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SUMMARY 

 

 

Surface roughness affects bone formation around orthopaedic implants in vivo  

and osteoblast functions in vitro.  Osteoblast-like MG63 cells cultured on rough 

surfaces exhibited decreased cell number, increased differentiation and increased 

local factor production when compared to cells grow on smooth surfaces.  In these 

experiments, roughness was characterized as average peak to valley height (Ra) 

which is not equal throughout the surface.  Other features of roughness, including 

peak and valley area distributions and curvature of the valleys, will affect cell 

functions.  In this study, novel titanium surfaces were prepared by photolithography 

to produce well designed microstructure and nanostructure.  Smooth disks were 

made by producing craters of 10µm, 30µm and 100µm diameters on titanium disks 

with constant curvatures.  Craters were placed sparsely (10/1, 30/1, 100/1) or 

compactly (10/6, 30/6, 100/6).  Smooth disks were also acid etched to make an 

overall roughness of Ra 0.7 µm or anodized to produce volcano-like nanostructure of 

Ra 0.4 µm.  The results revealed the distinguishing contributions of microcrater 

size, crater spacing and nanostructures to surface effect on cell number, 

differentiation (alkaline phosphatase; osteocalcin) and local factor levels (TGF-β1; 

PGE2).  Cell attachment depends on crater spacing; cell growth and aggregation 

depend on crater dimension and cell morphology depends on the presence of 

nanostructural features.  Cell differentiation and local factor production are 
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modulated by acid etched roughness in concert with microstructure, and active 

TGF-β1 level depends on nanoscale roughness.
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CHAPTER 1 

INTRODUCTION 

 

 

Ti implants are widely used in orthopaedics and dentistry because of their good 

biocompatibility, resistance to corrosion and mechanical properties.  

Osseointegration of Ti implants depends on implant surface morphology.1  In vitro  

studies show that surface morphology affects cell adhesion, proliferation, 

differentiation and local factor production.  These in vitro observations correlate 

with the clinical outcome of implantation.  The purpose of this thesis is to use 

defined Ti surfaces to better understand the response of osteoblast-like cell to surface 

morphology.   The possible mechanism mediating these effects will be discussed in 

this review. 

 

A. Osteoblast Re sponse to Titanium (Ti) Surface Morphology 

The MG63 cell line  is a well established model for studying the effects of 

surface morphology on osteoblast-like cells.  This cell line was originally derived 

from a male human osteosarcoma and represents a less differentiated stage of 

osteoblastic maturation.2,3  MG63 cells exhibit increased alkaline phosphatase  

activity and osteocalcin level in respond to 1α,25 dihydroxyvitamin D3 

[1α ,25-(OH)2D3].4  However, they do not mineralize the osteoid they synthesize.  
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Thus, MG63 cells are used to assess the effects of surface morphology on early 

differentiation events and not to assess effects on terminal differentiation with 

respect to matrix calcification.   

The surfaces used in the studies reviewed here were commercial pure Ti disks 

with different types of surface morphology.  Surface roughness was characterized 

by average peak to valley distance (Ra).  One surface prepared by greasing and acid 

pickling was designated as smooth (PT, Ra = 0.6µm).  Two rough Ti surfaces with 

differing morphologies were used.  The SLA surface was prepared by grit blasting 

the PT surface and then etching the surface with heated mixture of HCl and H2SO4, 

resulting in an Ra of 3.97 µm.  The TPS surface was prepared by coating the PT 

surface with irregular projections of Ti via Ti plasma spraying.  This surface had an 

Ra of 5.21µm.  All of the surfaces had an oxide layer of comparable thickness 

about 200Å, whic h attributes to stability of Ti surfaces.   

When MG63 cells are cultured on smooth Ti surfaces , they display a flattened 

morphology, while on rougher surfaces with Ra of 4-7µm, they display a more 

cuboidal morphology characterized by prominent cytoplasmic extensions.5  MG63 

cells exhibit decreased cell number and [3H]-thymidine incorporation when grown 

on rough Ti surfaces.  In contrast, those cells show increased alkaline phosphatase  

activity, osteocalcin, prostaglandin E2 (PGE 2) and transforming growth factor-β1 

(TGF-β1) when they were grown on rough Ti surfaces.  Moreover, there is a 

synergistic increase when the cells are treated with 1α,25-(OH)2D3.6 
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To overcome the consideration that MG63 cells are transformed and may not 

respond to surface morphology in the same manner as normal osteoblasts, fetal rat 

calvarial cells (FRC) and normal human osteoblasts (NHOst) were also plated on 

these Ti surfaces and showed a similar response to the surface morphology as MG63 

cells did.  The NHOst cells demonstrated a more mature phenotype on rougher 

surfaces with increased levels of osteocalcin, PGE2 and TGF-β1.  However, in 

contrast to MG63 cells, alkaline phosphatase activity decreased with increasing 

surface roughness.7   

The difference in alkaline phosphatase activity between MG63 cells and NHOst 

cells in these two studies may reflect the fact that alkaline phosphatase is an early 

marker of osteoblast differentiation.  Activity of this enzyme increases before 

mineralization really occurs and then decreases.  The relatively immature MG63 

cells may have been at a different state of osteoblastic maturation than the NHOst 

cells, such that at the time of assay MG63 cell activity was on its way up whereas 

NHOst cell activity had already peaked and was in its way down.   

This hypothesis is supported by studies using other cell culture models. 

Previous reports showed that mature osteoblast-like cells and osteocyte -like cells 

also behave differently from MG63 cells.8  As the surface becomes rougher, all 

the cells exhibit a more differentiated phenotype with decreased cell proliferation, 

and increased osteocalcin, PGE 2 and TGF-β1.  In contrast FRC cells, which also 

like MG63 cells are in the early stage of osteoblastic linage, exhibit increased 

alkaline phosphatase activity; OCT-1 cells, a more differentiated osteoblast-like 
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cell line, respond with decreased alkaline phosphatase activity; and the terminally 

differentiated MLO-Y4 cells exhibit no change in alkaline phosphatase activity.  

The effect of surface roughness was also examined using rat costochondral 

cartilage cells.9  Resting zone cells, which are less mature in terms of 

endochondral differentiation than growth zone cells, responded to surface 

roughness like the MG63 cells.  However, growth zone chondrocytes exhibited a 

different response with respect to alkaline phosphatase and collagenase-digestible 

protein production.  These observations indicate that response of cells to surface 

roughness is dependent on cell maturation state.   

The osteoblast response to implants in vivo  is more complicated than the in 

vitro response.  The defect sites are first filled with a clot and/or hematoma.  The 

chemical composition and physical aspects of the material dictate the composition 

and conformation of serum components that adsorb to the surface.10,11  The first 

cells that actually come in contact with the implant are neutrophils and macrophages.  

Bone may be formed by the osteoblast progenitors that migrate toward the implant 

from the endosteal surface of the surrounding bone bed or differentiated progenitor 

cells migrating from vasculature and marrow.   

Though most of the osteoblasts will not contact the implants directly, there is 

abundant evidence that surface morphology does play an important role through 

autocrine, paracrine and endocrine signaling pathways.  Previous studies showed 

that when Ti was implanted into marrow ablated rat tibia, matrix vesicle production 

was increased while maturation was delayed.  Interestingly, similar effects were 
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also observed in the contralateral limb, which indicates there was a material specific 

effect both locally and systematically.12  The cells may interact either directly with 

the surface, releasing bioactive factors that act both locally and systemically, or 

indirectly with the surface by responding to factors released by cells at the 

bone/implant interface.1  Surface roughness increases the integration of Ti implants 

with bone  in vivo.  The surfaces with greater micro-roughness exhibit greater 

pullout strength both in animal experiments and in clinical trials.13,14  These effects 

are caused by cell response to the implant material and surface roughness rather than 

by mechanical interlock.   

 

B. Osteoblast Response to Regulatory Factors Modulated by Surface 

Roughness 

The response of osteoblast-like cells to circulating hormones is also affected by 

surface roughness.  Trea tment of  to MG63 and FRC cells with 1α,25(OH)2D3
6,8 

caused a synergistic increase in alkaline phosphatase specific activity, osteocalcin 

levels and local factor levels  on rougher Ti surfaces.  In contrast, 1α,25(OH)2D3 did 

not affect proliferation and alkaline phosphatase activity in more mature cells 

(OCT-1 and MLO-Y4 cells), but it increased osteocalcin levels. The results indicate 

that the surface roughness promotes osteogenic differentiation of less mature cells 

and enhances their responsiveness to 1α,25(OH)2D3.  Osteoblast response to 

implant surface morphology was also modulated by estradiol.7  On smooth 
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surfaces, estradiol affected only alkaline phosphatase in female NHOst cells, but on 

rough surfaces, estradiol increased levels of osteocalcin, TGF-β1 and PGE2. 

Surface roughness also modulates the cell response to local factors including 

bone morphogenetic protein-2 (BMP-2) and shear force.  Ong et al. reported that 

when osteoblast progenitor 2T9 cells were plated on polished and 600 grit Ti 

surfaces, BMP-2 prolonged alkaline phosphatase specific activity and caused more 

rapid osteocalcin production on 600 gr it Ti surfaces.15  Shear force did not affect 

cell proliferation and differentiation on smooth surfaces but caused reversal of the 

increase in osteoblast differentiation seen in cultures on rough surfaces.16  

In addition to modulating cell proliferation and differentiation responsive to 

surface texture, surface roughness affects production of local regulatory factors by 

the cells, including PGE2 and TGF-β1.  PGE2 modulates normal osteoblast 

differentiation in a concentration dependent manner.  At low concentrations, PGE2 

stimulates alkaline phosphatase activity and osteocalcin production, however, PGE2 

inhibits osteoblast function at high concentrations.  TGF-β1 is associated with the 

matrix through latent TGF-β1-binding protein-1.17  In bone remodeling, osteoc lasts 

resorb bone mineral by decreasing local pH, resulting in activation of latent 

TGF-β1.18,19  The increase in local concentration of active TGF-β1 causes an 

inhibition of bone resorption and contributes to bone formation by action on 

osteoblast.20,21  MG63 cells release increased levels of PGE2 and TGF-β1 into 

conditioned medium.22  Moreover, 1α,25(OH)2D3 increases PGE2 and TGF-β1 in a 

synergistic manner on rough surfaces. 6  A similar effect was also observed on 
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NHOst cells.  Estradiol synergistically increases PGE 2 and TGF-β1 in cultures on 

rough surfaces.7  Again, the production of PGE2 and TGF-β1 and their response to 

1α,25(OH)2D3 depend on the maturation state of the osteoblast. 8   

 

C. Mechanisms Mediating Osteoblast Response to Surface Morphology 

The osteoblasts must first attach to the surface before they produce and 

mineralize their extracellular matrix.  The number of osteoblasts that actually 

adhere to the Ti surface appears to be less than that on plastic surface.23  The cell 

morphologies on Ti surface depend on surface roughness.  The cells cultured on 

rough Ti surfaces appear to attach to the surface through multiple cytoplasmic 

extensions and show a cubical morphology typical of  differentiated osteoblasts.  

The results indicate that cytoskeleton in the cells cultured on rough surface is 

rearranged and may have important consequences downstream.   

Integrins are important membrane receptors that mediate the cell attachment 

and adhesion to the extracellular matrix and regulate the arrangement of 

cytoskeletons, followed by cell functions.  Inhibition of integrin -associated PKC 

activity has no effect on proliferation of MG63 cells regardless of surface roughness, 

but it blocks the surface-dependent increase in alkaline phosphatase activity. 25  The 

results indicate that intergrin may mediate the surface dependent osteoblast 

differentiation.  In contrast, 1α,25(OH)2D3-dependent alkaline phosphatase is 
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mediated by PKA instead of PKC,26 so that the 1α ,25(OH)2D3 may regulate 

osteoblast differentiation in a different signaling pathway.  

Prostaglandins may also mediate the initial response of MG63 cells to Ti 

surfaces.27  Indomethacin, a general cyclooxygenase (Cox) inhibitor that blocks 

prostaglandin production, inhib its the response of nonconfluent MG63 cells to 

surface roughness, and the effect vanishes when cells reach confluence.  In further 

studies, both constitutive Cox-1 and inducible Cox-2 were found to be involved in 

mediating the cell response to surfaces.28  The results indicate that both forms of 

the enzyme are involved and cell response to prostaglandins is complex.  

 

D. Investigational Objective and Aims  

The studies reviewed above were performed using micro-rough surfaces with 

relatively complex morphologies.  Surface topography is composed of various 

features, including distances between the peaks, peak and valley area distribution 

and curvatures of the valleys.  The average peak to valley distance is not sufficient 

to describe the complex structures on the surface.  It is not known yet which feature 

of the surface structure contributes to cell proliferation, differentiation or  local factor 

production.  In this study, novel Ti surfaces were designed with precisely controlled 

microscale and nanoscale topographies.  Hemispherical craters were produced on 

Ti surfaces with different diameters; and the craters were distributed on the disks 

with different distances.  The nanostructure was overlaid on microstructured disks 
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by electropolishing, acid etching or anodizing.  The microstructure and 

nanostructure are replicable and the chemical composition is consistent on all the 

disks.  The MG63 cells were plated on these designed disks and cell morphology, 

cell number, differentiation and local factor production were examined. 
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A. INTRODUCTION  

 Osteoblast behavior is sensitive to biochemical and structural features of their 

substrate (for a review, see 1-3).  We have used titanium disks with defined surface 

chemistry and microtopography as a model system to study the response of osteogenic 

cells to the microarchitecture of a substrate.  These studies show that cells cultured 

on Ti surfaces with microrough features exhibit reduced proliferation and enhanced 

differentiation when compared to cells grown on tissue culture plas tic or smooth Ti 

substrates.  In addition, the effects of regulatory factors including estrogen 4, 

1α,25-dihydroxyvitamin D3 5, and bone morphogenetic protein 2 (BMP-2) 6, as well 

as shear force 7, are altered.   

 The mechanisms involved in the differential cell response to surface 

microarchitecture are not well understood.  Autocrine/paracrine regulatory factors 

such as prostaglandin E2 (PGE 2), transforming growth factor beta-1 (TGF-β1), and 

osteoprotegerin (OPG) are elevated on rougher surfaces 8.  These factors regulate 

differentiation of osteoblasts and modulate the activation of osteoclasts, indicating 

that surface-dependent changes in the cell are important to cell response at a loc al 

level.  Inhibition of prostaglandin production blocks the effects of surface 

microarchitecture on many of the parameters described above 9,10.  Similarly, 

inhibition of integrin-associated PKC-dependent signaling pathways also inhibits cell 

response 11,12.  Because there is a marked change in osteoblast morphology 
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associated with surface microarchitecture 13, it is possible that subsequent alterations 

in cytoskeletal architecture are responsible as well. 

 The use of substrate morphology on medical implants was initially based on the 

empirical observation that there was greater bone to implant contact when rougher 

surfaces were used 14.  More recent studies using dental implants with well 

controlled microarchitectural features demonstrated that pull-out strength was 

increased when the surface had a microtopography that included a mixed morphology 

of craters created by grit blasting overlaid with micropits produced by acid etching 

15,16.  This surface has structural features that are similar to an osteoclast resorption 

pit 17, which is the preferred surface used by osteoblasts in vivo.  Many of the 

responses observed when osteoblasts are cultured on bone wafers that have been 

conditioned by osteoclasts are also seen when osteoblasts are cultured on Ti disks 

with these surface features 18,19.   

It is unclear, however, which aspects of the mixed microtopography are 

responsible for the effects of the substrate on bone cell proliferation, differentiation or 

local factor production.  By identifying these features, new materials can be designed 

that optimize specific cell behavior.  To accomplish this goal, we used 

photolithography to produce Ti surfaces with precise and reproducible features and 

examined the effects of these substrates on the behavior of human osteoblast-like cells 

in vitro. 
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B. MATERIALS AND METHODS 

 MG63 human osteoblast-like cells were cultured on 15 mm Ti disks in 24 well 

plates, such that in each experiment, each variable was tested using six separate disks 

with one disk per well.  Six culture wells were used as tissue culture plastic controls.  

Smooth Ti disk surfaces (polish) were prepared by degreasing and acid-prepickling 1 

mm thick sheets of grade 2 unalloyed Ti.  After washing in acetone and processing 

through a 2% ammonium fluoride/2% hydrofluoric acid/10% nitric acid solution at 55 

oC for 30 sec, surfaces were mechanically polished to a mirror finish with an average 

roughness (Ra)< 0.05 µm.  Ti disks with mixed microtopography (SLA) were 

prepared by grit blasting the smooth surface with 0.2 to 0.5 µm corundum grit at 5 

bars until the surface reached a uniform gray tone.  This process produced 100 µm 

diameters craters, although smaller dia meter craters were present.  Disks were then 

acid-etched using a mixture of concentrated HCl and H2SO4 heated above 100 oC, 

producing micropits 1-3 µm in diameter, resulting in an overall Ra of approximately 

4.5 µm 4.   

 To prepare templates with individual structural features of the SLA surface, 

circular concavities were created by anodic dissolution of the polish disks through a 

patterned photoresist in a methanol-based 3 M sulfuric acid electropolishing 

electrolyte 20.  The surface outside the cavities was the original polish surface, and 

the inside had an electropolished surface finish.  By using this electrochemical 

micromachining (EMM) method, well-defined cavities were produced with diameters 

of 10, 30 or 100 µm (Figure 1).  To mimic the distribution of craters on the SLA 
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disk, the cavities were distributed over the surface of the polish disk resulting in a 

ratio of the cavity surface over the flat outside surface of either 1(Figure 1a,b,c) or 6 

(Figure 1 d,e,f).  EMM microstructured disks as well as polish disks that had not 

been grit blasted were also acid -etched as described above, resulting in pits 

approximately 700 nm in depth covering the entire surface (Figure 1f).   

 After processing, all samples were subjected to a passivation treatment by 

sequential sonications for 15 min each in concentrated nitric acid.  They were then 

ultrasonically cleaned in ultra pure water (3 x 5 min) and dried under nitrogen.  Prior 

to cell culture, all disks were sterilized in an oxygen plasma cleaner.  The plastic 

surface of the tissue culture plates and an additional group of SLA disks that had been 

sterilized by steam autoclaving were also included in the experiments. 

 

C. RESULTS 

 MG63 osteoblast -like cells (American Type Cultur e Collection, Rockville, MD) 

were cultured as described previously 21-23.  Cell number was determined 5 days after 

plating by counting the number of cells released from the substrate by two sequential 

digestions of the extracellular matrix with 0.25% trypsin in Hank’s balanced salt 

solution containing 1 mM EDTA 24.  The number of cells on the surfaces at five days 

after plating depended on the surface microstructure (Figure 2).  In cultures grown 

on smooth 10/1 and 30/1 surfaces, the number of cells was comparable to tissue 

culture plastic, but on smooth 100/1 surfaces, cell number was reduced to levels seen 
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on SLA (Figure 2a).  When cells were grown on smooth surfaces with cavities close 

together, cell number on the 10/6 disks was similar to cell number on SLA; cell 

number on 30/6 was comparable to plastic but greater than SLA; and cell number on 

100/6 was greater than plastic (Figure 2b).  In contrast when cells were grown on 

polished Ti or on polished Ti that was acid etched as well as on acid etched 10/1, 30/1 

and 100/1 surfaces, cell number was reduced approximately 10% compared to plastic 

but was still almost twice as great as seen on SLA (Figure 2c).  Changing the 

spacing between cavities on the etched surfaces resulted in an inverse relationship 

between cavity diameter and cell number.  As the cavity diameter became larger, cell 

number was reduced and on 100/6 disks, was comparable to the cell number on SLA 

(Figure 2d). 

 Effects of surface microstructure on cell morphology were assessed by 

scanning electron microscopy (SEM).  Cultures were fixed in phosphate buffered 4% 

formaldehyde/1% glutaraldehyde for 1 hour and post-fixed with 1% OsO4 in 

Zetterqvist’s buffer.  Following dehydration in a graded series of alcohols, samples 

were vacuum dried.  A thin layer of gold palladium was sputter-coated onto the 

samples prior to examination.     

 Cell morphology was comparable on autoclaved and plasma cleaned SLA 

surfaces (data not shown).  When cultured on SLA, MG63 cells did not form a 

closely contacted monolayer but small cellular extensions were seen and the cells 

appeared to grow preferentially into the cracks and crevice of the surface created by 

the grit blasting process.  Smooth polish surfaces were covered with a monolayer of 
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smooth edged cells (data not shown), whereas on cells grown on polish surfaces that 

had been etched had a morphology more typical of cells grown on SLA (Figure 3d).  

Individual cells extended across grain boundaries other etched surfaces in a manner 

similar to cells cultured on 30/6 surfaces that were etched (Figure 3e). 

  Cells on microstructured disks exhibited variations in morphology that were 

surface-dependent.  The shape of the cell depended on cavity size.  Cells 

aggregated in the cavities of the etched 100/6 disks and clusters of multilayered 

elongated cells were found in some areas (Figure 3a).  On etched 30/6 surfaces, 

individual cells were found in the cavities and they had extended filopodia across the 

cavity wall to reach neighboring cells (Figures 3b and 3e).  On etched 10/6 surfaces, 

MG63 cells spread above the cavities, sometimes covering 7-10 cavities (Figures 3C 

and 3f).   

Cavity distribution was a factor as well.  Osteoblasts on the outside surface of 

etched 100/1 disks exhibited the flat morphology typical of cells on polish surfaces, 

but did not form a contiguous monolayer (data not shown).  Cells that were in the 

cavities of these disks had a more differentiated and elongated phenotype.  On the 

etched 30/1 surface, cell bodies were found within the cavity and extending to the 

outside surface and those cells that were only on the outside surface exhibited 

morphology similar to cells on the polish disks (data not shown). On etched 10/1 

surfaces, cells attached to the outside surface and covered the cavities without 

entering them (data not shown).   
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When MG63 cells were grown on the microstructured disks in the absence of 

the etched overlay, they exhibited a flat phenotype without forming a monolayer, 

regardless of whether the disk was of the 1 or 6 type.  Disks that had 100 µm 

diameter cavities (100/6 and 100/1) supported the growth of a small number of 

elongated cells wit hin the cavities. 

 Differentiation was sensitive to the microstructural features of the surface.  

Specific activity of alkaline phosphatase (orthophosphoric monoester 

phosphonydrolase, alkaline; EC 3.1.3.1) was measured in lysates of the cell layer, 

which included any alkaline phosphatase-enriched extracellular matrix vesicles 23,25.   

Activity was increased on SLA surfaces compared to plastic. Part of this effect was 

due to cavity dimension.  When MG63 cells were grown on 10/1 and 30/1 smooth 

surfaces, enzyme activity was comparable to that seen in cells grown on plastic (data 

not shown).  When the cavity diameter and distribution was 100/1, enzyme activity 

was greater than on plastic and comparable to the polished Ti surface, but still lower 

than on SLA.  However, cavity distribution also played a role.   Activity on 100/6 

surfaces was comparable to plastic and activity on 10/6 surfaces that was comparable 

to the polished Ti surface (Figure 4a).  Osteocalcin levels in the conditioned media 

varied with cavity size and distribution in a similar manner.  On the 1-series 

surfaces, osteocalcin was greater than on plastic but reduced in comparison to SLA 

(data not shown).  On the 6-series surfaces, osteocalcin was elevated over plastic in 

cultures grown on 10/6 only (Figure 4c).   
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 Addition of the acid etch altered cell response regardless of cavity dimension or 

distribution.  Alkaline phosphatase specific activity was greater than on plastic for 

all Ti cultures and when MG63 cells were grown on 100/1 surfaces, enzyme activity 

was greater than on smooth Ti with no microstructural features (Figure 5a).  By 

moving the cavities closer together, enzyme activity was increased in a 

diameter-dependent manner (Figure 5b).  On 10/6 surfaces, alkaline phosphatase 

activity was greater than on the polished Ti + acid etch and on 30/6 and 100/6, it was 

comparable to SLA.   

Substrate microarchitecture modulated levels of osteocalcin in a similar 

manner to its effect on alkaline phosphatase activity (Figure 5c,d).  However, levels 

were comparable to SLA only on the 100/6 acid etched surfaces.  In these 

experiments, osteocalcin in the conditioned media was measured using a 

radioimmunoassay kit (Human Osteocalcin RIA Kit; Biomedical Technologies, 

Stoughton, MA), as described previously 24. 

 Local factor levels in the conditioned media were also sensitive to the substrate 

microstructure.  Total TGF-β1 was measured following acidification of the 

conditioned media using a commercially available enzyme-linked immunoassay kit 

specific for active human TGF-ß1 (Promega Corp., Madison, WI) 26.  Levels of this 

growth increased on polished Ti disks and to a much greater extent on SLA.  On the 

smooth 1-series surfaces, TGF-β1 levels were comparable to plastic for both the 10/1 

and 30/1 microstructured disks, and in cultures grown on 100/1, TGF-β1 levels were 

comparable to those of cells grown on polished Ti (data not shown).  If the cells 
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were grown on 6-series surfaces, TGF-β1 levels were comparable to plastic regardless 

of cavity size (Figure 4b).  In contrast, addition of the etch resulted in an increase on 

all Ti surfaces.  On 30/1 and 100/1, the levels of TGF-β1 were elevated over 

polished Ti + acid etch, but still not as high as seen on SLA (Figure 6a).  However, 

when the cavities were in closer proximity, TGF-β1 levels were elevated on 10/6 and 

30/6 surfaces, and on 100/6, were comparable to those seen on SLA (Figure 6b). 

 PGE 2, measured using a radioimmunoassay kit (NEN Research Products Boston, 

MA)27, was modulated by surface microstructure as well.  Regardless of the 

structural features, however, no cultures produced PGE2 at levels comparable to those 

seen on SLA (Figures 4d; 6c,d).  The highest levels of PGE 2 were found in ce lls 

cultured on 100/6 surfaces that had been acid etched.  PGE 2 levels were dependent 

on cavity size rather than whether or not etch was present.  Levels produced in 

smooth 10/1 and 10/6 cultures were greater than on smooth Ti disks and similar to 

those seen in cultures grown on Ti disks that were acid etched.  Cells grown on 

smooth 30/1 and 100/1 produced PGE2 at levels comparable to those produced by 

cells grown on acid etched 30/1 and 100/1 (Figures 6c), as well as on smooth 30/6 and 

100/6(Figure 4d).  Levels were only slightly higher on 30/6 and 100/6 etched 

surfaces (Figure 6d). 
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Figure 2-1 Surface microtopography of titanium disks.  

30/6 
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Surface microtopography of titanium disks prepared using electrochemical 

micromachining.  Polished Ti surfaces with specific microstructural features were 

prepared by electrochemically dissolving Ti through a patterned photoresist.  

Cavities were created with diameters of 10, 30 or 100 µm.  Cavities were arrayed 

such that the ratio of the diameter to the intercavity space was either 1 or 6.  Surfaces 

with intercavity space equal to the cavity diameter are shown in Panels A, B and C.  

Examples of surfaces with a cavity diameter to interca vity space diameter ratio of 6 is 

shown in Panel D at the same magnification as the 30/1 surface shown in Panel B, and 

at higher magnification in Panel E.  30/1 surfaces were treated with acid to produce a 

nano-etch with an Ra of 0.7 µm, shown in Panel F. 



24 
 

 

 

 

 

Figure 2-2 Effect of surface microtopography on cell number.   

 

MG63 cells were cultured on tissue culture plastic (plastic), grit blasted and acid 

etched Ti (SLA), electrochemically polished Ti (Polish), and polished surfaces that 

were acid etched (P+A), as well as on microstructured surfaces prepared using 

electrochemical machining (EMM).  Smooth EMM surfaces had cavities of 100, 30 

and 10 µm with a cavity diameter to intercavity space ratio of 1 (Panel A) or 6 (Panel 

B).  EMM disks were acid etched resulting in 1-series (Panel C) and 6-series (Panel 

D) surfaces.  Cell number was determined five days after plating.  Values are 
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means + SEM of six independent cultures.  Data are from one of two separate 

experiments, both with comparable results.  Data were analyzed by ANOVA and 

significant differences between groups determined using the Bonferroni modification 

of Student’s t-test.  *p<0.05, surface v. plastic; #p<0.05, surface v. SLA; •p<0.05, 

surface v. polish or P+A. 
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Figure 2-3 Morphology of MG63 osteoblast -like cells cultured on microstructured 

titanium surfaces.   

 

Osteoblasts tended to aggregate in cavities with diameters of 100 µm.  Panel A 

shows cells in the cavities on 100/6 etched surfaces.  Cells on the 30/6 etched 

surfaces tended to anchor in adjacent cavities (B and E).  The morphology of cells on 

the 100/6 etched surfaces was comparable to morphology on etched surfaces in the 

absence of cavities (D).  On 10/6 etched surfaces, cells exhibited a flattened and 

spread morphology extending over adjacent cavities (C and F).     
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Figure 2-4 Effect of microstructured smooth surfaces on osteoblast differentiation 

and local factor levels.   

 

MG63 cells were cultured on tissue culture plastic (plastic), grit blasted and acid 

etched Ti (SLA), and electrochemically polished Ti (Polish), as well as on 

microstructured surfaces prepared using electrochemical machining (EMM).  

Smooth EMM surfaces had cavities of 100, 30 and 10 µm with a cavity diameter to 

intercavity space ratio of 6.  Alkaline phosphatase specific activity was measured in 
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cell layer lysates (A).  TGF-β1 was measured using an ELISA kit specific for active 

human TGF-β1 following acidification of the conditioned media (B).  Osteocalcin 

levels were measured in the conditioned media using an RIA kit (C).  PGE2 was 

measured in the conditioned media using an RIA kit (D).  Values are means + SEM 

of six independent cultures.  Data are from one of two separate experiments, both 

with comparable results.  Data were analyzed by ANOVA and significant 

differences between groups determined using the Bonferroni modification of 

Student’s t-test.  *p<0.05, surface v. plastic; #p<0.05, surface v. SLA; •p<0.05, 

surface v. polish.   
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Figure 2-5 Effect of surface microtopography on osteoblast differentiation.   

 

MG63 cells were cultured on tissue culture plastic (plastic), grit blasted and acid 

etched Ti (SLA), electrochemically polished Ti (Polish), and polished surfaces that 

were acid etched (P+A), as well as on microstructured surfaces prepared using 

electrochemical machining (EMM).  EMM surfaces with cavities of 100, 30 and 10 

µm that had a cavity diameter to intercavity space ratio of 1 (Panels A and C) or 6 

(Panels B and D) were acid etched.  Alkaline phosphatase specific activity was 
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measured in cell layer lysates (Panels A and B).  Osteocalcin content of the 

conditioned media was determined by RIA (Panels C and D).  Values are means + 

SEM of six independent cultures.  Data are from one of two separate experiments, 

both with comparable results.  Data were analyzed by ANOVA and significant 

differences between groups determined using the Bonferroni modification of 

Student’s t-test.  *p<0.05, surface v. plastic; #p<0.05, surface v. SLA; •p<0.05, 

surface v. polish or P+A. 
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Figure 2-6 Effect of surface microtopography on local factor levels.   

 

MG63 cells were cultured on tissue culture plastic (plastic), grit blasted and acid 

etched Ti (SLA), electrochemically polished Ti (polish), and polished surfaces that 

were acid etched (P+A), as well as on microstructured surfaces prepared using 

electrochemical machining (EMM).  Surfaces with cavities of 100, 30 and 10 µm 

that had a cavity diameter to intercavity space ratio of 1 (Panels A and C) or 6 (Panels 

B and D) were acid etched.  TGF-β1 content was measured following acidification 
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of the conditioned media using and ELISA kit specific for active human TGF-β1 

(Panels A and B).  PGE2 content of the conditioned media was determined by RIA 

(Panels C and D).  Values are means + SEM of six independent cultures.  Data are 

from one of two separate experiments, both with comparable results.  Data were 

analyzed by ANOVA and significant differences between groups determined using 

the Bonferroni modification of Student’s t-test.  *p<0.05, surface v. plastic; #p<0.05, 

surface v. SLA; •p<0.05, surface v. polish or P+A. 



33 
 

D. DISCUSSION 

 Cell responses to surface microtopography are the sum of their ability to attach, 

proliferate, and differentiate.  It is difficult to determine which structures are 

responsible for individual phenotypic traits.  The mixed microtopography that 

characterizes the SLA surface is a complex one.  By using the EMM fabrication 

technology to produce Ti surfaces with specific microstructures, we were able to 

determine the contributions of three surface design components to osteoblast 

response: microcrater size, microcrater spacing, and the presence of nano-pits.   

 The results confirmed the utility of the model since only MG63 cells that were 

cultured on microstructured surfaces with closely packed 100 µm cavities overlaid 

with etch approximated the responses of MG63 cells to SLA.  The grit-blasting 

process produces an SLA surface with craters that have an average diameter of 100 

µm, but both smaller and larger craters are present.  Moreover, the acid etch on the 

SLA surface produces pits with an average diameter of 1 to 3 µm, which is larger than 

the dimensions of the etch produced on the polished and microstructured surfaces 

used in the present study.  In addition, the etch on the SLA surfaces creates relatively 

sharp edges on the pits and when laid on top of the grit blasting results in craters 

adjacent to craters with no smooth interface.  The surfaces prepared by the EMM 

method did not duplicate this morphology as even in the 6-series of surfaces, 

inter-cavity space still existed.  These differences in surface microstructure may have 
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accounted for differences in the response of osteoblasts on 100/6 etched surfaces and 

SLA. 

 Other laboratories have used micropatterned tissue culture plastic to understand 

how specific structural features of a surface can modulate cell response 28-30.  These 

studies support our observation that surface microtopography modulates behavior of 

attachment -dependent cells.  There are a number of differences in the experimental 

approach, however.  While studies on tissue culture plastic can address how specific 

microarchitecture affects cells on tissue culture plastic, they cannot predict the 

response of cells to other substrates such as Ti.  We and others 30,31, have shown that 

osteoblast response to bone wafers, which more closely approximate their natural 

surface in vivo, also differs from plastic.  Thus, any discussion of microarchitecture 

must also consider surface chemistry.   

 Architectural dimensions are an important consideration.  Our results indicated 

that osteoblasts tended to congregate in cavities, whether or not the cavities were 

etched.  Similarly, osteoblasts tend to colonize osteoclast resorption pits on dentin 

and bone wafers 18,19 before they migrate onto the non-resorbed surface, and in vivo, 

osteoblasts synthesize osteoid on surfaces of the cutting cone created by osteoclastic 

resorption.  It was presumed that the nano-architectural components of the osteoclast 

resorption pit, including collagen tufts and atta chment proteins, contributed to this 

phenomenon 17,32,33.  It is possible that the “pit” itself is an equally important factor.  

MG63 cells within 100/1 and 100/6 pits had an elongated morphology more typical of 

differentiated osteoblasts. These cells exhibited phenotypic characteristics such as 
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elevated alkaline phosphatase specific activity and osteocalcin production that 

reflected a more differentiated physiology.  In addition, morphology within the 

cavity was distinctly different from morphology on the inter-cavity space.   

When cells were cultured on 10/6 surfaces, whether or not the etch was 

present, they tended to anchor to the inter-cavity space and extend over the cavities 

with a flattened, spread morphology.  Given that the average diameter of an 

osteoblast is approximately 10 µm 34, it is likely that they simply could not fit into the 

small cavities, but it is of note that they did not extend filopodia into these spaces.  

This observation suggests that filopodia attachment is favored by the smaller 1-3 µm 

pits on SLA and nano-etch on the microstruc tured surfaces examined in the present 

study.  

 Clearly, the presence of the nano-etch is an important contributor to the overall 

response of the osteoblasts to the microstructured surfaces.  It is only when this 

feature was present that differentiation of the cells was comparable to differentiation 

on SLA.  TGF-β1 may play a role, as it varies in concert with alkaline phosphatase 

activity and has been shown previously to stimulate this enzyme activity, particularly 

at early stages of differentiation 22.   

PGE 2 production was tied to cavity dimensions, however, and not to the 

spacing of the cavities or to the presence of the nano-etch.  Exactly why this might 

be is not clear.  Studies using smooth Ti and SLA surfaces show that the response of 

osteoblastic cells to surface microrugosity depends on prostaglandin production via 

both cyclooxygenase-1 and cyclooxygenase -2 10,35.  Prostaglandins other than PGE2 
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may be involved 36-38.  In addition, structural features present in the more complex 

mixed microtopography of SLA that were not modeled via the nano-etch method used 

here, may also modulate prostaglandin production.   

 In this study, we did not examine the relative rates of proliferation on each 

surface, but the total number of cells that were present five days after plating.  The 

differences in cell number noted at that time are the product of differences in 

attachment, survival and doubling rate.  The surface design modifications resulted in 

variations in surface area, which may have been a factor in phenotypic expression.  

Certainly, there was greater surface area on the microstructured disks in comparison 

with plastic or even polished Ti, particularly on etched surfaces, but the number of 

cells was fewer and their differentiation was enhanced.  This indicates that the cells 

did not conform to the surface but formed focal attachments that allowed them to 

suspend across structures, as was seen on 10/6 surface.  Thus, the changes in cell 

number are complex and not easy to explain simply as a function of surface 

microarchitecture alone.  It is likely that the variations in substrate design resulted in 

modifications in protein adsorption from the media or in the conformation of the 

adsorbed proteins 39-41, thereby altering the cell-substrate interaction. 

 In summary, the use of well controlled surfaces with defined microarchitectures 

to model how cells interact with their surface are essential to design materials that 

modulate cell response in a predictable way.  Attachment -dependent cells, like 

osteoblasts, live in three-dimensional environments that include a complex physical 

substrate.  Our results show that the microdimensions and spacing of cavities are 
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important signals for osteoblast proliferation and differentiation and suggest that 

changes in local factor production modulate these responses.  Cell attachment 

depends on cavity spacing, cell growth and aggregation depends on cavity 

dimensions, and cell morphology depends on the presence of nanostructural features.  

The nanoarchitecture also modulates differentiation in concert with the 

microarchitecture, suggesting synergistic mechanisms are involved.  Finally, 

TGF-ß1 and PGE2 levels are differentially regulated by micro and nano structural 

features of the surface.  Previous studies showing that TGF-ß1 levels depend on 

prostaglandin production 10, suggest that either prostaglandins other than PGE 2 are 

responsible, or that the effects of cavity dimension are a pre-requisite to confer 

sensitivity to the nano-etch. 
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A. INTRODUCTION  

Osseointegration of titanium implants in vivo  depends on surface morphology.  

The microtopography of the surface affects cell attachment, adhesion, proliferation, 

differentiation and local factor production in vitro.1-3  This affects the clinical 

outcome of the implant in vivo .  Surfaces with greater micro-roughness exhibit 

greater pullout strength both in animal experiments and in clinical trials.4,5   

The MG63 cell line, originally derived from a male human osteosarcoma, is a 

well established model for studying the effects of surface microtopography on 

osteoblast-like cells in vitro.6  MG63 cells cultured on rough Ti surfaces exhibit 

decreased attachment and proliferation and increased phenotypic differentiation 

compared to cultures on plastic and smooth Ti surfaces.  These effects are also seen 

in normal human osteoblasts (NHOst).7  Surface microtopography also affects cell 

response to systemic hormones (estradiol,7 1α,25(OH)2D3
8,9), mechanical stimuli 

(shear force10), and local regulatory factors (bone morphogenetic protein-211).   

Studies comparing osteoblast cell lines at different states in the osteoblast lineage 

show that response of cells to surface roughness depends  on cell maturation state as 

well.12   

In addition to modulating cell proliferation and diff erentiation, surface 

roughness affects the ability of cells to produce local regulatory factors, including 

PGE2 and TGF-β1.  MG63 cells release increased levels of PGE2 and TGF-β1 into 

their conditioned medium;13 and 1α ,25(OH)2D3 increases PGE 2 and TGF-β1 in a 
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synergistic manner on rough surfaces.14  A similar effect was also observed in 

culltures of NHOst cells in response to estradiol.7  Again, production of PGE2 and 

TGF-β1 and their responses to 1α,25(OH)2D3 depend on the maturation state of 

osteoblast.12   

The mechanisms mediating the cell response to surface morphology are not 

clear.  Previous studies reveal that integrin signaling may be involved.  Inhibition 

of integrin-associated protein kinase C (PKC) activity has no effect on proliferation 

of MG63 cells regardless of surface roughness, but it blocks the surface-dependent 

increase in alkaline phosphatase activity. 15  Prostaglandins also play an important 

role.  Inhibition of prostaglandin production inhibits the response of MG63 cells to 

surface roughness.15  Both constitutive cyclooxygenase-1 (COX-1) and inducible 

COX-2 are involved.  Studies  examining the time course of the prostaglandin effect 

show that prostaglandins may mediate the initial response of MG63 cells to Ti 

surfaces.16 

Although Ti surface topography is important in implant design, the optim al 

surface texture is not yet known, because surface roughness has not been well 

characterized in previous studies.  In general, roughness was defined as the average 

peak to valley height (Ra).  Many of these surfaces have had very complex 

microtopographies but how specific features impacted cell response were not 

described, including distance between peaks, curvature of the valleys, and relative 

distribution of flat and smooth regions.  In this study, we used chemical etch and 

electrochemical machining to produce reproducible nanoscale structures on Ti 
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surfaces.  The nanoscale structures were also superimposed on microscale 

structures to examine MG63 cell responses.   

 

B. MATERIALS AND METHODS 

a. Preparation and Characterization of Ti Disks 

Three different nanostructural features were used on two different surface 

preparations: mechanically polished titanium (PT) and titanium with a hexagonal 

patterned overlay of cavities (30/6) prepared by photolithography as described 

below.  Ti disks were prepared from 1 mm thick sheets of grade 2 unalloyed Ti 

(ASTM F67 ‘Unalloyed titanium for surgical implant applications’) and supplied by 

Institut Straumann AG (Walderburg, Switzerland)17.  The disks were punched to be 

15 mm in diameter so as to fit into the well of a 24-well tissue culture plate, and 

were processed as follow.  Disks were degreased by washing in acetone, processing 

through 2% ammonium fluoride / 2% hydrofluoric acid / 10% nitric acid solution at 

55°C for 30 s, and mechanically polished to obtain a mirror finish surface with Ra = 

0.05µm.  The mechanically polished Ti disks were then coated with a polyisoprene 

based negative photoresist (HNR80, Arch Chemicals Inc., CT), which was exposed 

to UV light to develop the initial patterns.  Cavities were made by anodic 

dissolving of tita nium through the patterned photoresist in an ethanol-methanol 

based 3M sulfuric acid electropolishing electrolyte. (Figure 1A)   
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Nanometer structures were produced by two different methods: acid etching 

and porous anodization.  Acid etching was performed by immersing the Ti disks 

into a mixture of HCl and H2SO4 heated above 100°C for several minutes. (Figure 

1B,C)  Porous anodization was performed in a jacketed glass vessel containing 1M 

H2SO4 under sweeping potential at 20V/s from 0V to 125V.(Figure 1E,F) 

Control surfaces included tissue culture plastic and a clinically used Ti surface 

with mixed micro and nanotopography (SLA).  SLA disks were first degreased as 

pretreatment disks, then cour se grit-blasted with 0.25-0.50 mm corundum grit at 5 

bar until the surface became a uniform gray, followed by acid etching as described 

above.6-8 (Figure 1D) 

After mechanical, electrochemical or chemical treatments described above, all 

samples were subjected a passivation treatment in 65% nitric acid for 2 times 15 min 

in an ultrasonic bath.  They were then ultrasonically cleaned in ultra pure water for 

3 times 5 min and dried with nitrogen.  Prior to cell culture, all the samples were 

plasma cleaned 2 min for each side (Plasma Cleaner PDC-32G, Harrick, NY). 

The average surface roughnesses (Ra) measured by non-contact laser 

profilometry were 700, 400, 60 and 40 nm on acid etched, porous anodized, 

mechanically polished and electropolished surfaces, respectively.  The average pore 

diameter produced by anodization was 82±35 nm, based on measurements of 

scanning electron micrographs.   X-ray photoelectron spectroscopy survey spectra 

measured after the final cleaning procedure were similar for all treatments.  This 

may due to the spontaneous formation of a sur face oxide film in air , and TiO2 was 
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the most important component of the oxide layer.  The SLA surfaces had an overall 

roughness Ra of 3.97±0.04µm as shown previously.8   

 

b.  Cell Culture 

MG63 osteoblast -like cells were obtained from the American Type Culture 

Collection (Rockville, MD).  This osteoblastic cell line was originally isolated from 

an osteosarcoma and exhibits numerous osteoblastic traits, including a high level of 

1α,25(OH)2D3 responsive alkaline phosphatase specific activity and osteocalcin 

synthesis.  The cells were cultured in Dulbecco’s modified Eagle medium (DMEM) 

containing 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin at 37°C in 

an atmosphere of 5% CO2 and 100% humidity.  The medium was exchanged every 

48 hours.  When the cells reached confluence in T-75 flasks, they were subcultured 

onto the disks 24-well tissue culture plates at a plating density of 9,600 cells/cm2, 

based on the surface area of the tissue culture plastic wells.  For each experiment, 

there were six wells with no disks (plastic surface) and six wells each for kind of Ti 

disks.   

 

c. Cell Morphology 

Cell morphology on the test surfaces was examined by scanning electron 

microscopy (SEM).  At harvest, the culture media were removed and samples were 

fixed by phosphate buffered 4% formaldehyde / 1% glutaraldehyde for more than 

one hour.  The samples were then rinsed with 0.1M phosphate buffered saline 
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(PBS) and fixed with 1% osmium tetroxide in Zetterqvist’s buffer (30mM sodium 

barbital, 40mM sodium acetate, 0.1M NaCl, 4mM KCl and 1mM CaCl2 adjusted to 

pH 7.4)  for 30 min.  After fixation, the disks were rinsed with PBS, followed by 

sequential dehydration in 50, 75, 90% tert-butyl alcohol for 20 min, and 100% 

tert-butyl alcohol 3 times, followed by drying under vacuum on ice.  A thin layer of 

gold-palladium was sputter-coated onto the samples for 1.5 min prior to examination 

using a Hitachi S800 FEG scanning electron microscope. 

 

d.  Cell Number 

At harvest, cells were washed twice with DMEM and then were released from 

the culture wells by 0.25% trypsin in Hank’s balanced salt solution (HBSS) 

containing 1mM ethylenediamine tetraacetic acid (EDTA) for 10 min at 37°C, 

followed by addition of DMEM containing 10% FBS to stop the reaction.  This 

procedure was repeated because second digestion was important for releasing the 

cells completely from rough Ti surfaces.6  Cell suspensions were centrifuged at 500 

x g for 15 min at 4°C.  Supernatant was discarded and cell pellets were resuspended 

in 10mL 0.9% NaCl.  Cell number was determined by counting the particles 

between 5.02 µm and 17.02µm in 500µL suspension (Z1 cell and particle counter, 

Beckman Coulter).  Cell viability was proved to be >95% in this method previously 

based on trypan blue dye. 

 

e. Cell Differentiation 
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Cellular alkaline phosphatase specific activity  

Cell pellets were lysed in 500 µL 0.05% Triton X-100 for protein quantification 

and cellular alkaline phosphatase specific activity assay.  Protein content was  

determined by detecting of colorimetric cuprous cation in biuret reaction (BCA 

Protein Assay Kit, Pierce Biotechnology Inc., Rockford, IL ) at 570nm (Microplate 

reader, BioRad Laboratories Inc. , Hercules, CA).  Alkaline phosphatase  

[orhtophosphoric monoester phosphohydrolase, alkaline; E.C. 3.1.3.1]  specific 

activity was assayed as the release of p-nitrophenol from p-nitrophenylphosphate at 

pH 10.2 and specific activity was determined. 18 

 

Osteocalcin  

Osteocalcin levels in the conditioned media were measured using a commercially 

available radioimmunoassay (Human Osteocalcin RIA Kit, Biomedical Technologies, 

Stoughton, MA) as described previously. 8  Media were concentrated fivefold by speed 

vacuuming (DNA110 Speedvac, Thermo Savant Corp., Milford, MA) and incubated 

with 100µL [I-125] osteocalcin tracer and 100µL of rabbit antihuman osteocalcin 

serum at 37°C for 2.5 h.  Goat anti rabbit IgG, polyethylene glycol (100µL each) and 

1mL PBS were then added, followed by centrifuging at 500 x g for 15 min at 4°C.  

The supernatant was decanted and the pellets were counted for 1 min in gamma 

counter. 

 

f. Local Factor Levels 
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Prostaglandin E2  

The amount of PGE 2 produced by the cells and released into the media was 

assessed using a commercially available competitive binding radioimmunoassay kit 

(NEK020A Prostaglandin E2 RIA kit, Perkin Elmer , Wellesley, MA).19  Media 

were acidified by 50µL 0.5M HCl for 250µL sample at -20°C to preserve PGE2.  In 

the assay, unlabeled PGE2 in the sample and radiolabeled PGE2 were incubated 

overnight at 4°C with PGE2 antibody.  Antigen-antibody complexes were separated 

from free antigen by precipitation with polyethylene glycol and counted for 1 min in 

gamma counter.  Sample PGE2 concentrations were determined by correlating the 

percentage  bound over unbound counts to a standard curve. 

 

Transforming growth factor β1  

TGF-β1 was measured using a commercially available enzyme-linked 

immunoassay (ELISA) kit specific for human TGF-β1 (G7591 TGF-β1 Emax  

immunoassay system, Promega Corp. , Mandison, WI).13  To determine the TGF-β1 

content of the media, immediately prior to assay, conditione d media were diluted 

200-fold.  An aliquot of the diluted media was assayed for active TGF-β1.  The 

remaining media were acidified by the addition of 1M HCl till pH lower than 3 for 

15 min to activate any latent TGF-β1.  Following neutralization with 1M NaOH, 

the assay was performed according to the manufacturer’s direction.  Latent TGF-β1 

was defined as total TGF-β1 minus active TGF-β1. 
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g.  Statistical Analysis 

The data presented here are from one of two separate experiments.  Both 

experiments yielded comparable observations.  For any given experiment, each data 

point represents the mean ± standard error of six individual cultures.  Data were 

first analyzed by analysis of variance; when statistical differences were detected, the 

Student’s t-test for multiple comparisons using Bonferroni’s modification was used.  

Additionally, data were analyzed using two-factor analysis of variance with equal 

replication using the SPSS program for PCs.  P-values < 0.05 were considered to 

be significant.   

 

C. RESULTS 

Cell morphology was sensitive to surface nanostructure.  The MG63 cells 

cultured on 30/6 smooth surfaces tended to form a continuous monolayer (Figure 

2A, D), which was similar to cells cultured on PT surfaces (data not shown).  When 

cultured on 30/6 acid etched surfaces, MG63 cells exhibited an enlonged 

morphology and did not form a closely contacted monola yer.  Individual cells 

extended across the cavity boundaries and attached to the surfaces by cellular 

extensions (Figure 2B, E).  Anodized 30/6 surfaces were covered with a continuous 

monolayer of MG63 cells as were smooth 30/6 surfaces, but part of the ce lls 

behaved like those on 30/6 acid etched surfaces, extending across the cavities 

(Figure 2C, F). 
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Cell number was affected by surface nanostructure superposed on 

microstructure (Figure 3).  Cell numbers were lowest on SLA surfaces and 30/6 

acid etched surfaces.  The numbers of cells on all the other Ti surfaces were 

between the levels on plastic and SLA surfaces, and there was no significant 

difference between them.   

Alkaline phosphatase specific activity varied with surface microstructures and 

nanostructures (Figure 4).  Enzyme activity in the cell lysates was comparable in 

cultures grown on plastic, PT and acid etched PT surfaces.  Cell cultures grown on 

the other surfaces resulted in reduced alkaline phosphatase specific activity.   

Osteocalcin level was affected by surface structure in an opposite way to cell 

number (Figure 5).  Cells on all Ti surfaces produced more osteocalcin than those 

on plastic surfaces.  The highest osteocalcin levels were seen in the cultures on 

SLA and 30/6 acid etched surfaces.  

Production of PGE2 was sensitive to surface microstructure and nanostructure 

(Figure 6) .  MG63 cells cultured on SLA surfaces produced more PGE 2 than those 

on all the other surfaces.  PGE2 levels in cultures on PT surfaces were comparable 

to those on plastic surfaces.  Cells cultured on 30/6 acid etched surfaces produced 

more PGE 2 than those on the other Ti surfaces except SLA.   

Surface nanostructure had a significant effect on the level of both active (Figure 

7) and latent (Figure 8) TGF-β1 in the conditioned media.  The active TGF-β1 

levels increased in cultures on all Ti surfaces, except on PT surfaces.  The effects 

were most significant on 30/6 acid etched, followed by SLA and 30/6 anodized 
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surfaces.  The latent TGF-β1 levels in the media of cells cultured on SLA, 30/6 

acid etched and 30/6 anodized surfaces were higher than in cultures grown on others 

surfaces.  The lowest levels of TGF-β1 were in cultures on plastic, PT and acid 

etched PT surfaces. 
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Figure 3-1 Surface nanoscale structures of titanium disks prepared using acid 

etching and electrochemical machining. 

 

Mechanically polished Ti surfaces with 30µm diameter hemispherical craters were 

prepared by dissolving Ti in electropolishing electrolyte through a patterned 

photoresist.(A, x 500)  These surfaces were further treated with acid to produce a 

nano-etch with an Ra of 0.7 µm.(B, x 500; C, x 10,000)  SLA surfaces were 

produced by grit blasting and acid etching with an overall Ra of 4 µm.(D, x 500)  

The surfaces shown in (A) were also anodized to produce porous surface w ith an Ra 

of 0.4 µm.(E, x 500, F, x 15,000). 

A 

F E D 

C B 
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Figure 3-2 Morphology of MG63 osteoblast -like cells cultured on micro and 

nanostructured Ti surfaces   

 

Osteoblasts cultured on 30/6 smooth surfaces exhibited flattened morphology and 

composed a confluent monolayer.(A, x 500, D, x 1,000)  Cells on the 30/6 ethced 

surfaces tended to anchor in adjacent cavities and exhibited a more cytoplasmic 

extensions.(B, x 500; E, x 1,000)  On 30/6 anodized surfaces, cells exhibited a 

confluent monolayer and spread across the cavities.(C, x 500; F, x 1,000) 

A 
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Figure 3-3 Effect of surface nanotopography on cell number.   

 

MG63 cells were cultured on tissue culture plastic (plastic), grit blasted and acid 

etched Ti (SLA), polished Ti (P) and microstructured surfaces prepared by using 

electrochemical machining (30/6).  The polished surfaces and microstructured 

surfaces were acid etched (+Acid) or anodized (+Anod) resulting in 

nanotopographies.  Cell number was determined five days after plating.  Values are 

means + SEM of six independent cultures.  Data are from one of two separate 

experiments, both with comparable results.  Data were analyzed by ANOVA and 

significant differences between groups determined using the Bonferroni modification 

of Student’s t-test.  *p<0.05, surface v. plastic; #p<0.05, surface v. SLA; •p<0.05, 

surface v. other surfaces. 
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Figure 3-4 Effect of surface nanotopography on cellular alkaline phosphatase 

specific activity.   

 

MG63 cells were cultured on tissue culture plastic (plastic), grit blasted and acid 

etched Ti (SLA), polished Ti (P) and microstructured surfaces prepared by using 

electrochemical machining (30/6).  The polished surfaces and microstructured 

surfaces were acid etched (+Acid) or anodized (+Anod) resulting in 

nanotopographies.  Alkaline phosphatase specific  activity was measured in cells 

released by trypsin.  Values are means + SEM of six independent cultures.  Data 

are from one of two separate experiments, both with comparable results.  Data were 

analyzed by ANOVA and significant differences between groups determined using 

the Bonferroni modification of Student’s t-test.  *p<0.05, surface v. plastic; #p<0.05, 

surface v. SLA; •p<0.05, surface v. 30/6 + Acid and 30/6 + Anod surfaces.

# #
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Figure 3-5 Effect of surface nanotopography on osteocalcin levels.   

 

MG63 cells were cultured on tissue culture plastic (plastic), grit blasted and acid 

etched Ti (SLA), polished Ti (P) and microstructured surfaces prepared by using 

electrochemical machining (30/6).  The polished surfaces and microstructured 

surfaces were acid etched (+Acid) or anodized (+Anod) resulting in 

nanotopographies.  Osteocalcin levels were measured in the conditioned media using 

an RIA kit.  Values are means + SEM of six independent cultures.  Data are from 

one of two separate experiments, both with comparable results.  Data were analyzed 

by ANOVA and significant differences between groups determined using the 

Bonferroni modification of Student’s t-test.  *p<0.05, surface v. plastic; #p<0.05, 

surface v. SLA; •p<0.05, surface v. other surfaces. 
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Figure 3-6 Effect of surface nanotopography on PGE2 levels.   

 

MG63 cells were cultured on tissue culture plastic (plastic), grit blasted and acid 

etched Ti (SLA), polished Ti (P) and microstructured surfaces prepared by using 

electrochemical machining (30/6).  The polished surfaces and microstructured 

surfaces were acid etched ( + Acid) or anodized ( + Anod) resulting in 

nanotopographies.  PGE2 levels in the conditioned media were determined by using 

an RIA kit.  Values are means + SEM of six independent cultures.  Data are from 

one of two separate experiments, both with comparable results.  Data were analyzed 

by ANOVA and significant differences between groups determined using the 

Bonferroni modification of Student’s t-test.  *p<0.05, surface v. plastic; #p<0.05, 

surface v. SLA; •p<0.05, surface v. other surfaces. 
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Figure 3-7 Effect of surface nanotopography on active TGF-β1 levels.   

 

MG63 cells were cultured on tissue culture plastic (plastic), grit blasted and acid 

etched Ti (SLA), polished Ti (P) and microstructured surfaces prepared by using 

electrochemical machining (30/6).  The polished surfaces and microstructured 

surfaces were acid etched ( + Acid) or anodized ( + Anod) resulting in 

nanotopographies.  Active TGF-β1 levels were measured in the conditioned media 

using an ELISA kit specific for human TGF-β1.  Values are means + SEM of six 

independent cultures.  Data are from one of two separate experiments, both with 

comparable results.  Data were analyzed by ANOVA and significant differences 

between groups determined using the Bonferroni modification of Student’s t-test.  

*p<0.05, surface v. plastic; #p<0.05, surface v. SLA; •p<0.05, surface v. other 

surfaces.
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Figure 3-8 Effect of surface nanotopography on latent TGF-β1 levels.   

 

MG63 cells were cultured on tissue culture plastic (plastic), grit blasted and acid 

etched Ti (SLA), polished Ti (P) and microstructured surfaces prepared by using 

electrochemical machining (30/6).  The polished surfaces and microstructured 

surfaces were acid etched ( + Acid) or anodized ( + Anod) resulting in 

nanotopographies.  Latent TGF-β1 levels were measured by subtracting the active 

TGF-β1 levels from acidified total TGF-β1.  Values are means + SEM of six 

independent cultures.  Data are from one of two separate experiments, both with 

comparable results.  Data were analyzed by ANOVA and significant differences 

between groups determined using the Bonferroni modification of Student’s t-test.  

*p<0.05, surface v. plastic; #p<0.05, surface v. SLA; •p<0.05, surface v. P and P+ 

Acid. 
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D. DISCUSSION 

Surface morphology affects osteoblast-like cell behavior.  MG63 cells respond 

to SLA surfaces with decreased cell number , more differentiated phenotype and 

increased local factor production.  Previous studies failed to discriminate which 

distinct surface features contribute to specific cell responses.  The present study 

used Ti surfaces with controllable microscale and nanoscale structures to resolve the 

role of nano structure in modulating osteoblast beha vior.  The results show MG63 

cells are sensitive to nanostructure, they can discriminate between nanostructure 

morphologies, and microstructure modifies the response to nanostructure. 

MG63 cells cultured on 30/6 acid etched surfaces exhibit  a similar phenotype to 

cells on SLA, characterized by decreased cell number and alkaline phosphatase  

activity, increased osteocalcin levels and increased local factor production, whereas 

cells cultured on PT behaved like cells cultured on plastic.  However, the different 

structures between SLA and 30/6 acid etched surfaces need to be noted.  The 

grit-blasting procedure to produce SLA results in irregularly shaped craters with 

varied diameters from 10 to 100 µm. In contrast, variances in designed 

microstructured surface are smaller.  The depth of the craters on SLA are much 

more shallow than those on 30/6 surfaces.  The acid etching on SLA produces pits 

with an average diameter of 1-3 µm, and there are no significant boundaries between 

craters.  On 30/6 surfaces, the acid etching produces an overall Ra of 0.7 µm.  The 
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nanoscale roughness on 30/6 appears more regular than on SLA.  These differences 

may contribute the differences in cell response to SLA and 30/6 acid etched surfaces.   

Three different nanostructures were compared in this study: electropolished 

(smooth), acid etched and anodized surfaces.  Although the Ra of the anodized 

surface was close to that of the acid etched surface, the anodized surface topography 

presented to the all was more like that of the PT surface.  Acid etching produced a 

peaky and pointy morphology, whereas anodizing produced a sponge-like surface 

with belt-like rings around the pore openings.  No peaky structures were seen on 

anodized surfaces.  The results confirmed that Ra is not sufficient to describe the 

surface morphology.  Other components of surface features affect the cell behavior. 

When MG63 cells were cultured on the PT surface, they formed a continuous 

monolayer regardless of overlaid nanostructure (data not shown).  On 30/6 Ti 

surfaces, cells tended to aggregate in the cavities.  The cellular extensions, which 

are universally observed on SLA surfaces, were seen on 30/6 acid etched and 

anodized surfaces, but were not evident on smooth surfaces.  This indicates that 

filopodia attachment is favored by the nanoscale structures on the microstructured 

surfaces.   

When nanostructures were superposed on PT, there were not effects on cell 

number, differentiation phenotype or local factor production. In addition, there was 

no differences between PT and smooth 30/6 Ti surfaces.  However, when acid 

etched nanostructure was overlaid on 30/6 surfaces, the cell responses were 

modulated most significantly.  The effect of anodized 30/6 surfaces is moderate.  
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These results indicate that cell responses are modulated by the combination of 

microscale and nanoscale structure , and the responses are dependent on the 

nanoscale roughness and shape.  Combining with previous data that osteoblast-like 

cells may attach to implant materials through integrins,21 we suggests that not only 

the focal adhesion distribution, but integral conformation of the cytoskeleton may 

mediate cell response to surface topographies.   

The changes in MG63 cell phenotype on the 30/6 acid etched surfaces may be 

related to the increased production of PGE2 and TGF-β1 noted on the same surfaces.  

In MG63 cells, the roughness-dependent increase in osteocalcin is consistent with 

the increase in PGE2, which has been shown to stimulate differentiation of 

osteoblasts in other systems.19  TGF-β1 also activates osteoblast differentiation23, 

specifically targeting matrix vesicle alkaline phosphatase activity.  We did not 

measure this aspect of phenotypic expression in this study due to Ti disk limitations.  

The fact that alkaline phosphatase activity was reduced in cells grow n on SLA and 

acid-etched 30/6 surfaces whereas active TGF-β1 was specifically increased 

suggests that enzyme was incorporated into the extracellular matrix typical of 

differentiated cells.   

In summary, the Ti surfaces with controllable nanostructure superposed on 

microstructure were used in this study to distinguish the surface features contributing 

to osteoblast response.  Only when nanoscale roughness produced by acid etching 

was superposed on microscale structures, the cells respond to surface with 
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significant differentiated phenotype, and this effect is dependent on nanoscale 

morphology. 
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CHAPTER 4 

CONCLUSION 

 

 

By using of Ti surfaces with well controlled microstructure and nanostructures, 

osteoblast-like cell response to specific surface features were distinguished in this 

study.  The osteoblast-like cells tends to aggregate into the microscale cavities and 

the effect was modulated by cavity diameter and spatial distribution.  The 

morphology of the cells depends on the combination of micro and nanostructures.  

The cells exhibited an elongated appearance in larger cavities and cytoplasmic 

extensions were observed on the rough nanostructures overlaid on microscale 

cavities.  Cell growth depends on cavity dimension.  Cell differentiation is 

modulated by nanostructural features in concert with the microstructures.  Cell 

number, alkaline phosphatase specific activity and osteocalcin level in cultures on 

structured 100/6 acid etch surfaces are comparable to those on the complex grit 

blasted SLA surface, confirming that our model surfaces adequately mimicked these 

specific design features.  Local factor production was also modulated by micro and 

nanostructures.  The cells cultured on cavities w ith the roughest nanostructure  

produced the highest level of local factors.  The fact that the PGE 2 level depended 

on cavity dimensions indicates either that cavity dimension is a prerequisite 

confering sensitivity to the nano-etch, or that prostaglandins other than PGE 2 are 

involved in the cell response. 



68 
 

These results reveal that cell morphology, proliferation, differentiation and 

local factor production are modulated by microscale cavity dimension, cavity 

spacing and nanoscale roughness.  The study of surface structural features will 

contribute to optimize the surface design of implants in clinical application.  

However, the mechanisms of cell response to these structural features are no yet 

clear.  A possible candidate mediating the response is integrins.  Integrins are cell 

membrane receptors that bind to extracellular matrix and modulate cell functions 

through the formation of focal adhesion complexes and intracellular signaling 

pathways.  The surface structures might determine the absorbed proteins , affecting 

the distribution of focal adhesion complexes.  Further studies will be performed to 

examine the effect of specific integrin in mediating the cell response to surface 

structural features.  

 

 


