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SUMMARY 

 
 

Biopharmaceuticals, including peptides, proteins, DNA and vaccines, are one of 

the fastest growing segments of the overall pharmaceutical market.  While the current 

delivery device for these molecules, the hypodermic needle, is effective, it also has 

limitations, including low patient compliance, need for medically trained personnel and 

biohazardous sharps after delivery.  As a result, there is a need for an alternative delivery 

system for biomolecules that is effective and has a higher patient compliance than the 

hypodermic injection.  One possible solution is dissolving polymer microneedles, which 

are microscopic needles large and strong enough to insert into the skin and deliver the 

encapsulated drug effectively while also being small enough to not interact with the pain 

causing nerve fibers deep in the skin.  One additional benefit of this system is that the 

needles completely dissolve in the skin, leaving behind no biohazardous sharps.  The 

overall goal of this study was to develop a dissolving polymer microneedle system as an 

effective and patient compliant delivery method for biopharmaceuticals.   

The first part of this study focused on developing a new fabrication process for 

dissolving polymer microneedles, which is gentle and allows for the encapsulation of 

active biomolecules.  The new process focused on UV initiated free radical 

polymerization of a liquid monomer solution within a microneedle mold.  This process 

produced sharp microneedles with the identical geometry of the original master structure.  

The polymer polyvinylpyrrolidone (PVP) was chosen as the main structural material for 

the polymer microneedles for the following reasons:  high water solubility for fast 

dissolution within the skin after insertion, high mechanical strength due to a ring structure 
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in the chemical backbone, ability to be formed using radical polymerization, and a history 

of use in clinical settings.  PVP polymer microneedles were shown to successfully insert 

into pig skin in vitro and deliver the encapsulated molecules.  In addition, proteins 

retained full activity after encapsulation and delivery via the new polymer microneedles.   

The remainder of this study focused on the use of microneedles for the delivery of 

the influenza vaccine.  First, it was important to determine if the influenza vaccine 

retained antigenicity and immunogenicity after reformulation within PVP polymer 

microneedles.  Since this fabrication process involves polymerization of a solution of 

drug and liquid monomer, the drug to be encapsulated must be in solid form.   It was 

shown that lyophilization of the H1N1 or H3N2 influenza viruses had no significant 

impact on the activity of the viruses.  This included full protection against lethal 

challenge in mice vaccinated with the lyophilized virus.  Immunizations with the the 

influenza vaccine that was reformulated within PVP polymer microneedles resulted in a 

lower immune response than the response for the lyophilized or unprocessed virus.  There 

was still a protective immune response against a lethal challenge, but it was not as strong 

as the response for the control intramuscular injection.  Interestingly, a similar lower 

immune response was also seen in immunizations with the unprocessed virus that was in 

solution with the PVP polymer.  It was believed that the interactions of virus and PVP 

polymer in solution alone decreased the activity of the virus, and that the encapsulation 

process had little to no deleterious effect on the virus.     

Next, it was important to determine if a proper immune response could be induced 

via microneedle-based delivery of the influenza vaccine.  Here, we used coated metal 

microneedles, which have been shown to be successful in numerous applications in the 
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past.  The process of coating and drying the influenza virus onto metal microneedles 

resulted in a decrease in the in vitro antigenicity of the virus.  In vivo immunizations 

resulted in a lower immune response for the metal microneedles compared to hypodermic 

injection control.  However, this immune response was still strong and mice immunized 

with the influenza vaccine using the metal microneedles had full protection and survival 

against lethal challenge.  This proved that microneedles could be used for successful 

immunizations of the influenza vaccine. 

 The final part of this study was to determine if dissolving polymer microneedles, 

created via the new fabrication process, could be used to induce a protective immune 

response for the influenza vaccine in mice.  It was confirmed that PVP polymer 

microneedles produced similar antibody levels to the IM injection and resulted in full 

protection against lethal challenge after one immunization with the H1N1 influenza virus.  

These results were also confirmed with an H3N2 strain of the influenza virus.  Finally, 

after challenge, the mice immunized using the PVP microneedles had a more efficient 

clearance of the virus from their lungs than the group immunized via the intramuscular 

injection.   

 The work done in this study showed that polymer microneedles can be created 

using a gentile fabrication process that allows for the retention of activity of encapsulated 

biomolecules.  In addition, polymer microneedle based delivery produced an equivalent 

immune response for the influenza vaccine compared to the intramuscular injection.  

Furthermore, this delivery device offers multiple logistical advantages to the hypodermic 

needle, including higher patient compliance, possible self-administration and results in no 

biohazardous sharps waste.  Looking forward, the microneedles produced in this study 
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 xxvi

offer an exciting alternate delivery device for multiple classes of biomolecules in the 

future.



CHAPTER 1 

INTRODUCTION 
 

 
 
 Biopharmaceuticals, which include proteins, DNA, vaccines and other 

biologically related molecules, make up one of the fastest growing segments of the 

overall pharmaceutical market[6].  However, there are significant delivery limitations.   

Specifically, oral delivery is difficult due to poor absorption and degradation that occurs 

in the GI tract and liver[7, 8].  Transdermal drug delivery allows for direct access to the 

systemic blood supply, bypassing these degradation and absorption issues.  However, the 

stratum corneum, the outer layer of the skin, is an effective barrier to the transport of 

biomolecules into the skin[9].  Currently, the most common delivery vehicle for these 

molecules is the hypodermic needle, which is effective, but also has limitations, including 

painful delivery, the need for trained medical personnel, the disposal of biohazardous 

sharps waste after injections, and problems in a mass immunization scenario.  There is a 

distinct need in the market for a more patient compliant delivery method for 

biopharmaceuticals that is self-administered, lacks biohazardous sharps waste and could 

be used easily in a wide spread immunization effort.  Polymer microneedles offer a 

delivery option that can meet all of the above goals.  

 Microneedles are microscopic needles that are large and strong enough to insert 

into the skin and deliver drugs into the skin, but short enough that they do not reach the 

deeper layers of the skin to stimulate nerves[10].  Dissolving polymer microneedles add 

an additional benefit of a lack of biohazardous sharps waste after delivery.  The mode of 

delivery for these microneedles is by the degradation or dissolution of the polymer in the 
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skin after insertion, resulting in delivery of the encapsulated molecule and no needles left 

afterwards.  This could be extremely beneficial for places where biohazardous sharps are 

a problem, including home use and developing countries.  One current limitation to the 

use of polymer microneedles is the fabrication process, which should be at room 

temperature, to allow for retention of activity of biomolecules during encapsulation. 

 Microneedles offer an attractive delivery option for a number of classes of 

biomolecules, and are particularly appealing for the delivery of vaccines to the skin.  

Research has shown that the skin offers an appealing target for vaccine delivery due to 

the large number of immune cells present in the epidermis and dermis[11].  However, 

skin vaccination via an intradermal injection is a difficult process that requires highly 

trained personnel and can be time consuming.  Specifically, the influenza vaccine has 

been shown to possibly allow for dose sparing in skin delivery versus the current 

intramuscular injection[12].  Microneedles offer an efficient method of delivering the 

antigen to the skin in a self-administered manner.  Dissolving polymer microneedles in 

particular would allow for vaccination against the influenza virus via a self-administered 

microneedle patch that results in no biohazardous sharps waste.   

 The overall goal of this project was to develop a polymer microneedle system 

capable of delivering an active biopharmaceutical in vivo, producing the desired 

physiological response.  The influenza vaccine was chosen as model biopharmaceutical 

to be used.  This goal was investigated via the following four specific aims: 

 
(1) Development of a new fabrication process for polymer microneedles for the 

delivery of biomolecules. 
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(2) In vitro and in vivo analysis of the reformulated influenza vaccine for delivery via 

PVP polymer microneedles 

(3) Delivery of the influenza vaccine via coated metal microneedles to induce a 

protective immune response against lethal challenge in vivo 

(4) Delivery of the influenza vaccine via dissolving polymer microneedles to induce a 

protective immune response against lethal challenge in vivo 
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CHAPTER 2 
 

BACKGROUND 
 
 
 
2.1 DRUG DELIVERY 
 
 In 2010, the global drug delivery market is forecast to have a value of 543.8 

billion dollars[13].  The two most common methods of drug delivery are injections and 

oral formulations and each of these methods has advantages and disadvantages.  

Injections allow for a large bolus release of drugs directly in the bloodstream, but they 

also involve a painful delivery, can cause infection, and often require trained medical 

personnel [14, 15].  In addition, improper use of hypodermic needles can lead to needle-

stick injuries and the possibility of blood-borne pathogen transmission through previously 

used needles[16, 17].  Since oral drug delivery usually only involves swallowing a pill, it 

has a higher patient compliance than injections.  However, this form of drug delivery 

often suffers from low bioavailability due to enzymatic degradation and poor absorption 

in the GI tract and the first pass metabolism effect of the liver.  This is especially 

significant with biopharmaceuticals, including proteins, DNA and vaccines which lose 

most of their activity if delivered via the oral route[8].  Thus, there is a need for a 

minimally invasive method for delivering biopharmaceuticals that is patient compliant 

and effective.   

 
2.1.1 Skin Anatomy 
 
 One delivery route for biopharmaceuticals that can be effective and minimally 

invasive is across the skin, or transdermal drug delivery.  The skin is a promising 

pathway for the delivery of drugs since it allows for delivery directly into the systemic 
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circulation without the degradation issues that occur in GI tract and liver in oral delivery.  

Another benefit is the ability to have continuous delivery, and to avoid systemic toxicity 

based on peaks and valleys of drug concentration [18].  The skin is made up of three 

distinct layers: the stratum corneum, the viable epidermis and the dermis.  The stratum 

corneum is 10 – 20 µm thick and is primarily responsible as a barrier to the absorption of 

external compounds and to water loss[9].  Under the stratum corneum is the viable 

epidermis (50 – 100 µm thick), which is stratified squamous epithelium made up of 

keratinocytes, that vary in properties as they differentiate upward from the basal 

layer[19].  The epidermis is a self-renewing tissue that constantly balances the loss of the 

skin cells from the stratum corneum with the formation of new skin cells from the lower 

epidermis[9]. Below the epidermis is the dermis (1 – 2 mm thick), which provides 

mechanical support and is the location of the major blood vessels and nerves in the skin.  

A diagram of the skin can be found below in Figure 2.1. 
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Figure 2.1: Skin anatomy.  Histological image of in vitro porcine skin, stained with 
Hemotoxilyn and Eosin, showing the stratum corneum, epidermis, and dermis. 

 

The stratum corneum (SC) is made up of differentiated keratinocytes from the 

epidermis.  The properties of these cells are drastically different than in the lower layers 

of the epidermis.  Here, the keratinoctytes have transformed into corneocytes, flat 

anucleated squamous cells that are packed mainly with keratin.  The intact SC is 

sometimes described as a ‘brick and mortar’ structure[20], with the corneocytes making 

up the bricks and the lipid bilayers of fatty acids, ceramides, cholesterol and cholesterol 

esters, making up the mortar[21].  The stratum corneum makes up the main barrier to 

transdermal drug delivery.  Due to the interconnected network, the primary route of 

compounds through the skin is intercellular, within the lipid bilayers.  However, this is a 

limited pathway, and only molecules that have a low molecular weight (MW < 500) and 

are relatively lipophilic (1<log P<5) can be delivered passively across the skin [22, 23].  

For the delivery of all other molecules, some perturbation of the skin is required. 
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2.1.2 Transdermal Drug Delivery  
 

There are two main requirements for a transdermal delivery system that would 

replace the hypodermic needle.  First, it must safely and effectively deliver the drug 

across the skin and into the systemic circulation.  Second, it should be more patient 

compliant than the hypodermic needle, while maintaining a low cost of fabrication.  This 

involves being possibly self-administered, less painful, having little to no chance of 

infection, and produces no biohazardous sharps waste.  One promising option is the 

transdermal patch, which allows for the painless delivery of drugs across the skin and can 

be applied without medical supervision[24].  This system can also provide a continuous 

delivery of drugs, instead of one large bolus delivery offered by needle injections.  

However, this patch system is limited in the molecules that can be delivered.  The patch 

works by providing a bath of solution to the surface of the skin.  Then, the drug passively 

diffuses into the skin for delivery to the systemic circulation.  As mentioned above, only 

a limited number of drugs have the correct properties to pass through the stratum 

corneum passively.  This includes nicotine, nitroglycerin, clonidine, fentanyl, lidocaine, 

oestradiol, scopolamine and testosterone[25].  While there has been great success in using 

the patch for the delivery of these compounds, larger molecules, including 

biopharmaceuticals cannot be delivered via the conventional transdermal patch system. 

In order to deliver larger molecules, the skin and specifically the stratum corneum 

must be disrupted by chemical or physical methods.  This is the basis of most advanced 

transdermal drug delivery systems.  In each of these categories, it is important that the 

disruption of the skin is transient, and that the skin returns to its protective nature in a 

short period of time.  The main chemical method of disrupting the stratum corneum is by 
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using chemical permeation enhancers (CPEs), which include water, sulfoxides, azones, 

pyrrolidones, fatty acids, alcohols, and surfactants, amongst others[26].  The mechanism 

by which these chemicals disrupt the stratum corneum varies, including hydration, 

alteration of the cohesion of the skin corneocytes, modification of the lipid bilayer, and 

modification of the partitioning of the drug into the skin[26].   By whatever means, 

chemical permeation enhancers have been shown to increase skin permeability and thus 

increase the rate of drug delivery of large molecules across the skin[25].    However,  

these chemicals can cause irritation to the skin, and thus would limit their safety and 

marketability[27].  Also, there are some limitations on the class of molecules which can 

be delivered.  More work is required to optimize the use of CPEs for transdermal delivery 

of biopharmaceuticals. 

Another way of altering the stratum corneum is by physical methods.  Some of 

the most prevalent current methods include iontophoresis, electroporation, thermal 

ablation, ultrasound, and microneedles.  Iontophoresis involves increasing the permeation 

of a topical drug by applying a low level of electrical current to the skin[19]. Usually, 

transdermal iontophoresis involves the delivery of a charged drug solution, however 

neutral drugs can also be delivered by means of electroosmosis[28].  Electroporation 

increases skin permeability to a topical drug by the application of short high voltage 

pulses, which are thought to create transient pores for delivery[29].  This method of 

delivery has been shown to be effective for the delivery of a number of molecules, 

including large biopharmaceuticals[30].  Thermal ablation increases the permeability of a 

topical drug by using a short burst of high temperatures to also create transient pores for 

delivery.  This method has been shown to work for the delivery of vaccines and other 
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biopharmaceuticals[31].  Ultrasound increases topical transdermal delivery by disrupting 

the stratum corneum after treatment of low frequencies (<100 kHz) of ultrasonic energy 

for a short period of time.  This method has been shown to be effective in the delivery of 

many large molecules, including insulin[32] and tetanus toxoid[33].   

While all of the devices mentioned above are capable of delivering drugs to the 

skin, they also have some limitations.  Most of these methods require external equipment 

to aid delivery, which can be cumbersome and expensive to produce.  Also, in terms of 

iontophoresis and electroporation, skin irritation can occur during the electrically driven 

delivery process[34].  Finally, there are some restrictions on the number and class of 

molecules that can be delivered by these delivery methods.  An alternative to these 

delivery methods is microneedles.  Microscopically piercing the skin with micron-scale 

needles offers an effective and convenient alternative for the delivery of biomolecules, 

due to the efficient delivery [35, 36], lack of pain [10, 37], ease of use and the expected 

low cost of fabrication.    

 
2.2 MICRONEEDLES 

 
Microneedles are typically prepared as an array of microscopic needles that are 

sufficiently large to deliver drugs effectively to the body across the stratum corneum, and 

also small enough to avoid the nerve fibers in the deeper tissue that elicit a pain 

response[37].  The length of the needles can range from 100-1000 microns (µm).  These 

dimensions are sufficient to transverse the stratum corneum, which is 10-20 µm[38].  The 

microneedles effectively deliver the drug into the epidermis or upper layers of the dermis, 

where it can diffuse into the dermal capillaries and enter the systemic blood supply.  In 
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addition, local delivery and uptake by cells in the skin can also occur. This could be 

beneficial for vaccination due to the large population of immune cells present in the skin.   

 

 

Figure 2.2: Microneedle images.  2.2A: Silicon microneedles, 100 μm in height [1]. 2.2B: 
Coated Metal Microneedles, 750 μm in height [2].  2.2C: Glass Hollow Microneedles [3]. 
2.2D: Dissolvable Polymer microneedles, 750 μm in height [4]. 

 

 

 

Figure 2.3: Relative sizes of microneedle arrays.  2.3A: Array of 400 silicon microneedles on 
top of a penny.  2.3B: Array of 50 metal microneedles held with a tweezer.  2.3C: Array of 
16 hollow metal microneedles next to a hypodermic needle [5].  2.3D: Array of 225 polymer 
microneedles held between two fingers. 

 

There are four main methods of delivery using microneedles for transdermal drug 

delivery.  Figures 2.2 and 2.3 above illustrate the four different types of microneedles.  

First, solid microneedles can be applied to the skin to create microchannels to increase 

skin permeability and allow for the delivery of a topical drug solution.  Second, solid 

microneedles can be coated with a drug on the surface of the microneedles.  Here, the 

microneedles are inserted into the skin, and the coating dissolves off of the needles and 
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into the skin.  A third delivery option is hollow microneedles, in which the microneedles 

are inserted into the skin and a liquid drug solution is delivered via pressure driven 

convection through the microneedle into the skin.  A final option is dissolvable polymer 

microneedles, in which the drug is encapsulated within the polymer material.  After 

insertion of the microneedle array, the polymer degrades or dissolves, releasing the 

encapsulated drug.  All of these microneedle delivery options have been used to 

successfully deliver biomolecules to the skin, in vitro and/or in vivo.   

 
2.2.1 Evolution of microneedles 

 
Creating needles of micron size typically requires the use of microfabrication 

technologies[39].  For proper delivery, the microneedles must have extremely sharp 

tips[40], be made of a mechanically strong material, and the fabrication process cannot 

degrade any encapsulated or coated drug.  Some of the various techniques that have been 

used to produce microneedles include lithography and wet or dry etching of silicon, laser 

cutting, molding and other fabrication methods [1, 36, 41-43].  The original work 

concerning microneedles involved the use of solid microneedles made of silicon or metal, 

where the needles pierce the skin to increase permeability or the needles are coated with 

drug for delivery [1, 42].  Silicon was used as the first material due to its extensive use in 

the microelectronics industry, and thus much research has been done involving the 

fabrication of silicon microdevices[39].  However, silicon has some drawbacks.  It is 

more expensive than many metals or polymers, is rather brittle, and is not a material with 

an FDA history.  Thus, metals are often preferred.  They come at a cheaper cost, greater 

strength, and have an FDA track record of safety[44].  Using this system, a number of 
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biomolecules have been delivered effectively in vivo to animals, including insulin[45], 

DNA[46] and human growth hormone[47]. 

Another microneedle delivery method involves using coated metal microneedles.  

As mentioned above, stainless steel microneedles are extremely strong and microneedles 

with extremely sharp tips have been created using an IR laser.  An important aspect of 

coated metal microneedles is to have a coating that is strongly adhered to the 

microneedle, can be used on a wide variety of compounds and is dissolved off of the 

needle and into the skin quickly after insertion[2].  In addition, the coating process should 

be optimized to preferentially coat the microneedle shaft and not the base of a 

microneedle array[2].  Coated metal microneedles have been used in vivo in humans to 

deliver a number of biomolecules, including ovalbumin[48], desmopressin[49], and the 

influenza vaccine[50, 51].  In fact, there are companies who are currently evaluating the 

use of coated metal microneedles in clinical trials. 

Hollow microneedles offer another well-researched microneedle delivery method 

which involves the delivery of a drug solution to skin.  Unlike the coated metal 

microneedles above, little to no reformulation of a drug solution is required for hollow 

microneedle-based delivery.  Both metal and glass hollow microneedles have been 

fabricated, with each material being strong enough to insert into the skin.  Hollow 

microneedles have been used for the delivery of insulin[5], and the influenza vaccine[52] 

amongst other biomolecules to animals.  This work has focused on the use of single 

hollow microneedles with pressure driven flow.  Future work may focus on the use of 

hollow microneedle arrays, which may allow for higher flow rates of delivery to the skin. 
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Polymer microneedles offer another delivery option.  While the glass and metal 

microneedles described above are capable of delivering drugs to the skin, there are, 

however, safety concerns if microneedles made of these materials were to break off in the 

skin, or if they were accidentally or intentionally reused.  In contrast, the use of water 

soluble or biodegradable polymers could eliminate these concerns, because the needles 

completely and safely dissolve or degrade within the skin, and the needle-free patch 

backing could be safely discarded, leaving no biohazardous sharps waste.   

 
2.2.2 Polymer microneedles 
 

While polymer microneedles offer an exciting and possibly effective transdermal 

delivery option, there are significant material challenges that must be met for this system 

to be successful.  The ideal polymer material needs to be strong enough to penetrate the 

skin, degrade or dissolve rapidly once in the skin, and be safely excreted by the body.  

Also, the fabrication process for these microneedles should produce microneedles with 

sharp tips, take place at ambient temperatures, without organic solvents, and avoid 

damaging fragile biomolecules during encapsulation.  Another benefit of polymer 

microneedles is the possibility of a controlled-release delivery system.  The delivery 

kinetics of this system is based on the rate of degradation, or dissolution of the chosen 

polymer.  Thus, different polymers could be used for the delivery of different molecules, 

depending on the desired rate of drug delivery.    

Polymer microneedles have been created that effectively deliver molecules to the 

skin in vitro [53, 54].  The fabrication process for these polymer microneedles involved 

the melting of solid polymer pellets into a microneedle mold.  A polydimethylsiloxane 

(PDMS) mold is made as the inverse template of an SU8 masterstructure, which is 
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created via a lens based microelectronics process[53].  This process produced 

microneedles made of the biodegradable materials, PLGA, PLA and PGA, which 

properly insert into the skin in vitro and are capable of delivering the encapsulated cargo, 

including albumin and microspheres[54].  One drawback of this process is the high 

temperatures (T > 140 oC) that is required to melt the polymer pellets to form the 

microneedle structures.  This high temperature could result in the degradation of fragile 

biomolecules during the fabrication and encapsulation process.   

Another fabrication process for polymer needles that has been developed uses a 

dextrin and drug mixture that is spread onto polypropylene tips to form needle structures.  

This process takes place at room temperature and has produced needles that allow for the 

successful delivery of a number of biomolecules, including insulin[55], heparin[56] and 

erythropoietin[57] to animals in vivo.  However, the length of these needles is greater 

than 3 mm, a length which could cause similar pain of a hypodermic needle.  Also, the 

fabrication process forms needles on a singular basis and is not conducive for mass 

fabrication.  While polymer microneedles offer a promising method of transdermal drug 

delivery, none of the current fabrication processes allows for the mass production of 

biodegradable or dissolvable microneedles of micron dimensions or occur at gentle 

conditions allowing for the delivery of fragile biomolecules.  An alternative fabrication 

method could use free-radical polymerization of a liquid monomer solution to create 

polymer microneedles.  This type of polymerization can occur at room temperature by 

UV curing and has been used previously in situ in the presence of cells for tissue 

engineered transplants[58], and biomolecules for implanted drug delivery devices[59].   
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2.3 POLYMERIZATION FOR POLYMER MICRONEEDLES 
 
2.3.1 Free-radical polymerization 
 
 Free radical polymerization is a common method of creating polymers from vinyl 

monomers, those which have carbon-carbon double bonds.  Many polymers can be made 

using this method, including polystyrene, poly(methyl-methacrylate) 

polyvinylpyrrolidone, poly(acrylic acid), and branched polyethylene, among others.  

There are two main components needed for this process to occur, a vinyl monomer, 

typically without an inhibitor present, and a free radical initiator.  The most commonly 

used initiators for free radical polymerization are azo compounds (azobisisobutyronitrile, 

AIBN) and peroxy compounds (benzoyl peroxide, BPO)[60].  Free radical 

polymerization has three main steps: initiation, propagation, and termination.  Initiation is 

the creation of a free radical species, which begins the process.  This occurs when the free 

radical initiator is converted into a free radical species.  For example, in the case of 

AIBN, the free radical is created after the two C-N bonds are broken, releasing N2 gas 

and two identical free radical molecules[60].  This bond in the AIBN molecule can be 

broken by a number of methods including increased temperature (>50 oC), and ultraviolet 

light[61].  The next step is propagation, which is the formation of the polymer backbone.  

Here, the free radical formed in the initiation step reacts with the double bond of the vinyl 

monomer creating a free radical vinyl monomer species.  This process continues and a 

vinyl chain is formed.  The amount of free radical initiator that is used is typically in the 

range of 0.1 – 3 mol% of the monomer solution[62].  Finally, the process is finished with 
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the termination step, which can occur by coupling of two radical species or 

disproportionation.  

 Some of the benefits of the free radical polymerization process include that it is a 

well-established simple process, can be performed in a number of different environments 

and can be used to make a number of polymers and copolymers.  However, there are 

some drawbacks, including the lack of control of the molecular weight of the polymer, 

which can lead to polymers of high molecular weight[63].  In terms of biocompatibility, 

the general molecular weight cutoff for polymers is 42,500 – 50,000 Da for glomerular 

excretion by the kidneys[64].  However, the upper limit for excretion could be as low as 

25,000 depending on the molecular shape and polarity of the polymer.   Polymers that are 

larger may be retained in the body which could lead to future health issues.  Thus it is 

important to determine both the average molecular weight and poly dispersity index 

(PDI) of the polymer prior to clinical use to verify that it has the correct size for proper 

clearance.   

Free radical polymerization offers a new option in the fabrication process of 

polymer microneedles.  Using UV-initiated photopolymerization, the conversion of the 

liquid monomer and drug solution into the drug encapsulated polymer microneedles can 

occur at room temperature, thus avoiding high temperature degradation effects that could 

occur in previous polymer microneedle fabrication processes.  Also, this polymerization 

process could be scaled for mass fabrication as photopolymerization is currently used in a 

number of industrial settings[62, 65]. 
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2.3.2 Photopolymerization 
  

Photopolymer technology encompasses chemical and physical reactions of 

organic-based materials that are initiated by the application of electromagnetic radiation, 

including ultraviolet (UV) and infrared (IR) light[65].  One of the most common 

commercial applications of photopolymer technology is photopolymerization.  This 

involves the photoinitiated polymerization of monomers and oligomers using a radical-

generating photoinitiator to form cross-linked polymers[66].  Concerning photoinitiated 

free radical polymerization, the process is initiated when the free radical initiator absorbs 

a photon from the UV light, resulting in a hemolytic bond rupture of the initiator 

converting it into a free radical species[67].  Photopolymerization has been used 

commercially in a number of applications, including coatings, adhesives, sealants, and 

microelectronic resists[65].  It is also popular for medical applications in vivo, including  

implantation of drug delivery devices in the skin[59], insertion of dental resins for oral 

surgery[68], and the formation of hydrogel coatings on arterial surfaces to prevent 

restenosis after angioplasty[69], amongst other applications[59].  Typically, the use of 

polymerization in vivo is rare due to issues with high temperatures needed for initiation, 

and long times for the reaction to occur.  Photopolymerization is a viable option since it 

can be initiated at low temperatures and is typically rapid[59].  Photoinitiated free radical 

polymerization is an exciting option for the fabrication of polymer microneedles since it 

is fast acting and can occur at room temperature, possibly preventing the damage of any 

encapsulated biomolecules.  Also, it can be used for the synthesis of a number of polymer 

and copolymer systems, thus allowing for the tuning of polymer microneedles with 

specific properties. 
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2.3.3 PVP and PVP-MAA 
 
 In this project, the free radical polymerization process could be used to produce a 

number of polymers as the structural basis of the polymer microneedle system.  

Specifically, two polymers were used in this project, polyvinylpyrrolidone (PVP), and 

poly(vinyl pyrrolidone co-methacrylic acid) (PVP-MAA).  The chemical structures of the 

monomers vinyl pyrrolidone (VP) and methacrylic acid (MAA) are shown below in 

Figure 2.4. 
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Figure 2.4: Chemical structures of monomers vinyl pyrrolidone (VP) and methacrylic acid 
(MAA) used for polymer microneedles. 
 

 
Polyvinylpyrrolidone is a homopolymer formed by the monomer N-vinyl-2-

pyrrolidone.  It is a water soluble polymer and has been used in a number of industries, 

including pharmaceuticals, food, beverage, cosmetic, toiletry, and photography[70].  Its 

wide use can be attributed to a number of properties, including biological compatibility, 

low toxicity, film-forming and adhesion, complexing ability, inert behavior towards salts 

and acids and resistance to thermal degradation in solution[71].  In the pharmaceutical 

industry, the most common use of PVP is as a tablet binder for oral delivery.  The 

addition of PVP has been found to enhance the solubility and biocompatibility of poorly-
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water soluble drugs.  The first medical use of PVP was as a plasma expander during 

World War II[72].  It was a popular alternative due to its nonantigenic properties, 

requiring no cross-matching, and avoiding the dangers of infectious diseases inherent to 

blood[71].  PVP has been shown to be effective in large volumes for the treatment of 

shock to correct for low blood volume.  Other medical applications of PVP include the 

addition to many drugs to increase their pharmacological effect[73] and as a component 

of implanted medical devices[74] and transdermal wound healing products[75].    

 Recently, there has been some concern of the long term effects of the injection of 

PVP.  Some patients who have been injected with large amounts (>200 g) of high 

molecular weight (>100,000 Da) PVP have incurred a storage disease, labeled PVP 

thesaurosis or PVP storage disease[76].  Specifically, PVP polymers that are less than 

20,000 MW can be easily excreted by the kidneys.  However, PVP polymers with larger 

molecular weights can be partially retained in the body, phagocytosed and stored in the 

reticular endothelial system[77].  The polymer is not metabolized in the body and is 

considered biologically inert.  While there has been no evidence to specific clinical 

symptoms related to the storage of this polymer, the evidence of the retention of the 

polymer has led to prohibition of use of the higher molecular weight PVP for systemic 

administration[78].  In the use of lower molecular weight PVP (MW<20,000), less than 

1% is left at the injection site 24 hours after subcutaneous injection of a large amount of 

PVP ([71].  The majority of the PVP polymer (>90%) is excreted in the urine and feces 

within 48 hours[71].   

 One of the enticing properties of using PVP as the structural material for polymer 

microneedles is the ability for rapid dissolution within the skin due to the high water 
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solubility.  However, it may be desirable to use a polymer with a slower dissolution rate.  

One possible choice is to make copolymers of polyvinylpyrrolidone with other polymers, 

including polymethacrylic acid (PMAA).  Methacrylic acid is also a vinyl monomer and 

can be formed into the polymer PMAA by free radical polymerization.  The liquid MAA 

is quite miscible with VP, which allows for a homogenous solution.  PMAA has been 

used in the past for drug delivery purposes and has a high mechanical strength due to the 

rigidity of its chemical backbone [79].  In addition, a copolymer of P(VP-MAA) could 

have additional mechanical strength due to hydrogen bonding between the side chains of 

the VP and MAA monomeric units of the polymer [80].  The copolymer of 

polyvinylpyrrolidone-co-methacrylic acid P(VP-MAA) has been used in the past for 

ophthalmic inserts[80].    

There are many properties of polyvinylpyrrolidone that are enticing as the 

structural material for polymer microneedles.   This includes the ability to form the 

polymer from monomer at room temperature, high water solubility, being biologically 

inert and biocompatible at low molecular weights.  It is important to restrict the 

molecular weight of this polymer to below 20,000 Da for any clinical use.  The 

copolymer PVP-MAA could also be used as the structural basis of microneedles, as it is 

also biologically inert.  However, further research is required to verify the 

biocompatibility of this copolymer before use clinically. 

 
2.4 BIOPHARMACEUTICALS 
 
2.4.1 Molecules 
 
 Biopharmaceuticals have been defined as pharmaceuticals that are inherently 

biological in nature and manufactured using biotechnology[81].  This includes a large 
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group of molecules, including DNA, proteins, peptides and vaccines, which are 

increasingly becoming more popular in the overall pharmaceutical market.  In fact, the 

global biopharmaceutical market exceeded 80 billion dollars in 2007 and is growing at an 

annual rate of 17%, a higher growth rate than the overall pharmaceutical industry[6].   

 
2.4.2 Delivery methods for biopharmaceuticals 
 
 As mentioned previously, oral delivery of biopharmaceuticals is difficult due to 

poor absorption and degradation in the GI tract and the first pass metabolism effect of the 

liver[8].  For biomolecules to be delivered orally in pill form, significant reformulation 

would be required.  Unfortunately, the formulations that are traditionally used for small 

molecule oral drugs do not protect biomolecules for oral delivery.  Instead, the 

biomolecules incur poor permeability, lumen and cellular enzymatic degradation, rapid 

clearance and poor stability and conformation[7].  Currently, the two main advances in 

improving the oral delivery of biomolecules are the addition of absorption enhancers and 

enzyme inhibitors to the formulation[82].  While there have been some success in this 

work, it appears that the formulation will be highly compound specific, especially with 

the oral delivery of peptides and proteins[83].   

 Alternate delivery routes for the delivery of biomolecules include nasal, buccal, 

pulmonary and transdermal.  All of these routes avoid the GI tract and first pass effect of 

the liver and thus the associated absorption and degradation issues.  Nasal delivery offers 

a highly permeable and vascularized region for delivery.  While many biomolecules have 

been delivered via this route, there are some limitations, including limited volume of 

delivery, molecular weight limitations, and possible irritation of nasal mucosa[84].  

Buccal delivery has similar promise to nasal delivery with a highly vascularized region of 
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the mouth and quick onset of delivery.  The main issues with this delivery is absorption 

and retention time, as keeping a delivery system in the mouth for an extended period of 

time can be cumbersome to the patient.  Another option is pulmonary delivery which 

offers a route of delivery to the lungs with a extremely large and absorptive surface area 

of 35 – 140 m2[85], a thin diffusion path and high blood flow[86].  For delivery by 

inhalation, the drug must be formulated into aerosol form and must be in a specific size 

range.  A number of biomolecules have been delivered via this method, including insulin, 

erythropoietin, and growth hormone.  However, there are some limitations to this route of 

delivery, including rapid clearance of drug, protein instability, and the difficulty of 

precise dosing[86].  Finally, transdermal delivery also offers a promising route of 

delivery.  The major options for transdermal delivery that were described previously are 

all relevant for the delivery of biomolecules.  One important issue for all of these delivery 

systems is formulation and retention of activity of the biomolecule in the delivery system 

and during storage and delivery.  All of the microneedles systems, including coated, 

hollow and dissolving polymer, have gentle reformulation methods and could be used for 

the delivery of biomolecules. 

 
2.4.3 Transcutaneous Immunization 
 

Recent work has shown that the skin, especially the epidermis, provides a rich 

environment for vaccine delivery [11, 87-89].  In fact, studies have shown that vaccine 

delivery to the skin may require a smaller antigen payload than the dose required for an 

intramuscular vaccine injection[12].  This may be due to the large number of immune 

cells that move in and out of the epidermis, allowing for an increase in antigen 

presentation to the immune system.  The primary immune cells in the epidermis are the 

 - 22 -



Langerhans cells, which are dendritic cells that move between the bone marrow and the 

skin and are involved in antigen presentation and immune surveillance[90].  In fact, these 

Langerhans cells cover 20% of the skin’s surface area along its basal surface[91].  On the 

other hand, intramuscular injections deliver the antigens into a region with few to no 

immunogenic cells.  The process of inducing immunization through the skin begins with 

the introduction of a foreign antigen into the epidermis.  Here, the large amount of 

Langerhans cells will interact and phagocytose the antigen.  The Langerhans cells then 

migrate to the draining lymph node, where they interact with T-cells and the immune 

response is inducted[87].  Transcutaneous immunization has been shown to be capable of 

inducing strong mucosal (IgG) and secretory (IgA) antibody responses, and has offered 

protective immunity against a lethal mucosal challenge [88, 89].  This is important 

because many viruses, including influenza, enter through the mucosal surfaces. 

Even though the skin appears to be a promising target for vaccines, there is still a 

problem concerning delivery to this region.  As mentioned previously, vaccines are large 

molecules and thus unable to passively transverse the stratum corneum and enter the 

epidermis[38].  Using a needle for injection is difficult due to the small thickness of the 

epidermis and dermis, approximately 1-2 mm.  Gas powered injections has been used for 

vaccination, but these devices are painful and can be difficult to control the location of 

delivery, which is quite important in this form of delivery [92, 93].  Microneedles offer 

an exciting opportunity that allows for delivery of the vaccine specifically to the 

epidermis and the upper layers of the dermis while also being more patient compliant 

than the current forms of injection.   
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2.5 LYOPHILIZATION OF BIOPHARMACEUTICALS 
 

Lyophilization, or freeze drying, has become a widely used process in the 

biopharmaceutical industry.  The main use of this process is to increase the stability and 

long-term lifespan of biologically related molecules, especially proteins by converting a 

liquid solution into a solid powder[94, 95].  As the number of biomolecules used has 

risen over the years, there has been a greater need to increase the stability of these 

molecules.  Biomolecules and specifically proteins suffer from limited stability in 

solution due to physical and chemical degradation.  In fact, the typical shelf life of a 

protein drug is just 18 – 24 months[96].  Since most of these molecules are currently 

delivered via injection, the biomolecules are stored for some period of time in liquid 

form, which often requires some form of the cold chain for retention of activity.  Storing 

the molecules at low temperatures can be expensive and cumbersome, especially for use 

in areas that lack adequate refrigeration.  Also, storage of biomolecules in liquid form can 

increase the extent and speed of degradation, due to a number of chemical and physical 

processes, including deamination, oxidation, aggregation, unfolding, and adsorption to 

surfaces[97-99].  It has been shown that storing biomolecules in solid form allows for 

better stability and easier handling during shipping and storage.  Lyophilization is one of 

the most widely used methods of converting liquid solutions of biomolecules into solid 

form. 

 
2.5.1 Lyophilization processes 
 
 The goal of the lyophilization process is to remove all solvent from a liquid drug 

solution, resulting in a solid powder of drug and possibly an excipient.   The 

lyophilization process is made of three main steps: freezing, primary drying and 
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secondary drying.    In addition, it is important what type of solvent the biomolecule is 

found in and what the storage conditions are after the lyophilization is complete.  

Usually, the lyophilization conditions need to be optimized for each of the biomolecules 

used.  This includes the solvent used; the length and time of freezing; the temperature, 

pressure and time of the drying steps; and the temperature and relative humidity for the 

storage conditions.  All of the steps are important to verify that the biomolecule retains 

activity during and after this process. 

 The freezing stage is the first step of the lyophilization process.  Here, most of the 

water is separated from the drug, and the system is separated in multiple phases, with an 

ice phase and a drug phase[100].  It is important to determine the proper cooling rate, 

including the freezing temperature and the length of cooling time.  For many 

biomolecules, the cooling rate should be fast, which can be accomplished using liquid 

nitrogen.  Slow freezing can increase the amount of protein degradation due to an 

increase in the amount of time of phase separation and protein unfolding.  For the 

influenza vaccine, a fast cooling rate has been shown to be optimal to reduce the level of 

degradation [101].  The freezing process imparts a number of destabilizing stresses on 

protein drugs.  The two main stresses are pH shifts and the introduction of the ice-

aqueous interface.  To reduce the effects of the pH effect, the amount of salts should be 

minimized and chosen carefully or water should be used as the primary solvent[102].  As 

for the issue of the presence of an interface, the protein concentration can be increased or 

surfactants could be used to eliminate this problem [103].  

 The next step of the lyophilization process is primary drying, which is the longest 

step and is where the unbound water is removed by sublimation.  Prior to the start of 
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primary drying, the system must be completely frozen.  Here it is important to control the 

shelf temperature, condenser temperature and chamber pressure.  The chamber pressure 

is reduced and the shelf temperature is raised to supply the heat removed by ice 

sublimation[100].  During this process, the chamber pressure needs to be well below the 

vapor pressure of ice and the ice is transferred by sublimation from the product to the 

condenser.  This process needs to be optimized to remove the largest amount of unbound 

water, and also in a slow enough manner not to damage the physical structure of the 

system.  If the process of sublimation occurs too rapidly, the different phases of the solid 

could collapse, damaging the frozen protein concentrate.  At the end of the primary 

drying process, there is typically only 5% of the moisture present in the system[104]. 

 The final step of the lyophilization process is secondary drying, where the bound 

water is removed from the system.  This water needs to be removed since even with as 

low as 5% water in the system, chemical and physical degradation processes can still 

occur.  Here, the water is removed by desorption and requires more energy than 

sublimation.  The shelf temperature of the system is slowly raised to reduce the chance of 

collapse of the product.  It is better to set the temperature used for secondary drying high 

for a short amount of time, instead of lower for a longer amount of time in order to 

maximize the amount of water removed during this step[105]. The desired final moisture 

amount in the system is less than 1%[100].  After the secondary process is finished, it is 

important to store the lyophilized powder at the correct temperature and relative 

humidity.  While the product should be more stable in solid form than liquid form, there 

could be some degradation and absorption of water, so the optimal conditions need to be 

determined. 
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2.5.2 Addition of excipients for cryoprotection and lyoprotection 
 
 The lyophilization process involves a number of stresses imparted on the 

biomolecule drug, and it may be necessary to add excipients to the original solution to 

minimize the degradation.  The presence of the excipient is important during all three 

steps of the lyophilization process.  Usually, in order for excipients to protect the 

biomolecule during lyophilization, the ratio of excipient/protein is quite large, around 50-

100:1.  However, this amount needs to be optimized for each biomolecule.  If there is too 

little excipient, the protein could be damaged during the freeze drying process, and if 

there is too much of the excipient the physical stability of the solid protein could be 

decreased leading to physical collapse during storage[106].  The main excipients that are 

used during the freeze drying process are sugars, including trehalose, inulin, sucrose, 

glucose and maltose among many others[107]. 

 During lyophilization, protection against degradation is required for the protein 

solution during the freezing process (cryoprotection) and the drying process 

(lyoprotection).  During the freezing step, it is accepted that sugars stabilize proteins 

through the preferential exclusion mechanism, by which the excipient solute is excluded 

from the protein and helps keep it in the native folded state [108]   During the drying 

process, water is being removed from the system, which can lead to degradation of the 

protein.  This could include physical unfolding and denaturation or chemical degradation.  

There are two separate hypotheses in the literature that account for the protection offered 

by excipients during the drying steps.  The first theory is kinetic in nature and is labeled 

the ‘glass dynamics hypothesis’[109, 110].  Here the large amount of frozen sugar forms 

a rigid, inert matrix in which the protein is widely dispersed.  The sugar is in such high 
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amounts (50-100:1) that the protein molecules have little to no contact with one another.  

The limited mobility of the protein minimizes unfolding or chemical degradations, which 

typically require some mobility to occur.  Thus, the degradation steps are slowed to a 

point where little to no effect occurs.  The second hypothesis is thermodynamic in nature 

and is labeled the ‘water replacement hypothesis’[111, 112].  Here, the hypothesis poses 

that the removal of the water causes thermodynamic instability of the protein, leading to 

unfolding.  The presence of a large amount of sugar replaces the water and forms 

hydrogen bonds with the protein, making the native state thermodynamically more stable 

and the unfolded state.   

 Lyophilization is an important process that is vital to the long-term storage and 

use of biopharmaceuticals.  It is important to determine the specific conditions needed to 

preserve activity of the molecule of interest.  This may include the inclusion of excipients 

in the drug formulation to prevent degradation during the freezing and drying steps.  In 

terms of polymer microneedles, lyophilization may be used to convert a drug solution 

into a solid powder, which can then be easily encapsulated within the polymer 

microneedle system.  Here, the drug will be stored in solid state, which may lead to better 

stability and not require the use of the cold chain for storage. 

 
 
2.6 INFLUENZA VACCINE 
 
2.6.1 Influenza virus 
 

Influenza infections are responsible for a large number of deaths and illnesses 

each year[113].  During a normal year, 36,000 people die from influenza in the United 

States.  This number nearly triples if deaths caused by influenza-related respiratory 
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diseases including pneumonia are included.  In addition, 5-20% of the population is 

infected with the flu each year, with over 200,000 Americans hospitalized[114].  During 

a pandemic threat, the number of deaths has risen to 500,000 Americans and over 20 

million worldwide[113].  Due to the broad reach of this virus, 113 million doses of the 

influenza vaccine were distributed during the 2007-2008 season and a record 145 million 

doses of the influenza vaccine were produced for the 2008-2009 flu season[115]. 

The influenza virus falls under the family of orthomyxoviridae viruses[116], and 

can be further subdivided into three groups, influenza virus A, influenza virus B and 

influenza virus C.  The differences between these groups is based on antigenic 

differences between the two major structural proteins: the matrix protein (M) and the 

nucleoprotein (NP)[117].  The influenza A virus is the most common form that infects 

humans[118].  This virus is divided into subtypes based on two of the viral surface 

proteins, hemagglutinin (H) and neuraminidase (N).  There are a large number of 

subtypes of the influenza A virus, with sixteen H subtypes and nine N subtypes.  The 

influenza virus is identified by the following information, type of isolate, the geographic 

location where the isolate was found, the year of isolation, a laboratory identification 

number and a subtype of the H and N surface proteins.  One example is 

H3N2/A/Panama/2007/99. 

The influenza viruses are enveloped and contain segmented RNA-negative sense 

genomes[117].  The structure of the virus is shown in Figure 2.5 below.  The virus 

structure resembles spherical 80-120 nm particles with a surface layer of spike-like 

projections (10-14 nm) of the H and N surface proteins.  The H protein is the main 

antigen that the body’s antibody immune response is directed.  This protein is responsible 
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for the attachment of the virus to the host cell surface during the first parts of 

infection[117].  Antibodies against the specific H protein are believed to prevent the 

onset of influenza infection.  The N protein is responsible for the release of the mature 

virus from the infected host cell.  Antibodies against the N protein are thought to limit the 

spread and severity of the influenza infection.  The basis for the current vaccines is 

immunoprotection specific to these two surface proteins. 

 

 
Figure 2.5: Influenza virus structure. 
http://www.abc.net.au/health/library/img/flu_virus_diag.gif 

 
 
Currently, it is suggested that the population should be immunized each year 

against the most current common form of the influenza virus.  This is due to the antigenic 

drift of the virus[119].  The different subtypes of the H and N proteins are serologically 

different, and while some cross reactivity is observed between the subtypes, the extent of 

cross-protection is not fully understood[117].  Further verification into the extent of cross 

protection could lead to a decrease in the need for a yearly vaccination. 
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The two most common subtypes of the influenza A virus are H1N1 and H3N2, 

and these are included in the yearly seasonal vaccine.  Recently, a large amount of 

discussion has centered on the H5N1 influenza virus, which is also known as the ‘bird 

flu’.  This virus occurs primarily in birds, is highly contagious and can be deadly.  

Recently, this virus was shown to be able to be transmitted from birds to humans and can 

lead to severe illness, including death [120].  It is believed that most if not all of the 

human cases of the H5N1 virus have been caused by direct contact with an infected 

poultry.  Currently, it is believed that this virus strain is not capable of being transmitted 

by human to human contact.  If this does occur in the future, there is a worry of a large 

pandemic since little to no protection currently exists against the H5N1 virus amongst 

humans.  Because of this, there is a large amount of work currently being done to produce 

a vaccine against this virus and for medications to reduce the severity of the infection. 

 
2.6.2 Types of influenza vaccines 
 

Currently, the two types of vaccines available are the inactivated influenza virus 

and the live attenuated virus.  Each of these vaccines includes three virus subtypes, one 

H1N1/A, one H3N2/A, and one B virus.  The total dose of the vaccine is 45 µg, which is 

made up of 15 µg of each of the three subtypes 

 The first step of making the influenza vaccine is to determine the most prevalent 

strain of the virus.  This is carried out by the World Health Organization using an 

international surveillance to find the most prevalent form of H1N1/A, H3N2/A and B 

subtypes[121].  The seed strains are then prepared by genetic reassortment using the 

different strains determined by the WHO, and tested for the similarities to the wild type 

virus[122].  Once this is verified, the bulk production of the virus is performed in 
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embryonated eggs and the live virus is harvested.  For the inactivated vaccine, the virus is 

inactivated using formalin or β-propriolactone and purified using ultra-centrifugation.  

The virus is then split, reformulated and tested for antigenicity and immunogenicity[123].  

The virus is stored at 4 – 8 oC and may include a preservative to protect the antigenicity.  

Anyone over the age of six months can be immunized with the inactivated vaccine.   

 The other vaccine available is the live attenuated virus.  After determining the 

specific strain, three strains are developed: host-range (hr) mutant virus, temperature 

sensitive (ts) and cold-adapted mutant strains[117].  The virus is propagated in specific 

pathogen-free (SPF) hen’s eggs.  After the virus is harvested from the allantoic fluid, it is 

centrifuged and stabilized with the addition of sucrose-phosphate-glutamate (SPG).  The 

virus is loaded into an aerosol sprayer and 0.2 mL is delivered to the patient nasally. 

The live attenuated influenza vaccine can be used by healthy patients between the ages of 

2 and 49 years old[117]. 

 
2.6.3 Delivery methods for the influenza vaccine 
 
 According to the Centers for Disease Control and Prevention (CDC), currently 

there are two acceptable methods of delivery for the seasonal influenza vaccine[124].  A 

hypodermic needle injection is the most commonly used method and it is used for the 

delivery of the inactivated vaccine.  The other method of delivery is the nasal spray by 

Flumist®, which is used for the delivery of the live attenuated influenza vaccine. 

 Research into alternate delivery methods for the influenza vaccine is currently 

underway, with some methods being tested in clinical trials.  In theory, all of the delivery 

technologies described previously for use with biopharmaceuticals could also be used to 

deliver the influenza virus.  Many of these methods deliver the vaccine to the skin to take 
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advantage of the robust number of immune cells present there.  These new methods are 

desired for skin immunization since it is difficult to use a common hypodermic needle 

due to the thickness of the skin (1-2 mm).  One system that has worked is an intradermal 

injection using a 1.5 mm microinjection system, which has been shown to induce a 

comparable immune response for the influenza vaccine to the IM injections with a lower 

antigen dose in humans [125].  Other transdermal delivery systems have been 

successfully proven in animals for influenza vaccination, including thermal 

ablation[126], tape stripping[127], and hollow microneedles[128] (1 mm).  While more 

work needs to be done on these methods, the skin is a promising target for immunizations 

with the influenza vaccine. 

 Research has also been done using oral vaccines for the delivery of the influenza 

vaccine.  Oral influenza vaccines have been shown to induce significant mucosal IgA 

antibody levels clinically but have had very low sera IgG levels [129].  It is unclear if this 

strategy alone would provide adequate protection for humans.  One issue with oral 

vaccination is the delivery site, and the influence of absorption and enzymatic 

degradation.  Recent work in mice showed that targeting vaccine delivery to the lower 

GI-tract (colon-rectum) could allow for a more effective oral vaccination strategy against 

influenza [130].  While oral influenza vaccination would have a high patient compliance, 

more work needs to be done to enable protective immunization in this manner.   

As an alternative, dissolving polymer microneedles offer a potentially patient 

compliant and effective manner of delivering the influenza vaccine to the skin.  As with 

the delivery of other biomolecules, some concerns that must be answered are the delivery 
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efficiency and the activity of the vaccine after any reformulation or processing steps 

required in microneedle based delivery.   
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CHAPTER 3  
 

MATERIALS AND METHODS 
 
 
 

3.1 POLYMER MICRONEEDLE FABRICATION AND DELIVERY ANALYSIS 
 
3.1.1 Free radical polymerization process 
 

A previous method for creating polymer microneedles was used as the framework 

for the new fabrication process[53].  This method involved the use of a microfabricated 

microneedle array as the master structure template for the process.  The master structure 

was created via a lens-based fabrication process of SU8 photoresist.  Next, a microneedle 

mold was produced by pouring polydimethylsiloxane (PDMS, Dow Corning, Midland, 

MI) over the master structure and allowing the mixture to cure overnight at 37 oC.  Then, 

the cured PDMS mold was peeled off the microneedle master structure.  This 

microneedle mold provides the template for the production of the subsequent polymer 

microneedles.  In the previous process, polymer microneedles were created by melting 

polymer pellets onto the microneedle mold and applying a vacuum to allow the polymer 

melt to enter the microneedle cavities of the mold.  Finally, the polymer microneedle 

system was removed, allowed to cool to room temperature and peeled out of the mold. 

 The goal of this project was to create polymer microneedles using a room 

temperature fabrication process.  While the previous process created robust microneedles 

that inserted properly into the skin, the fabrication involved elevated temperatures (>180 

oC) to melt the polymer pellets.  These temperatures could lead to the degradation of 

many encapsulated biomolecules.  The new fabrication process developed in this project 

involved the free radical polymerization of a liquid monomer solution that was injected 
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inside the microneedle mold.  Most of the work done in this project used the liquid 

monomer, N-vinyl pyrrolidone (VP, 99%, Sigma-Aldrich, St Louis, MO).  Here, 1.0 mole 

% of the free radical initiator azobisisobutyronitrile (AIBN, 99%, Sigma-Aldrich, St 

Louis, MO) was added to 1 mL of vinyl pyrollidone and approximately 75 µL of the 

solution was added to the surface of the microneedle mold, enough volume to cover the 

surface area of the base of the microneedles.  Next, the system was placed inside a 

vacuum oven (VWR, Cornelius OR) at -30 in Hg for 1 minute to allow the monomer to 

fill the mold and remove any air bubbles.  The microneedle cavities of the mold were 

considered to be completely filled when no bubbles remain on the liquid surface.   

Polymerization of the monomer solution was induced via UV light.  After the 

vacuum is applied to fill the microneedle mold with monomer, the microneedle/mold 

system was placed approximately six inches under a UV lamp (100 W, 300 nm, BLAK 

RAY, Upland CA).  The system was left for approximately 30 minutes where the free 

radical polymerization occurred and resulted in sharp microneedles that retain the 

structure of the original microneedle master structure.  A detailed diagram of this 

fabrication process can be found in Figure 4.1 in Chapter 4 of this thesis.  The polyvinyl 

pyrrolidone (PVP) microneedles were then stored in a desiccator prior to use to prevent 

absorption of water.  It is important to note that polyvinylpyrrolidone is hygroscopic, and  

can absorb water if left in a high humidity environment.  When PVP microneedles were 

left out in a humid environment, the polymer absorbed water, becoming more ductile and 

resulted in more difficult insertions into skin. 
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3.1.2 Fabrication process for polymer microneedles  
 
3.1.2.1 Distillation of liquid monomer prior to free radical polymerization  
 

In order to use a liquid monomer to create polymer microneedles via free radical 

polymerization, the monomer must first be distilled to remove the inhibitor that prevents 

polymerization during storage. There were two monomers that were used during this 

project, N-vinylpyrrolidone(VP) and methacrylic acid (MAA, 99% Sigma-Aldrich, St 

Louis, MO).  The boiling point of the inhibitor (260oC for 0.01% sodium hydroxide) was 

much higher than the boiling points of the monomers (130 oC for VP and 140 oC for 

MAA) allowing for a relatively easy distillation.  Briefly, 500 mL of the monomer was 

placed in a round bottom flask with a stir bar and attached to a distillation column 

(Distilling Head 14/20, 24/40, CHEMGLASS, Vineland, NJ) with an empty round 

bottom flask at the opposite end to collect the light component.  The system was placed 

under a light vacuum (15 in Hg) and cold water was circulated at the top of the column to 

cool the monomer vapor.  The flask containing the original monomer solution was placed 

in oil, which was slowly heated to above the boiling point of the pure monomer (130 oC 

for VP and 140 oC for MAA).  The liquid that was removed included monomer with little 

to no inhibitor present.  Finally, the monomer was stored in an amber bottle in a closed 

cabinet away from light or heat that could induce polymerization. 

 
3.1.2.2 Polymer microneedles with encapsulated drug 
  

The fabrication process for polymer microneedles described above detailed the 

creation of microneedles entirely of a polymer, with no drug encapsulated.  To 

encapsulate a drug in the microneedles, the drug was dissolved or suspended in the liquid 

monomer solution prior to the formation of the microneedles.  Because of this, the drug 
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must be in solid form to be encapsulated using this process.  If the drug was found in 

liquid solution, subsequently it was lyophilized (freeze-dried) to convert the drug solution 

into solid form.  The drug was then dissolved or suspended in the liquid monomer.  If the 

lyophilized powder settled, either more monomer was added or the solution is pipetted up 

and down to better mix the solution.  Next, the vacuum was applied and the system was 

placed under the UV light, where polymerization occurs.  The resultant array included 

polymer microneedles with an encapsulated drug within the needles.   

 
3.1.2.3 Polymer microneedles with drug encapsulated only within the microneedles 
  

The fabrication process detailed above resulted in the drug encapsulated within 

the microneedle array and the microneedle base.  However, the drug that was 

encapsulated within the base was unlikely to be delivered to the skin.  Thus, an adaption 

was made to the process to preferentially encapsulate the drug within the microneedles 

and not the base.  The first steps of the process remained the same, including the use of 

PDMS molds from an initial SU8 master structure.  The drug was dissolved or suspended 

in a liquid monomer solution of vinyl pyrrolidone and approximately 75 μL was added to 

the surface of the microneedle mold.  The vacuum was applied and the monomer/drug 

entered the microneedle mold.  The next step involves the removal of the monomer/drug 

on the base using a pipette.  The removed solution was stored for later use.  After all of 

the monomer/drug solution was removed from the base, 100 µL of vinyl pyrrolidone with 

no drug dissolved was added to the surface of the microneedle mold.  This system was 

then placed under the UV lamp for 30 minutes, where polymerization occured.  The 

resultant polymer microneedles are shown in Figure 4.2 in Chapter 4 of this thesis.   
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 In order to minimize the amount of biomolecule that was used in the 

encapsulation process, it was important to pipette all of the excess monomer off of the 

surface of the microneedle mold.  This included pipetting the monomer that may seep 

into the sides of the mold.  Also, the amount of monomer that was added to the surface 

was minimized to only cover the microneedle array surface.  The amount of monomer 

used was as low as 35 µL.  Also, during the fabrication of the polymer microneedle 

arrays, it was important to keep the microneedle mold flat and not angled.  When the 

surface was angled, the monomer moved off of the surface of the mold, and it required 

more monomer (>100 µL) to cover the entire surface of the microneedle mold, which 

resulted in a higher percentage of wasted solution. 

 
3.1.2.4 Polymer microneedles made of copolymer PVP-MAA 
  

Most of the work done in this project involved the use of a single monomer, vinyl 

pyrrolidone, which was polymerized to form polyvinylpyrrolidone.  However, there were 

times when one polymer did not have the desired properties for delivery, and a 

copolymer needed to be used as the structural basis of the polymer microneedles.  

Specifically, some of the work in this project used the copolymer PVP-MAA 

(polyvinylpyrrolidone-co-methacrylic acid).  The fabrication process for this system was 

quite similar to the previous processes described above.  The liquid monomers vinyl 

pyrrolidone and methacrylic acid were mixed in a set ratio.  These monomers are quite 

miscible, which was important so that the polymer’s structure was consistent throughout.  

The co-monomer solution was then added to the microneedle mold in the same manner as 

described above and placed under the UV light under the same conditions described 

above where polymerization occurs. 
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3.1.3 Verification of in vitro insertion of polymer microneedles 

3.1.3.1 Skin dot insertion test 

 Due to the microscopic size of microneedles, it was difficult to visually determine 

if the needles properly insert into the skin.  Previous work in this lab resulted in a 

protocol to determine the number of microneedles in an array that properly inserted into 

the skin[53].  This protocol involved the use of a tissue marking dye, trypan blue (Sigma-

Aldrich, St Louis, MO), which preferentially stained the holes created by a microneedle 

array and not the skin surface.  In this experiment, polymer microneedles were created 

out of PVP by the free radical polymerization process detailed previously.  In vitro pig 

skin was used to test the microneedle insertion.  The pig skin was thawed to room 

temperature, and shaved with a metal razor to remove all of the hair.  Prior to insertion, 

the PVP polymer microneedles were taped to a metal applicator, which was made of a 

flat surface with an attached cylindrical pole.  This applicator allowed for easier handling 

for delivery than simply using your thumb.    The needles were inserted into the skin and 

removed immediately.  The insertion was accomplished by grasping the cylindrical pole 

of the applicator and inserting the needles into the skin in a quick motion.  100 µL of a 

50% trypan blue solution was then applied to the skin, covering the entire surface of the 

holes left by the microneedle array, and left for 5 minutes.  The skin was then washed 

thoroughly using DI water and a towel to remove all excess dye from the surface.  

Finally, the skin was analyzed under a light stereomicroscope (Olympus SZX9, Japan).  

Each dot represented a hole created by microneedle insertion.  Figure 4.3A in Chapter 4 

of this thesis shows an image of a successful microneedle insertion. 
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3.1.3.2 Histological analysis to determine depth of microneedle insertion 

 The skin dot test described above allowed for an evaluation of the number of 

microneedles that inserted into the skin.  However, it did not allow for a determination of 

the depth of delivery.  A different protocol involving histology of skin was used to 

determine the depth of insertion of polymer microneedles.  Here, polymer microneedles 

were made of polyvinylpyrrolidone via the new UV initiated polymerization method and 

pig skin was used for the insertion test.  Sulforhodamine (0.1%, Invitrogen, Eugene, OR), 

a fluorescent molecule, was encapsulated within the microneedles to better visualize the 

microneedles within the skin.  The PVP microneedles were then inserted into pig skin.  

The skin, with the microneedle array inserted within, was quickly placed in a cryomold, 

with the stratum corneum facing up, and a gel of optimal cutting temperature compound 

(OCT, Tissue-Tek: Sakura Finetek USA, Inc., Torrance, CA) was added to the cryomold, 

completely covering the skin.  Next, the cryomold was flash frozen in liquid nitrogen, in 

preparation for histological sectioning.   

 The frozen skin sample was placed securely in an adaptor in the microcryostat 

(MICROM HM560, Waldorf Germany).  The adaptor was needed to hold the frozen 

sample in place during the cutting process.  Next, 10 µm histological sections were cut 

and fixed to glass slides.  The sections were examined using a fluorescent microscope 

(Nikon E600W, Japan) to find the section with a microneedle embedded in the skin, and 

the depth of insertion was determined.  In addition, this section was stained to better 

visualize the different layers of the skin.  Here, the chosen histological sections were 

fixed using cold acetone for 15 minutes.   Next, the fixed section was placed in a staining 

machine (LEICA AUTOSTAINER XL, Germany) and stained with Hematoxilyn and 
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Eosin (H+E).  A cover slip was added to the stained section and left overnight.  The 

sections were viewed using a light stereomicroscope to show the depth of insertion.  

Figures 4.4A and 4.4B in Chapter 4 of this thesis show the depth of the microneedle 

insertion, including a microneedle embedded in the skin. 

 
3.1.4 Verification of in vitro drug delivery via polymer microneedles 
  

To test the ability of this polymer microneedle system to deliver drugs to the skin, 

a fluorescent molecule was encapsulated within the microneedles.  These molecules were 

easily visualized in frozen histological sections under a fluorescent microscope and thus 

allowed for an evaluation of the delivery profile in the skin. 

 
3.1.4.1 Delivery of sulforhodamine via polymer microneedles 

 The first fluorescent molecule used was sulforhodamine (MW=558.66, 

Invitrogen, Eugene, OR).  A liquid monomer solution was made of VP, AIBN (1.0 

mol%) and sulforhodamine (10-6 M).  100 µL of this solution was added to a microneedle 

mold and a vacuum (2 in Hg) was applied to pull the solution into the mold.  Next, the 

solution that remained on the surface of the mold was carefully pipetted off and returned 

to the bulk solution for future use.  Then, a solution of vinyl pyrrolidone with no 

sulforhodamine was added to the mold to act as a base for the microneedle array.  The 

system was placed under a UV lamp, where polymerization occurs. 

 The delivery of sulforhodamine was tested in pig skin in vitro.  The skin was 

prepared as described previously.  The polymer microneedles were applied to a metal 

applicator, as described previously.  The needles were inserted into the skin with force 

being applied for 15 seconds, and the needles were left in the skin.  Then, the needles 
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were removed from the skin after a set amount of time, ranging from 30 seconds to 15 

minutes, and inspected under the microscope.  The skin, containing the insertion site, was 

observed under a fluorescent microscope to visualize the delivery.  Next, the section of 

skin was cut and placed in a cryomold and processed for histology as previously 

described.  10 µm sections were made of this skin sample and the sections were 

visualized using a fluorescent microscope to determine the holes created by microneedle 

insertion and the fluorescent delivery that emanated from these holes.  The skin sections 

that had the most promising results were then stained with Hemotoxilyn + Eosin to better 

visualize the microneedle insertion site.  Figures 7.2D and 7.2E in Chapter 7 of this thesis 

show images of skin sections after delivery of sulforhodamine. 

 
3.1.4.2 Delivery of fluorescently labeled proteins via polymer microneedles 
  

To further show the capabilities of PVP polymer microneedle delivery, a 

fluorescently tagged protein, Texas-red albumin (Invitrogen, Eugene, OR) was delivered 

to in vitro pig skin.  This delivery was quite similar to the work described above 

involving sulforhodamine, with Texas-red albumin (10-6
 M) suspended in the vinyl 

pyrrolidone monomer.  Polymer microneedles were created with Texas-red albumin 

encapsulated within the polymer microneedles and a base of polyvinylpyrrolidone 

polymer.  The microneedles were inserted into pig skin and left for 1 minute.  The 

microneedles were subsequently inspected under a fluorescent microscope and the skin 

section was flash frozen and processed for histological examination.  The 10 µm 

cryosections were analyzed using a fluorescent microscope to visualize microneedle 

based protein delivery.  This can be seen in Figure 4.4C in Chapter 4 of this thesis. 
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3.1.5 Mechanical and physical properties of polymer microneedles 

3.1.5.1 Analysis of the mechanical strength (fracture force) of  polymer microneedles 

 The mechanical strength of polymer microneedles was tested using a fracture 

force test.  Previous work had been done to characterize the insertion force required for 

proper microneedle insertion [40, 53].  In order for insertion to take place, the fracture 

force of the microneedle needs to be greater than the insertion force.  In addition, the 

influence of the presence of methacrylic acid (MAA) on mechanical strength of the 

copolymer PVP-MAA was investigated. 

 In this experiment, the failure force under axial load was measured using a 

displacement force test station (Model 921A, Tricor Systems, Elgin, IL) following 

established protocols [40, 53].  Polymer microneedles were created using the following 

molar monomeric ratios (VP/MAA): 100/0, 99/1, 90/10, 75/25, 50/50, 25/75. The 

polymer microneedles were taped to the flat bottom of a metal applicator, which has a 

cylindrical post that fits securely in the force displacement machine. Force versus 

displacement curves were generated by pressing the array of microneedles (20-25 needles 

per array) against a hard metal surface at a rate of 0.5 mm/sec.  The average microneedle 

fracture force was calculated by dividing the maximum fracture force by the number of 

needles.  A plot of the fracture force versus monomeric content can be seen in Figure 

4.3B in Chapter 4 of this thesis.   

 
3.1.5.2 Qualitative analysis of the dissolution kinetics of polymer microneedles 
  

The dissolution kinetics of PVP and PVP-MAA microneedles was measured in 

vitro in pig skin and in vivo in mice.  Polymers of the following different content of 

PVP/MAA: 100/0, 99/1, 90/10, 75/25, 50/50, were used.  The needles were created using 
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the previously described fabrication process, and attached to a metal applicator.  The 

needles were applied to the skin for 15 seconds.  Pressure was removed and the 

microneedles were left in the skin for a set period of time, ranging from 30 seconds to 5 

hours.  The microneedles were then inspected to determine the amount of the polymer 

microneedle that was dissolved in the skin.  This was approximated by a calculation of 

the volume of the microneedle array that was left after insertion. 

 
3.1.5.3 Determination of the molecular weight of the PVP polymer microneedles 

 The molecular weight of the polyvinylpyrrolidone polymers was determined by 

aqueous size exclusion chromatography (ASEC) at 30°C. First, PVP microneedles were 

created using the process described previously.  Then, the microneedles were dissolved in 

a 0.05 M Na2SO4 buffer, which was the mobile phase of the column.  The sample 

concentration was 3 mg/mL PVP in the buffer solution. The ASEC system was 

comprised of a Shimadzu LC-20AD pump, a Shimadzu RID-10A RI detector, a 

Shimadzu SPD-20A UV detector, a Shimadzu CTO-20A column oven, and Viscotek 

TSK Viscogel PWXL Guard, G3000, G4000 and G6000 columns mounted in series. The 

mobile phase consisted of the Na2SO4 buffer and the flow rate was maintained at 0.5 

mL/min. Poly(ethylene glycol) narrow standards (Sigma-Aldrich, St Louis, MO)  were 

used to calibrate the ASEC by universal calibration method.  The weight average 

molecular weight (MW), number average molecular weight (MN) and polydispersity index 

(PDI) were determined based on the PEG control standards. 
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3.1.6 Analysis of retention of enzymatic activity after encapsulation in polymer 
microneedles 
 
3.1.6.1 Protein encapsulation within polymer microneedles: 

 Prior to determining the enzymatic activity of β-galactosidase within the polymer 

microneedles, it was important to determine the amount of the protein in the 

microneedles.  Due to the small amount of volume and protein used in the polymer 

microneedles, it was difficult to accurately weigh the mass of protein using a balance 

prior to suspending it in the liquid monomer solution.  One method of determining the 

amount of protein was to measure the absorbance of a protein solution at 280 nm.  The 

relationship of absorbance (A280 nm) to protein concentration is linear[131].  In this 

experiment, a standard curve was made using bovine serum albumin as the reference 

protein.  Approximately 200 µg of β-galactosidase (Grade VIII, 600-1200 units/mg, 

Sigma-Aldrich, St Louis, MO) was added to 300 µL of vinyl pyrrolidone monomer.  The 

solution was vacuum pulled into the microneedle mold and the backing was replaced 

with vinyl pyrrolidone monomer without enzyme.  The microneedles were polymerized 

and then dissolved in 3 mL deionized water.  The absorbance of this sample was tested at 

280 nm.  Unfortunately, it was not possible to determine the protein concentration using 

this assay because the polyvinylpyrrolidone polymer provided too large of a background 

signal due to amine groups  in the chemical backbone of the polymer. 

 Another assay to determine the amount of protein was the fluorescamine assay.  

In this experiment, the non-fluorescent molecule fluorescamine binds to primary amines 

of proteins to form fluorescent compounds which can be measured [132].  However, as 

with the absorbance test, the polyvinylpyrrolidone polymer provides too large of a 

background and makes this result difficult to analyze. 
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 All further determination of the amount of protein was done in one of two ways.  

First, if the protein was in solid form, a large amount, greater than 1 milligram, was 

weighed out using a sensitive balance (Mettler Toledo XP26 microbalance, Columbus, 

OH), that can accurately weigh to 0.1 mg.  After forming polymer microneedles, the 

unused protein was stored in the liquid monomer solution for future use.   For drugs that 

are found in liquid solutions and need to be lyophilized, the amount of protein was 

determined by first measuring the protein concentration in solution via standard methods, 

including the Bicinchoninic Acid (BCA) assay and the Bio-Rad protein assay, which is 

based on the Lowry protein assay[133].  These solutions had PBS or deionized water as 

solvents, which do not interfere with the more common protein determination methods.  

Then, the solution, of known concentration and volume, was lyophilized to remove all of 

the solvent, and the mass of the resultant powder could easily be calculated.  This powder 

was then suspended in the liquid monomer solution and the dose of protein in the 

polymer microneedles was determined.  This process was used for all of the influenza 

work involving PVP microneedles in this project. 

 
3.1.6.2 Enzymatic activity of β-Galactosidase after encapsulation and release from PVP 
microneedles 
 

The activity of β-galactosidase was measured after encapsulation within polymer 

microneedles to determine if the fabrication and dissolution processes damage the 

enzyme. A “dose” of 1.0 mg/100 µL of β-galactosidase was suspended in a liquid 

monomer solution of vinyl pyrrolidone.   100 µL was added to a microneedle mold, a 

vacuum was applied and the system was placed under a UV light where polymerization 

took place.  The resultant PVP polymer microneedles were then dissolved in cold (4o C) 
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PBS, and the activity of the released enzyme was measured, using the manufacturer’s 

protocol [134].  This involves the enzymatic reaction of β-galactosidase with the 

substrate ONP β-D-galactopyranoside (Sigma-Aldrich, St Louis, MO), which produces 

nitrophenol, a yellow product whose absorbance can be measured at 410 nm.  Positive 

controls were tested, containing β-galactosidase in cold PBS, and β-galactosidase in PBS 

containing previously dissolved, placebo PVP microneedles.    

 
3.1.6.3 Enzymatic activity of β-Galactosidase in pig skin in vitro after encapsulation and 
delivery via polymer microneedles 
 

Delivery of enzymatically active β-galactosidase was also studied in pig skin in 

vitro. In this case, 50 µg of β-galactosidase was encapsulated in an array of polymer PVP 

microneedles.  Theses needles were inserted into pig skin and then removed after 18 h.  

The length of time was much longer than previous work, due to the particle nature of the 

β-galactosidase in the needles.  While the β-galactosidase particles were delivered to the 

skin quickly, previous studies showed that the diffusion of the particles in the skin took a 

longer amount of time.  This was allowed for a better visualization of the delivery profile.  

Next, the skin was flash frozen and 10 µm sections were taken using the microcryostat.  

The sections were visualized under a microscope to find the holes from microneedle 

insertion.  Next, the selected sections were stained with X-Gal by the manufacturer’s 

protocol.  X-Gal binds to active β-galactosidase and produces a blue product that can be 

visualized using a stereomicroscope.  The sections with microneedle insertion sites were 

fixed in cold formalin for 10 minutes at 4 oC washed 3 times with PBS for five minutes 

apiece and then incubated in an X-gal working solution overnight at 37 oC.  The X-gal   

The X-gal working solution was made by diluting the X-gal stock solution in a 1:40 ratio 
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in warmed X-gal dilution buffer (37 oC).  The X-gal stock solution was made by 

dissolving 20 mg of X-Gal (Sigma-Aldrich, St Louis, MO) in 0.5 mL of DMF (N, N 

Dimethylformamide, MP Biomedicals, Solon, OH).  The X-gal dilution buffer included 

5mM crystalline potassium ferricyanide (Fisher Scientific, Pittsburgh, PA), 5 mM 

potassium ferricyanide trihydrate (Fisher Scientific, Pittsburgh, PA) and 2 mM 

magnesium chloride (Sigma-Aldrich, St Louis, MO) in PBS.  The next day, the sections 

were rinsed twice in PBS for 5 minutes and then counterstained with nuclear fast red 

solution for 5 minutes.  The nuclear fast red solution includes 0.5 g nuclear fast red 

(Sigma-Aldrich, St Louis, MO) and 25 g Al2SO4 (Sigma-Aldrich, St Louis, MO) in 500 

mL of deionized water. Finally, the slides were rinsed in DI water and mounted directly 

with aqueous mounting medium.  The sections were visualized using a stereomicroscope 

to determine if the delivered β-galactosidase was active and bound to X-gal, with was 

shown by a blue product.  Successful delivery of active β-galactosidase via PVP 

microneedles can be seen in Figure 4.4D in Chapter 4 of this thesis. 

 
3.1.7 Analysis of in vivo polymer microneedle delivery 
 
3.1.7.1 Polymer microneedle delivery to hairless rats in vivo 

 PVP polymer microneedles were inserted into hairless rats in vivo to test the 

insertion capabilities.  The microneedles were created, as described above, by 

polymerizing a liquid monomer solution of vinyl pyrrolidone.  Sulforhodamine was 

encapsulated within the polymer microneedles to allow for an easier evaluation of the 

insertion.  The hairless rat was purchased from Charles River and all work was done in 

accordance with the Georgia Tech Institutional Animal Care and Use Committee 

(IACUC).  The rats were anesthetized in an isofluorane chamber and the anesthesia was 
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maintained using an isofluorane mask.  The animal was placed on its belly and all 

insertions were performed on the back.  The insertions were done using differing 

conditions.  The length of time of application of the microneedles varied from 5, 15, and 

60 seconds.  The length of time the microneedles were inserted into the skin varied from 

30 seconds to 15 minutes.  In addition, various insertion techniques were used.  This 

included mounting the microneedle array on multiple applicators to increase the force 

applied for insertion or using the index finger for insertion.  Also, the skin of the rat was 

handled in different ways, including pinching the skin, spreading the skin on the ground 

or applying to the back without any handling.   

After each insertion was finished, the microneedle array was removed and the 

insertion site was inspected and marked to allow for histology later.  Also, the polymer 

microneedles are set aside for inspection under a microscope to determine if the needles 

failed (bent) or inserted and dissolved in the skin.  After all of the insertions were 

finished, the skin of the rat that includes the insertion sites was removed and inspected 

under a fluorescent microscope.  The rats were then euthanized under the IACUC 

protocols via a CO2 chamber.  Next, the removed skin was separated into smaller pieces 

for each insertion site and each piece was flash frozen and processed for histology, as 

described previously.  The sample was cut into 10 µm sections, which are inspected using 

a fluorescent microscope to visualize the microneedle insertions and delivery of the 

fluorescent compound sulforhodamine. 

 
3.1.7.2 Polymer microneedle delivery to mice in vivo 
  

PVP polymer microneedles were inserted into mice in vivo to test the insertion 

capabilities.  Polymer microneedles were created out of polyvinylpyrrolidone and 
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sulforhodamine was preferentially encapsulated within the needles to easily visualize the 

delivery in the skin.  The mice were purchased from Charles River (Female, Balb/c) and 

all work was done in accordance with the Georgia Tech Institute for Animal Care and 

Use Committee (IACUC).  First, the mice are anesthetized similar to the process used for 

the hairless rats described previously.  Alternatively, the mice can be placed under 

anesthesia using an intramuscular injection of ketamine (10 mg/kg) and xylazine (1 

mg/kg).  This allowed for a deeper anesthesia and easier access of the mice for 

microneedle insertion, where the mice are not constricted by the anesthesia mask. 

 Prior to microneedle insertion, the hair of the mouse was removed to allow for 

better access to the skin of the mouse.  This involved the application of a small amount of 

hair remover cream (Nair brand), 1 in2, to the back of the mouse.  This cream was rubbed 

into the mouse skin thoroughly and left for 1 minute.  Then, a cotton swab was used to 

remove the cream and the hair.  The skin was washed thoroughly with a damp towel to 

remove all excess cream, which can cause skin irritation if left on the skin for too long.  

The microneedles were inserted into the mouse using different application times, left in 

the skin for different insertion times and inserted using different applicators.  All of these 

variations are the same as the hairless rat insertions detailed previously.  In addition, for 

the insertions that lasted more than one minute in the skin, double sided tape was applied 

around the microneedle array.  This tape held the microneedles onto the surface of the 

mouse skin after application without the need for constant force for the full insertion 

time.  After each microneedle array was removed, the skin was marked and the 

microneedles are set aside for later inspection under the microscope.  After all of the 

insertions are complete, the skin surrounding the insertions sites was removed.  This skin 
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was viewed under the fluorescent microscope to analyze the microneedle delivery and 

then flash frozen and processed for histological inspection.  After the skin samples are cut 

using the microcryostat, the sections are observed using a fluorescent microscope to 

determine the microneedle insertions and delivery profile. 

 
3.1.8 Quantitative analysis of polymer microneedle delivery 
 
3.1.8.1 Quantitative analysis of polymer microneedle delivery of sulforhodamine 

 To determine the delivery efficiency of the polymer microneedles, 

sulforhodamine was encapsulated within the microneedles and the percent delivery was 

measured.  The basis for this experiment was the measurement of the emission spectrum 

of sulforhodamine, which was linearly proportional to sulforhodamine concentration over 

a range of 0.001 µg/mL to 1 µg/mL.  In this experiment, sulforhodamine was dissolved in 

vinyl pyrrolidone monomer and added to the microneedle mold.  It was important to have 

no sulforhodamine in the base of the microneedles because it would not be delivered to 

the skin and alter the delivery results.  The liquid monomer with sulforhodamine was 

carefully pipetted off the surface of the mold and the mold was observed under a 

fluorescent microscope to verify that little to no sulforhodamine was found in the base.  

Next, a vinyl pyrrolidone monomer solution without sulforhodamine was added to the 

mold to provide the base for the polymer microneedles and the system was placed under 

the UV lamp where polymerization takes place.   

The basis for the delivery efficiency is as follows.  First, control pre-insertion 

polymer microneedle arrays (n=8) with sulforhodamine in the needles were placed in 

containers of 3 mL of deionized water, where they dissolved.  The average value of this 

signal will stand for the total amount of sulforhodamine in a microneedle array.  Next, 
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more control polymer microneedles (n=6) with sulforhodamine in the needles will have 

the microneedles removed and only the base remains.  The remaining array bases were 

also dissolved in separate 3 mL of deionized water each.  They act as a background if any 

sulforhodamine was in the base of the array.  Finally, the other microneedle arrays with 

sulforhodamine (n=6, per condition) were inserted into the skin and left for a set amount 

of time.  After each array was removed, it was visually inspected and then placed in 3 mL 

of deionized water to determine the amount of sulforhodamine left in the microneedle 

array.  Next, the insertion site was tape stripped twice to remove all sulforhodamine that 

was left on the surface of the skin and was not delivered properly.  The tape was applied 

to the skin with force and pulled off.  These pieces of tape were also washed with 3 mL 

deionized water to determine the sulforhodamine amount left on the skin surface.  The 

amount of sulforhodamine in each solution was measured by spectrofluorometry.  2 mL 

of each solution was added to a cuvette and the emission scan was read from 580 nm – 

620 nm after an excitation at 550 nm.  The area under the curve was determined and the 

concentration was calculated via a standard curve.  The mass of sulforhodamine in each 

solution was found by multiplying the concentration by 3 mL.  Finally, the delivery 

efficiency of the microneedles was determined by the following equation 

Mass delivered = Average(Preinsertion controls) – mass on tape – mass left in 
needle array 

 

3.1.8.2 Quantitative analysis of microneedle delivery to pig skin in vitro 

 The delivery efficiency of polymer microneedles was tested in vitro using pig 

skin.  Frozen pig skin was thawed to room temperature, shaved to remove all hair and 

trimmed to remove excess fat from beneath.  Polymer microneedles with sulforhodamine 
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encapsulated within the microneedles only were fabricated as described previously.  The 

microneedles were inserted into the pig skin using different insertion times, ranging from 

1 minute to 15 minutes.  Also, the microneedles were applied using different applicators, 

which allow for different insertion forces.  After each microneedle insertion, the array 

was observed under the microscope to see if the needles failed to insert (bent) or inserted 

and how much of the microneedle dissolved in the skin.  The insertion site was observed 

for microneedle delivery using a fluorescent microscope and then tape stripped to remove 

the sulforhodamine left on the skin surface.  The tape and postinsertion microneedles 

were placed in containers of 3 mL of deionized water.  The amount of sulforhodamine 

delivered was determined as described in the previous section. 

 

3.1.8.3 Quantitative analysis of microneedle delivery to mice in vivo 

 The delivery efficiency of polymer microneedles was tested on mice in vivo.   

The mice were anesthetized using an isofluorane chamber, and their hair on their back 

was removed via the Nair cream, as described previously.  The mice were then given 

anesthesia by intramuscular injection of ketamine and xylazine, to allow for easier 

handling of the mice during the microneedle insertions.   

Polymer microneedles were made with sulforhodamine in the needles.  The 

microneedles were applied to the skin for 15 seconds for each insertion and left on the 

skin for times ranging from 5 to 20 minutes. 

 After the microneedle insertions, the delivery efficiency was evaluated as 

described previously.  This includes observation of the microneedles and skin post 

insertion and the quantitative analysis of the percentage of delivery by 
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spectrofluorometry.  Figure 7.3 in Chapter 7 of this thesis shows the delivery efficiency 

of the PVP microneedles to a mouse in vivo. 

 
 
3.2 DELIVERY OF THE INFLUENZA VACCINE VIA COATED METAL 
MICRONEEDLES  
 
3.2.1 Characterization of inactivated influenza virus 
 
3.2.1.1 Determination of the protein concentration of inactivated virus solution 
 
 Prior to coating onto metal microneedles, the properties of the inactivated virus 

solution must be characterized, including the protein concentration and the antigenicity of 

the virus in solution.   In most cases the protein concentration of the virus solution after 

inactivation is around 1 -3 mg/mL.  The proper assay to determine the exact 

concentration would be a Bio-Rad protein assay which can accurately determine protein 

concentrations between 0.200 mg/mL to 1.6 mg/mL[133].  In this assay, 5 µL of the 

unknown solution was added in triplicate to a 96 well plate.  In addition, a 2:1 and 4:1 

dilution of the unknown solution was also added in triplicate.  Next, 5 µL of the bovine 

serum albumin (BSA) standard was added in triplicate for the standard curve.  The 

following standard concentrations are used, 0.2 mg/mL, 0.5 mg/mL, 0.75 mg/mL, 1.0 

mg/mL and 1.5 mg/mL.  Next, 25 µL of working reagent A in the Bio-Rad protein assay 

kit was added to each well.  Then, 200 µL of working reagent B was added to each well 

and each solution was well mixed.  The plate was left at room temperature for 15 

minutes.  When the incubation was complete, the standard solutions should have varying 

shades of blue.  The absorbance of each solution was read at 750 nm using a microplate 

reader (Gemini SPECTRAMAX, Sunnyvale, CA).  Using the standard curve, the protein 

concentration of the inactivated virus solution can be determined. 
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 If the protein concentration was lower than 0.2 mg/mL, the bicinchoninic protein 

Assay (BCA, Thermo Scientific, Rockford, IL) was used [131].  This assay can measure 

protein concentrations between 0.5 µg/mL and 20 µg/mL.  In this, assay 150 μL of each 

standard or unknown sample was added to a microplate well.  Then 150 μL of the 

working reagent solution was added to each well and the plate was mixed thoroughly on 

a plate shaker for 30 seconds.  The working reagent solution was made by 25 parts of 

micro BCA reagent MA, 24 parts of reagent MB and 1 part of reagent MC.  The plate 

was covered and incubated for 2 hours at 37 oC.  After incubation, the plate was cooled to 

room temperature and the absorbance was measured at 562 nm on a plate reader.  The 

protein concentration can be found from the linear standard curve.   

 
3.2.1.2 Analysis of the antigenicity of the inactivated influenza virus. 
  

There are two methods for testing the activity or antigenicity of the inactivated 

influenza virus solution.  An Enzyme-Linked ImmunoSorbent Assay (ELISA) analyzes 

the activity of the virus solution and the ability of the surface proteins to bind to specific 

antibodies.  The Hemagglutination assay (HA) analyzes the antigenicity of the inactivated 

virus solution.  This assay measures the ability of the surface hemaglutinin protein to 

agglutinate or bind to red blood cells.   

 
3.2.1.2.1 ELISA to test the antigenicity of the inactivated influenza virus 

 
The ELISA used in this study was qualitative and only allowed for the 

comparison of the activity of the virus solution with controls.  In this study, 100 µL of 10 

μg/mL of inactivated virus solution in sodium bicarbonate coating buffer was added to a 

well on a 96 well NUNC plate.  The plate was left overnight at 4 oC.  Next, the plate was 
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thoroughly washed 3 times with PBS + 0.05% Tween (PBS-T).  Then, each well was 

coated with 200 µL blocking buffer, PBS-T with 3% Bovine Serum Albumin (BSA).  

The plate was left at 37 oC for one hour and then washed again 3 times with PBS-T.  100 

µL of the primary antibody specific to the virus strain was then added to the wells in 

1:100 or 1:1000 dilutions in PBS-T and the plate was incubated at 37 oC for 1.5 – 2 

hours.  After another washing 3 times with PBS-T, 100 μL of the secondary antibody 

(IgG-HRP, Horseradish Peroxidase-Conjugated Goat Anti-Mouse IgG, 1:1000, Southern 

Biotech, Birmingham, AL) was added to the plate and incubated for 1 – 1.5 hours at 37 

oC.  While the plate was incubating, the substrate solution was made of o-

Phenylenediamine dihydrochloride (1 tablet of OPD + 12 mL citric buffer + 12 μL of 

30% H2O2.  This solution reacts with peroxidase on the 2nd antibody to form a yellow 

orange product.  After the plate was washed 3 times again with PBS-T, 100 μL of the 

substrate solution was added to each well.  The solutions are allowed to develop for one 

minute, and then 50 μL of 1 M H3PO4 was added to each well to stop the reaction.  The 

absorbance was read at 450 nm using an absorbance plate reader (BIORAD Model 680 

microplate reader, Hercules, CA).  The absorbance of the processed virus solution was 

compared to the unprocessed solution to compare the activity. 

 
3.2.1.2.2 HA assay to test the antigenicity of the inactivated influenza virus  

 
The hemagglutination property of the virus solution was also tested.  In this 

experiment, 25 μL of the virus stock solution was added to well 1 with 75 μL of PBS to 

make a 4:1 dilution.  Serial dilutions (2:1) in PBS are made from wells 2 – 12 with a final 

volume of 50 μL in each well.  Next, 50 μL of 0.5% chicken red blood cells (RBC, 

Lampire Biologicals, Pipersville, PA) was added to each well, and the solutions are 
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mixed thoroughly.  The plate was left for one hour at room temperature.  In addition, a 

positive control was done of 50 μL of PBS with 50 μL of 0.5% RBCs.  When the virus 

was in too low of a concentration or activity, it cannot agglutinate or bind to the red blood 

cells.  Instead, the red blood cells bind to each other and a red button was observed.  

When the virus was in higher concentration, it bound the red blood cells and prevented 

them from binding to each other.  This was observed by a pink sheet.  Once the positive 

control of PBS and 0.5% RBCs formed a red button, the assay was over.  The HA value 

was determined by reading from left to right where the pink sheet becomes a solid red 

button.  This value was the HA/50 µL.  The activity of the virus in HAU/µg was 

determined by dividing the HA value by the protein concentration. 

  
3.2.2 Influenza delivery via coated metal microneedles: in vitro delivery and virus 
processing 
 
3.2.2.1 Fabrication of metal microneedles for influenza delivery 
  

Rows of five in plane metal microneedles were fabricated by a process previously 

published[2, 135].  Briefly, the microneedle geometry was designed using a computer 

drafting software (Autocad), with rows of five microneedles of 750 μm height and 200 

μm width.  These rows of microneedles were cut from stainless steel metal sheets (75 μm 

thick, Trinity Brand Industries, SS 304, McMaster-Carr, Atlanta GA, USA) using an 

infrared laser (Resonetics Maestro, Nashua, NH, USA), which was operated at 1000 Hz, 

20 J/cm2 energy density and 40% attenuation of laser energy. A cutting speed of 2 mm/s 

and air purge at a constant pressure of 140 kPa was used and three passes were required 

to completely cut through the stainless steel sheet  
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Next the microneedle arrays were manually cleaned with detergent (Contrex, 

Decon Labs, PA, USA) to de-grease the surface and remove deposits left during laser 

cutting.  The needles are then washed thoroughly with deionized water.  To further 

sharpen and clean the microneedles and remove the burrs on the edges, microneedles 

were electropolished in a solution containing glycerin, ortho-phosphoric acid (85%) and 

deionized water in a ratio of 6:3:1 by volume (Fisher Scientific, Fair Lawn, NJ, USA)  

The electropolishing was performed in an electropolisher (model no. E399-100, ESMA, 

IL, USA) using a voltage of 6 volts for 15 minutes  The microneedles are then cleaned by 

dipping three times in deionized water and 25% nitric acid (Fisher Scientific) for 30 s 

each. This was followed by another washing step in hot running water and a final wash in 

running deionized water. The electropolishing process reduces the thickness of the 

microneedles to 50 μm. Microneedles were dried using compressed nitrogen before 

storing in airtight containers until later use. 

 
3.2.2.2 Coating the influenza virus onto metal microneedles 
  

In order to get a high dose of influenza virus on a row of metal microneedles, the 

protein concentration of the inactivated virus solution should be greater than 4 mg/mL.  

One way to accomplish this was to concentrate the virus solution using centrifugation 

through Vivaspin 30,000 Da molecular weight cut off membranes (Cole Palmer, Vernon 

Hills, IL).  The virus molecular weight was much higher than 30,000 Da.  Here, 1.5 mL 

of the virus solution was placed in the membrane tubes.  The centrifuge was run at 7500 

rpm for 10 minutes at 4 oC.  Next, the bottom solution was removed and the tube was 

turned over and spun again at 2000 rpm for 5 minutes.  This allowed for an easy retrieval 

of the concentrated virus solution.   
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 The coating of the influenza virus solution to the metal microneedles was 

performed as described previously[2, 135].  The coating solution was composed of 1% 

(w/v) carboxymethylcellulose sodium salt (low viscosity, USP grade, Carbo-Mer, San 

Diego, CA, USA), 0.5% (w/v) Lutrol F-68 NF (BASF, Mt. Olive, NJ, USA) and a 

vaccine at 5 mg/ml.  The coating-solution reservoir was slightly modified from the design 

described before[2]. Here, the reservoir consisted of two laminated parts: the ‘bottom 

plate’ and the ‘cover plate’, both of which were made of poly(methyl-methacrylate) 

(McMaster-Carr, Atlanta, GA). The bottom plate had a central feeding channel (1 mm 

deep×0.5 mm wide) machined into one of its faces. The cover plate had seven holes: five 

holes (400 µm diameter) drilled into it at the same interval as the microneedles in the in-

plane row to be coated and two larger holes (1.5 mm diameter) at the end of feeding 

channel. These ‘dip-holes’ acted as individual dipping reservoirs to coat each of the 

microneedles in the row. The two plates (bottom and cover plates) were aligned and 

adhered to each other using solvent bonding with methylene chloride (Fisher Scientific, 

Pittsburgh, PA) as the solvent. Coating solution (40 μl) was filled into the channel using 

the standard 200 μl pipette. 

The coating of the influenza virus onto the metal microneedles was performed 

manually while the dipping process was monitored by a video camera (DP71, Olympus 

America, Center Valley, PA) attached to a microscope (SZX16, Olympus America, 

Center Valley, PA). An X-micropositioner was used to control the length of the 

microneedle inserting into the coating solution reservoir.  The diameter of the holes was 

made to be twice the width of the microneedles, to allow for slight misalignment issues.   
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3.2.2.3 Analysis of the antigenicity of the influenza virus after coating onto metal 
microneedles 
 
 Prior to immunization, it was important to determine the amount and quality of 

the influenza virus coated on the metal microneedles.  Two rows of metal microneedles 

were placed in a flat bottom cuvette, and 200 µL of PBS was added and mixed 

vigorously.  The protein concentration of this solution was determined by the BCA 

method described above.  Also, the HA assay was used to determine the antigenicity of 

the coated virus.  Figure 6.1 in Chapter 6 of this thesis shows the antigenicity of the 

influenza virus after coating and drying onto metal microneedles. 

 
3.2.2.4 Delivery efficiency of coated metal microneedles 
  

Finally, it was important to verify the delivery efficiency and kinetics of the 

coated metal microneedles.  Here, vitamin B (Sigma-Aldrich, St Louis, MO) was coated 

onto the microneedles and the time required for complete delivery of the coating to skin 

was determined.  First, the coated metal microneedles were inserted into pig skin in vitro 

and removed at specific time points.  After removal, the needles were inspected using a 

bright field microscope to determine the amount of coating left on the microneedle.  This 

experiment was also repeated in a mouse in vivo.  Figures 6.2A and 6.2B in Chapter 6 of 

this thesis show the metal microneedles before and after insertion into pig skin. 

 
3.2.3 Influenza delivery via coated metal microneedles: in vivo delivery and analysis 
 
3.2.3.1 Coating of metal microneedles with inactivated influenza virus coating solution 
  

The influenza virus was coated onto the metal microneedles in a process 

described above.  After the coating process was complete, three rows of microneedles 
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were dissolved in 200 µL of deionized water to determine the protein concentration and 

HA value of the virus on the needles.   

 
3.2.3.2 Delivery of influenza vaccine via metal microneedles to mice 
  

The influenza vaccine was delivered to mice (female, 18g, 4 weeks, 

Balb/c,Charles River) by metal microneedles.  The H3N2/A/Aichi strain of inactivated 

virus was used for these microneedle immunizations.  The mice were anesthetized under 

the IACUC protocol by an intramuscular injection of ketamine (10 mg/kg) and xylazine 

(1 mg/kg).  Next the hair covering the insertion site, approximately 1 in2 on the back of 

the mouse, was removed by applying a Nair hair removal cream.  This cream was applied 

deeply into the hair and left for 1 minute.  The hair was removed by a damp paper cloth 

and the site was thoroughly cleaned to remove all of the excess cream.  The mice were 

placed on a heat blanket after the washing in order to keep them warm.  The rows of 

microneedles were inserted by hand one at a time and each left for 5 minutes in the skin.  

The number of rows of microneedles inserted into a mouse was dependent on the coating 

efficiency on the microneedles, to achieve the desired dose.  After the microneedle 

insertions, the mice were transferred back into their cage and observed until they regain 

consciousness. 

 The following four groups were used in this study; microneedle immunization 

with 9.8 µg dose (4 MN rows with 1.95 μg on each), intramuscular immunization with 

9.8 µg dose (100 µL), naïve group, and a separate naïve group where uncoated 

microneedles (3 MN rows) were inserted into their backs.  Each experimental group had 

12 mice total.  Six of the mice of each group had one immunization on day zero and were 

challenged with a lethal dose of the virus 30 days after the immunization.  The other six 
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mice had one immunization on day zero, and a boost immunization 28 days later.  These 

mice were challenged 30 days following the boost immunization.  The prime and boost 

doses were the same. 

 
3.2.3.3 Measurement of the immune response of mice after vaccination of the influenza 
vaccine with coated metal microneedles 
 
 The immune response of the mice to the immunization of inactivated 

H3N2/A/Aichi influenza virus was measured by testing the IgG antibody levels and 

hemagglutination inhibition (HAI) of the mouse sera.  The blood was collected 14 days 

after the prime and boost immunizations, when the sera IgG antibodies have reached a 

peak[136].  The mice were lightly anesthetized using an isofluorane chamber and 

approximately 200 μL of blood was taken from the orbital cavity.  Next, the blood was 

spun in a centrifuge at 10,000 rpm for 15 minutes and the clear sera was removed and 

transferred into a separate eppendorf tube.  This sera was stored at -20 oC until use for the 

HAI and IgG ELISA experiments. 

 
3.2.3.3.1 Measurement of sera IgG antibodies of immunized mice via ELISA  

 
The amount of sera IgG antibodies was measured via an ELISA.  To begin, 100 

μL of 5 μg/mL of purified H3N2/A/Aichi virus in Na2CO3 coating buffer was added to 

each well of a NUNC 96 well plate.  A standard curve was made by adding 100 µL of 2 

µg/mL of Ig(H+L) (Southern Biotech, Birmingham, AL) antibody solution to each well 

in the final row.  The plate was left overnight to incubate at 4 oC. 

 The following day, the plate was washed three times with PBS-T.  Next, 200 μL 

of blocking buffer (PBS-T + 3% BSA) was added to each well.  The plate was incubated 

for 1 hour at 37 oC.  After washing the plate again three times with PBS-T, the primary 
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antibodies from the sera was added to the plate. 100 µL of 1:100 dilutions of sera in PBS 

was added in duplicates.  For the standard curve, 100 µL of 1000 ng/mL of the standard 

IgG antibody solution in PBS-T was added to the first well and serial dilutions (2:1) in 

PBS were made down to 1 ng/mL.  The plate was incubated at 37 oC for 2 hours and then 

washed three times with PBS-T.  Next, 100 µL of 1:1000 dilution of the secondary 

antibody IgG HRP in PBS was added to each well.  The plate was incubated again for 1.5 

hours at 37 oC.  While this incubation was happening, the substrate solution was made by 

adding 1 tablet of o-Phenylenediamine dihydrochloride (OPD, Zymed Laboratories, 

Carlsbad, CA) to 12 mL citric buffer and.  After the tablet completely dissolved, 12 µL of 

30% H2O2 was added and the solution was kept out of the light.  The plate was washed 3 

times with PBS-T and 100 µL of enzyme solution was added to each well.  The solutions 

were allowed to develop for approximately 30 seconds and 50 µL of H3PO4 was added to 

stop the reaction.  The absorbance was read at 450 nm using the absorbance plate reader 

(BIORAD Model 680 microplate reader, Hercules, CA) and the concentration of the IgG 

antibodies in the sera was determined by the standard curve. 

 
3.2.3.3.2 Measurement of the quality of antibodies of immunized mice via HAI assay 

 
The quality of the antibodies in the sera was measured via the hemagglutination 

inhibition (HAI) experiment, which tests the ability of the antibodies to inhibit 

agglutination of red blood cells by a standard influenza virus solution.  The first step of 

this experiment was to make the standard influenza solution that has an HA activity of 8 

HA/50 μL.  Also the sera must be treated prior to use in this experiment to remove the 

false positive signal of cryoglobulins which exists in the sera[137].  Here, 10 μL of sera 

was transferred to a new eppendorf tube and mixed with 30 μL of receptor destroying 
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enzyme (RDE).  The samples are heated in a water bath at 37 oC 18 – 20 hours overnight.  

Next, the temperature was raised to 56 oC for one hour to deactivate the compliment.  The 

samples are cooled to room temperature and 60 μL of deficient PBS was added.  Next, 5 

μL of packed chicken RBCs are added to the sample and set at 4 oC for one hour.  The 

sample was then centrifuged at 15,000 rpm for 12 minutes to settle the RBCs and the 

supernatant was removed and transferred to a new tube.  The sera was now in a 1:10 ratio 

and was stored at -20 oC until the HAI assay was performed.   

 For this experiment, 12.5 μL of the unknown sera was added to 37.5 μL of PBS to 

the first well, giving a 1:40 dilution.  Serial 2:1 dilutions were made from the first well to 

the 6th well, making the 6th well 1:1280.  Next, 25 μL of the standard H3N2/A/Aichi virus 

solution (8 HA/50 μL) was added to each well.  The wells were well mixed and incubated 

at room temperature for 15 – 30 minutes.  Then, 50 μL of 0.5% RBCs were added to each 

well and well mixed.  The samples were incubated at room temperature for one hour, or 

until the positive control became a pellet.  The positive control included 50 µL of PBS 

and 50 μL of 0.5% RBCs.  The negative control contained 50 µL of the standard virus 

solution and 50 μL of 0.5% RBCs.  This negative control should stay a pink sheet, due to 

the virus binding the red blood cells and preventing them from binding to each other.  

The positive control appeared as a red pellet, due to the binding of the red blood cells 

with one another.  The value for the HAI was read from left to right when the sample 

with a red pellet became a pink sheet.  A value of HAI of 1:40 or greater signifies 

seroprotection[138].  This was verified via a lethal challenge thirty days after the final 

immunization. 
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3.2.3.4 Measurement of the immunoprotection of mice to influenza vaccine via lethal 
challenge 
  

The immunoprotection of the immunized mice was measured via weight loss in a 

lethal challenge using 5 LD50 of the live H3N2/A/Aichi virus.  20 μL of this virus 

solution was given intranasally to each of the immunized mice.  The mice were then 

weighed (day = 0).  Next, the mice were weighed each day until day 14, and then every 

few days until day 21.  If the weight of a mouse dropped to below 25% of the original 

weight, the mouse was considered terminally ill and was euthanized using an isofluorane 

chamber.  The mice that survived after 21 days were considered protected.   

 
 

3.3 DELIVERY OF THE INFLUENZA VACCINE VIA DISSOLVING POLYMER 
MICRONEEDLES 
 
3.3.1 Influenza delivery via dissolving polymer microneedles: in vitro processing 
 
3.3.1.1 Preparation of the influenza virus solution for lyophilization 
 
3.3.1.1.1 Concentrating process for the influenza virus solution 
  

Prior to lyophilization, it was desired to have a high concentration of virus in 

solution to allow for a high encapsulation efficiency of lyophilized virus within the 

polymer microneedles.  The main way of concentrating the virus solutions was by 

centrifugation with Vivapsin 30,000 Da MWCO membranes (Sartorius, Germany), as 

described above.  In addition, if the inactivated virus was originally stored in PBS, this 

must be dialyzed out for deionized water due to previous work that has shown loss in 

activity of the influenza virus in PBS during lyophilization[139].  The virus was 

concentrated to approximately 2 mg/mL.  After the virus was concentrated, the protein 

concentration and HA activity were determined. 
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3.3.1.1.2 Addition of sugars to act as cryoprotectants during lyophilization process 

 
Previous work has shown that the lyophilization process, specifically freezing and 

drying stresses, can significantly damage viruses in solution [140, 141].  In order to retain 

activity of the virus, sugars, specifically trehalose (Sigma-Aldrich, St Louis, MO) and 

inulun (Sigma-Aldrich, St Louis, MO), were added to the virus solution in a 50:1 ratio to 

act as cryoprotectants [139, 142].  For the lyophilization processes detailed in this study, 

solutions of inactivated viruses with varying amounts of sugar were studied.  This 

includes virus solutions with no trehalose, 5:1 trehalose by weight, 10:1 trehalose by 

weight, and 50:1 trehalose by weight.  The virus solutions were placed in a 1.5 mL 

eppendorf tube and frozen quickly in dry ice at -80 oC for 15 minutes in preparation for 

lyophilization.   

 
3.3.1.2 Lyophilization process for the inactivated influenza virus solution 
  

The settings for the lyophilization of the inactivated influenza virus solutions 

were based on a published protocol [139].  To begin, the temperature of the lyophilizer 

(VirTis Wizard 2.0 freeze dryer, Gardiner, NY) was lowered prior to the addition of the 

frozen solution to prevent any thawing of the solution prior to lyophilization.  The tops of 

the eppendorf tubes were removed and a plastic film was placed on top with small holes 

poked into the film.  The samples were placed in the lyophilizer and the primary drying 

cycle was performed for 24 hours with a shelf temperature of -35 oC, a condenser 

temperature of -55 oC and a pressure of 160 mtorr.  The secondary drying cycle followed 

for 24 hours at a shelf temperature of 20 oC, a condenser temperature of -55 oC and a 
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pressure of 50 mtorr.  The samples were then removed, capped and stored in the 

refrigerator for later use. 

 
3.3.1.3 Encapsulation of the lyophilized influenza virus in polymer microneedles 
  

The lyophilized influenza virus was encapsulated into the polymer microneedles 

similar to the processes described previously for other molecules.  To increase the 

efficiency of encapsulation of the virus within the microneedles, the amount of vinyl 

pyrrolidone monomer used to suspend the lyophilized powder was minimized.  The 

monomer was added in drops of 20 μL until the lyophilized powder was suspended in the 

solution and does not settle in the bottom.  The volume of monomer added was noted and 

was used to determine the amount of virus encapsulated within the microneedles.  

Typically, the approximate concentration of virus that was suspended in VP monomer 

was 4 μg/μL.  The rest of the fabrication process of PVP polymer microneedles with 

encapsulated influenza virus follows the previously detailed protocol, including pipetting 

onto a microneedle mold, application of a vacuum, exchange of the base with an empty 

monomer solution and polymerization under the UV lamp.  The microneedles were then 

removed and stored in a desiccator for later use. 

 
3.3.1.4 Antigenicity and protein concentration of the inactivated virus was determined  
after lyophilization and encapsulation in PVP microneedles.   

 
The lyophilized powder was dissolved in a set volume of deionized water and the 

HA and protein concentration were analyzed as described previously.  The PVP 

microneedles with encapsulated influenza virus were dissolved in 2.0 mL of deionized 

water and the HA was determined.  Unfortunately, the presence of the polymer PVP in 

solution introduced a large background signal for all of the protocols to determine protein 
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concentration.  Thus, it was difficult to accurately determine an exact protein 

concentration for these solutions with PVP.  As a result, the protein concentration was 

approximated based on the amount of protein in the lyophilized powder, the volume of 

monomer needed to suspend the powder, and the volume of deionized water required to 

dissolve the PVP microneedles.  The mass of the lyophilized powder was determined by 

multiplying the protein concentration of the solution that was lyophilized by the volume 

of the solution.  Next, the amount of virus in the microneedles was calculated by 

measuring the volume needed to suspend the virus.  The concentration of lyophilized 

powder (μg) per μL of monomer solution was multiplied by a volume of 1.4 μL, which is 

the total volume of the microneedles, excluding the base.  Finally, the protein 

concentration was found by dividing the mass of the protein found in the microneedles by 

the volume of water that was required to dissolve the microneedle array.  In addition, an 

ELISA was performed, as previously detailed, to qualitatively test the virus after 

processing. 

 
3.3.2 Influenza delivery via dissolving polymer microneedles: in vivo delivery and  
analysis 
 
3.3.2.1 Measurement of the immunogenicity of the processed influenza vaccine via in  
vivo immunization 
  

Before polymer microneedles were used in the immunization of the influenza 

vaccine, it was important to determine if the processing steps damage the 

immunogenicity of the virus.  This included the lyophilization of the virus, suspension of 

the powder in liquid monomer and polymerization of the solution.  This also involved the 

addition of the sugar, trehalose, to the virus solution prior to lyophilization, to act as a 

cryoprotectant[139]. 

 - 69 -



   In this work, the virus solutions, with or without trehalose, were frozen in dry ice 

and lyophilized using the conditions described above.  The lyophilized solutions were 

done in duplicates:  half of the solutions were resuspended in deionized water, and the 

other half were suspended in the vinyl pyrrolidone monomer, polymerized and the 

microneedles were dissolved in deionized water.  The solutions were then injected into 

mice, and the immune response was tested using serum IgG antibodies, HAI and 

challenge studies.  For each study, controls of the unprocessed inactivated virus solution 

and the unprocessed inactivated virus solution with dissolved, blank PVP microneedles 

were also tested. 

 The first in vivo test of the processed virus was a pilot experiment using the 

inactivated H1N1/A/PR8 virus.  The following groups were used:  lyophilized virus with 

no sugar, lyophilized virus with 5:1 trehalose by weight, lyophilized virus with 10:1 

trehalose, lyophilized virus with 50:1 trehalose, and unprocessed virus with and without 

PVP, and naïve.  In this study, mice (n=3) were injected intramuscularly with 20 µg of 

inactivated H1N1/A/PR8 virus in the solutions described above. The mice were bled 

fourteen days later and the serum IgG antibodies were measured. 

 The second pilot experiment involved testing the immunogenicity of the 

inactivated H3N2/A/Aichi virus after processing in polymer microneedles.  The 

following groups were used:  lyophilized no sugar, lyophilized with 5:1 trehalose, 

lyophilized with 10:1 trehalose, and unprocessed virus with and without blank PVP 

microneedles, and naive.  As with the previous work, each lyophilized group was in 

duplicates: in half the lyophilized powder was resuspended in deionized water and in the 

other half, the lyophilized powder was suspended in vinyl pyrrolidone monomer, 
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polymerized and then the polymer microneedle system was dissolved in deionized water.  

In this study, mice (n=3) are injected intramuscularly with 10 µg of each of the above 

solutions.  The mice were bled fourteen days after the immunization.  The serum IgG 

antibodies and HAI titer were determined.  Then, 28 days after the immunization, the 

mice were boosted with a second dose of 10 µg by intramuscular injection.  Once again, 

the mice were bled fourteen days after this immunization and the serum IgG antibodies 

and HAI titer were determined.  Finally, mice were challenged thirty days following the 

boost immunization with 20 µL intranasally of 5 LD50 of live H3N2/A/Aichi virus.  The 

body weights were checked daily to test the protection against this lethal challenge. 

 The results of the above work showed that lyophilization, with or without 

trehalose, did not decrease the immunogenicity of the virus.  However, there were some 

conflicting data with the PVP groups.  Therefore, a larger study using a more antigenic 

strain of inactivated H3N2/A/Aichi virus was performed using the following 5 groups: 

lyophilized virus resuspended in deionized water, lyophilized virus processed through 

polymer microneedles and suspended in deionized water, unprocessed virus solution, 

unprocessed virus solution with blank PVP microneedles dissolved, and naïve.  In this 

study, mice (n=10) were immunized with 10 µg of virus by intramuscular injection.  All 

of the mice were bled on day 14 to test the serum IgG antibodies and HAI.  Half of the 

mice (n=5) of each group were challenged with 10 LD50, and their weights are measured 

to test for protection.  The other half of the mice (n=5) were boosted with a 2nd dose of 10 

µg 28 days after the prime immunization.  These mice were bled fourteen days later to 

test for serum IgG antibodies and HAI and challenged with 10 LD50 28 days after the 

boost immunization. 
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3.3.2.2 Encapsulation of the influenza vaccine in polymer microneedles for in vivo 
delivery 
  

H1N1/A/PR/8 virus was lyophilized and encapsulated in polymer microneedles 

for immunization to mice.  The prior work on the effect of the polymer microneedle 

processing on the influenza virus in vivo involved the use of the inactivated 

H3N2/A/Aichi virus.  However, there were issues concentrating and encapsulating 

enough inactivated H3N2/A/Aichi virus in the polymer microneedles to get a relevant 

dose.  It required a much higher amount of monomer to encapsulate the H3N2/A/Aichi 

virus.  This resulted in a much smaller amount of virus that could be encapsulated within 

the microneedles, approximately 0.5 μg.  This was a much lower amount that had been 

accomplished using the H1N1/A/PR/8 virus.  It was believed that the reason for this was 

the globular core structure of the H1N1/A/PR8 virus versus the filamentous structure of 

the H3N2/A/Aichi virus.  It was discovered that the H1N1/A/PR/8 influenza virus was 

able to be concentrated and encapsulated in polymer microneedles in a high amount to 

reach a relevant dose, approximately 3 – 4 μg per microneedle array. 

 The antigenicity and protein concentration of the H1N1/A/PR/8 virus was tested 

prior to lyophilization.  500 μL of this inactivated virus was frozen in dry ice and 

lyophilized, using the same conditions described previously.  This powder was covered 

and stored at 4 oC until encapsulation in polymer microneedles.  Also, 25 μL of this virus 

was placed in a separate container and frozen and lyophilized to test the protein content 

and HA activity of the inactivated virus after the lyophilization process.  This was done to 

verify that the lyophilization process did not damage the virus or result in a loss of virus. 

The polymer microneedles fabricated for use in the immunization were made the 

same day as the immunization.  Vinyl pyrrolidone monomer was added to the lyophilized 
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virus powder (1.1 mg) until it was completely suspended in solution and did not settle.  

The total volume used was 180 μL.  Based on the volume of the pyramidal microneedles, 

this concentration of virus in the liquid monomer resulted in 6 µg of inactivated virus 

encapsulated in the polymer microneedles (pyramid, height = 600 μm, base width = 200 

μm).  This dose was based on the use of an 8x9 microneedle array with very sharp tips.  

The polymer microneedles with inactivated H3N2/A/X31 virus were created as described 

previously.  After fabrication, the microneedles are inspected under a microscope and 

attached to a metal applicator for insertion.  Also, double sided tape was applied to the 

base of the microneedles, surrounding the array.  This held the array to the skin of the 

animal after application of the array.  The microneedle arrays were stored in a desiccator 

prior to immunization.  

 
3.3.2.3 Delivery of the influenza vaccine via dissolving polymer microneedles to mice 

 
Mice were immunized with H1N1/A/PR/8 influenza virus delivered by PVP 

polymer microneedles.  Three groups of mice (n=12) were used: polymer microneedles 

(6 µg), intramuscular immunization (100 μL, 6 µg), and naïve mice.  All of the mice were 

also boosted 28 days after the first immunization.  The mice that were immunized 

intramuscularly were injected with 50 μL of the H1N1/A/PR/8 virus in each of their hind 

legs.  The microneedle group of mice was first anesthetized intramuscularly with 

xylazine and ketamine.  After the mice were completely under anesthesia, a small amount 

of Nair hair removal cream was applied to their back, left for 1 minute and then 

thoroughly washed with warm water.  The mice were dried completely and placed on a 

heating blanket for the immunization.  For each mouse, one array of PVP polymer 

microneedles was inserted into their back in the hairless region.  The microneedles were 
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applied to the skin for 15 seconds and left for 15 minutes, based on delivery kinetics 

shown previously.  After the microneedles are removed, the mice were observed in their 

cage until they awake.  Also, the insertion site for the microneedle delivery was examined 

daily for one week to observe any possible inflammatory response.  There were no 

responses after any of the microneedle insertions. 

 
3.3.2.4 Measurement of the immune response in mice after vaccination of the influenza 
vaccine via polymer microneedle delivery 
  

The immune response of the mice to vaccination of inactivated H1N1/A/PR/8 

virus by polymer microneedles was measured.  Fourteen days after each immunization 

the mice were bled.  Here, they were placed under light anesthesia using an isofluorane 

chamber and blood was taken from the orbital cavity.  The blood was placed on ice, 

centrifuged and the clear sera was removed and transferred to a new eppendorf tube.  The 

concentration of the serum IgG antibodies was measured via the ELISA process that was 

previously described.  Also, the quality of the antibodies was measured via the 

hemagglutation inhibition (HAI) assay. 

 
3.3.2.5 Measurement of the immunoprotection of mice to influenza virus via lethal 
challenge after polymer microneedle delivery 
 
 The immunoprotection of the mice immunized with inactivated H1N1/A/PR/8 or 

H1N1/A/PR/8 via polymer microneedles was tested by a lethal challenge.  The mice were 

lightly anesthetized using isofluorane and challenged nasally with 20 μL of 5 LD50 of the 

live virus.  The weights of the mice were measured daily for 14 days after challenge.  If 

the weight of the mouse drops below 75% of the original weight, the mouse was 

considered terminally ill and was euthanized using isofluorane by IACUC standards.  The 
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immunoprotection of the experimental groups of mice was determined based off of the 

survival rate and the average weight loss. 

 

3.3.2.6 Measurement of the efficacy of lung clearance of the lethal influenza virus in 
mice after immunization via polymer microneedles  
 
 The ability of the immunized mice to effectively clear the live virus from their 

lungs was measured.  These mice had been immunized with the inactivated 

H1N1/A/PR/8 via polymer microneedles or intramuscular injection.  Here, the mice were 

lightly anesthetized using isofluorane and challenged nasally with 20 μL of 5 LD50 of the 

live H1N1/A/PR/8 virus.  Four days after the challenge, the mice were sacrificed and 

their organs were collected for processing.  This protocol is based off of previously 

reported analysis[127].  Lung homogenates were prepared to determine the viral titers 

(pfu per gram of tissue).  For the plaque assay, serial dilutions of the lung supernatants 

were incubated with confluent MDCK cells and after treatment and three days of culture, 

the cells were fixed and the plaques were counted.  
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CHAPTER 4 
 

  DEVELOPMENT OF A NEW FABRICATION PROCESS FOR 
POLYMER MICRONEEDLES FOR THE DELIVERY OF 

BIOPHARMACEUTICALS1  
 
 
 

4.1 INTRODUCTION 
 

Biomolecules, including proteins, peptides and vaccines, make up a large and 

potent part of all new drugs and hold great promise for the future of therapeutics [143, 

144].  Although oral delivery of these biotherapeutics would be desirable, there is low 

bioavailability of biomolecules administered by this route due to enzymatic degradation 

and poor absorption in the GI tract, as well as first-pass metabolism of the liver [8].  As a 

result, most biotherapeutics are administered by hypodermic injection, which causes pain, 

can lead to infection, requires trained personnel and often needs frequent, repeated 

injections for the patient.  Consequently, there exists the need for a minimally invasive, 

self-administered delivery system for biomolecules.   

An attractive non-invasive option is the transdermal patch, which has become 

well-received for the delivery of nicotine, estrogens and other drugs [25].  However, 

delivery across intact skin permits transport only of small, lipophilic molecules and 

excludes transport of biotherapeutics, due to their large size.   

This study presents a novel, hybrid delivery approach to achieve the delivery 

efficacy of injections and the safety and patient compliance of the patch.  We designed 

________________________ 

1This work was published in Advanced Materials:  Sullivan SP, Murthy N, Prausnitz MR. 
(2008) Minimally invasive protein delivery with rapidly dissolving microneedles, 
Advanced Materials 20:933-938  
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and synthesized rapidly dissolving polymer needles of micron dimensions for the 

painless, self-administered delivery of biomolecules.  In this design, the drug is 

encapsulated within these polymer microneedles, and after insertion into the skin, the 

biocompatible polymer dissolves within minutes to release the encapsulated cargo and 

leave behind no biohazardous sharps or need for removal.   

Previous work has shown that microscopically piercing the skin with micron-scale 

needles offers an effective and convenient alternative for the delivery of biomolecules, 

due to the efficient delivery [35, 36], lack of pain[10, 37], ease of use and the expected 

low cost of fabrication.   Microneedles have been shown to deliver proteins, DNA and 

vaccines in vivo using devices small enough to be integrated into a low-profile, self-

administered patch [46, 145, 146].  

To date, most microneedles have been made of silicon or metal [43, 147] with 

little work involving polymers [53, 55, 148].  There are, however, safety concerns if 

microneedles made of these materials were to break off in the skin, or if they were 

accidentally or intentionally reused.  In contrast, the use of biocompatible polymers could 

eliminate these concerns, because the needles completely and safely dissolve within the 

skin, and the needle free patch backing could be safely discarded, leaving no 

biohazardous sharps.   

Achieving this goal presents significant material challenges.  The ideal polymer 

material would be strong enough to penetrate the skin, dissolve rapidly once in the skin, 

and be safely excreted by the body.  Also, the fabrication process for these microneedles 

should take place at ambient temperatures, without organic solvents, and avoid damaging 

fragile biomolecules during encapsulation.  No current design allows for polymer 
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microneedles to be fabricated in this manner.  Previous studies have relied on either high-

temperature molding processes that risk damaging biomolecules [53, 148] or methods 

unsuitable for fabrication of micron-scale structures [55].   

In this study, we have developed the first rapidly dissolving polymer 

microneedles.  This advance required developing a new fabrication process to produce 

mechanically robust microneedles that encapsulate biomolecules under gentle processing 

conditions using methods suitable for inexpensive mass production.  Here, we detail the 

new fabrication process, based on room temperature in situ polymerization, and study the 

mechanical, encapsulation, dissolution and delivery properties of the resulting polymer 

microneedles for the delivery of biomolecules to the skin. 

 
4.2 RESULTS AND DISCUSSION 

4.2.1 Development of a new fabrication process for polymer microneedles 

To develop rapidly dissolving polymer microneedles, we first prepared master 

structures made of a polymeric photoresist epoxy (SU-8) by a photolithography method, 

from which we created reverse molds out of polydimethylsiloxane (PDMS).  Each master 

structure was able to be copied into hundreds of molds, and each mold was able to be 

reused to produce at least a dozen microneedle arrays.  PDMS was chosen as the mold 

material because it is flexible, lacks surface adhesion to the master structure and allows 

for the removal of the polymer microneedle array.  These microneedle molds were then 

used to fabricate replicate microneedles by a new microfabrication process developed in 

this study, which involves the room-temperature photopolymerization of a liquid 

monomer within the microneedle mold (See Section 3.1 in Chapter 3 for more details).  

The gentle nature of this process allows for the encapsulation of biomolecules within the 
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microneedles, and its universality allows for the formation of a multitude of polymers and 

copolymers as the structural material of the needles.  We believe that this is the first 

example of an in situ polymerization of microneedles, and represents a novel approach 

that could be broadly applied to in situ polymerization of other microstructures as well.  

Figure 4.1 below shows a diagram of the new fabrication process. 
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Figure 4.1: New in situ fabrication process for polymer microneedles: 4.1A (1) PDMS is 
poured onto microneedle master structure.  (2) PDMS microneedle mold is cured and 
peeled off.  (3) Liquid monomer and drug are pipetted onto the mold.  (4) Vacuum is 
applied to pull the solution into the microneedle mold.  (5A) System is placed under a UV 
lamp to polymerize microneedles, which are subsequently peeled out of the reusable mold.  
4.1B (5B) Excess solution is removed from the surface.  (6) A liquid monomer solution with 
no drug is applied to the surface.  (7) System is placed under UV lamp to polymerize the 
microneedles, which are then peeled off 

 

 We chose to synthesize microneedles by polymerizing monomeric vinyl 

pyrrolidone using ultraviolet light.  The resulting polyvinylpyrrolidone (PVP) 

microneedles are shown in Figures 4.2A and 4.2B.  We used PVP as the structural 

material for microneedles for four reasons.  First, the chemical backbone structure of the 
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vinyl pyrrolidone monomer contains a ring, which increases intramolecular rigidity and 

thereby provides mechanical strength to the polymer, which is important for microneedle 

insertion into skin.   Second, PVP has high water solubility, which facilitates rapid 

dissolution once inserted into the skin.  Third, PVP already has a long history of clinical 

use as a blood plasma expander [75, 149].  Finally, the vinyl pyrrolidone monomer is 

liquid at ambient conditions, which facilitates processing at mild temperatures without 

the need for an organic solvent to fill the microneedle mold. 
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Figure 4.2: PVP polymer microneedles made by new in situ polymerization process 4.2A: 
Overhead view and 4.2B side view of pure PVP microneedles.  4.2C: Overhead view and 
4.2D: side view of PVP polymer microneedles with sulforhodamine encapsulated within 
microneedles, but not in the base substrate.  Each microneedle measures 750 μm in height, 
100 μm in base radius and 5 μm in tip radius. 
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Using this approach, microneedles were produced to have a range of micron-scale 

feature sizes, depending on the mold geometry.  For example, the conical microneedles 

shown in Figure 4.2 measure 750 μm in length, 100 μm in radius at the base and 5 μm in 

radius at the tip.  These microneedles represent an excellent reproduction of the geometry 

of the master structure and the micromolds used to prepare them (data not shown).  As 

discussed below, this in situ micromolding approach produced similarly faithful 

reproduction results when creating microneedles of pyramidal geometry, microneedles 

using a mixture of monomers to produce a copolymer structural material, and when 

encapsulating model drugs within the microneedles.  

 For the first generation of microneedles produced by this new fabrication process, 

both the microneedles and their base substrate are made of the same PVP polymer.  Using 

this process to encapsulate a drug within the microneedles would result in the drug being 

distributed throughout the microneedles and the base.  However, any drug encapsulated 

in the base would not be efficiently delivered into the skin because only the microneedles 

insert into the skin.  Thus, an adaptation is required to encapsulate the drug exclusively 

within the microneedles.  In this adaptation, after filling the mold with the monomer and 

drug mixture, all liquid on the base of the mold is carefully pipetted off, leaving liquid 

only in the cavities of the mold to form the microneedles.  Then, a liquid monomer 

solution with no suspended drug is placed on the mold to form the base substrate and the 

setup is placed under ultraviolet light where photopolymerization takes place.  This 

produces microneedles with drug exclusively encapsulated within the microneedles and 

not the base.  Figures 4.2C and 4.2D show a representative PVP microneedle array with 

sulforhodamine encapsulated only within the microneedles, which have the same 
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sharpness as the PVP microneedles shown in Figures 4.2A and 4.2B.  This adaptation is 

especially important when delivering expensive biomolecules and in scenarios where 

precise dosing is required.   

 
4.2.2 Insertion capabilities and mechanical and dissolution analysis of PVP polymer 
microneedles 
  

PVP microneedles are hypothesized to be sharp and strong enough to insert into 

the skin without breaking.  We tested this hypothesis by inserting 100-microneedle arrays 

into porcine skin in vitro and then staining the skin after removing the microneedles to 

identify the sites of insertion.  Figure 4.3A shows a representative image of the skin 

surface after microneedle insertion and staining.  This image shows that all 100 

microneedles inserted into the skin.  Subsequent microscopic examination of the 

microneedles showed that the needles were not broken or deformed during the insertion 

process (data not shown.) 
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Figure 4.3: Insertion capabilities and mechanical properties of polymer microneedles. 4.3A: 
Evidence of insertion of PVP polymer microneedles into porcine cadaver skin via skin 
marking test.  4.3B: The mechanical strength (fracture force) of copolymer PVP-MAA 
microneedles increases with increasing methacrylic acid (MAA) content. 
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In addition, it is important to determine the microneedle dissolution kinetics in 

order to know the length of time the microneedles need to be left in skin prior to removal 

of the base.  The dissolution kinetics of PVP microneedles were measured by inserting 

the needles into porcine skin in vitro and inspecting them after removal, which showed 

that the entire PVP microneedle array was dissolved in the skin within one minute (data 

not shown). 

 Although PVP microneedles are strong enough to insert into skin and then rapidly 

dissolve within the skin, it could be important to increase microneedle mechanical 

strength, prolong dissolution time, or otherwise tune microneedle properties for specific 

needs.  To achieve this control over microneedle properties, we fabricated microneedles 

by copolymerizing two liquid monomers – vinyl pyrollidone (VP) and methacrylic acid 

(MAA) – to form poly(vinylpyrrollidone-co-methacrylic acid) (PVP-MAA).  We chose 

MAA as the second monomer because it is nontoxic, is liquid in monomeric form, has 

been used in the past for drug delivery purposes and has a high mechanical strength due 

to the rigidity of its chemical backbone [79].  In addition, a copolymer of PVP-MAA 

could have additional mechanical strength from hydrogen bonding between the side 

chains of the VP and MAA monomeric units of the polymer [80].   

As shown in Figure 4.3B, the mechanical strength (fracture force) of the 

copolymer PVP-MAA containing just 1% MAA is nearly double the mechanical strength 

of the homopolymer PVP and steadily increases as the methacrylic acid content is 

increased (ANOVA, p<0.001), such that PVP-MAA microneedles containing 75% MAA 

exhibit more than a four-fold increase in strength.  Stronger polymer microneedles could 
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be advantageous for drug delivery to tougher tissue sites of the body where insertion is 

more difficult.   

In addition, dissolution studies showed that the dissolution rate decreases with 

increasing MAA content, such that PVP-MAA microneedles containing 25% MAA 

dissolve after approximately 4 h within porcine skin in vitro (data not shown).  Polymer 

microneedles with fast dissolution rates would be attractive for rapid delivery scenarios, 

such as vaccinations, where microneedles can be inserted, removed, and discarded 

without making the patient wait.  Polymer microneedles with slower, controlled 

dissolution rates could be desirable for situations where controlled release of a drug over 

time is optimal.  These slower dissolving microneedles could be designed in the future to 

quickly deposit within the skin by separating the base from the microneedles, which then 

dissolve slowly over time within the skin  

Concerning safety, gel permeation chromatography analysis of PVP microneedle 

dissolution products determined that the average molecular mass of PVP is 8,970 Da with 

a polydispersity of 1.42.   Given that PVP with molecular mass less than 20,000 Da has 

been shown to be safe for human use due to efficient clearance by the kidney [149], the 

low measured molecular mass suggests that PVP microneedle dissolution products can be 

safely excreted from the body.  

As shown in Figure 4.3A, PVP microneedles are sharp and strong enough to 

insert into the skin.  However, this assay does not determine the depth of insertion.  Due 

to the elastic nature of the skin, even microneedles which are strong and sharp enough to 

insert will first deform the skin surface prior to insertion.  Since delivery from these 

polymer microneedles requires needle dissolution within the skin to release the 
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encapsulated cargo, it is important to determine the depth of insertion.  In addition, it 

could be beneficial to deliver drugs to specified depths within the skin, for example 

targeting dendritic Langerhans cells found in the epidermis for vaccination purposes 

[150].  To determine the depth of insertion, polymer microneedles were inserted into 

porcine cadaver skin in vitro, and histological sections were processed from the frozen 

samples.  Figure 4.4A shows a cross section of skin after insertion of a PVP microneedle 

with encapsulated sulforhodamine.  Figure 4.4B shows the same tissue sample after 

needle removal and H+E staining to visualize the layers of the skin and the hole left by 

microneedle insertion.  The 750 μm-long microneedles inserted almost completely into 

the skin, which suggests that the entire drug encapsulated within would be efficiently 

delivered. 
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Figure 4.4: Microneedle insertion and 
protein delivery into skin. 4.4A: 
Fluorescence microscopy image of a PVP 
polymer microneedle with encapsulated 
sulforhodamine inserted into porcine skin.  
4.4B: Brightfield microscopy image of the 
same skin section after microneedle removal 
showing the depth of microneedle insertion, 
stained with hemotoxilin and eosin.  4.4C: 
Fluorescence microscopy image showing 
delivery of fluorescently labeled bovine 
serum albumin by PVP polymer 
microneedles to porcine skin. 4.4D: 
Brightfield microscopy image of delivery of 
enzymatically active β-galactosidase via PVP 
polymer microneedles to porcine skin.  The 
blue color represents the enzymatic 
conversion of X-gal by the delivered β-
galactosidase 
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4.2.3 Delivery of active biomolecules via PVP polymer microneedles 

The ultimate goal of this study was to produce polymer microneedles that can 

successfully encapsulate and deliver active biomolecules.  To assess this objective, red-

fluorescent bovine serum albumin was encapsulated within PVP polymer microneedles 

and delivered to porcine skin.  Figure 4.4C shows a histological section prepared 15 min 

after microneedle insertion.  The fluorescent protein has been delivered to both the 

dermis and epidermis and it has diffused a short distance away from the insertion site.  

This demonstrates the ability of the new polymer microneedles to deliver a biomolecule 

to the skin.   

To assess if biomolecules can retain activity after encapsulation within polymer 

microneedles, we encapsulated another model protein, β-galactosidase, in PVP 

microneedles; dissolved them in PBS; and measured enzymatic activity of the resulting 

solution (further details can be found in Section 3.1.6 in Chapter 3 of this thesis).  The 

normalized activity of β-galactosidase after encapsulation and release from polymer 

microneedles was 0.99±0.01, (n=5) which was statistically indistinguishable from (i) a 

solution of β-galactosidase in PBS (1.00±0.00) and (ii) a solution of β-galactosidase in 

PBS containing dissolved PVP from empty microneedles (0.99±0.01).  This demonstrates 

that the in situ polymerization fabrication and microneedle dissolution processes are 

gentle enough to retain the activity of an encapsulated biomolecule. As further validation 

of this result, Figure 4.4D shows a histological section of porcine skin after delivery of β-

galactosidase from PVP microneedles and exposure to X-gal. The enzymatic conversion 

of the X-gal substrate by β-galactosidase to its blue-colored product demonstrates that the 

β-galactosidase delivered in the skin is enzymatically active.  
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4.3 CONCLUSIONS 

These findings suggest that rapidly dissolving polymer microneedles offer an 

exciting new drug delivery alternative to the hypodermic needle.  They combine the 

painless, self-administrative abilities of the transdermal patch with the ability to deliver 

biotherapeutics, which is possible in current clinical practices only using hypodermic 

needles in most cases. The polymer microneedles created by the new in situ 

polymerization fabrication process developed in this study dissolve within the skin within 

a minute, thereby delivering the encapsulated cargo and leaving behind no biohazardous 

sharps associated with dirty needles.   

The gentle nature of this new fabrication process allows for the encapsulation of 

fragile biomolecules and its universality allows for the use of many different copolymer 

systems, which could lead to the creation of other molded drug delivery devices.  In 

addition, this process allows tuning of the mechanical strength and dissolution rate of the 

structural polymer material depending on the delivery site and the time course for the 

molecule to be delivered.  These polymer microneedles were shown to successfully insert 

into the skin and deliver an encapsulated active protein.  This new drug delivery platform 

shows future promise for the delivery of a range of biomolecules, including vaccines, 

proteins, peptides and nucleotides.   
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CHAPTER 5 

IN VITRO AND IN VIVO ANALYSIS OF THE REFORMULATED 
INFLUENZA VACCINE FOR DELIVERY VIA DISSOLVING 

POLYMER MICRONEEDLES 
 
 
 
5.1 INTRODUCTION 

The influenza virus is responsible for tens of thousands of deaths each year in the 

United States and causes millions of illnesses worldwide[113].  While over 100 million 

individuals were vaccinated against the virus last year, there are some major issues with 

the vaccination process.  It has low patient compliance, requiring a painful injection via 

hypodermic needle and can be time consuming due to the need for trained medical 

personnel for delivery[14, 15].  Also, there can be issues with accidental re-sticks of 

biohazardous sharps and the need for cold chain storage of the liquid solution of the 

vaccine[16, 151].  One exciting alternative delivery method is the use of microneedles for 

the influenza vaccine.  Microneedles offer a patient compliant drug delivery alternative 

that is effective, relatively painless and could be self-administered in the future [1, 10].   

One microneedle-based option involves rapidly dissolving polymer microneedles 

made of the biocompatible polymer, polyvinylpyrrolidone (PVP).  The influenza vaccine 

would be encapsulated within the PVP microneedles and after insertion, the polymer 

needles dissolve in the skin, delivering the encapsulated vaccine and leaving behind no 

biohazardous sharps waste.  Also, since the vaccine is in solid form in the microneedle, 

the system may bypass any need for the cold chain and could be stored at room 

temperature.  However, there are formulation and processing steps that should be 

analyzed prior to the use of PVP polymer microneedles for the delivery of the influenza 
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vaccine.  In this section, we will discuss the formulation and processing steps required for 

the encapsulation and delivery of the influenza vaccine in PVP microneedles.  Also, the 

use of sugars will be analyzed for their importance in retaining the activity of the virus 

during the processing steps. 

The new fabrication process for polymer microneedles involving 

photopolymerization of a liquid monomer solution within a microneedle mold was used 

in this study.  Using this process, the drug needed to be in solid form prior to 

encapsulation within the microneedles.  The form of the influenza vaccine that was used 

in this study was the inactivated form of the virus, which is typically stored in solution.  

Thus, the virus must first be processed into solid form, and the primary method used was 

lyophilization.   

Lyophilization, or freeze drying, has become a widely used process in the 

biopharmaceutical industry[107].  The main use of this process is to increase the stability 

and long-term lifespan of biologically related molecules, especially proteins, by 

converting a liquid solution into a solid powder[94, 95].  For our application, the main 

use of lyophilization was to convert the liquid solution of inactivated virus into stable 

solid particles that retain full activity.  After the virus solution is lyophilized, the solid 

particles were dissolved or suspended in the vinylpyrrolidone liquid monomer solution.  

This monomer-virus mixture was then used in the fabrication process detailed in Chapter 

4; including UV initiated free-radical polymerization, to create PVP polymer 

microneedles with the influenza vaccine encapsulated within the microneedle tips.  

Figure 5.1 below shows a representative image of PVP microneedles with an 

 - 91 -



encapsulated molecule.  Here, the pink dye represents the influenza vaccine, and it is only 

encapsulated in the microneedle tips and not the base of the microneedles. 

 

 
Figure 5.1: PVP Microneedles.  Polyvinylpyrrolidone microneedles with model vaccine 
(sulforhodamine) encapsulated within tips of microneedles.  5.1A: Side view of 
microneedles, scale bar = 500 µm.  5.1B: Overview of array of microneedles, scale bar = 2 
mm. 

 

The main goal of this study was to determine if the inactivated influenza virus 

retains activity after lyophilization and encapsulation within the new PVP polymer 

microneedles.  This was tested in vitro by qualitative ELISA and by the hemagglutination 

assay (HA) and in vivo by injecting solutions of the processed virus into mice, and 

measuring the antibody levels and survival of mice against a lethal challenge. 

 
5.2 RESULTS 
 
5.2.1 Reformulation of the influenza vaccine in polymer microneedles 

 
Typically, the inactivated influenza virus is found in a liquid solution for delivery 

via the hypodermic needle.  Due to the low stability of the virus in liquid solution[97, 

99], it needs to be stored in the cold chain, which can be expensive and cumbersome in 
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transport and delivery of the vaccine[151].  Thus, alternate storage methods have been 

developed involving lyophilization to convert the liquid virus solution to a solid form[94, 

95].    

Previous work involving the lyophilization of the influenza virus included the use 

of sugars as stabilizers to help protect the virus during the freezing and drying steps of 

lyophilization.  In this work, the influenza virus retained full activity during the 

lyophilization process when 50:1 of the sugar trehalose was added to the original 

solution[101].  Thus, in this study, the sugar trehalose was used as an excipient in varying 

amounts to test the effect of the excipient on retaining the activity of the influenza virus 

during lyophilization.   

 
5.2.2 Antigenicity and immunogenicity of the H1N1 influenza virus after 
lyophilization and polymer microneedle processing 
 

In the first pilot study, the antigenicity and immunogenicity of the inactivated 

H1N1/A/PR/8 influenza virus was measured after lyophilization and encapsulation within 

PVP polymer microneedles.  The inactivated H1N1/A/PR/8 influenza virus was dialyzed 

against water prior to lyophilization.  The virus was initially stored in PBS, but it has 

been shown that lyophilization of the influenza virus in a PBS solution resulted in a large 

decrease of activity due to pH effects [101].  The following groups were lyophilized:  

inactivated virus with no sugar, inactivated virus with 5:1 by mass trehalose, inactivated 

virus with 10:1 by mass trehalose, and inactivated virus with 50:1 by mass trehalose.  

Full details of the lyophilization process can be found in Section 3.3.1 in  

Chapter 3 of this thesis.  After lyophilization, for each of these groups, half of the 

samples of lyophilized powder were reconstituted in water for determination of the 
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antigenicity.  The other half of the samples was encapsulated within PVP polymer 

microneedles.  Here, the virus with or without sugar, was suspended in liquid 

vinylpyrrolidone monomer, added to the microneedle mold and placed under UV lamp, 

where free radical polymerization occurred.  The polymer microneedles with 

encapsulated influenza virus were then dissolved in water.  In addition, the following 

controls were tested.  Unprocessed influenza virus and unprocessed influenza virus with 

blank PVP polymer microneedles dissolved in solution.  This latter control was used to 

determine if the presence of the polymer PVP in solution decreased the antigenicity of the 

virus alone. 

The antigenicity of the inactivated H1N1 virus after processing was tested by 

measuring the binding of specific antibodies to the virus in an ELISA.  Figure 5.2 below 

shows the relative antigenicity of the different virus solutions compared to the 

unprocessed control.   
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Figure 5.2: Virus Antigenicity after PVP polymer microneedle processing.  Absorbance 
from ELISA read at 450 nm testing the binding of the processed virus to antibodies specific 
against the H1N1/A/PR/8 inactivated influenza virus. The effect of lyophilization and 
processing through PVP polymer microneedles on the virus is measured, as well as the 
inclusion of excipients.  The ratios represent the amount of (sugar : virus) in the sample.  
Gray bars represent unprocessed virus solutions or virus that was lyophilized.  White bars 
represent processed virus that was encapsulated in PVP polymer microneedles, or 
unprocessed virus with blank PVP polymer in solution.  Virus concentration = 10 μg/mL, 
(n=3). 

 

In general, the lyophilized samples retained full activity of the virus while the 

samples including the PVP polymer had a sharp decrease in activity.  The presence of the 

sugar trehalose did not have any affect on the antigenicity of the virus (t test, p>0.05).  

Also, the unprocessed virus solution including PVP showed a large decrease in 

antigenicity (t test, p<0.05).  It is possible that the presence of PVP in the solution 

provided a false negative in this assay due to improper coating of the plates with the virus 

solutions that included PVP.  It was proposed to take this work in vivo to further analyze 

the effect of lyophilization and PVP polymer microneedle processing on the virus.   

For this first in vivo pilot study, 20 µg doses of the H1N1 solutions detailed above 

were injected into mice (n=3).  The mice were bled fourteen days later and the specific 
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IgG antibodies were determined.  Figure 5.3 below shows the IgG titers after one 

injection.   
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Figure 5.3: Measurement of the antibody immune response after one immunization with 
processed H1N1 influenza virus.  Sera IgG antibodies.  Mice (n=3) were immunized with 20 
μg of the inactivated H1N1/A/PR/8 inactivated virus and bled 14 days after immunization.  
The gray bars represent the unprocessed virus or virus that was lyophilized and then 
dissolved in solution.  The white bars represent virus that was lyophilized and encapsulated 
in PVP microneedles, or unprocessed virus with blank PVP polymer in solution 

 

Overall, lyophilization had no influence on the immunogenicity of the virus, with 

each of the lyophilized samples producing similar IgG titers (t test, p>0.05).  In addition, 

the inclusion of the excipient sugar did not have a noticeable influence on the immune 

response.  On the other hand, the interaction of the polymer PVP in solution with the 

virus resulted in a slight decrease in the immune response compared to the lyophilized 

sample (t-test, p<0.05).  This occurred in both the virus solutions that were processed 

through PVP polymer microneedles and the unprocessed virus that had blank PVP in 

solution.  However, this immune response was still considerable and may be enough to 

instill protection against lethal challenge.   
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5.2.3 Antigenicity of the H3N2 influenza virus after lyophilization and polymer 
microneedle processing  

 
The initial pilot study showed that the inactivated H1N1 influenza virus remained 

immunogenic after lyophilization and processing through PVP polymer microneedles.  

Since the current influenza vaccine contains both the H1N1 and H3N2 strains of the 

virus[124], it was important to confirm these studies with an H3N2 stain of the virus.  

Here, we tested the effect of lyophilization and encapsulation within polymer 

microneedles on the inactivated H3N2/A/Aichi virus.  Once again, the effect of the 

stabilizer trehalose was also investigated.  The following groups were lyophilized (n=6):  

inactivated virus with no sugar, inactivated virus 5:1 trehalose by mass and inactivated 

virus with 10:1 trehalose by mass.  For each of these groups, half of the lyophilized 

samples (n=3) were encapsulated within PVP microneedles using the 

photopolymerization process.  The microneedle arrays were then dissolved in water and 

tested for antigenicity and immunogenicity.  The other half of the lyophilized samples 

(n=3) were also dissolved in water and tested.  The positive control was the unprocessed 

virus and a solution of the unprocessed virus that included blank PVP polymer dissolved. 

The antigenicity of the H3N2/A/Aichi virus was analyzed using the 

hemagglutination (HA) assay, which measures the ability of the virus to agglutinate red 

blood cells.  The HA activity of the unprocessed virus was 12.8 HAU/µg.  All of the 

lyophilized samples had identical activities, showing again that lyophilization does not 

decrease the antigenicity of the virus.  The solutions that contained the PVP polymer all 

had decreased HA values, of 0.8 HAU/µg, including the unprocessed virus in solution 

with blank PVP microneedles. However, the presence of a large amount of PVP solution 

(1000:1 by weight, PVP:virus) may have produced a false negative for this assay similar 
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to the results shown in the ELISA assay used with the H1N1 virus.  Thus, once again it 

will be necessary to evaluate the influence of the PVP polymer microneedle processing in 

vivo.  In addition, since it was reconfirmed that the presence of sugars was not needed to 

protect the virus during lyophilization; the in vivo analysis did not include any of the 

groups with trehalose.   

 
5.2.4 Immunogenicity of the H3N2 influenza virus after lyophilization and polymer 
microneedle processing  

 
For the in vivo analysis of the immunogenicity of the virus after processing, a 

larger experiment was planned, including 10 mice per group.  The mice were injected 

with 10 µg of virus and bled 14 days later to test the IgG antibody levels and the HAI 

inhibition antibodies.  Thirty days after the immunization, half of the mice (n=5) were 

challenged with 10 LD50 of the live virus and the protection was measured by body 

weight.  Figures 5.4, 5.5 and 5.6 below show the immune response after one 

immunization. 
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Figure 5.4:  Measurement of the antibody immune response after one immunization with 
processed H3N2 influenza virus.   3A: Sera IgG antibodies. 3B: HAI titers.  Mice (n=10) 
were immunized with 10 μg of the inactivated H2N2/A/Aichi influenza virus and bled 14 
days after immunization.  The gray bars represent the unprocessed virus solution or virus 
that was lyophilized and then dissolved in solution.  The white bars represent virus that was 
lyophilized and encapsulated in PVP microneedles, or unprocessed virus with blank PVP 
polymer in solution. * indicates a statistically significant difference (t test, p<0.05) compared 
to the group without the PVP polymer. 
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Figure 5.5: Protection against lethal challenge after one immunization: Survival analysis. 
Mice (n=5) were immunized with 10 μg inactivated H3N2/A/Aichi influenza virus and 
challenged with 10 LD50 of live H3N2 virus thirty days after immunization.  Mice which lost 
more than 25% of their body weight were considered terminally ill and euthanized. 

 

0

20

40

60

80

100

unprocessed lyophilized naïve

H
A

I t
ite

rs

soln
soln+PVP

0

1500

3000

4500

6000

unprocessed lyophilized naïve

Ig
G

 ti
te

rs
 (n

g/
m

L)

soln
soln+PVP

 * 

A 

 * 

B

 - 99 -



70%

80%

90%

100%

1 5 9 13 17

days post challenge

%
 A

vg
 B

od
y 

W
ei

gh
t unprocessed

unprocess+PVP dissolved

lyophilized

lyoph+PVP encaps

naive

 

Figure 5.6:  Protection against lethal challenge after one immunization: Average weight 
loss. Mice (n=5) were immunized with 10 μg inactivated H3N2/A/Aichi influenza virus and 
challenged with 10 LD50 of live H3N2 virus thirty days after immunization 

 

After one immunization, it was shown that lyophilization had no effect on the 

immunogenicity of the virus, with the lyophilized group having slightly higher IgG and 

HAI titers than the mice immunized with the unprocessed virus (t test, p>0.05).  The 

survival experiment further confirmed these results with all of the mice immunized with 

lyophilized virus surviving the challenge 

While lyophilization had no negative effect on the immunogenicity of the virus, 

the presence of PVP in solution showed a decrease in the immune response.  The group 

including the virus processed through PVP microneedles showed lower IgG titers than 

the positive control of the unprocessed virus (t test, p<0.05).  Also, the unprocessed virus 

that included blank PVP polymer in solution had decreased IgG titers.  However, the IgG 

titers for these two groups that had PVP in solution were statistically the same (t test, 

p>0.05).  The HAI titers were inconclusive due to a false positive signal in the assay.  

Following the IgG titers, similar results were shown in the challenge experiment.  The 

groups with PVP present, either in blank polymer in solution or encapsulated virus in the 
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polymer, had a lower survival weight, with only 2/5 mice living after a prime 

immunization and a maximum weight loss of around 20%.  It appeared that the presence 

of PVP in solution had a deleterious effect on the immunogenicity of the virus.  However, 

it is unclear whether the encapsulation process had a harmful effect on the virus or if the 

lower immune response was simply due to the presence of PVP polymer in solution with 

the virus. 

Twenty eight days after the first immunization, the other half of the mice (n=5) 

were boosted with 10 µg of the different processed virus solutions.  These mice were bled 

fourteen days after the immunization to measure the IgG antibodies and HAI inhibition 

antibodies.  Twenty eight days after the boost, these mice were also challenged with 10 

LD50 of the live virus and the protection was measured via body weight.  Figures 5.7, 5.8, 

5.9 below show the results after prime and boost immunizations. 

 

 

Figure 5.7: Measurement of the immune response after prime and boost immunizations 
with processed H3N2 influenza virus.   3A: Sera IgG antibodies. 3B: HAI titers.  Mice (n=5) 
were prime and boost immunized with 10 μg of the inactivated H2N2/A/Aichi influenza 
virus and bled 14 days after immunization.  The gray bars represent the unprocessed virus 
solution or virus that was lyophilized and then dissolved in solution.  The white bars 
represent virus that was lyophilized and encapsulated in PVP microneedles, or unprocessed 
virus with blank PVP polymer in solution.  * indicates a statistically significant difference (t 
test, p<0.05) compared to the group without the PVP polymer. 
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Figure 5.8: Protection against lethal challenge after prime and boost immunizations: 
Survival. Mice (n=5) were prime and boost immunized with 10 μg inactivated 
H3N2/A/Aichi influenza virus and challenged with 10 LD50 of live H3N2 virus thirty days 
after immunization.  Mice which lost more than 25% of their body weight were considered 
terminally ill and euthanized, per the Emory IACUC. 
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Figure 5.9: Protection against lethal challenge after prime and boost immunizations: 
Average weight loss. Mice (n=5) were prime and boost immunized with 10 μg inactivated 
H3N2/A/Aichi influenza virus and challenged with 10 LD50 of live H3N2 virus thirty days 
after immunization.  
 

 

The IgG and HAI results after the boost immunization were similar qualitatively 

to the prime sera results.  There was no decrease in the IgG or HAI levels for the 
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lyophilized group compared to the unprocessed virus (t test, p>0.05).  Similarly, the 

groups with PVP in solution had decreased antibody levels from the positive controls (t 

test, p<0.05).  This included both the unprocessed virus in solution with blank PVP 

polymer and the virus that was lyophilized and encapsulated in PVP polymer 

microneedles.   

The level of immunoprotection was determined via a lethal challenge.  Here, all 

of the mice in the groups for the lyophilized virus and the unprocessed virus survived and 

had very little loss of body weight (4% of original weight).  The groups with PVP in 

solution had a greater loss of body weight (15%), but all of the mice in these groups also 

survived the challenge.  All of the naïve mice died rapidly in six days.  These results 

show that while there is a decrease in immune response with virus in solution with the 

PVP polymer, this virus is still immunogenic and can provide protection against the lethal 

challenge after boost. 

 
5.3 DISCUSSION 

 
Polymer microneedles offer an exciting delivery option for the influenza vaccine.  

In fact, they offer a number of advantages over the hypodermic needle.  This includes 

minimal pain, self-administration, easy intradermal delivery, and no biohazardous sharps 

after delivery.  Also, these microneedles could be administered in a mass immunization 

setting with more ease than the current needle injection due to easier disposal and the 

lack of need for medically trained personnel.  However, there are a number of 

reformulation steps that were required for the influenza vaccine to be encapsulated and 

delivered via polymer microneedles.  This included lyophilization of the liquid virus 

 - 103 -



solution into a solid powder and encapsulation within polymer microneedles, which 

involves free radical polymerization.   

The goal of this study was to test the antigenicity in vitro and immunogenicity in 

vivo of the influenza virus after lyophilization and processing through polymer 

microneedles.  This is an important analysis prior to the use of polymer microneedles for 

the delivery of the influenza virus in vivo.  Also, the addition of sugars to the virus 

solution was tested to determine the optimal formulation for the virus solution for 

protection during the freeze drying process. Since the current influenza vaccine contains 

the H1N1 and H3N2 strains of the virus, both of these strains were tested in this study.  

The analysis into the processed influenza virus can be divided into three parts:  in vitro 

assays to test the antigenicity of the virus, analysis of the sera after immunization to test 

the immunogenicity of the virus, and lethal challenge experiments to analyze the 

protection imparted by the delivery of virus to the mice. 

 The in vitro assays had similar results for both the H1N1/A/PR/8 and 

H3N2/A/Aichi viruses.  The in vitro studies showed that lyophilization, with or without 

the addition of sugars, did not affect the antigenicity of the virus.  However, it was 

difficult to determine the effect of the encapsulation process on the in vitro activity of the 

influenza virus since the PVP polymer conflicted with the assays used to measure the 

antigenicity.   

Due to the possible complications with the in vitro assay for virus solutions that 

include PVP, the in vivo analysis was important to determine if lyophilization and 

encapsulation within PVP microneedles affects the activity of the influenza virus.  For the 

H1N1 virus, the in vivo analysis showed that lyophilization did not decrease the antibody 
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response, with or without the presence of the trehalose.  However, all of the groups that 

included PVP had decreased IgG antibody levels.  This included the group with the 

unprocessed virus with blank PVP polymer in solution, and the group with the virus 

processed through PVP polymer microneedles.  These groups had very similar IgG titers 

leading to the analysis that the presence of PVP in solution with the virus decreases the 

virus activity.   

In vitro and in vivo analysis showed that the influenza virus retains full activity 

after lyophilization with or without the presence of excipients.  Thus, it was decided that 

sugars would not used for any further experiment.  The lack of sugar is quite important 

for the final delivery of the virus through PVP polymer microneedles.  There is a limit to 

the amount of total mass that can be encapsulated in the microneedles.  If sugars were 

required for lyophilization, especially in high amounts, than the encapsulation efficiency 

of the vaccine in the microneedles would be severely diminished.  The lack of sugars in 

the lyophilized powder allows for a much higher amount of vaccine to be encapsulated 

within the microneedles, on the order of 3-10 µg per array, which has been shown to be 

enough to elicit a protective immune response in animals.  By altering the design of the 

microneedle array, this dosage could be increased even further to approximately 30 – 50 

µg/array. 

A larger experimental plan was carried out using the H3N2/A/Aichi virus, 

including lethal challenge experiments to determine if the processed virus could impart 

immunoprotection.  These results were quite similar to the results using the H1N1 virus.  

The in vivo experiments also showed that lyophilization had no impact on the 

immunogenicity of the influenza virus.  After prime and boost immunizations, the sera 
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IgG and HAI titers were actually higher for the lyophilized group than the unprocessed 

solution.  Once again, the presence of PVP decreased the immune response in regards to 

both the IgG and HAI titers.  However, these titers were still quite high (IgG =5600 

ng/mL and HAI = 64), especially compared to the naïve group (IgG = 72ng/mL, HAI = 

10).  The lethal challenge showed corresponding results.  After prime and boost 

immunizations, all of the mice in the processed or unprocessed virus groups lived, with 

all of the naïve mice dying within seven days of the challenge.  However, while the 

lyophilized and unprocessed groups after prime and boost lost little to no weight (4% of 

original body weight) the PVP processed groups lost more weight (14-18% of original 

body weight).  This showed that while the virus was still immunogenic after the 

interaction with the PVP polymer, the response was not as strong as the lyophilized and 

unprocessed groups. 

Overall, these results show that lyophilization does not decrease the antigenicity 

or immunogenicity of the H1N1/A/PR/8 or H3N2/A/Aichi viruses. The presence of the 

polymer PVP in the virus solution decreases the immunogenicity of the virus, but the 

virus still induced a strong immune response.  This included the unprocessed virus in 

solution with blank PVP polymer, which did not include any lyophilization or 

encapsulation with PVP polymer microneedles.  Prior research has shown that the 

polymer PVP in solution can degrade proteins, specifically by deamination.  In fact, the 

rate of protein denaturation in a solution with PVP polymer can be up to 10,000 times 

faster than the denaturation in solid PVP form[152].  This could be the source of the 

decrease in immunogenicity.  Typically, the PVP and virus interacted in solutions for a 

few days prior to immunization.  There are two reasons why this should not affect PVP 
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microneedle delivery of the influenza virus.  First, for microneedle-based delivery, the 

virus and polymer will not interact in solution for an extended period of time.  During the 

encapsulation process, the virus will only interact with the PVP polymer in solid form 

and not in solution.  Also, when the polymer microneedles dissolve in the skin and the 

virus is released, the polymer will diffuse away and have little interaction with the virus 

in the body.  Second, the amount of PVP/virus ratio that will be in contact will be 

decreased from 1000:1 ratio in this experiment to a 100:1 ratio with microneedle delivery 

since there is no polymer backing to be dissolved as was used in this study.  It is believed 

that these two factors should allow for a higher immune response when the virus is 

delivered via solid PVP polymer microneedles.   

 
5.4 CONCLUSIONS 
  

Polymer microneedle-based delivery of the influenza vaccine offers a number of 

advantages over the current hypodermic injection.  This includes minimal pain, self-

administration, lack of need for trained personnel, fast administration, and no 

biohazardous sharps waste.  However, for the influenza vaccine to be delivered by this 

microneedle system, the virus must be reformulated, including lyophilization and 

encapsulation in the polymer microneedles.  In vitro and in vivo analysis showed that 

lyophilization did not affect the antigenicity or immunogenicity of the H1N1/A/PR8 or 

H3N2/A/Aichi virus strains.  Mice immunized with the lyophilized virus elicited high 

antibody titers and were completely protected against the lethal challenge.  Mice 

immunized with the influenza virus in the presence of the PVP polymer in solution had a 

decreased immune response in comparison to mice immunized with the unprocessed 

virus.  However, mice immunized with the virus processed through polymer 
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microneedles were fully protected against lethal challenge after a prime and boost 

immunization.  In fact, it appeared that the decreased immune response was due to the 

deleterious interactions between the polymer PVP and the virus in solution and not the 

polymer microneedle encapsulation process.  Looking forward, the next steps of this 

research should be use polymer microneedles to deliver the processed influenza vaccine 

and determine if this delivery method can induce a significant immune response, 

including full protection against a lethal challenge.  These experiments are covered in 

Chapter 7 of this thesis. 
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CHAPTER 6 
 
 

DELIVERY OF THE INFLUENZA VACCINE VIA COATED  
METAL MICRONEEDLES TO MICE TO INDUCE A PROTECTIVE  

RESPONSE AGAINST LETHAL CHALLENGE 
 
 
 
6.1 INTRODUCTION 

The influenza virus is responsible for tens of thousands of deaths each year in the 

United States and causes millions of illnesses worldwide[113].  While over 100 million 

individuals were vaccinated against the virus last year, there are some major issues with 

the vaccination process[115].  It has low patient compliance, requiring a painful injection 

via hypodermic needle and can be time consuming due to the need for trained medical 

personnel for delivery[14, 15].  Also, there can be issues with accidental re-sticks of 

biohazardous sharps and the need for cold chain storage of the liquid solution of the 

vaccine[16, 151].  One exciting alternative delivery method is the use of microneedles for 

the influenza vaccine.  Microneedles offer a patient compliant drug delivery alternative 

for the delivery of the influenza vaccine that is effective, relatively painless and could be 

self-administered in the future [1, 10]. 

 Coated metal microneedles offer a reliable and effective delivery method for the 

influenza vaccine.  In this delivery scenario, the influenza vaccine is coated onto the 

metal microneedles, and after the needles are inserted into the skin, the vaccine coating 

dissolves off of the needle within minutes and is delivered to the skin.  Coated metal 

microneedles have been used effectively clinically for the delivery of ovalbumin[48], as a 

model antigen,  and desmopressin[49], as a peptide therapeutic.  One additional benefit of 
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using coated metal microneedles is that the vaccine coated onto the needles is in solid 

form.  This may allow for the storage of the microneedle system at room temperature, 

which is not possible with the current influenza vaccine solution that requires 

refrigeration[151]. 

 The goal of this study was to evaluate the capability of coated metal microneedles 

to deliver the inactivated influenza virus in vivo and induce a protective immune 

response.  First, the delivery efficiency of the metal microneedles was tested in porcine 

skin in vitro and in mice in vivo.  Also, the antigenicity of the virus was tested in vitro 

after coating onto the microneedles to determine if there was any loss of activity during 

the coating and drying process.  Finally, mice were immunized with the influenza vaccine 

via metal microneedles and the immune response was tested via sera antibodies and 

protection against lethal challenge. 

 
6.2 RESULTS 
 
6.2.1 Antigenicity of the H3N2 influenza virus after processing and coating onto 
metal microneedles 
  

Metal microneedles offer a promising delivery alternative to the hypodermic 

needle for the delivery of the influenza vaccine.  However, there are some reformulation 

steps that need to be evaluated prior to the use of these microneedles for influenza 

vaccine delivery.  In this project, the inactivated H3N2/A/Aichi influenza virus was used 

for vaccination purposes.  For this virus to be delivered via metal microneedles, it must 

first be coated onto metal microneedles.  Previous work has been done to optimize the 

coating conditions for metal microneedle based delivery [2, 153].  The coating solution 

contains carboxymethylcellulose and Lutrol F-68 as a viscosity enhancer and surfactant, 
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respectively [153].  These are two critical properties needed for effective coating onto the 

microneedle.  This coating method has been shown to be quite versatile, with the ability 

to coat small molecules, proteins, DNA, viruses and microparticles onto metal 

microneedles[2].  Prior to the use of metal microneedles for influenza delivery in vivo, it 

was important to test the activity of the virus after coating onto the microneedles 

 The hemagglutination assay (HA) was used to test the antigenicity of the 

inactivated influenza virus after coating onto metal microneedles.  This assay is primarily 

testing the activity of the surface hemagglutinin protein (H) of the virus, which is vital for 

viral entry into cells. A proper antibody response against this protein is thought to 

provide protection against the virus.   

For all microneedle influenza work in this section, rows of five metal 

microneedles, 750 µm in height, 200 µm in width and 75 µm in thickness were used.  The 

microneedles were fabricated using an infrared laser as previously described[2].  

Inactivated H3N2/Aichi influenza virus was added to the coating solution and dip coated 

onto the rows of metal microneedles (Further details on the fabrication and coating of the 

microneedles can be found in Section 3.2.2 in Chapter 3 of this thesis).  The coated 

microneedles were allowed to dry for approximately one hour and then the virus coatings 

were dissolved off using DI water and the resulting solution was tested for HA activity.  

Also, the effect of the coating solution on the influenza virus was tested by measuring the 

HA activity of a solution of unprocessed virus in coating buffer.  Figure 6.1 below shows 

the relative activities of the virus solutions (n=3).   
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Figure 6.1: Virus Antigenicity (HAU/ug) after coating onto metal microneedles.  (n=3 for 
each group.)  Antigenicity is determined by hemagglutination (HA) assay normalized by 
protein concentration.  * indicates a statistically significant difference (t test, p<0.05) 
compared to unprocessed virus. 

  

As determined by the HA assay, the activity of the influenza virus decreased after 

coating and drying onto metal microneedles (t test, p<0.05).  However, the virus that was 

placed in coating buffer, in a wet state, did not show a decrease in activity versus the 

unprocessed virus (t test, p>0.05).  Since the virus coated onto the microneedles retained 

some activity (30%), it was decided to take this work in vivo to test the ability of the 

metal microneedles to deliver the influenza vaccine and induce a protective immune 

response. 

 
6.2.2 In vitro and in vivo delivery efficiency of coated metal microneedles 
 
 Prior to the use of coated metal microneedles for the delivery of the influenza 

vaccine in vivo, it was important to evaluate the delivery capabilities of the metal 

microneedle rows.  For this, two experiments were done.  First, metal microneedles were 
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coated with vitamin B using the same coating solution and process as described 

previously.  Vitamin B was used as the representative vaccine because it was easy to see 

visually, and thus easy to determine if the coating was delivered to the skin after 

insertion.  Rows of metal microneedles were inserted into in vitro pig skin and left for 

one minute.  Then, the needles were removed and inspected under a microscope.  Figure 

6.2 below shows the needles before and after insertion.  After one minute, all of the 

coating was delivered to the skin and no coating was left on the row of microneedles, or 

the skin surface. 

 

 
Figure 6.2: Metal Microneedle delivery in vitro:  2A: Row of metal microneedles coated 
with vitamin B preinsertion shown at different magnifications.  2B: Metal microneedles 
after insertion in pig skin for 1 minute.  All microneedles are 750 μm in height, 200 μm in 
width and 75 μm in thickness. 

 
  

The second delivery experiment involved evaluating the delivery efficiency of 

coated metal microneedles in vivo on a mouse.  Mice are the most common animal used 

to evaluation the immune response for influenza delivery.  In terms of delivery, mice 

offer challenges that do not exist in pig skin or larger animals, such as humans.  This 
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includes preparation of the mouse skin and handling of the small animal during the 

insertion process.  Thus it was important to evaluate the delivery efficiency of the metal 

microneedles on a mouse prior to the use of the influenza vaccine.   

Prior to microneedle insertion, the hair of the mouse was removed using a topical 

cream (Nair).  Next, rows of metal microneedles coated with sulforhodamine were 

inserted into mice.  All of the coating was delivered after three to five minutes insertion 

into the mouse.  Figure 6.3 below shows a mouse with metal microneedle arrays on its 

back.  This shows the relative size of the mouse to the array.  Also, Figure 6.3B shows 

the delivery site after insertion, showing pink dots where the insertion and delivery 

occurred.  Overall, metal microneedles were easily inserted into the mouse and had 

efficient delivery.  The next step was to coat the rows of microneedles with the 

inactivated H3N2 influenza virus and deliver it to mice to test the immune response. 

 

 

 

 

 
 
 
 
 
 
 

A BA B

Figure 6.3: Mouse applied with arrays of metal microneedles:  6.3A: Full picture of mouse 
with multiple arrays of metal microneedles adhered to the back. 6.3B:  Higher magnification 
picture of mouse skin after insertion and removal of coated metal microneedles.  Pink dots signify 
delivery of sulforhodamine that was coated on metal microneedles.  Photo courtesy of Vladimir 
Zarnitsyn.   
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6.2.3 Immune response after one immunization with the H3N2 influenza vaccine in 
mice via coated metal microneedles 
  
 For this study, inactivated H3N2/A/Aichi influenza virus was coated onto rows of 

metal microneedles.  Mice (n=12) were immunized with 9.8 µg of the virus by 

microneedles or intramuscular injection.  There were four experimental groups in this 

study:  coated metal microneedles, intramuscular injection, naïve, and naïve-uncoated 

microneedles.  The uncoated metal microneedles were used to test if the treatment of the 

mouse alone, including removal of hair and insertion of microneedles, would induce an 

immune response.  After fourteen days, the mice were bled and the sera IgG antibodies 

and HAI antibody response were measured.  Figure 6.4 below details the antibody 

immune response. 
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Figure 6.4: Measurement of the antibody immune response after one immunization with the 
H3N2 virus using coated metal microneedles:  6.4A: Sera IgG titers and  6.4B: HAI titers.  
Mice (n=12) were immunized with 9.8 μg of inactivated H3N2/Aichi influenza virus and 
bled 14 days later.  The mice of the Naïve MN group were prepared the same way of the 
MN group, with removal of the hair.  Uncoated MNs, with no vaccine, were inserted into 
these mice.  * indicates a statistically significant difference (t test, p< 0.05) in comparison 
with intramuscular injection group. 
 

  

Thirty days after immunization, half of the mice (n=6) from each group were 

challenged with a lethal dose of the live H3N2 virus (5 LD50) to test the 
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immunoprotection after one immunization.  After the challenge, the mice were weighed 

each day for fourteen days.  If a mouse lost more than 25% of its body weight, it was 

considered terminally ill and euthanized as required by the IACUC protocol.  Figure 6.5 

below shows the average body weight loss and survival of the mice after this lethal 

challenge. 

 

 
Figure 6.5: Protection against lethal challenge after one immunization of H3N2/Aichi 
influenza vaccine with coated metal microneedles. 6.5A: Average body weight after 
challenge.  6.5B: Survival data after challenge.  Mice (n=6) were challenged with 5 LD50 of 
live H3N2/Aichi virus, 30 days after immunization.  Mice which lost more than 25% of 
their body weight were considered terminally ill and euthanized, per the Emory 
IACUC 
 
  

Overall, there are a few conclusions that can be made after one immunization.  

The mice immunized by coated microneedles had a lower immune response, in antibody 

levels and challenge, than the positive control (IM) group (t test, p<0.05).  However, 

there still was a significant immune response in the microneedle group, with 5/6 mice 

surviving the lethal challenge, though with higher maximum weight loss (16%) than the 

IM group (8%).  The mice that had blank microneedles inserted did have a slight immune 

response, with 1/6 mice surviving the lethal challenge, but had no significant IgG or HAI 
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antibody levels.  It was determined that the remaining mice should be boosted to 

determine if prime and boost immunization by coated metal microneedles provided full 

protection against the lethal challenge. 

 
6.2.4 Immune response after prime and boost immunizations with the H3N2 
influenza vaccine in mice via coated metal microneedles 
 
 Twenty eight days after the first immunization, half of the mice (n=6) from each 

group were boosted with 9.8 μg of inactivated H3N2/A/Aichi virus.  Fourteen days after 

this boost immunization, blood was collected and the sera IgG antibodies and HAI 

antibody response were measured.  Figure 6.6 below shows the antibody response after 

prime and boost immunizations. 

 

 
Figure 6.6: Measurement of the antibody immune response after one immunization with the 
H3N2 virus using coated metal microneedles:  6.4A: Sera IgG titers.  6.4B: HAI titers.  Mice 
(n=6) were prime and boost immunized with 9.8 μg of inactivated H3N2/Aichi influenza 
virus and bled 14 days later.  The mice of the Naïve MN group were prepared the same way 
of the MN group, with removal of the hair.  Uncoated MNs, with no vaccine, were inserted 
into these mice. * indicates a statistically significant difference (t test, p< 0.05) in 
comparison with intramuscular injection group. 

 

 Thirty days after the boost immunization, these mice (n=6) were challenged with 

a lethal dose (5 LD50) of the live H3N2/A/Aichi virus.  As with the previous challenge, 

the mice were weighed each day for 14 days after the challenge.  If a mouse lost more 
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than 25% of its body weight, it was euthanized.  Figure 6.7 below shows the average 

weight loss and survival data for these groups. 

 

 
Figure 6.7: Protection against lethal challenge after prime and boost immunizations of 
H3N2/Aichi influenza vaccine with metal microneedles.  6.7A: Average body weight after 
challenge.  6.7B: Survival data after challenge.  Mice (n=6) were challenged with 5 LD50 of 
live H3N2/Aichi virus 30 days after boost immunization.  Mice which lost more than 25% of 
their body weight were considered terminally ill and euthanized, per the Emory IACUC. 

  

After prime and boost immunizations, the immune response, as measured by HAI 

titers, for the coated metal microneedle group was statistically the same to as the positive 

control (IM) (t test, p>0.05).  The IgG antibody levels for the IM group were much higher 

than the microneedle group, but this was most likely due to the levels that were induced 

after prime immunization (t test, p<0.05).  Concerning the lethal challenge, all of the 

mice in the microneedle and IM groups lived, with the microneedle group only having a 

slightly higher weight loss (7%) compared to the IM (4%).  These weight losses are quite 

low and represent an efficient clearance of the live viral challenge.  The mice that were 

inserted with blank uncoated microneedles and the naïve mice had no significant immune 

response, with all of the mice in these groups dying within eight days.  Overall, these 
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results show that coated metal microneedles can effectively deliver the inactivated 

influenza vaccine to mice and produce a protective immune response. 

 
 
6.3 DISCUSSION 
  
 Metal microneedles offer a patient compliant delivery alternative to the 

hypodermic needle for the influenza vaccine.  These microneedles allow for an efficient 

delivery for a number of molecules[2], are relatively painless[10, 37], require little waste 

disposal, offer an easy intradermal delivery and could be self-administered in the future.  

However, there are some processing and delivery steps that must be examined prior to the 

use of these microneedles for influenza vaccination purposes in vivo.  This includes 

testing the antigenicity of the influenza vaccine after coating onto the microneedle and 

verifying the delivery efficiency of the microneedles in a mouse in vivo.  The overall goal 

of this study was to determine if metal microneedles coated with the inactivated 

H3N2/A/Aichi influenza virus can deliver the vaccine effectively to mice in vivo, 

inducing a protective immune response.  This analysis included testing sera antibodies 

after the vaccinations and protection against a lethal challenge.  This analysis was 

conducted after one immunization as well as after a prime and boost immunization. 

 The virus that was coated and dried onto the metal microneedles showed a 

decrease in HA activity versus the positive control (30% retention).  However, the virus 

that was in the coating solution, in the wet state, retained full activity. Therefore, the most 

likely cause of the decrease of activity was the drying process onto the microneedles and 

not any interactions between the coating buffer and the virus.  Prior work has shown that 

the influenza vaccine can lose activity when it changes from the liquid to solid state 
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[101].  This loss of activity is thought to be due to the removal of water, which stabilize 

the surface proteins of the virus through hydrogen bonding.  Since there was some 

retention of activity on the coated microneedle, it was determined to transition this work 

in vivo with the metal microneedles in mice and determine if this loss of antigenicity 

results in a lower immune response.   

 Prior to the use of metal microneedles for vaccination of influenza in mice in 

vivo, the delivery capabilities of the coated needles were tested.  In pig skin in vitro, 

metal microneedles coated with Vitamin B successfully delivered all of the coating after 

one minute of insertion time.  Since mice are the animal model used for influenza 

vaccination, it was important to verify delivery via metal microneedles.  The coating was 

effectively delivered to the mouse after microneedle insertion for 5 minutes.  This study 

determined the proper handling and delivery technique for successful delivery using 

coated metal microneedles.  This included stretching of the mouse skin prior to insertion 

of the microneedles. 

 The ultimate goal of this study was to determine if coated metal microneedles 

could deliver the influenza vaccine and impart a protective immune response.  This was 

tested after one immunization as well as a prime and boost immunization.  After the first 

immunization, the antibody levels for the microneedle group were lower than the IM 

group.  This included IgG antibodies and HAI antibody response.  In terms of the 

challenge, 5/6 of the microneedle group survived the challenge versus 6/6 survival in the 

intramuscular group.  Overall, after one immunization, microneedle based delivery of the 

influenza delivery imparted a significant immune response to the mice, but this protection 

was lower than the intramuscular group.  This decrease in immune response was most 
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likely due to the loss of antigenicity during the drying step of the microneedle coating 

process.   

 After prime and boost immunizations, the immune response for the microneedle 

group was significantly higher than the prime immunization.  The IgG antibody levels 

were a ten fold increase over the prime response, but still the level for the microneedle 

group was lower than the IM group (22400 ng/mL for IM vs 11200 ng/mL for MN) (t 

test, p<0.05).  The HAI response for the MN group was statistically the same as the IM 

group (t test, p>0.05).  Finally, all of the mice in the microneedle group survived the 

lethal challenge with little weight loss (7%).  Overall, the immune response for the prime 

and boost immunization was significantly higher than after one immunization.  This 

includes full protection against lethal challenge.   

 While microneedles offered full protection after prime and boost immunization, 

the immune response was still lower than the response for the intramuscular group.  The 

most likely cause for this decrease was the loss of antigenicity of the virus during the 

coating and drying onto the metal microneedles.  Thus, in order to increase the immune 

response via metal microneedle based delivery, the main challenge will be to retain full 

activity during the coating and drying process.  There are a couple possible solutions to 

this problem.  One would be to add a stabilizer to the coating solution to protect the virus 

during the drying process.  One of the most common stabilizers is trehalose, which has 

been used during freeze drying to stabilize and retain activity of the influenza virus 

against freezing and drying stresses [101].  However, it will be important to minimize the 

amount of stabilizer required in the coating solution, since a large amount would decrease 

the mass (dose in µg) of the virus coated on the metal microneedles.  The other 

 - 121 -



improvement would be to reduce the drying time of the coating on the microneedles.  

Previous work has shown that it is important to minimize the amount of time the virus is 

drying from the liquid and solid state.  This could include the use of lyophilization during 

the drying process.  As shown in Chapter 5 of this thesis, the inactivated influenza virus 

retained full activity after lyophilization.  It is possible that using lyophilization directly 

after coating the virus onto metal microneedles may allow for the retention of the 

activity.  As a result, a higher retention in virus antigenicity during the coating process 

could lead to a higher immune response after metal microneedle-based delivery. 

 
6.4 CONCLUSIONS 
  

Coated metal microneedles offer an exciting delivery option for the influenza 

vaccine, with many advantages over the current hypodermic needle based delivery.  This 

includes a relatively painless injection, no need for trained medical personnel, a much 

smaller amount of biohazardous waste, possible storage at room temperature, and easier 

and faster administration in a mass vaccination scenario.  In this study, coated metal 

microneedles were shown to be efficient in delivering the drug coating to in vitro pig skin 

within a minute and to mouse skin in vivo within five minutes.  However, there were 

some processing steps that were required for coated metal microneedles to be used for 

influenza delivery.  The antigenicity of the inactivated H3N2/Aichi influenza virus 

decreased 70% after coating and drying onto the metal microneedles.  After one 

immunization, the metal microneedle-based immunization produced high antibody titer 

and had 5/6 mice survive a lethal challenge.  However, this was lower than the immune 

response for the intramuscular injection, which had significantly higher antibody levels 

and full protection against lethal challenge.  Most likely the lower immune response in 
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the microneedle group was due to the loss of activity during the coating and drying 

process.  After prime and boost immunizations, metal microneedles coated with the 

H3N2 influenza vaccine produced a ten fold increase in antibody response compared to 

one immunization and provided full protection against a lethal challenge, similar to the 

results for the intramuscular injection.  The next steps for this work should focus on 

protecting the influenza virus during the coating and drying process, possibly by adding 

sugar stabilizers to the coating solution or using lyophilization.  A higher retention in 

activity of the influenza virus coated on the metal microneedles should lead to a greater 

immune response, including full protection against lethal challenge after a single 

immunization. 
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CHAPTER 7 
 

DELIVERY OF INFLUENZA VACCINE VIA DISSOLVING 
POLYMER MICRONEEDLES TO MICE TO INDUCE A 

PROTECTIVE IMMUNE RESPONSE AGAINST LETHAL 
CHALLENGE 

 
 
 

7.1 INTRODUCTION 
  

The influenza virus is responsible for tens of thousands of deaths each year in the 

United States and causes millions of illnesses worldwide[113].  While an efficient 

vaccine exists for this virus, vaccination of all indicated individuals does not occur, and 

one area of improvement should be in the delivery vehicle.  The hypodermic needle has 

low patient compliance, requires trained medical personnel, has limitations in a mass 

immunization effort and results in biohazardous sharps waste [14].  As a solution, 

dissolving polymer microneedles offer an effective delivery option that can meet all of 

the challenges mentioned above.  In this study, we show that dissolving microneedles 

provide equivalent immune response to the intramuscular injection for the influenza 

vaccine, including full protection against lethal challenge after one immunization, while 

offering additional patient and logistical benefits.  In addition, these microneedles offer a 

versatile delivery device that could be used in the future for the delivery of a variety of 

other biomolecules and vaccines.  This includes mass immunization scenarios and the 

possibility of self-administration in the future. 
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7.2 RESULTS AND DISCUSSION 

7.2.1 Use of dissolving polymer microneedles for the delivery of influenza vaccine 

 The seasonal influenza virus remains a serious problem each year, including 

limitations with the method of delivery, the hypodermic needle.  An ideal delivery device 

for influenza vaccination would be patient compliant, allow for easy self-administration 

and mass immunization, possibly eliminate the need for cold-chain storage, and result in 

little to no biohazardous waste and sharps.  One possible improvement to the current 

intramuscular injection is the transdermal delivery route, which is promising 

immunologically due to the vast number of dendritic cells that exist in the skin[154].  

However, while intradermal injections are possible, they require highly trained personnel 

and can be unreliable due to the need for an insertion of a specific shallow depth.  In 

order for alternative needle-free transdermal methods to work, the outer layer of the skin 

(stratum corneum) must be disrupted to allow for delivery of the large vaccine molecules.  

Some of the current methods for this delivery include thermal ablation[126], dermal 

abrasion[145] and epidermal powder immunization[155].  While these devices meet 

many of the criteria mentioned above and have been successful in vaccination scenarios, 

more work is required prior to the clinical application of these devices.   

  Microneedles offer another promising delivery option, which meets all of the 

delivery requirements mentioned previously.  These microscopic needles have been 

shown to be relatively painless[10] and effective in vaccination scenarios[48, 49].  

Specifically, dissolving polymer microneedles offer an even more exciting delivery 

option for the influenza vaccine, since the microneedles completely dissolve in the skin, 

resulting in no biohazardous sharps waste.  Also, in this scenario, the vaccine is 
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encapsulated within the solid polymer microneedle, which may remove the need for cold 

chain storage.  To date, polymer microneedle systems have been shown to effectively 

retain the activity of biomolecules after encapsulation and effectively deliver the cargo to 

in vitro skin [4, 156].  However, limited work has been done on the use of dissolving 

polymer microneedles for vaccination purposes in vivo.  The goal of this study was to 

evaluate the use of dissolving polymer microneedles for the delivery of the influenza 

vaccine to mice in vivo.   

 There are specific design criteria that must be met for the use of dissolving 

polymer microneedles for the delivery of the influenza vaccine.  First, the fabrication 

process for the polymer microneedles should be gentle so that it does not decrease the 

antigenicity of the influenza vaccine. Also, the polymer used for the microneedles must 

be biocompatible, encapsulate the proper dose of the influenza vaccine, be strong enough 

to insert into the skin and dissolve rapidly after insertion, to deliver the virus effectively 

to mice.  Finally, the microneedles must induce a protective immune response against 

lethal challenge in the mice, hopefully equivalent or better than the response induced by 

intramuscular injection. 

 The fabrication process that was chosen for the microneedles involves room 

temperature photopolymerization of a liquid monomer solution within a microneedle 

mold to form the polymer microneedles.  The specific steps of this process have been 

detailed previously and can be found in Chapter 4 of this thesis[4].  The encapsulation of 

the drug within the microneedles involves dissolving or suspending the solid drug within 

the liquid monomer solution, which is then vacuum pulled into the microneedle mold.  

The polymer polyvinylpyrrolidone (PVP) was chosen as the structural material for the 
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experiments in this study.  This polymer can be created using the above fabrication 

process, is water soluble, has been used in the past for clinical applications[149], and has 

been shown to be strong enough for microneedle insertions in the skin[4].  Figure 7.1 

below shows pictures of PVP polymer microneedles created via this fabrication process.  

The pink dye in the microneedle tips represents the model vaccine. 

 

 
 
Figure 7.1: PVP polymer microneedles.  7.1A: Side view of PVP polymer microneedles.  
Scale bar = 250 μm. 7.1B: Picture of skin, showing the delivery of sulforhodamine from the 
PVP microneedles.  The red staining show sites of microneedle insertion and dissolution.  
Scale bar = 1 mm.  7.1C: Relative height of PVP polymer microneedles next to a nickel.  
Sulforhodamine is encapsulated within the tips of the microneedles.  Scale bar = 2 mm. 
 

 

7.2.2 In vitro and in vivo delivery efficiency of dissolving PVP polymer microneedles 

Prior to the use of PVP polymer microneedles for the delivery of the influenza 

vaccine, the dissolution kinetics of these microneedles were examined.  When inserted 

 - 127 -



into in vitro pig skin, the microneedles completely dissolved within five minutes.  Figure 

7.2 A-C below shows the dissolution of the PVP microneedles over time in pig skin in 

vitro.  This dissolution time was longer than the previous reported dissolution time for 

PVP conical microneedles of one minute.  Here, pyramidal microneedles were used, 

which provide a more reliable insertion, but the insertion is more shallow.  This can be 

seen in Figure 7.2C, 7.2D where the microneedle insertion holes were around 150 µm 

deep, which is only 25% of the length of the microneedles.  It is believed that the shallow 

insertion results in a longer dissolution time, due to less interaction of the water soluble 

polymer microneedle with the aqueous skin environment. 

 
 
 

 

 
 
Figure 7.2: PVP polymer microneedle dissolution kinetics.  7.2A: Microneedle preinsertion.  
7.2B: After one minute in skin.  7.2C: After 5 minutes in skin.  Scale bars = 300 μm for 
microneedle images.  7.2D: Fluorescent microscopy of skin histology after insertion of 
pyramidal PVP microneedles, fluorescent image.  7.2E: Bright field microscopy of same 
image stained with H+E staining.  Scale bars = 200 μm for skin histology images.  All 
insertions performed in porcine skin in vitro.   
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The delivery kinetics were also tested in mice to determine the proper time the 

PVP polymer microneedles should be left in the skin to deliver the encapsulated cargo.  

Here, sulforhodamine was encapsulated within the PVP polymer microneedles and the 

needles were inserted into the mouse.  The needles were removed at 5, 10 or 15 minutes, 

and the efficiency of delivery was determined.  Figure 7.3 below shows a summary of the 

results.  Here, the PVP microneedles effectively delivered the encapsulated cargo (>80%) 

in 15 minutes.   This longer time for delivery versus pig skin was probably due to poor 

insertion and affixation of the microneedle array to the skin surface due to the small size 

and curvature of the mouse body.  The pig skin insertion and delivery experiments offers 

a better representative of human skin, but the mouse delivery was also tested since that it 

was the animal model primarily used for influenza immunizations. 
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Figure 7.3: PVP polymer microneedle delivery efficiency to mice in vivo.  Sulforhodamine 
was encapsulated within PVP microneedles and delivered to mice.  The delivery efficiency 
was determined by measuring the amount of sulforhodamine left in the microneedle after 
insertion as well as on the skin surface of the mouse.  The remaining sulforhodamine was 
considered to be delivered to the skin.  n=5 for each time point.  The delivery efficiency for 
the three time points were statistically different from one another (t test, p<0.05). 
 
 

7.2.3 Immune response after one immunization with the H1N1 influenza vaccine in 
mice via dissolving polymer microneedles 

 
For the influenza vaccine to be encapsulated and delivered via dissolving polymer 

microneedles, a number of reformulation and processing steps were required, including 

the lyophilization of the virus solution into solid particles and encapsulation within the 

PVP polymer microneedles.  These processing steps were studied in depth in vivo and the 

results can be found in Chapter 5 of this thesis.  In summary, lyophilization had no 

impact on the immunogenicity of the H1N1/A/PR/8 or H3N2/Aichi influenza virus while 

the encapsulation process within the polymer microneedles alone also did not affect the 

activity of the virus.  These experiments resulted in an optimization of the reformulation 

process needed for the influenza vaccine to be delivered via polymer microneedles. 
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 The inactivated H1N1/A/PR8 influenza virus was used for the immunizations in 

this study.  Mice (n=12) were immunized with 6 µg of the influenza vaccine.  Three 

groups were tested: intramuscular injection (100 µL, 60 µg/mL), PVP polymer 

microneedles (2 arrays, 3 μg/array) and a naïve group.  The antibody levels were 

measured after fourteen and thirty days and are shown in Figure 7.4A and 7.4B below.  

The IgG and HAI antibody levels for the microneedle and IM groups were much higher 

than the naïve mice (t test, p=5.6 x 10-10) after one immunization and not statistically 

different from each other (t test, p>0.05). 

 Next, the immunoprotection of the mice was measured via survival against lethal 

challenge.  Half of the mice (n=6) were exposed nasally to the live H1N1 virus (5 LD50), 

and the weights of the mice were measured for fourteen days after the challenge.  The 

average weights and survival data can be seen in Figure 7.4C and 7.4D below.  The mice 

from both the IM and PVP microneedle groups all survived the challenge and had 

negligible weight loss (< 2%).  This shows that the microneedles provided full protection 

against a lethal challenge with effective clearance of the virus after only one 

immunization. 
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Figure 7.4: Measurement of the immune response after one immunization with H1N1 
influenza virus with dissolving polymer microneedles.  7.4A: IgG antibody titers and 7.4B: 
HAI titers, 14 and 30 days after immunization.  7.4C: Average body weight after challenge.  
7.4D: Survival after challenge.  Mice (n=12) were immunized with 6 µg of inactivated 
H1N1/A/PR/8 influenza virus.  Thirty days after the immunization, mice (n=6) were 
challenged with 5 LD50 of live H1N1 virus.  Mice which lost more than 25% of their body 
weight were considered terminally ill and euthanized, per the Emory IACUC.   

 

 We then assessed the ability of immunized mice to clear the virus from their 

respiratory system upon infection. Humoral–systemic and mucosal- as well as cellular 

immune responses play important roles in limiting virus replication and spread in the 

lungs. The other half of the mice (n=6) from each immunized group were challenged with 

live H1N1 virus (5 LD50) and four days later they were sacrificed and their lungs were 

collected and prepared in suspension. To measure virus clearance, we determined the 

number of plaque forming units that remained in the lungs after challenge (pfu/g lung 

tissue) (Figure 7.5). The mice immunized using PVP polymer microneedles had a much 
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higher clearance of the virus compared to the intramuscular injection, with a minimal 

amount of virus found in the lungs four days after challenge.  In fact, the clearance of the 

virus in the mice immunized with dissolving microneedles was six orders of magnitude 

higher than clearance from the naïve mice and three orders of magnitude higher than the 

IM injection group(t test, p<0.05). 
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Figure 7.5: Clearance of virus from lungs of mice after lethal challenge.  Mice (n=6) were 
challenged with 5 LD50 of the live H1N1 influenza virus 82 days after immunization and 
sacrificed four days after the challenge.  The ability of animal to clear the lethal virus was 
determined by measuring the presence of the virus (pfu/g) in the lungs.  A lower amount of 
the virus in the lungs signifies a better clearance and a stronger immune response. * 
indicates a statistically significant difference (t test, p< 0.05) in comparison with 
intramuscular injection group. 

 

7.2.4 Immune response after prime and boost immunizations with the H3N2 
influenza vaccine in mice via dissolving polymer microneedles 
  

The polymer microneedle system was also evaluated in a separate immunization 

using an H3N2/X31 strain of the influenza virus. Once again, lyophilization had no 

impact on the antigenicity of the virus, with the same activity as the unprocessed virus 
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solution.  Mice (n=6) were immunized twice, thirty days apart, with 6 µg of the X31 

virus, via either intramuscular injection or PVP microneedles.  The antibody response 

was measured fourteen days after each immunization.  As shown in Figure 7.6 below, the 

immune response for the dissolving microneedles was statistically the same as the 

intramuscular injection for the IgG titers (t test, p>0.05) and for the HAI titers (t test, 

p>0.05).  The HAI levels for both the MN and IM groups were significantly high 

(HAI>250) to predict full protection against lethal challenge.  HAI values greater than 40 

typically lead to full protection[138].  These results confirm that influenza delivery via 

dissolving polymer microneedles induces a significant immune response, quite similar to 

the intramuscular injection. 

 

 
Figure 7.6: Measurement of the antibody immune response after prime and boost 
immunizations of H3N2/X31 influenza virus with dissolving polymer microneedles.  7.6A: 
IgG titers.  7.6B: HAI titers.  Mice were immunized with 6 μg of H3N2/X31 virus and bled 
14 days after each immunization. 
 

 

7.3 CONCLUSIONS 

 The seasonal influenza virus remains a major medical problem in the United 

States with tens of thousands of deaths and hundreds of thousands of illnesses each year.  

One area of interest is to improve the delivery method of the influenza vaccination 
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process.  Dissolving polymer microneedles offer an attractive option that is expected to 

be patient compliant, allow for self-administration without trained medical personnel, and 

result in no biohazardous sharp waste.  Here, we have shown that dissolving 

microneedle-based immunization of the influenza vaccine to mice resulted in full 

protection against a lethal challenge after one immunization and produced antibody levels 

that were similar to the response for the intramuscular injection.  In addition, the mice 

immunized with the polymer microneedles had a more efficient clearance of the virus 

from their lungs, in comparison to the control IM injection group.  Subsequently, with no 

sharps left after immunization, the dissolving microneedle system would provide a 

unique solution to the problem of accidental or intentional reuse of hypodermic 

needles[16].  Also, this microneedle system could be self-administered in the future, 

possibly allowing for quicker and more efficient mass immunization efforts.  Overall, the 

dissolving polymer microneedles discussed in this study offers an effectively delivery 

vehicle for the influenza vaccine while offering numerous logistical and patient 

advantages.  This system could also be used for the delivery of a number of other 

biopharmaceuticals as a more desirable delivery method than the hypodermic needle. 
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CHAPTER 8 

DISCUSSION 
  
 
 

In this project, a new drug delivery system, based on dissolving polymer 

microneedle system, was developed.  This delivery system is particularly exciting as an 

alternative delivery method to the hypodermic needle for the delivery of 

biopharmaceuticals.  Here, the significance of this work will be discussed in comparison 

to other delivery methods for biopharmaceuticals as well as specifically against the other 

microneedle based delivery systems.    

 
8.1 BIOPHARMACEUTICAL DELIVERY DEVICES 
  

Biopharmaceuticals, including vaccines, DNA, peptides, and proteins, is one of 

the fastest growing sects of the overall pharmaceutical market.  In fact, the global 

biopharmaceutical market exceeded 80 billion dollars in 2007 and is growing at an 

annual rate of 17%, a higher growth rate than the overall pharmaceutical industry[6].  

However, there are limitations with the delivery of these molecules.  Oral delivery is 

difficult due to poor absorption, enzymatic degradation and the first pass metabolism 

effect of the liver[8].  Therefore, the most commonly used method currently is the 

hypodermic needle, which is effective, but has issues with patient compliance, the need 

for medically trained personnel and the possibility of needle-stick injuries[14, 15].  

Currently, there exists a large amount of work into new devices as alternatives to the 

hypodermic injection for the delivery of biopharmaceuticals.  There are a number of 

factors that must be analyzed for a new delivery device, including microneedles.  The 

optimal device should be equal to or better than the hypodermic needle and its 
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competitors in the following categories.   These parameters are listed in order of 

importance. 

8.1.1 Parameters for alternate delivery devices for biopharmaceuticals 
 
• Safety: This is the most important parameter for any medical device.  For the 

device to be used, it must pass FDA inspection, and thus be safe for use. 
 
• Effectiveness: This is also a very important parameter for any medical device.  

The new device must deliver the biomolecule in full activity and induce an equal 
to or better biological response than an injection. 

 
• Low cost/Mass fabrication:  It is important that the new device can be mass 

fabricated at a relatively low cost.  One hypodermic needle device costs 
approximately $0.10.  While the new device may cost more than this, it should be 
similar on the order of tens of cents per delivery.  

 
• Patient Compliance:  For an alternative delivery device to be successful there 

must be a high uptake by patients.  This includes relatively low pain and ease of 
use, possibly including an all in one device. 

 
• Biohazardous sharps waste:  The device should have limited biohazardous 

waste produced with no sharps.  This is particularly important if the device will be 
self-administered at home, where the disposal of biohazardous waste can be 
difficult.   

 
• Versatility:  The device should be able to effectively deliver a wide variety of 

biomolecules, including vaccines/peptides/proteins/DNA.   
 

• For Vaccine Based Delivery:  
o Dose sparing:  The common intramuscular injection delivers the vaccine 

is a poorly immunogenic region.  One possible advantage of a new 
delivery system would be to induce a greater immune response by 
delivering the vaccine to a highly immunogenic region, i.e. transdermal to 
the skin[11]. 

 
o Room temperature storage: One requirement of vaccine delivery is the 

need to have refrigeration for the cold chain storage of the vaccine.   It 
would be beneficial and cost effective if the new delivery device did not 
require refrigeration and could be kept at room or elevated temperatures. 

 
Currently, there is no one delivery system on the market that is better than the 

hypodermic needle in all of the above parameters.  However, a number of delivery 
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systems are currently in clinical and preclinical trials that would offer many advantages 

over injections.  Specifically, there are a number of devices being developed for 

transdermal delivery.  The dissolving microneedle system was analyzed in terms of these 

transdermal delivery systems.  This includes systems for thermal ablation, dermal 

abrasion (sand paper based), ultrasound, chemical enhancers, and other microneedle-

based delivery devices. 

 
8.1.2 Safety 
  

The dissolving microneedle system has been shown to be safe in limited animal 

experiments with no visible inflammation, and there should be no safety issues for the 

used in patients.  However, since the polymer material is being deposited in the skin, it 

will be important to ensure that the polymer has no adverse interactions in humans and is 

completely cleared from the body.  Polyvinylpyrrolidone (PVP) is biologically inert, has 

been used clinically in the past[72, 73, 78] and has been shown to be cleared efficiently 

from the body if the molecular weight is below 20,000 Da[71].  The molecular weight of 

the PVP polymer made in this study was well under this value.  The other delivery 

devices have been used clinically and have been shown to be safe.  The only limitation is 

chemical enhancers, which can cause some skin irritation.  Overall, the dissolving 

microneedle delivery system should be safe, but further testing must be done to verify the 

safety prior to clinical use of this system. 

 
 
8.1.3 Effectiveness: 
  

The dissolving microneedle system has been shown to be as effective as the 

hypodermic injection for the delivery of the influenza vaccine in mice.   This included 
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full protection against lethal challenge after one immunization.  While these results are 

promising, preclinical experiments in larger animals and clinical trials are still required.  

The other transdermal delivery devices have already been shown to be effective in 

clinical trials for the delivery of a number of biomolecules.  This includes the human 

growth hormone and insulin for thermal ablation[157], vaccine delivery for dermal 

abrasion[158], and lidocaine for ultrasound[159].  However, one disadvantage of these 

alternate delivery systems is in the speed and efficiency of delivery.  These systems 

require diffusion of the biomolecule from a patch based reservoir into the disrupted skin, 

which can be slow, and result in low bioavailability.  The dissolving microneedles insert 

into the skin, delivering the entire drug cargo in the skin faster (within minutes), and with 

a higher bioavailability (>80%).  

 
8.1.4 Low cost/Mass fabrication: 

 Currently, the dissolving microneedle system is made on a singular basis.  

However, the fabrication process lends itself to mass fabrication.  In fact, UV initiated 

curing of polymers is common in industry[160-162].  Concerning cost, it has been 

approximated that mass fabrication of microneedles could be on the order of tens of cents 

or less[5].  Also, the materials needed for creation of the dissolving microneedles are 

relatively inexpensive.  Thus, it seems that the cost of fabrication may not be a limiting 

factor on the future use of the dissolving microneedle system.  It is difficult to accurately 

determine what the cost of the other delivery systems is, but it could be assumed that the 

systems with mechanical equipment and power supplies (thermal ablation, ultrasound) 

would be more expensive than the microneedles and the simpler systems (dermal 

abrasion, chemical enhancers) may be less expensive. 
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8.1.5 Patient Compliance: 
  

Low patient compliance is a major limitation of the hypodermic needle, and thus 

improving the compliance is one of the main focuses of the alternative delivery systems.  

The dissolving microneedle technology should be highly desirable with patients, with 

minimal pain or sensation and it can be self-administered with minimal force.  The 

delivery mechanism can be explained as being as simple as the current transdermal patch 

technology, which is currently used by millions of patients in the United States.  The 

minimally invasive nature of this product is one of the major advantages over the 

hypodermic injection.   

The other transdermal delivery devices are also more patient compliant than the 

hypodermic needle.  Each of them offers delivery with minimal or no pain.  However, 

many of these devices require multiple components, which make them a little more 

difficult to use.  Also, chemical enhancers and to a lesser extent dermal abrasion may 

lead to irritation on the skin surface, which may not be desirable for some patients.  The 

dissolving microneedle delivery device should be more desirable than the hypodermic 

injection and appears to be equal to or better than the other transdermal delivery systems. 

 
8.1.6 Biohazardous sharps waste: 
  

This is another major limitation of the hypodermic needle; the production of 

biohazardous sharps waste with the risk of re-sticks of needles.  This is another advantage 

of the dissolving microneedle system over the current needle based delivery.  Since the 

microneedles completely dissolve within the skin, there is no biohazardous sharps waste 

produced.  The other transdermal delivery devices do not involve needles and thus have 

no issues with biohazardous sharps waste.   
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8.1.7 Versatility: 
 
 One of the major benefits of the hypodermic needle is the ability to deliver the 

large number and variety of molecules effectively to the body.  So far, the dissolving 

microneedle system has been able to successfully encapsulate and deliver a model protein 

(β-Galactosidase) in vitro and a virus (influenza vaccine) in vivo.  However, since the 

fabrication process requires the drug molecule to be in solid form, this system is limited 

to biomolecules which can remain active after drying.  Most likely, viruses and DNA 

should be able to be delivered by this method since they have been lyophilized 

successfully in the past.  On the other hand, the delivery of fragile proteins will probably 

provide processing challenges.  Testing and optimizing the versatility of the dissolving 

microneedle system is one of the key areas that needs to be analyzed in the future.   

 The other transdermal delivery devices require little to no reformulation of the 

biomolecules prior to delivery.  This is an advantage over the dissolving microneedle 

system, since limited work will be needed to use these devices for the delivery of a new 

biomolecule.  As for delivery, thermal ablation and dermal abrasion each remove some 

part of the barrier function of the skin and thus are able to deliver a large number of 

molecules.  However, in terms of chemical enhancers and ultrasound, there is no 

mechanical disruption of the skin.  Thus, it may be difficult to deliver larger molecules 

with these devices.  In fact, since all of these devices rely on diffusion for delivery, there 

may be limitations in the speed and bioavailability of large macromolecules.  While, 

delivery will occur, it may be slower and less efficient than dissolving microneedles. 

 
 
 
 

 - 141 -



8.1.8 Vaccine Based Delivery: 
  

The dissolving microneedle system delivers the vaccine to the epidermis and 

dermis of the skin, which should be more immunogenic than the muscle, where the 

current standard injection occurs [12, 17].  Also, the vaccine is stored in solid form within 

the dissolving microneedle system.  This may allow for room temperature storage, which 

is more convenient and less expensive than the current refrigeration for cold chain 

storage of vaccines.  All of the transdermal delivery systems deliver the antigen to the 

skin, with the same benefits as the dissolving microneedle system.  Also, the lack of cold 

chain storage is possible for the alternate delivery systems.  

 
8.1.9 Overall analysis 
  

The dissolving polymer microneedle system has many potential advantages over 

the hypodermic needle, specifically in terms of expected patient compliance, lack of 

biohazardous sharps disposal and possible removal of the cold chain storage for vaccines.  

The main next steps will be to test the versatility of this device for the delivery of a wide 

range of molecules.  Also, the fabrication process should be optimized to minimize cost 

and allow for mass fabrication. 

 In terms of the alternative delivery systems, the dissolving microneedle system is 

similar in many of the categories listed above.  However, in order for the microneedles to 

be widely adopted in the future, it should be highly desired by the patient and be shown 

to be able to deliver a wide range of molecules.  The dissolving microneedles are very 

similar to the other systems in terms of benefits, so patient choice will be a major factor 

on the success of these devices.  However, one concern for the dissolvable microneedle 

system is that it has only been shown to be successful in one animal experiment while the 
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other delivery systems have already been shown to be successful in some form of clinical 

trials.  On the other hand, one advantage of the dissolving microneedle system is that the 

delivery is fast (within minutes) and efficient, with a high percentage of the encapsulated 

cargo delivered to the skin.  The other delivery systems are dependent on diffusion of the 

molecule into the skin and can be slower and have a lower bioavailability.  Finally, in 

terms of vaccination, it is possible that the transdermal delivery systems could be more 

effective than the intramuscular injection by delivering the vaccine to the skin.  This 

needs to be further tested in the future, but could be highly beneficial and allow for a 

lower dose for vaccinations. 

 
8.2 MICRONEEDLE-BASED DELVERY SYSTEMS 
  

There are four main types of microneedle delivery systems.  One is hollow 

microneedles, where the drug solution is flowed through the needle into the skin. Second, 

there are coated metal microneedles, where the drug is coated onto the microneedle, and 

after insertion the coating is dissolved off of the needle and into the skin.  Third, there are 

metal microneedles which are applied to the skin and removed, creating microchannels, 

through which a drug solution could be delivered via a patch based system.  Finally, there 

are solid dissolving polymer microneedles, where the drug is encapsulated within the 

polymer microneedle and after insertion into the skin, the polymer dissolves, delivering 

the drug.  Each of these microneedle delivery systems should have a high patient 

compliance, with minimal pain or sensation and may offer a self-administered all in one 

device.  Also, each of these systems has been shown to be effective for delivery in vivo.  

Solid and coated metal and hollow microneedles have been shown to be effective in 

animals and humans while the polymer microneedles have shown to work so far in 
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preclinical trials in animals.  However, there are some differences between the 

microneedle systems, and specifically advantages and disadvantages of the dissolving 

polymer microneedle system.   

 The main advantage of the dissolving polymer microneedles is the lack of 

biohazardous sharps after delivery.  This is especially important for the use of 

microneedles at home and in Third World situations where safe disposal of sharps may be 

a problem.  After delivery, the hollow and metal microneedles remain intact and would 

require disposal of the sharps.  While the possibility of re-sticks of microneedles is 

expected to be small compared to hypodermic needles, the disposal of the sharps must 

still be addressed. 

 The main limitation of the dissolving microneedle system is that reformulation of 

the drug is required to be encapsulated within the microneedles.  While this may not be a 

problem after the reformulation process is optimized, it must be addressed prior to this 

system being used for a wider variety of biomolecules.  The coated metal and hollow 

microneedle systems have been tested more in depth, with success in delivering a wide 

variety of molecules, including insulin, influenza vaccine, DNA, hepatitis B vaccine, and 

ovalbumin amongst others[45, 48, 51, 163].  In fact, in terms of delivery via hollow 

microneedles, there may be no reformulation required prior to delivery of a new 

molecule.  As for metal microneedles, the coating process has been shown to be effective 

using a wide variety of biomolecules, including DNA, viruses and proteins [153]. 

 Overall, the dissolving microneedle system offers an exciting delivery device that 

is expected to be more patient compliant and effective and especially promising for home 

use, with no biohazardous sharps disposal after delivery.  However, further testing in the 
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reformulation process must be done for this system to be used for a wide variety of 

biomolecules.   
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CHAPTER 9 
 

CONCLUSIONS 
 
 
 

Biopharmaceuticals, including proteins, DNA, vaccines and other biologically 

related molecules, make up one of the fastest growing segments of the overall 

pharmaceutical market.  However, there are issues with the main delivery method for 

these molecules, i.e. the hypodermic needle, such as low patient compliance, the need for 

medically trained personnel, disposal of sharps after injections, and limitations in a mass 

immunization scenario.  There exists a need for an alternate delivery method for 

biopharmaceuticals that is patient compliant, possibly self-administered, has no 

biohazardous sharps after delivery, and would be easier to facilitate mass immunization 

efforts.   

 Dissolving polymer microneedles offer an exciting delivery option for 

biopharmaceuticals that is designed to meet all of the requirements listed above.  While  

an effective polymer microneedle system has been developed previously, the  fabrication 

processes for this system required elevated temperatures, which may lead to degradation 

of the encapsulated biomolecules.  Also, no previous work involved a rapidly dissolving 

polymer system, instead focusing on slower releasing polymers like PLGA.  The goal of 

this project was to develop a rapidly dissolvable polymer microneedle system that is 

capable of delivering an active biomolecule in vivo, producing an equivalent 

physiological response to the standard hypodermic injection.  The influenza vaccine was 

chosen as the model biomolecule for this project.   
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9.1 DEVELOPMENT OF A NEW FABRICATION PROCESS FOR POLYMER 
MICRONEEDLES FOR THE DELIVERY OF BIOMOLECULES  

 
The goal of this study was to develop a new fabrication process for polymer 

microneedles.  This fabrication process must produce sharp microneedles and be gentle 

enough to allow for the retention of activity of active biomolecules during the 

encapsulation process.    Also, the polymer chosen as the structural material for the 

microneedles must be strong enough to allow insertion in the skin, able to break down 

quickly in the skin, releasing the encapsulated cargo, and be biocompatible, allowing for 

human use in the future.  The main findings from this research follow:  

• UV initiated, room temperature free radical polymerization can be used to create 
polymer microneedles that have the identical geometry and tip sharpness as the 
original microneedle master structure. 

 
• This fabrication process can produce polymer microneedles made of a variety of 

vinyl polymers and copolymers  The choice of polymer can vary depending on 
the desired properties, including mechanical strength and rate of breakdown of the 
polymer, i.e. delivery in vivo 

 
• The ideal material for polymer microneedles would be mechanically strong, 

dissolve quickly within the skin and have been used in the past clinically.  
Polyvinylpyrrolidone (PVP), the main structural material used in this project, met 
all of these requirements. 
 

• The copolymer poly(vinylpyrrolidone-co methacrylic acid) PVP-MAA was also 
used as a structural material for polymer microneedles, primarily due to an 
increased mechanical strength from hydrogen bonding within this copolymer.   
 

• Arrays of PVP polymer microneedles successfully inserted into in vitro porcine 
skin and delivered the encapsulated cargo within minutes.   

 
• In terms of biocompatibility, PVP is biologically inert and can be cleared by the 

body if the molecular weight is below 20,000 Da.  The molecular weight of the 
PVP polymer produced via the new microneedle fabrication process was less than 
10,000 Da. 
 

• The encapsulation process within PVP polymer microneedles resulted in no 
damage to a model enzyme, β-Galactosidase.  In addition, β-Gal retained 
enzymatic activity after delivery to in vitro pig skin. 
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• In summary, the fabrication process developed in this study produced polymer 
microneedles that were sharp and strong enough to insert into pig skin in vitro and 
mouse skin in vivo and deliver the majority of the encapsulated cargo.  Also, it 
was shown that proteins retained full activity after being encapsulated within 
polymer microneedles created using this new fabrication process. 

 
 
9.2 IN VITRO AND IN VIVO ANALYSIS OF THE REFORMULATED 
INFLUENZA VACCINE FOR DELIVERY VIA DISSOLVING POLYMER 
MICRONEEDLES 
 

The main goal of this study was to determine if the inactivated influenza virus 

retained activity after the processing steps required to be encapsulated and delivered via 

PVP polymer microneedles.  These processing steps include lyophilization of the virus 

solution and encapsulation within PVP polymer microneedles.  The analysis included in 

vitro testing of the antigenicity of the processed virus and in vivo testing in mice of the 

immunogenicity of the processed virus.  Also, the effect of the stabilizer trehalose was 

tested to determine if it is required to retain the activity of the virus solution during 

lyophilization. 

 
• Lyophilization of the inactivated H1N1 and H3N2 influenza viruses, with or 

without the excipient trehalose, resulted in no loss of antigenicity of the virus. 
 
• The polymer PVP introduced an artifact in solution that prevented a meaningful 

analysis of the antigenicity of the influenza viruses. 
 

• Lyophilization of the H1N1 and H3N2 influenza viruses resulted in no loss of 
immunogenicity as measured by IgG and HAI antibody titers.  

 
• The presence of the polymer PVP in solution with the H1N1 and H3N2 influenza 

virus resulted in a lower immune response, as measured by IgG and HAI antibody 
titers.  The encapsulation process of the virus within polymer MNs appeared to 
have no additional deleterious effect on the activity of the virus. 

 
• Lyophilization of the H3N2 influenza virus results in no loss of protection against 

lethal challenge after one immunization (5/5 mice survive). 
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• The presence of the polymer PVP in solution with the H1N1 influenza virus 
resulted in a lesser protection against lethal challenge after one immunization (2/5 
mice survive).  However, this effect is less impactful after a boost immunization, 
which has full protection for the mice from lethal challenge (5/5 mice survive). 

 
• Similar to prior results, the influenza virus that was encapsulated within PVP 

microneedles produced the identical immunoprotection against challenge as the 
virus in solution with the PVP polymer.  Thus, it was determined that the 
encapsulation process alone did not have an effect on the immunogenicity of the 
influenza virus.. 

 
• In summary, lyophilization has no effect on the antigenicity or immunogenicity of 

the influenza virus.  However, the presence of the polymer PVP in solution with 
the virus alone does result in a decrease in immunogenicity.   

 
• In order to fully determine if the encapsulation process damaged the activity of 

the influenza virus, PVP microneedle-based delivery of this vaccine should be 
tested.  This delivery scenario should not have any issues of the PVP polymer in 
solution with the virus for an extended period of time. 

 
 
9.3 DELIVERY OF INFLUENZA VACCINE VIA COATED METAL 
MICRONEEDLES TO INDUCE A PROTECTIVE IMMUNE RESPONSE 
AGAINST LETHAL CHALLENGE 

 
The main goal of this study was to evaluate the ability and efficiency of coated 

metal microneedles for the delivery of the inactivated influenza virus.  This analysis 

included testing the delivery efficiency of the coated drug in vivo, the antigenicity of the 

virus after coating onto the metal microneedles and the immune response induced in mice 

after delivery via coated metal microneedles. 

• The inactivated H3N2/Aichi influenza virus was used in this study. 
 
• Metal microneedles were successful in delivering the entire coating of drug to in 

vitro pig skin within a minute.  Full delivery in vivo in mice required three to five 
minutes of insertion. 

 
• The act of drying of the inactivated H3N2 influenza virus onto metal 

microneedles resulted in 70% activity loss.  
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• Coated metal microneedle based immunization with the H3N2 influenza virus 
produced a lower immune response (IgG and HAI antibodies) than a control 
intramuscular injection. 

 
• After one immunization, coated metal microneedles based delivery resulted in a 

lower protection against lethal challenge for the mice (5/6 survived) and a higher 
weight loss than the IM injection. 

 
• After a prime and boost immunization, coated metal microneedle based delivery 

resulted in full protection against lethal challenge for the mice (6/6 survive) and 
similar weight loss as the IM injection, which was minimal. 

 
• The insertion of blank metal microneedles with no virus coated produces no 

immune response or protection against lethal challenge (0/6 survive). 
 

• In summary, metal microneedle based delivery of the H3N2 influenza virus to 
mice produced high antibody levels and full protection against lethal challenge 
after prime and boost immunizations.  However, the immune response after one 
immunization was lower than the control IM injection.   

 
• Most likely, the reduction in antigenicity of the influenza virus during drying onto 

the metal microneedles was responsible for the lower immune response.  Future 
work should be conducted to minimize this loss of activity, which should lead to a 
higher immune response in vivo. 

 
 
9.4 DELIVERY OF INFLUENZA VACCINE VIA DISSOLVING POLYMER 
MICRONEEDLES TO INDUCE A PROTECTIVE IMMUNE RESPONSE 
AGAINST LETHAL CHALLENGE 

 
The main goal of this study was to evaluate the ability and efficiency of 

dissolving polymer microneedles for the delivery of the inactivated influenza virus.  This 

analysis included testing the delivery efficiency of the dissolving microneedles in vivo, 

the antigenicity of the virus after lyophilization and microneedle processing, and the 

immune response induced in mice after delivery via dissolving polymer microneedles. 

 
• Polyvinylpyrrolidone (PVP) was chosen as the structural material for the 

dissolving polymer microneedles used in this study.  The immune response 
against the influenza vaccine via dissolving polymer microneedles was evaluated 
compared to the intramuscular injection using the H1N1 and H3N2 subtypes of 
the virus. 
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• The geometry of polymer microneedles was extremely important on the % of 

needles inserted and the depth of delivery, which affected the delivery rate of the 
polymer microneedles. 

 
• Only ~50% of conical shaped PVP polymer microneedles inserted properly into 

porcine skin in vitro, due to a low failure force of this geometry.  However, for 
the conical needles that did insert, the depth of insertion was ~ 90% of the length 
of the microneedle and allowed for rapid dissolution within the skin (1 minute). 

 
• 100% of the pyramidal shaped PVP polymer microneedles inserted properly into 

porcine skin in vitro, probably due to a higher failure force of this geometry.  
However, these microneedles only insert ~25-50% of their length, resulting in a 
slower dissolution of the complete polymer microneedle and thus slower delivery 
(5 minutes).  The insertion into mice in vivo was even shallower, resulting in a 
even longer delivery time (15 minutes). 

 
• The lyophilization process had no effect on the antigenicity of the H1N1 or H3N2 

subtypes of the inactivated influenza virus, as measured using the 
hemagglutination assay. 

 
• Immunization of the H1N1 influenza virus with the dissolving PVP polymer 

microneedle system produced an equivalent humoral immune response (IgG/HAI) 
as the control intramuscular injection. 

 
• Immunization of the H1N1 influenza virus with the dissolving PVP polymer 

microneedle system resulted in full protection against lethal challenge after one 
immunization with minimal weight loss.  These results were also equivalent to the 
control intramuscular injection. 

 
• Mice immunized with the H1N1 influenza virus via PVP polymer microneedles 

cleared the virus from their lungs more efficiently than the control intramuscular 
injection group. 

 
• In summary, the dissolving microneedles based delivery of the influenza vaccine 

produced a protective immune response after one immunization that was equal to 
the intramuscular injection.  In addition, this delivery method offers logistical, 
safety and patient compliance advantages over the intramuscular injection, 
including ease of administration, lack of pain, and no biohazardous sharps waste 
after delivery. 
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CHAPTER 10 
 

FUTURE DIRECTIONS 
 
 
 
 The dissolving polymer microneedle system developed in this project, using the 

new fabrication process, was successful at delivering the influenza vaccine in vivo, 

inducing a protective and equal immune response compared to the intramuscular 

injection.  However, more work needs to be done prior to this system being used 

clinically.  The following are some of the areas of research that should be studied to 

optimize the polymer microneedle system for the delivery of biomolecules.   

 
10.1 OPTIMIZATION OF THE POLYMER MICRONEEDLE FABRICATION 
PROCESS FOR USE WITH A WIDE VARIETY OF BIOMOLECULES  
  

The current fabrication process necessitates the drug to be in solid form prior to 

the encapsulation process for the polymer microneedle array.  Often this requires the 

lyophilization of the drug solution into a dry powder.  So far, the inactivated influenza 

vaccine (H1N1 and H3N2 subtypes) can be lyophilized with no loss of activity.  Also, the 

enzyme β-Galactosidase was encapsulated within PVP polymer microneedles and 

retained full activity.  However, this may not be the case with other molecules.  It will be 

important to determine if other biomolecules, proteins, peptides, DNA and other vaccines 

can be lyophilized and encapsulated within PVP polymer microneedles and retain full 

protection.  Also, for those molecules that lose activity during lyophilization, it will be 

necessary to add cryoprotectants, like trehalose, which can protect the biomolecule 

during the freeze drying process.  However, it will be important to minimize the amount 

of excipients added to the drug solution.  Any excipient added will decrease the amount 
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of drug that can be encapsulated within the polymer microneedle system.  Often, 

excipients are added in 100:1 ratio to the drug, which would severely limit the dose 

encapsulated and delivered using the polymer microneedle system. 

  In addition, it will be important to optimize the fabrication process to minimize 

the loss of drug during the encapsulation step.  Currently, the drug of choice is suspended 

in liquid monomer and approximately 50-75 µL of solution is added to the microneedle 

mold.  Only 2 µL enters the mold, and if solution on the surface is not fully recycled, 

significant wasting of the drug will occur.  This loss of drug in the bulk solution was 

attempted to be minimized in this process, but further optimization is needed.   

Also, it may be helpful to decrease the time of the polymerization step of the 

fabrication process.  Currently, the microneedle system is left under UV curing for 30 

minutes to one hour to complete the polymerization process for form the polymer 

microneedles.  It would be beneficial to decrease this time to a few minutes if possible.  

This could be done by optimizing the conditions for the polymerization process, 

including but not exclusively the type and quantity of free radical initiator used, the 

purity of the monomer, and the distance between the UV lamp and microneedle system.  

This optimization may lead to lower mass fabrication costs for the dissolving 

microneedle system in the future.  

 
10.2 OPTIMIZATION OF THE DESIGN AND GEOMETRY OF POLYMER 
MICRONEEDLES  
  

In this project, two microneedle geometries were used, conical and pyramidal.  

There are advantages and disadvantages to each system.  In summary, the conical system 

typically had a higher aspect ratio (height: base width) and was more prone to failure 
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before insertion than the pyramid microneedles.  The pyramid microneedle system 

resulted into insertion of all microneedles in the array while the conical system often had 

insertion of only 50% of the microneedles.  However, when insertion did occur, the 

conical microneedles inserted deep into the skin (80-90%).  This is much higher than the 

pyramid microneedles, which had a shallow insertion into the skin (25 – 50%).  This 

altered the length of time required for the different microneedle systems to dissolve and 

deliver the encapsulated cargo to the skin.  The conical microneedles required less than 

one minute in pig skin, while the pyramid microneedles required 5 minutes of insertion to 

dissolve. 

 It would be optimal to combine the advantages of the two microneedle systems 

(pyramid/conical) and create a design that produced a stable structure with full insertion 

of the microneedle.  Thus, it will be important to adjust the width, height and aspect ratio 

of the microneedles to determine the optimal design.  In addition, a larger microneedle 

would allow for a higher dose of drug to be encapsulated and delivered.  This may allow 

for a wider range of molecules to be delivered, which previously were limited due to dose 

constraints. 

 
10.3 OPTIMIZATION OF THE DELIVERY EFFICIENCY OF THE POLYMER 
MICRONEEDLE SYSTEM 
  

Currently, the dissolving microneedle system is applied to the skin with a small 

amount of force from a thumb.  While the insertion technique can be taught easily to a 

new user, it should be automated in some way to allow for reproducible delivery with a 

small amount of error.  This is especially important for self-administered use at home, 

where no trained personnel would be present.  A possible solution would be an insertion 
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device.  One example could be a spring loaded device, where the device is applied to the 

skin and a button is pushed, inserting the microneedles.  Also, the insertion device should 

be reusable, simply applying a new microneedle patch to the end.  The development of a 

new insertion device would be an important next step on the path of using the dissolvable 

microneedle system in a clinical setting on patients. 

 
10.4 DEVELOPMENT OF ALTERNATE FABRICATION PROCESSES FOR 
POLYMER MICRONEEDLES BASED ON POLYMERIZATION TECHNIQUES 
 
 The new fabrication process, developed in this study, involved free radical 

photopolymerization of a liquid monomer solution within a microneedle mold to produce 

polymer microneedles.  Since it uses a free radical mechanism, the polymers produced 

are constrained to vinyl polymers.  It may be beneficial in the future to use a 

polymerization process to create microneedles made out of different polymers.  The 

entire process would remain the same, including the use of a microneedle mold and liquid 

monomer, but the type of polymerization would change.  This may involve addition or 

condensation polymerization.  In addition, it is possible to develop alternate means of 

making polymer microneedles, outside of polymerization techniques.  The main reason 

for a new fabrication process is to make a polymer microneedle system with specific 

desired properties.  This may include faster or slower degradation in the skin, an adjuvant 

affect for vaccination purposes or other applications.  
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APPENDIX A: 
 

BUSINESS PLAN FOR POLYMER MICRONEEDLES 
 
 
  
 During my graduate career, I had the opportunity to take part in the TI:GER 

(Technological Innovation: Generating Economic Results) program.  The main goal of 

this program is to teach scientific, business and law students the tools required to take a 

product to market.  Each team involved a PhD science/engineering student, an MBA 

student and two JD students.  Their goal was to evaluate the potential of the PhD 

student’s research technology for commercial use.  The final step of this process involved 

the synthesis of a business plan, which was presented in multiple competitions 

nationwide.  Below is the executive summary of the business plan for the polymer 

microneedle technology developed in this thesis.  

 
A.1 EXECUTIVE SUMMARY 
 
 
A.1.1 Business Description 

PolyDerm Delivery Systems’ PolyDerm Patch is an exciting new, painless drug 

delivery technology utilizing polymer microneedles. This technology consists of an array of 

microscopic needles large enough to deliver drugs effectively to the body, but small enough 

to avoid the nerves in the skin.  

Currently, the world is struggling with limited quantities of vaccines and hypodermic 

needles and the inability to quickly and efficiently administer vaccinations in the case of a 

pandemic. The main advantages the PolyDerm Patch offers are: 
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• Reduction in the volume of vaccine needed to immunize, thus dramatically 

expanding coverage and reducing costs 

• Decreased number of trained medical personnel for administration 

• Elimination of medical waste and their associated risks  

• Increased patient compliance due to ease of administration 

Our mission is to provide an efficient, painless drug delivery system for large 

molecule drugs currently delivered by hypodermic injection. Our vision is to improve health 

worldwide while improving the environment by eliminating biomedical waste associated 

with dirty needles. To achieve these objectives, PolyDerm Delivery Systems (PDS) will 

partner with vaccine manufacturers and pharmaceutical companies to create custom drug 

delivery applications. 

 

A.1.2 Development Status 

Technology Accomplishment to Date: 

• Prototype construction completed with FDA approved, non-toxic polymer 

• Effective encapsulation and delivery of active protein to skin in vitro 

• Successful animal trials showing effective delivery of influenza vaccine 

Next Steps: 

• Formulation of the final design including adhesive patch 

• Passage through FDA clinical trials under Abbreviated New Drug Application with 
partner 
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A.1.3 Markets 
 

PDS will focus on large molecule drugs that are currently delivered by the 

hypodermic needle. The flu vaccine market will be the initial focus with an eventual 

expansion into the broader biopharmaceutical drug delivery market.  
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Figure A.1: Market for large molecule drugs 

 

Microneedles offer an excellent technology for the vaccine market because they are 

painless, pre-packaged injections allowing for easier mass vaccination without extensive 

medical personnel. According to the New England Journal of Medicine, vaccine delivery to 

the skin will allow for five times the number of doses to be manufactured without increasing 

vaccine production.   

 
A.1.4 Operations  

 
PDS will operate as a drug delivery application development company creating 

individual applications and performing animal trials. After we have shown the effectiveness 

of polymer microneedle-based delivery to animals, clinical trials and production will be 

performed by our partner. PDS will assist in clinical trials and advise the partner how to 
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develop manufacturing. Because each application will require custom development and 

significant testing for approval, partnerships will be of utmost importance. Distribution will 

be the responsibility of the partner by utilizing their existing channels. 

 
A.1.5 Risks 

 
PDS must overcome two intellectual property risks. After comprehensive analysis 

and legal counsel, we anticipate receiving a strong patent for the polymer microneedles that 

are the basis of the PolyDerm Patch. Our unique technology encapsulates the drug in a 

polymer and effectively delivers the drug through the skin. An invention disclosure has been 

submitted to Georgia Tech; we expect that a patent application will be filed by June 2006. 

PDS will then secure a sublicense from Biovalve for their microneedle patent to avoid the 

risk of infringement lawsuits. Due to existing relationships between Biovalve and both 

Georgia Tech and one of our founders, PDS feels confident that a sublicensing agreement can 

be reached. Nelson Mullins is currently helping PDS develop a more comprehensive IP 

Strategy. Development, industry, and consumer risks are clearly displayed in the table above 

with corresponding mitigation strategies.  

 

• Enter the vaccine market first to limit risk 
to biopharmaceutical partners

• Lack of patient acceptance

MitigationCoConsumer Risks

• Animal testing with flu vaccine delivery 
complete in Spring, 2007

• Competition beats us to market
• Competition has superior product

MitigationIndustry Risks

• Partnerships for clinical trials
• Simple manufacturing process
• Less vaccine per dose
• Biopharmaceuticals typically small dosages

• Inability to obtain FDA Approval through 
ANDA

• Inability to scale manufacturing methods
• Dosage limitations

MitigationDevelopment Risks

• Invention disclosure submitted to Ga. Tech 
- File patent by June, 2006

• Leverage new patent application and 
existing relationships

• Inability to secure Polymer Microneedle 
Patent and license

• Inability to sublicense from Biovalve

Mitigation
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Figure A.2: Risks associated with commercialization of polymer microneedle technology 
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A.1.6 Management 

The PDS team currently consists of Steve Selfridge, James Stefanakos, and Sean 

Sullivan, all of whom attend the Georgia Institute of Technology. Steve and James are 

second year MBA candidates with experience in both consulting and chemical processes, and 

Sean is a PhD candidate in Biomedical Engineering and the inventor of the technology. The 

team brings excellent experience to the company as do the advisory board members which 

include experts in the fields of drug delivery and immunization. Recognizing the need for 

adding industry expertise to lead the company, the team will hire a seasoned CEO by the end 

of the first year and later bring in additional executives, scientists, and sales professionals.  

 
A.1.7 Financials 
 
 The company projects profitability in the fiscal year beginning July 2009 and 

anticipates revenues in excess of $130 million by FY 2011 with a market penetration of 24% 

of the U.S. flu vaccine volume. We also expect to introduce the PolyDerm Patch to the 

biopharmaceutical market by FY 2011.  

 
A.1.8 Exit Plan 

 
The size of the identified markets and PDS’s value proposition warrant an IPO if we 

grow rapidly and successfully enter the biopharmaceutical market. Slow growth or 

unanticipated capital needs would lead PDS to seek to be acquired by an existing drug 

delivery or biopharmaceutical company. 
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A.1.9 Offering 
 
PDS is seeking seed level investment of $700,000 over the next year to solidify our 

IP position and find a vaccine partner. Subsequent investments estimated at $5.2 million will 

be required over the following two years to bring in a management team, assist our partner 

with FDA clinical trials, and enter the biopharmaceutical market. While the investment will 

take greater than three years to see any returns, we believe that the upside potential of this 

platform drug delivery technology makes the investment compelling.  

 

 

Dec. 
2006

July 
2008

July 
2006

July 
2007

$300,000 $400,000 $2,900,000$2,300,000

Dec. 
2006

July 
2008

July 
2006

July 
2007

$300,000 $400,000 $2,900,000$2,300,000

 

Figure A.3: Timeline for future investments 
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