
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

Summer 7-1-2014

INVARIANT INFERRING AND
MONITORING IN ROBOTIC SYSTEMS
Hengle Jiang
University of Nebraska-Lincoln, jianghengle@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Robotics Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Jiang, Hengle, "INVARIANT INFERRING AND MONITORING IN ROBOTIC SYSTEMS" (2014). Computer Science and
Engineering: Theses, Dissertations, and Student Research. 79.
http://digitalcommons.unl.edu/computerscidiss/79

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/79?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages

INVARIANT INFERRING AND MONITORING IN ROBOTIC SYSTEMS

by

Hengle Jiang

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Sebastian Elbaum

Lincoln, Nebraska

May, 2014

INVARIANT INFERRING AND MONITORING IN ROBOTIC SYSTEMS

Hengle Jiang, M.S.

University of Nebraska, 2014

Adviser: Sebastian Elbaum

System monitoring can help to detect abnormalities and avoid failures. Crafting

monitors for today’s robotic systems, however, can be very difficult due to the

systems’ inherent complexity and its rich operating environment.

In this work we address this challenge through an approach that automatically

infers system invariants and synthesizes those invariants into monitors. This

approach is inspired by existing software engineering approaches for automated

invariant inference, and it is novel in that it derives invariants by observing the

messages passed between system nodes and the invariants types are tailored to

match the spatial, time, temporal, and architectural attributes of robotic systems.

Further, our approach automatically classifies and synthesizes invariants into

a monitor node that can be seamlessly integrated into systems built on top of

publish-subscribe architectures. The monitor can be also tailored to trigger actions

when an invariant is violated. We have assessed the approach in the context of

three UAV systems to better understand its potential. In our case study, we found

that invariants can be useful for developers and that the synthesized monitor can

reduce system failure rate when facing unexpected faults from 76.2% to 10.6%.

iii

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my advisor Dr. Sebastian

Elbaum who showed me the road and helped to get me started on the path to

this degree. His patience, enthusiasm, encouragement and faith in me throughout

have been extremely helpful. He was always available for my questions and he

was positive and gave generously for his time and vast knowledge. His guidance

helped me in all the time of research and writing of this thesis. I could not have

imagined having a better advisor and mentor for my M.S. study.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr.

Carrick Detweiler and Dr. Matthew Dywer, for their encouragement, insightful

comments, and hard questions.

My sincere thanks also goes to Dr. Carrick Detweiler, for offering me the

opportunities working in Nimbus Lab and leading me in diverse exciting projects.

Thanks to John-Paul Ore for sharing his water sampling project data, and to

David Anthony for sharing his crop surveying project data to use in my thesis.

I thank my fellow labmates: Andew Mittleider, Megan Jensen, Adam Taylor,

Jinfu Leng, Sreeja Bannerjee, Charlie Lucas, Javier Darsie and Brent Griffin, for the

stimulating discussions, for the sleepless nights we were working together before

deadlines, and for all the fun we have had in the last three years. In particular, I

am grateful to Dr. Ying Lu for leading me into the computer science world.

Last but not the least, I would like to thank my wife Liqun Bi for supporting

me spiritually always throughout my life.

iv

Contents

Contents iv

List of Figures vii

List of Tables x

1 Introduction 1

1.1 Approach Overview . 4

1.2 Thesis Structure . 5

2 Background and Related Work 7

2.1 ROS . 7

2.2 Invariant Inference and monitoring . 10

2.3 Robot Execution Monitoring . 12

2.4 Distributed System Debugging . 14

3 Invariant Inference 15

3.1 Extending Daikon . 16

3.2 Trace Generation . 19

3.3 Trace Translation . 21

3.4 Inferring Invariants . 28

v

3.4.1 Time-Related Invariants . 29

3.4.2 Polygon Invariants . 32

3.4.3 Architecture Invariant . 35

3.4.4 Temporal Invariant . 37

3.4.4.1 Ordered-Paired Interval 39

3.4.4.2 User Defined Pattern 41

3.5 Invariants Justification . 44

3.6 Conditional Invariants . 47

3.7 Invariant Inference Summary . 49

4 Monitor Synthesis 50

4.1 Monitor Synthesis Workflow . 50

4.2 Invariant Classification . 52

4.3 Monitor Synthesizer . 56

4.3.1 Monitor . 56

4.3.2 Recovery Actions . 60

5 Case Studies 63

5.1 Case Study 1: UAV landing on Moving Platform 63

5.1.1 Training and Evaluation . 64

5.1.2 Results . 66

5.1.3 Detailed Analysis . 67

5.2 Case Study 2: Water Sampling . 75

5.2.1 Training . 77

5.2.2 Evaluation . 79

5.2.3 Checking User Assumption . 81

5.3 Case Study 3: Crop Surveying . 82

vi

5.3.1 Training . 82

5.3.2 Evaluation . 85

5.4 Limitations . 88

6 Conclusion and Future Work 91

6.1 Conclusion . 91

6.2 Future Work . 92

Bibliography 93

A Grammar of Configuration File 98

vii

List of Figures

1.1 UAV attempting to land on moving platform. 2

1.2 The whole workflow . 5

2.1 Graph view of a ROS program . 9

2.2 Launch file of a ROS program . 10

3.1 Daikon Framework . 17

3.2 Invariant Inference Work Flow . 17

3.3 Inference Part of a Configuration File . 18

3.4 Example of remapping service . 20

3.5 Architecture and Parameter recording . 21

3.6 A ROS Program Example . 23

3.7 Sample trace (top) and message pairings (bottom) 24

3.8 Sample services and architecture trace (top) and their translations (bottom) 25

3.9 Sample trace (top) and event sequence (bottom) 27

3.10 Process Time vs. Chunk Size . 35

3.11 A ROS Program Example . 36

3.12 Architecture Invariants . 38

3.13 Event Trace and Interval Analysis . 40

3.14 State Set Transition of a Sample DFA . 44

viii

3.15 Polygon Justification . 46

3.16 Conditional Invariant Inference . 48

4.1 Monitor Synthesis Work Flow . 51

4.2 Monitor Part of a Configuration File . 52

4.3 Monitor Node Skeleton . 59

4.4 Remapping names in ROS programs . 62

5.1 Landing success rate . 67

5.2 Time to land . 67

5.3 Outcomes under normal scenario. 68

5.4 Normal scenario without monitor. 68

5.5 Normal scenario with monitor. 68

5.6 Wind Blowing Scenario . 70

5.7 Outcome under wind blowing scenario. 72

5.8 Wind blowing scenario without monitor. 72

5.9 Wind blowing scenario with monitor. 72

5.10 UAV attempts to land on fragile platform. 73

5.11 Outcome under fragile platform scenario. 74

5.12 Fragile platform scenario without monitor. 74

5.13 Fragile platform scenario with monitor. 74

5.14 Indoor Water Sampling . 76

5.15 Outdoor Water Sampling . 76

5.16 Configuration for Water Sampling System 76

5.17 Water Sampling System . 77

5.18 Crop Surveying . 83

5.19 New Components . 83

ix

5.20 Configuration for Crop Surveying System 84

5.21 Fake Crops . 84

x

List of Tables

2.1 Comparison of our approach and others 8

3.1 New Invariants Templates . 29

3.2 Evaluation of Dropping Polygons . 47

4.1 Evaluation Invariants as Binary Classifiers 55

4.2 Supported Recovery Actions . 60

5.1 Evaluation Scenarios. 66

5.2 Summary of results across all scenarios. 69

5.3 Stability Check Result . 79

5.4 Check Result of Outdoor Testcase . 80

5.5 Interval Invariants . 87

5.6 Architecture Invariants . 87

A.1 Grammar of Configration File . 99

1

Chapter 1

Introduction

Monitoring a system for anomalies is a common approach to detect conditions

that may lead to failures and to take corrective actions. Such monitors must be

carefully crafted by engineers with the domain knowledge to understand what

could constitute abnormal behavior. This process becomes increasingly challenging

as the monitored system and its operating environment grow in complexity.

Consider, for example, the scenario illustrated in Figure 1.1 where a small

Unmanned Aerial Vehicle (UAV) is autonomously following and attempting to

land on a moving platform whose location is continuously fed to the UAV. A

typical landing test consists of placing the UAV starting a few meters away from

the platform, finding and following the moving platform, and then initiating the

landing sequence. Using a message passing system middleware such as ROS

(Robot Operating System)[12], an implementation of this system contains several

distributed processes that communicate through dozens of message channels.

An engineer developing a monitor to detect anomalies for this kind of system

is likely to focus on a small subset of variables and relationships between variables.

For example, a monitor crafted for this system would likely check whether the

2

Figure 1.1: UAV attempting to land on moving platform.

positions of the UAV and the platform are aligned when landing is initiated,

and whether the speed of the platform is less than a safe maximum. There are,

however, many other aspects of the system worth monitoring that are more subtle

and may not be considered by the engineer given the number of variables and

relationships involved. For example, it may help to ensure that the platform is

horizontal and not rotating when landing, the UAV’s angles are not greater than

a multiple of the UAV’s commanded velocity, there is only one landing platform

reporting its location, and the platform is unoccupied and able to support the

weight of the UAV. In addition, the UAV operating in different scenarios may carry

varied safe conditions. For instance, the safe angle of the UAV flying in a no-wind

environment is quite different from it in a strong-wind environment. Similarly,

when the platform is moving on different types of terrain, the UAV’s safe landing

conditions are quite different.

As the system complexity increases, it is unlikely that the engineer will consider

all possible variables or relationships in all scenarios. To alleviate this challenge,

we propose an approach to automate the synthesis of monitors from the traces

gathered by this type of distributed system operating a robot.

Our approach is inspired by existing software engineering approaches for

3

automated invariant inference[18]. The core idea of this type of approach is to

infer system invariants from traces collected during system execution, iteratively

instantiating potential invariants from a set of invariant templates utilizing the

trace values, and dropping or refining the ones that are falsified by other trace

values.

For example, given a template invariant varX ≥ constant and a trace of six

variable-value pairs collected from time t1 to time t6, tr = {t1 : a = 1, t2 : b =

3, t3 : a = 1, t4 : a = 2, t5 : a = 1, t6 : a = −1}, the approach would instantiate the

invariant template as a ≥ 1 after reading the value of a at t1 and further support

it until t6 when value a = −1 is observed. Then it becomes necessary to refine

the invariant to a ≥ −1. For variable b an invariant may not be reported as there

may not be enough values to support that instantiation. Given a set of traces, the

inferred invariants provide a characterization of the behavior of the system as

exhibited in those traces, and can be the basis for determining what to monitor

and what is an anomaly.

Existing techniques to automatically infer invariants have been shown useful

for generating generic invariants like the one illustrated above to act primarily as a

function’s pre and post conditions. The application of these techniques to large

distributed robotic systems, however, has been limited. We conjecture that this

is due to the focus on the generation of low level invariants which is impractical

for these large systems, the lack of domain-specific invariants that capture the

temporal and spatial aspects of robotic systems, and the lack of tools to seamlessly

integrate such approaches into the development process and common toolsets. In

this work we set out to tackle these challenges.

4

1.1 Approach Overview

The goal of our approach is to enable the automatic generation of system monitors

that can detect anomalous behavior and launch counter-measures. The type of

system we target is a robotic system made of distributed nodes that sense, actuate,

and communicate through some form of message passing scheme. Our work

was motivated and implemented in the context of ROS [12], but the approach is

generalizable to other similar message passing infrastructures, as well as service

oriented architectures. (e.g., LCM [5], Microsoft Robotics Developer Studio [6] ,

CLARAty [2]). Note that we operate at the granularity of messages commonly

used by robotic systems operating under a publish and subscribe architecture.

This reduces the monitoring overhead and it lets us infer properties related not

just to program states, but also to message sequences, which are critical to robotic

systems.

Figure 1.2 provides an overview of the approach, which is conceptually similar

to what is currently performed by existing dynamic invariant inference frameworks

[18, 19, 20, 28]; we have highlighted the differences by bolding certain components’

labels.

As shown in Figure 1.2, system S, a configuration file(CFG) and a training

set TS, serve as the only inputs to the approach, and the whole workflow can

be separated into two parts: Invariant Inference and Monitor Synthesis. In the

first part, S is instrumented to capture the messages passed between the nodes

in the system, constituting system S′. When S′ is executed with the training

set TS, a set of |TS| traces(Traces) is generated, where each trace will contain a

sequence of variable-value pairs found in the messages. The approach will then

attempt to instantiate the predefined invariant templates based on the information

5

Figure 1.2: The whole workflow

found in Traces and CFG. Each instantiated invariant is a boolean expression

that characterizes the variables values observed in Traces. In the second part, the

invariants are further pruned with data traces based on their classifiers’ capabilities.

Then, the invariants are synthesized into a monitor that can be incorporated into

the system S.

1.2 Thesis Structure

Through this work we aim to make automated invariant inference techniques

amenable to robotic systems. Our main contributions are:

• With just message passing channels instrumentation, our approach captures

critical information in robotic systems, and organizes them into data traces

in a way to enable more interesting invariant inference.

• We have developed invariant templates that account for properties that are

deemed important in the context of robotic systems, such as those character-

izing the relationship between variables that have a continuous distribution

such as sensors values, those including a time component to capture the

derivatives of raw variable values, those that can differentiate among system

6

operating modes, those characterizing the architecture of the robotic system,

and those capturing temporal properties of the program behaviors.

• We have implemented a version of the approach that automatically classi-

fies and synthesizes invariants into a monitor node that can be seamlessly

integrated into existing ROS systems. The monitor can be tailored to trigger

actions when an invariant is violated.

• We have assessed the approach in the context of three UAV systems to better

understand its potential. In our experiments, we found that the monitor

can reduce system failure rate when facing unexpected scenarios from 76.2%

to 10.6%. In addition, it also can be used to check user expectations and

assumptions. The new developed invariant templates have potentials to

detect subtle problems in Robotic Systems.

The thesis is organized into the following chapters. In Chapter 2 we will

introduce the background and the related work. In Chapter 3 we will describe

how we perform Invariant Inference, including program instrumentation, trace

generation, and invariants templates. In Chapter 4, we will discuss our Monitor

Synthesis, including invariant classification and monitor generation. In Chapter 5,

we present three case studies to evaluate our approach. In Chapter 6, we conclude

and discuss future work.

7

Chapter 2

Background and Related Work

Our work aims to enable the automatic generation of system invariant monitors

that can detect anomalous behavior in distributed robotic operating systems. Since

we implemented our tool specifically on ROS (Robotic Operating System), we first

introduce the background of this robotic system, and then explore the related work

in three contexts: invariant detection and monitoring, robot execution monitoring,

and distributed system debugging. A summary of the related work is described in

Table 2.1.

2.1 ROS

ROS[12] is a software framework for robot software development, which provides

operating system-like functionality on a heterogeneous computer cluster. It is

based on a graph architecture where processing takes place in nodes that may

receive, post and multiplex sensor, control, state, planning, actuator and other

messages.

Figure 2.1 shows a publish/subscribe graph view of a ROS program, where

8

Context Other Approaches Our Approach
Daikon[18,
19]

Powerful invariant inference en-
gine and framework; sophisti-
cated toolset with multiple front
ends and extension capabilities.

Built on Daikon’s framework;
richer invariant templates;
Daikon’s front end for ROS.

DIDUCE[28] Online invariant inference and
monitoring on Java bytecode; sim-
ple invariant templates on one
variable or expression.

Offline invariant inference and
runtime monitoring on robotic
systems; richer invariant tem-
plates.

PRECIS[34] Invariant inference only; clusters
variable’s values by path informa-
tion in terms of predicate words;
needs to access source code.

Invariant monitoring also; sim-
ply clusters data by enumerable
variables; does not need to access
source code.

Invariant
Inference
and moni-
toring

DySy[15] Invariant inference only; uses si-
multaneous symbolic execution to
get more abstract and general in-
variants; needs to access source
code.

Invariant monitoring also; no
static analysis; does not need to
access source code.

Javert[20] Mines small generic temporal pat-
terns from event sequences and
composes them to construct large,
complex patterns.

Infers temporal invariants like
ordered-pair intervals, which is
a simple but effective temporal
property for robotic systems.

GK-
tail[16]

Generates extended finite state
machines (EFSMs, annotating
FSM edges with transition condi-
tions on data values) from interac-
tion traces.

Only detects the existence of event
patterns in the form of regular ex-
pressions defined by users.

GSOLR[23,
24]

Model-based analytical approach;
uses reachability analysis to guar-
antee safety against worst-case
disturbances.

Data-driven approach; learns sys-
tem properties and enforces these
properties.

Robotic
Execution
Monitor-
ing

Self-
Awareness
Model[25,
26]

Data-driven approach; detects
faults based on the inherent dy-
namics of inter-component com-
munication.

Data-driven approach; detects
faults based on both temporal
and state properties of inter-
component communication.

Real-time
Diag-
nosis &
Repair[22]

Uses model-based diagnosis for
fault detection and localization,
and a repair module executes an
appropriate action to recover the
system from the fault.

Localizes faults on topics or ser-
vices; monitor can take isolation
or other recovery action.

Distributed
System
Debug-
ging

Pip[35] Accepts expectations in a declar-
ative language from users; logs
actual system behaviors and ex-
plores expected and unexpected
behaviors.

Infers and enforces structure and
performance specifications.

Table 2.1: Comparison of our approach and others

9

Figure 2.1: Graph view of a ROS program

ellipses represent nodes and directed edges are communication channels (pub-

lish/subscribe) between nodes. Nodes are the basic elements in a ROS program,

and each node is simply a process launched in a ROS system. Nodes can com-

municate with each other through two mechanisms: topic and service. A topic

works like a message bus, where nodes can publish to and subscribe from, while

the messages published on topics are just user defined data structures. As shown

in Figure 2.1 the label on the edge is the topic name, and the edge starts from

the publisher who will publish message to the topic, and ends to the subscriber

who will subscribe message from the topic. Note that multiple nodes can publish

or subscribe to one topic, so that topic may build multiple communications. On

the contrary, a service can only be provided by one server node at a time, and

the client nodes can communicate with the server node by calling the service. All

these communications are registered and directed by a ROS master node.

ROS also provides several ways to configure the program at launch time and

runtime. The sample XML-format launch file in Figure 2.2 can configure and

deploy multiple nodes with particular arguments and parameters at launch time.

The launch file makes the ROS program more flexible since it enables launching

multiple nodes from one package, remap resource names (node, topic, service

and parameter) and set parameters. For example, in Figure 2.2 six nodes would

10

Figure 2.2: Launch file of a ROS program

be launched together explicitly. The first node conv gps pose launched from an

executable file vicon pose in vicon pose package. Inside the scope of this node, the

resources it refers as subject name would be remapped to a new name car pose.

And it also sets a string parameter object with the value of “car”. In addition, the

ROS parameter server also provides a way to access and change parameters at

runtime.

2.2 Invariant Inference and monitoring

Our work was inspired in part by the evolution and maturity gained by techniques

and tools available to infer likely program invariants. Our technique and tool

build specifically on Daikon[18, 19], one of the pioneer approaches with probably

the most sophisticated toolset openly available. The likely invariants produced by

Daikon are a dynamically-generated analogue of a program specification, which

is valuable in software testing, debugging and verification. We discuss Daikon in

more detail in Section 3.1.

Among invariant monitoring, DIDUCE[28] was the first work to use invariants

for runtime monitoring and diagnosis, which is similar to our work. DIDUCE

11

needs to instrument java bytecode, focuses on program states at particular program

points (procedure calls and heap accesses), and relaxes invariants or reports to

users when detecting anomalies. Instead, our approach, operating in the context of

message-passing and service-oriented architectures supporting distributed robotic

systems, does not instrument the program source code, but just focuses on mes-

sages to detect system anomalies by richer types of invariants, and takes corrective

measures (like interrupting the message passing) to prevent system crashes.

Still, several other complementary efforts have emerged in the last few years,

ranging from refining state invariants to temporal and behavioral model inferences[20,

40, 15, 34]. To improve invariant generation, researchers have taken advantage of

static analysis to guide the dynamic invariant inference. For example, PRECIS[34]

proposed generating invariants through program path guided clustering. Their

approach records inputs and outputs together with predicates for branch con-

ditions, and uses linear regression on inputs and outputs grouped by predicate

words to infer path invariants. DySy[15] uses symbolic execution to infer more

general invariants, as it combines concrete executions of actual test cases with

simultaneous symbolic executions of the same tests to produces abstract conditions

as program invariants. In our work, we did not apply static or symbolic analysis,

because we are facing large scale distributed robotic systems instead of a class

or a function. Consequently, our approach is a purely based on traces without

any dependence on source code. However, to extend the power of Daikon, we

also use a cluster analysis on the trace data to generate conditional invariants (see

Section 3.6).

Temporal invariants represent some rules on events’ order. Javert[20] is one tool

that can extract and compose temporal patterns from event traces, and its extension

allows for simultaneously learning and enforcing general temporal properties over

12

method call sequences[21]. We have also implemented such temporal invariant

inference on publishing messages and calling services. We specifically infer the

ordered-pair interval invariant, which tells that an event always happens after

another event within certain time and events happening in the interval.

In terms of behavioral model inference, researchers have focused on interactions

between components, and the results are usually in the form of finite state machines

(FSM). Lorenzoli et al. have developed a dynamic analysis algorithm called GK-tail

combining the ideas of invariant detection and temporal property mining[16]. The

result of this kind of inference is a extended finite state machines (EFSMs). In our

approach, we can also detect existence of event patterns in the form of regular

expressions defined by users. However, we did not yet explore FSM or EFSMs

inference in this work.

2.3 Robot Execution Monitoring

In the context of robotic systems, monitoring for error detection is a well known

area [38]. The potential for missing information, unreliable and imprecise sensors,

and the stochastic nature of the operating environment often makes monitors a

necessity. Existing efforts can be categorized into model-based or data-driven,

based on how to build the system model (invariants in our approach) to detect

anomalies.

Model-based approaches follow either an analytical or knowledge-based method,

where developers model each state beforehand and use this model to estimate the

current system state (i.e., normal or faulty). Analytical approaches are commonly

used in the design of control systems, where the models are constructed based on

fundamental assumptions. They are precise and mostly targeted at problems fairly

13

close to the hardware as well as to the raw sensor data.

In the context of quad rotors similar to the ones we used in our study, there

have been several recent efforts that attempt to detect anomalies by model-based

approaches. For example, Gillula and Tomlin[23] proposed a framework using

reachability analysis in a way that prevents the control system from taking an

unsafe action. They further proposed an adapted form of their approach called

GSOLR by modeling the worst-case disturbance state-dependent manner learned

online[24].

The data-driven approach does not need a model beforehand; instead it tries to

infer an abstract model (usually a statistical model) of the original system from

the data, and uses the inferred model to detect faults. Golombek and Wrede et

al. presented a so-called self-awareness model [25, 26]. It also requires a message-

passing robotic systems, and it maps each system’s internal data exchange to

an event (such as Component1 updates sensorA on Component2). And then it

infers a probabilistic model on the event sequences, which is the histogram of

the interval time between any two events, by which it could detect many errors,

such as component failure, resource starvation and asynchronous communication.

Our approach also infers such temporal invariants as the ordered-paired interval

invariant (see Section 3.4.4.1), which captures not only the time but also the events

happening in the interval. Besides temporal properties, our approach also captures

a variety of state properties.

After an anomaly is detected, existing efforts have been designed to perform

diagnosis and remediation based on models defined by domain experts. Steinbauer

and Morth presented a solution for real-time fault detection and repair of control

softwares of autonomous robots[22]. Their diagnosis system uses model-based

diagnosis for fault detection and localization, and a repair module executes an

14

appropriate action to recover the system from the fault.

Our approach is complementary to these approaches, and unique in that it can

generate more general invariants that were not considered by domain experts, not

defined by simple statistics, and that may be relevant to many robotic systems as

they are instantiated by a training set. Furthermore, the implementation within

ROS makes it directly applicable to a large set of existing robotic systems.

2.4 Distributed System Debugging

In distributed system debugging, developers usually focus on two kinds of bugs:

structure bug and performance bug[35]. A structural bug results in processing

or communication happening at the wrong place or in the wrong order. Most of

these approaches[35, 36, 32] collect event sequences as causal paths, and check

expectations or anomalies as errors. Inspired by their approaches, we build our

structure invariants as architecture invariants (see Section 3.4.3), which indicate the

correct communication model of the ROS programs. However, our approach does

not collect causal paths driven by events, but simply records the publish/subscribe

architectures and infers the invariants. Compared to their approach, ours relies

less on the program instrumentation and the behavior expectation.

The performance bugs result in processing consumes too much or too little of

some important resources, for example time. The measure of the performance also

depends on the causal paths collected [35, 31, 36, 32]. Our approach also records

and infers some invariants of system performance. For example, we record ROS

service calls and infer invariants on the response delay (see Section 3.4.1). Another

performance measure is message latency(see Section 3.4.1), which constrains the

delay between publish and subscribe.

15

Chapter 3

Invariant Inference

In this chapter, we will describe the invariant inference process in detail, which

is the core part of our approach. As shown in Figure 1.2, the input is a system,

a training set and a configuration file, and the output is a set of invariants. The

invariant inference process can be divided into three steps: the first step enables

the generation of data traces, the second is translating the data traces to feed the

extended invariant inference engine Daikon, and the third is the actual invariant

inference. The goal of this process is generating as many as possible meaningful

and useful invariants, while suppressing trivial or redundant invariants. To achieve

this goal, we enrich the sources of information of the data traces in the first step.

Then, we organize the data trace in a way that Daikon can capture more interesting

invariants. For the last step, we develop new invariant templates to increase

the power of the inference process. In the following sections, we will illustrate

these steps in more detail. We start with describing the invariant inference engine

Daikon, on which we base our work.

16

3.1 Extending Daikon

Daikon is an implementation of dynamic detection of likely invariants. It provides

a flexible framework with a sophisticated toolset for invariant inference. The

framework of Daikon is shown in Figure 3.1. Daikon provides several language-

specific front-end tools for program instrumentation and an extensible invariant

template set. A front-end tool puts probes in the target program (more specifically

at methods’ entries and exits), and creates a .decl [3] file containing the declarations

of the program points and the variables associated with them. During execution,

these probes output variables’ values on their program points to the data traces in

Daikon’s input format (.dtrace files [3]). At inference time, the invariant templates

are used to initialize and check the invariants on the data trace, and developers

can extend this template set. Generally, the inference engine follows these steps:

• Given variables declared in the .decl file and Daikon’s parameters in the

settings file, it initializes all possible invariants on the variables based on the

invariant templates;

• It reads the data from the .dtrace file, checks all the invariants initialized in

the first step, and dismisses or refines them if the data in the trace violates

them;

• After finishing reading all the trace data, it filters out unjustified or redun-

dant invariants based on the settings, and finally outputs all the invariants

remaining.

Our work builds specifically on Daikon in the context of ROS. From the per-

spective of Daikon’s framework, we have built a ROS front end, as we have tailored

Daikon for ROS and develop new invariant templates.

17

Figure 3.1: Daikon Framework

Figure 3.2: Invariant Inference Work Flow

Figure 3.2 shows the inference workflow of our approach which extends

Daikon’s framework. To get the invariants, our approach needs to go through three

steps: trace generation, trace translation, and invariant inference. First, the target

program’s executions are recorded into traces, then our approach translates these

traces into Daikon’s trace format, and finally Daikon uses our extended invariant

templates to infer and output the invariants.

The inference process can be configured by a XML-format configuration file

as shown in Figure 3.3, in which the scope tag defines how the messages will be

extracted and organized, and the detect tag tells where to find the original data files.

Our approach works at the granularity of messages, so the scope tag defines the

sources (like topics in ROS system) we want to extract messages from and how to

organize these messages into data traces. The scope tag also declares the inference

18

Figure 3.3: Inference Part of a Configuration File

of other two kinds of invariants: architecture invariants and temporal invariants,

which will be described in the following sections. The detect tag indicates the

training data set (specifically the bags files of the ROS system) for the invariant

inference. We will explain these in detail shortly.

We contribute three key extensions. First, we perform data capture at the level

of the structured messages that are sent between ROS nodes. We observed that

these higher level messages cause less overhead while still providing a rich enough

data set from which to generate invariants on a per-topic level. Another advantage

of this shift is that we can use a common ROS tool called rosbag to record most data

without instrumenting the program, which means we can avoid instrumenting

and adding overhead to complex source code. For some particular invariants

(service call and architecture) we still need to add a node to retrieve the desired

information, but we can do it through the modification of the program’s launch

file without instrumenting the source code. Second, we group messages according

to their topics in the publish/subscribe graph, which helps to capture interesting

properties across multiple topics. Third, we extend the invariant template set with

19

four new invariants: time-related, polygon, architecture, and temporal, which are

particularly useful in Robotic Systems. Plus, we extend the invariant justification

procedure of our new polygon invariants, which can help when the polygon

invariants grow explosively. We also implement a simple cluster method to infer

more precise invariants on separate sub traces.

3.2 Trace Generation

As mentioned before, we perform data capture at the level of the structured

messages that are sent between the ROS nodes. While avoiding source code

instrumentation, it provides a rich enough data set for invariant inference. The

goal of trace generation is collecting all relevant data into traces. In addition to the

normal messages communicated between nodes, our approach enriches the traces

by collecting service messages, ROS parameters, and ROS architecture. All that

special information also goes into messages to be recorded.

We want each message in the generated traces to include the time stamp, the

message type, the message value, and the source of the message (topic). ROS’s

rosbag tool meets our requirements to capture the messages published through

topics, but it misses information from other sources such as service messages, ROS

parameters, and ROS architectures, so we need to extend message traces with an

additional node that we call the recording node.

Services provide another way for nodes to communicate with each other.

However, capturing service invocations is challenging, because a ROS service

works like a point-to-point private communication between nodes. In order to

record service usages, our approach has to intercept the service connection. It

first needs to query the ROS master node to get all the services. Second, for each

20

Figure 3.4: Example of remapping service

service, our approach remaps it to a new service name for all its server nodes.

Third, the recording node provides the original services by relaying the request and

response messages between the client and the real server. As shown in Figure 3.4,

in the original system, the client node calls a service named /s1 on the server node.

Our approach remaps the service with another name /rec/s1 for the server node,

and makes the recording node relay the service. In this way, every time a service

is called, the recording node publishes the service messages including the request

and response messages, the client node, the real server node and the response

time, and the rosbag tool records the service message into the trace. This service

relaying introduces addition response delay.

ROS parameters work like system environment variables for ROS systems. For

the system in Figure 5.15, we can use global parameters to declare the initial GPS

coordinates, and the nodes’ private parameters can configure the nodes behavior

like message publishing rate. To collect them, as shown in Figure 3.5 our recording

node queries the master to get all the parameters which have been set on the

parameter server, and then publishes them to the special parameter topic. It

performs the query at a configurable time interval, and if any parameter has been

changed, it republishes the parameter with the updated value. In this way, our

21

Figure 3.5: Architecture and Parameter recording

approach records them into the trace through the rosbag tool.

The system architecture is important information to collect, which indicates

the nodes’ publish and subscribe structure represented by a graph of nodes and

topics or services, as will be addressed shortly in Section 3.4.3. The architectural

information is recorded by the recording node as shown in Figure 3.5, which

queries the ROS master to get the current architecture (topic and service), and then

publishes the information to the architecture topic, which is recorded by the rosbag

tool. The recording node takes a snapshot of the architecture at a configurable

time interval, and if this snapshot is different from the previous one, it publishes

the new architecture. The topic architecture information is presented as a map

of topics to publishers and subscribers: {topic1 : {pubs : {pub1, pub2, . . .}, subs :

{sub1, sub2, . . .}}, . . .}; while the service architecture information is just a map of

services to servers: {service1 : server1, service2 : server2, . . .}.

3.3 Trace Translation

The goal of the trace translation step is translating the messages in bag files

into Daikon’s format. Moreover, it organizes the data to let Daikon infer more

interesting invariants.

Variables in Daikon’s format must be grouped by locality also known as

program points. For example, method entry and exit points are considered

22

program points by Daikon’s inference engine. Only variables at the same program

point are analyzed together to compute invariants. For example, Daikon would

infer the relationship between the variables x1 and x2 on the entry point of method

A, but it would never infer any relationship between x1 or x2 at entry point of

method A and the variable y at entry point of method B. In our case, we do not

explicitly have program points in terms of methods’ entries or exits; however, we

have processing nodes and topics. Our approach clusters topic messages consumed

and published by a node to identify invariants for the node. The idea is that the

entry values in the messages consumed by a node are likely to define its behavior

and affect its outputs as evident in the published messages.

For example, in the ROS system shown in Figure 3.6, each ellipse represents

a node, rectangles show topics, and the directed edges tell the publish and sub-

scribe relations. We can see that the topic /a/cmd subject ctrl state 0 is pub-

lished by the node /a/car ctrl 1 which subscribes to the topics /a/car pose 1 ,

/a/subject ctrl state 1 and /a/subject pose 1 . We group the messages on these

four topics together at the program point of /a/cmd subjec ctrl state, because the

messages on the topic /a/cmd subject ctrl state are probably dependent on these

on the three input topics. Since dependencies may exist across more than one

publisher, we can further group topics along the chain. For instance, if we clus-

ter messages across two publishers, the /a/cmd subjec ctrl state program point

will contain six topics, where the two extra topics are /a/subject status 2 and

/vicon/car 2 . Although the long-chain grouping may present interesting invari-

ants, it also introduces increasing overhead as we will infer invariants on more

variables. And the relations between topics across more publishers are likely to be

weak.

The process of pairing messages for this is illustrated in Figure 3.7. The

23

Figure 3.6: A ROS Program Example

top part presents a partial message trace, and the bottom part shows the data

trace of program points of publish/a/cmd subjec ctrl state. In each pairing, a

published message on topic /a/cmd subject ctrl state is paired with the latest

values of messages on several topics including /a/subject ctrl state, /a/car pose

and /a/subject pose. Note that not all messages are published at the same rate, so

each pairing includes the published message with the latest value available for all

the incoming messages. Our approach can be parameterized to relate published

values to a range of previously consumed values.

As shown in Figure 3.7, our approach attaches a time stamp to every program

point. Extracted from the bag file, the time stamp indicates when the message is

published, and it can be used to infer time-related invariants (Section 3.4.1).

For services, the translator retrieves the messages (request and response) on

the service calls from the service-recorded topic, and puts these messages into

corresponding service program points as shown in Figure 3.8. ROS parameters are

much like global variables which can be put into any program point if the user

chooses. For architectural messages, our approach reads and converts them into

24

Figure 3.7: Sample trace (top) and message pairings (bottom)

the data trace at the architecture program points. Since Daikon does not support

user defined data structures, we represent the architecture data as string variables

as shown in Figure 3.8.

Our approach can also infer temporal invariants, which treats publishing

a message or calling a service as an event. Since all these events have been

recorded in bag files and they are ordered and stamped by time, the translator

only needs to retrieve the events indexed with their time stamps as shown in

Figure 3.9. In this example, the user chooses three events (/a/task waypose,

25

Figure 3.8: Sample services and architecture trace (top) and their translations
(bottom)

26

/a/cmd subject ctrl state, /a/execute task) to infer temporal invariants, so the

translator extracts these three events from bags files and orders them by their time

stamps.

The translator conducts all the jobs under the instructions from the configura-

tion file, where the scope tag declare the program points in terms of topics, services,

architectures and temporal properties. Figure 3.3 shows a sample configuration

file , where two topics are declared in the publish tags: /a/cmd subject ctrl state

and /a/task waypose. The attribute relative defines how the translator will group

messages to fill the program points of Daikon’s input. If relative is set with 1, the

translator will group the input and output topics with one publisher as previous

discussed, but it can be set to group messages across multiple publishers.

Monitoring services are defined in the call tag, as the service /a/execute task

is declared in the sample configuration in Figure 3.3. Monitoring architectures is

set in the arch tag, where the user can declare to analyze publishers, subscribers,

or services architecture individually by changing its contents. The temporal tag

declares a temporal analysis with an event scope defined in the events attribute.

For example, in Figure 3.3 the events attribute refers to three events by their labels:

a. publish to /a/cmd subject ctrl state, b. publish to /a/task waypose and c. call

service /a/execute task. The task of the translator is to retrieve these events from

the bag files and to put them into a temporal program point in Daikon as shown

in Figure 3.9. Since there is one temporal element in the configuration file, there is

only one temporal program point named temporal+element id. Each instance of

the program point contains one string variable consisting of the event and its time

stamp.

The overall translation procedure is shown in Algorithm 1. It first parses the

configuration file to initialize the msgTable and programPointTable. The msgTable

27

Figure 3.9: Sample trace (top) and event sequence (bottom)

maps a topic name to a message instance, and the programPointTable maps a topic

name to its corresponding program point which is a list of message instances in the

msgTable. And then it iterates through all the messages in the bag. If the message

table contains the message’s topic, it updates the message value in the table. If

the message’s topic is a key in the programPointTable, it outputs the program

point instance into the output trace. ROS’s rosbag tool provides a C++ API, so we

implemented a C++ version of the translator, which reads the bag files and the

configuration file, and outputs the data trace files in Daikon’s format, including a

.decl file and one or more .dtrace file(s).

28

Algorithm 1 Translation Procedure
1: parse con f ig
2: initialize msgTable
3: initialize programPointTable
4: while msg in bag do
5: if msgTable contains msg.topic then
6: update msgTable
7: end if
8: if programPointTable contains msg.topic then
9: output programPointTable[msg.topic]

10: end if
11: end while

3.4 Inferring Invariants

Techniques that infer invariants from program executions often target a set of

standard invariants such as the memory locations read or written at marked

program points [28] or the ranges of values observed for a variable at the entry or

exit points of a function [3]. Daikon provides default invariant templates including

unary, binary and ternary ones on scalar, string and array values. For arrays

of scalars, we implemented two additional invariant templates that capture the

ranges of the average and the standard deviation of the arrays, because it is useful

to characterize array variables representing, for example, sensors values by these

two properties. Moreover, identifying richer invariants, like the ones we aim to

capture in robotic systems, requires the specification of richer invariant templates.

Through this work we introduce four new types of invariant templates shown in

Table3.1 that reflect the spatial, time, architectural, and temporal nature of robotics

systems.

29

Invariant Description Example
Time-related Messages’ frequency, variance and

change rate
f req(m1) > 21
var(m1.a) < 2.3
rate(m1.a) < 1.3

Polygon Relationships between two variables (2-
D range)

⋃n
i (aix + biy + c[>= | <=]0)

Architecture Node-communication graph max pub(t1) = {n1, n2}
min sub(t1) = {n3}

Temporal Temporal properties of events’ se-
quences

interval time(e1, e2) < 0.1
interval max events(e1, e2) = {2× e1}
((e1|e2)e3)∗

Table 3.1: New Invariants Templates

3.4.1 Time-Related Invariants

First, we introduce a new type invariant that incorporates time as a central

component. In robotic systems the program state is not just presented in vari-

ables’ values, but also in time-related variable values such as frequency, vari-

ance or change rate. The simplest of these templates serves to characterize

the messages’ frequency and variance. For frequency, this takes the form of

constantLower ≤ message f requency ≤ constantUpper. For our sample system

introduced in Section 5.1 and Figure 1.1, this type of invariant is useful to detect,

for example, stale location data that may direct the UAV to the wrong location

when the communication is broken.

The variance invariant takes a similar form as constantLower ≤ variable variance ≤

constantUpper. This type of invariant can also detect some stale data from a bro-

ken sensor. For example, usually the sensor gives data with some variance. If it is

broken and gives stale data, the variance invariant will detect that error.

A more complex type of invariant aims to capture the derivative of continuous

raw variables. For example, the derivatives of distance traveled over time may

render velocity or acceleration invariants. This type of invariant also takes the form

30

of constantLower ≤ variable rate ≤ constantUpper. In our scenario, a common

instance of such invariant of this type is minVelocityUAV ≤ VelocityUAV ≤

maxVelocityUAV, which can detect wrong localization data as shown in our case

study in Section 5.1.

To infer these invariants, we take advantage of the time stamps attached with

the observation at the program points, and make three new invariant templates

in Daikon to associate the time component with variables at the same program

point. To filter out short-time noise (the interval of two messages is very small

which makes the change rate extremely large), the templates do the computation

in a time window instead of on every consecutive message pair. The updating

invariant procedures of the three new templates are shown in Algorithm 2, 3 and

4. The input of the algorithms is a trace file. Every time the algorithms are fed a

timestamped record with a variable and a value, they update the queues within

the time windows (the time difference between the first and the last elements in

the queue should be less than the window size), and then compute their derived

values (frequency, variance and change rate) that will serve to instantiate the

corresponding invariants. To compute frequency, Algorithm 2 only needs the time,

while to compute variance and change rate Algorithm 3 and 4 need the time and

the target variable. And Algorithm 3 works on all elements in the queue to get the

variable variance, while Algorithm 4 only computes the change rate based on the

first and the last elements in the queue. Note that Daikon takes care of associating

the time variable with other variables at the same program point and feeds them to

the invariant templates. The time window can also be tuned in the configuration

file.

Based on the algorithm, we can see the time complexity of Algorithm 2 and 4 is

O(N), where N is the length of the data trace. The time complexity of Algorithm 3

31

Algorithm 2 Frequency Invariant Inference (trace, window)
1: f req max ← 0.0
2: f req min← Float.max value
3: queue← newQueue()
4: while time in trace do
5: queue.enqueue(time)
6: while queue.last()− queue. f irst() > window do
7: queue.dequeue()
8: end while

9: f req← queue.size()
window

10: f req max ← max(f req, f req max)
11: f req min← min(f req, f req min)
12: end while
13: output f req max and f req min as invariants

Algorithm 3 Variance Invariant Inference(trace, window)
1: var max ← 0.0
2: var min← Float.max value
3: value queue← newQueue()
4: time queue← newQueue()
5: while value and time in trace do
6: value queue.enqueue(value)
7: time queue.enqueue(time)
8: while time queue.last()− time queue. f irst() > window do
9: time queue.dequeue()

10: value queue.dequeue()
11: end while
12: variance← Statistic.variance(value queue.toList())
13: var max ← max(variance, var max)
14: var min← min(variance, var min)
15: end while
16: output var max and var min as invariants

32

Algorithm 4 Rate Invariant Inference(trace, window)
1: rate max ← Float.min value
2: rate min← Float.max value
3: value queue← newQueue()
4: time queue← newQueue()
5: while value and time in trace do
6: value queue.enqueue(value)
7: time queue.enqueue(time)
8: while time queue.last()− time queue. f irst() > window do
9: time queue.dequeue()

10: value queue.dequeue()
11: end while
12: if value queue.size() > 1 then

13: rate← value queue.last()− value queue. f irst()
time queue.last()− time queue. f irst()

14: rate max ← max(rate, rate max
15: rate min← min(rate, rate max)
16: end if
17: end while
18: output rate max and rate min as invariants

is O(N ∗ q), where q is the queue size that depends on the window size. Usually,

we use a small window size, so q is much smaller than the length of data trace N,

so it is O(N).

3.4.2 Polygon Invariants

We introduce invariant templates that define relationships between two variables1

that can be characterized through a convex polygon. This type of invariant is

valuable to capture physical space bounds. For example, if our operating scenario

was bounded by the dimensions of a room, this invariant template would be

instantiated and refined into a polygon similar to the shape of the room. This
1We note that we did explore invariant templates with more than two variables and although

some of the instantiated invariants were useful, we found that the cost of invariant generation was
exponential and hence prohibitive unless it was focused on a small set of topics.

33

type of invariant can also characterize relationships between variables that are

hard to anticipate because of their lack of linearity. Take the UAV acceleration

and its pitch and roll for example. Ideally, these variables are linearly correlated.

However, wind velocity may introduce variation in these relationships that can

only be captured through the richer invariants like the ones we are proposing.

This invariant template takes the form of ∩n
i (aix + biy + c[>= | <=]0) that

defines a polygon of n sides. Every time a new variable-value is read from a trace,

it is checked against the polygon. If it resides inside the polygon, it is ignored. If it

resides outside the polygon, the polygon is relaxed by computing the convex hull

that includes the new observation.

We implemented a new polygon invariant template in Daikon, where we use a

basic divide-and-conquer quickhull algorithm[17] as shown in Algorithm 5. The

input of quickhull algorithm is a set of points, which is provided by Daikon who

pairs two input variables and generates a set of values’ pairs as the point set. Then

the algorithm first computes a line between two extreme points in one direction

(X axis for example). Based on the side the point locates at, it separates the point

set into two sets (upper set and lower set, see Lines 1-2 in Algorithm 5), then

for each set it finds the one-side contours recursively (see Function f ind lines in

Algorithm 5), and finally it composes the polygon with the computed contours.

Its average case time complexity is O(N ∗ logN). Ideally, for each pair of values,

we can first store them in a point set, and at the end we can run this algorithm

only once on the entire point set. However, we may run out of memory in this way,

because it needs to store a huge amount of values pairs from the data trace. So,

we chop the data trace into chunks and run the algorithm on them one by one as

show in Algorithm 6. Before adding point into chunk, it first checks if the point is

inside of the computed polygon. It only adds the point outside of the polygon into

34

the chunk to update the polygon. This does not affect the outcome of the process,

but it mitigates the memory consumption at the cost of performance. We carried

out a performance test in our first case study (Sec 5.1), where we only inferred

polygon invariants on the same data trace with different chunk sizes. The result in

Figure 3.10 shows that the performance degrades if we make the chunk size too

big. We empirically choose 20 as a fixed chunk size in our implementation.

Algorithm 5 quickhull(point set)
1: find point min x and point max x
2: divide point set into point upper set and point lower set
3: line← (point min x, point max x)
4: line upper list← f ind lines(line, point upper set)
5: line← (point max x, point min x)
6: line lower list← f ind lines(line, point lower set)
7: return line upper list + line lower list
8:
9: Function f ind lines(line, point set)

10: make empty line list
11: if (point set is empty)
12: add line into line list
13: else
14: find the point point with the maximum distance from line
15: line1← (line.p1, point)
16: pull points outside of the line from point set to point set1
17: line list 1← f ind lines(line1, point set1)
18: add all line list 1 into line list
19: line2← (point, line.p2)
20: pull points outside of the line from point set to point set2
21: line list 2← f ind lines(line2, point set2)
22: add all line list 2 into line list
23: end if
24: return line list
25: EndFunction

35

Algorithm 6 Polygon Invariant Inference(trace)
1: initialize polygon and point set
2: while v1 and v2 in trace do
3: point← newPoint(v1, v2)
4: if polygon.not contains(point) then
5: add point into point set
6: end if
7: if point set.size() ≥ chunk size then
8: add all points in polygon into point set
9: polygon← quickhull(point set)

10: clear point set
11: end if
12: end while
13: add all points in polygon into point set
14: polygon← quickhull(point set)
15: output polygon as polygon invariant

1 2 10 20 200 2000 3000 5000 10000
0

100

200

300

400

500

600

700

chunk size

tim
e(

s)

Figure 3.10: Process Time vs. Chunk Size

3.4.3 Architecture Invariant

Distributed robotic systems have a dynamic architecture that can be tweaked

for different deployment conditions. These tweaks can often lead to erroneous

conditions, causing additional or missing topics or nodes.Take the ROS program

shown in Figure 3.11 for example. The correct architecture is shown with the solid

lines, where the node /a/car publishes to the topic /a/car pose and /a/UAV

publishes to /a/subject pose. Since the two nodes /a/car and /a/subject are

spawn from the same source code but with different remapped names, it is easy

36

Figure 3.11: A ROS Program Example

for users to create mappings that cause incorrect connections as shown with the

two dashed lines in Figure 3.11. Although the messages’ values may look correct,

the system is in a dangerous state, because the computations are based on the

wrong messages, and the system may generate wrong control inputs and crash the

robot.

Our approach can capture architecture invariants for two kinds of resources:

topic and service, which are the two main mechanisms for nodes to communicate

in ROS. For each topic, we have a set of nodes as publishers and also a set of nodes

as subscribers as shown in Figure 3.11. For each service, we only have one server

at a time, but there might be multiple servers providing it at different times.

The architecture invariants take the form of the maximum and minimum nodes

set using some particular communication resources as

{resource : (max node set, min node set), ...}.

For example, Figure 3.11 shows the graph for nodes communicated through topics.

If the architecture does not change, this architecture is an invariant for the topics.

For the topic /a/subject pose topic, the invariant of publishers is /a/subject pose :

37

({/a/uav}, {/a/uav}), which means there must be only one node named /a/uav

publishing to this topic. If the system is launched with incorrect mappings

as shown in dashed lines, the architecture invariant will be violated, because

/a/uav does not publish to topic /a/subject pose or /a/car publishes to this topic.

For subscribers of the topic /a/subject pose, the invariant is /a/subject pose :

({/a/car ctrl, /a/launch ctrl, /a/pid ctrl}, {/a/car ctrl, /a/launch ctrl, /a/pid ctrl}).

If /a/car ctrl is killed for some reason, the invariant will also be violated due to

the unexpected architecture.

We have developed a new invariant template in Daikon, which infers the maxi-

mum and minimum set of publishers, subscribers, and servers from architecture

variables in strings. As shown in Algorithm 7, given an architecture string, the

update procedure first parses the string to get the resource type (publishers, sub-

scribers or servers), and then extracts the nodes into a node set. Next, it updates

the corresponding maximum and minimum sets. The time complexity is O(N ∗ k),

where k is the size of the maximum node set. Since k is much smaller than N, the

time complexity is also N. An example of such architecture invariants outputted

by Daikon is shown in Figure 3.12, where the three architecture for publishers,

subscribers, and servers are specified respectively, and for each architecture the

maximum and minimum sets are presented as map variables.

3.4.4 Temporal Invariant

Another category of invariant is the temporal invariant, which expresses order

properties of events’ sequences. For example, in a multi-thread program, usually

to access a critical variable, the program needs to get the lock first and then release

the lock after finishing accessing the variable. The lock and unlock events should

38

Algorithm 7 Architecture Invariant Inference(trace)
1: while arch in trace do
2: parse arch into node set
3: if not initialize max set then
4: max set← node set
5: min set← node set
6: else
7: max set← max set

⋃
node set

8: min set← min set
⋂

node set
9: end if

10: end while
11: output max set and min set as invariant

Figure 3.12: Architecture Invariants

always happen in the correct order lock → unlock. In our approach we focus on

two kinds of events: publish to a topic and call to a service, so the invariants will

define temporal orders or patterns between them. In our UAV system, we also

observed some temporal properties. For example, the pid ctrl node should not

publish control messages until it gets the iRobot and the UAV position messages.

And if the pid ctrl node does not receive position messages for a while, it should

stop publishing control messages.

We have two temporal invariant inference templates: ordered-pair interval

and pattern. The order-pair interval invariant captures a common pattern in

robotic systems, like a landing event is always followed by decreasing the thrust

39

or a moving forward event should always follow a pitch command. And the

pattern invariant detects specific temporal pattern specified by the user that can be

represented by simple regular expressions.

3.4.4.1 Ordered-Paired Interval

The ordered-pair interval invariant captures the properties about the intervals

of ordered event pairs in event sequences. It expresses that an event is followed

by another event as shown in the pattern (Ā∗AB̄∗B)+, where A is followed by B.

It also specifies the interval information between the first event and the second

event. The interval information includes time and events, so the invariants capture

maximum/minimum interval time and maximum/minimum events happening in

the interval. The maximum/minimum events are multi-sets of events. However, if

the second event happens too far away from the first event in terms of the time

or the number of events, we would not consider it as an ordered-pair, because

we interpret it as a weak pair relationship. This invariant takes the form of

∩(e1→ e2 : {max time, min time, max events, min events}).

As an example shown in Figure 3.13, the first column is an event trace of three

events a,b,c and their time occurrence. We first analyze the ordered-pair interval

of a→ b, where the inference engine first initializes four interval instances in the

second column, and then infers the interval invariants as shown at the bottom

of this column. The first two are the maximum and minimum interval, which

indicates that once a happens b should happen within 1 to 2 seconds. And the

maximum and minimum event sets in the interval are empty, which means b

should follow a without any other events (a or c) happening in the interval. So the

event sequence like acb or aab would violate these invariants. From the same trace,

it can infer the interval invariant of a → c as shown at the bottom of the third

40

Figure 3.13: Event Trace and Interval Analysis

column. The maximum and minimum event sets are both {2 ∗ b} with means that,

every time we see a, we would expect exactly two b events happen before an event

c happens. If we see one b or three b or one a before c, the invariant is violated.

The fourth column is the interval analysis for b → c. The minimum event set is

empty and the maximum event set is {b}, which indicates that, if b happens, one

another b event may happen or nothing may happen before the event c happens.

If some event beyond the multiset happens, the invariant is violated. On the event

scope of a, b, c, three other intervals invariant (b→ a, c→ b and c→ a) would be

generated also.

We implemented a new template for the ordered-pair interval invariant in

Daikon, as shown in Algorithm 8. Based on the event scope (see events attribute in

temporal tag in Figure 3.3) defined in the configuration file, it first initializes all

the ordered events pairs. Then, upon an event from the event trace, it updates all

the ordered-pair intervals (see Line 3-25 in Algorithm 8). If the interval time is

larger than a threshold (predefined to 2 seconds but configurable) or the size of

the event set is greater than a threshold (predefined to 10 events but configurable),

41

it removes this interval (see Line 19-22 in Algorithm 8). Finally, it outputs all

the ordered-pair interval invariants that happens in the trace (see Line 27-31 in

Algorithm 8). The time complexity of this inference is O(N ∗ kr ∗ s), where k is the

number of events in the event scope, r is the number of symbols in the regular

expression, and s is the number of state in the DFA machine generated from the

regular expression.

3.4.4.2 User Defined Pattern

The second temporal invariant template targets a pattern defined by the user

in the form of a regular expression, which is declared in the pattern tag in the

configuration file. The invariants inferred will also be regular expressions as⋃
regular exp(events). For instance, in Figure 3.3 the user declares a pattern (AB)∗

with the events scope:

a. publish to /a/cmd subject ctrl state,

b. publish to /a/task waypose and

c. call service /a/execute task.

The inference engine will try to infer concrete patterns with these events. On the

event trace shown in Figure 3.9, the inference engine will find two invariants:

((/a/cmd subject ctrl state)(/a/execute task))∗ and

((/a/execute task)(/a/cmd subject ctrl state))∗.

As a result, this invariant template is useful when the user has the domain expertise

to identify the kinds of patterns that may occur.

The pattern inference process works as shown in Algorithm 9. First, based

on a regular expression(such as (AB)∗), it generates a DFA on the symbols (such

as A, B). Second, according to the event scope (such as /a/cmd subject ctrl state,

/a/task waypose and /a/execute task), it finds all the permutations of the events

42

Algorithm 8 Ordered-Pair Interval Invariant Inference(trace)
1: initialize interval list on the event scope
2: while event in trace do
3: for interval in interval list do
4: if interval.isClose then
5: if event is interval. f irst then
6: interval.isClose← f alse
7: end if
8: else
9: if event is interval.second then

10: if interval.time > time threshold then
11: remove interval
12: break
13: end if
14: update interval.max time and interval.min time
15: update interval.max events and interval.min events
16: interval.isClose← true
17: else
18: add event into interval.current events
19: if interval.time > time threshold or interval.current events.size >

events threshold then
20: remove interval
21: break
22: end if
23: end if
24: end if
25: end for
26: end while
27: for interval in interval list do
28: if interval has been initialized then
29: output interval
30: end if
31: end for

43

and then uses these permutations to generate all the DFA machines with transitions

on concrete events(such as ((/a/cmd subject ctrl state)(/a/execute task))∗). Since

the monitoring of the property can start at any point during the program execution,

each state machine has multiple current state pointers which are initialized pointing

to all its states. Third, on each event, the algorithm drives all the DFA machines

(each pointer goes to its next state on that event), and kills the machine if all the

pointers go into error states, since that indicates that there is no way for the regular

expression to hold. Finally, for each DFA machine, if there is one pointer that

has traversed all its states, it outputs this DFA machine in the form of a regular

expression on its concrete events.

Algorithm 9 Pattern Invariant Inference
1: parse pattern into a general DFA
2: from general DFA generate concrete DFA list on the event scope
3: while event do
4: for DFA in DFA list do
5: drive DFA on event if applicable
6: remove DFA if all the pointers go into error
7: end for
8: end while
9: for DFA in DFA list do

10: if all the states in DFA has been traversed by its one pointer then
11: output DFA
12: end if
13: end for

We use multiple pointers as the DFA’s current state, because the recorded event

traces may not start from the very beginning of the executions, so the state machine

may not be at its starting state at the beginning of the event trace. As shown in

Figure 3.14, the rosbag tool may be launched later than the system, so the recorded

trace starts with “ABAAB” rather than “AABAAB”. As a result, we cannot find the

pattern (AAB)* with a normal DFA. So we initialize the DFA machine with a state

44

Figure 3.14: State Set Transition of a Sample DFA

pointer set pointing to all its states, and at each input drive each state in the set

into its next state, and remove it if it goes into error state, as shown in Figure 3.14.

So that we can find the pattern from the partial event trace. In the last step, the

engine checks the traversed states of each pointer to verify the state machine, and

it only outputs the machines with good evidence.

The time complexity of the algorithm is O(N ∗ k2), where k is the number of

events in the event scope.

The regular operations we support includes Union or Or (as “|”), asterisk (as

“∗”), and Grouping or Parentheses (as “()” can be nested). The alphabet set is

limited to 26 alphabet letters (as a..z and A..Z) and Epsilon as (“− ”).

3.5 Invariants Justification

At the end of the inference process, invariants that are statistically justified are

outputted. For the default invariant inference templates, Daikon provides the

mechanism for invariants justification, which computes a confidence level to filter

out invariants that are satisfied purely by chance. Each type of invariant has

its own rules for determining confidence, as defined in the computeCon f idence

method in the invariant template. The confidence computation is between 0 and

1, which relates to the number of samples that satisfy the invariant. For example,

45

consider the Daikon’s default confidence computation is 1− 1/2num samples. With 3

samples, the invariant’s confidence is 0.875, and the invariant will be suppressed

by the default confidence limit 0.99. If the confidence level for the invariant is

larger than the limit (7 samples), then Daikon outputs the invariant.

All new invariant templates apply the same statistical mechanism to compute

the confidence level. Each time a new data is analyzed, it checks its invariants.

If the invariant needs to be updated by the new data, the number of samples

goes back to 1; otherwise, it increases the sample size by 1. At the end, Daikon

computes the confidence level by 1− 1/2num samples and decides whether to output

the invariant.

For our polygon invariant template, we use a different justification method

by comparing the polygon areas. The idea is that if two stochastic variables are

independent from each other, then, with enough samples, the polygon boundaries

will approximate a rectangle as shown in Figure 3.15. In that case, we can drop the

polygon invariant because it provides almost the same constraints as the boundary

invariants on the two individual variables. By dropping the invariant, we reduce

the overhead of checking the polygon invariant without sacrificing much precision.

In our approach, we measure the area ratio of the polygon over the rectangle to

decide whether to drop it as shown in Algorithm 10. The time complexity of the

algorithm is O(k), where k is the number of vertexes of the polygon. The threshold

of dropping can be set in the configuration file.

We performed an experiment using the data from the “normal” scenario of

our first case study (Section 5.1), which is a system designed to land a UAV on a

moving platform. We generated different sets of polygon invariants with different

dropping ratios, and used them to check 76 failed runs. If any invariant was

broken in the check, we investigate whether this set of invariants can detect the

46

Figure 3.15: Polygon Justification

Algorithm 10 Polygon invariant compute confidence
1: compute area polygon
2: compute area rectangle

3: ratio ← area polygon
area rectangle

4: if ratio > threshold then
5: con f idence← 0
6: else
7: con f idence← 1
8: end if

faults in the test cases. The result is shown in Table 3.2. We can see that, with

smaller dropping ratios, the number of polygon invariants and polygon sides

decreases without degrading the failure detection (at least for the faults in the

76 failed runs). The column violated polygons indicates that almost all polygon

invariants were ever violated in the 76 failed runs. The Failed Runs with Polygon

invariant violations is almost 100%, which could be resulted from that in the 76

failed runs almost all the failures could be detected by the range invariants, where

the polygon invariants (2-D range) put more restrictive constraints than the default

(1-D range) invariants.

47

Dropping Invariants Polygons Sides Violated (%) Failed Runs with
Ratio Polygons Polygon invariant violations

1.0 755 466 6122 465 100(76/76)
0.9 702 413 5107 413 100(76/76)
0.8 644 355 4145 355 100(76/76)
0.7 568 279 3078 279 98.7(75/76)
0.6 429 140 1494 140 98.7(75/76)
0.5 329 40 524 40 97.4(74/76)

Table 3.2: Evaluation of Dropping Polygons

3.6 Conditional Invariants

We introduce the notion of conditional invariants, that is, invariants that can only

hold under certain conditions that can be identified as such. For example, in our

system the invariants that hold when the UAV is on the ground versus when it

is flying are quite different. This partition of the space of system behavior helps

to generate more and more precise invariants for subsets of the system states.

Attempting to produce invariants without differentiating such states would result

in a smaller set of more general invariants, but it would miss many valuable

invariants that only apply to one system state. For example, the critical invariants

that characterize how the system should behave when attempting to land on the

moving platform (e.g. the UAV and platform X and Y coordinates should be within

a certain threshold) would be dropped, as they would not hold when the UAV is

pursuing the landing platform.

To infer such invariants, we heuristically use the composition of existing in-

variants templates. First, we run Daikon on the whole data traces and identify

variables that have a small discrete set of values, which are variables with less

than 10 values (configurable parameter). This helps us identify variables such

as UAVmodes which has a range from 0 to 8 indicating whether the UAV is tak-

ing off, hovering, translating, landing, etc. Second, we partition the traces into

48

Figure 3.16: Conditional Invariant Inference

sub-traces according to those discrete values. Third, we perform inference on the

sub-traces independently and incorporate the learned invariants and a predicate

on the discrete variable as part of the monitor. This heuristic approach identified

the state variable correctly in our case study one, but in some cases it may find

multiple such variables and divide the whole data trace into too many small sub

traces. Or if the state variable takes more than the specified values, this approach

would fail to find such variable. Given the importance of conditional variables, we

expect that in practice the software engineer will have to annotate such variables

or, as we have done in our studies, manually check them.

The workflow is shown in Figure 3.16, the ConditionAnalysis component parses

the invariants, and searches for variables with a small discrete set of values, which

is an invariant in Daikon in the form of “one of {...}”. Based on the searched

variables and its program point, it generates a new configuration file, which is

injected with the conditions and corresponding conditional program points. Then,

under the new configuration, the translator generates data traces separated by

conditions on conditional program points. And finally Daikon outputs conditional

invariants.

Inferring conditional invariants adds conditional program points, where each

program point has a sub trace of original traces. The size of the data traces to be

49

processed is the same as before, so the cost should be equivalent except for the

additional analysis.

The user can also make the conditional analysis effective by declaring the

condition inferences in the configuration file by adding desired condition tags as

shown in Figure 3.3.

3.7 Invariant Inference Summary

In this chapter, we have described our invariant inference on ROS-base robotic

systems. The whole process has three steps: trace generation, trace translation and

invariant inference.

In the first trace generation step, we take advantage of rosbag tool to record all

messages on topics, and add a recording node to record ROS services, architectures

and parameters. This approach allows us to capture all necessary data by building

on the strengths of the existing ROS toolset.

In the trace translation step, the translator clusters topic messages according to

their publishing/subscribing relations, and utilizing the information in a configu-

ration file, it puts topic, service and architecture messages into their corresponding

program points in Daikon’s format.

In the invariant inference step, we extend the invariant templates with four

new kinds of invariants: time-related, polygon, architecture, and temporal, which

capture some critical properties in robotic systems.

50

Chapter 4

Monitor Synthesis

In this chapter, we will describe the monitor synthesis process in detail. The input

to this procedure is a set of invariants, and the output is a monitor node which

will be integrated into the system to check the inferred invariants automatically.

Since most of the invariants are simply boolean expressions, it is straightforward

to encode these invariants as predicates at the corresponding program points.

However, to enhance the effectiveness of the synthesized monitor we explored two

additional activities: invariant classification and recovery actions.

4.1 Monitor Synthesis Workflow

As shown in Figure 4.1, the workflow is separated into two steps: InvariantClassi f ication

and MonitorSynthesis. For invariant classification, we worked on refining the in-

ferred invariant set. The inputs are an invariant set and extra system runs including

successful and failed ones. The output is a refined invariant set with the same

format as the input, so that this step can be injected or removed without affecting

the next step. The main idea of this step is evaluating invariants as binary classi-

51

Figure 4.1: Monitor Synthesis Work Flow

fiers of system’s state. With the help of successful and failed runs in bag files, the

Checker first computes FalseNegative(FN), TruePositive(TP), TrueNegative(TN)

and FalsePositive(FP) counts. Then, the Filter computes a F-score for each invari-

ant, and based on a threshold defined in the configuration file it decides whether or

not to keep the invariant. For monitor synthesis, besides checking the invariants at

each program point, we inject actions to recover from detected invariant violations.

These recovery actions range from default actions like raising a warning to some

particular actions defined in the configuration file like blocking messages.

The two steps are set through the configuration file as shown in Figure 4.2

through the tags check and monitor. The tag check defines how to classify and filter

the inferred invariants, where the element success gives the directory containing

the additional successful runs while f ail provides the failed runs, and the attribute

threshold defines the threshold to filter out invariants. In the tag monitor, the

recovery actions are defined and assigned to the monitored program points in the

tag scope. The block tag specifies on which topics or services the message will be

blocked. The action tag declares an action in the term of publishing a particular

message to a topic, which are defined in the topic tag and value tag. The violation

tag specifies what actions to take at violations of invariants at specific program

points. More details and an example about these tags are provided in Section 4.3.2.

52

Figure 4.2: Monitor Part of a Configuration File

4.2 Invariant Classification

In this step, we aim to refine the inferred invariant set to be monitored by removing

invariants that are not useful at detecting anomalies according to our evaluation.

As shown in Figure 4.1, it consists of two components: Checker and Filter. Checker

checks the input invariants against the recorded successful runs and failed runs,

and outputs FN, TP, TN and FP for each invariant. The filter component com-

putes the F-scores for all the invariants, and then prunes the invariants below the

threshold defined in the threshold attribute in Figure 4.2.

There are at least two benefits from this procedure. First, it reduces the monitor

overhead of checking , which may cause latency in relaying messages. For instance,

in the case study in Section 5.1, checking 1206 polygon invariants per message

has a 1.6 ms latency, while without invariant checking the latency is about 0.2 ms.

53

Secondly, because of insufficient samples of system’s behaviors, some invariants

over constrained the system, and hence too fragile. For example, as we shall see in

Section 5.2, the polygon inference generates about n2 polygons on a program point

with n variables, and these polygons need lots of samples to make them stable.

These invariants may also obfuscate meaningful invariant violations among the

reported broken invariants.

To conduct the classification, we pick a small part (e.g. %10) from all successful

runs. Although these successful runs can be used to further refine invariants,

fragile invariants may still remain, and they will be easily violated with more runs.

Instead of refining these fragile invariants, we can prune them by checking them

on those successful runs. At the same time, we can also build confidence on the

invariants which are not violated. We also take advantage of failed runs which

may also happen in the training process. Failed runs can be used to measure the

effectiveness of the invariant to detect errors. If an invariant is always violated in

the presence of failures, it may characterize that kind of failure, and the monitor

may need to prioritize it.

Since we use violations of invariants to detect anomalies in the system, each

invariant is a binary classifier of system’s state. So, we are trying to measure the

performance of these classifiers or predictors. Intuitively, if an invariant is not

violated in any successful runs but it is violated in all failed runs, then it is an

ideal classifier with the highest performance to detect anomalies. On the other

hand, an invariant that is broken in both the successful and failed runs is a poor

classifier since it cannot distinguish among these different system states. In the

analysis above, an ideal invariant holds only in successful system states while it is

violated in abnormal system state. In practice, there will be probabilities instead

of certainties.

54

As shown in Figure 4.1, using successful runs, we check each invariant to

compute the true negative and false positive rates, while we get the true positive

and false negative rates from failed runs. Equation 4.1 is used to compute the

true negative of an invariant, which is the fraction of the successful runs that the

invariant is not violated in all the successful runs. As shown in Equation 4.2 the

false positive rate of an invariant is the fraction of the successful runs that the

invariant is violated in all the successful runs. In the same way, we compute the

true positive and the false negative of the invariant as shown in Equations 4.3

and 4.4. However, we need a single value to score each invariant, so we compute

the precision and the recall, and label each invariant with the F-score. Precision

is positive predictive value (PPV) computed by Equation 4.5, which means if

the invariant is violated, how sure we can say the system is in dangerous state.

Recall (also known as sensitivity) computed by Equation 4.6 is that if the system is

actually in dangerous state how well the invariant indicates that. The F-score is a

single value to evaluate invariants, which is computed by the harmonic mean of

precision and recall (see Equation 4.7).

true negative =
not violated runs
success f ul runs

(4.1)

f alse positive =
violated runs

success f ul runs
(4.2)

true positive =
violated runs

f ailed runs
(4.3)

f alse negative =
not violated runs

f ailed runs
(4.4)

precision =
true positive

true positive + f alse positive
(4.5)

55

recall =
true positive

true positive + f alse negative
(4.6)

Fβ = (1 + β2) ∗ precision ∗ recall
β2 ∗ precision + recall

, where β is a constant coe f f icient (4.7)

Consider the sample data in Table 4.1. Invariant1 is an ideal invariant, because

it has the highest precision, recall and F-score. Invariant2 is unlikely to happen in

reality since we infer the invariants from successful runs. Among Invariant3, 4

and 5, invariant5 is the best one, since it has the highest precision and recall;

Invariant4’s poor recall lowers its F-score; and invariant3 is the poorest one, given

its lowest precision and the fact that it can only detect a tenth of the failures.

For Invariant5, 6 and 7, invariant5 is the best one; Invariant4’s precision is lower

than Invariant5, which make its F-score lower than Invariant5; and Invariant7 is

poorest one among this three invariants for its lowest precision. We can adjust the

value of β to give different priority to precision and recall. As shown in Table 4.1,

β = 1.0 means giving equal weights to precision and recall, while a smaller β value

gives priority to precision and a larger one gives priority to recall.

Successes Failures F score
Invariant % % % % precision recall

true false true false β0.5 β1.0 β2.0
negative positive positive negative

1 100 0 100 0 1.0 1.0 1.0 1.0 1.0
2 0 100 0 100 0.0 0.0 0.0 0.0 0.0
3 90 10 10 90 0.5 0.1 0.278 0.167 0.119
4 90 10 50 50 0.833 0.5 0.735 0.625 0.543
5 90 10 90 10 0.9 0.9 0.9 0.9 0.9
6 50 50 90 10 0.643 0.9 0.682 0.75 0.833
7 10 90 90 10 0.5 0.9 0.549 0.643 0.776

Table 4.1: Evaluation Invariants as Binary Classifiers

Another point worth mentioning is that the Checker component can work

independently to do the comparisons between different data sets. For example,

56

we can collect two data sets in different environments, and use one data set to

generate invariants, and then check them against the other data set, so that we

can find the broken invariants as the difference between the system behaviors

under the two environments. We will see this application of this component in

Section 5.2.

4.3 Monitor Synthesizer

The last step of our approach is the monitor synthesis. Given a set of generated

invariants on messages, architectures, and events, the synthesis process consists of

the creation of a node that monitors certain messages, other variables, or events

and checks whether they violate any of the invariants at particular program points.

4.3.1 Monitor

We have three sources that need to be monitored: messages on topics, messages

on services, and parameters and architecture. For messages on topics, the monitor

could simply subscribe to the desired topics, and every time it receives a message it

first computes some additional variables (e.g. message frequency, variable variance

and change rate), then it checks the corresponding set of invariants, and finally

reports if any of them are violated by the message. Since these invariants are

simply boolean expressions, such checks are quite straightforward. For messages

on a service, the monitor does the same thing, but the difference is that the monitor

has to intercept the service communication because of its particular mechanism in

ROS. For parameters, the monitor needs to query the ROS master every specified

interval, and does the same check as it does to other invariants.

The architecture invariants are expressed as the maximum and minimum set

57

of nodes corresponding to the jobs such as publishing to a topic, subscribing to

a topic, and providing a service. The monitor will query the master node every

specified interval to get the architecture information, and then check if any nodes

are doing the jobs out of the maximum set boundaries, and if the jobs are being

done by the nodes as the minimum set defines. The check interval can be specified

through the configuration file as well.

For temporal invariants, we have two kinds of invariants on events publishing

to topics and calling services. The monitor has already captured these two kinds

of events in the state invariants monitor, so we only need to add the temporal

invariant checking when an event of interest happens. For each order-paired

interval invariant, the monitor keeps a special state machine with a timer and an

events recorder built-in. The special state machine works as shown in Algorithm 11:

when the first event of the state machine happens it will turn on a timer and an

event recorder; then it records the events other than the second event, and checks

the maximum event set; as the same time, if the time-up event happens, it reports

the error; and finally when the desired second event happens, it checks the

minimum event set and minimum interval time. The time complexity of each

check is O(k), where k is the number of ordered-pair interval Invariants that the

event is involved.

For user defined pattern analysis invariants, the monitor first initializes the

state machines corresponding to the pattern invariants inferred, and then it runs

these state machines on each event, and reports the violation if any state machine

dies. These machines work as regular state machines, except they have a set of

current states inside. Each machine initializes its current states set as all its states.

On an event, it drives each state in the current state set to the next state, and

removes it when it goes into the error state. The machine dies when current state

58

Algorithm 11 Check Oredered-Pair Interval Invariant (event)
1: for interval in interval invs do
2: if interval.isClose then
3: if event is interval. f irst then
4: interval.isClose← f alse
5: turn on timer with interval.max time
6: end if
7: else
8: if event is not interval.second then
9: add event into interval.current events

10: check interval.max events
11: report errors if any
12: else
13: check interval.min time and interval.min events
14: report errors if any
15: clear interval.current events
16: turn off timer
17: interval.isClose← true
18: end if
19: end if
20: end for

set become empty. The reason is that the monitor may start monitoring at any

state of the state machine of the pattern. The algorithm is shown in Algorithm 12,

the time complexity of each check is O(m ∗ k), where m is the number of state

machines that the event is involved and k is the maximum number of states of the

machines.

Algorithm 12 Check Pattern Invariant (event)
1: for machine in state machines do
2: for state in machine.current do
3: state← state[event]
4: end for
5: remove error states in machine.current
6: if machine.current is empty then
7: report violation
8: end if
9: end for

59

Figure 4.3: Monitor Node Skeleton

The monitor node consists of multiple threads as shown in Figure 4.3. The

main thread will query the master node to check the architecture invariant and

update the parameter table. When a message is published to a monitored topic, its

callback function updates the message table, checks the invariants at this program

point, and takes corresponding recovery action if an invariant is violated. When

a request is issued for a monitored service, its callback function first checks its

invariants on the request message. If an invariant is violated, it takes recovery

action and returns false to the client. Otherwise, it sends the request to the real

server, and waits for the response. Then, it checks the invariants on response

message, and if any one is violated, it takes recovery action and returns false to

the client. Otherwise, it returns the response to the client. The number of callback

function depends on the topics and services monitored. We implement a central

monitor to monitor all the invariants, but it can also be implemented into multiple

monitors for different topics or services to better scale up.

60

4.3.2 Recovery Actions

The monitor also encodes what actions will be taken if any invariant is violated.

The recovery actions our approach supports are shown in Table 4.2. The default

action is raising a warning as mentioned in the previous section. Others include

blocking the bad message, publishing a message, calling a service and unregistering

unknown node. Some recovery actions need for the user to declare them in the

configuration file as shown in Figure 4.2.

Action Applied When Intercept
Invariants to call Communication

Raise a warning any Default No
Block Bad Message Topic and Service Users Declared Yes
Publish a Message any Users Declared No

Call a Service any Users Declared No
Unregister Unknown Publisher Architecture Default No

Table 4.2: Supported Recovery Actions

In the monitor tag of the configuration file, the block action defined in block tag

works for all state invariants on messages on topics and services, where the user

can define on which topics or services the monitor is going to drop the messages

if they violate any invariants. In Figure 4.2, the monitor will block the “bad”

messages on the topics /a/cmd subject ctrl state and /a/task waypose. Thus, for

those two topics, the messages are not just consumed by the monitor, but also

intercepted and only re-published if they do not violate any invariant. The monitor

can also block a service. If the request message breaks any invariants, the monitor

will not even send out the request to the real server, while if the response message

shows an violation, the monitor will only prevent the server from sending back the

response message to the client. This kind of actions can be useful in preventing

the system from getting into an abnormal state driven by the “bad” messages.

61

The block actions need to intercept the communication between nodes. Our

approach supports it by remapping the names in the launch file of the ROS

system. As an example shown in Figure 4.4, the top part shows the original launch

file and the graph view of the program, where the two topics /a/task waypose

and /a/cmd subject ctrl state will be monitored. Our approach will first find the

nodes who subscribe to the monitored topics, which in this case are /a/pid ctrl

and /a/ctrl state machine. Then, our approach will localize the two nodes in

the launch file and add two name mappings which will make these two nodes

subscribe to two new topics /m/a/task waypose and /m/a/cmd subject ctrl state.

Finally, the monitor node is added in the launch file, and its graph view is

shown as the bottom right part of Figure 4.4, where /m/monitor is plugged

into the original communication channels (/a/task waypose to /a/pid ctrl and

/a/cmd subject ctrl state to /a/ctrl state machine), and it looks like a filter to

check and relay the messages. The monitor node raises a warning when an

invariant is violated by publishing the invariant to the topic /m/broken inv. Users

can also remove an invariant monitoring by publishing the invariant name to the

topic /m/clear inv at run-time.

The monitor can publish a particular message on some topic or call some

service with some arguments. These actions are defined in the action tag as shown

in the Figure 4.2. These actions can be applied to any kinds of invariant violations

by declaring them in the violate tag. For example, in Figure 4.2, the action labeled

with f will be taken when any invariant is broken on the program points labeled

as a, c, e.

For architecture invariants violation, the system can also prevent unknown

publishers. This means that when the monitor detects an unknown publisher (by

violating the maximum publishers invariant) registered on the ROS master node,

62

Figure 4.4: Remapping names in ROS programs

it will unregister this publisher to keep the system isolated from this unknown

publisher. The intuition is that unknown publishers may have resulted from

incorrect remaps or “evil” nodes, which should be prevented immediately for

system protection. Subscribers on the other hand do not change the message

stream, so their effect on the system is likely smaller. So, the default actions do not

prevent unknown subscribers.

63

Chapter 5

Case Studies

In this chapter, three case studies are presented to assess our approach and explore

its potential.

In the first case study, we explore if the invariant monitor with associated

actions can reduce failure rate, and how effective are the new invariants at detecting

execution anomalies.

In the second case study, we explore another application of invariants, which is

the analysis of invariants of different deployments or execution environments.

In the third case study, we focused on investigating temporal invariants.

All the invariant inferring and monitoring tests were conducted on a Mac

Pro laptop, which had a 2.5GHz Intel Core i5 processor, a 4GB 1600MHz DDR3

memory and an OS X 10.9.1 operating system.

5.1 Case Study 1: UAV landing on Moving Platform

To start assessing our approach, we applied it on a system designed to land a UAV

on a moving platform. The target system was introduced in Figure 1.1 and has

64

three main components: the UAV (Ascending Technologies Hummingbird [1]),

the moving platform (iRobot create [4] with a mounted landing platform of 50cm

x 50cm, following its standard “vacuum” motion pattern), and a control system

we wrote that tracks the iRobot and directs the UAV in its pursuit. For ease of

evaluation, we run the UAV and iRobot in a Vicon [13] motion capture room and

provide the UAV with the position of the iRobot.

5.1.1 Training and Evaluation

The training process was conducted under what we determined were normal

operating conditions. The UAV can takeoff from anywhere in a 8m x 8m room, the

iRobot wanders in the room, and the control system drives the UAV towards the

iRobot. The UAV attempts to land on the iRobot when its center is within 15cm of

the iRobot’s center for 1.5 seconds. These values were driven empirically under

normal operating conditions.

To generate invariants for the system, we collected bags from 83 successful

runs. We consider a run successful when the UAV lands on the iRobot, turns off

its motors, and remains on the platform for 5 seconds. On average, each run took

about half a minute.

Among all the messages in the collected bags, we chose those published on

four topics containing a total of 56 variables for invariant detection and monitoring.

Three topics contained position and attitude information: iRobot, UAV and task

(all doubles). The fourth topic had state information (e.g., startup, launch, hover,

task, land, shutdown.) of the controlling system: state (unsigned int). As explained

in Chapter 3, our tool processes the bag files, clusters the messages around nodes,

and packages the traces as required by Daikon. In the end, the trace file for

65

invariant generation contains over nine million variable-value pairs.

Next, the processed data traces were fed to the extended Daikon inference

engine for analysis. Besides the default invariant templates, we activated two

of the new invariant templates: time-related and polygon at the time of the

assessment we had not implemented the other new invariant templates), and run

Daikon twice to get the condition invariants based on the value of state messages.

The inference process took 6 minutes 20 seconds to generate 1059 invariants

from these traces consisting of 465 default, 362 time-related, and 232 polygon

invariants. (This process is known to be polynomial with respect to the number

of variables [37] so identifying what nodes and topics to monitor, and techniques

for reducing the number of invariants to monitor is critical – we further discuss

this in Chapter 6). With these invariants and the actions defined in the monitor

configuration file, the tool generated the monitor node and a revised launch file

so that the monitor can could alongside the original system without the need for

recompilation. The recovery actions the monitor encoded are blocking the “bad”

messages and publishing a command message to bring the UAV to the task state.

We did not use the classification/filtering in this case study as that component was

developed after this study was conducted.

We evaluated the effectiveness of the invariant monitor on seven different

system scenarios (shown in Table 5.1). These scenarios were developed to test the

performance of the system with and without the monitor under normal conditions

(similar to the training set) and under stress. The stress testing scenarios contain

unexpected events that the system developer may not have anticipated, but that

the monitor may be able to detect. For the “s3 occupied landing” and the “s7 false

airport” scenarios we consider landing as a failure and a canceled landing as a

success, while for the other scenarios we set the same criteria for success as set for

66

the training process.

ID Name Description Success Certiria
s1 Normal Same as training conditions. Succeeds on landing.
s2 Wind Blowing 8− 38 KPH wind. Succeeds on landing.
s3 Occupied Landing Platform is occupied by another ob-

ject.
Succeeds if it avoids landing.

s4 Fragile Platform Platform will tip if the UAV lands
near the edges.

Succeeds on landing.

s5 Slowed Link iRobot position information given at
a slower rate.

Succeeds on landing.

s6 Stealing Vehicle Fake iRobot position is manipulated
to “steal” the vehicle.

Succeeds on landing.

s7 False Airport iRobot position is incorrect and no
vehicle is located there.

Succeeds if it avoids landing.

Table 5.1: Evaluation Scenarios.

5.1.2 Results

For each of the scenarios, we performed 5 trials with and without the invariant

monitor. Table 5.2 summarizes the results. Over all the test scenarios, the base

system without the monitor succeeded 23.8% of the time, while with the monitor

it succeeded 89.4% of the time. Figure 5.1 plots the success rates for each scenario.

The system with the monitor worked more safely that it did without the monitor,

as it succeeded with a higher rate for all the scenarios.

For the successes, the base system took an average of 35.5 seconds to succeed,

while the system with the monitor took 62.8 seconds to succeed. Figure 5.2 shows

a box plot depicting the average time in seconds with and without the monitor and

the variance in these measurements (only for the scenarios in which the system

without the monitor successfully landed). Without the monitor, the average time

has a low variance within each scenario and over all scenarios. With the monitor

there is a high variance in the time to success. This is because the monitor tends

to be conservative, as it only allows the UAV to land when all the invariants are

67

Figure 5.1: Landing success rate

Figure 5.2: Time to land

satisfied. In the best case, this will happen on the first attempted landing, but in

most cases it requires a number of attempts. Also, to monitor the invariants the

monitor adds, on average, a 0.35ms latency to the published messages.

5.1.3 Detailed Analysis

We now look at the details for each of the scenarios. We first describe the “normal”,

“wind blowing”, and “fragile platform” in more detail since they let us introduce

different types of invariants and contexts, and then briefly discuss the other

scenarios. A summary of the results per scenario is available in Table 5.2.

In the “Normal” scenario, most failures were caused by the iRobot’s suddenly

changing direction while the UAV was trying to land. Figure 5.3 shows the

68

Figure 5.3: Outcomes under normal scenario.

Figure 5.4: Normal scenario without monitor.

Figure 5.5: Normal scenario with monitor.

69

Scenario % Avg. Time Sample Invariants Broken
Success to Land (sec) During Failure

S1 Normal 35 35.5 polygon(UAV.x, iRobot.x)
polygon(UAV.y, iRobot.y)

Without
Monitor
Successes
23.8%

S2 Wind blowing 0 42.25 polygon(UAV.x, iRobot.x)
polygon(UAV.y, iRobot.y)
polygon(IMU.roll, IMU.acc y)
polygon(IMU.nick, IMU.acc x)

S3 Occupied landing 0 - UAV.z ≤ 0.371295
S4 Fragile platform 20 39 −0.0593147 ≤ UAV.rx ≤

0.145754
−0.106682 ≤ UAV.ry ≤
0.0836237

S5 Slowed Link 20 42 f req(iRobot) ≥ 2.04876
S6 Steal vehicle 20 41.6 −0.457771 ≤ rate(iRobot.x) ≤

1.01126
−0.532218 ≤ rate(iRobot.y) ≤
0.962376

S7 False airport 0 - UAV.z ≥ 0.245868
Scenario % Avg. Time Reinitiated

Success to Land (sec) Landings
S1 Normal 95 62.8 1.7

With S2 Wind blowing 100 141.8 4.8
Monitor S3 Occupied landing 100 - -
Successes S4 Fragile platform 80 145.6 16.2
89.4% S5 Slowed Link 80 106.4 6

S6 Steal vehicle 80 147.6 -
S7 False airport 100 - -

Table 5.2: Summary of results across all scenarios.

successful and failed landings with and without the monitor in the test area where

the iRobot was operating. The thicker rectangle indicates the boundary of the

area. The iRobot will typically drastically change directions when it hits a wall,

although it occasionally chooses to follow the wall. That is why most of the crashes

without the monitor are located towards the borders. The single failure with the

monitor occurred as the UAV landed on the platform but slid off of it because of its

incoming speed (even though the speed was within the limits of training scenarios).

When the iRobot quickly changes direction, the monitor detects violations of one of

the inferred polygon invariants which characterize the relations between the UAV

70

Figure 5.6: Wind Blowing Scenario

and iRobot positions, speeds, and rotations during the landing process. Figure 5.4

shows the y axis polygon invariant between the UAV and iRobot (UAV.y+ 0.0554 ∗

iRobot.y ≥ −1.89∩UAV.y− 0.990 ∗ iRobot.y ≤ 0.151∩UAV.y− 1.081 ∗ iRobot.y ≥

−0.202 ∩UAV.y + 1.732 ∗ iRobot.y ≥ −4.664 ∩ ...) without the monitor running.

When the UAV takes off, it is outside of this constraint. It then moves over the

iRobot and initiates the landing sequence. As seen in the figure, the UAV violates

the polygon invariant while still trying to land and crashes. In contrast, Figure 5.5

shows the same scenario with the monitor enabled. In this case, whenever the

invariants are violated, the landing is restarted. Eventually, the UAV is able to

successfully land while staying within these constraints.

In the “wind blowing” scenario (see Figure 5.6), the strong wind breaks many

invariants derived from the normal setup. Neither the system, nor the monitor

were designed to explicitly consider wind. However, the monitor is able to detect

violations of the UAV and iRobot positions and the roll and acceleration of the

vehicle, as described in Table 5.2. Figure 5.7 shows the locations where landings

occurred. None of the landings occurred within 2 meters of the blower where the

wind speed was up to of 33 KPH, which prevented the landing sequence. Even

71

away from the fan, the system without the monitor was unable to successfully land.

The system with the monitor was able to detect constraint violations to prevent

the landing when it was unsafe and was able to land every time. Figures 5.8 and

Figure 5.9 show two of the trials with and without the monitor for the polygon

invariant involving the UAV pitch and acceleration on the x-axis. In Figure 5.8

the UAV leaves the polygon and crashes almost immediately. In Figure 5.9,

however, the violation of the invariant while using the monitor leads to a landing

reinitialization, avoiding a crash (other monitored invariants were violated within

the polygon leading to other landing reinitialization as well).

In the “fragile platform” scenario (see Figure 5.10), the landing platform would

tilt if the UAV did not land in the upper right quadrant as shown in Figure 5.10.

The monitor detected the error when checking the violation of the invariants

on iRobot.rx and iRobot.ry which indicate the horizontal angle of the platform.

Figure 5.12 shows one of the angles without the monitor. The straight lines

indicate the bounding constraint inferred. As shown by the line, the UAV started

to land on the platform, but then the platform tilted and the UAV fell off and

crashed. Figure 5.13 shows the same setup with the monitor. In this case, the

UAV initialized landings three times, but in the first two the landing was canceled

when the constraints were violated. Overall, with the monitor the UAV was able to

successfully land 80% of the time, while without the monitor it was only successful

20% of the time.

In the “occupied landing” scenario, the monitor detected that the platform was

occupied since it could not decrease its height to match that of the platform as it

did in the normal case. The invariant is shown in Table 5.2 as UAV.z ≤ 0.371295,

which means in normal case the height of the UAV should be lower than 0.371295

to finish its landing sequence. The monitor detected the violation on the invariant,

72

Figure 5.7: Outcome under wind blowing scenario.

Figure 5.8: Wind blowing scenario without monitor.

Figure 5.9: Wind blowing scenario with monitor.

73

Figure 5.10: UAV attempts to land on fragile platform.

and it canceled the landing, which we consider a success.

In the “slow link” scenario, the message rate from the iRobot position was

periodically (every 5 seconds) slowed down to 0.5Hz. to mimic a faulty positioning

sensor or a radio link that drops packets. The monitor detected this abnormal

situation by the invariant f req(iRobot) ≥ 2.04876 on message frequencies as shown

in Table 5.2. When the position of the iRobot was published at a low frequency,

the monitor interrupted the landing sequence to avoid crashes as it thought the

link was not reliable. And it only allowed the UAV to land at normal publishing

frequency.

In the “stealing vehicle” scenario, we published fake iRobot positions to try to

get the vehicle to land in another location when the iRobot was moving in the upper

half of the target area. The monitor detected this anomaly through a violation of

the invariant on the change rates of position messages. In Table 5.2, the invariant

are −0.457771 ≤ rate(iRobot.x) ≤ 1.01126 and −0.532218 ≤ rate(iRobot.y) ≤

0.962376, which indicated the ranges of the iRobot’s speed. In this case, when the

positions of the iRobot changed too quickly, the UAV kept flying without landing

on either the false or the right platform. When the iRobot was moving in the lower

half of the cage and no other location was published, the UAV would try to land,

74

Figure 5.11: Outcome under fragile platform scenario.

Figure 5.12: Fragile platform scenario without monitor.

Figure 5.13: Fragile platform scenario with monitor.

75

which we considered a success.

In the “false airport” scenario there was no iRobot, but rather a false location

was published. If the false location was outside the region where the UAV had

previously seen the iRobot, then the UAV refused to go to that location and filtered

out these false messages. If the false location was in the correct range, the UAV

attempted to land. However, the monitor could tell the difference of the height

between the false and correct platforms, so the UAV with the monitor would not

land on the false airport.

In sum, in this case study we can see:

• The inferred invariants monitor increases the system success rate when faced

with unexpected situations although its efficiency may suffer;

• Although existing invariant templates serve to detect execution anomalies,

the two new invariant types (2-D polygon and time-related) contributed to

the detection of execution anomalies. In four out of the seven scenarios, the

anomalies can only be detected by the new invariants.

5.2 Case Study 2: Water Sampling

In this case study, we want to explore the usage of this tool on a system that we did

not implement and that is subjected to environmental changes. Since invariants

are known to be useful in analyzing a program’s evolution, we conjecture that, in

robotics, invariants may also be helpful in detecting problematic evolution of the

environment.

We conducted this analysis on the bag files collected from indoor and outdoor

flight tests of the Water Sampling system [30], which is designed to automatically

76

Figure 5.14: Indoor Water Sampling Figure 5.15: Outdoor Water Sampling

Figure 5.16: Configuration for Water Sampling System

fly over a body of water, approach particular locations, and sample the water

through a pump, as shown in Figure 5.15. Since the pump powered by the UAV’s

battery can only work within about 1 meter height, the most challenging part of

this system is the height control. To avoid crashing into the water while collecting

samples, the height control needs to be precise, thus the system uses a combination

of ultrasonic sensor, GPS, and conductivity sensors to estimate the relative height.

77

Figure 5.17: Water Sampling System

5.2.1 Training

The system flow is shown in Figure 5.17, which extends the UAV system used in

the first case study with some new components. A sampler board is added on the

UAV to control the water pump and report sensors’ data. The sensors include two

ultrasonic sensors and five conductivity sensors. The ultrasonic sensors indicate the

relative height of the UAV, and the conductivity sensors tell whether the pump is

actually in the water. These data are sent to the topic /a/water samler board raw in

the remote control system, where two components heightcompute and taskcontrol

are added. The heightcompute component first gets the height from ultrasonic

data, and combines the height from /a/robot imu to compute the more precise

relative height, and then updates the /a/subject pose message. Based on the UAV

status, pump status and other information, the taskcontrol component controls the

task flow including how to fly the UAV and when to turn on/off the pump.

The system was first tested in a controlled environment, as shown in Figure 5.14,

where the UAV flew over and sampled water from a fish tank protected by a

ultrasonic absorbing foam. We collected bags from 16 successful indoor runs,

when the UAV started 2-3 meters away from the fish tank, flew over the tank,

then descended and sampled water three times, and finally flew back and landed.

78

Having talked to the developer, we chose three critical topics to monitor, which

are /a/water sampler board raw, /a/robot imu and /a/subject pose as shown in

Figure 5.16. Those topics capture new or important information about the system

including the simpler board data and the UAV attitude data. We also focused

on the messages when the system was in the water sampling state (when the

pump control was 1). We instantiated the default invariant templates, and our new

time-related, polygon, architecture and temporal invariant templates. We generated

a 49.2MB data trace with 44 variables, and inferred 711 invariants including 242

ones from Daikon’s default templates, 77 time-related, 385 polygon, 4 architecture

and 3 temporal ones from our extended invariant templates in 17 seconds.

We first evaluated if the bags were sufficient to represent the program behaviors

in the indoor environment by checking the inferred invariant set’s stability. We

conducted it by picking one bag out of the training set, and using this bag to check

the invariants generated from the remaining 15 bags. If the invariants were not

violated by the checking bag, we considered the invariants stable. We randomly

picked 3 bags as the checking bags (one at a time) to do the check, and the result

is shown in Table 5.3.

We observed that the default, time-related, architecture and temporal invariants

were stable, but 35% of the polygon invariants were violated in the third check.

The reason is that the polygon invariants are built from combinations of variables

at one program point, no matter whether they are dependent or not. For example,

our approach will infer a polygon invariant combining the UAV’s speed and the

UAV’s heading angle. They are independent variables, but with a limited set of

runs, the data may not show the maximum and minimum speed when the UAV

is heading in different directions. So this type of invariants needs more runs to

support it. Therefore, we used the 13 indoor runs to generate the invariants, and

79

then use the other 3 indoor runs to classify and filter out fragile invariants. Finally,

we got 533 invariants, which includes 229 default, 64 time-related, 4 architecture, 3

temporal and 233 polygon invariants.

Stability Default Time-related Polygon Architecture Temporal
check invs/violated invs/violated invs/violated invs/violated invs/violated

1 242/2 77/4 385/69 4/0 3/0
2 242/2 77/0 385/24 4/0 3/0
3 242/6 77/3 385/135 4/0 3/0

retained 229 64 233 4 3

Table 5.3: Stability Check Result

5.2.2 Evaluation

We collected a bag from one outdoor run, which successful flow about 30 meters

over the lake of 1.091(km)2 and sampled water from it. We first checked the default,

time-related and architecture invariants invariants inferred indoors against this

outdoor bag, where we found that 24 invariants were broken, while there are 276

unbroken invariants shared by the indoor and outdoor environments. The broken

invariants indicate environmental changes from indoor to outdoor projecting to

the UAV’s behaviors, as shown in Table 5.4.

The frequency invariant tells the change of navigation signals frequencies,

where the frequency of outdoor GPS is slower than the VICON system we used

indoor. The broken invariants about pitch and roll indicate the difference of the

UAV’s attitude, which could be caused by the winds outdoor. The violation of

the invariants about the acceleration is also a direct result of the more windy

environment outdoor or more aggressive maneuvers. The architecture invariants

are broken because the system switches from the indoor VICON system to the

outdoor GPS navigation, which used different nodes. The one violated ordered-

80

pair temporal invariant was caused by the low-frequency GPS signal which made

the interval greater than 0.0621s.

Invariant Checked Invariant Violated Details
sampler raw.H2O1 >= 306
Var(sampler raw.H2O5) <= 14.0
pose.rotation.x <= 0.0535418

300 24 pose.rotation.y >= −0.0804302
pose.translation.x >= −1.99948
pose.translation.y < pose.translation.z
pose.translation.y <= 0.32948
Freq(pose) >= 20.0
imu.acc angle nick >= −4284
imu.acc angle roll < imu.mag z
imu.acc angle roll <= 2516
imu.acc x calib >= −747
imu.acc y calib >= −439
imu.angle nick >= −5099
imu.angle roll <= 3192
imu.angvel nick < imu.mag z
imu.angvel nick <= 2173
imu.height re f erence! = 0
imu.mag x <= 772
Var(imu.angle yaw) >= 5934.0
MaxPubs(pose) = [vicon]
MinPubs(pose) = [vicon]
MaxSubs(gps) = []
imu → pose : {0.0000524, 0.0621, φ, 2×
raw + 2× imu}

Table 5.4: Check Result of Outdoor Testcase

From the broken invariants, we can learn how to improve the indoor testing of

the system to better mimic the outdoor environment. For example, we could tune

the indoor navigation signal frequency to match the outdoor one, or use a fan to

simulate the windy environment. These enriched indoor tests could reduce the

risk when deploying the UAV outdoor.

For polygon invariants, the result showed that 174 out of 233 invariants were

violated as well. All the polygon invariants related to the variables associated with

the violated invariants in Table 5.4 were also violated. For example, the polygon of

81

imu.acc angle nick and imu.mag y were violated, though the two variables were

not quite related to each other. Given the number of violations, we conjecture that

polygon invariants need further pruning to be useful.

5.2.3 Checking User Assumption

Through our interactions with the developer of the system in the training process,

we were able to find some unstated and wrong assumptions. For example, the

developer assumed there should be an invariant indicating that, when the pump is

on, the sensor should always be wet as shown in conditional invariant pump on =

1 ⇒ sampler raw.wet >= 670. However, our inference system did not find such

invariant so we proceeded to investigate why. To pinpoint the potential bad data,

we set the invariant list with this supposedly missing invariant, and then used the

generated checker to check all the bags. The checker found the data that violated

this invariant. We provided this finding to the developer, and ended up finding

the problematic code in the on-board pump controller that caused the absence of

this invariant. We found that, if the sensor was not wet in the sampling state, the

pump controller would still try to turn on the pump every 0.4 seconds, and fail

immediately. However, it would set the pump state to be 1(on) in the message,

even if it failed to turn on the pump. That is why we found many such pulses on

the pump state when the sensor was not wet. In addition, while we were looking

into the data, we found another strange behavior with pulses of the pump state

when the sensor indicated wet. The pattern looked very similar when the sensor

was not wet. The developer confirmed the problem. While a node published the

message indicating that the sensor was wet, the on-board controller felt the sensor

was not wet, because they were using different thresholds to determine wet or dry.

82

In sum, this case study shows two other applications of our tool:

• It can be used to check user expectations and assumptions, and pinpoint the

context of the inconsistencies if there is any violation.

• It can be used to check differences of system behaviors under different

environments or deployments.

5.3 Case Study 3: Crop Surveying

In the third case study, we worked with a system that utilized a UAV and a small

laser scanner to measure crop heights as shown in Figure 5.18. It processes the

cluttered laser reflection data in real-time to determine both the distance to the

ground and to the top of the crops to allow users to precisely control the height of

the UAV. From the view of the UAV’s control, it provided more precise relative

height data from a laser sanner when flying over the crop. And it applied a Kalmen

filter to filter out some clutters in the raw scanner data. Intuitively, the integration

of the new height computation component needs to be the focus of testing, since

we need to know how well it integrates with original system. In this case study,

we also explore the application of temporal invariants.

5.3.1 Training

This system is still based on the structure of the UAV control system we used in

the previous case studies, but it remaps topics and adds three nodes as shown

in Figure 5.19, where each ellipse represents a node and each rectangle a topic.

The scan node generates the laser scan messages, and the imu laser sync node

synchronizes and pairs the scan messages and imu messages. The kalman height

83

Figure 5.18: Crop Surveying

Figure 5.19: New Components

node computes the height based on pairs of scan and imu messages. Thus, these

nodes and topics compose a subsystem (as shown in the dashed rectangle in

Figure 5.19), which computes the more precise height and updates the field in the

original messages.

From the structure of the system, it makes sense to monitor the six related topics.

The subsystem has some synchronized behaviors, as the node imu laser sync has to

consume two messages from the two topics scan and obs imu individually, and then

generates a new message on the topic scan sync. We inferred temporal invariants

and architecture invariants as shown in the configuration file 5.20. The developer

provided 13 bags from his tests, which were conducted at the lab when the UAV

flew over fake crop as illustrated in Figure 5.21 successfully. Because the system

84

Figure 5.20: Configuration for Crop Surveying System

Figure 5.21: Fake Crops

was still under development, we only used those bags for invariant inference

without classification, filtering and monitoring. The process generated a 116.3MB

data trace, and inferred 783 invariants including 293 default, 133 time-related, 350

polygon, 4 architecture and 3 temporal in 46 seconds.

85

5.3.2 Evaluation

We found an interesting invariant, an instance of an extension we performed on

an array variable ranges: 0.12984 <= std(scan.ranges) <= 1.4126. This variable is

from scan message, which contains an array representing the ranges detected by

the laser scanner on different directions. The invariant captures that the standard

deviation of the ranges in one scan should be greater than or equal to 0.12984.

This makes sense because when the UAV is flying over the crop, the laser scanner

should always give varied values in one scan. If the ranges all have the same

values, there is probably something wrong with the scanner. For example, if the

scanner is blocked by an object or all the objects are out of the scanner’s maximum

range, we will get the same values. So this invariant can detect that error and

report it users. On the other hand, we can imagine that when the UAV is going

to land on a level ground, the standard deviation of the ranges should be small.

We could get an invariant in the landing state like std(scan.ranges) <= 0.3. If we

are trying to land on a uneven ground or crops, this invariant will be violated and

raise warnings.

We were also interested in temporal invariants, because we knew there was

a synchronization node scan sync, which paired the closest two messages on the

topics of scan and obs imu into a new message on the topic scan sync. The paired

messages should be close enough to make the kalman height node generate a

precise enough estimate. The inferred ordered-pair interval invariants indicated

this property as shown in Table 5.5. The first column shows the interval between

the scan messages and the obs imu messages, which were highly interleaved. The

maximum interval between these two messages was 1.139s. If the two messages

arrive with quite different time stamps, the scan sync node may still pair them and

86

put it to the kalman height node which may generate the wrong height estimate.

However, the monitor would detect that abnormal behavior and prevent the error’s

propagation.

We also tried to infer the pattern invariants ((A|B)+C)∗ on the events of

publishing to topics scan, obs imu and scan sync as shown in the configuration

file in Figure 5.20. We expected there would be ((scan|obs imu)+scan sync)∗ and

((obs imu|scan)+scan sync)∗, because the node imu laser sync had to receive the

at least one message to publish the new synchronized message. But there was

no such pattern in the bag’s event sequence. We see in Table 5.5 that there are

consecutive scan sync messages, which break this pattern. The precise pattern

may not show up in the event sequence because of the unsynchronized message

subscription mechanism of ROS system, which means messages publishing order

may change in messages receiving order. In this case, there might be the case

that the imu laser sync node first receives and processes a scan message and then

publishes a scan sync message, but the recording node may received the scan sync

message before the scan message. So the patterns ((scan|obs imu)+scan sync)∗ or

((obs imu|scan)+scan sync)∗ are not appropriate.

As we discussed it with the developer, we realized that this pattern did exist in

the view of the node imu laser sync. However, because of the high frequency of

the messages (10Hz) and the unsynchronized message subscription mechanism of

ROS, the recording node received a different sequence of messages, which violated

the pattern.

The last thing we want to discuss are the architecture invariants. As we can

see in Figure 5.19, the laser scanner subsystem sits between the robot prot node

and the robot imu and robot gps topics. If anything happens in the subsystem that

breaks the connection, the obs gps and obs imu messages cannot pass through,

87

Interval scan→ obs imu obs imu→ scan scan sync→ scan
Min Interval(s) 0.103 0.10 0.10
Max Interval(s) 0.995 1.139 1.31
Min Events φ φ φ
Max Events 5 ∗ scan 4 ∗ obs imu 3 ∗ obs imu

4 ∗ scan sync 4 ∗ scan sync 3 ∗ scan sync

Table 5.5: Interval Invariants

which may cause the UAV’s crash. For example, the messages would be blocked, if

the node kalmen height dies. By monitoring the architecture invariants, this failure

can be detected by the violations of the minimum publishers and subscribers

invariants as shown at rows 3, 4, 5, 6 in Table 5.6. The recovery action defined in

the configuration file 5.20 can be taken, where the monitor will relay the messages

to provide the position and attitude information continuously.

ID Topic max pubs min pubs max subs min subs
1 scan scan scan imu laser sync imu laser sync
2 obs imu robot prot robot prot imu laser sync imu laser sync
3 obs gps robot prot robot prot kalmen height kalmen height
4 scan sync imu laser sync imu laser sync kalmen height kalmen height
5 robot gps kalmen height kalmen height robot trans,

robot monitor
robot trans,
robot monitor

6 robot imu kalmen height kalmen height robot trans robot trans

Table 5.6: Architecture Invariants

In this case study we found that:

• The interval invariant can constrain the system’s temporal behaviors at some

level, but because of the unsynchronized message passing system, precise

temporal patterns may be hard to detect;

• The architecture invariants can be quite effective, and may be very useful

to pair the architecture reconstructing actions, like repairing the broken

channels by relaying messages.

88

5.4 Limitations

The case studies illustrated the potential of the approach, but it also put in evidence

its current limitations. One kind of limitation is when abnormal behavior cannot

be detected by the invariants. A second kind of limitation is when the invariant is

violated but it does not lead to a failure.

One reason of the first kind of limitation is the invariant’s approximation of the

system’s correct behaviors. For example, with a value trace of variable v such as

{1, 5, 2, 4, 2, 5}, we infer an invariant 1 ≤ v ≤ 5. This invariant puts a constraint on

the variable in terms of the range according to the data trace, but it also relaxes the

constraint from the data trace, since it allows the variable to be 3, which did not

happen in the data trace. The same thing happens with polygon invariants, which

can detect a 2-D space boundary by a convex hull; however, it cannot capture

the space boundary of an non-convex hull. Also, the polygon invariant cannot

detect a dangerous hole in the space which may crash the UAV either. This kind

of limitation is rooted from the fact that the inferred invariants are approximations

of system’s correct behaviors. Actually, we cannot expect an analysis tool without

such limitation, otherwise this analysis tool is an even better implementation than

the original system. As long as an analysis technique can detect some kind of bugs

with reasonable trade-off compared to the gain, the technique has the potential to

be valuable.

Another reason for the first kind of limitation is the model approximation, as

our approach only uses some signals (messages, architectures and parameters) to

represent the whole system state, which are not enough to detect all the anomalies.

For example, the anomalies laid in the variables other than messages cannot

be detected by our approach. Some relations among two messages may exist,

89

but our approach does not consider them because of their long distance on the

publish/subscribe chain. In fact, all analysis techniques have to make decisions

on the model approximation. Our approach sets the granularity on the message

level based on the scale of the robotic system, and in the experiments we can get

reasonable gains with this granularity.

Our approach also generates some false positives, when some invariants are

violated but they do not lead to a failure. Here, most false positives are caused by

insufficient training runs which are used to generate the invariants. Although we

provide some justification and classification methods to reduce their effects, they

cannot eliminate all false positives. And different types of invariants may need

different numbers of training runs to make them stable. As shown in the second

case study, polygon invariants need more training runs than 1D-range invariants.

In addition, some false positive invariants in one scenario may be useful to detect

anomalies in other scenarios. For example, we may use one kind of platform

to training the UAV-landing system. Some invariants inferred indicate that the

system is angle-sensitive, which are useful to detect some anomalies. However,

when we change it to another kind of platform which makes the system not that

angle-sensitive, these invariants become the false positives. For those reasons, we

made the invariant monitor adjustable at runtime, where users can remove any

invariants as they want.

Apart from the overhead in the invariant inference, the monitor also brings in

run-time overhead in terms of message-relaying latency. We measured it in the first

case study, where to monitor the 1059 invariant the monitor introduced a 0.35ms

on average latency in relaying each message. This is an acceptable overhead in our

case, but it may become unacceptable when dealing with real-time or larger scale

systems. Although we have not tried, having distributed monitors may alleviate

90

the run-time overhead.

91

Chapter 6

Conclusion and Future Work

6.1 Conclusion

We have introduced a general approach for automated invariant inference and

monitoring, and implemented it in the context of ROS so that any system im-

plemented with this operating system can leverage it with minimal effort. The

approach is able to automatically infer rich invariants for a robotic system based

on a training set, and it was able to detect the violation of those invariants and

avoid failures under various scenarios. The case studies illustrated the potential of

the technique and toolset in error detection and potential recovery when facing

unexpected situations.

The approach includes new invariant templates that account for properties

that are deemed important in the context of robotic systems, such as time-related,

polygon, architecture, and temporal invariants. Invariant classification was also

built in the approach, which can help to refine the invariant set to reduce the

number of false positives. In the invariant monitor, recovery actions can be defined

to be triggered when anomalies are detected.

92

6.2 Future Work

Besides more extensive empirical assessment of the approach we see several

technical avenues for future work.

First, we would like to study how to increase the scalability of the approach.

For invariant generation, we are investigating the application of filters based on

the variance and pedigree of a variable as well as the automatic identification of

redundant messages. Within invariants monitoring, we are investigating sampling

schemes that can reduce the monitoring cost while minimizing information loss.

Most of them are based on expert knowledge about the target system, consequently

the tool-set will help users obtain it.

Second, the approach generality and power could be increased by moving from

invariants consisting of boolean expressions to probabilistic expressions, and by

incorporating more temporal operators, which may help to capture the uncertainty

present in robotic systems. It may also be worths it to integrate static analysis to

guide the engine to generate more meaningful nontrivial invariants.

Last, the type of actions we support when an invariant is violated could be

enriched to support, for example, message rectification so that minimally refor-

mulated messages can be published but still remain within the system invariants.

Another potential direction is learning recovery actions from users interventions.

When the system misbehaves, which could help to incorporate fault tolerance into

the system design.

93

Bibliography

[1] Ascending technologies hummingbird. http://www.asctec.de/uav-

applications/research/products/asctec-hummingbird/. 5.1

[2] Claraty robotic software. https://claraty.jpl.nasa.gov. 1.1

[3] The daikon invariant detector. http://groups.csail.mit.edu/pag/daikon/. 3.1,

3.4

[4] irobot create programmable robot. http://www.irobot.com/us/learn/Educators/Create.aspx.

5.1

[5] Lightweight communications and marshalling.

https://code.google.com/p/lcm/. 1.1

[6] Microsoft robotics. http://msdn.microsoft.com/en-us/robotics/. 1.1

[7] Nimbus lab. http://nimbus.unl.edu/projects/.

[8] Open robot control software. http://www.orocos.org/.

[9] Opencv. http://opencv.willowgarage.com/.

[10] Openrave. http://openrave.org/.

[11] Pr2 robot. http://www.ros.org/wiki/Robots/PR2.

94

[12] Ros. http://www.ros.org. 1, 1.1, 2.1

[13] vicon motion capture system. http://www.vicon.com. 5.1

[14] Toby H. J. Collett and Bruce A. Macdonald. Player 2.0: Toward a practical

robot programming framework. In in Proc. of the Australasian Conference on

Robotics and Automation (ACRA, 2005.

[15] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. Dysy: dy-

namic symbolic execution for invariant inference. In ICSE, pages 281–290,

2008. 2, 2.2

[16] Mauro Pezz Davide Lorenzoli, Leonardo Mariani. Automatic generation of

software behavioral models. In ICSE ’08 Proceedings of the 30th international

conference on Software engineering, pages 501–510, 2008. 2, 2.2

[17] William F. Eddy. A new convex hull algorithm for planar sets. In ACM

Transactions on Mathematical Software (TOMS), pages 398–403, 1977. 3.4.2

[18] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dy-

namically discovering likely program invariants to support program evolution.

In ICSE, pages 213–224, 1999. 1, 1.1, 2, 2.2

[19] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen Mccamant, Carlos

Pacheco, Matthew S. Tschantz, and Chen Xiao. The daikon system for dynamic

detection of likely invariants. In Science of Computer Programming, pages 35–45,

2006. 1.1, 2, 2.2

[20] Mark Gabel and Zhendong Su. Javert: fully automatic mining of general

temporal properties from dynamic traces. In FSE, pages 339–349, 2008. 1.1, 2,

2.2

95

[21] Mark Gabel and Zhendong Su. Online inference and enforcement of temporal

properties. In Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering - Volume 1, ICSE ’10, pages 15–254, New York, NY, USA,

2010. ACM. 2.2

[22] Franz Wotawa Gerald Steinbauer, Martin Morth. Real-time diagnosis and

repair of faults of robot control software. In RoboCup, pages 13–23, 2005. 2, 2.3

[23] Jeremy H. Gillula and Claire J. Tomlin. Guaranteed safe online learning via

reachability: tracking a ground target using a quadrotor. In Robotics and

Automation (ICRA), 2012 IEEE International Conference, 2012. 2, 2.3

[24] Jeremy H. Gillula and Claire J. Tomlin. Reducing conservativeness in safety

guarantees by learning disturbances online: Iterated guaranteed safe online

learning. In RSS, 2012. 2, 2.3

[25] Raphael Golombek, S. Wrede, M. Hanheide, and Martin Heckmann. Learning

a probabilistic self-awareness model for robotic systems. In IROS, pages 2745

– 2750, 2010. 2, 2.3

[26] Raphael Golombek, S. Wrede, M. Hanheide, and Martin Heckmann. Online

data-driven fault detection for robotic systems. In IROS, pages 3011–3016,

2011. 2, 2.3

[27] UK TEX User Group. TEX Frequently Asked Questions. Available at: http:

//www.tex.ac.uk/cgi-bin/texfaq2html.

[28] Sudheendra Hangal and Monica S. Lam. Tracking down software bugs using

automatic anomaly detection. In ICSE, pages 291–301, 2002. 1.1, 2, 2.2, 3.4

http://www.tex.ac.uk/cgi-bin/texfaq2html
http://www.tex.ac.uk/cgi-bin/texfaq2html

96

[29] Stephen G. Hartke. A survey of free math fonts for TEX and LATEX. The

PracTEX Journal, 1, 2006. Available at: http://www.tug.org/pracjourn/

2006-1/hartke/.

[30] A. Burgin B. Zhao John-Paul. Ore, S. Elbaum and C. Detweiler. Autonomous

aerial water sampling. In The 9th Intl. Conf. on Field and Service Robotics (FSR),

2013. 5.2

[31] Janet L. Wiener Patrick Reynolds Athicha Muthitacharoen Marcos K. Aguilera,

Jeffrey C. Mogul. Performance debugging for distributed systems of black

boxes. In SOSP ’03 Proceedings of the nineteenth ACM symposium on Operating

systems principles, pages 74–89, 2003. 2.4

[32] Emre Kcman Jim Lloyd Dave Patterson Armando Fox Eric Brewer Mike

Y. Chen, Anthony Accardi. Path-based failure and evolution management. In

Proceeding NSDI’04 Proceedings of the 1st conference on Symposium on Networked

Systems Design and Implementation, pages 309–322, 2004. 2.4

[33] Frank Mittelbach, Michel Goossens, Johannes Braams, David Carlisle, Chris

Rowley, Christine Detig, and Joachim Schrod. The LATEX Companion. Tools and

Techniques for Computer Typesetting. Addison-Wesley, Reading, MA, USA,

second edition, 2004.

[34] Sumant Kowshik Parth Sagdeo, Viraj Athavale and Shobha Vasudevan. Precis:

Inferring invariants using program path guided clustering. In Automated

Software Engineering (ASE), 2011 26th IEEE/ACM International Conference, ASE

’11, pages 532–535, 2011. 2, 2.2

[35] Janet L. Wiener Jeffrey C. Mogul Mehul A. Shah Patrick Reynolds, Charles Kil-

lian and Amin Vahdat. Pip: Detecting the unexpected in distributed systems.

http://www.tug.org/pracjourn/2006-1/hartke/
http://www.tug.org/pracjourn/2006-1/hartke/

97

In NSDI’06 Proceedings of the 3rd conference on Networked Systems Design and

Implementation, pages 115–128, 2006. 2, 2.4

[36] Rebecca Isaacs Paul Barham, Austin Donnelly and Richard Mortier. Using

magpie for request extraction and workload modelling. In OSDI’04 Pro-

ceedings of the 6th conference on Symposium on Opearting Systems Design and

Implementation, pages 259–272, 2004. 2.4

[37] Jeff H. Perkins and Michael D. Ernst. Efficient incremental algorithms for

dynamic detection of likely invariants. In In Proceedings of the ACM SIGSOFT

12th Symposium on the Foundations of Software Engineering, pages 23–32, 2004.

5.1.1

[38] Ola Pettersson. Execution monitoring in robotics: A survey. Robotics and

Autonomous Systems, 53:73–88, 2005. 2.3

[39] The American Mathematical Society. The amsfonts package. Available at:

http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=amsfonts.

[40] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir

Das. Perracotta: mining temporal API rules from imperfect traces. In ICSE,

pages 282–291, 2006. 2.2

http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=amsfonts

98

Appendix A

Grammar of Configuration File

The configuration file in XML format, where the root element is the tag 〈imROS〉.

There are 21 tags at all, which are imROS, scope, publish, topic, call, service, param

arch, temporal, pattern, condition, value, detect, bag, check, success, f ail, monitor,

block, action, and violation. Table A.1 shows the details of the grammar.

Note that some tags have the ID attributes, which are used to refer them in the

other tags. To differentiate them, except for the condition tag, all IDs are lower

case alphabet characters, and the ID for condition is a numeric character. So the

attribute events is a string with the lowercase characters separated by commas, and

the attribute conds is a string with the numeric characters separated by commas.

The regular expression in the pattern tag are composed with lowercase characters

referring specific events or capital characters representing any events declared in

the events attribute.

99

Tag Attributes Elements Comments

imROS project

scope
detect
check

monitor

Root element. Only one exists.

scope -

publish
call

param
arch

temporal
condition

It defines the scope of the invariant inference.

publish
id

relative
conds

topic
param

-

It defines a publishing event to be monitored. The first
topic element is the monitored topic, and other topics are
relative topics user declared explicitly.

topic - - Its content is the global name of the topic.

call id
conds

service
param

-
Its elements are one service to be monitored.

service - - Its content is the global name of the service.
param - - Its content is the global name of the parameter.

arch id
conds - Its content is the architecture variables to be monitored.

temporal
id

events
conds

pattern

pattern - - Its content is a regular expression.

condition id topic
value It defines a condition in terms of the message value.

value - - Its content is an expression on the field of a message or
the name of another topic.

detect inv bag It defines the input bag files and the output invariant file.
bag - - Its content is the directory the bag file(s).

check inv success
fail

It defines the successful runs and the failed runs used for
the invariant classification.

success - - Its content is the directory the bag file(s) of the successful
cases.

fail - - Its content is the directory the bag file(s) of the failed cases.

monitor launch
inv

block
action

violation
It defines how to generate the monitor.

block - - Its content is the topics that the monitor will block the
publishing messages if they violate any invariant.

action id
topic

service
value

It defines an action in terms of publishing a message or
call a service.

violation - - Its content defines which action(s) will be taken at the
violation(s).

Table A.1: Grammar of Configration File

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Summer 7-1-2014

	INVARIANT INFERRING AND MONITORING IN ROBOTIC SYSTEMS
	Hengle Jiang

	Contents
	List of Figures
	List of Tables
	Introduction
	Approach Overview
	Thesis Structure

	Background and Related Work
	ROS
	Invariant Inference and monitoring
	Robot Execution Monitoring
	Distributed System Debugging

	Invariant Inference
	Extending Daikon
	Trace Generation
	Trace Translation
	Inferring Invariants
	Time-Related Invariants
	Polygon Invariants
	Architecture Invariant
	Temporal Invariant
	Ordered-Paired Interval
	User Defined Pattern

	Invariants Justification
	Conditional Invariants
	Invariant Inference Summary

	Monitor Synthesis
	Monitor Synthesis Workflow
	Invariant Classification
	Monitor Synthesizer
	Monitor
	Recovery Actions

	Case Studies
	Case Study 1: UAV landing on Moving Platform
	Training and Evaluation
	Results
	Detailed Analysis

	Case Study 2: Water Sampling
	Training
	Evaluation
	Checking User Assumption

	Case Study 3: Crop Surveying
	Training
	Evaluation

	Limitations

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Grammar of Configuration File

