knock in mice with (E) anti-
KLF10 (F) anti-Sp1.  Data shown are representative of 2-3 independent experiments for 
each panel. ( Mean+/- SEM, Student t-test *, p <0.05) 
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FIGURE 2.7 miR-31 inhibition leads to induction of Foxp3P3 and CYP1A1 
SEB-activated cells were transfected with customized inhibitor for miR-31 or were mock 
transfected. The expression levels of Foxp3 were quantified by (A) qRT- PCR.  SEB-
activated cells were transfected with miR-31 mimic and specific custom-designed Foxp3 
target protector. The expression levels of Foxp3 were quantified by (B) qRT- PCR and 
(C) Western blot analysis. Co-transfection of SEB-activated lymphocytes with mimic-
miR-31 and CYP1A1 target protector was conducted in vitro. The expression levels of 
CYP1A1 were quantified by (D) qRT- PCR analysis.  (Mean+/- SEM, Student t-test *p< 
0.05 , **p< 0.01 ).  miR-31/Foxp3 alignment with the mirSVR score: -0.6807 (down-
regulation score) miR31/CYP-1A1 alignment with mirSVR score:-0.1340 (down-
regulation score)has been depicted. 
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Supplementary figure 2.1 TCDD induces AhR signaling by altering miR profile in 
SEB-activated T cells.Mice were exposed to SEB+TCDD or SEB+Vehicle as described 
in Fig 1 legend. (A) Overlay of AhR signaling canonical pathway with miRs that were 
significantly changed upon TCDD administration in SEB-activated T cells. Predicted 
downstream effect of differentially expressed miRs using Molecular Activity Predictor ( 
MAP). qRT- PCR analysis was carried out for (B) miR-455 (C) miR-351(D) ARNT(E) 
CYP1A1. (Mean+/- SEM, Student t-test *p< 0.05 , **p< 0.01 ). 

 
 

 
Table2.1: candidate targets for filtered miRs, along with their seed sequence and 
respective fold change. The highly predicted and experimentally observed targets has 
been listed. 7 mer seed sequence are in bold red. 
 

miRNA		 MiRBase	#	 Chr.	 Sequences		 Experimentally	observed/highly	predicted	targets	 FC		
miR-148a	 NIMAT0000516	 Chr6	 UCAGUGCACUACAGAACUUUGU	

	
DNMT1,DNMT3B,DNMT3A	
	

1.737	

miR-491	 NIMAT0003486	 Chr4	 AGUGGGGAACCCUUCCAUGAGG	
	

DNMT3B,STAT3,STAT5B,GSK3B,Foxo1,Foxo3,TGFβR2	
	

1.674	

miR-34a	 NIMAT0000542	 Chr4	 UGGCAGUGUCUUAGCUGGUUGU	
	

	
HDAC1,SOCS4,SOCS7,SIRT1,P53	

	

2.267	

miR-31	 NIMAT0000538	 Chr4	 AGGCAAGAUGCUGGCAUAGCUG	
	

Foxp3,CYP1A1,Sp1,STAT5A,Kpna1,TGFβR2,GSK3B,STAT5B	
	

-
1.605	

miR-26b	 NIMAT0000534	 Chr1	 UUCAAGUAAUUCAGGAUAGGU	
	

KLF10,PTGS2,PTEN,CTGF,GSK3B,MAP3K1,RB1	
	

-1.83	

miR-351	 NIMAT0000609	 ChrX	 UCCCUGAGGAGCCCUUUGAGCCUG	
	

CYP-1A1,BAK-1,CASPASE6,CASPASE7,MAP2K7,CDK6	
	

-
1.876	

miR-455	 NIMAT0003485	 Chr4	 UAUGUGCCUUUGGACUACAUCG	
	

ARNT,ARNT2,CYP-20A1,CYP-4F3,MYD88	
	

-
1.571	

	
	

 

 

Supplementary figure 2.2. Schematic of the role microRNA and epigenetic 
regulators play in TCDD induced Foxp3 expression in Tregs  

Supplementary Figure 2.2 
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CHAPTER III:  BLOCKADE OF CB1 CANNABINOID RECEPTOR ALTERS 

GUT MICROBIOTA AND ATTENUATES INFLAMMATION AND DIET-

INDUCED OBESITY. 

 

                                                    3.1 INTRODUCTION 

Gut microbiome is the key feature in maintaining the whole body energy balance 

by affecting the glucose metabolism and low-grade chronic inflammation associated with 

obesity. Previous studies have shown that obese mice had broad phylum level changes in 

their microbial community and fecal transfer from obese mice into gnotobiotic lean mice 

conferred many inflammatory features of diet- induced obesity to the recipients 172,173. 

Correlation between progression of metabolic syndrome and alteration in gut microbial 

community has been reported in mice with deletion of Toll-Like Receptor 5(TLR5) gene 

174.  Fecal transfer from the TLR5 deficient mice to wild type germ-free mice mimic 

multiple symptoms of metabolic disease in the recipient mice. 

  Microbial community of the gut consists of symbionts (beneficial), neutral 

(commensals) as well as detrimental (pathobionts) microorganisms. The homeostasis of 

these essential allies can modulate the host health and function 175.  The mutual 

interaction of gut microbiota and host immune system is necessary in maintaining their 

symbiotic relationship176,177,178,179,180.  Gut immune system determines colonization of 

microbial community in gut and contributes to the interaction of host-microbiome 181.  
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Metabolic endotoxemia and inflammation in obese mice may result from the 

chronically higher levels of lipopolysaccharide (LPS) and pro-inflammatory cytokines182. 

Higher intake of saturated fat leads to the disruption of multi-layered mucus structures 

and tight junctions in gut, leading to permeability of gut barrier and consequent leakage 

of LPS in circulation 183. LPS absorption by gut enterocyte chylomicrons results in robust 

release of systematic LPS, which is believed to contribute to inflammatory and metabolic 

disorders 184. Macrophages are the first-line of target of LPS and their retention in 

adipose tissue is implicated in pathophysiology of diet-induced obesity and metabolic 

syndrome 185,186.  

 Numerous studies have demonstrated that diet-induced obesity and associated-

inflammatory disorders may result from dysregulation of endocannabinoid (eCB) system. 

Augmentation in eCB levels in plasma and adipose tissue as well as modulation of CB1 

receptors has been reported in obese individuals 187,188,189,190,191. Alterations in gut eCB 

system is implicated in the dysregulation of LPS level, gut integrity disruption, chronic 

inflammatory state of gut, and dysbiosis of gut micro-flora 192. Previous study has shown 

that LPS leads to dysregulation of eCB system in macrophages 193. LPS causes robust 

production of endogenous ligands of cannabinoid receptors, specifically Anandamide 

(arachidonylethanolamide, AEA) in adipose tissue macrophages, which contributes to 

exacerbation of chronic inflammation in visceral fat, hyperglycemia and insulin 

resistance  194 . 

Numerous pharmacological, preclinical and clinical studies indicate that blockade 

of cannabinoid CB1 receptor can significantly improve obesity complications and 

multiple risk factors of metabolic syndrome 195,196,197,198,199,200,201.   However, the direct 
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implications and precise physiological role of CB1 receptor antagonist in the modulation 

of gut microbial communities in diet-induced obesity has not yet been fully determined. 

Herein, for the first time, we uncovered the changes in gut microbial community in a 

mouse model of diet-induced obesity treated with CB1 antagonist, SR41716A.  In order 

to demonstrate the effect of SR141716A on gut microbiota beyond its effect on diet 

intake and weight loss, we included pair-feeding controls as well as body weight-matched 

controls. The current study provides compelling evidence that targeting the eCB system 

in diet induced obesity model by utilizing SR141716A as the CB1 receptor blocker, 

remodels the gut microbial colonization and subsequently leads to amelioration of pro-

inflammatory macrophages and metabolic parameters.  

  

                             3.2 MATERIALS AND METHODS 

 

Animals and SR141716A treatment- 

 

Diet-induced obesity was studied in male C57BL/6J mice (Jackson Laboratory, 

Bar Harbor, ME) by feeding high fat diet of 60 kcal% fat (Research Diets Incs, New 

Brunswick, NJ). Lean age-matched controls were fed with low fat diet of 10 kcal% fat, 

and match 17% sucrose in HFD (Research Diets Incs, New Brunswick, NJ). Intervention 

treatment with SR141716A was performed after 12 weeks of high fat diet. Pair-fed and 

body weight-matched controls were included in the study in order to investigate the effect 

of SR141716A treatment beyond its effect on diet intake and body weight loss. Pair-fed 

and body weight matched controls were included as previously described 198. SR141716A 

was administered to the DIO mice in 0.1% tween 80 for four weeks, (10mg/kg/daily). 
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Controls lean (LFD), DIO (HFD), pair-fed to SR141716A(PFSR) and body weight-

matched (BWM) controls were treated with vehicle. Body composition was assessed by 

using a Dual-Energy X-ray Absorptiometry (DEXA, LUNAR, Madison, WI) at the 

baseline of the study; mice were normalized to the different groups based on the fat mass. 

Food intake was monitored daily and changes in body weight was recorded daily after 

starting the intervention treatment. Mice were sacrificed under anesthesia and different 

tissues were dissected. Metabolic parameters were collected at both baseline and prior to 

the sacrifice day. All mice were housed at the (American Association for the 

Accreditation of Laboratory Animal Care-accredited (AAALAC) animal facility at the 

University of South Carolina, School of Medicine (Columbia, SC).  All procedures were 

performed according to NIH guidelines under protocols approved by the Institutional 

Animal Care and Use Committee. 

 

Assessment inflammatory profile- locally and systematically- 

Cytokines levels were measured in plasma and quantified using Bio-Plex 

multiplex immunoassay system (Bio-Rad, Hercules, CA), as described by us 

previously 202. RNA was isolated from epididymial fat pad using the E.Z.N.A.® Total 

RNA Kit (Omega Bio-tek, Norcross, GA). The purity and concentration of the RNA was 

confirmed spectrophotometrically with Nanodrop (Thermo Scientific,	Waltham, MA). 

Total RNA was converted to cDNA using the miScript cDNA synthesis kit (Qiagen, 

Valencia, CA) according to the manufacturer's instructions.  SsoAdvanced™ Universal 

SYBR® Green Supermix kit (Bio-Rad,Hercules, CA) was used to analyze gene 

expression , and GAPDH was used as the housekeeping gene. List of all the primers have 
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been provided in supplementary Table 4. Complete Blood Cell count (CBC) was 

performed using hematological analyzer VetScan HM5 (ABAXIS, Union City, CA). 

Circulating LPS level was quantified as previously described  203. Colonic 

myeloperoxidase was assessed according to the manufacturer’s instruction (Abcam, 

Cambridge, MA) 204. 

Free fatty acid was quantified in serum according to the manufacturer’s instruction (Zen-

Bio Inc, Research Triangle Park, NC) 

 

Isolation of adipocytes and infiltrated cells in adipose tissue- 

Fat pads of mice were excised and placed in gentleMACS C Tubes (MACS 

Miltenyi Biotec, San Diego, CA) containing digestion medium (HBSS, 2mg/ml 

collagenase (Sigma-Aldrich, St. Louis, MO) and 2% BSA, and homogenized by utilizing 

gentleMACS Dissociator (MACS Miltenyi Biotec, San Diego, CA). After incubation at 

37 °C for 30 min with shaking, the cell suspension was filtered through a 100-µm filter 

and then spun at 1200 rpm for 10 min to separate floating adipocytes from the Stromal 

Vascular Fraction (SVF) pellet. Supernatant was aspirated completely and cells were re-

suspended in FACS buffer for flow cytometry. Samples were digested until the majority 

of the SVF population were separated from the adipose tissue.  

 

Glucose and Insulin tolerance test- 

Glucose tolerance test was carried out as previously described  205. After 

determining fasting blood glucose, each animal received a glucose gavage 1.5g/KG body 

mass of glucose (25% D-glucose, Sigma, St.Louis, MO) .  Blood glucose levels were 
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determined after 15, 30, 60 and 120 minutes. Insulin-tolerance tests were performed on 

un-fasted animals by injecting i.p 1.5 U/Kg body mass of insulin (HumilinR 100U/ml).  

Blood glucose levels were assessed after 15, 30, 60 and 120 minutes. Total cholesterol 

(TC), HDL-C, LDL-C, and triglycerides at the baseline and after intervention were 

quantified as previously described 206,207 .Homeostatic model assessment (HOMA) index 

was calculated as follow: insulin resistance index = fasting insulin (µU/ml) x fasting 

glucose (mmol/l)/22.5 208   
. 

 

Measurement of adiposity and macrophage retention in adipose tissue- 

The mean adipocyte size in epididymal adipose tissue was quantified with imageJ 

analysis software (National Institution of Health,NIH) as previously described 206. 

Macrophage retention in adipose tissue was quantified per 100 adipocytes by Spot Studio 

v1.0 Analysis Software (Advanced Cell Diagnostics, Hayward, CA). 

 

Mucosal layer staining and thickness- 

Mouse colon fixation and mounting was performed as previously described 209. 

Periodic acid Schiff was conducted according to the manufacturer instruction (Abcam, 

Cambridge, MA) . The thickness of mucosal layer was assessed by analysis software 

package Gene 5(Cytation5, BioTek, Winooski, VT) and MetaMorph (Molecular Devices, 

Wokingham, UK). 
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Gut permeability in vivo- 

Mice were deprived of food and water for 4 hours. Intestinal permeability was 

measured after they received dextran-4kDa-FITC (Sigma, St. Louis, Missouri) by oral-

gavage (500 mg/kg body weight, 125 mg/ml). Measurements were taken as described 

earlier 183. Serial dilution of FITC–dextran in the serum were performed to generate the 

standard curve.  

 

Measurement of AEA and 2-AG in serum and tissue- 

Tissue lipids were extracted as described earlier 193.  Extracted lipid from serum 

and adipose tissue was processed as previously described 210.  The levels of 

endocannabinoid from tissue and serum was quantified by triple quadrupole mass 

spectrometer with electrospray ionization at the Mass Spectrometry Center at the 

Department of Chemistry and Biochemistry, University of South Carolina.  Samples were 

introduced into Micromass Quattro-LC through a liquid chromatograph.  It used in 

tandem Mass spectrometry (MS/MS) mode for qualitative and quantitative analyses. 

 

Microbial analysis after SR141716A intervention treatment of obese mice- 

16S rRNA gene sequencing was performed on 25 fecal samples from Diet-

Induced obese (HFD), SR141716A treated-DIO (HFD+SR) mice, Pair-fed to 

SR141716A (PFSR) mice, body-weight matched to SR141716A (BWM) and age 

matched low fat diet (LFD) controls (n=5 mice per group). DNA was extracted from 

frozen extruded feces using the QIAamp DNA Stool Mini Kit (Qiagen, Valencia, CA) 

according to the manufacturer's instructions. Purified DNA was indexed with TrueSeq 
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DNA PCR-free LT Library preparation kit for low-throughput studies (Illumina, San 

Diego, CA) according to the manufacturer's instructions. DNA was PCR-amplified using 

primers for paired-end 16s community sequencing on the Illumina MiSeq platform using 

bacteria/archaeal primer sense 319F/ anti-sense 806R targeting hyper-variable regions 

V3-V4 of the 16S rRNA gene. Each primer is followed by a barcode identifier generated 

specifically for the set of primers. Phix V3 (25%) was used as a control for Illumina 

sequencing runs. The library was sequenced on 300 paired-end MiSeq run as previously 

described at John’s Hopkins Deep Sequencing and Microarray Core facility 211. 

 

16S rRNA gene sequence analysis- 

The sequences were preprocessed and demultiplexed with CASAVA 1.8.2 during 

conversion of bcl to Fastq 212. The demultiplexed sequences were quality filtered for 

chimeras, using the Quantitative Insights In to Microbial Ecology (QIIME, version1.9.0) 

software package to avoid false diversity. Forward and reverse Illumina reads were 

joined using the SepPrep method (https://github.com/jstjohn/SeqPrep). We used QIIME 

default parameters for quality filtering as described previously 209. Sequences were 

assigned to Operational Taxonomical Units (OTUs) using the closed reference OTU 

picking protocol against the Greengenes database	with a 97% threshold of pairwise 

identity. 	

Beta-diversity of the gut microbiome was evaluated by weighted UniFrac-based 

principle co-ordinates algorithm. The analysis was performed using the abundance matrix 

of genus-level OTUs in different samples, rarefaction was performed (10,000 sequences 

per sample) and used to compare abundances of OTUs across samples.  Exceptions from 
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study groups were observed, confounded by variations in other environmental exposure 

and genetics factors on these microbiomes. Chao1 index was calculated to estimate the 

species richness of present organisms in the community.  

Specific quantitative PCR (qPCR) targeting the employed fecal samples in 16S 

rRNA gene sequencing was performed using Quantifast SYBER Green PCR Kit (Bio-

Rad, Hercules, CA). Abundance of Akkermansia muciniphila (A. muciniphila), 

Lanchnospiraceae and Erysipelotrichaceae were quantified by specific primers 

(Supplementary Table 4). Total microbial DNA was quantified and addressed as the 

endogenous control, we used universal bacterial primers 319F and 806R— the same used 

for 16S sequencing.  

 

Short-chain fatty acids quantification by Gas chromatography with flame Ionization 

Detector (GC-FID)- 

Cecal content (100 mg) were homogenized in in 400 µl of deionized water, 

followed by acidification with 25% metaphosphoric acid (Sigma-Aldrich, St. Louis, MO) 

at a 1:5 ratios (1 volume of acid for 5 volumes of sample) for 30 min on ice as previously 

described 213. Fatty acid was then isolated from the samples followed by centrifugation at 

12,000g for 15 minutes at 4 °C. Supernatants were filtered over Ultrafree MC column 

with .22 µm pore size (EMD Millipore, Billerica, MA), and elute was stored at -80 until 

it was analyzed by GC-FID.   

SCFA concentrations in specimens were quantified according to a modified 

method as described earlier 214 . Calibration standards were prepared as aqueous stock 

solutions using the following fatty acids at the given concentration; acetic, propionic, and 
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n-butyric at 400 mM,  isovaleric and valeric 200 mM, isobutyric 100 mM,  caproic and n-

heptanoic 50 mM. Each standard was injected to identify their retention times. Standard 

mixture was prepared at several concentrations suitable for the samples. Internal standard 

(IS) 2-ethylbutyric acid was added at 0.30 mM to the standard mixtures as well as to each 

sample before injection. Standard mixture with the IS was used to determine the response 

factors. Samples were prepared by first thawing at room temperature, taking 100 µL of 

the samples in to a vial and adding 40 µL of acetone and 60 µL of 0.10 mM IS solution. 

Then the mixture was vortexed and centrifuged. The clear solution was transferred to a 

glass GC vial and used for analysis.  A HP 5890 gas chromatograph configured with 

flame-ionization detectors (GC-FID) for analysis of volatile organic compounds was used 

for this assay. Stabilwax®-DA Column (fused silica) of 30 m × 0.32 mm i.d. coated with 

0.50 µm film thickness was used. Helium was supplied as the carrier gas at a flow rate of 

15 mL/min. The temperature was programmed to achieve the following run parameters: 

initial temperature 100 oC, hold for 0.5 min, ramp 20 oC/min, final temperature 250 oC 

maintain for 5 min. The injected sample volume for GC analysis was 1 µL splitless and 

the total run time was 18.0 min.  

Response factors (RF) were calculated via dividing the peak areas of the 

responses by the respective concentrations of the standards. To quantify the peak area in 

terms of concentration, the relative response factor (RRF) was used. The RRF was 

calculated using the formula RRF = RFStandard/RFIS. The concentration of the samples was 

calculated using the following equation, Conc. samples = Peak AreaSample x (Conc. IS/ Peak 

AreaIS)(1/RRF) 
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Statistical Analysis- 

Data were presented as mean ± SD. Differences between two groups were 

assessed using the unpaired two-tailed Student’s t-test. ANOVA followed by Newman-

Keuls post hoc tests was performed to analyze differences between data sets that involved 

more than two groups. Generalized Estimating Equation (GEE) and Generalized Linear 

Mixed Model (GLMM) was performed to fit a repeated measurement logistic regression. 

Trapezoidal Rule in R was used to assess Area Under the Curve (AUC) from the 

replicated experiments.  Pearson correlation was performed in R with the cor () function 

in ggplot2.  In the figures, data with different superscript letters were used to indicate 

statistical significant differences in groups (p < 0.05). Data were analyzed using 

GraphPad Prism version 7.00 for Windows (San Diego, CA), Excel, R a language and 

environment for statistic computing (R Development Core Team, 2010), and IBM SPSS 

Statistics for Windows, Version 22.0. (Armonk, NY). 

                                               

                                            3.3 RESULTS 

 

Effect of SR141716A on diet intake, body weight and body composition 

Consistent with previous research studies, treatment of DIO mice with 

SR141716A (HFD+SR) transiently reduced calorie intake and induced weight loss as 

compared with vehicle-treated DIO mice (HFD) (Fig 3.1B,3.1C) 215,216. To assess the 

effect of SR141716A beyond its effect on weight loss and calorie intake, pair-feeding 

was conducted in diet-intake matched controls (PFSR), and diet intake was adjusted in 

body-weight- matched (BWM) controls (Fig 3.1 A). The transient reduction of calorie 

intake in HFD+SR mice during the first week, was diminished by day 9 of treatment, and 
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reaching even to the same intake as HFD group (Fig 3.1B).  However, we noted 

continuous weight loss in HFD+SR group through the end of treatment (Fig 3.1C). In 

order to maintain the same body weight in BWM group as HFD+SR group, the diet 

intake was restricted to even lower intake than HFD+SR group (Fig 3.1B).  

In order to examine the effect of SR141716A beyond its effect on calorie intake, 

the pair-fed DIO control (PFSR) mice were fed with the same amount of high fat diet as 

consumed by the SR141716A-treated DIO mice(HFD+SR). The weight loss pattern in 

PFSR group was similar with HFD+SR during the first two weeks of treatment, but then 

PFSR group started to gain weight and reaching a close body weight to HFD group by 

end of the treatment (Fig 3.1C). 

Correlation between changes in body weight and caloric intake within different 

groups, demonstrated consistent weight loss in HFD+SR group regardless of its high 

level of calorie intake close to HFD group (Fig 3.1D).  

Assessing body composition after 4 weeks of SR141716A intervention in DIO 

mice (HFD+SR) showed significant reduction in fat gain as compared with vehicle-

treated DIO mice (HFD), while there was no difference in lean mass (Fig 3.1E). 

Inasmuch as SR141716A-treated DIO mice (HFD+SR) demonstrated less fat mass when 

compared to body weight-matched control (BWM) , the data suggested that other factors 

are associated with use of SR141716A besides its effect on calorie intake and weight loss 

(Fig 3.1E). Lower fat mass within SR141716A-treated group (HFD+SR) has been 

characterized with less adiposity. Assessing the area of the adipocytes demonstrated 

significant shrinkage in adipocytes of the SR141716A-treated DIO mice (HFD+SR) 
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when compared to vehicle-treated DIO mice(HFD), pair-fed control(PFSR) as well as 

body weight-matched control (BWM) (Fig 3.1F).  

 Adipose tissue fibrosis, in obese phenotype is associated with an increase in local 

inflammation. The Picrosirius red fibrillar collagens were interspersed among the 

adipocytes in HFD group. SR141716A treatment in DIO mice (HFD+SR) resulted in a 

significant suppression of adipose tissue fibrosis and consequently further reduction in 

local adipose tissue inflammation and dysfunction (Supplementary Fig 3.1A, 3.1B).   

Lighter fat pad (mainly in epididymal fat pad) in SR141716A-treated DIO mice 

(HFD+SR) was associated with smaller liver when compared with vehicle-treated DIO 

(HFD), Pair-fed DIO control(PFSR), and body weight-matched control(BWM) (Fig 

3.1G) 

 

Effect of SR141716A on systematic and local inflammation 

Based on the active role of macrophages in initiation of inflammation in adipose 

tissue, we examined the changes in macrophage population in adipose tissue. Intervention 

treatment of DIO mice with SR141716A (HFD+SR) demonstrated significant reduction 

in the ratio of macrophages/adipocytes as compared with vehicle-treated DIO (HFD), 

pair-fed control(PFSR) and body weight matched-control(BWM) (Fig 3.2A). Flow 

cytometric analysis for the subset of macrophages showed significant reduction in both 

frequency and absolute number of pro-inflammatory M1 macrophages with SR141716A 

treatment (HFD+SR) when compared to vehicle-treated DIO controls (HFD) (Fig 3.2B, 

3.2 C). Inflammatory profile has been assessed by examining chemokines and cytokines 

in the serum for the systemic inflammation. Treatment of DIO mice with SR141716A 
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(HFD+SR) led to lower level of IL-17, MCP-1, Eotaxin and MIP-1α when compared to 

vehicle-treated  DIO mice (HFD) (Fig 3.2 D-3.2G). The same trend was seen with TNF-

α, IL-6 ,RANTES, MIP-1β and MIP-2 but the differences were not significant . Changes 

in LPS as the major simulator of macrophages has been assessed 217. The data showed 

there was significant reduction in LPS level in the serum of SR141716A-treated DIO 

mice (HFD+SR) as compared with vehicle-treated DIO (HFD), pair-fed DIO 

control(PFSR) and body weight matched-control (BWM) (Fig 3.2 H).  

We also investigated the inflammation profile of adipose tissue and colon locally 

and to that end, the mRNA level of RORγ, TNF-α, iNOS, and IL-6 were quantified in 

adipose tissue (Fig 3.2I-3.2L). Overall, intervention treatment of DIO mice with 

SR141716A (HFD+SR) led to improvement of inflammatory state of adipose tissue 

beyond its effect on diet restriction.  

Local inflammation in colonic tissue was also determined by assessing the level 

of myeloperoxidase. SR141716A-treated DIO mice (HFD+SR) showed significant 

improvement in colonic inflammation, independent of its effect on weight loss and diet 

intake (Fig 3.2M). 

We also observed a significant increase in both the percentage and numbers of 

CD4+GATA3+ Th2 cells (anti-inflammatory T cell subset) following treatment with 

SR141716A of DIO mice (HFD+SR) (Supplementary Fig 3.2 A,3.2B).  

Myeloid Derived-Suppressor Cells (MDSC) that are GR-1+CD11b+ have been 

identified as potent anti-inflammatory cells.  In the current study, we noted that MDSCs 

were induced with SR141716A treatment in DIO mice (HFD+SR) when compared to 

vehicle-treated DIO (HFD) (Supplementary Fig 3.2C, 3.2D). We also assessed the 
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changes in blood MDSCs. The data showed a significant decrease in MDSC with 

SR141716A treatment in the blood (Supplementary Fig 3.2E) thereby suggesting that 

they may be migrating to the site of inflammation (adipose tissue).  

Differential analysis of Complete Blood Cell (CBC) revealed significant 

leukocytosis in DIO mice (HFD) when compared to SR141716A-treated DIO (HFD+SR) 

and lean (LFD) mice. Leukocytosis in DIO mice was more pronounced in neutrophils 

subpopulation, which are the first responder to inflammation. Our data suggested that 

treating DIO mice with SR141716A reduces neutrophilic leukocytosis.  Furthermore, 

SR141716A treatment balanced the increased level of hemoglobin and HCT% in DIO 

mice. (Supplementary Table 3.1).  Taken together, our data suggested that intervention 

treatment of DIO mice with SR141716A (HFD+SR) attenuates systematic inflammation 

and metabolic endotoxemia.  

 

Effect of SR141716A on metabolic parameters  

Glucose Tolerance Test (GTT) and Insulin Tolerance Test (ITT) showed 

remarkable improvement in metabolic parameters in DIO mice when treated with 

SR141716A (HFD+SR) as compared with vehicle-treated DIO (HFD) and pair-fed 

(PFSR) controls (Fig 3.3A, 3.3B). Improvement in other serum metabolic parameters 

such as Fasting Blood Glucose (FBG), TGs, HDL, LDL, HOMA index as well as free 

fatty acid was also observed following SR141716A treatment in DIO (HFD+SR) when 

compared to vehicle-treated DIO (HFD) and pair-fed to SR141716A (PFSR) 

(supplementary Table 3.2, Fig 3.3) 
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Effect of SR141716A on gut barrier integrity  

SR141716A counteracted diet-induced colon mucosal barrier dysfunction during 

high fat diet feeding by modulating the mucosal thickness (Fig 3.4A, 3.4B). Mucus-

related genes expression, Mucin2 (Muc2) and Kruppel-Like Factor 4 (KLF4) were 

improved with SR141716A treatment in DIO mice (HFD+SR) as compared with vehicle-

treated DIO mice (HFD), pair-fed to SR141716A (PFSR) control and body weight-

matched (BWM) controls (Fig 3.4C, 3.4D). SR141716A didn’t show any effect on the 

Trefoil Factor 3 (Tff3) gene expression (Figure 3.4 E).  

In addition, we performed in vivo intestinal permeability assay using an FITC-

labelled dextran method. Less leakage in the gut of SR141716A-treated DIO mice 

(HFD+SR) was observed when compared to vehicle-treated DIO (HFD) and pair-fed to 

SR14716A (PFSR) controls (Figure 3.4 F) Taken together these data indicated that 

SR141716A intervention treatment in DIO mice (HFD+SR) ameliorates the 

compromised mucosal layer and gut leakage in DIO phenotype.  

 

Effect of SR141716A on Endocannabinoid system 

Obesity has been characterized with over activation of eCB system187. In the 

current study, we found that CB1 receptor expression was down-regulated with 

SR141716A treatment of DIO mice (HFD+SR) when compared to vehicle-treated DIO 

mice (HFD)  (Fig 3.5A) . Level of endogenous ligand of cannabionoid receptors in 

adipocytes and serum was assessed by LC/MS/MS.  We observed significant reduction in 

adipose tissue anandamide (AEA) in DIO mice treated with SR141716A (HFD+SR) 
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when compared to the control DIO mice (HFD) (Fig 3.5B, 3.5C). We were unable to 

detect significant levels of 2-AG in all samples.  

 

Effect of SR141716A on adipogenic related-genes 

Next, we investigated the effect of SR141716A on adipose tissue metabolism, 

which was assessed by RT-PCR for lipogenesis, oxidation and differentiation genes.  We 

observed that SR141716A treatment of DIO mice (HFD+SR) increased the mRNA 

expression of markers of lipid oxidation (carnitine palmitoyltransferase-1 (CPT1), acyl-

CoA oxidase (Acox1), peroxisome proliferator-activated receptor gamma coactivator-1 

alpha (PGC-1α), and peroxisome proliferator-activated receptor alpha (PPARα) (Fig 

3.6A),  and adipocyte differentiation (CCAAT/enhancer–binding protein-α (C/EBPα) and 

peroxisome proliferator-activated receptor γ (PPARγ)(Fig 3.6B). Changes in lipogenic 

properties of adipose tissue was examined with (acetyl-CoA carboxylase (Acc1) and fatty 

acid synthase (FASN) quantification (Fig 3.6C).  Together, our data suggested that the 

shrinkage in fat mass in SR141716-treated DIO mice (HFD+SR) was associated with an 

increase in lipid oxidation differentiation and lipogenesis.  

 

Effect of SR141716A on dysbiosis of gut microbiota in diet-induced obesity  

To test that role of gut microbiota, we performed 16S rRNA metagenomics 

sequencing against both variable regions (V3+V4) of fecal samples in different groups of 

our study (n = 5 per group), and rarefied to a depth of 10,000 reads per sample. We 

grouped microorganisms in Operational Taxonomic Units (OTUs) in order to standardize 

grouping based on 97% similarities in DNA sequence (Supplementary Table 3.3). The 

obtained data demonstrated that overall, microbial communities were strongly structured 
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by diet.   We observed significant separation between lean mice and DIO mice. 

Interestingly, principal coordinate analysis performed based on distance matrix 

demonstrated that microbial community structure was more sensitive to SR141716A 

treatment than dietary fat intake (Fig 3.7A).  In order to estimate the diversity of micro-

organisms in regard to their numbers and their similarities in abundance, Alpha diversity 

was calculated based on Chao1 index (Fig 3.7B). Relative taxa abundance area plots at 

the genus taxonomical level for individuals from the five populations was assessed by 

taking the OTU table at genus level as an input . Individuals were represented along the 

horizontal axis, and relative taxa frequency at the genus level was denoted by the vertical 

axis (Fig 3.7 C). Taken together, our data suggested that OTUs were differentially 

enriched within the different groups in our study. In order to investigate the exclusive 

effect of SR141716A in the gut-flora of DIO mice (HFD+SR), we conducted pair-fed to 

SR141716A (PFSR) and body-weight matched control to HFD+SR. Our data indicated 

significant enrichment of Akkermansia OTUs in DIO-treated mice with SR141716A 

(HFD+SR) as compared with both pair-fed obese (PFSR) and body-weight matched 

(BWM) controls. Interestingly, the significant reduction in immunogenic 

Lanchnospiraceae and Erysipelotrichaceae seen with SR141716A treatment was beyond 

the effect of SR141716A on the weight loss and diet intake restriction. Because the 

disruption in gut mucosal layer was improved in DIO mice with SR141716A treatment 

(HFD+SR), we investigated the effect of treatment on residential bacteria of mucosal 

layer, specifically Akkermansia muciniphila 218,219,220,221,222,223. 

Numerous studies have shown the inverse correlation between the abundance of 

A.muciniphila and metabolic syndrome. RT-PCR from the isolated fecal DNA 
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demonstrated significant enrichment in A.muciniphila colonization in SR141716A-

treated DIO mice (HFD+SR) as compared with vehicle-treated DIO (HFD), pair-fed to 

SR141716A (PFSR), and body weight matched to SR141716A (BWM) (Fig 3.7D). 

Previous studies have demonstrated that Lanchnospiraceae and Erysipelotrichaceae, 

within firmicutes phylum are implicated in gaining weight and induction of metabolic 

syndrome 224,225,226,227,228.   Our studies demonstrated that Lanchnospiraceae and 

Erysipelotrichaceae were significantly decreased in SR141716A-treated DIO mice 

(HFD+SR) as compared with vehicle-treated DIO (HFD) control. In addition, the RT-

PCR from the fecal content validated the 16s rRNA sequenced data (Fig 3.7E, 3.7F).  

 

Effect of SR141716A on Short Chain Fatty Acid (SCFA) in Diet-Induced Obesity 

In order to investigate the effect of SR141716 intervention treatment in DIO mice 

(HFD+SR), on Short Chain Fatty Acid (SCFA), we quantified the level of SCFA in 

serum, cecal and fecal content of mice. Interestingly, we found a significant increase in 

concentration of propionic acid, I-butyric as well as n-butyric acid, in cecal and fecal 

content of SR141716A treated DIO (HFD+SR) mice when compared with vehicle-treated 

DIO (HFD) mice (Fig 3.8A, 3.8B). The same trend was observed in concentration of 

acetic acid as well as valeric acid, but the changes weren’t significant. In order to 

evaluate the alteration in SCFA systemically, we assessed the concentration of SCFA in 

serum. Because the SCAFs are mostly abundant in colon and stool, the same trend but at 

the lower concentration than SCFAs in fecal and cecal content was observed in SCFAs of 

serum. (Supplementary figure 3.4) .  
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3.4 DISCUSSION 

 

There is growing evidence to suggest that blockade of cannabinoid CB1 receptor 

possesses anorectic anti-obesity properties and modulates metabolic parameters in diet-

induced obesity 216,229,230,231 .  However, most of the previous studies did not fully 

investigate the effect of cannabinoid CB1 antagonist on chronic inflammation in DIO 

model.  Our study investigated both systematic and local inflammatory profiles in DIO 

model and demonstrated that intervention treatment of DIO mice with SR141716A, can 

ameliorate the obese phenotype and associated metabolic complications. Because there is 

a clear association between adipose tissue macrophage accumulation and metabolic 

dysfunction in DIO model, we investigated the effect of  CB1 antagonism on 

macrophages and it was remarkable to note that SR141716A treatment could suppress 

pro-inflammatory macrophages (M1) in adipose tissue and their associated cytokines 

(MIP-1α, MCP-1, and  plasma LPS). Indeed, blockade of cannabinoid CB1 receptors in 

mice fed a high fat diet reduced macrophage retention in adipose tissue, suppression of 

local and systematic inflammation as well as insulin resistance.  In the current study, we 

also observed improvement in colonic inflammation (MPO) in DIO model following 

SR141716A treatment. 

It is of the interest that blockade of cannabinoid CB1 receptor with SR141716A in 

obese mice resulted in attenuation of neutrophilic leukocytosis associated with obesity. 

One of the possible mechanistic effect of SR141716A on the neutrophilic leukocytosis 

can be attributed to the inhibition of the neutrophil elastase activity. Recent study 

identified that the neutrophilic leukocytosis in DIO mice exacerbate the chronic 
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inflammation in adipose tissue 232. Increase in neutrophil population is associated with 

more release of, a serine proteinase, elastase, which results in activation of Toll-Like 

Receptor 4 (TLR4) pathway, and massive release of chemo-attractants from the immune 

cells and adipocytes. Consistent with our findings, the neutrophilic knockout mice were 

protected from insulin resistance associated with obesity phenotype  232. The direct effect 

of blockade of cannabinoid CB1 receptor on neutrophils and their elastase activity 

warrant further investigation. 

In order to evaluate the effect of SR141716A treatment beyond its effect on 

calorie intake and weight loss, we conducted pair-fed to SR141716A (PFSR) and body 

weight-matched (BWM) to SR141716A-treated obese (HFD+SR) mice as controls 198. 

Pair-fed to SR141716A (PFSR) consumed the same amount of high fat diet as the 

SR141716A-treated obese mice (HFD+SR). Diet intake was adjusted in body weight-

matched (BWM) controls to perpetuate the same weight loss pattern as in SR141716A-

treated obese mice (HFD+SR). Our study demonstrated that transient reduction in 

calories intake and sustained weight loss in SR141716A-treated obese mice (HFD+SR), 

was associated with less adiposity and smaller fat mass. The smaller adipocytes in 

SR141716A-treated obese mice (HFD+SR) was associated with the significant reduction 

in fat storage. Previous studies have shown that SR141716A may trigger futile calcium 

cycling, which results in enhanced whole body energy expenditure 216,233.  Therefore, one 

potential explanation for SR141716A-induced reduction in fat mass independent of 

calorie intake, is enhanced lipolysis and lipid oxidation to maintain ATP for futile cycle 

(calcium and substrate).  
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In contrast to the previous studies, our data demonstrate that blockade of 

cannabinoid CB1 receptor with SR141716A in obese mice contribute to increased 

lipogenesis 198,234,235. Interestingly, a previous study uncovered the regulatory role of LPS 

in mediating inhibitory effect on lipogenesis, on cultured adipose tissue via PPAR-γ 

blockade 192. In conjunction with our data, several studies have shown that over-activity 

of endocannabinoid system in DIO model, is associated with increased LPS levels and 

inflammation 192 .Furthermore, we found that SR141716A-treated obese (HFD+SR) mice 

demonstrated improvement in gut permeability as compared to vehicle-treated obese 

(HFD) mice. Consistent with our study, earlier reports demonstrated improvement in gut 

permeability in SR141716A-treated ob/ob obese mice by induction of two tight junction 

proteins, occludin and ZO-1 183,224.  Thus, increase in lipogenesis with SR141716A 

treatment may result from less gut permeability which prevents the LPS-inhibitory effect 

on lipogenesis. These data also suggest that cross-talk between endocannabinoid system 

and LPS may modulate adiposity. 

It is exciting to note that the protective effect of SR141716A against obesity and 

metabolic disruption observed in our study, could be explained by the potential link 

between gut microbial community and endocannabinoid system. Enhanced 

endocannabinoid (eCB) system activity including higher level of endocannabinoids in 

plasma and adipose tissue as well as changes in cannabinoid CB1 receptor expression has 

been defined in diet induced-obesity and metabolic syndrome models 187,189,190,236. The 

CB1 receptor knockout mice are resistant to diet-induced-obesity 237,238. Selective 

reduction in CB1 receptor expression in the colon of germ free mice, Myd88(-/-) mice, 

TRIF (-/-) mice, probiotic and antibiotic treated-obese mice, can attributed to altered gut 
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microbial composition 183,239,240,241. Myd88 and TRIF are the integral adaptor molecules 

of toll-like receptor (TLR) signaling pathway which mediates the microbial community-

host interactions 242. Alteration in gut microbial community following blockade of 

cannabinoid CB1 receptor in DIO model has not been previously studied.  Thus, the 

current study, demonstrated for the first time that the protective effect of a CB1 receptor 

antagonist in diet induced-obesity may result from dysbiosis of gut microbiota.   

Previous studies demonstrated significant reduction in Akkermansia muciniphila 

in both genetically ob/ob and diet-induced-obese mice 243,244. Protective properties of 

dietary polyphenols and probiotics in obese and diabetic phenotypes has been attributed 

to the restoration of the abundance of this strain in gut 245,246,247. Recent study identified 

the protective effect of orally transferred A.muciniphila in dextran sulfate sodium (DSS)-

induced colitis model 248. Furthermore, adoptive transfer of live A.muciniphila but not the 

heat-killed cells was shown to ameliorate obese and diabetic phenotypes, reduce 

metabolic endotoxemia, host adiposity, and improve glucose metabolism 218,222,249.  In the 

present study, we demonstrated that the resorted abundance of A.muciniphila in DIO 

mice following blockade of CB1 receptor was independent of calorie restriction and 

weight loss. To further confirm the therapeutic effect of CB1 receptor antagonist in DIO 

model, we investigated the direct effect of SR141716A treatment on the colon physiology 

in the host. We demonstrated significant improvement in MUC2 and KLF4 genes in 

colon of the SR141716A-treated obese mice when compared to the vehicle-treated obese 

mice. The transcription factors KLF4 and MUC2 regulate differentiation of goblet cells 

which is associated with mucin formation in colon 250. Our data suggested that 

A.muciniphila is responding to increased host mucin production following blockade of 
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cannabinoid CB1 receptor in DIO mice, and mucin serves as the main of carbon, 

nitrogen, and sulfur for A.muciniphila growth.  

Furthermore, we conducted gas chromatography to address the changes in short 

chain fatty acid of cecal material. Blockade of cannabinoid CB1 receptor caused more 

production of propionate and butyric acid in cecal material. Previous studies identified 

the regulatory mechanism of propionate and butyrate in glucose homeostasis, lipid and 

cholesterol metabolism, and improvement of gut barrier function, supporting the 

beneficial regulatory effect of SR141716A on the metabolic parameters in obese 

individuals 251. The anti-inflammatory properties of propionate (suppression of pro-

inflammatory M1 macrophages), and butyrate (inhibition of inflammation via NF-κB 

pathway) has been established earlier 252,253). Consistent with our data, earlier research 

defined propionate as the A.muciniphila metabolite 244,254. Recent study elucidated the 

protective effect of propionate and butyrate against diet-induced obesity complications 

and metabolic syndrome. Propionate and butyrate SCFA have been identified to suppress 

appetite actively by modulating the gut hormones such as Peptide YY (PYY), and 

Glucagon-Like Peptide-1 (GLP-1)  222,255. The excessive release of GLP-1 and PYY into 

portal vein was identified following propionate infusion into the murine colon. 

Additionally, higher activity of entroendocrine L-cells (GLP-1, and GLP-2 secretion) was 

identified with the growth of Akkermansia muciniphila, and further investigation is 

needed to uncover the mechanism underlying this connection 183,218.  However, whether 

the primary beneficial effect of SR141716A can be attributed to the gut abundance of 

A.muciniphila or higher activity of L-cells in DIO remains an interesting question that 

warrants further investigations. 
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In conclusion, the current study suggests that the underlying mechanisms through 

which SR141716A, a CB1 antagonist, exerts its protective effect against diet induced-

metabolic dysfunction may involve changes in the gut microbial community with an 

increase in A. muciniphila and a decrease in immunogenic Lanchnospiraceae and 

Erysipelotrichaceae.  Indeed, the direct application of A.muciniphila as the therapeutic 

intervention remains elusive because of its anaerobic growth condition. Therefore, 

therapeutic intervention strategies aimed at growth of A.muciniphila, will likely be an 

interesting tool for combating the global burden of obesity and metabolic syndrome.  
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Figure 3.1 SR141716A causes transient reduction in diet intake and persistent 
weight loss as compared with Vehicle-treated DIO control.  (A) DIO model was 
generated by feeding C57BL/6J male mice with high-fat diet (HFD+Vehicle) whereas 
their lean, age-matched controls were fed low-fat diet (LFD+Vehicle). HFD-fed mice 
were treated with either SR141716A (10mg/kg/day) (HFD+SR) or vehicle (0.1% Tween 
80) (HFD+Vehicle) by daily oral gavage for 4 weeks starting at week 12.  In order to 
assess the anti-inflammatory effect of SR141716A beyond its effect on calorie intake 
inhibition and weight loss in DIO phenotype, pair-feeding was conducted in diet-intake 
matched controls (PFSR) and diet intake was adjusted in body-weight-matched controls 
(BWM).; n=8-10 mice/group. (B) Daily energy intake during 4 weeks’ treatment with 
SR141716A in DIO mice was recorded, Area Under the Curve (AUC) was calculated 
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from the 5 replicated experiments (C) Daily body weight of each group of mice is shown 
during the whole period of treatment, Area Under the Curve (AUC) was calculated from 
the 5 replicated experiments which were identical to the replicates in Figure 1b. AUC 
was calculated with Trapezoidal rule in R software. Generalized Estimating Equation 
(GEE) was performed to fit a repeated measurement logistic regression in SPSS. Data are 
shown as as means ± SD. Data with different superscript letters are significantly different 
(P < 0.05). (D)Pearson correlation between changes in body weight and caloric intake 
within different groups was assessed in R software. (E)Total fat mass gain and changes in 
lean mass was assessed at the baseline and after 4 weeks of treatment with Dual Energy 
X-ray absorptiometry (DEXA).Data are shown as as means ± SD. Data with different 
superscript letters are significantly different (P < 0.05).(F) The surface area of 100 
adipocytes was determined  and then averaged to represent mean adipocyte size for each 
mouse using ImageJ software,NIH. Data are shown as means ± SD. Data with different 
superscript letters are significantly different (P<0.05) according to post hoc ANOVA 
one-way statistical analysis. (n=10) (G) Weights of fat pads and livers were  assessed at 
the end of the treatment. After treatment for 4 weeks, HFD+SR  group had lower body 
weight, smaller fat pads and livers than HFD+Vihcle group. Smaller fat pads and lower 
body weight was recorded in HFD+SR group than HFD Pair-fed  to SR141716A( PFSR), 
although both groups had the same quantity of high fat diet intake. The HFD+SR group 
has a smaller fat pad than Body weight Matched (BWM) group. Overall data is 
suggesting the effect of SR141716A treatment is beyond its effect on weight loss and diet 
intake 
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Figure 3.2 SR141716A attenuates local and systematic inflammation in diet-induced 
obesity phenotype. (A)Adipose Tissue Macrophages (ATMS) were quantified per 100 
adipocytes by Spot Studio v1.0 Analysis Software. (B,C)Kidney fat were isolated from 
10 mice in each group. The ratio and total cell number of kidney fat F4/80 and CD11c 
cells was decreased with SR141716A treatment (33.3%) when compared to 
HFD+Vehicle (82.4%) (D) Effect of SR141716A on the plasma IL-17 levels, (E) 
monocyte chemoattractant protein-1(MCP-1) levels, (F) Eotaxin plasma levels, and (G) 
macrophage inflammatory protien-1𝛂 (MIP-1𝛂) level in plasma was quantified with 
multiplex detection immunoassays. SR141716A-treated DIO mice(HFD+SR) have 
significantly lower systematic inflammation (as compared to vehicle-treated DIO 
mice(HFD+Vehicle), and Pair-fed to SR141716A controls(PFSR). (H) Plasma LPS level 
in DIO mice treated with SR141716A for four weeks and controls was quantified (I) 
Effect of SR141716A treatment on the mRNA level of RORᵧ (J)TNF-𝛼 (K) iNOS (l) IL-6 
in the epididymal adipose tissue was examined. (M) Myeloperoxidase (MPO) level in 
colonic tissue was measured. Data are shown as means ± SD. Data with different 
superscript letters are significantly different (P<0.05) according to post hoc ANOVA 
one-way statistical analysis. (n=5 except LFD+Vehicle n=4) 
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Figure 3.3 SR141716A ameliorates metabolic dysfunction in diet-induced obesity 
phenotype. (A) Glucose tolerance test(GTT) and (B)Insulin tolerance test (ITT) of mice 
fed LFD+Vehicle (n=10), HFD+Vehicle (n=10), HFD+SR (n=9) and Pair-fed to 
SR141716A (PFSR) (n=10). Each animal received a glucose gavage 1.5g/KG body mass 
of glucose (25% D glucose) Blood glucose levels were determined after 15,30,60 and 120 
minutes. Insulin-tolerance tests were carried out on un-fasted animals by injecting an i.p 
injection of 1.5 U/Kg body mass of insulin. Blood glucose levels were detected after 15, 
30,60 and 120 minutes. Generalized Linear Mixed Model (GLMM) was performed to 
calculate p values for the repeated measures in SPSS. Mean area under the curve (AUC) 
from triplicate experiments measured between 0-120 minutes after glucose (GTT) and 
insulin (ITT) load. AUC was assessed with Trapezoidal rule in R software. Data with 
different superscript letters are significantly different. GTT (P<0.01), ITT (P<0.05). 
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Figure 3.4 SR141716A restores gut barrier function in diet-induced obesity 
phenotype. (A) Representative Periodic Acid Schiff images that were used for in situ 
mucus layer staining, scale bar,100 µm. (B)Thickness of the mucus layer measured by 
histological image analysis software MetaMorph (LFD+Vehicle n=5, HFD+Vehicle n=5, 
SR n=6, PFSR n=5, and BWM n=6). (C-E) mRNA expression analysis by qRT-PCR of 
mucus-related genes in the colonic mucosa. (F)Intestinal permeability measured by levels 
of serum FITC-Dextran (4kDa) following oral gavage (n=5 except LFD+Vehicle n=4). 
Data are shown as means ± SD. Data with different superscript letters are significantly 
different (P<0.05) according to post hoc ANOVA one-way statistical analysis.  

 

 

 

                                                                                                                  Figure 3.5 

Figure 3.5 SR141716A attenuates over-activity of endocannabinoids system in diet-
induced obesity phenotype. (A)Adipose tissue CB1 mRNA levels in SR141716A-
treated DIO, (HFD+SR), vehicle-treated DIO (HFD+Vehicle), lean mice (LFD+Vehicle) 
and Pair-fed to SR141716A (PFSR) controls mice was assessed by RT-PCR.  (B)White 
adipose tissue AEA level from the same mice (percent of control values) were measured 
with LC/MS/MS (n=3). AEA levels (percent of LFD+Vehicle) in the epididymal adipose 
tissue of HFD+SR, HFD+Vehicle and PFSR(n=3). Data are shown as means ± SD. Data 
with different superscript letters are significantly different (P<0.05) according to post hoc 
ANOVA one-way statistical analysis. 
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Figure 3.6 SR141716A improves adipose tissue metabolism in 
diet-induced obesity phenotype. (A)mRNA expression of markers of adipocyte 
differentiation (C/EBPα,PPARγ), (B) lipogenesis (ACC1; FASN), (C) and lipid oxidation 
(CPT1; ACOX1; PGC-1α; and PPARα) was measured in epididymal fat depots (n = 5). 
Data are shown as means ± SD. Data with different superscript letters are significantly 
different (P < 0.05) according to post hoc ANOVA one-way statistical analysis.  
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Figure 3.7 SR141716A alters gut microbiota in diet-induced obesity phenotype. 
Metagenomics analysis were performed on 16S rRNA V3+V4region data, rarefied to a 
depth of 10,000 reads per sample. (A)Beta-diversity of the gut microbiome was evaluated 
by weighted UniFrac-based principle co-ordinates algorithim. The analysis was 
performed using the abundance matrix of genus-level OTUs in different samples, and 
pairwise community distances were determined with .97 similarity using the weighted 
UniFrac algorithm.  Exceptions from study groups were observed. (B)Species richness 
metric based on Chao1 method was calculated. (C) Relative taxa abundance area plots for 
individuals from the five populations, summarized at the genus level. Individuals are 
represented along the horizontal axis, and relative taxa frequency is denoted by the 
vertical axis. (D)A. muciniphila (E) Lanchnospiraceae, (F) and Erysipelotrichaceae 
abundance (log10 of bacteria per g of fecal content) measured in the fecal content of mice 
(n = 10). Values with different superscript letters are significantly different, (P<0.01) 
according to post hoc ANOVA one-way statistical analysis.  
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Figure 3.8 SR141716A treatment changes gut 
microbiome and its SCFAs metabolites which 
mimics anti-inflammatory status in diet-induced obesity phenotype. (A-B) Gas 
chromatography with flame Ionization Detector(GC-FID) quantification of SCFA levels 
in the cecal and fecal contents. Representative data are from triplicate experiments. 
Vertical bars represent mean ± SD. ANOVA/Tukey *p < 0.05; **p < 0.01; ***p < 0.001  
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Supplementary Figure 3.1 SR1417161A significantly reduced the interstitial fibrosis 
of adipose tissue in diet-induced obesity phenotype. (A)Representative picrosirius red 
images that were used for quantification of fibrosis area in adipose tissue of individuals 
(LFD+Vehicle n=6, HFD+Vehicle n=10, SR n=9, and PFSR n=7). (B)The percentage 
area for picrosirius red-positive was quantified by converting the image to RGB (Red, 
Green, Blue) stack image and setting the lower and upper threshold values into the 
feature of interest and background in Image J software, NIH.  Data are shown as means ± 
SD. Data with different superscript letters are significantly different (P<0.05) according 
to post hoc ANOVA one-way statistical analysis.  
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Supplementary Figure 3.2 SR141716A improves anti-inflammatory Th2 subset and 
Myeloid Derived Suppressive Cells (MDSCs) in diet-induced obesity phenotype. 
(A,B)Kidney fat was isolated from 10 mice in each group. The ratio and total cell number 
of Gata-3+ CD4+ cells (Th2) in stromal vascular fraction of kidney fat was increased 
with SR141716A treatment in DIO mice (HFD+SR) (13.8%) when compared to vehicle-
treated DIO mice HFD+Vehicle (4.7%). (C,D) The ratio and total cell number of   GR-1+ 
and CD11b+ cells (MDSC) in stromal vascular fraction of kidney fat were increased with 
SR141716A treatment in DIO mice (HFD+SR) (35.7%) when compared to  vehicle-
treated DIO mice (HFD+Vehicle)(18.6%) Data are shown as means ± SD. Data with 
different superscript letters are significantly different (P<0.05) according to post hoc 
ANOVA one-way statistical analysis. (E) The ratio of MDSC was assessed by flow 
cytometry in blood from different groups. The percentage of circulating GR-1+ and 
CD11b+ cells (MDSC) were decreased with SR141716A treatment in DIO mice (10.2%) 
when compared to vehicle-treated DIO HFD+Vehicle mice (18.2%). 

 

 

Table 3.1 SR141716A treatment improves the impaired CBC in diet-induced obesity 
phenotype. Whole blood was collected from posterior vena cava and subjected to the 
differential hematological analyzer. (LFD+Vehicle n=8, HFD+Vehicle n=9, HFD+SR 
n=10, and PFSR n=6). Data are shown as means ± SD. Unpaired- Ttest was performed 
between HFD+SR and HFD+Vehicle group. Statistical significance was set as value of 
*p < 0.05. 
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Table 3.2 SR141716A treatment improves the impaired metabolic parameters in 
diet-induced obesity phenotype. Plasma was assessed for fasting (5 hr) concentrations 
of glucose, insulin, total cholesterol (TC), HDL-C, LDL-C, and triglycerides prior to the 
SR141617A treatment at week 12 of diet and at the end of the SR141716A treatment 
course at week 16. Insulin resistance was estimated by HOMA index as follows: insulin 
resistance index  =  fasting insulin (µU/ml) x fasting glucose (mmol/l)/22.5 
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Supplementary figure 3.3 SR141716A treatment reversed the increase in Free Fatty 
Acids in diet-induced obesity phenotype.  FFA concentrations were measured in serum. 
Data represent means ± SD from (LFD+Vehicle n=5, HFD+Vehicle n=5, SR n=6, PFSR 
n=5, and BWM n=6). Data with different superscript letters are significantly different 
(P<0.05) according to post hoc ANOVA one-way statistical analysis. 
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Table 3.3 Composition of Chimeras and Operational Taxonomical Units (OTUs) in 
16srRNA sequencing. The percentage of the chimeras in each fastq files of individual 
samples and total counts of OTUs was obtained from Qiime software. Number of 
samples: 25, Number of observations: 17245, Total count: 8220204, Table density 
(fraction of non-zero values): 0.219 ,Min counts: 220662.0, Max counts: 601577.0, 
Median of counts: 308574.000, Mean of counts: 328808.160 with Std. dev.:79010.459 
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Supplementary Figure3.4 SR141716A treatment alters Short Chain Fatty Acids 
(SCFAs) systematically. Gas chromatography with flame Ionization Detector(GC-FID) 
quantification of SCFA levels in serum. Representative data are from triplicate 
experiments. Vertical bars represent mean ± SD. ANOVA/Tukey *p < 0.05; **p < 0.01; 
***p < 0.001  
 
 
Table 3.4 Primers sequences. The forward and reverse sequences of each primer in the 
current study is provided. 
 

 

Supplementary Figure 3.4 
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CHAPTER IV: ROLE OF MICRORNA IN THE REGULATION OF NETRIN-1-

MEDIATED MACROPHAGE MIGRATION AND POLARIZATION IN 

ADIPOSE TISSUE THROUGH AGAP-2 INTERACTION WITH UNC5B 

 

 

4.1 INTRODUCTION 

 

The growing incidence of obesity in the last 25 years defines it as an epidemic; 

with estimates upwards of 1.45 billion overweight adults in the world, of which 

approximately 500 million are obese256. Moreover, a maintenance of childhood obesity at 

16% prevalence from 2006-2010 and a significant increase in obesity prevalence over a 

12 year period in males aged 2-19 years was observed257.  

Chronic low-grade, systematic inflammation associated with obesity plays a 

major role in the development of various chronic disease states, including type 2 diabetes, 

metabolic syndrome and atherosclerotic cardiovascular disease which contribute to high 

rates of mortality and morbidity258.  Stromovascular fraction of adipose tissue is 

aggregated with immune cells during obesity259. In particular, with intense migration of 

Macrophages (Mɸ) in adipose tissue, Adipose Tissue Macrophages (ATMs) have been 

shown to be integral to the obesity-triggered inflammation in adipose tissue 260,261,262,  and 

their recruitment to adipose tissue correlates with the production of  pro-inflammatory 
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molecules , including tumor necrosis factor-α (TNF-α)263, interleukin-1β (IL-1β) and IL-6 

264,265 that potentiate insulin resistance 266. Macrophages are phagocytic cells which show 

incredible heterogeneity in phenotype and function, as local milieu factors determine 

their activation state and subsequent properties. Mɸs are thought to be activated in two 

separate pathways becoming polarized to M1 or M2 states. With over-nutrition, M1 are 

said to be “classically activated” mɸs induced by LPS and IFNγ that secrete pro-

inflammatory cytokines (TNF-α, IL-6, IL-12) and generate nitric oxide (NO, a reactive 

oxygen species) via iNOS activation267, 268. However, “alternatively activated” mɸs or 

M2 that populate lean adipose tissue are activated by IL-4 and IL-13, secrete anti-

inflammatory cytokines, and have upregulated arginase which opposes NO production269. 

However, studies have shown that the M1 and M2 macrophage phenotypes are not 

clearly defined, the key signaling molecules such as DNA methyltransferase 3b 

(DNMT3b) and peroxisome proliferator activated receptor-γ(PPAR-γ) deregulate ATMs 

polarization, inflammation and insulin insensitivity270,271. In addition, other studies have 

shown that besides the molecules which trigger the macrophages recruitment in adipose 

tissue, other signaling molecules such as neural guidance cue (semaphorin, ephrin and 

netrin families) modulate macrophages retention in adipose tissue and regulate 

immunometabolism272, 273,274. Indeed, a recent study showed inhibition of semaphorin 3E 

in the visceral adipose tissue of DIO mice resulted in a significant improvement in 

adipose tissue inflammation and subsequently insulin resistance in this model275. 

Collectively, studies on neuronal guidance cue in ATMs define them as key regulators for 

macrophages accumulation in adipose tissue in regard to chronic inflammation of VAT. 
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Weight loss is associated with beneficial effects on reducing the underlying 

inflammation in adipose tissue and subsequently ameliorates insulin insensitivity276, 277. 

Endocannabinoid system plays a major role in diet intake and energy balance. Over-

activity of endocannabinoid system in human obesity and in animal models of genetic 

and diet-induced obesity has been reported278.  Clinical studies on treatment of obesity 

and metabolic syndrome with cannabinoid CB1 receptors antagonist have shown greater 

weight loss in obese patients compared with placebo 279. Nevertheless, the mechanistic 

effect of CB1 receptor antagonist on inflammation and ATMs has not been well studied.  

Previous studies have shown that blockade of CB1 receptors suppressed inflammation in 

adipose tissue of DIO mice250, 251. The signals controlling the beneficiary effect of the 

CB1 receptor antagonists on inflammation in the adipose tissue remain poorly 

understood, but are likely involve reduced recruitment, local macrophage death and 

egress of macrophage from the inflammatory site.  

In the present study, utilizing a mouse model of diet- induced obesity, we uncover 

a key role for SR141716A, a CB1 receptor antagonist, in the retention of macrophages in 

the visceral adipose tissue during obesity by triggering neuroimmune guidance cue 

netrin-1 and its receptor Unc5b.Here we show that Netrin-1 and its receptor Unc5b in 

ATMs are markedly suppressed upon SR141716A treatment in DIO mice, and investigate 

the effect of SR141716A beyond its effect on weight loss and diet intake by conducting 

the pair-fed group and body weight matched control to the SR141716A treated group. 

Our data demonstrates that SR141716A suppressed diet intake transiently, however 

weight loss and reduction in fat mass was persistent and consequently the effect of CB1 

receptor blockade on inflammation is independent of its effect on weight loss and diet 
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intake. Suppression of pro-inflammatory macrophages was observed in SR141716A-

treated HFD-fed group followed by down regulation of Netrin-1 and Unc5b in 

macrophages, which results in egression of ATMs from inflammatory adipose tissue, and 

subsequently improvement of insulin resistance and glucose impaired metabolism.  

 

4.2 MATERIALS AND METHODS 

Animals.  

16-18 weeks old male C57BL/6J mice (Jackson Laboratory, Bar Harbor, ME) 

were fed a HFD consisting of 60% Kcal from fat (Research Diets Incs,New Brunswick, 

NJ) or the control age matched fed a LFD consisting of 10% Kcal from fat (Research 

Diets Incs, New Brunswick, NJ). SR141716A was obtained from NIDA and administered 

10µg/kg daily oral gavage in .01% Tween 80 in DI water. All mice were maintained in 

the pathogen free at the AAALAC-accredited animal facility at the University of South 

Carolina, School of Medicine (Columbia, SC).  All procedures were performed according 

to NIH guidelines under protocols approved by the Institutional Animal Care and Use 

Committee. 

 

Analytical procedures. 

The fat content in the mice was analyzed by dual-energy X-ray absorptiometry 

(DEXA, LUNAR, Madison, WI) scanning. The mice were anesthetized and placed in the 

prone position on the specimen tray to allow scanning of the entire body. For food intake 

measurements, mice were given a defined amount of large intact food pellet weekly. 
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Food weight was measured using a balance with a precision of 0.01 g , and cages were 

changed. Solid food intake was corrected for any visible spillage 282  

 

Metabolic parameters assessment  

Fasting concentrations of glucose, insulin, total cholesterol, and triglycerides was 

assessed at the baseline and day 27 (prior to sacrificing day). Animals were fasted for 5 

hours and blood were collected from the tip of the tail. The glucose level in whole blood 

was measured with glucometer (Bayer Contour, MiChawaka, IN). Insulin concentration 

was determined in isolated plasma using Elisa kit (abcam, Cambridge, MA). Total 

cholesterol (Genzyme, Kent, United Kingdom), and triglycerides (Pointe Scientific, 

Canton, Michigan) were determined according to the manufacturer. HOMA index was 

calculated for insulin resistance as previously described 283.  

 

Tissue collection 

After 4 weeks of treatment, mice were sacrificed for tissue collection. Tissues 

were removed, weighed, and immediately snap-frozen in liquid nitrogen and stored at 

−80°C or fixed in 10% formalin until analysis. 

 

Adipocyte and adipose tissue macrophage purification. 

Epididymal fat pads of mice were excised and placed in gentleMACS C Tubes 

(MACS Miltenyi Biotec, San Diego, CA) containing digestion medium (HSBSS,2mg/ml 

collagenase (Sigma-Aldrich, St. Louis, MO) and 2% BSA, and followed to be 

homogenized by utilizing gentleMACS Dissociator (MACS Miltenyi Biotec, San Diego, 
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CA). After incubation at 37 °C for 30 min with shaking, the cell suspension was filtered 

through a 100-µm filter and then spun at 300g for 5 min to separate floating adipocytes 

from the Stromal Vascular fraction (SVF) pellet. Isolation of F4/80 cells from SVF 

isolates was performed by magnetic immunoaffinity isolation with anti-F40/80 antibodies 

conjugated to magnetic beads (10 µl per 1 × 107 cells, EasySep™ FITC Positive 

Selection Kit, Stem Cells Technologies, Vancouver, BC). Cells were isolated using 

positive selection columns before preparation of whole-cell lysates. 

 

Real-time Quantitative RT-PCR Analysis  

RNA (0.5–1 µg) was reverse-transcribed using miScript cDNA Synthesis Kit 

(Qiagen, Valencia, CA), and RT-PCR analysis was conducted using SsoAdvanced™ 

Universal SYBR® Green Supermix kit (Bio-Rad,Hercules, CA) . The primers used are 

listed in Supplementary Table 4. Fold change in mRNA expression was calculated using 

the comparative cycle method (2−ΔΔCt).  

 

Gene expression profiling. 

1 mg of adipose tissue from either lean or obese animals was homogenized in 

RNA-Solv Reagent with OBI’s innovative HiBind® technology reagent (Omega Bio-tek, 

Norcross, GA)) and total RNA isolated as we previously described283. RNA quality was 

verified by NanoDrop 2000C (Thermo Scientific, Waltham, MA). Adipose tissue RNA 

(0.5-1 µg) was reverse-transcribed, and quantitative RT-PCR analysis of the four families 

of the axonal guidance molecules, macrophages markers (iNOS, ARG-1) was performed. 

Data analysis was performed using ΔΔCt-based fold change calculations. 
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miRs expression profiling and analysis.  

The unique expression profile of miR assessed in F4/80 cells isolated from 

adipose tissue by Affymetrix GeneChip miRNA 3.0 array platform. The array contains 

3100 murine-specific probes from Sanger miRBase. Total RNA were 3′-end labeled with 

FlashTag biotin HSR hybridization technique (Genisphere, Hatfield, PA) and was carried 

out according to the manufacturer's instructions (Affymetrix, Santa Clara, CA). 

Correlation of the hybridization signal intensities of all the expressed miRs were log 

transformed and visualized in the form of a heatmap.  Ward’s method was assessed for 

hierarchical clustering of differentially expressed miRs. miRs QC Tool (Affymetrix Inc), 

a software for data summarization, Log2 transformation, normalization and quality 

control, was used as described previously 284 . 

 

Bioinformatics analysis.   

The differentially expressed miRs’ target genes were assessed by miR target 

prediction algorithms miRwalk (http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/), 

miRmap  (http://mirmap.ezlab.org).To carry out an enrichment analysis of predicted 

target genes of miRs in biological pathways, the commercially available analysis tool 

Ingenuity Pathway analysis (IPA), (Mountain View, CA, USA.), was used. IPA predicts 

the top affected Canonical Pathways, causal connections between differentially changed 

miRs and their target genes, downstream effect along with their upstream regulators. The 

Molecular Activity Predictor (MAP) feature of IPA was performed to predict the 

downstream effect of the differentially expressed miRs which were overlaid to the dataset 
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including miRs probes, fold changes and the p Values. Gene ontology was assessed in 

Cytoscape platform using CluGo app 285.  

 

 

ELISA assays. 

Netrin-1 (USCN Life science, Houston, TX) levels were measured in the serum or 

cell supernatants using mouse standards according to manufacturer's guidelines.  

 

 

Migration. 

The migration of macrophages to CCL19 (500 ng/ml, R&D Systems) was 

assessed by FluroBlok permeable inserts (Corning, Tewksbury, MA) and Cytation5 

imaging (BioTek, Winooski, VT). Peritoneal macrophages were harvested from the 

primed mice with 1ml of 3% (wt/vol) thioglycolate to elicit peritoneal exudates with 

macrophage number peaking on day 4. Inter-peritoneal wash performed to collect 

macrophages. For tracking macrophage migration towards chemoattractants, 

macrophages were labeled with DiIC12(3) Fluorescent Dye (Corning, Tewksbury,MA). 

Macrophages were treated with conditioned media from 3T3-L1 adipocytes differentiated 

as described 286. Then later, Macrophages were treated either with SR141716A (10-6 M) 

or DMSO as the vehicle 287.  
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Western blot analysis. 

Western blot analyses were carried out according to standard protocols with 

antibodies raised against netrin-1 (R&D Systems, Minneapolis, MN), γ-tubulin (Sigma-

Aldrich, St. Louis, MO) was used as loading control. 

 

Molecular docking   

 

The structure of the Rimonabant (SR141716A) (Compound ID: 104850) 

compound was downloaded from the Pubchem compound database, an open repository 

for small molecules and their respective experimental biological activity 288. The 3D 

coordinates of the X-ray Crystal Structure of Mouse Netrin-1(PDB ID: 4OVE) 289 for 

Netrin-1 and the crystal structure of the UNC5H2 death domain (PDB ID: 1WMG) 300 for 

UNC5B were retrieved from the Protein data bank [5]. Molecular docking was performed 

using the Autodock 4.2 301. Structures were analyzed using PyMOL (PyMOL Molecular 

Graphics System, Version 1.7.4.5 Schrödinger, LLC).  

 

Transfection and reporter gene assay. 

 

Bone Marrow Derived Macrophages (BMDM) were transfected with a plasmid 

with a Renilla luciferase (transfection efficiency control) and 3’UTR AGAP-2 (Gene 

Accession: NM_001301014.1UTR Length:  808 bp ( -383 - 787 bp ) ) of a Firefly 

luciferase reporter gene. Cloning details was as follow: the whole plasmid size:7097, 

Vector: Pezx-MT06, Promoter: SV40, Antibiotic Ampicillin, 5' Cutting Site:   AsiSI, 
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EcoRI, BsiWI3' , Cutting Site :   XhoI,SpeI with sequencing Primers Forward:  5'-

GATCCGCGAGATCCTGAT-3' Reverse:  5'-CCTATTGGCGTTACTATG-3' 

(GeneCopeia TM , Rockville, MD). Firefly luciferase expression is therefore suppressed 

by the corresponding endogenous miR level in the cell. The day after the cell cultures 

were transfected with miR-762 miRCURY LNA™ microRNA Inhibitor(5nM) (Exiqon, 

Woburn, MA).  Lipofectamine® RNAiMAX Transfection Reagent (ThermoFisher 

Scientific, Waltham, MA) was used for delivery of oligos into the cell.   

 

Statistical Analysis.  

 

  For the in vivo mouse experiments, 10 mice were used per experimental group, 

unless otherwise specified. For in vitro assays, all experiments were performed in 

triplicate. Body weight, body composition outcomes, and metabolic outcomes were 

analyzed using a repeated measures two-way ANOVA. For statistical differences, one-

way ANOVA was calculated for each experiment.  Tukey’s post-hoc test was performed 

to analyze differences between groups.  A p value of ≤ 0.05 was considered statistically 

significant. 

 

4.3 RESULTS 

 

SR141716A Effect on body weight, calorie intake, and body composition 

In consistent with previous studies, blockade of cannabionoid  CB1 receptors with 

SR141716A resulted in transient reduction of calorie intake and persistent weight loss in 
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diet-induced obesity mice(Fig 4.1A, 4.1B) 293,294.  The acute reduction in calorie intake 

with SR141716A treatment in DIO phenotype was diminished by day 9 of treatment. The 

average of daily calorie intake in HFD+SR group became close to the average of daily 

calorie intake of HFD+Vehicle group through the end of the study (Fig 4.1C). 

Interestingly, the weight loss with SR141716A treatment in DIO phenotype (HFD+SR) 

was sustainable regardless of markedly high calorie intake.  In order to examine the effect 

of SR141716A beyond its effect on diet intake, pair-feeding was performed in pair-fed to 

SR141716A (PFSR) group 295. The diet intake was restricted in PFSR group to the 

amount of daily diet intake of HFD+SR group.  

At the baseline of study, the mice were normalized and grouped based on the fat 

mass composition. After 4 weeks of treatment the body composition was assessed. 

Reduction in the fat mass and fat percentage was significant in HFD+SR group in 

compare to both HFD+Vehicle and PFSR groups, while the changes in lean mass was 

ignorable (Table 4.1). Taken together, our data suggested that blocked of cannabinoid 

CB1 receptors in DIO phenotype resulted in amelioration of obesity independent of its 

effect on calorie intake. 

 

 

SR141716A effect on metabolic profile  

Fasting blood glucose, Insulin, insulin resistant index (HOMAindex), cholesterol 

and Triglycerides was examined at the baseline and prior to the sac day on (Day 27). Our 

data demonstrated improvement in metabolic parameters of DIO mice with SR141716A 

intervention treatment (HFD+SR) in compare to vehicle-treated DIO mice 
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(HFD+Vehicle) (Fig 4.2A-4.2E). The remarkable improvement in metabolic profile in 

SR141716A treated-DIO mice (HFD+SR) in compare to the pair-fed (PFSR) group was 

the proof of independent effect of SR141716A treatment from its effect on calorie intake.  

 

 

Effect of SR141716A on adipose tissue macrophages and their microRNA profile 

In order to study the anti-inflammatory effect of cannabinoid CB1 receptor 

antagonist on adipose tissue, we examined the M1 (pro-inflammatory) and M2 (Anti-

inflammatory) macrophages profile. The lower iNOS expression along with the higher 

expression of Arg-1 induced the anti-inflammatory state in adipose tissue of DIO mice 

following SR141716A intervention treatment.  Previously we have assessed the 

comprehensive cytokinesis both systematically and locally in DIO phenotype following 

treatment with SR141716A.  Our study demonstrated the shift from M1 macrophages to 

the anti-inflammatory M2 macrophages following SR141716A treatment. Induction of 

anti-inflammatory state in SR141716A-treated DIO mice was constant in our study. In 

order to a have better understanding in underlying mechanism in attenuation of 

inflammation, we performed high throughput analysis of microRNA profile in adipose 

tissue macrophages.   

For the first time we isolated the total RNA from the infiltrated macrophages in 

adipose tissue. The F4/80 cells were isolated from the stromal vascular fraction of 

adipose tissue in different groups of the study. The heatmap from the microRNA (miR) 

microarray expression data revealed noticeable differences in fold change intensities 

between the different groups (Fig 4.3A).  Approximately 5.7% of miRs were either over-
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expressed (36) or under-expressed (141) greater than or equal to 2 fold-change following 

SR141716A treatment in DIO (HFD+SR) group in compare to vehicle-treated DIO 

(HFD+Vehicle) group, while 6.09% of miRs were significantly changed in SR141716A-

treated DIO (HFD+SR) group in compare to its pair-fed (PFSR) group (164 up-regulated, 

25 down-regulated) (Fig 4.3B,4.3C).  

On further analysis we identified the targeted gene ontology of dysregulated miRs 

using Cytoscape analysis module. Regulation of immune system processes was the main 

effected pathway following SR141716A treatment in DIO phenotype (Fig 4.3D). To have 

a better understanding, we performed further analysis using Ingenuity Systems IPA. The 

interaction between miRs and their targeted gene following SR141716A treatment in 

DIO phenotype demonstrated distinctive changes in the miR profile which skews the 

adipose tissue macrophage balance to more anti-inflammatory macrophages 

(M2,Arginase +) (Fig 4.3E) 

 

Independent effect of SR141716A from diet restriction on miR profile 

In order to investigate the effect of SR141716A on miR profile independent of its 

effect on calorie restriction, the overlaid of the altered miR following SR141716A with 

altered miR in pair-fed group were selected. Dual color bar graph and Pearson correlation 

of altered miR in SR+HFD group (Log2 fold change of HFD+SR in comparison with 

HFD+Vehicle) and  PFSR group (Log2 fold change of HFD+SR in comparison with 

PFSR), summarized the selected altered miR in HFD+SR group independent of its effect 

on diet restriction (Fig 4.4A,4.4B). Interestingly, we uncovered the novel role of the 

altered miR in induction of anti-inflammatory M2 macrophages by targeting the M2 
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related transcription factors (STAT3, STAT6, LCN2, KLF4, PPARg, SIRT1) using 

Ingenuity Systems IPA (Fig 4.4C). The list of corresponding targets and miR, along with 

their algorithm has been summarized (Table 4.2). More interestingly, for the first time we 

uncovered that most of the miR members of miR-466 family has been down-regulated 

following SR141716A treatment regardless of calorie intake. miR-466 family mimic anti-

inflammatory state in adipose tissue by targeting the anti-inflammatory M2 macrophages 

transcription factors such as KLF4, and STAT6.  RT-PCR for miR-466 family from the 

ATMs validated their down-regulation following SR141716A treatment (Supplementary 

fig 4.1A).  

 In order to validate the effect of miR-466 family in induction of M2 phenotype in 

ATMs, peritoneal macrophages were isolated following thyogicolate ip. injection. 

Macrophages were then cultured in conditioned media from differentiated 3T3-L1cells to 

adipocytes following transfection with miR-466i and miR-466f LNA TM power  

inhibitors. KLF4 and STAT6, the transcription factors of M2 macrophages, were 

significantly over-expressed following miR-466 inhibition (Supplementary Fif 4.1B). 

Thus, intervention treatment of DIO mice with SR141716A (Cannabinoid CB1 receptor 

antagonist) potentially restore the balance of M1 and M2 macrophages in adipose tissue. 

 

SR141716A ameliorates ATM retention in adipose tissue 

 The recent studies demonstrated the potential role of the neuroimmune guidance 

cue Netrin-1 in promoting the defective migration of ATMs in obese phenotype 274. 

Higher expression of Netrin-1 in ATMs of obese phenotype, and its interaction with 

Unc5b receptor resulted in ATMs retention in adipose tissue and subsequently chronic 
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inflammation followed by insulin resistance.  Previously we demonstrated the significant 

less frequency and number of pro-inflammatory M1 macrophages in adipose tissue of 

HFD+SR treated group in compare to HFD+Vehicle group. Interestingly, we uncovered 

the unknown effect of SR141716A in attenuation of chronic inflammation in adipose 

tissue, by effecting Netrin-1 and its receptor Unc5b in ATMs. The level expression of 

Netrin-1 at both protein and transcription level was significantly reduced following 

SR141716A treatment in DIO (HFD+SR) mice in compare to vehicle-treated DIO 

(HFD+Vehicle) mice (Fig 4.5A, 4.5B). Subsequently, Unc5b was down-regulated in 

HFD+SR group in compare to HFD+Vehcile group (Fig 4.5C). Systematic changes in 

Netrin-1 was assessed in serum of DIO mice either treated with SR141716A or vehicle as 

well as age-matched LFD group. The similar level of Netrin-1 was detected in all the 

groups (Supplementary Fig 4.2A). Netrin-1 concentration in supernatant of the cultured 

BMDM in conditioned media from differentiated 3T3-L1 cells to adipocytes, revealed 

that treatment with SR141716A significantly reduced the Netrin-1 level in compare to 

vehicle treated BMDM (Supplementary Fig 4.2B). Relative expression of the Netrin 

family and its corresponding was examined in LFD+Vehicle, HFD+Vehicle ,and 

HFD+SR groups ( Supplementary table 4.2) 

Herein, for the first time we revealed the molecular mechanistic effect of 

SR141716A on macrophage retention in adipose tissue via AGAP-2, a negative regulator 

of Unc5b, through altered profile of miRNA. Filtering the Ingenuity Systems IPA 

modules to the neuroimmune guidance cue canonical pathways, demonstrated the novel 

series of miR in targeting upstream negative regulator of Unc5b. Assessing the down-

stream effect of the interaction of AGAP-2 and altered miR following SR141716A 
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treatment in ATMs with MAP (Molecular Activation Predictor) module in IPA, revealed 

distinctive down-regulation of Unc5b in ATMs following SR141716A (Fig 4.5D). 

In order to validate the direct interaction of miR-762 and Unc5b, treated Bone 

Marrow Derived Macrophages (BMDM) with conditioned media from differentiated 

3T3-L1into adipocytes, were transfected with a plasmid with a Renilla luciferase 

(transfection efficiency control) and 3’UTR AGAP-2 of a Firefly luciferase reporter gene. 

Firefly luciferase expression is therefore; suppressed by the corresponding endogenous 

microRNA level in the cell. The day after the cell cultures were transfected with miR-762 

miRCURY LNA™ microRNA Inhibitor(5nM). Higher activity of the reporter gene 

demonstrated the direct interaction of AGAP-2 and miR-762 (Fig 4.5E) 

 

Interactions of SR141716A with Netrin-1 and UNC5B  

Results from molecular docking of SR141716A with Netrin-1 showed that 

SR141716A show polar interaction with the SER206 present in the Netrin-1 N-terminal 

domain VI (Fig 4.6B and 4.6C) with a binding energy of -7.13 kcal/mol and inhibition 

constant (Ki) of 5.94 µM. Further, results from molecular docking of SR141716A with 

Unc5b death domain showed that SR141716A has a polar interaction with the LEU927 

(Fig  4.6E, 4.6F and 4.6G) with a binding energy of -7.55 kcal/mol and Ki of 2.9 µM 

 

SR141716A inhibits macrophage retention in adipose tissue  

Recently it has been reported that over-secretion of netrin-1 from ATMs inhibits 

their egress from the adipose tissue and subsequently causes low-grade chronic 

inflammation which leads to metabolic dysfunction 274. Therefore; we hypothesized that 
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SR141716A inhibits ATMs retention in visceral adipose tissue by promoting macrophage 

emigration from the adipose tissue. To test this, we isolated peritoneal macrophages from 

thioglycolate stimulated mice, and cultured them in the presence of conditioned media 

from differentiated 3T3-L1 cells into adipocytes. The peritoneal macrophages were 

treated either with SR141716A or DMSO as a vehicle. Then after, their migration rate 

towards CCL19 was measured. CCL19 is the main chemokine which is implicated in 

emigration of tissue macrophages towards draining lymph node. Notably, SR141716A-

treated macrophages exhibit higher migration to CCL19 than DMSO-treated 

macrophages (Fig 4.7A), though the level expression of CCL19 receptor Ccr7 was 

equivalent in both groups (Fig 4.7B). According to these data, we postulated that 

SR141716 attenuates the over-secretion of Netrin-1 from ATMs in obese phenotype, and 

potentially promotes their emigration from adipose tissue, which leads to amendment of 

chronic inflammation in adipose tissue, and subsequently ameliorates the associated-

metabolic dysfunction.  

 

 

4.4 DISCUSSION 

In consistent with previous studies, our study confirmed the beneficial effect of 

cannabinoind CB1 receptor antagonist, specifically SR141716A, as an interventional 

treatment in obese phenotype 296,297,298,299. The transient reduction in calorie intake and 

sustained shrinkage of the fat mass, following SR141716A treatment, was demonstrated 

in our study and previous studies 295. Furthermore, previously we discovered the anti-

inflammatory effect of SR141716A treatment both systematically (serum) and locally 
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(colon, adipose tissue) in DIO phenotype. We revealed the beneficial effect of 

SR141716A on chronic inflammation and metabolic dysfunction in DIO phenotype, 

beyond its effect on restriction of calorie intake, by conducting the pair-feeding to 

SR141716A control. The clear link between between ATM retention, sustained chronic 

inflammation, and metabolic dysfunction within DIO phenotype has been well-

established 300-307. Herein, in continuation with our earlier study, we demonstrated the 

skew in ATMs population towards less pro-inflammatory M1 macrophages following 

SR141716A treatment in DIO phenotype.  

The direct molecular mechanism of SR141716A, in regulating the resolution of 

inflammation in adipose tissue remain elusive, but is likely to comprise reduced retention, 

efferocytosis and macrophage death, as well as alteration in ATMs polarization. Our 

results uncovered a key role for dysregulated miR in ATMs following SR141716A in 

mediating anti-inflammatory state in adipose tissue of DIO phenotype. Notably, we 

identified down-regulation of miR family, miR-466 following SR141716A treatment 

(HFD+SR) in compare to vehicle treated DIO mice (HFD+Vehicle). miR, negative 

regulators of gene expression, regulates 90% of gene function including different 

pathways. The main target genes of the miR-466 family are KLF4 and STAT6. Previous 

study revealed the key role of Krüppel-like factor 4 (KLF4) in regulating macrophage 

polarization 308,309. Furthermore, the loss of the function study of KLF4 in mice bearing 

myeloid-specific deletion of KLF4 (LysMCre/CreKlf4fl/fl, designated Mye-KO) 

exaggerated DIO phenotype and metabolic dysfunction (glucose intolerance and insulin 

resistance) 310. Interestingly, our data suggested that dysregulated family of miR-466 

following SR141716A treatment was involved in the cooperative interaction of KLF4 
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and STAT6 in polarization of M2 macrophages. The effect of SR141716A on miR-466 

family was beyond its effect on calorie intake.  

Furthermore, we identified the unique interaction between altered miR in 

HFD+SR group and molecules involved in neuroimmune guidance cue pathway. 

However; for the first time our data uncovered that therapeutic properties of SR141716A, 

in attenuation of adipose tissue inflammation, is implicated in targeting Netrin-1 and its 

receptor Unc5b in ATMs. Recent study demonstrated the novel role of neuroimmune 

guidancecue, Netrin-1 and its receptor Unc5b in regulating the chemotaxis behavior of 

ATMs 274. Indeed, less accumulation of ATMs in adipose tissue of HFD-fed Ntn1 -/- mice 

was identified in compare to HFD-fed wild type mice. The key regulatory role of Netrin-

1 in leukocytes transmigration into tissues (intestine, kidney ,and atherosclerosis plaques) 

was defined earlier 311,312,313. Indeed, abundant expression of Netrin-1 in residual 

macrophages of atherosclerotic plaques, exacerbate the disease state by attracting more 

macrophages to the site of inflammation 314. Additionally; higher expression of Netrin-1 

in endothelial cells of Apoe -/-  , and Ldlr -/- mice ameliorates atherosclerosis by inhibiting 

the leukocyte recruitment 315. Thus, conditional deletion of Netrin-1 and Unc5b in 

macrophages is desired to eliminate the off target effect of Netrin-1 deletion in other cells 

such as endothelial and epithelial. Outstandingly, SR141716A can be considered as an 

effective potential therapy in attenuation of chronic low-grade inflammation in adipose 

tissue, by targeting Netrin-1 and Unc5b exclusively in macrophages. Further 

investigation is required to identify and cover all the potential off targets of SR141716A 

therapy entirely. 
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Recently, the key functional role of Netrin-1 as the monocyte chemoattractant 

signals identified by monitoring the migration pattern of macrophages into and out of 

atherosclerotic plaques as well as adipose tissue of DIO phenotype 316,317. Utilizing the 

fluorescent microspheres monocyte labeling technique in HFD-fed Ntn1-/-  mice, 

demonstrated less retention of macrophages in adipose tissue and more emigration of 

them into drainage lymph node (Mesynteirc lymph node) 274. We demonstrated herein 

that cultured peritoneal macrophages in harvested medium from 3T3-L1 adipocytes, 

show higher migration to CCL19 in presence of SR141716A in compare to DMSO, 

despite equivalent expression of Ccr7 (CCL19 receptor). Therefore; we hypothesized that 

Netrin-1 in ATMs potentially was affected following SR141716A treatment, and 

subsequently leads to lesser frequency of macrophages in adipose tissue. 

 Although the implication of Netrin-1 in ATMs retention has been uncovered, but 

the underlying mechanism remain poorly defined. Herein, for the first time we identified 

the key role of AGAP-2, as the negative regulator of Unc5b in ATMs. Earlier the direct 

association of AGAP-2 and Unc5b in cancer cell line in a P53 dependent manner was 

identified 318. The over-expressed AGAP-2 fades Unc5b expression, inversely knocked 

down AGAP-2 intensifies Unc5b expression. Notably, you uncovered the role of miR-

762 in regulating AGAP-2 and the down-stream effect is ruling the association of Netrin-

1 and Unc5b in ATMs.  

Netrin-1 is an approximately 600 residue molecule (Uniprot ID: O09118) 

comprising of an N-terminal domain VI, three laminin-type epidermal growth factor (LE) 

repeats (V-1, V-2, and V-3) and a positively charged C-terminal domain 34(Figure 6a). 

Netrin-1 is known to show its activity through its main receptors Deleted in Colorectal 
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Carcinoma (DCC) and UNC5-homolog (UNC5H, i.e., UNC5A, UNC5B, UNC5C, 

UNC5D, or UNC5H1-H4) 319. These receptors upon binding to netrin-1 induce signals 

leading to the activation of MAPK or PI3K proteins 320,321 whereas unbound forms of 

these receptors trigger apoptosis 322,323. A previous study showed that the Ig1 domain of 

UNC5H2 is the primary interaction domain for the V-2 domain of netrin-1289. Our 

results, showed that SR141716A treatment has a significant change in the protein or 

mRNA levels of Netrin-1 and its receptor UNC5H2. Therefore, in order to check whether 

SR141716A has a role in blocking the Netrin-1 /UNC5H2 interaction by binding to the 

V-2 domain of netrin-1, we have performed molecular docking to search the entire 

surface of netrin-1 324. Results showed that SR141716A has polar interactions with the 

SER206 present in the Netrin-1 N-terminal domain VI (Figure 6c) indicating that 

SR141716A may not have a role in blocking the Netrin-1 /UNC5H2 interaction.  

UNC5B on the other hand, is a 604 residue molecule (Uniprot ID: Q8K1S3) 

comprising of a transmembrane region followed by ZU5, UPA and death domain 325. The 

complete three dimensional structure of UNC5B is not available and only the structure 

for death domain is available. Interaction analysis for SR141716A with netrin-1 showed 

that it is not interacting in the region of Netrin-1 /UNC5H2 interaction. Therefore, in 

order to predict the interacting residues on UNC5B with SR141716A we have performed 

docking to search the entire surface of UNC5B. Results showed that SR141716A has 

polar interactions with the LEU927 of the UNC5B death domain (Figure 6g). Further, 

these molecular docking analyses showed that UNC5B death domain has a lowest 

binding energy (-7.55 kcal/mol) indicating that it has a high binding affinity for 

SR141716A compared to Netrin-1 (-7.13 kcal/mol). The study provides an insight into 



 
 

115 

the role of SR141716A in the induction of activity for netrin-1, netrin-1 related receptors. 

However; further investigation is required for uncovering the potential effect of 

SR141716A on other neuronal immune guidance cue families such as Slit, Ephrin, 

Semaphorin and their related receptors in ATMs. 
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Figure 4.1 SR141716A ameliorates DIO phenotype by inducing weight loss. DIO 
mice were treated orally with either SR141716A (10mg/kg/day, HFD+SR) or Vehicle 
(.1% Tween 80) for 4 weeks and received HFD ad libitum. Pair-feeding to HFD+SR 
group was performed in PFSR group in order to consider the effect of SR141716A 
beyond its effect on diet intake. (A)Weekly body weight of each group of mice is shown 
during the whole period of treatment. (B)  Weekly energy intake during 4 weeks’ 
treatment with SR141716A in diet-induced obesity mice (C) average of daily diet intake 
for the period of stable diet intake (Day9-day28) (n=9-10).  Repeated data were analyzed 
using Generalized Estimating Equation (GEE) method in SPSS.  Groups were compared 
to the HFD+Vehicle control. Statistical significance was set with an alpha value of **p < 
0.01, #p < 0.05, ns (not significant).  
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Table 4.1 SR141716A causes significant shrinkage of fat mass. Body composition 
including fat mass, lean mass and fat percentage was assessed at baseline and after 4 
weeks of treatment using Dual Energy X-ray absorptiometry (DEXA).  Values are not 
sharing superscripted letters (a,b) differ significantly over time (p < 0.05). Values are not 
sharing superscripted symbols (#, @, &) differ significantly among different treated 
groups (p < 0.05).  
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Figure 4.2  SR141716A intervention treatment ameliorates metabolic dysfunction in 
DIO phenotype. Fasted metabolic parameters assessed at the baseline and prior to the 
sacrificing day (Day 27). (A) Fasting blood glucose (B) Insulin concentration (C) HOMA 
index =fasting insulin(µU/ml) x fasting glucose (mmol/l) /22.5 (D) Total cholesterol 
concentration  (E) Triglycerides concentration. Data were analyzed using one-way 
ANOVA, (n=9-10), significant differences from HFD+Vehicle group was demonstrated 
(#p < 0.05, ns (not significant)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Week 12 Week 16
0.7

0.8

0.9

1.0

1.1

Weeks of Diet

Tr
ig

ly
ce

ri
de

s 
(m

m
ol

/l)
 LFD+Vehicle

HFD+Vehicle

HFD+SR

PFSR

#

#
#

LFD+V
eh

icl
e

HFD+V
eh

icl
e

HFD+S
R

PFSR
0
2
4
6
8

10
12
14

R
el

at
iv

e 
ex

pr
es

si
on

  o
f

 iN
O

S 
an

d 
A

rg
-1

iNOS

Arg-1

a a
b b

#

&

&

^

E 

A 

B 

 Figure 4.2 



 
 

120 

 

 

 

 

 

 

 

 

 

 

 

 

HFD+ Vehicle Vs LFD+ Vehicle 

HFD+SR141716A Vs HFD + Vehicle 

Pair-fed to SR141716A Vs +HFDSR141716A 

197 71 

141 36 

164 25 

C 

D 



 
 

121 

 

 

Figure 4.3  SR141716A treatment in DIO phenotype skew the ATMs balance to less 
Pro-inflammatory M1 and more Anti-inflammatory M2 macrophages. Changes in 
M1 and M2 expression in ATMs were assessed following SR141716A treatment in DIO 
mice. (A) RT-PCR from epididymal fat mass for iNOS and ARG-1. Data were analyzed 
using one-way ANOVA. Groups with different super-scripted letter or symbols are 
significantly different from each other (p < 0.05). (B) Differential expression heat map of 
3100 miRs between different treated group from F4/80 selected cells in adipose tissue (C) 
Cluster analysis of microRNAs showed that 36 miRs were up-regulated while 141 were 
down-regulated upon SR141716A administration compared to HFD+Vehicle group. Also 
164 were up-regulated while 25 were down-regulated compared to Pair-fed to 
SR141716A group. (D) Go enrichment mapping. miR target genes in HFD+SR were 
analyzed for GO enrichment and mapped for GO category: immune system process, 
using Cytoscape suite with ClueGo and CluePedia plugins. Two –sided hypergeometric 
statistic was performed with Kappa Score threshold setting of 0.3. Enrichment depletion 
were calculated based on Benjamini-Hochberg Correlated p values of <0.05. (E) 8. 
Interactions between the microRNAs and their target genes were assessed by Ingenuity 
Pathway Analysis (IPA) software.  SR141716A treatment changes the microRNA profile 
which skews the adipose tissue macrophage balance to more anti-inflammatory 
macrophages (M2, Arginase+) 
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Figure 4.4 miR-466 family targets M2 polarization in DIO was down-regulated 
following SR141716A, the effect is beyond of SR141716A effect on diet restriction.  
Isolated miRs from ATMs were filtered to exclusively altered miR following 
SR141716A treatment (A)Dual color bar graph of modified miRs due to the effect of 
SR141716A treatment beyond its effect on calorie restriction. (B) Correlation plot of 
Log2 fold change of (HFD+SR vs HFD+Vehicle) and Log2 fold changes of (HFD+SR vs 
PFSR) was conducted. Correlation R 2= 0.648 (univariate regression).(C) IPA analysis 
from filtered miRs revealed the family of miR-466 which is involved in M2 polarization 
in ATMs following SR141716A. 
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Table 4.2 Summary of the unique miRs targets M2 polarization in ATMs, following 
SR141716A treatment in DIO phenotype. The applied algorithm, down-stream effect 
of altered miRs following SR141716A, target genes, and the log2 fold changes was 
summarized in Table 2. 
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Figure 4.5 SR141716A treatment changes the miR profile which modifies the 
adipose tissue macrophage retention via negative regulator of neuroimmune 
guidance cue, AGAP-2.  ATMs from different treated groups were examine for the 
changes in the level of nueroimmune guidance cue (A) Relative expression of Ntn-1 was 
assessed by RT-PCR and (B) western blot. (C) Relative expression of Unc5b was 
assessed by RT-PCR. (D) Interactions between the miR and their target genes were 
assessed by Ingenuity Pathway Analysis (IPA) software, filtered in neuroimmune 
guidance cue canonical pathway and MAP module was applied for down-stream effect 
prediction. (E) Bone Marrow Derived Macrophages (BMDM) were transfected with a 
plasmid with a Renilla luciferase (transfection efficiency control) and 3’UTR AGAP-2 of 
a Firefly luciferase reporter gene. Firefly luciferase expression is therefore suppressed by 
the corresponding endogenous microRNA level in the cell. The day after the cell cultures 
were transfected with miR-762 miRCURY LNA™ microRNA Inhibitor(5nM). Reporter 
gene expression was measured with a Dual Luciferase assay 24 hours after transfection. 
Data are shown as means ± SD. Statistical significance was set with an alpha value of *p 
< 0.05(student t-test) 
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Figure 4.6 Interactions of SR141716A with Netrin-1 and UNC5B. (A) shows the three 
dimensional structure of Netrin-1 with N-terminal domain VI (47-284) represented in 
orange, Laminin epidermal growth factor (EGF) like 1 (285-340) domain represented in 
green color, Laminin epidermal growth factor (EGF) like 2 (341-403) domain represented 
in yellow color , Laminin epidermal growth factor (EGF) like 3 (404-453) domain 
represented in magenta color and remaining regions were coloured in grey (B) Surface 
model of the docked Rimonabant with Netrin-1 where Netrin-1 is shown as surface and 
SR141716A is shown as sticks (C) Amino acid interactions of Netrin-1 N-terminal 
domain VI  (cartoon) and SR141716A (sticks) with polar contacts shown in yellow color 
dotted lines (D) shows the three dimensional structure of UNC5B death domain (854-
929) with helices represented in red and loops in green color (E) Surface model of the 
docked SR141716A with UNC5B where UNC5B is shown as surface and SR141716A is 
shown as cyan color sticks (F) shows the SR141716A interacting UNC5B with the 
binding pocket represented in green color mesh (G) Amino acid interactions of UNC5B 
death domain (cartoon) and SR141716A (sticks) with polar contacts shown in magenta 
color dotted lines. 
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Figure 4.7 SR141716A inhibits macrophage retention in adipose tissue. (A) 
Macrophage isolated from peritoneal wash of treated mice with 3%thyoglycolate. 
Isolated macrophages were stained in Dilc(12)3 and treated with SR141716A or Vehicle. 
Migration assay towards CCL19(500 ng/ml) was assessed by seeding 2.5*105  
macrophages in serum reduced conditioned medium from differentiated 3T3L-1 into 
adipocytes in  fluroblock plates. 12 hours later the migrated cells were quantified by 
Cytation5. (B)Real-time PCR was conducted for CCR7 receptor. SR141716A does not 
have any effect on the expression of CCR7 in macrophages. Data are shown as means ± 
SD. Statistical significance was set with an alpha value of **p < 0.01 (student t-test). 
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Supplementary figure 4.1 Down-regulated miR-466f and miR-466j* in DIO 
phenotype following SR141716A resulted in M2 polarization. ATMs were isolated 
from different treatment groups in our study. (A) RT-PCR for miR-466 family (B) RT-
PCR for KLF4 and STAT6 after in BMDM which were transfected with LNA power 
inhibitors for miR-466f and mir-466j*. Vertical bars represent mean ± SD Values with 
different superscript letters are significantly different, (P<0.01) according to post hoc 
ANOVA one-way statistical analysis. 
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Supplementary figure 4.2 SR141716A suppressed Netrin-1 secretion from BMDM. 
Systematic level of Netrin-1 was examined in serum of different study groups. (A) 
Netrin-1 concentration in serum. Vertical bars represent mean ± SD. According to post 
hoc ANOVA one-way statistical analysis, the differences between groups were not 
significant (B) Cultured BMDM in conditioned media from 3T3-L1 adipocytes were 
treated either with SR141716Aor DMSO (Vehicle). After 24 hours of treatment the 
supernatant were harvested for Netrin-1 Elisa. Vertical bars represent mean ± SD. Data 
were analyzed with Student t-test with ****p<.0001. 
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Supplementary Table 4.1 Primers sequences. The forward and reverse sequences of 
each primer used in the study.  

 
 
 
 
 
 
Supplementary Table 4.2 Neuronal guidance cue gene expression in HFD+Vehicle 
vs. LFD+Vehicle, and HFD+SR vs. HFD+Vehcile groups. The level expression of 
neuronal guidance cue and their receptors in epididymal fat mass of different group 

studies.  
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CHAPTER V: SUMMARY AND CONCLUSION 

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), is an environmental contaminant 

and a potent ligand for AhR.  Recent studies suggested that AhR activation by TCDD 

induces the expression of Foxp3, a marker on Tregs responsible for immunosuppression.  

The precise mechanisms through which AhR activation up-regulates Foxp3 expression in 

T cells is not clear. 

In the current study, we investigated the role of microRNA (miR) and epigenetic 

markers in TCDD-induced expression of Foxp3 in T cells activated by Staphylococcal 

Enterotoxin B (SEB). We studied the effect of TCDD on purified Foxp3+Tregs from 

Foxp3/GFP knock-in mice injected with SEB, and treated with either vehicle or TCDD. 

Our studies showed that TCDD treatment decreased the percentage and numbers of SEB-

activated Vβ8+ T cells while promoting Foxp3+ Vβ8+ Tregs.  TCDD also suppressed 

pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-6) and induced anti-inflammatory 

cytokines (IL-10, and TGF-β). High throughput miR analysis followed by in silico 

analysis demonstrated that miRs induced by TCDD regulated several epigenetic 

pathways, that impacted the expression of Foxp3. 

Specifically, TCDD-mediated over-expression of miR-491 and miR-148a caused 

demethylation within the Foxp3 promoter region by targeting DNMT3a and DNMT3b.  

Moreover, reduction in DNMT3a and DNMT3b resulted in increased acetylation of 
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histone H3, which in turn led to promotion of the interaction with KLF10/SP-1, and 

consequent induction of Foxp3+. 

This was also supported by the findings that TCDD down-regulated the 

expression of miR-31 and miR-26b and consequently induced the expression of KLF10 

and SP-1, respectively.  Interestingly, miR-31, was found to be complementary to the 3’-

UTR of Foxp3 and CYP1A1 and induced the expression of these genes. Together, our 

studies demonstrate that AhR activation triggers miRs that cross-talk with multiple 

epigenetic pathways leading to the induction of Foxp3 and consequently, immune 

regulation. 

In the third and forth chapters, we investigated the chronic inflammation in diet-

induced obesity model. Obesity is characterized by chronic low-grade, systematic 

inflammation, altered gut microbiota and gut barrier disruption. The endocannabinoid 

system (eCB) plays a major role in the regulation of inflammation and metabolic 

disorders associated with obesity. In the current study, we investigated the effect of 

treatment of mice with SR141716A, a cannabinoid receptor1 (CB1) antagonist, on Diet 

Induced Obesity (DIO), specifically whether such a treatment can induce changes in gut 

microbiota and anti-inflammatory state in adipose tissue. 

Blockade of CB1 receptor reduced plasma LPS level, circulating inflammatory cytokines 

and the trafficking of M1 macrophages into the adipose tissue. This decreased 

inflammatory tone was associated with a lower intestinal permeability and improved 

hyperglycemia and insulin resistance. Analysis of fecal samples using 16S rRNA 

metagenomic sequencing to investigate alterations in the gut microbiome, revealed that 

treatment with SR141716A dramatically increased the relative abundance of 



 
 

135 

Akkermansia muciniphila within the Verrucomicrobia phylum. Drastic reduction in 

immunogenic Lanchnospiraceae and Erysipelotrichaceae with SR141716A treatment was 

beyond its effect on the weight loss and diet intake. High level of anti-inflammatory 

propionate and butyrate in cecal content of SR141716A treated group was also detected. 

Our data suggest that blocking of CB1 receptors ameliorates obesity by restoring gut 

microbiome and consequently their metabolites which modulate macrophage 

inflammatory mediators. 

Retention of Macrophages in adipose tissue is associated with high expression of 

neuroimmune guidance cue netrin-1 and its receptor UNC5B which are involved in 

chemotaxis. Suppression of pro-inflammatory macrophages was observed in 

SR141716A-treated HFD-fed group followed by down regulation of netrin-1 and UNC5B 

in macrophages. Molecular docking studies demonstrated interaction of SR141716A with 

both netrin-1 and UNC5B. Microarray and in silico analysis demonstrated that  miRs 

induced by SR141716A regulated several pathways including macrophage migration.  

Specifically, we uncovered that SR141716A treatment down-regulated miR-466 family 

that regulate transcription factors such as KLF4 and STAT6 leading to promotion of M2 

polarization.  Also, miR-762 which was down-regulated following SR141716A 

treatment, was found to be complementary to the 3’-UTR of AGAP-2 gene, a negative 

regulator of netrin-1 receptor, UNC5B.    

Thus, for the first time, we demonstrate that blockade of CB1 receptors leads to 

altered miR expression in adipose tissue macrophages that regulate netrin-1 and some key 

transcription factors leading to polarization to M2 macrophage phenotype and increased 

migration of such cells from adipose tissue leading to attenuation of obesity. 
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