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SUMMARY 

 

Non-healing bone defects have a significant socioeconomic impact in the U.S. 

with approximately 600,000 bone grafting procedures performed annually.  Autografts 

and allografts are clinically the most common treatments; however, autologous donor 

bone is in limited supply, and allografts often have poor mechanical properties.  

Therefore, tissue engineering and regenerative medicine strategies, which employ the use 

of cells or growth factors to heal bone, are being developed to address issues with clinical 

bone grafting.  However, the need for an abundant mineralizing cell source limits the 

progress of these therapies. The overall objective of this work was to develop bone tissue 

engineering strategies that enhance healing of orthotopic defects by targeting specific 

osteogenic cell signaling pathways.  The general approach included the investigation of 

two different tissue engineering strategies, which both focused on directed osteoblastic 

differentiation to promote bone formation. 

In the first cell-based strategy, we hypothesized that constitutive overexpression 

of the osteoblast-specific transcription factor, Runx2, in bone marrow stromal cells 

(BMSCs) would promote orthotopic bone formation in vivo.  We tested this hypothesis 

by delivering Runx2-modified BMSCs on synthetic scaffolds to critically-sized defects in 

rats.  We found that Runx2-modified BMSCs significantly increased orthotopic bone 

formation compared to empty defects, cell-free scaffolds and unmodified BMSCs.  This 

gene therapy approach to bone regeneration provides a mineralizing cell source which 

has clinical relevance. 
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In the second biomaterial-based strategy, we hypothesized that incorporation of 

the collagen-mimetic peptide, GFOGER, into synthetic bone scaffolds would promote 

orthotopic bone formation in vivo without the use of cells or growth factors.  We tested 

this hypothesis by passively adsorbing GFOGER onto poly-caprolactone (PCL) scaffolds 

and implanting them into critically-sized orthotopic defects in rats.  We found that 

GFOGER-coated scaffolds significantly increased bone formation compared to uncoated 

scaffolds in a dose dependent manner.  Development of this cell-free strategy for bone 

tissue engineering provides an inexpensive therapeutic alternative to clinical bone defect 

healing, which avoids issues of immune response from implanted materials and could be 

implemented in a point of care application. 

 Both of the strategies developed in this work take advantage of specific 

osteoblastic signaling pathways involved in bone healing.  Further development of these 

tissue engineering strategies for bone regeneration will provide clinically-relevant 

treatment options for healing large bone defects in humans by employing well-controlled 

signals to promote bone formation and eliminating the need for donor bone. 

 

 

 

 



 

1 

CHAPTER 1 

INTRODUCTION 

 

Specific Aims 

Non-healing bone defects have a significant socioeconomic impact in the U.S. 

with approximately 600,000 bone grafting procedures performed annually (Bucholz 

2002).  Current clinical treatment of large bone defects employs the use of autografts and 

allografts; however, autografts can cause donor site morbidity and pain and must be taken 

from a limited supply of donor bone, while allografts may have poor mechanical 

properties and present a risk of disease transmission (Meyer et al. 2004; Hutmacher and 

García 2005).  As an alternative approach for bone repair, tissue engineering and 

regenerative medicine strategies are being developed to address the problems associated 

with current bone grafting procedures.  Many of these strategies make use of a 

mineralizing cell source that is delivered to a defect site to promote bone formation.  

However, the identification of the ideal cell source for bone tissue engineering remains to 

be uncovered.  The overall objective of this work was to develop bone tissue engineering 

strategies that enhance healing of orthotopic defects by targeting specific osteogenic cell 

signaling pathways.  These specific targeting strategies, which exert control over donor 

and host cell signaling pathways, address the current limitations of cell sourcing for bone 

tissue engineering by increasing the osteogenic capacity of donor cells or by promoting 

host osteogenesis in the absence of donor cells.  These strategies improve upon existing 

bone tissue engineering strategies and present valuable alternatives for clinical healing of 

large bone defects. 
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 Bone marrow stromal cells (BMSCs) are a heterogeneous population of 

multipotent cells, easily obtained from the bone marrow, that have the ability to 

differentiate towards the osteogenic, chondrogenic or adipogenic lineages (Pittenger et al. 

1999).  However, the growth rate and osteoblastic differentiation potential of BMSCs is 

negatively affected by ex vivo manipulation and expansion of the cells (Derubeis and 

Cancedda 2004).  Runx2 is an osteoblast-specific transcription factor that upregulates 

osteoblast-specific genes and promotes osteoblastic differentiation of BMSCs both in 

vitro and in vivo (Byers and García 2004).  For this work, we hypothesized that the 

delivery of BMSCs, genetically modified to overexpress Runx2, into critically-sized 

orthotopic defects would facilitate increased healing of the defects compared to delivery 

of unmodified BMSCs. 

 Synthetic polymeric scaffolds have been used to deliver cells and growth factors 

to critically-sized orthotopic defects to facilitate defect healing (Rohner et al. 2003; 

Schantz et al. 2003; Oest et al. 2007).  However, polymeric scaffolds alone are not 

sufficient for repair of critically-sized defects.  Recently, the use of biomimetic strategies 

which attempt to recapitulate the environment of the bone ECM have been used to 

promote osseointegration and bone formation in vivo (Hubbell 2003).  In particular, 

surface modification of titanium implants with the synthetic peptide GFOGER, derived 

from collagen I, has been shown to significantly increase osseointegration and implant 

fixation in vivo to levels greater than that of unmodified titanium implants or implants 

coated with full length collagen I (Reyes et al. 2007).  Furthermore, GFOGER signaling 

occurs via binding of the α2β1 integrin receptor and upregulation of Runx2 (Xiao et al. 

1998).  Therefore, we further hypothesized that surface modification of synthetic polymer 
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scaffolds with the peptide, GFOGER, would significantly improve healing of critically-

sized orthotopic defects compared to unmodified scaffolds without the use of cells or 

growth factors.  These hypotheses were tested via the following three specific aims: 

 

1. To examine the Runx2-induced osteogenic potential of BMSCs from an inbred rat 

strain compared to that of BMSCs from a previously established outbred rat strain. 

 

 Genetic modification of BMSCs with Runx2 upregulates the expression of 

osteoblast-specific genes and subsequently increases mineralization in BMSCs isolated 

from Wistar rats, an outbred rat strain (Byers and García 2004).  To proceed with in vivo 

studies, we were interested in using inbred rats to address concerns with immune 

rejection of implanted cells.  However, strain differences in rats affect a number of 

physiological processes, such as skeletal development and ectopic bone formation 

(DeMoss and Wright 1998; Li et al. 2003).  Our hypothesis for this aim was that the 

strain of rat from which BMSCs were isolated would affect the in vitro osteogenic 

potential of BMSCs but that Runx2 modification would remain effective in promoting 

osteoblastic differentiation.  We tested this hypothesis by harvesting BMSCs from both 

Lewis and Wistar rats, an inbred and outbred strain, respectively.  Osteogenic potential of 

all cells was quantified via alkaline phosphatase activity and in vitro mineralization of 2D 

surfaces.  Furthermore, the effect of Runx2 modification and passage number on all cell 

types was assessed.   
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2. To evaluate bone regeneration and mechanical strength induced by Runx2-

engineered BMSCs in critically-sized segmental defects. 

 

 The implantation of BMSCs, engineered to overexpress Runx2, causes significant 

healing of critically-sized rat calvarial defects compared to treatment with unmodified 

BMSCs (Byers et al. 2006).  Although these results are promising, segmental defects 

provide a more rigorous test bed than calvarial defects for bone tissue engineering by 

eliminating the host response from the cranial periosteum and underlying dura mater 

(Aalami et al. 2003).  For this aim, we hypothesized that delivery of Runx2 modified 

BMSCs to critically-sized segmental defects would significantly increase bone formation 

and mechanical strength of defects compared to treatment with unmodified BMSCs.  To 

test this hypothesis, we seeded BMSCs, retrovirally-transduced to overexpress Runx2, 

onto PCL scaffolds and implanted the cell/scaffold constructs into critically-sized defects 

in rat femurs.  Control groups included empty defects, cell-free scaffolds, and scaffolds 

seeded with unmodified BMSCs or empty-vector-modified BMSCs.  Bone volume in 

defects was quantified at 4, 8 and 12 weeks via microCT.  Postmortem analysis of 

explanted samples included histology, FTIR, and mechanical testing. 

 

3. To evaluate the extent of bone regeneration and mechanical strength induced by 

GFOGER-modified PCL scaffolds in critically-sized orthotopic defects. 

 

 Although the synthetic polymer, PCL, can be used as a biomaterial for bone tissue 

engineering scaffolds (Zein et al. 2002; Byers et al. 2006), the surface hydrophobicity of 
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these scaffolds causes non-specific protein adsorption, resulting in a non-specific cell 

signaling response.  For this aim, we hypothesized that incorporation of the bioadhesive 

molecule, GFOGER, into synthetic bone scaffolds would promote healing of critically-

sized bone defects without the use of cells or growth factors.  We tested this hypothesis 

by passively adsorbing GFOGER onto PCL scaffolds and implanting GFOGER-coated 

scaffolds into critically-sized defects in rat femurs.  Control groups included empty 

defects and uncoated PCL scaffolds.  Bone volume in defects was quantified at 4, 8 and 

12 weeks via microCT.  Postmortem analysis of explanted samples included histology 

and mechanical testing. 

   

 This work is innovative because it uses novel genetic and extracellular cues for 

osteoblastic differentiation and mineralization to address the issue of cell sourcing, a 

common problem for tissue engineered constructs.  By engineering BMSCs to 

overexpress Runx2, issues with donor variation and ex vivo manipulation of BMSCs are 

abrogated.  Furthermore, surface modification of synthetic scaffolds with GFOGER, 

confers biofunctionality to otherwise non-bioactive substrates and promotes specific 

signaling to host cells, thereby eliminating the need for donor cells. We expect that 

development of these tissue engineering approaches to bone regeneration will provide a 

clinically-relevant strategy for the treatment of bone defects by eliminating the need for 

donor bone and employing well-controlled signals for bone formation. 
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CHAPTER 2 

BACKGROUND 

 

Bone Structure and Repair  

Structure 

 Bone is a highly organized tissue that can be categorized into several structural 

types.  In particular, long bones, the focus of this dissertation, are composed of a cortical 

shaft with trabecular bone on either end.  Cortical bone is dense and comprises about 

80% of the human skeleton, while trabecular bone consists of an array of plates and rods 

that form a lattice-like structure (Liebschner 2004).  In the present work, where bone 

tissue engineering strategies are evaluated in segmental defects created in long bones, 

structural and functional recapitulation of cortical bone is the goal. 

At the microstructural level, normal adult human cortical bone is arranged into 

osteons and lamellar sheets.  Osteons are formed when planar sheets of mineralized 

collagen fibers called lamellae form concentric rings around an open channel.  Lamellae 

can also form parallel arrays called circumferential lamellar bone (Rho et al. 1998).  

Although lamellar bone is common to all vertebrate animals, generally only large animals 

have osteonal lamellar organization, whereas the skeletons of small animals are primarily 

arranged in lamellar plates.  The particular arrangement of lamellae within cortical bone 

lends structural support to the tissue, creating a niche for the characterization of structure 

function relationships in bone.  However, the complexity of bone tissue and the difficulty 

in measuring the mechanical properties of bone on a molecular level make this task 
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challenging.  To date, the structure function relationship in lamellar bone has not been 

fully elucidated (Weiner et al. 1999). 

Bone repair 

 Bone is one of the few tissues with the unique ability to regenerate after injury 

with full restoration of function to the injured site.  The process of bone repair is highly 

complex and involves the coordination of many different cell and tissue types to produce 

the desired response.  There are four main tissue types that contribute to fracture healing 

in bone (Figure 2.1), which participate in both endochondral and intramembranous bone 

formation (Einhorn 1998).  The general process involves hematoma formation and 

inflammation, leading to development of a soft tissue callus surrounding the defect site, 

which is eventually mineralized and remodeled into mature lamellar bone (Einhorn 1998; 

Duvall et al. 2007).  This process occurs naturally after injury to bone tissue; however, 

successful healing is only realized in fractures that do not result in substantial bone loss.  

Defects resulting in non-union of the injured tissue require clinical therapy for healing. 

 

Figure 2.1.  The tissue types that contribute to fracture healing in bone.  
(adapted from Einhorn 1998) 
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Clinical Repair of Bone Defects 

Although fracture repair of long bones occurs successfully with little to no 

surgical intervention, non-unions, in which a large portion of the bone is injured or must 

be resected, will remain as open defects until treated.  The gold standard for clinical 

treatment of non-unions remains as the autograft, followed closely in number of 

treatments by allograft.  However, recent use of bone morphogenetic proteins (BMPs) to 

treat large bone defects in humans is a newly emerging standard of care despite its high 

cost.  These therapies, along with other current clinical treatments, will be discussed. 

Autografts and Allografts 

 In 2002, it was estimated that 600,000 bone grafting procedures were performed 

annually in the U.S., consisting of spinal fusions, general orthopaedic procedures, and 

synthetic bone grafts (Bucholz 2002).  In 2004, approximately $5 billion was invested in 

more than 1,000,000 procedures involving bone grafting, bone excision and fracture 

repair (Kretlow and Mikos 2007).  Autografts remain the gold standard for orthopaedic 

replacement procedures, including cases of non-union in long bones or 

craniomaxillofacial procedures.  The graft material is most commonly taken from the 

iliac crest providing both an osteoconductive matrix for bone cell adhesion and an 

osteoinductive growth factor environment promoting osteoblastic differentiation (De 

Long et al. 2007).  Furthermore, because bone is transferred from one site in the patient 

to another site in the same patient, autografts elicit no immunogenic host response.  

However, the repair of large bone defects in humans remains a significant clinical 

problem despite successful healing of defects treated with autografts.  Although 
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autografts contain the appropriate cues for osteogenesis and elicit no immunogenicity, 

donor site morbidity and pain affect as many as 30% of patients who have undergone a 

bone harvest from the iliac crest (Gottfried and Dailey 2008; Rawashdeh and Telfah 

2008).   

 Approximately 1/3 of all bone grafts in North America are allografts, where 

cadaveric bone is taken from an unrelated donor and frozen until use (De Long et al. 

2007).  Allografts are widely used to address the issue of donor tissue availability for 

autografts; however, they present a different set of problems.  Because bone is transferred 

from donor to patient, graft material may be infected or cause a significant 

immunological host response.  The process of freezing allografts has reduced immune 

issues, but major infections causing graft failure are still reported to occur in about 8% of 

patients.  Furthermore, extensive processing of allografts causes poor mechanical 

properties and increased rates of resorption and fracture, leading to graft failure rates as 

high as 50% (Sorger et al. 2001; Mankin et al. 2005) and leading many researchers to 

investigate alternative strategies.  

Bone Morphogenetic Proteins 

 The first well documented study of bone formation by osteoinduction was 

described by Marshall Urist in 1965 by the implantation of demineralized bone matrices 

into ectopic sites in rabbits and rodents (Urist 1965).  From this experiment came the 

discovery and characterization of bone morphogenetic proteins (BMPs), soluble growth 

factors that work through Smad-dependent signaling pathways to promote osteoblastic 

diffentiation (Derynck and Zhang 2003).  More than 15 individual BMPs have now been 

identified and several studies have shown that BMP-2 and BMP-7 promote healing of 
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critically-sized bone defects in both small and large animals (Yasko et al. 1992; Cook et 

al. 1994; Cook et al. 1994; Cook et al. 1995) and in humans (Govender et al. 2002).  

Additionally, BMP-2 and BMP-7 are currently approved for human use in the United 

States and Europe (Boden 2005; Bishop and Einhorn 2007; Vaibhav et al. 2007), making 

treatment with BMPs a newly emerging standard of care that may soon replace autografts 

as the gold standard of treatment. 

 Although the use of BMPs in clinical repair of bone defects has demonstrated 

success, several factors contribute to the continued search for bone tissue engineering 

alternatives.  First, the residence time of BMP in a defect site following localized delivery 

directly affects its osteogenic potential.  As a soluble factor, diffusion of BMP away from 

the delivery site decreases the amount of bone formed in an implant (Uludag et al. 2000).  

Efforts are being made to increase BMP residence time at the defect site (Yamachika et 

al. 2009).  Second, the dosage of BMPs required to stimulate bone formation in large 

bone defects in humans far exceeds the successful working dosage described in 

preclinical trials.  In fact, one vial of BMP-7 contains as much BMP-7 as is found in two 

entire human skeletons.  Thus, production of enough recombinant protein for one vial of 

BMP for human use is a very costly procedure (Alt and Heissel 2006; Bishop and 

Einhorn 2007; Cancedda et al. 2007). 

Synthetic Bone Grafts:  Calcium phosphates 

  Despite the increasing need for more suitable bone replacement therapies, 

synthetic bone graft substitutes make up only about 10% of all clinical bone grafting 

procedures (Bucholz 2002).  Most of FDA approved synthetic grafts are composed of 

hydroxyapatite or other ceramic composites which possess inherent osteoconductive 



 

 13 

properties.  Pro-Osteon, the first bone graft substitute to gain FDA approval, is an 

interporous hydroxyapatite material derived from coral with a natural architecture similar 

to that of native human cancellous bone.  Blocks of the material can be milled to fit the 

shape and size of a defect, and bone forms readily within and around the implant, making 

it an effective filler.  Due to the brittle nature of hydroxyapatite, Pro-Osteon is restricted 

to use in non-loaded defects, or defects in which internal rigid fixation is applied.  For the 

FDA-approved product, Vitoss, small beta-tricalcium phosphate particles are formed into 

a 90% porous matrix.  The resulting scaffold has both microscale and macroscale 

porosity, aiding in nutrient diffusion through the scaffold.  Furthermore, this material has 

a resorption rate similar to that of native bone, which is conducive to eventual remodeling 

of treated defects.  Collagraft is a composite scaffold consisting of porous calcium 

phosphate granules contained with a matrix of bovine-derived collagen fibrils.  Before 

implantation, autogenous bone marrow is added to the scaffold.  Collagraft has 

demonstrated similar results to autograft in clinical trials.  These products join an ever 

growing list of commercially available calcium phosphate grafts (De Long et al. 2007). 

Autologous bone marrow progenitor cells 

 Although not yet common practice, the use of autogenous bone marrow derived 

cells for clinical treatment of non-unions has recently gained attention.  The first clinical 

report of the use autologous bone marrow progenitor cells for treatment of large bone 

defects in humans was in 2001 by Quarto and colleagues (Quarto et al. 2001).  Three 

patients with substantial defects in their long bones (4 cm defect in the tibia, 4 cm ulna, 

and 7 cm humerus) underwent bone marrow harvests from the iliac crest, and the cells 

were cultured ex vivo according to previous methods (Martin et al. 1997).  
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Hydroxyapatite scaffolds were modified to fit the size and shape of each defect, and cells 

were seeded onto scaffolds prior to implantation.  Six months to one year after surgery, 

external fixation was removed, and all patients had recovered normal limb function.  In a 

6-7 year follow-up study, which included a fourth patient with a 6cm defect in the ulna, 

all patients demonstrated complete bone implant integration as determined by 

radiography and CT analysis (Marcacci et al. 2007).  The success of these studies 

warrants further investigation of the use of autologous BMSCs in treating clinical non-

unions.  However, no subsequent reports have been made. 

Bone Tissue Engineering Strategies 

As an alternative approach to current clinical bone repair, tissue engineering and 

regenerative medicine strategies are being developed to address the problems associated 

with current bone grafting procedures (Hutmacher and García 2005; Awad et al. 2007; 

Cancedda et al. 2007; Kimelman et al. 2007).  These strategies involve the development 

of tissue-engineered cell/scaffold constructs, whereby cells on synthetic scaffolds are 

implanted into a defect site, directly associate with native host tissue, and eventually 

restore natural tissue structure and function (Langer and Vacanti 1993).  For bone 

regeneration, tissue engineering strategies focus on the isolation and control of a 

mineralizing cell source as well as the development of scaffolds with relevant mechanical 

properties and appropriate pore volumes (Guillot et al. 2007; Kretlow and Mikos 2007). 

Cell types 

An appropriate cell source for bone tissue engineering must address several 

criteria.  First, cells must be available in abundant quantities and non-invasively obtained 

from the patient.  Further, transplantation of the cells should be safe and pose no risk of 
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disease transmission to the patient (Gimble et al. 2007).  Many cell types for bone tissue 

engineering are currently being investigated, the most common of which is bone marrow 

stromal cells. 

Bone marrow stromal cells (BMSCs) are easily obtained from bone marrow 

aspirates and have the ability to differentiate down several mesodermal tissue lineages 

(Pittenger et al. 1999).  BMSCs provide an appropriate autologous cell source for human 

bone tissue regeneration (Bruder et al. 1994; Quarto et al. 2001; Derubeis and Cancedda 

2004).  They can be extracted in large quanties from the iliac crest with minimal donor 

site morbidity (De Long et al. 2007), can be expanded in culture, and respond to intra- 

and extracellular cues for differentiation (Majors et al. 1997). BMSCs have the capability 

of differentiating into osteoblasts, among other cell types of the mesodermal lineage, and 

they mineralize constructs both in vitro and in vivo (Goshima et al. 1991; Ishaug et al. 

1997; Krebsbach et al. 1997; Cartmell et al. 2004).  BMSCs also enhance bone healing in 

critically-sized orthotopic defects in rodents and large animals compared to treatment 

with a scaffold alone (Werntz et al. 1996; Bruder et al. 1998; Kon et al. 2000; Petite et al. 

2000).  Recent evidence suggests that BMSCs may also be used as an allogeneic cell 

source due to the secretion of immunosuppressive trophic factors (Caplan 2007), making 

these cells a good source for “off the shelf” tissue engineering strategies. 

Although BMSCs are an appropriate cell source for bone tissue engineering, 

extensive in vitro culture causes morphology changes, reduction in proliferation rate, and 

reduced osteogenic differentiation ability (Banfi et al. 2000; Derubeis and Cancedda 

2004; Yeon Lim et al. 2006). Furthermore, the mineralization potential and proliferation 

rate of BMSCs varies widely with individual donors and is significantly affected by 
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donor age (Phinney et al. 1999; Mendes et al. 2002; Kretlow et al. 2008).  These 

variations in BMSC function imply that the treatment of large bone defects with 

autologous BMSCs may not produce effective results for all patients.  Alternative cell 

types with osteogenic potential for bone tissue engineering are currently being explored.  

Initial work with adipose-derived stem cells and amniotic fluid stem cells have shown 

promising potential for the ability of these cells to differentiate down an osteoblastic 

lineage (Muschler et al. 2004; Gimble et al. 2007; Ilancheran et al. 2007).  However, the 

search for the ideal cell source for bone tissue engineering continues. 

Gene therapy 

To improve the osteogenic potential of cells used for bone tissue engineering, 

gene therapy strategies, which force overexpression or silencing of a target gene in a 

given cell population have been developed.  Genetic modification of cells can be 

achieved through a variety of carriers, may promote stable or transient gene expression, 

and can be applied in vivo or ex vivo (Gersbach et al. 2007).  Extensive work has focused 

on the delivery of BMPs to promote osteoblastic differentiation of cells delivered to bone 

defect sites (Hanada et al. 1997; Gazit et al. 1999; Huang et al. 2005; Edgar et al. 2007; 

Hsu et al. 2007). Ex vivo gene transfer of BMP-2 to BMSCs accelerates the time course 

of bone defect healing compared to treatment with unmodified BMSCs (Lieberman et al. 

1999; Baltzer et al. 2000; Blum et al. 2003). 

In addition to BMP, gene therapy strategies targeting osteoblast-specific 

transcription factors, such as Runx2 and, more recently, osterix, have been used to 

increase the bone forming potential of the target cell population.  Runx2/Cbfa1 and 

osterix are transcription factors that upregulate the expression of many osteoblast-specific 
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genes, such as osteopontin, osteocalcin, bone sialoprotein and collagen I (Ducy et al. 

1997; Nakashima et al. 2002).  Osterix acts downstream of Runx2, such that forced 

overexpression of osterix in BMSCs does not upregulate Runx2, and Runx2 null mice do 

not express osterix (Nakashima et al. 2002; Tu et al. 2006).  The role of Runx2 in 

osteoblastic differentiation has been demonstrated both in vitro and in vivo, in human and 

rodent systems (Otto et al. 1997; Shui et al. 2003).  Furthermore, retroviral delivery of 

Runx2 to rodent BMSCs promotes osteoblastic differentiation of these cells even after 

multiple passages in vitro (Byers and García 2004; Byers et al. 2006). 

Skeletal abnormalities have been observed in the absence of Runx2 function.  For 

example, transgenic mice expressing a dominant negative form of Runx2 develop 

abnormally even after normal embryonic development (Ducy et al. 1999).  Homozygous 

deletion of Runx2 in mice results in embryonic lethality and a complete lack of bone 

formation (Komori et al. 1997; Otto et al. 1997), while heterozygous Runx2 mutant mice 

show impaired mineralization and bone formation compared to wild-types (Otto et al. 

1997).  Finally, the human disease, cleidocranial dysplasia, occurs as a result of genetic 

mutations in Runx2 (Lee et al. 1997; Mundlos et al. 1997; Zhang et al. 2000). 

Forced overexpression of Runx2, therefore, has been used to promote 

osteogenesis in vitro and in vivo in BMSCs (Byers and García 2004), and recent use of 

osterix has produced similar results (Tu et al. 2006).  Interestingly, Runx2 overexpression 

also causes osteoblastic differentiation in non-osteoblastic cell lineages, such as 

myoblasts and dermal fibroblasts (Gersbach et al. 2004; Gersbach et al. 2004; Phillips et 

al. 2007), demonstrating the nature of Runx2 as a molecular switch in osteoblast biology 

(Ducy 2000).  Recently, several studies have shown that Runx2-modified or osterix-
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modified BMSCs delivered to cranial defects in rodents significantly increase defect 

healing compared to unmodified BMSCs (Zheng et al. 2004; Zhao et al. 2005; Byers et 

al. 2006; Tu et al. 2007), pointing to gene therapy strategies which incorporate 

transcription factors as a viable alternative to BMP gene delivery. 

Synthetic and Biomimetic Scaffolds 

Delivery of a therapeutic load of genetically-modified or unmodified BMSCs to a 

critically-sized bone defect requires a support scaffold that is well-suited for bone 

regeneration. Ideal bone tissue engineering scaffolds have mechanical properties that 

match those of the host tissue, allow new tissue ingrowth and removal of waste products 

through an interconnected pore volume, exhibit biocompatibility in the implant site, and 

support cell adhesion, proliferation and differentiation (Hutmacher et al. 2001).  The 

most commonly used synthetic polymers for bone tissue engineering are poly(lactic acid) 

(PLA), poly(glycolic acid) (PGA), and their copolymers of poly(lactic-co-glycolic acid) 

(PLGA) (Liu and Ma 2004; Rezwan et al. 2006).  PLGA foams support osteoblastic 

differentiation and bone formation both in vitro (Ishaug et al. 1997) and in vivo (Fialkov 

et al. 2003; Karp et al. 2003).  Poly(ε-caprolactone) (PCL) is another synthetic polymer 

suitable for bone tissue engineering applications, that can be formed into scaffolds by 

fused deposition modeling to create unique architectures and variable pore sizes (Zein et 

al. 2002).  PCL promotes cell-based mineralization both in vitro (Cao et al. 2003; 

Schantz et al. 2003; Byers et al. 2004; Phillips et al. 2006; Zhou et al. 2007) and in vivo 

(Rohner et al. 2003; Schantz et al. 2003; Byers et al. 2006; Rai et al. 2007) and is well 

tolerated in vivo.    Poly(L-lactide-co-D,L-lactide) (PLDL) is a synthetic polymer with 

degradation and mechanical properties appropriate for bone tissue (Cartmell et al. 2004).  
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PLDL promotes cellular mineralization in vitro (Cartmell et al. 2004) and in vivo (Oest et 

al. 2007), and it can be fabricated with longitudinally oriented pores as well as randomly 

dispersed, interconnected pores within the same scaffold  (Lin et al. 2003). 

While synthetic polymeric scaffolds support bone ingrowth and mineralization, 

composite structures and surface modifications improve the osteogenic response.  For 

example, various PCL/ceramic composites, such as PCL/tricalcium phosphate (TCP) and 

PCL/hydroxyapatite increase cell proliferation and matrix deposition rate (Zhou et al. 

2007), alkaline phosphatase activity (Venugopal et al. 2007) and mineralization (Causa et 

al. 2006; Wutticharoenmongkol et al. 2007) compared to PCL scaffolds alone.  

Furthermore, chemical surface modification, such as ion irradiation, enhances cell 

adhesion and osteoblastic differentiation (Amato et al. 2007; Marletta et al. 2007).   

To more specifically modulate the osteoblastic response to synthetic materials, 

surface biofunctionalization strategies which mimic the extracellular matrix allow precise 

control over cell signaling and differentiation (García and Reyes 2005). These strategies 

attempt to recapitulate the signaling environment of the bone ECM and have been used to 

promote osseointegration and bone formation in vivo (Hubbell 2003).  For example, short 

immobilized peptide sequences derived from ECM proteins, such as the RGD sequence 

from fibronectin, have been used to promote cell attachment to titanium implants as an 

improved method of implant fixation and osseointegration (Ferris et al. 1999; Bernhardt 

et al. 2005; Elmengaard et al. 2005).  These strategies take advantage of the specific 

interactions between ECM protein ligands and integrin cell surface receptors. 

 The integrin receptors play a crucial role in cell attachment and ECM-mediated 

cell signaling.  Integrin dimers, consisting of one α and one β subunit, bind specifically 
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to active sites contained within ECM proteins, thereby promoting cell attachment, 

migration, mechanotransduction, and numerous other cell functions (Clark and Brugge 

1995; Hynes 2002).  In particular, the specific interactions of fibronectin with the α5β1 

integrin and of type I collagen with the α2β1 integrin have been shown to mediate 

osteoblast differentiation and subsequent mineralization of osteoblastic and pre-

osteoblastic cells (Moursi et al. 1997; Takeuchi et al. 1997; Xiao et al. 1998; Jikko et al. 

1999; Mizuno et al. 2000).  The α2β1 receptor is highly expressed on the surface of 

osteoblastic cells (Gronthos et al. 1997), and α2β1 activation is presently known to occur 

via binding of distinct adhesive sites contained within collagen I, namely DGEA and 

GFOGER (Xiao et al. 1998; Knight et al. 2000).   Isolation of the active binding 

sequence, GFOGER, via synthetic fabrication of a triple helical GFOGER peptide, allows 

engineered control over osteoblastic differentiation of cells on GFOGER coated 2D 

surfaces (Reyes and García 2003; Reyes and García 2004).  Interestingly, the use of 

GFOGER as an implant coating for titanium tibial plugs in rats enhances osseointegration 

in vivo to levels greater than that of uncoated implants or implants coated with full length 

collagen I (Reyes et al. 2007).  This collagen mimetic strategy for osseointegration 

specifically targets osteoblastic cells through α2β1-mediated signaling by eliminating 

extraneous binding sites contained in the full length protein.  Furthermore, the 

synthetically derived peptide is cheap and easy to fabricate and poses no risk of disease 

transmission.  

 Another collagen mimetic peptide, termed P-15, exhibits collagen-mimetic cell 

signaling when used as a surface coating and promotes osteoblastic differentiation and 

mineralization on anorganic bone matrices in vitro (Qian and Bhatnagar 1996; Bhatnagar 
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et al. 1999; Yang et al. 2004).  Preclinical studies using P-15/ABM implants in 

orthotopic defects have demonstrated successful defect healing, and numerous case 

reports have demonstrated successful healing in humans due to P-15/ABM implants 

(Scarano et al. 2003; Cakmak et al. 2006; Gomar et al. 2007; Trombelli and Farina 

2008).   

Animal models 

Presently, no standard procedure for evaluating bone tissue engineering strategies 

in large and small animal models exists (Reichert et al. 2009).  Researchers often test 

subcutaneous implantations as a first level evaluation of the tissue engineered construct.  

If substantial mineralization is formed subcutaneously, intramuscular implantation may 

be studied at an alternative ectopic site.  However, while these strategies provide initial 

insight into implant-host interaction and can verify survival and function of implanted 

cells, no information regarding successful healing of a large bone defect can be obtained.  

For functional assessment of the implant, an orthotopic model must be used. 

To test the advantage of an implantation strategy in bone, a critically-sized defect 

must be established for each animal model and each anatomic location.  A critically-sized 

defect is defined by the inability of the defect to heal without surgical intervention and is 

the appropriate test bed for bone tissue engineering strategies.  For many models, the 

critical size of the defect is approximately a length 2 to 2.5 times the diameter of the bone 

(Reichert et al. 2009).  For example, a rat femur is approximately 4 mm in diameter, and 

a defect of 8 mm has shown consistent non-union (Oest et al. 2007; Rai et al. 2007).  On 

the other hand, 3-5 mm defects have been tested in rat femurs with varying results. 



 

 22 

In addition to size of the defect, many other factors must be considered when 

developing an animal model for bone tissue engineering strategies.  Most importantly, the 

model should mimic the human setting for which the strategy is being developed as 

closely as possible.  For example, the cranial defect model provides relevant information 

regarding the healing of craniofacial defects.  However, conflicting evidence regarding 

the role of periosteum, dura mater, and surrounding healthy bone tissue in cranial defect 

healing makes separation of host response from treatment effect difficult in this model 

(Aalami et al. 2003).  In particular, dura mater has been shown to have a significant 

effect on cranial defect healing (Ozerdem et al. 2003).  Therefore, a cranial model may 

not be an appropriate test bed for strategies aimed at healing defects in long bones, where 

contributions from the dura mater are not present. 

 Another aspect for consideration in animal models for bone tissue engineering is 

the methods used to evaluate healing. Many studies that report successful healing of bone 

defects rely solely on a combination of X-ray analysis and histological evaluation as a 

measure of defect healing.  However, these methods do not provide functional 

information, which is necessary to fully evaluate the success of a given treatment strategy 

for bone healing (Liebschner 2004).  Bone quality is a description of all skeletal aspects 

of bone, except bone mass, that affect bone strength, such as shape, size, and trabecular 

connectivity.  (Hernandez and Keaveny 2006). Recent evidence suggests that patients 

with a high level of bone turnover may be at higher risk for bone fracture regardless of 

their bone mineral density (Hernandez 2008).  Therefore, models which only evaluate 

bone volume or percent area of the defect healed via radiographic and histological 

methods are not enough to fully characterize the extent of bone defect healing.  
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Functional mechanical evaluation of bone defects should be used in conjunction with 

other methods for complete analysis of both bone mass and bone quality.   
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CHAPTER 3 

EFFECTS OF RAT STRAIN AND CULTURE METHODS ON 

RUNX2-ENHANCED OSTEOBLASTIC DIFFERENTIATION AND 

MINERALIZATION IN BONE MARROW STROMAL CELLS* 

 

Introduction 

Bone marrow stromal cells (BMSCs) are a heterogeneous population of 

progenitor cells, easily obtained from the bone marrow, that have the potential to 

differentiate along several tissue lineages, including adipogenic, chondrogenic, and 

osteogenic (Pittenger et al. 1999).  Because of their stem cell-like nature, BMSCs have 

been explored as a possible cell source for many tissue engineering applications, 

including bone tissue engineering (Haynesworth et al. 1992; Bruder et al. 1994; Quarto et 

al. 2001; Derubeis and Cancedda 2004).  However, in vitro expansion of BMSCs, a 

necessary step in obtaining sufficient cell numbers for therapeutic applications, results in 

a significant decrease in BMSC proliferation rate and osteoblastic differentiation and 

mineralization (Banfi et al. 2000; Lim et al. 2006).  To overcome these limitations, 

Runx2 genetic modification has been employed as a method of maintaining the 

osteogenic potential of these cells even after multiple passages in vitro (Byers and García 

2004; Byers et al. 2006). 

Runx2/Cbfa1 is an osteoblast-specific transcription factor that upregulates the 

expression of many osteoblast-specific genes, such as osteopontin, osteocalcin, bone 

sialoprotein and collagen I (Ducy et al. 1997).  The role of Runx2 in osteoblastic 

*Adapted from Wojtowicz AM and García AJ. JTERM, in revision. 
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differentiation has been demonstrated both in vitro and in vivo, and in both human (Shui 

et al. 2003) and rodent systems (Otto et al. 1997).  Furthermore, skeletal abnormalities 

have been observed in the absence of Runx2 function.  For example, transgenic mice 

expressing a dominant negative form of Runx2 develop abnormally even after normal 

embryonic development (Ducy et al. 1999).  Homozygous deletion of Runx2 in mice 

results in embryonic lethality and a complete lack of bone formation (Komori et al. 1997; 

Otto et al. 1997), while heterozygous Runx2 mutant mice show impaired mineralization 

and bone formation compared to wild-types (Otto et al. 1997).  Finally, the human 

disease, cleidocranial dysplasia, occurs as a result of genetic mutations in Runx2 (Lee et 

al. 1997; Mundlos et al. 1997; Zhang et al. 2000).  Forced overexpression of Runx2, 

therefore, has been used to promote osteogenesis in vitro and in vivo in bone marrow 

stromal cells (Byers and García 2004; Zheng et al. 2004; Zhao et al. 2005; Byers et al. 

2006).  Interestingly, this phenomenon has also been demonstrated in non-osteoblastic 

cell lineages, such as myoblasts and dermal fibroblasts (Gersbach et al. 2004; Gersbach 

et al. 2004; Phillips et al. 2007), demonstrating the role of Runx2 as a molecular switch 

in osteoblast biology (Ducy 2000). 

Although Runx2 genetic engineering provides a way to overcome the reduced 

osteogenic potential of in vitro expanded-BMSCs, it should be noted that in vitro 

expansion is not the only variable that affects BMSC function.  Isolation and culture 

procedures strongly influence BMSC growth rate and osteogenic differentiation potential 

(Phinney et al. 1999) as well as alkaline phosphatase-positive colony forming units 

(CFUs) (Muschler et al. 1997).  Culture conditions, such as serum source, media 

composition and even media volume, modulate osteogenic differentiation (Jaiswal et al. 
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1997; Anselme et al. 2002; Mendes et al. 2002; Abdallah et al. 2006).  Finally, donor age 

has been shown to affect the growth rate of human BMSCs older than 40 years of age 

(Mendes et al. 2002), but not that of BMSCs when donors were younger than 40 years of 

age (Phinney et al. 1999).  Taken together, these studies illustrate that cell source (i.e. 

donor) and culture conditions affect the function of BMSC populations. 

In the present work, we examined the osteogenic differentiation and 

mineralization capacity of unmodified and Runx2-modified BMSC populations isolated 

from commonly used strains of rats.  We compared cells isolated from Lewis rats, an 

inbred strain, to those isolated from Wistar rats, an outbred strain.  We demonstrate that 

the BMSC population derived from Wistar rats has a greater propensity for retroviral 

Runx2 transduction than the population derived from Lewis rats, but that Lewis BMSC 

populations have a greater capacity for subsequent osteoblastic differentiation than 

Wistar BMSC populations. 

Materials and Methods 

Cell harvest and isolation 

Rat BMSCs were isolated from the hind legs of young Lewis or Wistar rats 

(Charles River Labs) by commonly used methods (Javazon et al. 2001; Byers and García 

2004).  Briefly, the rats were euthanized by CO2 asphyxiation (protocol approved by the 

Institutional Animal Care and Use Committee at the Georgia Institute of Technology), 

and the hind-limbs removed, taking care to minimize bleeding and subsequent clotting.  

Surrounding soft tissue was removed from each bone, and the separated femurs and tibias 

were soaked in cell culture media consisting of αMEM (Invitrogen) + 1% penicillin-

streptomycin (Invitrogen) + 10 or 20% fetal bovine serum (FBS – HyClone).  The 
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epiphyses of each bone were removed and the marrow was flushed from the diaphysis of 

the bone into a sterile tube.  The marrow pellet was centrifuged, resuspended, and then 

transferred to tissue culture-grade polystyrene (Corning). 

Two different methods of stromal cell isolation were tested.  Both methods begin 

as described above but differ after plating.  Method 1 involves a 30 minute incubation 

step, whereby plated cells are maintained at 37oC for 30 minutes, after which time, non-

adherent cells are removed and replated, while those that have adhered are discarded.  

This procedure is designed to remove monocytes/macrophages from the heterogeneous 

BMSC population.  Method 2 does not include this adhesion-selection step, and cells are 

plated onto tissue culture-grade polystyrene immediately following centrifugation. 

The following three strain/culture condition groups were examined: 

1. Lewis BMSC harvested without the 30-min adhesion-selection step, isolated in 

20% FBS, then switched to 10% FBS after one week.  This group is referred to as 

Lewis (serum). 

2. Lewis BMSC harvested without the 30-min adhesion-selection step, isolated and 

cultured in 10% FBS throughout culture.  This group is referred to as Lewis. 

3. Wistar BMSC harvested with the 30-min adhesion-selection step, isolated and 

cultured in 10% FBS throughout culture.  This group is referred to as Wistar. 

Runx2 retroviral transduction 

Following isolation, cells were expanded to passage 3 or passage 5 in αMEM + 

1% penicillin-streptomycin + 10% FBS (Invitrogen), and then plated at 5 000 cells/cm2 in 

6 well plates (Corning) coated with type I collagen (MP Biomedicals).  For each 

strain/culture condition, four treatment groups were examined: (i) Runx2-engineered 
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cells, (ii) Runx2-engineered cells + dexamethasone (dex, 10 nM), (iii) unmodified cells, 

and (iv) unmodified cells + dex.  Dex is a synthetic glucocorticoid that induces 

osteoblastic differentiation of BMSCs in vitro (Maniatopoulos et al. 1988; Cheng et al. 

1994).  Genetically engineered cells were transduced with Runx2 retrovirus as previously 

described (Byers et al. 2002).  Two days after transduction, culture media was 

supplemented with 50 µg/mL ascorbic acid and 3 mM Na β-glycerophosphate.  All 

media supplements were purchased from Sigma.  Media was changed every 2-4 days. 

Flow cytometry for transduction efficiency 

Our Runx2 retrovirus has an internal ribosomal entry site that encodes for 

enhanced green fluorescent protein (eGFP) as a marker of Runx2 transduction (Byers et 

al. 2002).  To measure Runx2 transduction efficiency, eGFP expression was measured by 

flow cytometry.  Three days after Runx2 transduction, cells were trypsinized (0.05% 

trypsin/EDTA – Invitrogen) and resuspended in phosphate buffered saline (PBS – 

Invitrogen) with 10% FBS.  Cell suspensions were then centrifuged for 5 minutes at 200-

300g, resuspended in PBS and then passed through a 40 µm filter (BD Falcon).  eGFP 

fluorescence was measured on a flow cytometer (Becton Dickinson, BD LSR II), and 10 

000 events were measured for each sample.  Data analysis was performed using WinMDI 

v.2.8, and graphs were made in FlowJo v.7.2.1.  

Alkaline phosphatase activity 

Alkaline phosphatase (ALP) activity was evaluated as an early marker of 

osteoblastic differentiation at 7 days after Runx2 transduction (Byers et al. 2002).  

Cultures were rinsed with PBS, then lysed with 50 mM ice cold Tris-HCl.  Lysates were 
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sonicated 2 times each for 10 seconds at 5 Watts and then centrifuged at 10 000g for 5 

minutes.  The supernatant, containing the soluble protein component, was then frozen at -

20oC. 

For each sample, total protein concentration was determined by averaging the 

results of a bicinchoninic acid (BCA) reaction (Pierce Biotechnology, Micro BCA 

Protein Assay kit #23235) with those obtained from a Nanodrop (ND-1000 

Spectrophotometer).  To measure ALP activity, 2.5 µg of total protein was added to 60 

µg/mL 4-methyl-umbelliferyl-phosphate, a fluorescent substrate for the ALP reaction, in 

diethanolamine buffer (10 mM diethanolamine, 0.5 mM MgCl2, 0.2 M NaHCO3, 

pH=9.5).  Samples were incubated at 37oC for 40 minutes in the dark to allow the 

reaction to occur.  Activity was measured as relative fluorescence units on a Bio Assay 

Reader (Perkin Elmer, HTS 7000 Plus) and standardized using purified calf intestinal 

ALP (Sigma). 

von Kossa staining for mineralization 

Twenty one days after Runx2 transduction, cultures were stained for phosphate 

deposits, indicative of mineral formation, by von Kossa staining (Byers et al. 2002).  

Briefly, plates were rinsed with PBS and then fixed in 70% ethanol at 4oC overnight.  

After fixation, plates were rinsed with ddH2O, stained with 5% AgNO3 for 30 minutes on 

a light table, rinsed again with ddH2O, fixed with 5% NaS2O3 for 2 minutes, and rinsed 

again with ddH2O.  Plates were stored in the dark until completely dry.  Images were 

captured with a digital camera (Kodak Digital Science DC120 Zoom Digital Camera).  

Mineral area was quantified using an inverted microscope (Nikon Eclipse TE300) with 

ImagePro Plus v.4.5.1.22. 
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Statistics 

All statistics were performed using Systat v.11.00.01.  For flow cytometry data, 

ANOVA analysis was performed using the post-hoc Tukey method to determine 

differences between groups.  A p-value < 0.05 was considered significant.  For ALP 

activity and mineralization, data was divided into three groups: treatment (4 levels: 

Control, Control+dex, Runx2, Runx2+dex), strain/harvest (3 levels: Lewis (serum), 

Lewis, Wistar), and passage (2 levels: passage 3 and passage 5).  These three groups were 

analyzed by a general linear model ANOVA to determine overall differences between the 

levels in each group. 

Results 

Runx2 transduction efficiency 

To quantify the transduction efficiency of the Runx2 retrovirus, flow cytometry 

analysis was used to determine the percentage of cells expressing eGFP after 

transduction.  Unmodified BMSCs (no Runx2 transduction) were used as a negative 

control, and the top 2% of cells in each control population were used to set the lower 

limits for transduction.  Figure  3.1 shows flow cytometry histograms of both control and 

Runx2 transduced cells for all strain/harvest groups. 

For all groups, passage 3 cells demonstrated significantly different transduction 

efficiencies when compared to passage 5 cells within the same strain/harvest group.  

Interestingly, Wistar cultures at passage 5 showed greater transduction efficiency 

compared to Lewis and Lewis (serum) cultures at the same passage.  This result could be 

due to differences in proliferation rate, which affects retroviral transduction, or 
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differences in donor strain or culture/isolation procedures.  Finally, passage 3 Lewis 

(serum) cultures showed significantly less transduction efficiency than the other two  

 

Figure  3.1.  Runx2 retroviral transduction efficiency is differentially modulated by cell passage and 
strain/harvest procedures.  § Different from other harvest groups within the same passage.  Furthermore, 
transduction efficiency is significantly different at P3 than at P5 for all groups. * Different from P3 within 
the same harvest group. p<0.05, n=3.  Error bars represent standard deviation. 

 
groups at the same passage.  These results indicate that a change in media components 

(i.e. 20% serum switched to 10%) significantly impacts transduction efficiency. 
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Alkaline phosphatase activity 

Alkaline phosphatase (ALP) activity was examined at 7 days after Runx2 

transduction as a marker of early osteoblastic differentiation.  Runx2 treatment 

significantly increased ALP activity both with and without dexamethasone (Figure  3.2).  

Further analysis by general linear model ANOVA showed that ALP activity was also 

significantly modulated by strain/harvest group as shown in the inset in Figure  3.2A.  

This statistical analysis allowed the simultaneous comparison of several experimental 

groups containing multiple levels, and the variance of each group was taken into account 

when calculating the significance.    Finally, passage did not have a significant effect on 

ALP activity under these conditions. 

 

Figure  3.2.  Treatment with Runx2 significantly increases alkaline phosphatase (ALP) activity after 7 days 
for (A) passage 3 cultures and (B) passage 5 cultures.  Furthermore, as shown in the inset, strain/harvest 
group has an overall significant effect on ALP activity.  p<0.05, n=3.  Error bars represent standard 
deviation. 

von Kossa staining for mineralization 

Cultures were maintained for 3 weeks under osteogenic conditions to examine 

mineral deposition, which was assessed by von Kossa staining and image analysis.  von 

Kossa analysis revealed differences in mineralization among experimental groups (Figure 



 

 43 

 3.3A).  The percentage of mineralized area on each plate was quantified for passage 3 

(Figure  3.3B) and passage 5 (Figure  3.3C) cultures.  Runx2 treatment, strain/harvest 

conditions, and passage all had a significant effect on mineralization.  Overall differences 

for strain/harvest group are illustrated in the inset in Figure  3.3B. 

 

Figure  3.3.  Unmodified Lewis cultures (control and control+dex) display the greatest amount of 
mineralization compared to unmodified Lewis (serum) and Wistar cultures.  Treatment with Runx2 + dex 
increases mineralization for all groups.  von Kossa staining is shown in (A).  Mineralization was quantified 
by image analysis and results are shown for (B) P3 cells and (C) P5 cells.  Using a general linear model for 
ANOVA analysis, strain, passage and treatment all showed overall significant differences.  Overall strain 
differences are illustrated in the inset.  p<0.05, n=3.  Error bars represent standard deviation. 
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The trends observed for mineralization match those for ALP activity, namely that 

Runx2 treatment with and without dexamethasone significantly increased both ALP 

activity and mineralization.  Furthermore, Lewis cultures displayed significantly greater 

ALP activity and mineralization compared to Lewis (serum) and Wistar cultures.  These 

results demonstrate that both early (ALP) and late (mineral) markers of osteogenic 

differentiation are affected in the same manner by Runx2 treatment and strain/harvest 

procedures in this study.  Finally, Lewis BMSCs in combination with Runx2 genetic 

engineering produced the most mineral. 

Discussion 

In this study we demonstrate differences in the osteogenic differentiation ability 

of bone marrow stromal cells harvested from different strains of rat using different 

methods of isolation.  Although it has already been established that cell source has a 

significant effect on the function of a BMSC population (Phinney et al. 1999; Anselme et 

al. 2002), cell populations derived from different animal strains have not yet been 

compared.  Our work suggests that donor strain differences may have a significant effect 

on the function of BMSC populations. 

The current work shows that overall mineralization of Lewis BMSC cultures is 

significantly greater than that of Wistar BMSCs, suggesting a difference between BMSC 

populations harvested from these two strains of rats.  These differences are most 

noticeable for unmodified passage 5 cells (control and control + dex conditions), whereas 

Runx2 treatment with and without dex essentially eliminated the differences between the 

two strains.  The mechanistic reasons for these apparent strain differences in unmodified 

rat BMSCs are not yet clear; however, strain differences in rats cause a number of 
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physiological differences, including behavioral differences (Brimberg et al. 2007; Kosten 

et al. 2007), differences in platelet aggregration and thrombus formation (Sudo et al. 

2007), skeletal development (DeMoss and Wright 1998), and ectopic bone formation in 

response to BMP9 (Li et al. 2003), among others. These results taken together with this 

study suggest that strain differences play an important role in many biological systems of 

the rat.  Therefore, regarding human tissue engineering therapies, results validated in pre-

clinical studies may be largely dependent on the strain of the animal used. 

It is well-established that serum concentration and differences in serum source, 

such as the specific lot of serum, influence mammalian cell culture.  Here we report that 

changing the serum concentration from 20% to 10% after one week had a significant 

effect on BMSC retroviral transduction, alkaline phosphatase activity and matrix 

mineralization.  The switch in serum concentration from 20% to 10% had a negative 

effect when compared to sustained culture in 10% serum.  Although these two cultures 

were initially expanded for one week in different serum concentrations, they were both 

cultured in 10% serum after one week.  This indicates that a change in serum 

concentration may have a greater effect on cell function than the concentration alone. 

Although there may be differences in the osteogenic capacity of BMSCs derived 

from Lewis versus Wistar rats, a limitation of this study is that our isolation methods 

differed slightly between Lewis and Wistar cells.  Our harvest from Wistar rats included 

a 30 minute adhesion selection step whereby cells that were readily adherent to the plates 

were discarded.  In contrast, our harvest of Lewis cells did not include this step.  The 

inclusion of this adhesion selection step is meant to remove monocytes/macrophages 

from the heterogeneous BMSC population; however, it is possible that in discarding these 
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readily adherent cells, many of the desired osteogenic cells of the population may have 

been discarded as well.  Therefore, the differences observed in this study could have been 

due to either strain or isolation methods or a combination of both.  Further investigation 

is required to fully elucidate the cause of the observed differences. 

In conclusion, we have demonstrated significant differences in osteoblastic 

differentiation and mineralization of BMSC populations due to differences in donor rat 

strain and culture conditions. Although BMSCs are a robust potential cell source for 

orthopaedic tissue engineering applications due to their ability to differentiate into 

functional osteoblastic cells, differences between donors and differences in culture and 

isolation procedures have a significant impact on cellular differentiation and 

mineralization.  Therefore, donor strain and isolation procedures should be carefully 

considered when choosing a cell source for pre-clinical tissue engineering research.  The 

ultimate goal in tissue engineering is the development of therapies for human disease 

states; therefore, the significance of the current work emphasizes the importance of 

choosing an appropriate animal model for a particular human application.  With regard to 

bone tissue engineering, certain rat strains may be more conducive to in vitro BMSC 

mineralization than others.  The current study demonstrates that cell type (i.e. BMSC) is 

not the only criterion necessary for defining a cell source for orthopaedic tissue 

engineering applications and that donor strain and isolation procedures also have a 

significant impact on BMSC differentiation and mineralization. 
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CHAPTER 4 

RUNX2 OVEREXPRESSION IN BONE MARROW STROMAL 

CELLS ACCELERATES BONE FORMATION IN CRITICALLY-

SIZED RODENT FEMORAL DEFECTS 

 

Introduction 

 The repair of large bone defects in humans remains a significant clinical problem 

despite successful healing of defects treated with auto- and allografts.  Although 

autografts contain the appropriate cues for osteogenesis and elicit no immunogenicity, 

donor site morbidity and pain affect as many as 30% of patients who have undergone a 

bone harvest from the iliac crest (Gottfried and Dailey 2008; Rawashdeh and Telfah 

2008).  Allografts address these sourcing issues but are further complicated by poor 

mechanical properties, increased rates of resorption, and increased risk of infection 

(Sorger et al. 2001; Mankin et al. 2005).  As an alternative approach for bone repair, 

tissue engineering and regenerative medicine strategies are being developed to address 

the problems associated with current bone grafting procedures (Hutmacher and García 

2005; Awad et al. 2007; Cancedda et al. 2007; Kimelman et al. 2007). 

 For successful repair and remodeling of large bone defects, a cell population 

capable of producing and remodeling bone must be present in the defect site.  These cells 

can either be recruited from host tissues or implanted via surgical intervention.  Bone 

marrow stromal cells (BMSCs) offer an attractive solution to cell sourcing for bone tissue 

engineering because they are part of a multipotential cell population that contributes to 
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the early stages of fracture healing in bone (Einhorn 1998), and human BMSCs can be 

isolated from bone marrow and delivered directly to a defect site to induce healing 

(Muschler et al. 1997; Smiler and Soltan 2006).  BMSCs have the capability of 

differentiating into osteoblasts, among other cell types of the mesodermal lineage, and 

they mineralize constructs both in vitro and in vivo (Goshima et al. 1991; Ishaug et al. 

1997; Krebsbach et al. 1997; Pittenger et al. 1999; Cartmell et al. 2004).  BMSCs also 

enhance bone healing in critically-sized orthotopic defects in rodents and large animals 

compared to treatment with a scaffold alone (Werntz et al. 1996; Bruder et al. 1998; Kon 

et al. 2000; Petite et al. 2000).  Recently, Marcacci et al. have reported successful healing 

of large bone defects in humans treated with autologous BMSCs seeded on bioceramic 

scaffolds.  These implantations were initially reported in 2001, and a 6-7 year follow-up 

of each patient demonstrated that complete bone implant integration was achieved in all 

patients as determined by radiography and CT analysis (Quarto et al. 2001; Marcacci et 

al. 2007). 

 The success of these implants makes a strong case for the use of autologous 

BMSCs in treating large bone defects in humans.  However, multiple factors affect the 

inherent ability of BMSCs to differentiate into osteoblasts.  For example, in vitro 

expansion of BMSCs, a necessary step to obtain sufficient numbers for implantation, 

causes dedifferentiation and subsequent loss of mineralization capacity (Banfi et al. 2000; 

Derubeis and Cancedda 2004; Yeon Lim et al. 2006).   Furthermore, the mineralization 

potential and proliferation rate of BMSCs varies widely with individual donors and is 

significantly affected by donor age (Phinney et al. 1999; Mendes et al. 2002; Kretlow et 

al. 2008).  These variations in BMSC function imply that the treatment of large bone 
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defects with autologous BMSCs may not produce effective results for all patients.   A 

method which overcomes these difficulties with BMSCs would provide great benefit to 

clinical bone healing. 

 To address these limitations with BMSCs, extensive work has focused on BMP 

delivery to BMSCs for upregulation of osteoblastic differentiation (Hanada et al. 1997; 

Gazit et al. 1999; Huang et al. 2005; Edgar et al. 2007; Hsu et al. 2007).  However, the 

diffusion of these soluble factors away from a defect site makes the effective dosage for 

human BMP treatment very high, which in turn makes treatment with BMPs an 

expensive therapy (Bishop and Einhorn 2007). Furthermore, as a soluble factor, diffusion 

of BMP away from the delivery site decreases the amount of bone formed in an implant 

and may lead to unregulated signaling in remote sites (Uludag et al. 2000).   

Alternatively, the type 2 runt-related Cbfa1 gene, Runx2, encodes an osteoblast-specific 

transcription factor, which works intracellularly to upregulate a host of bone specific 

genes, including osteocalcin and collagen I (Ducy et al. 1999).  Runx2 plays an important 

role in both bone development and bone remodeling/repair (Ducy 2000).  For example, 

homozygous deletion of Runx2 in mice causes the formation of a completely non-

mineralized, cartilaginous skeleton and results in immediate postpartum death (Komori et 

al. 1997; Otto et al. 1997).  Meanwhile, mice heterozygous for Runx2 display a 

pathology similar to that observed in the sketetal disease cleidocranial displasia (Mundlos 

et al. 1997; Otto et al. 1997).  In fact, the human disease, cleidocranial dysplasia, occurs 

as a result of genetic mutations in Runx2 (Lee et al. 1997; Mundlos et al. 1997; Zhang et 

al. 2000).  The role of Runx2 as an osteoblastic transcription factor in human BMSCs has 

been demonstrated in vitro via DNA binding assays (Shui et al. 2003).  Furthermore, 
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dominant negative expression of Runx2 after osteoblast differentiation causes skeletal 

abnormalities (Ducy et al. 1999), while ex vivo overexpression of Runx2 in both 

osteoblastic and non-osteoblastic cells promotes upregulation of bone-specific genes and 

subsequent mineralization (Xiao et al. 1999; Byers et al. 2002; Gersbach et al. 2004; 

Phillips et al. 2007).  Finally, overexpression of Runx2 in BMSCs accelerates 

osteoblastic differentiation and subsequent mineralization both in vitro and in vivo when 

compared to unmodified BMSCs (Byers et al. 2004; Zhao et al. 2005), making Runx2 

overexpression an attractive option for regulating BMSC function. 

 Recently, our group and others have reported significant healing of critically-

sized defects in a calvarial defect model treated with BMSCs engineered to overexpress 

Runx2 (Zheng et al. 2004; Byers et al. 2006; Zhao et al. 2007).  However, results 

obtained from calvarial defect studies do not necessarily translate to healing in long 

bones due to the involvement of the dura mater in healing cranial defects (Aalami et al. 

2003).  In this study, we examine the effect of constitutive overexpression of Runx2 in 

BMSCs implanted in critically-sized segmental defects in rat femurs.  This model 

provides a more rigorous test bed than cranial defects by eliminating contributions to 

healing from the dura mater.  This segmental defect study of Runx2-modified BMCSs for 

the treatment of large bone defects provides better insight into this alternative cell-based 

gene therapy method for clinical bone defect healing. 

Materials and Methods 

Cell harvest and isolation 

Rat BMSCs were isolated from the hind legs of young Lewis rats (Charles River 

Labs) by commonly used methods (Javazon et al. 2001; Byers and García 2004).  Briefly, 
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the rats were euthanized by CO2 inhalation (Georgia Tech IACUC-approved protocol), 

and the hind limbs removed, taking care to minimize bleeding and subsequent clotting.  

Surrounding soft tissue was removed from each bone, and the separated femurs and tibias 

were soaked in cell culture media consisting of αMEM (Invitrogen) + 10% fetal bovine 

serum (FBS – HyClone) + 1% penicillin-streptomycin (Invitrogen) + 0.3 µg/mL 

fungizone.  The distal end of each bone was removed and the marrow was flushed from 

the diaphysis via centrifugation into a sterile tube.  The marrow pellet was then 

resuspended, and transferred to tissue culture-grade polystyrene (Corning).  Three days 

after harvest, plates were rinsed twice in PBS to remove non-adherent hematopoietic 

cells, and fresh media was added.  Media was changed every 3 days.  When plates were 

80-90% confluent, passage 0 cells were cryopreserved in 10% DMSO in FBS at -80oC 

overnight, then transferred to liquid nitrogen for long term storage. 

Scaffold fabrication 

 Polycaprolactone (PCL) scaffolds were produced in 9 mm thick sheets by fused 

deposition modeling as described previously (Zein et al. 2002).  Sheets were cut into 

scaffolds using a 4 mm diameter dermal biopsy punch (Miltex).  MicroCT analysis was 

used to characterize the structural parameters of the scaffolds (Figure  4.2C).  For in vivo 

studies, scaffolds were 81-85% porous, average pore size was 890 µm and average rod 

thickness was 310 µm. 

 For all studies, scaffolds were cleaned in 70% ethanol for 30 minutes, rinsed 3 

times in sterile water to remove ethanol, then soaked in PBS for 10-30 minutes prior to 

cell seeding.  For in vivo studies, an additional step was added prior to scaffold 
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sterilization for endotoxin removal.  For this step, scaffolds were rinsed in 70% ethanol 

for 4 days on a shaker plate, and ethanol was replaced every day. 

To produce collagen meshes within each PCL scaffold, a collagen solution was 

polymerized inside the scaffolds, then lyophilized as previously described (Porter et al. 

2007).  Briefly, a sterile solution of 1.5 mg/mL type I collagen (MP Biomedicals) was 

polymerized inside sterile PCL scaffolds at 37oC for 30 minutes.  Constructs were then 

frozen for 1 hour at -80oC and lyophilized overnight to produce a mesh of collagen within 

the scaffolds. 

Retroviral transduction 

 The Runx2 type II MASNSLF isoform was expressed via the pTJ66 vector as a 

single bicistronic mRNA sequence encoded by murine cDNA (Figure  4.2A).  An internal 

ribosomal entry site, located downstream from and adjacent to the Runx2 insert, allowed 

co-expression of a fusion protein of zeocin resistance and enhanced green fluorescent 

protein (eGFP).  eGFP expression was quantified via flow cytometry and used as a 

measure of Runx2 transduction efficiency (Byers et al. 2002; Gersbach et al. 2004).  

Empty pTJ66 vector, which was missing the Runx2 insert but still encoded the fusion 

protein, was used as an empty vector control (Phillips et al. 2007). 

 To package Runx2 retrovirus, ΦNX helper cells, stably transfected with the 

Runx2 plasmid, were grown to sub-confluency in DMEM + 10% FBS + 1% P/S.  Twenty 

four hours before the first viral harvest, media was changed and cells were transferred to 

a 32oC incubator to minimize heat-induced viral degradation.  To harvest virus, media 

supernatant was collected every 12 hours, filtered at 0.45 µm, snap frozen and stored at -

80oC. 
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 To transduce primary BMSCs with Runx2 or empty-vector virus, bone marrow 

stromal cells were expanded to passage 3, then trypsinized and seeded into T-75 flasks at 

a density of 5,000 cells/cm2.   One day after seeding into flasks, media was replaced with 

retrovirus supplemented with 0.4 µg/mL polybrene, as previously described (Byers et al. 

2002).  Briefly, flasks were incubated with viral media at 32oC for 15 minutes, then 

centrifuged at 2500 RPM for 30 minutes.  Viral media was then replaced with fresh 

αMEM + 10% FBS + 1% P/S + 0.3 µg/mL fungizone/amphotericin B, and cells were 

incubated at 37oC.  After 12 hours, a second transduction was performed.  Two days after 

transduction, cells were trypsinized from flasks and seeded onto scaffolds or analyzed for 

eGFP expression by flow cytometry. 

Cell seeding on scaffolds 

Immediately prior to cell seeding, PCL-collagen scaffolds were pre-wet in PBS, 

then wicked on Kimwipes to remove excess fluid.  Unmodified, Runx2-modified and 

empty-vector-modified cells (passage 4) were trypsinized and seeded at 500,000 cells per 

scaffold in 50 µL of media (25 µL per side).  Scaffolds were placed in scaffold holders 

inside 24 well plates and incubated at 37oC to allow cell attachment to the scaffolds.  

After 30 minutes of incubation, 2 mL of media were added to each well for complete 

submersion of each scaffold.  Media was changed every 3 days. 

To ensure equal cell numbers were seeded onto all scaffolds, unmodified BMSCs 

were seeded onto PCL-collagen scaffolds, as described above, in three separate batches, 

n=4 scaffolds for each batch.  Three days after cell seeding, DNA content on each batch 

of scaffolds was analyzed via Picogreen staining (Quant-iTTM Picogreen® dsDNA Assay 

Kit – Molecular Probes) as previously described (Gersbach et al. 2004; Phillips et al. 
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2006).  Briefly, constructs were rinsed in PBS, then frozen at -80oC.  Thawed samples 

were dried in a Savant DNA120 SpeedVac Concentrator (Thermo Electron Corporation), 

then digested in 700 µg/mL Proteinase K (Promega) for 48 hours in a 45oC water bath.  

Picogreen staining was used to quantify average DNA content/cell numbers on each 

batch of scaffolds.  No differences in cell number were observed among groups (data not 

shown), confirming that cell seeding was reproducible across multiple batches. 

Flow cytometry for transduction efficiency 

Three days after Runx2 or empty-vector transduction, cells were trypsinized 

(0.05% trypsin/EDTA – Invitrogen) and resuspended in PBS with 10% FBS.  Cell 

suspensions were centrifuged for 5 minutes at 200-300g, resuspended in PBS and then 

passed through a 40 µm filter (BD Falcon).  eGFP fluorescence was measured on a flow 

cytometer (Becton Dickinson, BD LSR II), and 10,000 events were measured for each 

sample.  Data analysis was performed using WinMDI v.2.8.  

Live/Dead staining 

Cell viability on PCL scaffolds was assessed using the Live/Dead kit (Invitrogen).  

Unmodified and Runx2 modified cells were seeded onto PCL scaffolds with and without 

collagen meshes.  Three days after seeding, constructs were rinsed 3 times in PBS, then 

stained with 4 µM calcein and 4 µM ethidium homodimer in PBS for 45 minutes at room 

temperature.  After staining, constructs were rinsed 3 times in PBS, then imaged on a 

confocal microscope (Zeiss LSM 510 NLO).  LSM 5 Image Browser was used to stack 

groups of 2-dimensional image slices, and image brightness was increased to reduce 

background. 
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Segmental Defect surgery 

 Femoral defects were created bilaterally as previously described (Oest et al. 

2007).  Briefly, 13- to 15-week old female Lewis rats were anesthetized using isoflurane, 

and the hind limbs were shaved and swabbed with cycloheximide and alcohol to prepare 

the skin for incision.  An anterior incision was made from the hip to the knee to allow 

blunt separation of the quadriceps muscles, exposing the femur (Figure  4.1A).  Before the 

defect was created, a modular fixation device was attached to the bone for mechanical 

support.  The device consisted of two stainless steel plates affixed directly to the bone via 

screws and one polysulfone plate, which spanned the defect and was attached to the 

stainless steel plates (Figure  4.1B).  Use of this modular system was advantageous for 

postmortem mechanical testing because the polysulfone plate could be removed before 

defect testing without removing the screws or stainless steel plates from the bone, thus 

avoiding any incidental damage to the repair tissue prior to testing.  Furthermore, use of a 

polysulfone plate for support allowed non-invasive in vivo X-ray analysis of defects due 

to the low X-ray attenuation of polysulfone.  After the fixation device was attached, an 

8.0-mm segment of bone was removed via bone saw, and a scaffold was press fit into the 

defect (Figure  4.1A).  Notches in the polysulfone plate, spaced 8.0-mm apart, ensured 

each defect was consistently created the same length (Figure  4.1B).  Muscle was closed 

around the plate and defect using Vicryl sutures, and the skin was closed using sutures 

and wound clips. 
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Figure  4.1.  Surgical procedure for critically-sized segmental defects in rat femurs.  (A) Each defect is 
stabilized by a fixation plate. (i) Blunt dissection of the quadriceps exposes the femur and enables 
placement of the fixation plate.  (ii) An 8.0 mm segment is removed from the femur via bone saw, and (iii) 
scaffolds are press fit into the defect.  (B) An explanted femur shows the modular fixation plate attached to 
the bone via stainless steel screws.  Notches in the polysulfone plate (marked with arrows) are spaced 8.0 
mm apart ensuring each defect is created at the same size. 

 

For in vivo studies, five groups were tested, consisting of 4 PCL-collagen scaffold 

groups each with a different cell condition, and one empty defect control group.  For the 

empty defect group, the surgical procedure remained the same, but no scaffold or cells 

were placed in the defect.  The groups tested were PCL-scaffolds seeded with (i) 

unmodified BMSCs, (ii) Runx2-modified BMSCs, (iii) empty vector-modified BMSCs or 

(iv) no cells and (v) empty defect control.  These 5 groups are outlined in Table  4.1. 
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Table  4.1.  Outline of experimental groups for in vivo segmental defects. 

 

 

 Following surgery, animals were given 3 daily doses of buprenorphine at 0.03 

mg/kg for 2 consecutive days and 3 doses of 0.01 mg/kg on the third day to control pain.  

Animals were monitored daily for signs of pain and distress, progress of wound closure, 

regular eating habits and normal ambulation.  A small percentage (< 8%) of rats 

developed infections in or around the surgery site, or experienced mechanical failure of 

the fixation device.  These animals were removed from the study and euthanatized, and 

any data collected from these animals was excluded.  Two weeks post surgery, when skin 

wounds had completely healed, animals were anesthetized with isoflurane and wound 

clips were removed.  At 4, 8, and 12 weeks post-surgery, animals were anesthetized with 

isoflurane and the hind legs were scanned via radiography and microCT as described 

below.  Twelve weeks post-surgery, animals were euthanized by CO2 inhalation, and the 

femurs, along with surrounding muscle tissue, were harvested for postmortem microCT 

evaluation, histology, FTIR analysis and mechanical testing.  
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Radiography and MicroCT Analysis 

 Every 4 weeks following surgery, 2-dimensional X-ray images of each sample 

were non-invasively obtained using an MX-20 Specimen Radiography System (Faxitron 

X-ray Corporation) to make gross morphological observations of bone formation in each 

defect site.   For X-ray analysis, animals were anesthetized in a gas chamber filled with 

5% isoflurane and maintained under anesthesia using 2% isoflurane flow into a face 

mask.  Each hind leg of anesthetized animals was scanned for 15 s with an X-ray beam 

energy of 23 kV. 

 In addition to radiographic imaging, samples were non-invasively analyzed every 

4 weeks post-surgery by microCT using a vivaCT 40 (Scanco Medical) to quantify bone 

volume in each defect site.  For microCT, animals were anesthetized in the same manner 

as for radiography and placed in a rodent holder with one leg outstretched for scanning.  

The defect area in between the stainless steel plates of the fixation device was imaged 

with an X-ray beam energy of 55 kVp and intensity of 109 µA, and the integration time 

was 200 ms.  Scanning resolution was 38 µm.  After imaging was complete, noise was 

reduced from 3-dimensional reconstructions of each scan by applying a Gaussian filter 

(sigma=1.2, support=2) using the Scanco Medical µCT Evaluation Program.  Images 

were thresholded at 270 mg HA/ccm to isolate mature bone from soft tissue and the 

polymer scaffold and polysulfone plate.  Bone volume was quantified using directly 

computed values. 
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Histological Analysis 

 Following euthanasia, samples for histological analysis were fixed in 10% neutral 

buffered formalin immediately after harvest.  One day after fixation, soft tissue was 

removed, and specimens were placed in fresh formalin.  Prior to embedding, fixed tissues 

were scanned ex vivo in formalin via microCT as described above to allow matching of 

histological sections with microCT slices.  After scanning, specimens were dehydrated in 

a series of alcohols, cleared in xylene, and embedded in methyl methacrylate (MMA).  

Ground sections, 50-80 µm thick, were prepared by Wasatch Histo Consultants, Inc. 

(Winnemucca, NV) and stained using Sanderson’s Rapid Bone StainTM and a van Gieson 

counterstain (Reyes et al. 2007).  Stained histological sections were then matched to 

thresholded microCT scans to confirm that microCT analysis was representative of 

mature bone. 

FTIR spectroscopy 

 Explanted samples for FTIR analysis were wrapped in PBS-soaked gauze and 

frozen at -20oC until use.  Upon thawing, chips of mineralized tissue were removed from 

the defect area of each sample using a bone cutter.  Care was taken to remove only newly 

formed mineralized tissue in the defect area and no native host bone.  Mineral chips were 

fixed in ethanol, then dried overnight at 50oC, ground with a mortar and pestle, pressed 

into KBr pellets, and read on a Nexus 470 FT-IR (Thermo Nicolet) using 64 scans at 4 

cm-1
 resolution.  Native bone from age-matched Lewis rat femurs were used as positive 

controls for FTIR bone spectra.  Mineral recovered from the defect region of empty 

defect samples was used a negative control. 
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Mechanical testing 

Samples for mechanical testing were explanted and wrapped in PBS-soaked gauze 

and frozen at -20oC until use.  Mechanical testing was performed as previously described 

(Oest et al. 2007).  Briefly, samples were thawed in room temperature PBS and most of 

the soft tissue was removed, taking care not to mechanically disrupt tissue in the defect 

site.  The ends of each bone were potted in Wood’s metal up to the polysulfone plate and 

secured with pins into potting blocks.  Blocks were loaded onto an ElectroForce® 

mechanical testing machine (Elf 3200 by Bose) and the polysulfone plate was removed 

just before testing.  Samples were loaded in torsion at a displacement rate of 3o/s up to 

360o.  Maximum torque before failure was recorded for each sample. 

Statistical Analysis 

 Data from two independent studies was pooled, and a mixed model ANOVA was 

used to define experiment and individual animal as sources of error.  This analysis was 

performed using the Hierarchical Linear Mixed Models function in Systat v12, which 

uses a Satterthwaite approximation to account for differences in sample sizes.  A p-value 

< 0.05 was considered significant.  

Results 

Runx2 expression and cell viability 

 To measure transduction efficiency of the Runx2 and empty-vector retroviruses, 

eGFP expression was measured via flow cytometry.  Unmodified cells were used as a 

control population, and transduction efficiency of retrovirus-transduced cells was 

determined using the 2% of background method (Overton 1988). Runx2-modified cells 
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showed 40% transduction efficiency as measured by eGFP expression compared to 

control cells (Figure  4.2B).  Empty vector-transduced cells showed 60% transduction 

efficiency (data not shown). 

 
 

Figure  4.2.  Runx2-modified BMSCs show high eGFP expression at 3 days post-transduction 
and are viable on PCL scaffolds containing lyophilized collagen mesh.  (A) Diagram of Runx2 
plasmid showing internal ribosomal entry site (IRES) for eGFP expression.  (B) Flow cytometric 
detection of eGFP expression in unmodified and Runx2-modified BMSCs.  Transduction 
efficiency of Runx2-modified cells (arrow) is 40% compared to unmodified controls.  (C) Cross-
sectional microCT image of a PCL scaffold.  (D) Confocal live/dead images of unmodified and 
Runx2-modified BMSCs on PCL scaffolds with and without collagen meshes.  Live cells are 

shown in green and dead cells in red.  Scale bar is 200 µm.  Cells populate the pore volume of 
the PCL in (C) by adhering to collagen meshes lyophilized inside the scaffold. 

 

PCL scaffolds without collagen meshes were analyzed by microCT to determine 

average pore volume and pore size (Figure  4.2C).  Live/Dead staining of cells on 

scaffolds 3 days post-seeding shows unmodified and Runx2-modified BMSCs are viable 

on PCL scaffolds both with and without collagen meshes.  Scaffolds with collagen 

meshes promote an even distribution of cells throughout the pore volume of the PCL 
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while scaffolds without meshes do not retain cells in the pore volume (Figure  4.2D).  

PCL scaffolds with collagen meshes were subsequently used for all in vivo studies. 

Radiography and MicroCT Analysis 

 Immediately following surgery, animals were monitored several times daily for 

signs of pain or stress, regular eating habits, and normal ambulation.  Within one week 

following surgery, signs of stress were minimal, regular eating had returned and normal 

ambulation using both hind limbs was restored.   

To monitor bone formation in critically-sized defects, animals were anesthetized 

every 4 weeks and defects were scanned via X-ray and microCT.  X-ray images show 

gross morphological changes in bone growth at the defect site over time.  While empty 

defects, PCL and BMSC groups showed minimal bone formation, Runx2 showed 

substantial increases in bone growth over time (Figure  4.3).  Representative X-ray images 

from each group are shown in Figure  4.3A, and the corresponding three-dimensional 

microCT reconstructions at 12 weeks are shown in Figure  4.3B.  No differences were 

observed between BMSC and empty vector groups (data not shown). 

At 4, 8 and 12 weeks post-surgery, bone volume in all defects was quantified via 

microCT.  Negligible bone formation occurred at the ends of host bone in empty defects 

and PCL defects.  However, bone formation in BMSC and Runx2 defects increased over 

time.  At 4 and 8 weeks post-surgery, Runx2 defects contained significantly more bone 

than unmodified BMSC defects (p < 0.05, n=8). At 12 weeks, bone volume in Runx2 

defects was not significantly different compared to unmodified BMSC defects (p = 

0.059) (Figure  4.3C).  This differential time course of bone formation in BMSC and 

Runx2 defects indicates that Runx2-modified BMSCs initially accelerate bone formation 
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in critically-sized defects but that the inherent osteogenic capacity of unmodified BMSCs 

eventually produces a similar level of bone as Runx2-modified BMSCs. 
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Figure  4.3.  Runx2-modified BMSCs accelerate bone formation in critically-sized defects compared to 
unmodified BMSCs. (A) X-ray images showing representative images for each group.  (B) MicroCT 
images showing the same samples from (A).  (C) Bone volume is significantly greater in Runx2-treated 
defects compared to BMSC-treated defects at 4 and 8 weeks (* p < 0.05).  At 12 weeks, bone formation due 
to unmodified BMSCs is not significantly different from Runx2-modified cells (p=0.059), indicating that 
Runx2-modified cells initially accelerate healing but unmodified cells produce similar levels of bone at late 
time points. 
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Histological Analysis 

 To more fully characterize areas of high attenuation imaged by microCT, one 

sample from the Runx2 defect group was subjected to histological analysis at 12 weeks.  

Prior to embedding, the sample was scanned via microCT and thresholded in the same 

manner as all other samples.  Then, Sanderson’s Rapid Bone StainTM, which 

distinguishes areas of mineralized bone from demineralized connective tissue and 

osteoid, was applied to the sample revealing mineralized bone tissue in a red/pink color 

and demineralized osteoid in blue/green (Sanderson and Bachus 1997).  Because this 

sample underwent both Sanderson’s stain and microCT scanning, matching slices from 

histology and microCT were compared.  This analysis shows that areas of high 

attenuation that were thresholded in microCT and used as a measure of bone volume in 

Figure 4.3, directly match areas of red/pink staining defined as mineralized bone tissue in 

the Sanderson’s stain (Figure  4.4). 

 
Figure  4.4.  Histological analysis confirms that areas of high attenuation revealed by microCT are bone.   
(A) Sanderson’s rapid bone stain for a Runx2-modified BMSC sample showing bone in red/orange and soft 
tissue in blue/green. (B) A corresponding 2D microCT slice from the same sample, thresholded to isolate 
areas of high attenuation within the sample.  MicroCT analysis shows high correlation with Sanderson’s 
bone stain. 
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FTIR Spectroscopy 

 To determine the composition of bone formed in all defects, samples of bone 

taken from the defect area in all groups were analyzed via FTIR analysis.  Spectra from 

native bone contains all peaks expected for biologic apatite, including amide peaks for 

protein at 1700 and 1550 cm-1, a small carbonate peak at 900 cm-1, a broad phosphate 

peak for stretching vibrations at 900 – 1200 cm-1, and a phosphate doublet for bending 

vibrations at 525 – 625 cm-1 (Paschalis et al. 1997; Bonewald et al. 2003; Byers and 

García 2004).  Cell-loaded samples having either unmodified BMSCs or Runx2-modified 

BMSCs displayed all of these expected peaks (Figure  4.5), indicating that the mineralized 

tissue in these defects was a biological, poorly crystalline hydroxyapatite.  Cell-free PCL 

scaffolds containing lyophilized collagen also displayed all expected peaks for native 

bone; however, CO3 and PO4 (bending) peaks were less prominent in these cell-free 

samples as compared to native control bone or cell-loaded samples.  Finally, empty 

defect negative controls showed amide peaks and some phosphate deposits; however, 

CO3 peaks and prominent PO4 (stretching) peaks were not present, indicating that the 

mineral deposited in these samples did not have the chemical composition of native bone. 
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Figure  4.5.  FTIR spectra demonstrate that the structural composition of 
cell-mediated bone formation is similar to that of native bone.  Bands 
characteristic of biologic hydroxyapatite, namely a small carbonate peak at 
855 – 890 cm-1, a broad phosphate peak at 900 – 1200 cm-1, and a 
phosphate doublet at 525 – 625 cm-1, are present in Runx2-modified and 
unmodified BMSC-treated defects, as well as native bone.  Cell-free 
scaffold spectra contain peaks that are shifted compared to native bone, and 
empty defects do not contain characteristic peaks. 

 

Mechanical strength of repaired defects is dependent on bridging 

 To assess mechanical functionality of new bone present in critically-sized defects, 

femurs were harvested 12 weeks post-surgery and subjected to postmortem torsional 

testing. Although microCT revealed differences in bone volume between BMSC and 

Runx2 defects at 4 and 8 weeks, maximum torque sustained at 12 weeks was not 

significantly different between these two groups (Figure  4.6A).  Stiffness and work to 

failure were also evaluated and no significant differences among experimental groups 

were observed (data not shown).  We hypothesized that mechanical strength is dependent 

on defect bridging.  Whereas some samples contain a large amount of bone in the defect 

site, high levels of mechanical strength are only present when this bone is firmly attached 
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to both the proximal and distal end of the host bone.  Without full attachment (i.e. 

complete bridging) samples that have large bone volumes sustain low torque loads. 

 To demonstrate that mechanical strength is dependent on defect bridging, X-ray 

images for all samples were blindly assessed for their extent of bridging and assigned a 

bridging score from 0-5 based on the criteria outlined in Figure  4.6B, where 0 is no bone 

in the defect and 5 is a fully bridged defect.  Representative X-ray images for each score 

are shown in Figure  4.6C.  By looking at bone volume versus maximum torque for each 

sample grouped by briding scores, a trend is observed where samples with higher 

bridging scores generally have greater max torque (Figure  4.6D).  Although there are no 

significant differences in torsional strength between BMSC and Runx2 defects, a 

distribution of bridging scores from each group shows that Runx2-modified defect scores 

are shifted towards fully bridged or nearly fully bridged (scores 4 and 5) compared to 

unmodified BMSC scores (Figure  4.6E).  A Kruskall Wallis one way ANOVA by ranks 

shows that this shift is significant (p < 0.05). 
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Figure  4.6.  Mechanical properties of repaired segmental defects.  (A) Despite differences in bone volume 
between Runx2-treated and BMSC-treated defects, maximum torque is not significantly different.  (B) 
Criteria for bridging scores assigned to each sample.  (C) Representative faxitron images of scores 
described in (B).  (D) Samples with higher bridging scores are shifted to the upper right of a bone volume 
versus maximum torque correlation graph.  (E) The distribution of bridging scores for Runx2-treated 
defects is shifted righted compared to that for BMSC-treated defects (p < 0.05). 
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Discussion 

 This study examined the effects of treating critically-sized segmental defects in 

rat femurs with cell/scaffold constructs containing Runx2-modified BMSCs.  In 

comparison to unmodified BMSCs on scaffolds, scaffolds alone, or empty defects, we 

demonstrate that bone healing in rat femurs is accelerated by treatment with Runx2-

modified BMSCs.  At both 4 and 8 weeks post-surgery, quantitative microCT analysis 

showed significantly more bone formation in defects treated with Runx2-modified 

BMSCs versus unmodified BMSCs, indicating accelerated healing due to Runx2 

treatment at early time points.  However, at 12 weeks post-surgery, no statistical 

differences in bone formation between unmodified and Runx2-modified BMSCs were 

present, highlighting the inherent osteogenic capabilities of this cell type.  Taken 

together, this study presents an accelerated method of tissue engineering for healing large 

bone defects in vivo. 

 Runx2 has been described as a molecular switch for osteoblast biology (Ducy 

2000), yet few studies have examined the potential use of Runx2 in healing critically-

sized bone defects.  Three previous orthotopic analyses of Runx2-modified BMSCs have 

been performed and each one focused on healing critically-sized calvarial defects (Zheng 

et al. 2004; Byers et al. 2006; Zhao et al. 2007).  Although the cranial defect model 

provides relevant information regarding the healing of craniofacial defects, conflicting 

evidence regarding the role of periosteum, dura mater, and surrounding healthy bone 

tissue in cranial defect healing makes separation of host response from treatment effect 

difficult in this model (Aalami et al. 2003).  In particular, dura mater has been shown to 

have a significant effect on cranial defect healing (Ozerdem et al. 2003).  To our 
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knowledge, no other study to date has examined the use of Runx2 as a gene therapy 

strategy for the healing of critically-sized segmental defects in long bones.  The present 

study examined Runx2 treatment in a segmental defect model, where contributions from 

the dura mater, which are irrelevant to anatomical locations other than the calvaria, are 

not present, making this a more rigorous test bed for the healing of large bone defects. 

 In addition to differences in anatomical location between this study and other 

orthotopic studies of Runx2, factors such as species, time points, and scaffold types also 

varied between the studies.  Zheng et al. implanted adenovirally transduced Runx2-

BMSCs on collagen sponges for 4 weeks in BALB/c mice.  Using manual segmentation 

of radiographic images, they found significantly more bone in defects treated with Runx2 

transduced cells over unmodified cells, cell-free scaffolds and empty defects (Zheng et al. 

2004).  Zhao et al. used adenoviral transduction to deliver Runx2 and LacZ (control) to 

BMSCs.  Cells were implanted on gelatin sponges for 7 weeks in C57BL6 mice, and CT 

quantification showed more bone in defects treated with Runx2 over LacZ.  However, no 

cell-free or empty defect controls were included in this study (Zhao et al. 2007).  Our 

group has also previously reported on Runx2 treatment of cranial defects.  We have 

investigated BMSCs retrovirally tranduced with Runx2 and implanted on PCL scaffolds 

for 4 weeks in the rat calvarium.  MicroCT analysis showed more bone in Runx2 treated 

defects, compared to unmodified controls and empty defects, following a 21 day pre-

culture period.  However, due to the open pore structure of our PCL scaffolds, cell-free 

scaffolds performed as well as Runx2-engineered cell-loaded scaffolds in this study 

(Byers et al. 2006).  Given these differences, all 3 previous orthotopic studies comparing 

Runx2 transduced BMSCs to unmodified or LacZ transduced BMSCs showed a 
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significant increase in bone formation due to Runx2 treatment, in agreement with the 

present study. 

 Although Runx2-modified BMSCs accelerated bone repair in critically-sized 

defects in this study, unmodified BMSCs eventually produced equivalent amounts of 

bone, pointing to the inherent ability of BMSCs to mineralize bone defects.  Many studies 

have demonstrated successful healing of bone defects using unmodified BMSCs in pre-

clinical trials (Bruder et al. 1998; Kon et al. 2000; Petite et al. 2000), and recently, a pilot 

study of the implantation of autologous human BMSCs for repair of large bone defects in 

humans was reported by Marcacci et al. 2007.  In this study, 4 patients presented with 

large bone diaphysis defects, for which previous treatment with conventional surgical 

therapies had failed.  Each patient underwent a BMSC harvest from the iliac crest, and 

the isolated cells were then cultured and seeded onto hydroxyapatite scaffolds custom 

made to fit the size and shape of the defects.  For patients 1, 2, and 4, complete 

consolidation between the implant and host bone was radiographically evident between 

5-7 months post-surgery, at which time external fixation devices were removed.  For 

these patients, limb function was gradually regained within 8 months post-surgery.  For 

patient 3, whose injury was more complex and involved the elbow joint, a custom made 

cast was fitted over the defect after removal of the Ilizarov apparatus at 8 months post-

surgery.  This patient recovered limb function after 16-24 months post-surgery.  For all 

patients, a 6-7 year follow-up revealed that stable bone-implant integration was 

maintained (Marcacci et al. 2007).  The success of this study makes treatment with 

autologous BMSCs an attractive option for patients with large bone defects.  However, a 
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reduction in the time needed for external fixation is desirable, making the accelerated 

healing strategy presented in the current study relevant for clinical application. 

 The success of unmodified BMSCs for healing critically-sized defects in other 

pre-clinical studies may largely depend on the scaffold type used to deliver the cells.  For 

example, all of the aforementioned studies which demonstrate successful healing (i.e. 

complete bridging) of segmental defects when treated with unmodified BMSCs employed 

the use of a hydroxyapatite scaffold to deliver the cells to the defect site.  The 

osteoconductive properties of hydroxyapatite have been reviewed elsewhere (LeGeros 

2002).  In brief, calcium phosphate ceramics demonstrate bioactivity and 

osteoconductivity leading to rapid and strong osseointegration with host bone tissue when 

implanted into an orthotopic site.  In fact, implantation of HA alone (without cells) has 

been shown to heal osteotomy defects in human patients (Meyer et al. 2007).  In the 

current study, the use of a polymer scaffold, which is not osteoconductive by itself, in 

combination with the rigorous 8mm segmental defect test bed, may explain why defects 

treated with unmodified BMSCs resulted in non-union after 12 weeks.  This result is in 

agreement with other studies that also show non-union of segmental defects treated with 

unmodified BMSCs when a non-ceramic scaffold is the delivery vehicle (Turgeman et al. 

2001; Fialkov et al. 2003).  Recent evidence suggests that the modification of synthetic 

PCL scaffolds with hydroxyapatite nanoparticles increases the bone forming response of 

cells seeded on the scaffolds (Wutticharoenmongkol et al. 2007).  In this study, the 

rationale behind including a collagen matrix within PCL scaffolds was to increase the 

therapeutic load of cells delivered the defect site.  It is possible that incorporation of an 

osteoconductive material into our scaffolds would further enhance the cellular response.  
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However, in this study, the use of a collagen-PCL scaffold, which did not heal defects in 

the cell-free condition, allowed us to demonstrate the effect of Runx2 treatment without 

contributions from the scaffold. 

 A distinct advantage of this study over many reports of segmental defect healing 

is the use of mechanical testing to assess functionality of the defects.  A large majority of 

studies that report successful healing of bone defects rely solely on a combination of X-

ray analysis and histological evaluation as a measure of defect healing.  However, this 

approach does not provide functional information, which is necessary to fully evaluate 

the success of a given treatment strategy for bone healing (Liebschner 2004).  Few 

groups report mechanical testing analysis, but of those that do, the most common test 

methods are torsion (Cook et al. 1994; Cook et al. 1994; Cook et al. 1995; Hsu et al. 

2007; Oest et al. 2007; Rai et al. 2007).  The current study demonstrates the importance 

of including mechanical testing analysis in any bone healing study because, in this case, 

the significant differences in bone volume measured by microCT did not translate to 

significant differences in torsional strength between Runx2 and BMSC treated defects.  

However, we did observe differences in torsional strength between fully bridged samples 

compared to non-unions.  This result is in agreement with a mounting body of work 

suggesting that greater bone mass will not necessarily result in greater bone strength.  For 

example, recent evidence suggests that patients with a high level of bone turnover may be 

at higher risk for bone fracture regardless of bone mineral density (Hernandez 2008). 

This concept is known as bone quality, a term used to describe any skeletal aspect of 

bone, excluding bone mass (i.e. bone shape, size, trabecular connectivity, etc) that affects 

its strength (Hernandez and Keaveny 2006).  In the present study, although significant 
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increases in bone mass were observed due to Runx2 treatment, bone quality was not 

affected.  The implication of these results is that radiographic and histological methods of 

evaluating bone tissue are not sufficient to fully characterize the extent of bone defect 

healing.  Functional mechanical evaluation of bone defects should be used in conjunction 

with other methods for complete analysis of both bone mass and bone quality. 

 In summary, we have demonstrated accelerated bone healing in critically-sized 

defects in rat femurs due to treatment with Runx2-modified BMSCs delivered on 

synthetic polymer scaffolds.  This strategy targets a specific osteoblastic signaling 

pathway to upregulate osteoblastic differentiation of BMSCs to promote bone formation, 

and may shorten the long time scale required for complete healing of defects with 

unmodified BMSCs.  Further investigation into increasing functional strength is 

warranted.  With further development, this gene therapy technique could be a useful 

strategy for healing large bone defects in humans. 
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CHAPTER 5 

SIMPLE COLLAGEN-MIMETIC SURFACE MODIFICATION 

INCREASES BONE FORMATION IN CRITICALLY-SIZED 

RODENT FEMORAL DEFECTS 

 

Introduction 

 Limitations with current clinical bone grafting procedures, namely autografts and 

allografts, have led to the development of alternative methods of bone defect healing via 

regenerative medicine strategies (Hutmacher and García 2005; Awad et al. 2007; 

Cancedda et al. 2007).  Most tissue engineering strategies can be broadly categorized as 

osteoinductive or osteoconductive, whereby a tissue engineering construct stimulates 

differentiation of host cells to subsequently form bone or promotes attachment of bone 

forming cells, respectively (De Long et al. 2007).  The first well documented study of 

bone formation by osteoinduction was described by Marshall Urist in 1965 by the 

implantation of demineralized bone matrices into ectopic sites in rabbits and rodents 

(Urist 1965).  From this experiment came the discovery and characterization of bone 

morphogenetic proteins (BMPs), soluble growth factors that work through Smad-

dependent signaling pathways to promote osteoblastic differentiation (Derynck and 

Zhang 2003).  More than 15 individual BMPs have now been identified and several 

studies have shown that BMP-2 and BMP-7 promote healing of critically-sized bone 

defects in both small and large animals (Yasko et al. 1992; Cook et al. 1994; Cook et al. 

1994; Cook et al. 1995) and in humans (Govender et al. 2002).  Additionally, BMP-7 is 
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currently FDA-approved for human use in long bone non-unions where autograft 

treatment is not feasible or has failed, and BMP-2 is available for clinical use in the 

treatment of open tibial fractures and for lumbar spinal fusion (Boden 2005; Bishop and 

Einhorn 2007). 

 Although the use of BMPs in clinical repair of bone defects has demonstrated 

success, several factors contribute to the continued search for regenerative medicine 

alternatives.  First, the residence time of BMP in a defect site following localized delivery 

directly affects its osteogenic potential.  As a soluble factor, diffusion of BMP away from 

the delivery site decreases the amount of bone formed in an implant (Uludag et al. 2000).  

Efforts are being made to increase BMP residence time at the defect site, by the 

immobilization of BMP onto implants (Yamachika et al. 2009).  Second, the dosage of 

BMPs required to stimulate bone formation in large bone defects in humans far exceeds 

the successful working dosage described in preclinical trials.  Thus, production of enough 

recombinant protein for one vial of BMP for human use is a very costly procedure (Alt 

and Heissel 2006; Bishop and Einhorn 2007; Cancedda et al. 2007).  Clinical bone 

healing would benefit from a more targeted and cost effective solution. 

 Recently, the use of biomimetic strategies which attempt to recapitulate the 

environment of the bone ECM have been used to promote osseointegration and bone 

formation in vivo (Hubbell 2003).  Short immobilized peptide sequences and fragments 

derived from ECM proteins, such as the RGD sequence from fibronectin, have been used 

to promote cell attachment to titanium implants as an improved method of implant 

fixation and osseointegration (Ferris et al. 1999; Bernhardt et al. 2005; Elmengaard et al. 



 

 90 

2005; Reyes et al. 2007; Petrie et al. 2008). These strategies take advantage of the 

specific interactions between ECM protein ligands and integrin cell surface receptors. 

 The integrin receptors play a crucial role in cell attachment and ECM-mediated 

cell signaling.  Integrin dimers, consisting of one α and one β subunit, bind to specific 

sites contained within ECM proteins, thereby promoting cell attachment, migration, 

mechanotransduction, differentiation, and numerous other cell functions (Clark and 

Brugge 1995; Hynes 2002).  In particular, type I collagen-mediated activation of the α2β1 

integrin receptor promotes osteoblastic differentiation of bone marrow stromal cells 

(BMSCs) and pre-osteoblastic cells in vitro leading to the production of mineralized 

matrices on 2-dimensional surfaces (Jikko et al. 1999; Mizuno et al. 2000).  The α2β1 

receptor is highly expressed on the surface of osteoblastic cells (Gronthos et al. 1997), 

and it binds specifically to the triple helical hexapeptide domain, GFOGER, contained 

within collagen I (Knight et al. 2000).  We have previously demonstrated that isolation of 

this active binding sequence, GFOGER, via synthetic fabrication of a triple helical 

GFOGER peptide, allows engineered control over osteoblastic differentiation of cells on 

GFOGER coated 2D surfaces (Reyes and García 2003; Reyes and García 2004).  

Furthermore, use of GFOGER as an implant coating for titanium tibial plugs enhances 

osseointegration in vivo to levels greater than that of unmodified titanium or titanium 

coated with full length collagen I (Reyes et al. 2007).  This collagen mimetic strategy for 

osseointegration specifically targets osteoblastic cells through α2β1-mediated signaling 

by eliminating extraneous binding sites contained in the full length protein.  Furthermore, 

the synthetically derived peptide is inexpensive, easy to fabricate and poses no risk of 

disease transmission.  
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 In this study, we examined the effects of GFOGER surface modification on the 

healing of critically-sized bone defects in rats.  We hypothesized that the specific 

targeting of α2β1 receptors in orthotopic segmental bone defects via GFOGER-coated 

polymer scaffolds would increase bone formation in critically-sized defects compared to 

uncoated scaffolds.  The fabrication of synthetic peptide sequences provides an 

inexpensive alternative to costly methods of bone tissue engineering, such as those 

employing BMPs or using cells.  This simple surface modification strategy, which 

imparts specific biologic functionality to synthetic implants represents an elegant yet 

facile procedure for future clinical bone healing. 

Materials and Methods 

GFOGER synthesis 

 The synthetic peptide GGYGGGPC(GPP)5GFOGER(GPP)5GPC, where O is 

hydroxyproline, was fabricated by the Emory University Microchemical Facility using 

stepwise solid-phase procedures, as previously described (Reyes and García 2003).  This 

peptide has a triple helical conformation (Figure  5.1A), which mimics the structure of 

collagen I and is essential for peptide bioactivity (Knight et al. 2000).  The purified 

peptide was stored as a TFA salt at -20oC.  For short term storage, the peptide was 

reconstituted to 10 mg/mL in 0.1% TFA and 0.01% sodium azide and stored at 4oC.  For 

all surface coating experiments, the reconstituted peptide solution was further diluted in 

PBS. 
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Figure  5.1.  The synthetic peptide fragment, GFOGER, is passively adsorbed to PCL scaffolds and 
saturates the surface. (A) Space filling model of the GFOGER molecule shows its triple helical, collagen 
mimetic conformation.  (B) MicroCT is used to characterize the structure of PCL scaffolds.  Scaffold 
parameters for the first in vivo study are listed. (C) GFOGER surface saturation on PCL scaffolds occurs at 

a coating concentration of 20 µg/mL. Biotinylated GFOGER was adsorbed onto PCL scaffolds and 
detected via ELISA. Error bars represent standard deviation, n=3. 

 

PCL scaffold fabrication and coating with GFOGER 

 Polycaprolactone (PCL) scaffolds were produced in sheets 9 mm thick by fused 

deposition modeling as previously described (Zein et al. 2002).  Sheets were cut into 

scaffolds using a 4 mm diameter dermal biopsy punch (Miltex), and microCT analysis 

was used to characterize the structural parameters of the scaffolds (Figure  5.1B).  For the 

first in vivo study, scaffold pore volume was 73% of the total volume, and pore size was 

560 µm.  
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 For passive adsorption of GFOGER onto PCL scaffold surfaces, scaffolds were 

cleaned in 70% ethanol for 30 minutes, rinsed in sterile ddH2O 3 times, then soaked in 

PBS for 10 minutes prior to peptide coating.  For in vivo studies, an additional step was 

added for endotoxin removal, which involving rinsing scaffolds in 70% ethanol for 4 

days on a shaker plate with daily ethanol replacement.  To coat with GFOGER, scaffolds 

were removed from PBS, wicked on Kimwipes, and then added to a solution of 50 µg/mL 

of GFOGER in PBS for 2 hours at room temperature.  Uncoated scaffolds received the 

same treatment, but were kept in PBS without GFOGER.  Prior to implantation, scaffolds 

were rinsed briefly in PBS to remove any unbound peptide. 

Biotinylation and detection of GFOGER peptide 

 The carboxyl end of the GFOGER peptide was biotinylated using an EZ-Link® 

Amine-PEG3-Biotin kit (Pierce Biotechnology) to allow detection of the peptide after 

adsorption onto PCL scaffolds.  Briefly, reconstituted GFOGER peptide was added to 

MES buffer, mixed with Amine-PEG-Biotin solution and EDC according to 

manufacturer’s instructions, then incubated with shaking for 3.5 hours at room 

temperature.  Unreacted biotin was removed via dialysis overnight into PBS using a 

Slide-A-Lyzer Dialysis Cassette with a molecular weight cut off of 3500 (Thermo 

Scientific).  After dialysis, protein concentration was measured using a BCA Protein 

Assay kit (Pierce Biotechnology). 

For in vitro detection of biotinylated GFOGER on PCL scaffolds, a modified 

ELISA against biotin was performed.  Briefly, scaffolds were coated with biotinylated 

GFOGER, rinsed thoroughly in PBS, wicked on Kimwipes, then blocked in 0.25% heat 

denatured BSA with 0.0005% Tween 20, 1 mM EDTA, and 0.025% NaN3 in PBS for 1 
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hour at 37oC.  After blocking, scaffolds were rinsed rigorously in PBS, incubated in a 

1:2000 dilution of anti-biotin antibody conjugated to alkaline phosphatase (clone BN-34, 

Sigma) for 1 hour at 37oC, rinsed again rigorously, then incubated with 60µg/mL of 4-

methylumbelliferyl phosphate (MUP) substrate in diethanolamine buffer (pH 9.5) for 1 

hour at 37oC.  Fluorescent signal was measured by transferring 100 µL from each 

scaffold to the well of a u-bottom black plate and reading excitation/emission spectra at 

360/465 nm on a HTS 7000 Plus Bio Assay Reader (Perkin Elmer).  Uncoated PCL 

scaffolds served as negative controls and were incubated in PBS without GFOGER, then 

rinsed and blocked following the same procedure as GFOGER-coated scaffolds.  

Substrate-only negative controls were coated with GFOGER but excluded use of the anti-

biotin antibody. 

Segmental Defect Surgery 

Femoral defects were created bilaterally as previously described (Oest et al. 

2007).  Briefly, 13 to 15 week old female Lewis rats were anesthetized using isoflurane, 

and the hind limbs were shaved and swabbed with cycloheximide and alcohol to prepare 

the skin for incision.  An anterolateral incision was made from the hip to the knee to 

allow blunt separation of the quadriceps muscles, exposing the femur (Figure  5.2A).  

Before the defect was created, a modular fixation device was attached to the bone for 

mechanical support.  The device consisted of two stainless steel plates affixed directly to 

the bone via screws and one polysulfone plate, which spanned the defect and was 

attached to the stainless steel plates (Figure  5.2B).  Use of this modular system was 

advantageous for postmortem mechanical testing and non-invasive in vivo X-ray and 

microCT analysis.  After attachment of the fixation device, an 8.0 mm segment of bone 
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was removed via bone saw with irrigation, and a scaffold was press fit into the defect 

(Figure  5.2A).  Notches in the polysulfone plate, spaced 8.0 mm apart, ensured each 

defect was consistently created the same length (Figure  5.2B).  Muscle was closed around 

the plate and defect using Vicryl sutures, and the skin was closed using sutures and 

wound clips. 

 
 
Figure  5.2.  Surgical procedure for critically-sized segmental defects in rat femurs.  (A) Each defect is 
stabilized by a fixation plate. (i) Blunt dissection of the quadriceps exposes the femur and enables 
placement of the fixation plate.  (ii) An 8.0 mm segment is removed from the femur via bone saw, and (iii) 
scaffolds are press fit into the defect.  (B) An explanted femur shows the modular fixation plate attached to 
the bone via stainless steel screws.  Notches in the polysulfone plate (marked with arrows) are spaced 8mm 
apart ensuring each defect is created at the same size. 

 

For in vivo studies, the following 3 groups were tested: (i) uncoated PCL 

scaffolds, (ii) GFOGER-coated PCL scaffolds and (iii) empty defect control.  For the 

empty defect group, the surgical procedure remained the same, but no scaffold was 
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placed in the defect.  A coating concentration of 50 µg/mL was used for all implanted 

GFOGER-coated scaffolds.  

 Following surgery, animals were given 3 daily doses of buprenorphine at 0.03 

mg/kg for 2 consecutive days and 3 doses of 0.01 mg/kg on the third day to control pain. 

Animals were monitored daily for signs of pain and distress, progress of wound closure, 

regular eating habits and normal ambulation.  A small percentage (< 8%) of rats 

developed infections in or around the surgery site, or experienced mechanical failure of 

the fixation device.  These animals were removed from the study and euthanatized, and 

any data collected from these animals was excluded.  Two weeks post surgery, skin 

wounds were completely healed, and animals were anesthetized with isoflurane for 

removal of wound clips.  At 4, 8 and 12 weeks post-surgery, animals were anesthetized 

with isoflurane and the hind legs were scanned via radiography and microCT as 

described below.  Twelve weeks post-surgery, animals were euthanized by CO2 

inhalation, and the femurs, along with surrounding muscle tissue, were harvested for 

postmortem microCT evaluation, histology and mechanical testing.  

Radiography and MicroCT Analysis 

Every 4 weeks following surgery, 2-dimensional X-ray images of each femur 

were non-invasively obtained using an MX-20 Specimen Radiography System (Faxitron 

X-ray Corporation) to make gross morphological observations of bone formation in each 

defect site.   To obtain X-ray images, animals were anesthetized in a gas chamber filled 

with 5% isoflurane and maintained under anesthesia using 2% isoflurane flow into a face 

mask.  Each hind leg of anesthetized animals was scanned for 15 s with a X-ray beam 

energy of 23 kV. 
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 In addition to radiographic imaging, samples were non-invasively analyzed every 

4 weeks post-surgery by microCT using a vivaCT 40 (Scanco Medical) to quantify bone 

volume in each defect site.  For microCT, animals were anesthetized in the same manner 

as described above for radiography and placed in a rodent holder with one leg 

outstretched for scanning.  The defect area in between the stainless steel plates of the 

fixation device was imaged with a X-ray beam energy of 55 kVp and intensity of 109 µA, 

and the integration time was 200 ms.  Scanning resolution was 38 µm.  After imaging 

was complete, noise was reduced from 3-dimensional reconstructions of each scan by 

applying a Gaussian filter (sigma=1.2, support=2) using the Scanco Medical µCT 

Evaluation Program.  Images were thresholded at 270 mg HA/ccm to isolate mature bone 

from soft tissue and the polymer scaffold and fixation plate.  Bone volume was quantified 

using directly computed values. 

Histological Analysis 

 Immediately following euthanasia, samples for histological analysis were fixed in 

10% neutral buffered formalin.  One day after fixation, soft tissue was removed, and 

specimens were placed in fresh formalin.  Prior to embedding, fixed tissues were scanned 

ex vivo via microCT as described above to allow matching of histological sections with 

microCT slices.  After scanning, specimens were dehydrated in a series of alcohols, 

cleared in xylene, and embedded in methyl methacrylate (MMA).  Ground sections, 50-

80 µm thick, were prepared by Wasatch Histo Consultants, Inc. (Winnemucca, NV) and 

stained using Sanderson’s Rapid Bone StainTM and a van Gieson counterstain (Reyes et 

al. 2007).  Stained histological sections were then matched to thresholded microCT scans 

to confirm that microCT analysis was representative of mature bone.
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Mechanical Testing 

Explanted samples for mechanical testing were wrapped in PBS-soaked gauze and 

frozen at -20oC until use.  Mechanical testing was performed as previously described 

(Oest et al. 2007).  Briefly, samples were thawed in room temperature PBS and most of 

the soft tissue was removed, leaving some soft tissue surrounding each defect and taking 

care not to mechanically disrupt tissue in the defect site.  The ends of each bone were 

potted in Wood’s metal up to the polysulfone plate and secured with pins into potting 

blocks.  Blocks were loaded onto an ElectroForce® mechanical testing machine (Elf 

3200, Bose) and the polysulfone plate was removed just before testing.  Samples were 

loaded in torsion at a displacement rate of 3o/s up to 360o.  Maximum torque before 

failure was recorded for each sample.  Stiffness and work to failure were calculated. 

Statistical Analysis 

 Data was analyzed using ANOVA in Systat v11.  Samples identified as statistical 

outliers that also met additional criteria for removal, such as improper plate placement, 

were removed from analysis.  A p-value < 0.05 was considered significant.  

Results 

Saturation of GFOGER on PCL scaffolds 

 To determine a coating concentration for GFOGER saturation on PCL scaffolds, 

varying concentrations of biotinylated GFOGER were adsorbed onto PCL scaffolds in 

vitro and a saturation curve was generated via ELISA for anti-biotin.  Figure  5.1C shows 

that GFOGER saturates the surface of PCL scaffolds at a coating concentration of 20 
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µg/mL.  For all in vivo studies, GFOGER was used at a coating concentration of 50 

µg/mL to ensure saturation of GFOGER on PCL scaffold surfaces. 

Bone formation in critically-sized defects 

 Immediately following surgery, animals were monitored several times daily for 

signs of pain or stress, regular eating habits, and normal ambulation.  Within one week 

following surgery, signs of stress were minimal, regular eating had returned and normal 

ambulation using both hind limbs was restored.  

To monitor bone formation in critically sized defects, x-ray and microCT scans 

were performed every 4 weeks post surgery.  X-ray images show gross morphological 

changes in bone growth at the defect site over time.  While empty defects and uncoated 

PCL-treated defects showed minimal bone formation, GFOGER-treated defects showed 

substantial increases in bone growth over time.  Representative X-ray images from each 

group are shown in Figure  5.3A, and the corresponding three-dimensional microCT 

reconstructions at 12 weeks are shown in Figure  5.3B. 

At 4 and 12 weeks post-surgery, animals were anesthetized and bone volume in 

all defects was quantified via microCT.  Negligible bone formation occurred at the ends 

of host bone in empty defects and uncoated PCL defects.  However, bone formation in 

GFOGER defects was significantly greater compared to PCL and empty defects (Figure 

 5.3C).  These indicate that specific targeting of the α2β1 integrin via GFOGER surface 

modification promotes osteoblastic differentiation and bone formation in vivo.  
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Figure  5.3.  GFOGER-coated scaffolds significantly enhance bone formation in critically-sized defects 
compared to uncoated scaffolds and empty defect controls.  (A) Faxitron images show that empty defects 
do not heal after 12 weeks, and negligible bone formation is present in uncoated PCL-treated defects.  
However, GFOGER-treated defects promote bone formation as early as 4 weeks.  Representative samples 
are shown for each group. (B) MicroCT images show the same samples from (A) at 12 weeks.  (C) Bone 
volume is significantly greater in GFOGER-treated samples at both 4 and 12 weeks compared to empty 
defects and uncoated PCL-treated samples.  Error bars represent standard error of the mean. n=8 and n=9 
for PCL and GFOGER at 4 weeks, respectively.  n=7 and n=8 for PCL and GFOGER at 12 weeks, 
respectively.  * Different from empty defect and PCL (p<0.05). 
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Histological Analysis 

 To more fully characterize areas of high attenuation imaged by microCT, one 

sample from the GFOGER group was subjected to histological analysis at 12 weeks.  

Prior to embedding, the sample was scanned via microCT and thresholded in the same 

manner as all other samples.  Then, Sanderson’s Rapid Bone StainTM, which 

distinguishes areas of mineralized bone from demineralized connective tissue and 

osteoid, was applied to the sample revealing mineralized bone tissue in a red/pink color 

and demineralized osteoid in blue/green (Sanderson and Bachus 1997).  Because this 

sample underwent both Sanderson’s stain and microCT scanning, matching slices from 

histology and microCT were compared.  This analysis shows that areas of high 

attenuation that were thresholded in microCT and used as a measure of bone volume in 

Figure 5.3, directly match areas of red/pink staining defined as mineralized bone tissue in 

the Sanderson’s stain (Figure  5.4). 

 
 

Figure  5.4.  Histological analysis confirms that areas of high attenuation revealed by microCT are 
bone.  (A) Sanderson’s rapid bone stain for a GFOGER-coated sample showing bone in red/orange 
and soft tissue in blue/green. (B) Two-dimensional microCT image from the same sample as (A) 
revealing bone formation in the same location. 
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Mechanical strength of repaired defects is dependent on bridging 

 To assess functionality of new bone present in critically-sized defects, femurs 

were harvested 12 weeks post-surgery and subjected to postmortem torsional testing. 

Although microCT reveals differences in bone volume between GFOGER-treated and 

PCL-treated defects, maximum torque sustained was not significantly different between 

these two groups (Figure  5.5A).  Stiffness and work to failure were also evaluated and no 

significant differences were observed (data not shown).  We hypothesized that 

mechanical strength is dependent on defect bridging.  Whereas some samples contain a 

large amount of bone in the defect site, high levels of mechanical strength are only 

present when this bone is firmly attached to both the proximal and distal end of the host 

bone.  Without full attachment, or bridging of the defect, samples that have large bone 

volumes sustain low torque loads. 

 To demonstrate that mechanical strength is dependent on defect bridging, 

Faxitron images for all samples were blindly assessed for their extent of bridging and 

assigned a bridging score from 0-5 based on the criteria outlined in Figure  5.5B, where 0 

is no bone in the defect and 5 is a fully bridged defect.  Representative Faxitron images 

for each score are shown in Figure  5.5C.  By looking at bone volume versus maximum 

torque for each sample grouped by briding scores, a trend is observed where samples 

with higher bridging scores generally have greater max torque (Figure  5.5D).  Although 

there are no significant differences in torsional strength between uncoated PCL-treated 

defects and GFOGER-treated defects, a distribution of bridging scores from each group 

shows that GFOGER scores are shifted towards fully bridged or nearly fully bridged 
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(scores 4 and 5) compared to PCL scores (Figure  5.5E).  This shift found to be significant 

by a Kruskall Wallis one way ANOVA by ranks (p < 0.05). 

Effects of GFOGER on bone formation are surface area dependent 

 We hypothesized that the effects of GFOGER on bone formation are dependent 

on the area of scaffold in direct contact with host bone because the surface area of the 

scaffold directly affect the dose of GFOGER delivered to the defect site.  Uncoated and 

GFOGER-coated PCL scaffolds with varying surface area to volume ratios were 

implanted in critically-sized segmental defects to test for surface area dependent effects 

of GFOGER.  MicroCT analysis shows that GFOGER significantly enhances bone 

formation compared to uncoated PCL scaffolds only when the surface area to volume 

ratio of the scaffolds is above 3.1 mm-1 (Figure  5.6).  In vitro ELISA detection of 

biotinylated GFOGER adsorbed at a saturating concentration of 50 µg/mL onto PCL 

scaffolds with various surface area to volume ratios shows significantly more total 

GFOGER on scaffolds with more surface area (Figure  5.6B). 
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Figure  5.5.  Mechanical properties of repaired segmental defects.  (A) Despite differences in bone volume 
between GFOGER-treated defects and PCL-treated or empty defects, maximum torque is not significantly 
different.  (B) Criteria for bridging scores assigned to each sample.  (C) Representative faxitron images of 
scores described in (B).  (D) Samples with higher bridging scores are shifted to the upper right of a bone 
volume versus maximum torque correlation graph.  (E) GFOGER-coated samples result in a greater 
number of fully bridged samples than uncoated samples (p < 0.05). 

 



 

 105 

 
Figure  5.6. Effects of GFOGER are dependent on scaffold surface area to volume ratio.  (A) In vivo results 
show greater bone volume in GFOGER-treated defects compared to uncoated PCL only when the scaffold 
surface area to volume ratio is high. Bone volume is quantified by microCT at 12 weeks post-op 
(*Different from uncoated scaffolds in the same SA:Vol group, p < 0.05).  (B) Biotinylated GFOGER 
detected on the surface of PCL scaffolds with varying surface area to volumes ratios via ELISA.  Scaffolds 
with the highest surface area to volume ratio have more GFOGER than the others (§ Different from all 
other groups, p < 0.05).  (C) Cross-sectional microCT images of scaffolds with different surface area to 
volume ratios. 
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Discussion 

 This study examined the effect of coating synthetic polymer scaffolds with a 

biomimetic peptide sequence from collagen I on the in vivo bone healing of critically-

sized defects in rats.  We found that simple surface modification by adsorption of the 

peptide, GFOGER, to the scaffold accelerated and promoted significantly more bone 

formation in segmental femoral defects treated with coated scaffolds compared to 

uncoated scaffolds.  We further demonstrated that GFOGER-mediated bone formation is 

dependent on scaffold surface area, an indication that the dose of GFOGER delivered to 

the site or the area of GFOGER in direct contact with host cells directs the host reparative 

response.  The implications of this study are significant for clinical healing of large bone 

defects because this cell and growth factor-free method for bone regeneration addresses 

many issues with current regenerative medicine technologies.  Namely, the fabrication of 

the synthetic peptide sequence, GFOGER, is inexpensive and provides a more cost 

effective method treatment method than strategies employing BMPs.  Furthermore, the 

use of synthetic materials avoids the issue of immune response to these biologically-

derived biomolecules.  This simple surface modification strategy which uses passive 

adsorption to coat biomaterials for bone regenerating scaffolds provides a simple method 

for imparting biofunctionality to synthetic surfaces, which could easily be translated to 

other materials. 

 The critical role of integrin activation in cell adhesion and signaling has been well 

established (Clark and Brugge 1995; Hynes 2002).  In particular, the specific interactions 

of fibronectin with the α5β1 integrin and of type I collagen with the α2β1 integrin have 

been shown to mediate osteoblast differentiation and subsequent mineralization of 
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osteoblastic and pre-osteoblastic cells (Moursi et al. 1997; Takeuchi et al. 1997; Xiao et 

al. 1998; Jikko et al. 1999; Mizuno et al. 2000).  Over the past decade, targeting of these 

specific ECM-integrin interactions to exert engineered control over osteoblastic function 

has been accomplished via isolation of specific binding sequences, such as RGD, from 

ECM proteins.  Successful osseointegration and implant fixation has been demonstrated 

in vivo using RGD as a biomaterial coating (Ferris et al. 1999; Bernhardt et al. 2005; 

Elmengaard et al. 2005), and these strategies often enhance osteoblastic activity to a 

greater extent than the native ECM molecules (Kurihara and Nagamune 2005).  Recently, 

work in our group has demonstrated a significant improvement in osseointegration and 

implant fixation over RGD using the fibronectin fragment, FNIII7-10, which contains a 

synergy site in addition to RGD (Petrie et al. 2008).  Although these strategies are 

promising, little work has focused on the presentation of non-RGD peptide motifs that 

target the collagen-α2β1 interaction (García and Reyes 2005). 

 Activation of the α2β1 integrin is presently known to occur via binding of distinct 

adhesive sites contained within collagen I, namely DGEA and GFOGER (Xiao et al. 

1998; Knight et al. 2000).  In studies comparing RGD to DGEA, cell adhesion strength 

was greater on surfaces presenting RGD over DGEA (Harbers and Healy 2005).  

Although several studies have characterized the effect of DGEA on other cell types, the 

role of DGEA in osteoblast signaling and differentiation is presently unclear (Marquis et 

al. 2008).  On the other hand, our group has previously reported increased osteoblastic 

differentiation on GFOGER coated surfaces in vitro, and this effect translated to 

increased osseointegration and implant fixation on GFOGER-coated titanium implants in 

vivo (Reyes and García 2003; Reyes and García 2004; Reyes et al. 2007).  In those 
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studies, the effects of GFOGER on osteoblastic differentiation and mineralization were 

greater than that for native collagen I, indicating that the GFOGER peptide has greater 

targeting specificity than full length collagen I, most likely due to the elimination of other 

binding sites (such as DGEA) present on collagen I.  Many studies have explored the use 

of collagen sponges as carriers for cells and growth factors to heal segmental orthotopic 

defects.  While collagen sponges have demonstrated good use as carriers, no significant 

effect on orthotopic bone formation has been demonstrated with empty collagen carriers 

alone (Pekkarinen et al. 2006; Chen et al. 2007; Azad et al. 2009).   To our knowledge, 

the present study is the first to examine the use of the collagen-mimetic peptide, 

GFOGER, in a critically-sized orthotopic segmental defect.  While collagen alone does 

not successfully heal critically-sized bone defects, we demonstrate a significant 

enhancement in bone formation, with complete defect bridging occurring in some cases, 

due to GFOGER coating alone, without the use of cells or growth factors.  It is likely that 

the suboptimal results obtained from uncoated scaffolds is due to non-specific adsorption 

of serum proteins to the scaffold surface, leading to non-specific signaling and an 

unregulated host cell response.  Meanwhile, GFOGER-coated scaffolds promote specific 

binding of α2β1 integrin, thereby upregulating osteogenesis in surrounding host cells.  

This signaling response may via preferential binding and recruitment of osteoprogenitor 

cells present in or around the defect site to GFOGER, or via increased differentiation of 

uncommitted cells bound to GFOGER on the scaffold or some combination thereof. 

   In the late 1990s, a 15 amino acid peptide sequence, termed P-15, was isolated 

from collagen I, and shown to exhibit collagen-mimetic cell signaling when used as a 

surface coating (Qian and Bhatnagar 1996; Bhatnagar et al. 1999).  Although P-15 
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signaling has not been specifically linked to the α2β1 integrin, use of P-15 as a coating on 

anorganic bone matrix (ABM) promotes osteoblastic differentiation and mineralization in 

vitro (Yang et al. 2004).  Preclinical studies using P-15/ABM implants in orthotopic 

defects have demonstrated successful defect healing in two different models.  Scarano et 

al. report significant healing of a monocortical tibial defect in rabbits using P-15/ABM 

(Scarano et al. 2003).  Similarly, Cakmak et al. report significant healing due to P-

15/ABM in a segmental rat radial defect (Cakmak et al. 2006).  However, in both of these 

studies, P-15/ABM was compared to empty defect controls, but uncoated ABM controls 

were not included.  Furthermore, no quantitative CT analysis of bone volume was 

performed in either of these studies, making direct comparison to the present study 

difficult.  A third pre-clinical study employing P-15/ABM did not show a significant 

enhancement in healing of a rabbit segmental femoral defect.  However, in this study, 

empty defects demonstrated complete bridging as often as P-15/ABM treated defects 

after 12 weeks, indicating that the 5 mm rabbit radial defect used in this study was not of 

a critical size (Sarahrudi et al. 2008).  Despite few reports on successful preclinical 

testing of P-15/ABM in orthotopic sites, recent clinical data has demonstrated successful 

healing in humans due to P-15/ABM implants in several case reports (Gomar et al. 2007; 

Trombelli and Farina 2008).  Although these results are promising, little effort has been 

made to test uncoated ABM compared to P-15 complexed ABM.  ABM is porous 

particulate bone mineral derived from bovine sources, which is likely to be a naturally 

osteoconductive material.  In the present study, uncoated synthetic polymeric scaffolds 

did not produce significant healing in orthotopic defects when compared to GFOGER-

coated scaffolds.  This choice of scaffold, which does not heal the defect alone, allowed 
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us to evaluate the effects of GFOGER on defect healing without contributions from the 

scaffold.  Interestingly, a recent study comparing DGEA, P-15, GFOGER, and RGD, 

showed that GFOGER produced no cell adhesion when used as an HA coating (Hennessy 

et al. 2009).  The authors attribute this surprising result to the HA substrate employed.  

Taken together, these results indicate that the effects of GFOGER may be substrate 

dependent. 

 It is well known that ligand density and clustering have a direct effect on integrin 

activation and signaling (Massia and Hubbell 1991; Maheshwari et al. 2000).  Recent 

work in our group has demonstrated that adhesion of HT1080 human fibrosarcoma cells 

to GFOGER coated surfaces is directly dependent on the surface density of GFOGER 

(Reyes et al. 2008).  In the present study, we determined the coating concentration 

necessary to produce a saturating surface density of GFOGER on PCL scaffolds (Figure 

5.3C).  This saturating concentration was used to coat all GFOGER-coated PCL scaffolds 

used for in vivo implantations.  Because coating was performed via passive adsorption of 

GFOGER onto PCL scaffold surfaces, and ligand density and clustering were not 

precisely controlled, we, therefore, assume that ligand density and clustering were 

constant between different batches of PCL. However, we observed that PCL scaffolds 

with varying surface area to volume ratios produced differential effects on bone 

formation in vivo (Figure  5.6A).  Because ligand density and clustering were not 

specifically varied in this experiment, this difference in host response to GFOGER on 

different PCL scaffolds was most likely due to a dose dependent effect of GFOGER at 

the tissue level.  With relatively few studies that characterize the 3 dimensional in vivo 

binding environment of short synthetic integrin ligands used as biomaterial coatings, 
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future work should focus on the optimization of GFOGER dosage for in vivo 

applications.  Exploring scaffold materials, architectures, and surface areas for GFOGER 

therapy is warranted. 

 Finally, a distinct advantage of this study over many reports of segmental defect 

healing is the use of mechanical testing to assess functionality of the defects.  A large 

majority of studies that report successful healing of bone defects rely solely on a 

combination of X-ray analysis and histological evaluation as a measure of defect healing.  

However, this approach does not provide functional information, which is necessary to 

fully evaluate the success of a given treatment strategy for bone healing (Liebschner 

2004).  Few groups report mechanical testing analysis, but of those that do, the most 

common test methods are torsion (Cook et al. 1994; Cook et al. 1994; Cook et al. 1995; 

Hsu et al. 2007; Oest et al. 2007; Rai et al. 2007).  In this study, we used torsional testing 

to evaluate the functional strength of the defects.  Despite differences in bone formation, 

the average torsional strength of GFOGER treated defects was not significantly different 

from that of PCL treated defects, pointing to the need for careful mechanical evaluation 

in bone tissue engineering to assess function of tissue engineered defects. However, we 

did observe differences in torsional strength between fully bridged samples compared to 

non-unions.  This result is in agreement with a mounting body of work suggesting that 

greater bone mass will not necessarily result in greater bone strength.  For example, 

recent evidence suggests that patients with a high level of bone turnover may be at higher 

risk for bone fracture regardless of areal bone mineral density (Hernandez 2008). This 

concept is known as bone quality, a term used to describe any skeletal aspect of bone, 

excluding bone mass (i.e. bone shape, size, trabecular connectivity, etc) that affects its 
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strength (Hernandez and Keaveny 2006).  In the present study, although significant 

increases in bone mass were observed due to GFOGER treatment, bone quality was not 

affected.  The implication of these results is that radiographic and histological methods of 

evaluating bone tissue are not sufficient to fully characterize the extent of bone defect 

healing.  Functional mechanical evaluation of bone defects should be used in conjunction 

with other methods for complete analysis of both bone mass and bone quality. 

 In conclusion, this simple surface modification of synthetic bone implants imparts 

biologic functionality without the use of cells or growth factors.  The advantages of this 

method include reduced cost compared to purification of natural proteins, reduced risk of 

disease transmission and reduced reliance on variability in biologics, making GFOGER 

therapy a viable treatment for future clinical bone healing. 
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 CHAPTER 6 

SUMMARY AND FUTURE CONSIDERATIONS 

 

Clinical healing of large non-unions in bone is a significant socioeconomic 

problem in the United States.  As many as 30% of patients undergoing autografts have 

been reported to suffer from donor site morbidity and pain, while approximately 30% of 

allografts fail due to fracture.  To address these issues, bone tissue engineering strategies, 

which eliminate the need for autogenous or cadaveric donor bone, present valuable 

alternatives to healing large bone defects.  In this work, two tissue engineering strategies, 

one cell-based and one biomaterials-based, were developed to promote directed 

osteoblastic differentiation for healing critically-sized defects in bone.  Although the 

approaches differed, both strategies focused on exerting control over specific signaling 

pathways involved in osteogenesis to promote bone formation.  The two strategies are 

summarized below, along with future considerations for further development of this 

research. 

Runx2 Genetic Engineering for Bone Regeneration 

In this work, we presented a cell-based strategy for bone tissue engineering, in 

which BMSCs were genetically modified to constitutively overexpress the osteoblast-

specific transcription factor, Runx2.  We demonstrated that delivery of Runx2-modified 

BMSCs to critically-sized orthotopic defects in rats accelerated the bone formation rate in 

defects at early time points compared to treatment with unmodified cells or negative 

controls.  At late time points, unmodified BMSCs eventually produced similar levels of 

bone volume, highlighting the inherent osteogenic ability of this cell type.  Recent 
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clinical work suggests that successful treatment of large bone defects in humans with 

unmodified BMSCs requires at least 5 months of external fixation of the injured limb 

post-surgery (Marcacci et al. 2007).  Therefore, a reduction in recovery time after surgery 

would add significant benefit to this treatment, making the gene therapy strategy for 

accelerated bone formation presented in the current work a valuable alternative to current 

treatments. 

Although Runx2-modified BMSCs accelerated bone formation in critically-sized 

defects compared to unmodified BMSCs, the mechanical strength of the defects after 12 

weeks was not significantly different among unmodified BMSC and Runx2-modified 

BMSC treatments.  Runx2-modified cells did result in a population shift towards fully 

bridged or nearly fully bridged defects; however, for successful healing of large bone 

defects in humans complete bridging and functional restoration of mechanical strength 

should be achieved.  To improve mechanical functionality in defects treated with Runx2-

modified cells, several parameters may be considered.  These include the therapeutic load 

of cells delivered to the defect site, scaffold type, scaffold architecture, transduction 

efficiency of the target gene, and cell type.  These parameters are briefly discussed below 

in the context of future directions for this work. 

Few studies have directly examined the effect of cell concentration on the in vivo 

osteogenic potential of bone tissue engineering constructs.  However, evidence suggests 

that an increase in the number of cells present on constructs upon implantation 

significantly increases osteogenesis (Connolly et al. 1989).  Recently, Yoshii et al. 

reported the use of a simple pressurized seeding strategy to increase cell retention and 

improve cell distribution on β-TCP scaffolds, which resulted in greater and more uniform 
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bone formation on scaffolds implanted ectopically (Yoshii et al. 2009).  Furthermore, 

previous work in our group demonstrated that Runx2-expressing dermal fibroblasts had 

significantly greater mineralization capacity in vitro on fibrous collagen sponges, which 

retained more cells upon initial seeding than PCL scaffolds with an open pore structure or 

PLGA foams (Phillips et al. 2006).  This study points to an intricate interplay between 

cell number, scaffold architecture and scaffold material.  The high surface area to volume 

ratio of a fibrous mesh in combination with the active binding sites present within 

collagen I are most likely more conducive to cell adhesion and subsequent differentiation 

than synthetic scaffolds with more open pore structures that lack adhesive sequences.  In 

the current work, a collagen mesh was incorporated into PCL scaffolds to increase cell 

retention in the void volume of the scaffolds compared to PCL scaffolds alone.  Perhaps 

the use of a fibrous collagen sponge without PCL in this model would allow greater cell 

attachment, further increasing the therapeutic load of cells delivered to the defect site, 

thereby enhancing bone healing beyond levels reported in the current work.  Another 

scaffold option is the use of naturally osteoconductive materials, such as hydroxyapatite 

or β-TCP, which promote attachment of host bone cells that will mineralize the construct 

(LeGeros 2002).  These materials have been used for bone regeneration; however, 

radiographic quantification of bone formed in the defect is difficult because these calcium 

phosphate ceramics have X-ray attenuation values very similar to bone, making image 

segmentation to isolate bone from scaffold difficult.  Alternatively, synthetic scaffolds 

presenting specific adhesive sequences, such as those investigated in Chapter 5 of this 

work, may provide an extracellular signaling environment more conducive to osteoblastic 

differentiation than unmodified synthetic scaffolds.  Because retroviral transduction of 
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primary cells is not 100% efficient, a second level of signaling presented on the scaffold, 

in addition to genetic modification of the cells, may encourage differentiation of the 

untransduced cell population delivered to the defect site.  All in all, optimization of the 

interplay between cell and scaffold parameters may enhance the bone formation and 

subsequent mechanical strength of bone defects treated with cell/scaffold constructs 

containing Runx2-modified BMSCs. 

A major contributing factor to the success of any gene therapy strategy is the type 

of gene delivery vehicle used to efficiently transduce the target cell population with the 

gene of interest.  Several gene delivery vehicles, including both viral and non-viral 

vectors and naked plasmid DNA, have been used for bone tissue engineering (Gersbach 

et al. 2007).  In the current work, Runx2 overexpression in BMSCs was achieved by 

retroviral transduction, promoting stable integration of the Runx2 transgene in 40% of the 

recipient cells.  It is possible that an increase in the transduction efficiency of Runx2 to 

donor cells would enhance the bone formation rate in critically-sized defects treated with 

Runx2-modified cells beyond levels achieved in this work.  As discussed previously in 

this dissertation, the proliferation rate and differentiation ability of BMSCs gradually 

decrease as time in culture time increases.  Because retroviral transduction only occurs in 

dividing cells, perhaps the propensity for decreased proliferation of this cell type would 

be better suited to a different vector system.  For example, lentiviral vectors promote 

stable, long-term integration of the gene of interest and effectively target non-dividing 

cells (Naldini et al. 1996).  On the other hand, alternative donor cell types or the 

elimination of the need for donor cells could be explored.  Recent work in our lab has 

demonstrated that dermal fibroblasts, a cell type less susceptible to loss of proliferation 
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than BMSCs, can be retrovirally transduced to express Runx2 with 65% transduction 

efficiency and mineralize collagen scaffolds implanted ectopically (Phillips et al. 2007).  

Perhaps the use of dermal fibroblasts in this model would allow greater Runx2 

transduction efficiency, leading to further enhancement of bone formation in critically-

sized defects.  Finally, our lab has also recently demonstrated that biomaterial-mediated 

delivery of a retroviral vector can efficiently promote transduction of target cells when 

biomaterial surface chemistry is well-controlled (Gersbach et al. 2007).  Therefore, 

implantation of a biomaterial carrier for the Runx2 retrovirus directly into a defect site 

could promote in situ transduction of host cells, thereby promoting bone formation 

without the need for donor cells.  Implementation of these gene therapy strategies may 

enhance Runx2-mediated healing of critically-sized defects in bone. 

GFOGER Surface Modification for Bone Regeneration 

In this work, we developed a biomaterials-based strategy for bone tissue 

engineering, in which synthetic PCL scaffolds were biofunctionalized with the collagen-

mimetic peptide, GFOGER.  We demonstrated that passive adsorption of GFOGER onto 

synthetic PCL scaffolds significantly increased bone formation in critically-sized 

orthotopic defects treated with GFOGER-coated scaffolds compared to defects treated 

with uncoated PCL scaffolds or empty defects.  We further demonstrated that this effect 

was dependent on scaffold surface area to volume ratio, indicating a dose dependency or 

threshold effect of GFOGER in critically-sized bone defects. This simple surface 

modification strategy imparts specific biologic functionality to synthetic surfaces, 

promoting enhanced bone healing without the use of donor cells or growth factors.  The 

implications of this study are significant for clinical healing of large bone defects because 
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this cell and growth factor-free strategy is cost-effective, evokes no immune response, 

avoids regulatory issues involving the implantation of biologic materials, and could be 

made readily available as a point of care clinical application. 

Despite differences in bone formation between GFOGER-coated and uncoated 

PCL scaffolds at 12 weeks, no significant differences in the average mechanical 

properties of defects treated with GFOGER-coated or uncoated PCL scaffolds were 

observed.  As with our cell-based approach, GFOGER-coated scaffolds resulted in a 

population shift towards fully bridged or nearly fully bridged defects compared to 

uncoated PCL scaffolds.  However, for successful healing of large bone defects in 

humans complete bridging and functional restoration of mechanical strength should be 

achieved.  To improve mechanical functionality in defects treated with GFOGER-coated 

scaffolds, several parameters may be considered.  These include the surface area to 

volume ratio of the scaffold used, scaffold architecture, scaffold material, method of 

ligand tethering, and ligand clustering.  These parameters are briefly discussed below in 

the context of future directions for this work. 

The structure of synthetic scaffolds for bone tissue engineering must meet several 

criteria in order to support bone tissue ingrowth, vascularization, and tissue remodeling.  

Importantly, scaffolds must contain a high degree of porosity, an interconnected pore 

volume, and an average pore size of at least 100 µm (Liu and Ma 2004).  In the current 

work, PCL scaffolds were created with well-controlled architectures, which provided an 

open interconnected pore volume to support bone ingrowth.  We demonstrated that the 

effects of GFOGER on bone formation in critically-sized defects depended on the surface 

area to volume ratio of the scaffold.  This surface area dependency most likely occurs 
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either because the amount of GFOGER delivered to the defect site is directly related to 

the surface area of the scaffold (i.e. scaffolds with greater surface area contain a greater 

amount of GFOGER) or because scaffolds with greater surface area have more 

opportunity for direct contact with host cells.  Thus, it is possible that the implantation of 

GFOGER-coated scaffolds with a greater surface area to volume ratio than the scaffolds 

examined in this work could result in greater bone formation than observed here.  

However, the caveat to this design change is that scaffold porosity must remain open and 

interconnected to continue to allow tissue infiltration and bone formation.  Taking 

scaffold surface area and porosity into account, synthetic scaffolds may be specifically 

designed to optimize GFOGER efficacy in vivo, thereby enhancing bone healing to levels 

beyond that of the current work. 

Finally, it is well established that ligand surface density and clustering have a 

direct effect on integrin signaling and activation (Massia and Hubbell 1991; Maheshwari 

et al. 2000).  Indeed, our group has demonstrated that cell adhesion to GFOGER coated 

surfaces is directly dependent on GFOGER surface density (Reyes and García 2003; 

Reyes et al. 2008).  In the current work, we used passive adsorption of GFOGER to 

saturate PCL scaffold surfaces.  The application of this strategy is simple, making it 

attractive for use in the clinic.  However, it is possible that well controlled deposition or 

tethering of GFOGER to specifically modulate ligand density and clustering may produce 

surfaces that are better suited for bone regeneration than those prepared by passive 

adsorption of the ligand.  Recent work in our lab has demonstrated that surface 

modification of titanium implants with non-fouling brushes that present α5β1 specific 

ligands at well-defined densities increase osseointegration and implant fixation in vivo 
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compared to unmodified titanium implants (Petrie et al. 2008).  This tethering strategy 

has also been demonstrated for GFOGER, where titanium implants, modified with well-

controlled densities of GFOGER on a non-fouling background, support cell adhesion in 

vitro (Raynor et al. 2009).  Perhaps the implementation of this strategy to generate bone 

tissue engineering scaffolds could improve the host response to GFOGER-modified 

surfaces.  Furthermore, we have observed widely varying adsorption profiles for 

GFOGER on different materials, including tissue culture polystyrene, PCL, titanium and 

glass (unpublished data), indicating that the base material used for GFOGER adsorption 

may have a significant effect on cell response to the construct.  Recently, Hennessy et al. 

found that GFOGER did not promote cell adhesion on hydroxyapatite scaffolds despite 

their own verification of GFOGER-induced cell adhesion on tissue culture polystyrene 

(Hennessy et al. 2009).  It is possible that choosing a different scaffold material or 

tethering GFOGER to materials that do not naturally adsorb GFOGER would expand the 

available options for delivery of GFOGER to critically-sized bone defects.  All in all, 

well-controlled methods for surface modification with GFOGER could more specifically 

modulate the osteogenic response of host cells to GFOGER-modified scaffolds, further 

enhancing GFOGER-mediated bone formation in critically-sized bone defects. 

Conclusions 

The work presented in this dissertation describes two strategies for bone tissue 

engineering which both target specific osteoblastic signaling pathways to promote 

enhanced healing of critically-sized bone defects.  This work is innovative because 

genetic and extracellular cues for osteoblastic differentiation are used to exert control 

over cell signaling and promote bone healing in a robust segmental defect model.  By 
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engineering BMSCs to overexpress Runx2, issues with BMSC dedifferentiation in 

culture and donor cell variability are addressed, providing a strategy for accelerated bone 

formation in large bone defects.  Furthermore, development of a cell and growth factor 

free strategy for bone regeneration via surface modification of PCL scaffolds with 

GFOGER confers biofunctionality to synthetic substrates and promotes specific signaling 

to host cells, eliminating the need for donor cells and providing a simple and elegant 

point of care strategy.  Further development of these tissue engineering strategies for 

bone regeneration will provide clinically-relevant treatment options for healing large 

bone defects in humans by eliminating the need for donor bone and employing well-

controlled signals to promote bone formation. 

References 

Connolly J, Guse R, Lippiello L and Dehne R (1989). "Development of an osteogenic 
bone-marrow preparation." J Bone Joint Surg Am 71(5): 684-91. 

Gersbach CA, Coyer SR, Le Doux JM and García AJ (2007). "Biomaterial-mediated 
retroviral gene transfer using self-assembled monolayers." Biomaterials 28(34): 
5121-7. 

Gersbach CA, Phillips JE and García AJ (2007). "Genetic engineering for skeletal 
regenerative medicine." Annu Rev Biomed Eng 9: 87-119. 

Hennessy KM, Pollot BE, Clem WC, Phipps MC, Sawyer AA, Culpepper BK and Bellis 
SL (2009). "The effect of collagen I mimetic peptides on mesenchymal stem cell 
adhesion and differentiation, and on bone formation at hydroxyapatite surfaces." 
Biomaterials 30(10): 1898-909. 

LeGeros RZ (2002). "Properties of osteoconductive biomaterials: calcium phosphates." 
Clin Orthop Relat Res(395): 81-98. 

Liu X and Ma PX (2004). "Polymeric scaffolds for bone tissue engineering." Ann 
Biomed Eng 32(3): 477-86. 



 

 128 

Maheshwari G, Brown G, Lauffenburger DA, Wells A and Griffith LG (2000). "Cell 
adhesion and motility depend on nanoscale RGD clustering." J Cell Sci 113 ( Pt 
10): 1677-86. 

Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, 
Mastrogiacomo M and Cancedda R (2007). "Stem cells associated with 
macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot 
clinical study." Tissue Eng 13(5): 947-55. 

Massia SP and Hubbell JA (1991). "An RGD spacing of 440 nm is sufficient for integrin 
alpha V beta 3-mediated fibroblast spreading and 140 nm for focal contact and 
stress fiber formation." J Cell Biol 114(5): 1089-100. 

Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM and Trono D 
(1996). "In vivo gene delivery and stable transduction of nondividing cells by a 
lentiviral vector." Science 272(5259): 263-7. 

Petrie TA, Raynor JE, Reyes CD, Burns KL, Collard DM and García AJ (2008). "The 
effect of integrin-specific bioactive coatings on tissue healing and implant 
osseointegration." Biomaterials 29(19): 2849-57. 

Phillips JE, Guldberg RE and García AJ (2007). "Dermal Fibroblasts Genetically 
Modified to Express Runx2/Cbfa1 as a Mineralizing Cell Source for Bone Tissue 
Engineering." Tissue Eng 13(8). 

Phillips JE, Hutmacher DW, Guldberg RE and García AJ (2006). "Mineralization 
capacity of Runx2/Cbfa1-genetically engineered fibroblasts is scaffold 
dependent." Biomaterials 27(32): 5535-45. 

Raynor JE, Petrie TA, Fears KP, Latour RA, García AJ and Collard DM (2009). 
"Saccharide polymer brushes to control protein and cell adhesion to titanium." 
Biomacromolecules 10(4): 748-55. 

Reyes CD and García AJ (2003). "Engineering integrin-specific surfaces with a triple-
helical collagen-mimetic peptide." J Biomed Mater Res A 65(4): 511-23. 

Reyes CD, Petrie TA and García AJ (2008). "Mixed extracellular matrix ligands 
synergistically modulate integrin adhesion and signaling." J Cell Physiol 217(2): 
450-8. 



 

 129 

Yoshii T, Sotome S, Torigoe I, Tsuchiya A, Maehara H, Ichinose S and Shinomiya K 
(2009). "Fresh bone marrow introduction into porous scaffolds using a simple 
low-pressure loading method for effective osteogenesis in a rabbit model." J 
Orthop Res 27(1): 1-7. 

 


