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SUMMARY 
 

 

Although the hazards of prenatal exposure to addictive substances have been documented 

for decades, it continues to be a prevalent social and health concern today. Alcohol and 

cocaine are two commonly abused substances during pregnancy, often leading to 

behavioral and cognitive disorders in exposed children. At present, the relationship between 

teratogenic effects of prenatal alcohol exposure (PAE) and prenatal cocaine exposure 

(PCE) on the brain and observed behavioral outcomes is still unclear. A primary reason for 

this incomplete understanding is the lack of information regarding neuronal functioning in 

these populations. Functional MRI, which measures real-time brain activation in response to 

certain stimuli, can be utilized to bridge the gap between known structural damage and 

observed behavioral outcomes.  

This thesis aims to examine structural and functional alterations in PAE and PCE 

populations as compared to unexposed, socio-economic status-matched populations. As the 

PAE population is highly affected by structural dysmorphology, the applicability of a newly 

developed diffeomorphic image registration method to this population is examined. 

Additionally, task-positive and task-negative functional connectivity and activity are 

investigated in the PAE population, and related to underlying structural alterations. Neural 

correlates of global arousal and emotional regulation are investigated in the PCE population, 

as these behavioral outcomes are most notable. Similarly, functional connectivity and 

activation in task-positive and task-negative networks, as well as correlated structural 

measures, are examined in the PCE population. 

The diffeomorphic image registration algorithm was found to improve both structural and 

functional image registration for the PAE population. In the examination of specific deficits in 



 

 

xiv 

arithmetic processing, poorer performance in the PAE group was attributed to a multi-level 

effect produced by altered structural and functional connectivity and functional activity in 

calculation and default mode networks. Baseline arousal levels were found to be higher in 

adolescents with PCE as compared to healthy controls (by altered default mode network 

functioning); emotional regulation also appeared to be affected in the PCE group by a 

prefrontal-amygdala structural and functional disconnect.  

The findings of this thesis give insights into the relationship between task-positive and task-

negative duality and cognitive impairment, and contribute to a more comprehensive 

understanding of the spectrum of clinical disorders caused by prenatal exposure to alcohol 

and cocaine. 
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CHAPTER 1 

Introduction 

 

 

The hazards of prenatal exposure to addictive substances have been documented for 

decades, yet it continues to be a prevalent social and health concern today. Alcohol and 

cocaine are two commonly abused substances during pregnancy, leading often to 

behavioral and cognitive disorders in exposed children. Prenatal alcohol exposure (PAE) 

and prenatal cocaine exposure (PCE) cause specific neurocognitive and behavioral deficits 

that persist into adolescence and adulthood. Identification of specific structural and 

functional regions affected by prenatal exposure contributes to a better understanding of 

underlying mechanisms. Currently the relationship between teratogenic effects of PAE and 

PCE on the brain and observed behavioral outcomes is still unclear. A primary reason for 

this incomplete understanding is the lack of information regarding functional brain ability in 

the populations. Functional MRI, which measures real-time brain activation in response to 

certain stimuli, can be utilized to bridge the gap between structural and behavioral data in 

PAE individuals by elucidating patterns of neuronal activation during specific task-positive 

and task-negative states.  

 

This thesis aims to examine structural and functional alterations in prenatal alcohol exposed 

and prenatal cocaine exposed populations. As the PAE population is highly affected by 

structural dysmorphology, spatial normalization of images from this population has proved 

challenging. In the present thesis, the applicability of a newly developed diffeomorphic 

image registration method is examined. Additionally, task-positive and task-negative 

functional connectivity and activity are investigated in the PAE population, as well as 

correlation of functional deficits with underlying structural alterations. Neural correlates of 
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global arousal and emotional regulation are investigated in the PCE population, as these 

behavioral outcomes are most notable. Similarly, functional connectivity and activation in 

task-positive and task-negative networks, as well as related structural measures, are 

examined in the PCE population. With the accomplishment of these aims, a more 

comprehensive understanding of the spectrum of clinical disorders caused by prenatal 

exposure to alcohol and cocaine can be formed. 
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PART 1 

 

Structural and Functional Neuroimaging of Adults wi th Prenatal Alcohol Exposure



Portions of Chapter 2 reproduced/modified from: Santhanam, P., Li, Z., Coles, CD., Lynch, ME., Hu, X. “Improved Inter-Subject 
Registration in Individuals Prenatally Exposed to Alcohol Using DARTEL.” Annual Meeting of the Organization for Human Brain 
Mapping. San Francisco, CA. June 2009.  
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CHAPTER 2 

Improved Inter-Subject Structural and Functional Re gistration Using DARTEL in 

Individuals Prenatally Exposed to Alcohol 

 

 

2.1 Background 

 

2.1.1 Prenatal Alcohol Exposure and Structural Brain Damage 

 

The most severe form of prenatal alcohol exposure (PAE) results in a disorder known as 

fetal alcohol syndrome (FAS). Microcephaly, or reduced head/brain size, is one of the 

primary indicators used in clinical diagnosis of FAS (Smith and Eckardt, 1991). Structural 

abnormalities are also observed in specific cortical and subcortical regions as a result of 

PAE. One of the most highly affected areas of the brain in PAE individuals is the corpus 

callosum (CC). Gross anatomical and imaging studies have revealed that the CC can 

experience thinning or shrinkage upon alcohol exposure (Riley and McGee, 2005; Roebuck 

et al., 1998; Spadoni et al., 2007), and even agenesis in extreme cases (Archibald et al., 

2001). Studies of CC morphology have revealed high variability in size and location of the 

structure (Bookstein et al., 2001) as well as spatial shifts in the inferior and anterior 

directions within the brain (Sowell et al., 2001). Bookstein, et al. has shown that variability in 

CC size and location can even be used as a classifier of PAE (2002). DTI studies have also 

reported CC alterations, including decreased fractional anisotropy and increased mean 

diffusivity, particularly in the posterior CC regions (Li et al., 2009; Ma et al., 2005; Wozniak 

et al., 2009). 
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2.1.2 Current Image Registration Methods 

 

The vast majority of studies on structural abnormality in PAE populations have utilized high-

resolution magnetic resonance imaging (MRI) in their analysis. Three popular approaches 

for examining exposure effects on macro- and microstructure are region of interest (ROI)-

based volumetric analysis, voxel-based morphometry (VBM), and diffusion tensor imaging 

(DTI). Volumetric analyses involves slice-by-slice anatomical delineation of specific brain 

regions, VBM is performed by segmentation and voxel-wise comparison of homologous 

regions, and DTI analysis specifically assesses white matter integrity. While ROI-based 

analysis can be done in native space, it requires neuroanatomical expertise and is 

comparatively time-consuming; more common are the VBM and DTI approaches, which 

require image co-registration. In order to compare structural differences between subjects 

and, more relevantly, between groups of subjects, images are generally registered to a 

common space using anatomical landmarks as guides. On account of the multifaceted 

structural damage induced by PAE specifically, image registration problems have been a 

roadblock in the detailed analysis of structural and functional data from this population 

(Bookheimer and Sowell, 2005). MR images from the PAE population therefore may benefit 

from a more customizable registration method.   

 

2.1.3 DARTEL: Diffeomorphic Anatomical Registration Through Exponentiated Lie  

Algebra 

 

2.1.3.1 Concept 

 

The DARTEL (Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra) 

tool from SPM has been recently developed in hopes of improving image registration in 
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healthy and affected populations by creating an average space template from the individual 

images.  Briefly, DARTEL is an algorithm for diffeomorphic image registration, which uses 

large-deformation functions to preserve local topology (Ashburner, 2007b). Large 

deformations can achieve local optimization due to the use of greater degrees of freedom in 

the estimation. Deformations are parameterized by a single flow field (considered to be 

constant in time), allowing for generation of true inverse (one-to-one mapping) 

transformations. Ashburner cites high local optimization and regularization (similarity) as 

achievable with DARTEL (2007b). As the aim of most structural MR image registration 

algorithms to common space is global optimization as opposed to local, DARTEL may 

improve registration in the PAE population given known local-level damage.  

 

2.1.3.2 Applications to Date 

 

Since DARTEL was made available only recently, there are few studies that have 

implemented and/or compared it with other registration techniques. One study used the 

medial temporal lobe (MTL) of healthy individuals as a sample region to compare various 

registration techniques, including standard VBM, ROI, and DARTEL (Yassa and Stark, 

2009). The authors compared smoothness of average images among 20 subjects, and 

found a combination of ROI segmentation and deformation to be optimal. However, of the 

automated techniques considered, DARTEL was found to produce to least variability 

(blurring) between subjects in the MTL region. It was noted that improved localization of the 

MTL likely also pertains to other brain sub-regions. Another study examined the ability of 

DARTEL to improve co-registration of the hippocampus in patients with depression 

(Bergouignan et al., 2009). Given the assumption from meta-analyses of reduced 

hippocampal volume in subjects with depression, the authors compared standard VBM 

techniques to DARTEL. Results showed significant differences in the depressed group could 
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be noted using the DARTEL method but not by standard VBM. Recently, Klein, et al. 

performed a comparative study of 14 registration algorithms, including DARTEL (Klein et al., 

2009). Using eight different measures of error, the authors ranked DARTEL as a method 

with relatively high inter-subject whole brain overlap. Furthermore, they note that registration 

method performance did not appear to depend on the population or labeling used, meaning 

DARTEL could be versatile enough for use on clinical populations.        

 

2.1.3.3 Potential for Functional Image Registration 

 

Although thus far DARTEL has only been applied to improving structural image registration, 

it could also potentially improve spatial normalization of functional images from different 

subjects (Ashburner, 2007a, b). Since DARTEL uses only structural information for 

deformation, if greater overlap is found between functional overlays, it can be inferred that 

spatial normalization has been improved. In healthy subjects, this improved overlap can be 

measured by examining the sensitivity of voxel-wise statistics (Ardekani, 2004). For clinical 

populations, functional activation differences between groups could be compared among 

registration methods and these differences correlated with behavioral or structural measures 

known to be associated with the condition.   

 

2.1.4 Aims 

 

The present study aims to apply the DARTEL technique to the structural analysis of the CC, 

which is known to be highly affected by PAE, and compare with a tradition VBM (tVBM) 

technique. Given prior studies showing reduced volume and spatial shifts of the CC in 

individuals with PAE, we hypothesize that DARTEL will result in less variability in size and 

location upon alignment to a common space. Furthermore, DARTEL will be compared with 
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current functional MRI (fMRI) techniques for alignment of anatomical and functional datasets 

from the PAE population. Functional activation will be examined in control and PAE 

individuals using a bimanual vibrotactile stimulation task.  This task requires the subject to 

detect a tactile stimulation in one hand and respond with the other hand, thus invoking 

interhemispheric transmission along the corpus callosum. Given previous studies using 

similar tasks and known alterations in corpus callosum in the PAE population (Fabri et al., 

2005), activation is anticipated to be higher in the PAE group, particularly in primary 

sensory/motor (S1/M1), supplementary motor (SMA), and supramarginal gyrus (SMG) areas 

(Muetzel et al., 2008; Wahl and Ziemann, 2008). Improved functional overlay registration is 

anticipated with DARTEL, demonstrated by greater differences (size and number of 

significant difference clusters) between groups. Furthermore, correlation between the 

magnitude of functional activation differences and exposure-related characteristics is 

expected to be significant using the DARTEL method as opposed to the tVBM method. 

Characteristics known to be associated with PAE include dysmorphic score (Fernhoff et al., 

1980), brain size, and FA of certain CC subregions. FA of posterior CC regions (isthmus and 

splenium) were chosen for correlation analysis, given previously reported reduced FA in 

these regions in this PAE cohort (Li et al., 2009) and their known contribution to 

interhemispheric transfer of tactile information (Fabri et al., 2005).    

 

2.2 Methods 

 

2.2.1 Participants 

 

Participants were recruited from a longitudinal study started in the 1980s (Smith et al., 

1986), comprising a low-income, predominantly African-American urban population. At the 

time of imaging, participants were between 18-24 years old. Participants were divided into 
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two groups: 1) prenatally exposed to alcohol and positive for dysmorphia and 2) healthy 

socio-economic status matched controls. The number of subjects used in the study are as 

follows: anatomical run: control n=18, PAE n=23; functional run: control n=18; PAE n=14. 

Additionally, a non-dysmorphic PAE group was imaged but not used in this study. 

Demographics information for all three groups in the cohort is given in Table 2.1. A subset of 

subjects from Table 2.1 was used in the present study. All participants were evaluated using 

a dysmorphia checklist (Fernhoff et al., 1980; Smith et al., 1986), where characteristics 

associated with the disorder are listed and weighted based on their saliency for the 

diagnosis (e.g., hypoplastic philtrum is a “3” while anteverted nares is a “1”). The 30 items 

on the checklist were assessed either by a pediatric dysmophologist or a nurse trained and 

supervised by a dysmorphologist who were blind to the participant’s exposure status. The 

weightings of items checked are summed to yield a dysmorphology index. The checklist has 

been evaluated repeatedly as part of other longitudinal research studies from birth to 

adolescence with individuals prenatally exposed to alcohol receiving higher total scores in 

comparison to non-exposed controls (Blackston, 2004; Fernhoff et al., 1980). The criterion 

used to define the dysmorphic group was that the participant score had to be one standard 

deviation above the group mean at any one of three testing points (birth, age 7, mid-

adolescence). Potential participants who were left-handed, had some risk during the MRI 

procedure (e.g., due to pregnancy or metal in the body) or who were uncomfortable with the 

procedure (e.g., claustrophobia) were not imaged. 
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Experimental Design 

 
Tactile stimulation was applied using MRI-compatible piezo-electric buzzers 

(www.piezo.com) controlled through an analog output board (www.ni.com) using a MATLAB 

control script (www.mathworks.com). Stimuli were triggered from the scanner using a TTL 

line to achieve time-locking of events. A buzzer was placed on each hand, and a button box 

(www.curdes.com) was used to collect responses in Presentation (www.neurobs.com). The 

scan consisted of 24 trials (10sec inter-stimulus interval, left/right balanced); upon feeling 

the vibrotactile stimulus on their left hand, participants were asked to press a button with 

their right hand. 

 

2.2.2 Image Acquisition 

 

All acquisition was performed on a 3T Siemens Trio scanner (Siemens Medical Solutions, 

Erlangen, Germany). For the anatomical scan, the parameters were as follows: TR/TI/TE of 

2600ms/900ms/3.93ms, flip angle of 8°, field of vie w of 256 × 224 × 176 mm3, matrix of 256 

× 224 × 176, corresponding to an isotropic resolution of 1 mm. For the functional scan, an 

EPI-BOLD sequence was used to acquire 120 axial images (30, 4mm thick slices) in each 

run, with an in-plane resolution of 3.44 mm×3.44 mm. Sequence parameters were 

TR/TE/FA/FOV of 2000ms/35ms/90º/22 cm.  
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2.2.3 Image Analysis 

 

2.2.3.1 Structural Data 

 

The tVBM technique used was standard non-linear registration in SPM5 

(http://www.fil.ion.ucl.ac.uk/spm/, 09/2009), which includes the following steps: skull 

stripping, affine registration, segmentation, bias correction, and spatial normalization to MNI 

space. For the DARTEL method, the input were affine registered, skull-stripped brains; the 

DARTEL toolbox provided for SPM8b was used, consisting of the following steps: 1) 

creating a template that is the average of all subjects in the study in a customized space; 2) 

generating warping functions for each individual between native space and template space; 

3) applying warping functions to each subject to create structural image in customized 

average space. Details on the methodology used in DARTEL can be found in the manual 

(2007a) provided by Ashburner.   

 

Following registration of all images to either standard or customized space, the CC was 

masked at one mid-sagittal slice (Figure 2.1). Standard deviation of the CC region was 

calculated voxel-by-voxel between all pairs of subjects within group, averaged over entire 

CC region, and compared between the two methods and between the two groups, 

respectively, by F-test. Additionally, to measure displacement, the center of mass for the CC 

cluster was found in each individual and compared with average CC image center of mass. 

As no directional displacement trend was seen, the absolute value of displacement was 

used as the measure. Paired t-test was used to compare displacement in anterior-posterior 

and superior-inferior directions between the two methods and the two groups, respectively. 

Given known alterations to specific subareas of the CC, the mid-sagittal slice CC image was 

then divided into subregions (Figure 2.2) using a previously implemented method {Li, 2009 
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#31}, and variability and displacement were determined for each subregion as well. Again, 

variability was measured between methods and between groups by F-test, while 

displacement was measured by paired t-test. 

 

 

 

 

 
 
Figure 2.1. Corpus callosum extraction for each individual and overlap between control and 
PAE mean images for each registration technique.  
 

 

 
 
 

tVBM 

DARTEL 

extract  
corpus callosum 

Underlay = mean Control image 
Overlay (blue) = mean PAE image  
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Figure 2.2.  Segmentation of corpus callosum into six subregions: a) genu; b) rostral body; c) 
anterior midbody; d) posterior midbody; e) isthmus; and f) splenium. 
 

 

2.2.3.2 Functional Data 

 

For the functional data run, preprocessing was performed in AFNI 

(http://afni.nimh.nih.gov/afni/, 09/2009) and included slice-timing correction, motion 

correction, and spatial smoothing (using a 5mm FWHM). Given the event-related stimulus 

function, the impulse response function (IRF) was estimated for each voxel. The IRF was 

then convolved with the stimulus time series to yield the estimated response. Activation 

maps were generated by a multiple linear regression analysis evaluating the goodness of 

the fit. To correct for multiple comparisons, a voxel-wise threshold of p<0.05 and cluster 

threshold of 5 contiguous voxels were applied, corresponding to a family-wise error rate of 

alpha<0.01 by Monte Carlo simulation. 

 

Functional data was warped to either Talairach space (using automatic Talairach 

transformation command provided by AFNI) or to the customized space created by the 

DARTEL toolbox (using the gray matter template and its associated transformation matrix 

for warping from native space). Difference maps were then generated to compare between 

the two exposure groups, using a voxel-wise threshold of p<0.01 and cluster threshold of 4 

contiguous voxels.   
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To determine whether difference maps generated by Talairach warping or DARTEL are 

more representative of the alcohol exposure effect, exposure-related measures were 

correlated with the magnitude of activation at a region of significant difference (SMA) 

between the two groups by the DARTEL method. The average intensity over the SMA 

region (masked from significant difference map in DARTEL method) was found for each 

individual. The same mask was used for all subjects in each registration method, 

respectively, such that the comparison was between the SMA of each subject after warping 

to customized space and the SMA of each subject after warping to Talairach space. 

Intensity over this ROI was correlated (using Pearson’s correlation in the SPSS software: 

www.spss.com) with measures known to be related to PAE in these individuals specifically: 

dysmorphic score, brain size, and FA of the isthmus and splenium (control n=12, PAE 

n=12). Statistical information on these characteristics for the subjects used in this study is 

listed in Table 2.2.   

 

 

Table 2.2. Statistical information for exposure-related characteristics. All comparisons are by 
unpaired t-test; *significantly different between exposure group. 
 

Variable Group Significance (p-value) 

       Control              PAE  

Dysmorphic score 0 (0) 4.83 (1.43) p=0.025 

Brain size (voxels) 24859.08 (805.85) 20885.91 (846.02)  p=0.003 

FA isthmus 0.6676 (0.023) 0.5880 (0.025) p=0.029 

FA splenium 0.8143 (0.013) 0.7780 (0.016) p=0.036 
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2.3 Results 

 

2.3.1 Structural Image Registration 

 

Variability in location and size of the CC, as measured by standard deviation in the overall 

CC region, was significantly lower between registered images from DARTEL method versus 

tVBM technique (Figure 2.3a). Additionally, variability was marginally significantly higher in 

the PAE group as compared to control group by tVBM, while the difference became 

significant by DARTEL. On the subregional level (Figure 2.3b), significant differences 

between groups were more detectable with DARTEL (all subregions of the CC versus only 

genu, rostral body, and isthmus with tVBM).  

 

Anterior-posterior and inferior-superior displacement of the overall CC was lower in 

registered images from DARTEL method as compared to tVBM (Figure 2.4a). Overall CC 

displacement in both directions was marginally significantly higher in dysmorphic PAE group 

for traditional method, but comparable using DARTEL. By tVBM, the splenium was 

significantly more displaced in the A-P direction (Figure 2.4b), while the genu and splenium 

were displaced in the I-S direction (Figure 2.4c), in the PAE group. With the DARTEL 

method, however, no significant differences in displacement were seen. Additionally, no 

directional trend in displacement was noted (results not shown).  
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a)         

 
b)  
 

 
Figure 2.3. Standard deviation of all subjects a) over whole corpus callosum; and b) by 
corpus callosum subregion. + significant difference between registration methods;  
* significant difference between exposure groups (p<0.05); # marginally significantly different 
between exposure groups (p<0.10). 
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a) 
 

  
   
b) 

 
Figure 2.4. Anterior-posterior and inferior-superior displacement a) of whole corpus 
callosum; b) A-P by subregion; c) I-S by subregion. + significant difference between 
registration methods; * significant difference between exposure groups (p<0.05); # 
marginally significantly different between exposure groups (p<0.10). 
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c) 

 
 
Figure 2.4. continued 
 
 
 
 

 

 

2.3.2 Functional Image Registration 

 

Activation maps created by Talairach transform indicate significant activation in bilateral 

SMG, bilateral S1/M1, and SMA regions (Figure 2.5). Homologous regions can be 

indentified in activation maps created from DARTEL template warping (Figure 2.6). 

Difference maps between groups indicate higher activation in the PAE group as compared 

to the control group by both methods (Figure 2.7). More differences are notable by the 

DARTEL warp method than Talairach, with significant clusters located in the regions 

identified in Figures 2.5 and 2.6. The difference cluster at the SMA (identified by pink circle 

in Figure 2.7) was used for subsequent correlation analysis. Positive correlation with 

+ 

* 

* + 

+ 

+ 

+ 

+ 
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dysmorphic score and negative correlation with brain size and splenium FA were significant, 

while negative correlation with isthmus FA was not significant (Table 2.3).  

 

 

 

 

 
 
Figure 2.5. Activation maps using standard Talairach space as template for functional data 
warping; circles indicate bilateral SMA, S1/M1, and SMG activation in control and PAE 
groups. Voxel-wise threshold was p<0.05 with cluster threshold of 5 contiguous voxels. 
 

Control
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GG 

SMA
A 
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Figure 2.6. Activation maps using DARTEL customized templatefor functional data warping; 
circles indicate bilateral SMA, S1/M1, and SMG activation in control and PAE groups 
(homologous regions to those circled in Figure 2.5). Voxel-wise threshold was p<0.05 with 
cluster threshold of 5 contiguous voxels.

Control
s 

PAE 
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Figure 2.7. Difference maps (Control-PAE) for both Talairach (TAL) and DARTEL 
registration methods. SMA difference cluster circled in red; signal intensity was masked over 
this region and used in subsequent exposure-related correlation analysis. Voxel-wise 
threshold was p<0.01 with cluster threshold of 4 contiguous voxels. 
 
 
 

 

 

Table 2.3. Pearson’s correlation results (r and p-values) relating Talairach (TAL) and 
DARTEL registration methods to exposure-related measures. *significant correlation 
(p<0.05). 
 

Registration method Exposure-related measure correl ation: r (p-value) 

  

Dysmorphic score  

 

Brain size  

 

FA isthmus 

 

FA splenium 

TAL -0.018 (0.935) 0.266 (0.209)  0.329 (0.116) -0.329 (0.116) 

DARTEL 0.448 (0.028*) -0.500 (0.013*)  -0.221 (0.300) -0.439 (0.032*) 

 
 

TAL 

DARTEL 
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2.4 Discussion 

 

2.4.1 Summary 

 

DARTEL was able to improve spatial normalization of both structural and functional images 

from the PAE population. Significant decreases in variability (location and size) and 

displacement of the CC were seen in both groups using DARTEL as compared to tVBM. 

Differences in variability between controls and PAE subjects were seen in more subregions 

of the CC by DARTEL, while fewer differences between groups were noted in displacement. 

Additionally, functional difference maps comparing groups had more detectable regional 

differences when aligned to DARTEL customized space as compared to standard 

normalization to Talairach space. 

 

2.4.2 Context in Current Literature 

 

2.4.2.1 Structural Image Registration 

 

As previously mentioned, a few studies have reported a high variability in location and size 

of the CC in individuals with fetal alcohol spectrum disorder (FASD). Since standard 

registration methods use anatomical landmarks near the CC region (e.g., anterior and 

posterior commissures), alignment between subjects from the PAE group is particularly 

challenging. DARTEL is shown in this study to reduce the variability in size and location of 

the CC in both healthy controls and individuals with PAE. Improved alignment within the 

control group would be expected based on validation from the original DARTEL manuscript 

(Ashburner, 2007b), and is not surprising in the PAE group either given the high whole-brain 

similarity achievable between images using DARTEL. On the subregional level, differences 
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in variability between groups were more detectable with DARTEL, seen in all subregions as 

compared to only in three (genu, rostral body, and isthmus) with tVBM. Bookstein, et al. has 

examined CC morphology in individuals with FAS using Procrustes analysis methods, which 

examine specifically differences in shape (2002; 2001); while the authors concluded 

variability was overall higher in the FAS group (not localized to any one CC subregion), they 

also reported on average a thinner isthmus, thicker genu, and “differently shaped” splenium 

in the FAS group. Registration from Cartesian space to “shape” space was performed by a 

neuroanatomist on each individual using anatomical landmarks. While this is not a standard 

VBM technique, it did not reveal as many mid-CC regional deformations as the DARTEL 

method in this study. The reason for this discrepancy is unclear; it is possible our population 

has more CC differences or that the registration performed in these other studies was 

biased against the CC mid-region, as the anatomical landmarks used did not span the entire 

CC.  

 

Multiple studies have reported spatial shifts in the CC in individuals with PAE (Riley et al., 

1995; Sowell et al., 2001; Spadoni et al., 2007). Recently, Sowell, et al. specifically identified 

CC displacement in the anterior and inferior directions in individuals with FAS (2001). The 

authors employed VBM following registration to ICBM-standard space. In the present study, 

no directional shift trends were seen with either method when considering the whole CC. On 

the subregional level, tVBM revealed A-P shifts in the splenium, and I-S shifts in the genu 

and splenium, which were absent using the DARTEL method. While these results suggest 

that CC displacement may not be as significant in PAE groups as previous studies have 

shown, the discrepancy between studies is difficult to interpret. The findings in the study by 

Sowell, et al. may be due to misalignment of the CC to standard space, or the present study 

cohort may simply differ a great deal from theirs. Though the authors stipulate that they also 

measured displacement in native space as a control for standardized registration, these 
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measurements may be skewed by age differences between subjects (age range was 8-25 

yrs). More systematic studies of CC directional displacement need to be performed in order 

to establish a more direct causal link to PAE.  

 

Another possible reason for DARTEL yielding fewer differences between groups in 

displacement is that high regularization may have made the CC image more similar between 

subjects, but not necessarily more representative of their real position in space. Increased 

image similarity is evident in the present study by decreased variability and displacement in 

both groups by DARTEL (versus tVBM). One limitation listed by Ashburner is that 

diffeomorphisms focus on local optimization, perhaps at the expense of ROI-level 

representation (2007b). However, general CC variability does not appear to be affected thus 

by DARTEL, so it is unclear the contribution of this confound to the results of the present 

study. Regardless, despite this limitation, DARTEL can still have significant applications to 

functional datasets, because the warping does not directly affect functional data.  

 

2.4.2.2 Functional Image Registration 

 

Studies of interhemispheric information transfer in individuals with PAE have revealed 

increased activation and longer reaction times (Dodge et al., 2009; Roebuck-Spencer et al., 

2004); these alterations are thought to result from CC damage, which can hinder efficient 

transfer between hemispheres (Lum et al., 2009; Wahl and Ziemann, 2008). As the 

functional task in the present study examines interhemispheric transfer, increased bilateral 

activation of sensory and motor-related regions was expected in subjects with PAE. When 

used to align functional overlays from multiple subjects, DARTEL improved functional image 

registration as compared to the tVBM method. This was demonstrated by larger differences 

in sensory and motor-related regions between groups, in terms of size and number of 
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significant difference clusters in group subtraction maps. Furthermore, the intensity of the 

SMA cluster from the difference map was found to positively correlate with dysmorphic 

score, and negatively correlate with brain size and FA of the splenium. Thus it is possible 

that studies of the PAE population would benefit from alignment to a customized space (e.g, 

DARTEL method) rather than a standardized common space. 

 

2.4.3 Limitations 

 

It should be noted that since DARTEL warping applies only to structural data, the 

differences in functional overlays are a product of different transformation functions and not 

related to pre-processing steps. All pre-processing was the same for both registration types, 

including spatial smoothing with a 5 FWHM kernel. Traditionally, smoothing is applied to 

functional data in order to off-set misalignment to common space, which likely contributed in 

both registration methods to greater correspondence between functional images from 

different subjects. On the other hand, spatial smoothing may have hindered resolution of 

smaller activation clusters, in either method. It would be interesting to note the differences 

between groups using non-blurred functional data, and the effect of DARTEL versus tVBM 

on functional maps.  

 

2.4.4 Future Considerations 

 

The results of this study suggest that DARTEL improves both structural and functional 

image registration in individuals with PAE. Since inter-subject registration is especially 

problematic in this population, identification of new methods could allow for more accurate 

group comparison. Comparative study of DARTEL with several other registration methods 

has shown that while it is highly ranked, it is not necessarily the most appropriate method 
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available. Due to the specific microstructural alterations caused by PAE, further examination 

of these alternative registration methods as applied to the PAE population could yield even 

greater group comparison accuracy. Furthermore, as very recent VBM and DTI studies have 

revealed other cortical regions structurally affected by PAE, including temporal-occipital 

areas and cerebellum (Lebel et al., 2008; Wozniak et al., 2009), it would be interesting to 

note the effect of DARTEL on these group differences. If customized templates can be 

shown to improve overall brain image registration in the PAE population, on the global and 

local levels, as well as improve functional overlay normalization, their implementation could 

aid in more precise localization of PAE-related structural and functional damage.  
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CHAPTER 3 

Effects of Prenatal Alcohol Exposure on Arithmetic Functioning: an fMRI Study 

 

 

3.1 Background 

 

3.1.1 Prenatal Alcohol Exposure and Behavioral Deficits 

 

The hazards of prenatal alcohol exposure (PAE) have been documented for decades, yet it 

continues to be a prevalent social and health concern today. It has been estimated that 

approximately 1 of 500 infants in the United States is born affected by such exposure (Abel, 

1995). The teratogenic results for offspring of maternal alcohol consumption during 

pregnancy are referred to as fetal alcohol spectrum disorders, the most severe of which is 

fetal alcohol syndrome (FAS). Currently, FAS is clinically characterized by facial 

dysmorphia, diminished growth, and neurodevelopmental disorders including microcephaly 

(Jones and Smith, 1973). However, diagnosis of FAS can be challenging since there is no 

one presenting symptom and often behavioral outcomes appear similar to those associated 

with other neurocognitive disorders (Coles, 2001; Coles et al., 1997; Nash et al., 2006). 

Structural and functional effects are reported in individuals exposed prenatally who lack the 

physical dysmorphia associated with FAS (Mattson et al., 1998). 

 

Behavioral problems in individuals with a range of PAE have been observed for decades 

and are reported to include both neurocognitive deficits as well as social and adaptive 

dysfunction (Mattson and Riley, 1998). In general, individuals with FAS have lower IQ, often 

accompanied by impaired visuo-spatial, attentional, memory recall, and/or language skills 
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(Coles et al., 1997; Conry, 1990; Mattson and Riley, 1998; Olson et al., 1998; Streissguth et 

al., 1994b). Developmental dyscalculia, the reduced ability to understand and/or apply core 

mathematical processes due to teratogenic damage, is also widely reported to be 

associated with prenatal alcohol exposure (Goldschmidt et al., 1996; Streissguth et al., 

1994b; Streissguth et al., 1989), perhaps even more often than global and verbal deficits 

(Streissguth et al., 1994b). In adolescents, math-related deficits range from longer response 

interval for mental math calculations to an inability to do basic addition and subtraction 

(Streissguth et al., 1994a). Additionally, a study in adults found dysfunction in a number of 

math skills including the ability to estimate efficiently (Kopera-Frye et al., 1996). Since math 

processing appears to be a specific deficit associated with prenatal alcohol exposure, the 

underlying neurocognitive correlates of this arithmetic processing impairment warrant the 

closer examination that can be provided through functional neuroimaging. 

 

3.1.2 Neural Correlates of Dyscalculia 

 

Neural correlates of developmental and clinical dyscalculia have been extensively 

documented and can serve as a guide to the current investigation. Several studies have 

reported systematic activation of bilateral parietal, frontal, and precentral cortices during 

arithmetic calculation (Fehr et al., 2007; Kazui et al., 2000; Menon et al., 2000; Zhang et al., 

2005). Lesion studies and examinations of clinical populations indicate that bilateral parietal 

and frontal regions are responsible for clinical dyscalculia (Dehaene et al., 2004; Menon et 

al., 2000). Dehaene, et al. (2003) point specifically to the horizontal interparietal sulcus 

(HIPS) as a region activated for various types of arithmetic calculation, and Cantlon et al. 

(2006) have confirmed that the intraparietal sulcus (IPS) is activated in both children and 

adults during both symbolic and nonsymbolic tests of numerosity. It has further been 

suggested that medial frontal and bilateral parietal regions are specifically related to the 
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nonverbal, spatial aspects of math processing with other areas of the brain subsuming the 

verbal (symbolic) functions (Fehr et al., 2007; Hubbard, 2005; Kong et al., 2005). To date, 

no study has examined the effect of PAE on activation in these brain regions in the context 

of dyscalculia. 

 

3.1.3 Potential Confound 

 

A potential methodological confound in functional neuroimaging of individuals affected by 

PAE is head size differences. Reduced subregion and overall brain size have been widely 

reported in alcohol-affected individuals (Riley et al., 2004; Sowell et al., 2001) and is 

especially prevalent in those with FAS (Archibald et al., 2001). The microcephaly common to 

affected individuals has the potential to distort results of imaging studies if not taken into 

account during activation analysis. Previous studies of this clinical group have not 

addressed this issue formally although it has been acknowledged that normal spatial 

transformation may affect interpretation of results (Bookheimer and Sowell, 2005). 

 

3.1.4 Aims 

 

In the present study we used functional MRI (fMRI) to examine the effects of prenatal 

alcohol exposure on brain activation during performance of a subtraction task. Previous 

studies have demonstrated successful use of BOLD signal as an indicator of arithmetic 

functioning and deficiency (Cantlon et al., 2006; Delazer et al., 2003; Fehr et al., 2007; Kong 

et al., 2005). Expected outcomes included a significant difference between physically 

affected (dysmorphic) PAE and control groups in task performance and brain activation 

patterns in those regions previously associated with general arithmetic calculation and 

specifically subtraction. In order to deal with the problem of potentially confounding head 
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size differences, we identified regions of interest on an individual basis, and normalized 

activation volumes based on the size of the identified subregion.  

 

A second focus of the study was to examine the extent to which alcohol-exposed individuals 

with and without dysmorphic features would demonstrate similar patterns of activation in 

comparison to socio-economic status-matched, nonexposed controls. If neurodevelopment 

is equally affected in nondysmorphic individuals, we would anticipate a similar pattern of 

dysfunction in nondysmorphic, PAE individuals as that seen in the more physically affected 

dysmorphic group. However, since we hypothesize that there is a relationship between 

severity of physical effects of PAE and the functional deficit associated with dyscalculia, we 

expect that exposed but non-dysmorphic individuals should show no deficits or should be 

intermediate in performance between those with dysmorphic features and nonexposed 

controls. 

 

3.2 Methods 

 

3.2.1 Participants 

 

Participants were 54 young adults, age 20-26, whose prenatal exposure to alcohol was 

quantified prenatally through maternal report. All were recruited from a longitudinal cohort, 

derived from a predominantly African-American, low socio-economic status population first 

identified between 1979 and 1986 when their mothers applied for prenatal care (Smith et al., 

1986). From this cohort, three groups were selected for participation in the current study and 

recontacted. These included individuals who were: 1) Exposed to alcohol prenatally and 

exhibiting physical signs of such exposure, specifically facial dysmorphia (n=19); 2) 

Exposed, without dysmorphia (n=18), but with ability scores (i.e., IQ < 83) consistent with 
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mean scores in Group 1; and 3) Unexposed controls from the same low SES population 

(n=17). The mean ounces of absolute alcohol consumption per week during pregnancy for 

the dysmorphic and non-dysmorphic groups were 13.5 (sd=15.9) and 10.4 (sd=18), 

respectively. Demographics information for the cohort is given in Table 2.1. A subset of 

subjects from Table 2.1 was used in the present study. Potential participants who were left 

handed, had some risk during the MRI procedure (e.g., due to pregnancy or metal 

fragments) or who were uncomfortable with the procedure (e.g., claustrophobia) were not 

imaged. 

 

Participants had been seen during adolescence (Coles et al., 2002) and when recontacted 

as adults, gave informed consent to continue to participate in the research. To protect the 

confidentiality of their mothers, who had originally given informed consent, no information 

about exposure group status or maternal substance use was provided. The informed 

consent procedure was consistent with the Declaration of Helsinki and was approved by the 

School of Medicine’s Institutional Review Board. Study personnel provided transportation to 

and from the University research site for data collection and imaging. Experimental 

procedures, including neuropsychological testing and functional neuroimaging, were carried 

out by staff blind to group status. Participants were reimbursed for their time and effort. 

 

3.2.2 Experimental Design 

 

The experimental paradigm, used previously by Connor (personal communication, 2004) 

with adults affected by alcohol exposure, allowed the evaluation of subtraction performance 

while using a letter-matching task to control for baseline cognitive and motor activity. The 

task was presented in blocks, alternating between the letter-matching control task (10 

consecutive presentations) and a subtraction task (10 consecutive presentations). Although 
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problems were repeated across blocks, the order of the problems was randomized. Five 

blocks of each type of task were presented, with instructions stating either “Name the letter” 

or “Subtract from 11” being shown before each block. Both tasks had a similar visual 

presentation (Figure 3.1). Participants were asked to choose between the two letters or 

numbers on the bottom half of the screen by pressing the left or right button on a button 

response box (http://www.curdes.com, 09/2009). Paradigm presentation and response 

collection, including accuracy and reaction time, were done using E-prime 

(http://www.pstnet.com, 09/2009). It should be noted that the subtraction task was of a type 

that requires estimation (Klahr, 1973) of quantity and the technique known as “borrowing,” 

(McCarthy and Warrington, 1987) rendering it “complex” rather than “simple” by the 

standards of previous studies of arithmetic operation correlates (Fehr et al., 2007; Kong et 

al., 2005). 
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Figure 3.1.  Example of stimulus paradigm. 

3.2.3 Image Acquisition 

 

All fMRI data was acquired on a 3T Siemens Trio scanner (Siemens Medical, Erlangen, 

Germany). The arithmetic study was only one of several functional paradigms implemented, 

with a total scan time of 39:59 min. For the arithmetic task, single-shot T2*-weighted EPI 

images were acquired, consisting of 34 contiguous axial slices of with 3mm slice thickness. 

Pulse sequence parameters, designed to minimize susceptibility to signal loss, were 

TR/TE/FA/FOV of 3000ms/32ms/90º/22cm. The scan time was 5:06 min, with 102 time 

points collected. High-resolution, T1-weighted, three-dimensional (3D) anatomical images 

were also acquired with a 3D MPRAGE (magnetization prepared rapid gradient echo) 

sequence for all participants. The scan protocol, optimized at 3T, used TR/TI/TE of 

2600ms/900ms/3.93ms, flip angle of 8°, field of vie w of 256 × 224 × 176 mm3, matrix of 256 

× 224 × 176, corresponding to an isotropic resolution of 1 mm. Scan time was 7:18 min. 

 

3.2.4 Image Analysis 

 

AFNI (http://afni.nimh.nih.gov, 09/2009) was used to perform imaging data analysis. After 

the data preprocessing steps (slice timing correction, volume registration, signal 

normalization to percent change, and 5mm FWHM Gaussian blur), 3D+time fMRI datasets 

for each individual were submitted to a multiple regression analysis. Using the letter task as 

baseline, the main regressor was generated by convolving the boxcar stimulation functions 

with a standard impulse response function (y=t^b×exp(-t/c), where b and c are constants) 

(Cohen, 1997). In order to achieve a better modeling of the motion-related signal variation, 

the rigid body head motion parameters (x, y, z displacements and roll, pitch, yaw rotations) 

were included as 6 additional regressors as well. The outcome of this multiple regression 
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analysis included statistical parametric maps, which show voxels with a significant task 

effect (partial F-statistic), and regression coefficients, which are least squares estimates of 

the linear model and are proportional to the BOLD (blood oxygenation level-dependent) 

signal increase level in the arithmetic task from the letter task (baseline). For each group, 

the statistical parametric maps of individuals were averaged after transforming the dataset 

into the Talairach space (Talairach and Tournoux, 1988) and normalizing the F values into 

Z-scores. Voxels that followed the general linear model of letter task baseline and arithmetic 

block activation were considered to reflect the so-called “arithmetic effect.” Thresholded 

activation maps of this arithmetic effect, averaged from individual datasets, are shown for 

PAE and control groups in Figure 3.2. Voxel-wise group t-test maps were also created to 

determine activation difference between control and both exposure groups (Figure 3.3). To 

account for multiple comparisons, voxel-wise thresholding (p<0.05 for Figure 2; p<0.01 for 

Figure 3.3) with cluster thresholding of 4 contiguous voxels was applied. Monte Carlo 

simulation revealed that these thresholds corresponded to a false-positive discovery rate 

(alpha) of less than 1% for Figure 3.2 and less than 0.1% for Figure 3.3.  

 

In order to quantitatively compare brain activities between groups, we defined regions of 

interests (ROI) in the Talairach space based on an atlas provided by AFNI. ROIs were 

chosen based on activation maps of arithmetic effect for the sample as a whole (regions 

with higher activation in the arithmetic task versus control task). The following brain areas 

were identified: left and right superior and inferior parietal regions, superior frontal, medial 

frontal, middle frontal, and inferior frontal gyri. It was noted that all these ROIs were also 

implicated in previous studies of arithmetic processing. ROI associated functional activation 

volumes and corresponding regression coefficients were then calculated in native space for 

each individual. The location and extent of each ROI was defined anatomically in native 

space by applying the inverse nonlinear warping from the Talairach transformation onto the 
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ROI mask and using the functional dataset as a template. Activation extent (number of 

active voxels) was subsequently determined for each ROI and then normalized to the voxel 

size of the entire ROI for each individual. Normalized activation volumes were compared 

between exposure groups by t-test. Additionally, the unthresholded regression coefficient 

was calculated for each ROI in native space, converted to percent BOLD signal change, and 

compared between exposure groups by t-test. 

 

3.3 Results 

 

3.3.1 Task Performance 

 

Using “number correct” as the outcome measure, there was a significant difference in 

performance on the arithmetic task between control subjects and dysmorphic PAE subjects 

(Table 3.1), with lower accuracy in the dysmorphic group. When participants gave no 

response (so-called “skips”), it was counted as an incorrect response in determining 

accuracy. Participants who skipped more than 50% of arithmetic responses were excluded 

from analysis (n=2), and of the remaining participants, the number of skips was comparable 

among groups. Accuracy was at or near 100% on the letter-matching control task for all 

groups, and there was not a significant difference in reaction time for either task between 

any of the groups. 
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Table 3.1.  Accuracy on the arithmetic task for each exposure group, determined as percent 
of questions correctly answered (out of 60) and including skipped questions as incorrect. 
SEM = standard error of mean. *indicates significantly different from control group. 
 

Exposure group        Accuracy (%) ± SEM  p-value                 

Control  72.6 ± 3.8  

Non-Dys  65.3 ± 4.2 0.104 

Dys 60.1 ± 4.4 0.022* 

 

 

 

3.3.2 fMRI Results 

 

Figure 3.2 shows the arithmetic effect (arithmetic task minus control task) in selected slices 

for each group. Specifically, robust activation is seen in bilateral parietal lobe, medial frontal 

gyrus, and bilateral middle frontal gyrus in the control group, while activation in the exposed 

individuals is sparser and primarily on the right side of the middle frontal and parietal 

regions. Figure 3.2 also indicates more overall activation in the control group as compared 

to the two PAE groups. Regions of interest (ROI), listed in Table 3.2, were identified based 

on these activation maps. Selected slices from group difference maps of arithmetic effect-

related activation are shown in Figure 3.3. Greater activation in controls as compared to 

non-dysmorphic PAE in the middle frontal and parietal regions is notable in Figure 3.3A. 

Figure 3.3B shows significantly more activation in control subjects as compared to 

dysmorphic PAE subjects in bilateral parietal, middle frontal, and medial frontal gyri. 

 

Activation volumes and percent signal change for each ROI are indicated in Table 3.2. To 

verify that activation differences were reflective of impairment and not lack of task 

engagement, activation was also examined excluding subjects performing below chance 
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(50%) on the arithmetic task (ExLS: n=17 for non-dysmorphic PAE group; n=13 for 

dysmorphic PAE group). None in the control group scored below chance. Left and right 

superior and right inferior parietal regions and medial frontal gyrus showed an exposure-

dependent response, with the dysmorphic PAE group having the lowest amount of 

activation. Furthermore, dysmorphic PAE subjects had significantly less (p<0.05) activation 

as compared to the control group in all of these regions except the right superior parietal 

area. When low-scoring subjects were excluded, the same ROIs remained significantly 

different from controls, and no other ROIs had significantly different activation volumes. The 

percent BOLD signal change is also indicated in Table 3.2 for each ROI. Average percent 

signal change trended in the same direction as activation volumes (correlation with average 

activation volume was r=0.97), with marginally significant differences (p<0.10) between the 

control and dysmorphic groups in the right inferior parietal and medial frontal gyri. With the 

exclusion of the low-scoring subjects, these ROI differences were still marginally significant. 

No significant correlation was found between task performances and either activation 

volume or percent signal change (r<0.5 for all groups and all ROIs). 
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Figure 3.2.  Arithmetic effect for (A) controls, (B) non-dysmorphic PAE, and (C) dysmorphic 
PAE groups. (D) indicates location of chosen axial slices (z= +46 to +53).  
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Figure 3.3. Subtraction map of the arithmetic effect in control subjects minus arithmetic 
effect in the (A) non-dysmorphic PAE subjects or (B) dysmorphic PAE subjects. (C) 
indicates location of chosen axial slices (z= +46 to +53).  
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3.4 Discussion 

 

3.4.1 Summary 

 

Given that prenatal alcohol exposure has been reported to cause deficits in arithmetic 

processing, we expected an exposure-dependent response in task performance and in brain 

regions previously associated with arithmetic calculation, with significantly different 

activation patterns between the dysmorphic PAE group and controls. As predicted, in the 

present study, dysmorphic PAE individuals showed significantly diminished ability to perform 

a subtraction task while activation differences were noted in regions known to be associated 

with arithmetic processing. Activation in the left superior parietal regions, right inferior 

parietal region, and medial frontal gyrus during the task reflected an exposure-dependent 

response, with dysmorphic PAE individuals having significantly less activity. It should be 

noted that excluding those subjects with task performance below chance level still resulted 

in less activation in the dysmorphic PAE group in the same ROIs which verifies that reduced 

activation volume was reflective of exposure-based deficit as opposed to lack of 

engagement in the task. In general, the non-dysmorphic PAE group had both intermediate 

activation and task performance although they were not significantly different in performance 

from either group. Furthermore, the trend of less activation in exposed groups than controls 

by volume measure was also reflected in percent signal change.   

 

It should be noted that the control group had greater activation volume in all ROIs as 

compared to the dysmorphic PAE group, with the exception of superior frontal gyrus, though 

the difference was not always significant. Additionally, activation was not significantly 

impaired in the non-dysmorphic group, and was actually comparable or higher as compared 

with controls in the inferior parietal region and medial/inferior frontal gyri. While activation 
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volume differences may appear sizeable for some ROIs, they were not always significant. 

This lack of significance may be due to the considerable inter-subject variability within each 

group. We also note that while percent signal change correlated with activation volume in 

this study, it was only marginally statistically significant between groups. The finding of 

poorer performance on the subtraction task by alcohol-affected individuals is consistent with 

previous reports that PAE is associated with diminished arithmetic processing in children 

and adolescents. As noted in the introduction, a number of studies have reported such 

effects. Streissguth, et al. (1994b; 1989) showed significant effects in children asked to 

perform arithmetic-based tasks at several stages of academic development. This 

longitudinal study additionally noted that 91% of the PAE children who showed arithmetic 

deficiency at 7 years of age, continued to show deficits at 14 years of age as opposed to 

only 45% in the control group (Streissguth et al., 1994b).  

 

3.4.2 Context in Current Literature 

 

This fMRI study found significant differences in activation in bilateral parietal regions as well 

as the medial frontal region, which are known to be associated with arithmetic processing 

(Dehaene et al., 2004; Dehaene et al., 2003; Menon et al., 2000). Recently, Fehr, et al. 

(2007) used fMRI to comprehensively identify brain areas related to a number of simple 

arithmetic operation (e.g., addition, subtraction, etc). One specific finding was that, among 

other regions, medial frontal and bilateral inferior parietal regions were significantly more 

activated during a “complex” subtraction task as compared to a “simple” arithmetic task. 

Kong, et al. (2005) also recently examined the neural correlates associated with simple and 

complex arithmetic operations using fMRI. Complex subtraction was defined by the authors 

as involving “borrowing,” using tasks similar to those in the present study. They too found 

involvement of medial frontal gyrus, among other regions, for the complex arithmetic tasks. 
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Furthermore, left superior and right inferior parietal cortices were identified as the two 

subregions of the parietal lobe specifically associated with subtraction. It was further shown 

that all regions recruited in performing addition tasks were also required for subtraction. The 

association of these two subregions with subtraction calculation specifically supports our 

finding that the dysmorphic PAE group has less activation during the subtraction task in the 

left superior and right inferior parietal cortices. In the current study, differences in activation 

in these regions could reflect a deficiency on the part of the dysmorphic PAE group in 

recruiting the neuronal arithmetic network. Specifically, bilateral parietal region differences 

could indicate dyscalculia or the inability to perform the subtraction itself, while medial frontal 

gyrus differences could signify poor recruitment of a region needed for complexity 

(“borrowing”). This component is believed to be involved in the working memory aspect of 

the task (Hampson et al., 2006). Dysmorphic alcohol-affected individuals may therefore 

have neuronal recruitment problems in both the regions activated by all types of arithmetic 

function and those unique to subtraction operation calculation. Such a deficiency could also 

account for the poorer task performance by the dysmorphic group.  

There have been few other studies that utilize fMRI to examine neurocognitive deficits 

associated with PAE. Malisza, et al. (2005) reported functional differences in brain regions in 

individuals with fetal alcohol spectrum disorder (FASD) during a spatial working memory 

task. In both children and adults, the authors found increased activation in FASD individuals 

in inferior-middle frontal lobe and greater activation in control individuals in superior frontal 

and parietal lobes. Additionally, adults had less overall activation as compared to children 

and FASD groups had lower activation overall versus controls. 

 

Another very recent fMRI study on FASD children (Meintjes et al., Abstract #232, 

Organization for Human Brain Mapping, Chicago, IL, USA, 2007) reported increased activity 

in controls as compared to FASD in the left HIPS and left superior frontal region during an 
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exact addition task. The children also performed a proximity judgment task, in which 

increased activation in controls in left and right HIPS and frontal areas was noted, along with 

greater activation in FASD in the anterior cingulate and left angular gyrus. As the task in the 

present study mirrors exact addition more than proximity judgment, our findings are 

consistent with the report that FASD children have diminished neuronal activation.  

 

3.4.3 Limitations 

 

The control and PAE groups in this study were not IQ-matched, raising the question of 

whether task performance was influenced by IQ differences. However, it should be noted 

that while both PAE groups had significantly lower IQ as compared to the controls, only the 

dysmorphic PAE group had significantly poorer task performance. Furthermore, a study of 

learning deficits in this cohort (Howell, et al., 2006) revealed that while PAE groups 

specifically demonstrated arithmetic deficits, a low-IQ “special-education” contrast group had 

deficits in reading and spelling in addition to arithmetic. This finding suggests that the 

contrast group may have global damage more closely tied to their low IQ whereas the PAE 

groups have specific problems with math resulting from exposure. 

 

As noted in the Results section, while the dysmorphic PAE group performed more poorly 

overall on the subtraction task, no correlation was found between this behavioral 

performance and activation. The use of different strategies by different subjects (e.g., rote 

memorization, counting) is a possible explanation for the general lack of association 

between activation and task performance. However, several studies have shown activation 

patterns in the parietal lobe varying with arithmetic competency (Delazer et al., 2003; Fehr 

et al., 2007; Grabner et al., 2007), including degree of automaticity and efficient functioning 
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with task (Ischebeck et al., 2006) and these results suggest that further research is needed 

to evaluate the relationship between performance and activation.  

 

3.4.4 New methods 

 

As we have noted, one challenge when using the fMRI method on a prenatally alcohol 

exposed population is the smaller head size that results from perturbed neurodevelopment 

and characterizes this group. In the present study, for example, whole brain size was found 

to be significantly different between both PAE groups and the control group (p=0.0048 for 

non-dysmorphic and p=0.0007 for dysmorphic). Bookheimer and Sowell (2005) point out 

that because of microcephaly, apparent increases in activation volume in the FASD 

population could be a result of structural abnormality or improper image registration. 

Therefore, studies in which anatomical images are normalized to common space may be 

distorting the activation differences. In this study, we wished to control for this potential 

methodological issue. We verified that whole brain activation differences between non-

dysmorphic and dysmorphic PAE groups and controls were not significant when normalized 

to whole brain anatomical size (p=0.35 and p=0.39, respectively). Therefore, for our 

activation volume measurements, we utilized a warping method in which regions of interest 

were chosen by Talairach atlas in common space and their masks were warped with the 

inverse matrix back into original space for each individual. The activation volumes in each 

ROI were then normalized to the size of the whole ROI for each individual. In this way the 

regions of interest analyzed were uniquely sized and standardized for each individual, 

making the number of active voxels in the region more accurate.  
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3.4.5 Future Considerations 

 

The behavioral and imaging results of this study suggest that prenatal alcohol exposure is 

associated with diminished arithmetic processing capabilities and that such deficits are the 

result of functional damage to regions known to be associated with mathematical 

calculation. Specifically, the dysmorphic PAE group appears to have marked impairment in 

recruiting neurons from bilateral parietal and medial frontal regions for arithmetic processing. 

Given prior characterization of the neural correlates of arithmetic operations, more heavily 

exposed alcohol-affected individuals may have difficulty with both the operation itself and its 

complexity. Furthermore, that the non-dysmorphic PAE group did not have significant 

activation or performance problems implies a range of responses to the teratogenic 

exposure that require further study to delineate. Overall, the findings of this study further 

support the direct relationship between prenatal alcohol exposure and functional brain 

damage, specifically elucidating a neurological basis for observed arithmetic deficit. 

 

A next step in understanding the relationship between structural damage induced by PAE 

exposure and its effects on the functional brain activation is to obtain a more direct 

correlation between performance and brain activity for cognitive tasks. Using a simpler task 

could decrease the high variance in activation measures and elucidate a quantifiable 

relationship between arithmetic calculation and neuronal activation in alcohol affected and 

exposed individuals. It should also be noted that since the brain regions affected in the 

present study are associated specifically with subtraction, a paradigm consisting of several 

different arithmetic operations could elucidate the extent of dyscalculia in the affected 

population.  

 
 
 



50 
 

3.5 References 
 
 
Abel EL (1995) An update on incidence of FAS: FAS is not an equal opportunity birth defect. 

Neurotoxicol Teratol 17(4):437-43. 
 

Archibald SL, Fennema-Notestine C, Gamst A, Riley EP, Mattson SN, Jernigan TL (2001) 
Brain dysmorphology in individuals with severe prenatal alcohol exposure. Dev Med 
Child Neurol 43(3):148-54. 

 

Bookheimer SY, Sowell ER (2005) Brain imaging in FAS: commentary on the article by 
Malisza et al. Pediatr Res 58(6):1148-9. 

 

Cantlon JF, Brannon EM, Carter EJ, Pelphrey KA (2006) Functional imaging of numerical 
processing in adults and 4-y-old children. PLoS Biol 4(5):e125. 

 

Cohen MS (1997) Parametric analysis of fMRI data using linear systems methods. 
Neuroimage 6(2):93-103. 

 

Coles CD (2001) Fetal alcohol exposure and attention: moving beyond ADHD. Alcohol Res 
Health 25(3):199-203. 

 

Coles CD, Brown RT, Smith IE, Platzman KA, Erickson S, Falek A (1991) Effects of prenatal 
alcohol exposure at school age. I. Physical and cognitive development. Neurotoxicol 
Teratol 13(4):357-67. 

 

Coles CD, Platzman KA, Lynch ME, Freides D (2002) Auditory and visual sustained 
attention in adolescents prenatally exposed to alcohol. Alcohol Clin Exp Res 
26(2):263-71. 

 

Coles CD, Platzman KA, Raskind-Hood CL, Brown RT, Falek A, Smith IE (1997) A 
comparison of children affected by prenatal alcohol exposure and attention deficit, 
hyperactivity disorder. Alcohol Clin Exp Res 21(1):150-61. 

 

Conry J (1990) Neuropsychological deficits in fetal alcohol syndrome and fetal alcohol 
effects. Alcohol Clin Exp Res 14(5):650-5. 

 

Dehaene S, Molko N, Cohen L, Wilson AJ (2004) Arithmetic and the brain. Curr Opin 
Neurobiol 14(2):218-24. 

 



51 
 

Dehaene S, Piazza M, Pinel P, Cohen L (2003) Three parietal circuits for number 
processing. Cognitive Neuropsychology 20(3/4/5/6):487-506. 

 

Delazer M, Domahs F, Bartha L, Brenneis C, Lochy A, Trieb T, Benke T (2003) Learning 
complex arithmetic--an fMRI study. Brain Res Cogn Brain Res 18(1):76-88. 

 

Fehr T, Code C, Herrmann M (2007) Common brain regions underlying different arithmetic 
operations as revealed by conjunct fMRI-BOLD activation. Brain Res 1172:93-102. 

 

Fernhoff PM, Smith IE, Falek A (1980) Dysmorphia Checklist. Document available through 
the Maternal Substance Abuse and Child Development Project, Department of 
Psychiatry and Behavioral Sciences, Emory University School of Medicine. 

 

Goldschmidt L, Richardson GA, Stoffer DS, Geva D, Day NL (1996) Prenatal alcohol 
exposure and academic achievement at age six: a nonlinear fit. Alcohol Clin Exp Res 
20(4):763-70. 

 

Grabner RH, Ansari D, Reishofer G, Stern E, Ebner F, Neuper C (2007) Individual 
differences in mathematical competence predict parietal brain activation during 
mental calculation. Neuroimage 38(2):346-56. 

 

Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT (2006) Brain connectivity 
related to working memory performance. J Neurosci 26(51):13338-43. 

 

Howell, KK, Lynch, ME, Platzman, KA, Smith, GH, Coles, CD (2006) Prenatal alcohol 
exposure and ability, academic achievement, and school functioning in adolescence: 
a longitudinal follow-up. J Pediatr Psychol 31(1): 116-26. 

 

Hubbard TL (2005) Representational momentum and related displacements in spatial 
memory: A review of the findings. Psychon Bull Rev 12(5):822-51. 

 

Ischebeck A, Zamarian L, Siedentopf C, Koppelstatter F, Benke T, Felber S, Delazer M 
(2006) How specifically do we learn? Imaging the learning of multiplication and 
subtraction. Neuroimage 30(4):1365-75. 

 

Jones KL, Smith DW (1973) Recognition of the fetal alcohol syndrome in early infancy. 
Lancet 2(7836):999-1001. 

 



52 
 

Kazui H, Kitagaki H, Mori E (2000) Cortical activation during retrieval of arithmetical facts 
and actual calculation: a functional magnetic resonance imaging study. Psychiatry 
Clin Neurosci 54(4):479-85. 

 

Klahr D (1973) Quantification processes. Academic Press, Inc., 111 Fifth Ave., New York, 
New York 10003. 

 

Kong J, Wang C, Kwong K, Vangel M, Chua E, Gollub R (2005) The neural substrate of 
arithmetic operations and procedure complexity. Brain Res Cogn Brain Res 
22(3):397-405. 

 

Kopera-Frye K, Dehaene S, Streissguth AP (1996) Impairments of number processing 
induced by prenatal alcohol exposure. Neuropsychologia 34(12):1187-96. 

 

Malisza KL, Allman AA, Shiloff D, Jakobson L, Longstaffe S, Chudley AE (2005) Evaluation 
of spatial working memory function in children and adults with fetal alcohol spectrum 
disorders: a functional magnetic resonance imaging study. Pediatr Res 58(6):1150-7. 

 

Mattson SN, Riley EP (1998) A review of the neurobehavioral deficits in children with fetal 
alcohol syndrome or prenatal exposure to alcohol. Alcohol Clin Exp Res 22(2):279-
94. 

 

Mattson SN, Riley EP, Gramling L, Delis DC, Jones KL (1998) Neuropsychological 
comparison of alcohol-exposed children with or without physical features of fetal 
alcohol syndrome. Neuropsychology 12(1):146-53. 

 

McCarthy RA, Warrington E (1987) Cognitive mechanism in normal and impaired number 
processing, in: G. Deloche, X. Seron (Eds.), Mathematical Disabilities: Cognitive 
Neuropsychological Perspective. 

 

Menon V, Rivera SM, White CD, Glover GH, Reiss AL (2000) Dissociating prefrontal and 
parietal cortex activation during arithmetic processing. Neuroimage 12(4):357-65. 

 

Nash K, Rovet J, Greenbaum R, Fantus E, Nulman I, Koren G (2006) Identifying the 
behavioural phenotype in Fetal Alcohol Spectrum Disorder: sensitivity, specificity and 
screening potential. Arch Womens Ment Health 9(4):181-6. 

 

Olson HC, Feldman JJ, Streissguth AP, Sampson PD, Bookstein FL (1998) 
Neuropsychological deficits in adolescents with fetal alcohol syndrome: clinical 
findings. Alcohol Clin Exp Res 22(9):1998-2012. 

 



53 
 

Riley EP, McGee CL, Sowell ER (2004) Teratogenic effects of alcohol: a decade of brain 
imaging. Am J Med Genet C Semin Med Genet 127(1):35-41. 

 

Smith IE, Coles CD, Lancaster J, Fernhoff PM, Falek A (1986) The effect of volume and 
duration of prenatal ethanol exposure on neonatal physical and behavioral 
development. Neurobehav Toxicol Teratol 8(4):375-81. 

 

Sowell ER, Thompson PM, Mattson SN, Tessner KD, Jernigan TL, Riley EP, Toga AW 
(2001) Voxel-based morphometric analyses of the brain in children and adolescents 
prenatally exposed to alcohol. Neuroreport 12(3):515-23. 

 

Spadoni AD, McGee CL, Fryer SL, Riley EP (2007) Neuroimaging and fetal alcohol 
spectrum disorders. Neurosci Biobehav Rev 31(2):239-45. 

 

Streissguth AP, Barr HM, Olson HC, Sampson PD, Bookstein FL, Burgess DM (1994a) 
Drinking during pregnancy decreases word attack and arithmetic scores on 
standardized tests: adolescent data from a population-based prospective study. 
Alcohol Clin Exp Res 18(2):248-54. 

 

Streissguth AP, Barr HM, Sampson PD, Bookstein FL (1994b) Prenatal alcohol and 
offspring development: the first fourteen years. Drug Alcohol Depend 36(2):89-99. 

 

Streissguth AP, Bookstein FL, Sampson PD, Barr HM (1989) Neurobehavioral effects of 
prenatal alcohol: Part III. PLS analyses of neuropsychologic tests. Neurotoxicol 
Teratol 11(5):493-507. 

 

Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. New York: 
Thieme Medical Publishers, Inc. 

 

Zhang YT, Zhang Q, Zhang J, Li W (2005) Laterality of brain areas associated with 
arithmetic calculations revealed by functional magnetic resonance imaging. Chin 
Med J (Engl) 118(8):633-8. 

 

 

 



Portions of Chapter 4 modified from: Santhanam, P., Li, Z., Li, L., Lynch, ME., Coles, CD., and Hu, X. “Structural and functional 
alterations of the default mode network in adults with prenatal alcohol exposure.” In preparation. 

54 

CHAPTER 4 

Default Mode Network Dysfunction in Adults with Pre natal Alcohol Exposure 

 

 

4.1 Background 

 

4.1.1 Prenatal Alcohol Exposure and Cognitive Neuroimaging 

 

Neurocognitive deficits as well as social and adaptive dysfunction have been observed in 

individuals with prenatal alcohol exposure (PAE) (Guerri et al., 2009; Mattson and Riley, 

1998). In general, adolescents with PAE have lower IQ, often accompanied by impaired 

visuo-spatial, attentional, verbal learning, and memory abilities (Coles et al., 1997; Conry, 

1990; Mattson et al., 1998; Olson et al., 1998). While behavioral studies have documented 

deficiencies in individuals with PAE, the underlying neuronal causes of the outcomes are still 

not well understood. There are only a few functional neuroimaging studies on the PAE 

population, all of which focus on the task-positive activation patterns created by the blood-

oxygen level dependent (BOLD) response in functional MRI (fMRI). Malisza, et al. (2005) 

reported functional differences in brain regions in both children and adults with fetal alcohol 

spectrum disorder (FASD) during a spatial working memory task, and a separate study of 

verbal learning in children with heavy PAE found exposed children had altered patterns of 

activation during a paired association task (Sowell et al., 2007). A recent study from our 

group (Santhanam et al., 2009) investigated arithmetic processing and found less activation 

in dysmorphic PAE individuals in calculation-associated regions. Though these studies do 

reveal brain regions associated with specific cognitive dysfunction, they do not examine the 

possibility of contribution from a global underlying attentional modulation effect. 
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4.1.2 Default Mode Network 

 

4.1.2.1 Concept 

 

Recent discovery of consistent regions that are more active during resting periods than 

during cognitive demand has led to the characterization of a so-called “default mode 

network” (DMN) in the brain (Greicius et al., 2003b). Comprised of the medial prefrontal 

cortex (MPFC), posterior cingulate cortex (PCC), precuneus, inferior parietal cortices, and 

medial temporal regions, the network has been shown to exhibit reduced activation in the 

presence of high cognitive demand (Golland et al., 2008; Greicius et al., 2003b; Margulies et 

al., 2007). Multiple studies have shown that DMN deactivation increases with increased task 

difficulty (McKiernan et al., 2006; Singh and Fawcett, 2008), and that activity persists during 

simple sensory tasks, in which good task performance is achievable with little attentional 

resources (Greicius et al., 2003b; Wilson et al., 2008). Attention lapse, marked by longer 

reaction time and lower accuracy on an attentional control task, has been associated with 

less task-induced deactivation of the DMN (Weissman et al., 2006). Thus patters of task-

related DMN activity are thought to reflect an attentional modulation unrelated to the specific 

task being performed (Broyd et al., 2009).  

 

4.1.2.2 Interference Hypothesis 

 

Recently, Sonuga-Barke and Castellanos, et al. hypothesized that the attenuation of DMN 

activity during cognitive demand is a point of dysfunction in those prone to attentional lapse 

(2007). Their “default mode interference hypothesis” posits that as attention to a cognitive 

task lessens, DMN deactivation also lessens, such that DMN activity is persistent in the 
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task-active state and thus interferes with task performance. Task-induced DMN deactivation 

has been studied in several populations with dysfunctions of attention, including 

schizophrenia, Alzheimer’s disease, normal aging, and autism spectrum disorder (Kennedy 

et al., 2006; Persson et al., 2007; Pomarol-Clotet et al., 2008; Rombouts et al., 2005). While 

PAE is known to have cognitive task-related attentional problems, such as increased 

distractibility and longer reaction times (Shaywitz et al., 1981; Simmons et al., 2002; 

Streissguth et al., 1986), it is unclear whether these outcomes contribute to the general 

cognitive deficits seen in the population. Patterns of task-related deactivation in PAE could 

reveal whether attentional modulation is contributing to poorer task performance.  

 

4.1.3 Aims 

 

Previously (Chapter 3), we identified arithmetic processing dysfunction in PAE by reduced 

task performance and activation in arithmetic processing centers (Santhanam et al., 2009). 

In the present study, we examined deactivation of the DMN during the arithmetic task (using 

a letter-matching task as baseline). Given known attentional problems and the lower task 

performance and activation reported in the prior study, we expected less deactivation in the 

DMN in affected groups as compared to control groups. Additionally, given known white 

matter alterations in several areas of the brain caused by PAE, we examined structural and 

functional connectivity of the DMN by diffusion tensor imaging (DTI) and resting state fMRI 

signal correlation, respectively. We expected reduced white matter integrity and 

synchronization between the medial prefrontal cortex and posterior cingulate in the groups 

with PAE as compared to controls. Furthermore, as the underlying DMN structure has been 

shown to reflect its functional connectivity (Greicius et al., 2009; van den Heuvel et al., 

2008), we expected a correlative relationship between the DTI and resting state correlation 

measures across all groups.  
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4.2 Methods 

 

4.2.1 Participants 

 

Participants were young adults recruited from a longitudinal cohort, derived from a 

predominantly African-American, low socio-economic status (SES) population, first identified 

in the prenatal period between 1979 and 1986 (Smith et al., 1986). All participants were 

aged 18-24 at the time of participation. Participants were part of a longitudinal study with 

large-scale follow-ups at birth, 7 years, mid-adolescence, and young adulthood. Participants 

(and guardians, if necessary) gave informed consent to continue to participate in the 

research when recontacted as adults. From the longitudinal cohort, three groups were 

selected for participation in the current study based on prenatal maternal reports of alcohol 

use in pregnancy and Dysmorphia Checklist (Coles et al., 1985) ratings of physical 

characteristics related to prenatal alcohol exposure. The ratings were completed at follow-up 

evaluations at birth, 7 years, and mid-adolescence. Groups were defined as follows: 1) 

Exposed, positive for dysmorphia, (DYS: mother reported use of alcohol during pregnancy 

and the participant received a dysmorphia rating that was at least one standard deviation 

above the mean at one of the three evaluations); 2) Exposed, without dysmorphia (Non-

DYS: mother reported use of alcohol during pregnancy and the participant received no 

dysmorphia ratings that were one standard deviation above the mean); and 3) Unexposed 

controls (mother reported no use of alcohol during pregnancy) from the same SES 

population. The mean ounces of absolute alcohol consumption per week of pregnancy for 

groups 1 and 2 were 13.8 (sd=13.4) and 7.7 (sd=13.3), respectively. Demographics 

information for the cohort is given in Table 2.1. A subset of subjects from Table 2.1 was 

used in the present study. Before imaging was done, potential participants who were left 



58 
 

handed or had some risk during the MRI procedure (e.g., due to pregnancy or metal in the 

body) were excluded. Additionally, certain subjects were excluded post-imaging from each 

analysis described below due to excessive head motion or artifact. As a result, the number 

of subjects in the final analyses were as follows: Resting-state analysis: DYS n=21, Non-

DYS n=21, CON n=22; Functional (arithmetic) task analysis: DYS n=19, Non-DYS n=18, 

CON n=18; and DTI analysis: DYS n=27, Non-DYS n=29, CON n=26. 

 

4.2.2 Experimental Design 

 

All data, including DTI, resting state, and the arithmetic task, were collected in a single 

session. For the resting state scan, participants were asked only to gaze at a fixation cross. 

The arithmetic task (Connor, 2004) was block-design, involving alternating between a letter-

matching control task (10 consecutive presentations) and a subtraction task (10 consecutive 

presentations). Five blocks of each task, with questions in random order in each block, were 

administered over 5 minutes. The task is described in further detail (Chapter 3) in our 

previous publication (Santhanam et al., 2009).  

 

4.2.3 Image Acquisition 

 

All images were acquired on a 3T Siemens Trio scanner (Siemens Medical Solutions, 

Erlangen, Germany). Both the functional and resting state scans used single-shot T2*-

weighted echo planar imaging (EPI) sequences with the following parameters: functional 

run: 34 contiguous axial slices, 3 mm thickness, TR/TE/FA/FOV of 3000ms/32ms/90º/22cm, 

scan time of 5:06 min, 102 time points; resting state run: 10 contiguous axial slices, 5 mm 

thickness, TR/TE/FA/FOV 750ms/34ms/50°/22cm, scan t ime of 3:34 min, 280 time points. 

DTI data was acquired using a diffusion-weighted EPI sequence with the following 
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parameters: gradients applied in 12 directions (4 averages) with b-value of 1000 s/mm2, 34 

contiguous axial slices, 2mm thickness, TR/TE/FOV of 7700ms/90ms/22cm, scan time of 

7:08 min. 

 

4.2.4 Image Analysis 

 

4.2.4.1 fMRI data 

 

FMRI analysis was done in AFNI (http://afni.nimh.nih.gov/afni, 09/2009). Preprocessing 

included slice timing correction, volume registration, band pass filtering (resting data only), 

signal normalization (functional data only), and 5mm FWHM Gaussian blur. Additionally, 

multiple linear regression of the resting state data was done to remove contributions from 

head motion (6 parameters: x, y, z displacements and roll, pitch, yaw rotations), white 

matter, cerebrospinal fluid, and whole brain signals (Fox et al., 2005b). Recently, the 

regression of whole brain signal from resting-state data has become controversial as it is 

thought to introduce anti-correlated networks into functional connectivity measures (Murphy 

et al., 2009). However, a recent report quantifying the effect of various pre-processing steps 

on connectivity measures determined that while using global signal regression does 

introduce anti-correlations, it also approximately doubles the sensitivity to positive 

correlations and is therefore recommended (Weissenbacher et al., 2009). Given the ongoing 

debate, we chose to analyze the data both with and without global regression.   

 

In order to identify regions of deactivation during higher cognition, a general linear model 

was derived using the letter-matching task as the baseline and arithmetic task blocks as the 

stimulations. Convolution of the boxcar stimulation functions with a standard impulse 

response function (y=t^b×exp(-t/c), where b and c are constants) produced the main 
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regressor (Cohen, 1997b). The 6 head motion parameters were used as additional 

regressors, and the output of the regression analysis (group activation maps) was generated 

by Talairach (Talairach and Tournoux, 1988b) transforming the functional data to common 

space and averaging across all subjects. To account for multiple comparisons, voxel-wise 

and cluster thresholding were applied. Monte Carlo simulation revealed that these 

thresholds corresponded to a false-positive discovery rate (alpha) of less than 1%.   

 

Clusters of significant deactivation (with voxel-wise thresholding of p<0.05 and cluster 

thresholding of 10 contiguous voxels) at the MPFC and PCC were identified. While the DMN 

is comprised of several nodes, these two were chosen for subsequent resting-state analysis 

because they had the most robust deactivation clusters and were the most consistently 

included in slice coverage. Differences in deactivation between the letter matching and 

arithmetic tasks were determined by extracting and averaging the regression coefficients 

from the clusters identified as the MPFC and PCC, respectively. Deactivation differences in 

each ROI were examined independently given recent findings of unique functional 

specialization for each of these two DMN loci (Uddin et al., 2009).  These clusters were 

chosen as their robust activity and connectivity within the DMN is well-established (Greicius 

et al., 2003b; Margulies et al., 2007). Difference maps were generated to visualize the 

differences in deactivation, masked over the MPFC and PCC regions, respectively, between 

controls and each PAE group (voxel-wise thresholding of p<0.10 and cluster thresholding of 

4 contiguous voxels). Due to considerable head size differences in the PAE population, the 

deactivation clusters from the group activation map were masked and back-projected into 

native space for each subject for quantification of the deactivation difference. Average 

unthresholded regression coefficients were converted to percent signal change and 

compared between groups by t-test. 
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Using the deactivation clusters as masks, corresponding PCC regions in the resting state 

were extracted for each individual in native space, and correlation maps were derived. 

Voxel-wise thresholding of p<0.001 and cluster threshold of 8 contiguous voxels 

(corresponding to multiple comparisons correction of alpha<1% by Monte Carlo simulation) 

were used. Using the MPFC functionally deactivated region as a mask, a cluster of 

significant correlation with PCC in the resting state was found for each subject. For this 

correlated region of the DMN, the average correlation coefficient was extracted for each 

subject and compared between groups by t-test. Additionally, to examine whether 

differences exist in signal amplitude in the MPFC and PCC, mean signal intensity over the 

resting state run was compared between groups [*]. 

 

4.2.4.2 DTI data 

 

Voxel-wise analysis of DTI data was performed using the tract-based spatial statistics 

(TBSS) program from FSL 4.0 (http://www.fmrib.ox.ac.uk/fsl/, 09/2009). TBSS offers the 

advantage of non-linear registration followed by projection onto an alignment-invariant white 

matter “skeleton.” It was chosen because TBSS is less reliant on image registration between 

subjects for comparison (Smith et al., 2006) and was previously shown to elucidate 

differences between exposed and control groups from the same cohort in subregions of the 

corpus callosum (Li et al., 2009). Briefly, a fractional anisotropy (FA) template specific to the 

PAE population in this study was created from the FA images of all subjects. The average 

FA image was then eroded to form a mean FA skeleton to which the FA map of each 

individual is aligned. Details of the template creation, skeleton derivation, and alignment can 

be found in our previously published study (Li et al., 2009). Skeletons were derived in the 

same manner from FA, mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity 

(RD) maps.  
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A permutation algorithm (Smith et al., 2006) that does not require a Gaussian distribution 

was used to run statistics on the group differences in DTI measures. Parameters were 5000 

random permutations and comparisons were corrected to a family-wise (type I) error rate of 

less than 5%. Threshold-free cluster enhancement (TFCE: in FSL version 4.1) was used in 

place of voxel-wise or cluster thresholding. TFCE is a relatively new technique that allows 

for statistical analysis without an initial cluster-forming threshold. In this method, each voxel 

is given a value corresponding to the sum of the “scores” of its surrounding voxels; the score 

is determined by the height (increased incrementally from zero to the signal intensity of the 

given voxel) and extent of the cluster that contains the voxel. TFCE has been shown to 

improve sensitivity of signal detection, with an optimized height (H=2) and extent (E=0.5). 

Details of TFCE implementation and validation are provided by Smith and Nichols (2009). 

Skeleton-based region-of-interest (ROI) analysis of the bilateral cingulum bundles was then 

performed by defining the ROI as the intersection of the anatomical bilateral cingulum (as 

identified by a white matter atlas provided by FSL) and the FA skeleton. The ROI mask was 

used to extract average FA, MD, AD, and RD over this region. Statistical comparison of 

these DTI measures in exposed versus controls (t-test) was performed in SPSS 15.0 (SPSS 

Inc., Chicago, IL). 

  

In order to examine the relationship between structural and functional connectivity of the 

DMN, correlation between DTI measures and functional synchrony (defined by average 

correlation coefficient over MPFC region in correlation map with PCC region) was 

determined. Statistical analysis was again performed in SPSS 15.0. Pearson’s correlation 

coefficient was found for all subjects together, as well as within each exposure group 

individually (n=14 for control and dysmorphic groups; n=15 for non-dysmorphic PAE group). 
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4.3 Results 

 

4.3.1 Functional and Resting-State Results 

 

Figure 4.1 is a group average activation map indicating regions of DMN deactivation during 

the arithmetic task (using the letter-matching task as baseline). The most robust clusters of 

deactivation were found in the MPFC and PCC regions, identified in the figure. As difference 

maps in Figure 4.2 indicate, deactivation was significantly less in the dysmorphic PAE group 

as compared to controls, while the non-dysmorphic group had lower but not-significant 

deactivation compared to controls. This negative activation was quantified by extracting the 

unthresholded percent signal change in the MPFC and PCC, respectively (Table 2). The 

PCC cluster from Figure 4.1 was also used as a seeding region in the resting-state data to 

examine functional connectivity. Figure 4.3 shows the group correlation map using the PCC 

seed. Once again the most robust clusters are in the PCC and MPFC regions. Figures 4.3a 

and 4.3b indicated similar correlation extent and intensity (without introducing significant 

anti-correlation in the ROIs), regardless of global signal regression. Given the previously 

cited evidence that such regression increases sensitivity, resting-state data with the global 

signal removed was chosen for subsequent analysis. To compare the correlation with PCC 

between groups (as a measure of baseline DMN connectivity), difference maps over the 

MPFC region (identified in Figure 4.1) were rendered comparing the control group to both 

exposure groups (Figure 4.4). The control group appeared to have greater correlation in this 

region (positive difference). Correlation coefficients were extracted from the MPFC region in 

the resting-state using the deactivated MPFC cluster from Figure 4.1 as a mask (Table 4.1). 

Average correlation coefficients were significantly greater in the control group as compared 

to both exposure groups, and the two PAE groups had comparable correlation. Signal 

amplitude over the resting state time-course was found to be comparable between PAE 



64 
 

groups and controls (results not shown; p=0.36 for non-dysmorphic PAE group, p=0.23 for 

dysmorphic PAE group). 

 
 
 
 
 

 
 
 
Figure 4.1.  Regions of default mode deactivation during arithmetic task (using letter-
matching task as baseline). MPFC and PCC clusters from these group average activation 
maps were used for subsequent resting-state analysis. Color bar indicates these regions are 
negatively activated. 
 
 
 
 
 
 

 
 
Figure 4.2. Difference map of default mode deactivation between a) control and non-
dysmorphic PAE groups and b) control and dysmorphic PAE groups. Map is masked at the 
MPFC and PCC regions identified in Figure 4.1. Negative differences (blue shades) indicate 
less deactivation in the PAE group as compared to the control group.  
 
 
 

a b 
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Figure 4.3. Resting-state functional connectivity (correlation) group maps (a) with and (b) 
without global signal regression. At threshold p<0.001, only positive correlation (red-yellow: 
see color bar in Figure 4.1) was noted with the seeding region regardless of regression 
method. Seeding was in the PCC region defined in Figure 4.1.  
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Figure 4.4. Difference correlation maps of (a) Control-Non Dysmorphic PAE and (b) Control-
Dysmorphic PAE groups seeded at the PCC region and masked at MPFC region identified 
in Figure 1. Control groups had more correlation with the MPFC than either exposure group 
(red-yellow indicates positive difference). Threshold used was p<0.05 and 10 contiguous 
voxels (multiple comparison correction of alpha<1%).   
 
 
 
 
Table 4.1.  Comparison of resting-state DMN correlation and task-based DMN deactivation 
between control and PAE groups. * = significantly different from control group by t-test 
(p<0.05); SEM = standard error of the mean; GSR = global signal regression. 
 
 

Connectivity/Activation Measure  Control  Non-Dysmorphic PAE  Dysmorphic PAE 

Percent Signal Change in MPFC (SEM) -0.808 (0.087) -0.789 (0.094) -0.604* (0.098) 

Percent Signal Change in PCC (SEM) -0.265 (0.095) -0.168 (0.060) -0.174 (0.110) 

Mean Correlation Coefficient in MPFC 

using PCC seed: with GSR (SEM) 

 

0.285 (0.030) 

 

0.190* (0.033) 

  

0.206* (0.027) 

Mean Correlation Coefficient in MPFC 

using PCC seed: without GSR (SEM) 

 

0.428 (0.044) 

 

0.326* (0.023) 

  

0.343* (0.023) 

 



67 
 

DTI Results 

 

Figure 4.5 indicates the results of whole-brain TBSS. Differences in FA were detectable at 

the bilateral cingulum bundle between groups using a family-wise error of less than 5% 

(pFWE<0.05) and the TFCE method for cluster identification. However, in the subsequent 

regional skeleton-based ROI analysis (using bilateral cingulum bundles as the ROI), 

differences between groups in MD and RD were additionally detectable (Table 4.2). ROI 

extraction was done to compare differences in average FA, MD, AD, and RD between 

groups. Both PAE groups had lower FA and higher RD values as compared to controls and 

additionally the dysmorphic PAE group had a higher MD than controls.  

 

To examine whether structural and functional connectivity were affected in a corresponding 

manner, correlation between the MPFC-PCC correlation coefficient and DTI measures was 

determined. A positive correlation was found (r=0.322, p=0.035) between functional 

connectivity and FA when considering all subjects together (Figure 4.6). No significant 

correlations were found for any other DTI measures. Correlation between MPFC-PCC 

connectivity and FA was further examined within each individual group, and a significant 

positive correlation was found for the control group (r=0.571, p=0.033), a nonsignificant 

negative trend for the non-dysmorphic PAE group, and a positive trend for the dysmorphic 

PAE group (r=0.404, p=0.092).   

 

 
 
 
 
 
 
 



68 
 

 

 
 

Figure 4.5. TBSS results for bilateral cingulum. ROI shows significant differences between 
(a) Control and Non Dysmorphic PAE groups and (b) Control and Dysmorphic PAE groups 
in FA. Green indicates mean FA skeleton and red indicates regions of significant difference 
between groups, with thickened red-yellow for the bilateral cingulum ROI. Axial slices shown 
are z=107 to z=112.  
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Table 4.2.  Comparison of DTI measures between control and PAE groups by skeleton-
based ROI analysis of bilateral cingulum. FA = fractional anisotropy; MD = mean diffusivity 
(x10-3 mm2/s); AD = axial diffusivity λ1 (x10-3 mm2/s); RD = radial diffusivity λ2+λ3/2 (x10-3 
mm2/s); * = significantly different from control group by t-test (p<0.05); SEM = standard error 
of the mean. 
 
 

DTI Measure: Mean value over  
bilateral cingulum bundles 
 

Control  Non-Dysmorphic PAE  Dysmorphic PAE 

FA (SEM) 0.570 (0.008) 0.539* (0.007)  0.546* (0.008) 

MD (SEM) 0.731 (0.006) 0.741 (0.009)  0.750* (0.008) 

AD (SEM) 1.265 (0.012) 1.239 (0.015) 1.272 (0.012) 

RD (SEM) 0.464 (0.008) 0.492* (0.009) 0.491* (0.011) 
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Figure 4.6.  Scatterplot showing relationship between bilateral cingulum FA and MPFC-PCC 
resting state correlation for all subjects. Positive correlation is noted (r=0.322, p=0.035). 
 
 
 
 
 



70 
 

4.4 Discussion 

 

4.4.1 Summary 

 

Task-related deactivation, as well as structural and functional connectivity, of the DMN 

appears to be affected by PAE. Dysmorphic PAE individuals had significantly less 

deactivation in the MPFC and PCC during the arithmetic task as compared to controls. 

Structural connectivity and functional synchrony between PCC and MPFC regions were also 

lower for both PAE groups as compared to controls at rest, and these measures were 

additionally correlative.  

 

 

4.4.2 Context in Current Literature 

 

As previously mentioned, deactivation of the DMN has been observed to be altered in 

several clinical populations. In general, these studies agree that there exists a competition 

between an extrinsic (cognitive functioning) network and an intrinsic (default mode) network 

(Clare Kelly et al., 2008), and that this competition can be a point of dysfunction. Attentional 

modulation during the arithmetic task appears to be affected for the dysmorphic PAE group 

in this study, which can be related to their poorer task performance and lower activation in 

arithmetic centers (previously reported). It should be noted that even without the lowest 

scoring dysmorphic PAE participants, the reduced activation was still observed (previously 

reported), implying that the arithmetic centers are at least partially responsible for the lower 

performance. However, it is possible that the poorer performance is due to a combination of 

reduced activity in the regions required for arithmetic processing and an inability to control 

attention to the task.  
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Though the majority of literature on DMN functioning regards the network as homogenous, 

recently Uddin, et al. has investigated the possibility of unique functional specialization 

within the DMN (2009). They examined the positively and anti-correlated regions for the 

ventral medial PFC (vmPFC) and PCC regions, respectively, as these are the most robust 

nodes of the network. Findings included significant differences in networks anti-correlated 

with each node, with vmPFC activity anti-correlated with parietal visual spatial and temporal 

attention networks as compared to PCC activity, which was anti-correlated with motor 

control networks (Uddin et al., 2009). Granger causality results also suggested modulation 

of these loci upon the task-positive activity in these networks. Therefore, the authors 

conclude that activity in these two DMN loci may independently and uniquely influence task-

positive activation in the networks with which they are anti-correlated. As the present study 

found significant DMN deactivation differences in the MPFC only (and not in the PCC 

region), it follows that arithmetic task activation would be affected, given the strong reliance 

on bilateral parietal visual spatial networks for arithmetic processing (Dehaene et al., 2004; 

Santhanam et al., 2009). 

 

Both PAE groups had reduced structural and resting state functional connectivity between 

the MPFC and PCC. The cingulum bundles connecting these two nodes of the DMN had 

lower FA in both groups, and additionally increased RD in the dysmorphic PAE group. 

Furthermore, the resting state connectivity was reduced in both PAE groups, with 

comparable signal magnitude among groups confirming a dysfunction of synchrony 

specifically. The correlation between resting state DMN connectivity and FA of the cingulum 

bundles when all subjects were taken together implies a relationship between structural and 

functional damage in this part of the network. This positive correlation is consistent with 

previously mentioned studies of healthy subjects examining structural connectivity of the 
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DMN and its relation to functional connectivity (Greicius et al., 2003b), particularly in the 

case of the cingulum bundles (van den Heuvel et al., 2008). These results imply that PAE 

results in a “disconnection” between the MPFC and PCC nodes of the DMN, which may be a 

result of the underlying structural alterations.  

 

 

4.4.3 Exposure-Dependent Effects  

 

The non-dysmorphic PAE group had intermediate (but not significant from controls) 

deactivation of the DMN during the arithmetic task, which accompanies their previously 

reported intermediate task performance and activation. However, structural and baseline 

functional connectivity was significantly impaired in this group as compared to controls, with 

measures more comparable to the dysmorphic PAE group. Additionally, while the functional 

connectivity of control and dysmorphic PAE groups trended towards a positive correlation 

with FA, the non-dysmorphic PAE group reflected a non-significant negative correlation. 

One possible reason is that generally studies have shown stronger correlation between 

structural and functional connectivity when both measures are higher (stronger connectivity 

in each) (Damoiseaux and Greicius, 2009). Therefore, PAE affected groups may have less 

agreement due to reduction in both types of connectivity (which may also explain the lack of 

significance in the dysmorphic PAE group). It is difficult to interpret the trend towards 

negative correlation between cingulum bundle FA and functional connectivity between the 

PCC and ACC seen in the non-dysmorphic group, but it is likely that the overall PAE-

induced damage is intermediate in this group, and so subjects may have varying degrees of 

structural or functional impairment in this network. 
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4.4.4 Technical Considerations 

 

It should be noted that while the previous study on this cohort did not find diffusion-related 

differences at the cingulum when applying TBSS voxel-wise to the whole brain, the 

skeleton-based ROI findings can still be valid. It is possible that via the whole-brain method 

cingulum differences were masked by greater differences in the corpus callosum, but a more 

likely reason for the discrepancy is the use of the new TFCE statistical analysis versus the 

cluster-wise method applied in the previous study. TFCE is a newly developed alternative to 

voxel-wise and cluster thresholding that does not require an initial cluster-forming threshold. 

It has been validated for identifying clusters individually with less bias towards diffuse or 

focal signal shapes. The use of TFCE on the present dataset may have detected clusters 

more robustly than the previous study on the same cohort, which used a relatively strict 

threshold of pFWE<0.05 and cluster of t>2.5.  

 

4.4.5 Future Considerations 

 

This paper is the first to examine DMN activity in individuals with prenatal exposure to 

alcohol. Dysmorphic PAE individuals appear unable to sufficiently deactivate the DMN 

during cognitive tasks, which could contribute to lesser task-related positive activation and 

poorer task performance. Additionally, there appears to be a “disconnect” between the 

MPFC and PCC nodes of the network in individuals with PAE, which may be responsible for 

the reduced task-related deactivation. To our knowledge, this is the first paper to relate 

structural connectivity, functional connectivity, and task-related deactivation of the DMN in a 

clinical population. PAE appears to affect all these aspects of the network, implying a global 

effect on this resting state network and warranting further study. Examination of more 

structural and functional components of the DMN (e.g., bilateral parietal and medial 
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temporal regions) would aid in better understanding the effect of PAE on the network as a 

whole. Additionally, it would be interesting to note whether DMN deactivation is dependent 

on the task type and/or task performance. In the current study, we used an arithmetic task, 

which is highly cognitively demanding for individuals with PAE, and in our case task 

performance was lower in affected groups. However it is possible the deactivation patterns 

would differ with a less demanding task or when task performance is controlled. Finally, this 

study implies attentional modulation plays a role in cognitive deficit seen with PAE, but more 

studies controlling for specific types of attentional control and cognition are needed to 

elucidate the contribution of each to behavioral outcomes.  
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CHAPTER 5 
 

Part 1: Conclusions and Significance 
 

 

For decades it has been known that maternal alcohol consumption can lead to long-lasting 

behavioral problems in the offspring. Gross anatomical and structural imaging studies have 

revealed that significant physical brain damage can result from prenatal exposure to alcohol. 

Only recently has the advent of cognitive neuroimaging allowed us to bridge this gap 

between structural alterations and behavioral outcomes in the PAE population.  

 

This thesis combines the study of task-positive and task-negative functional deficits in adults 

with PAE. Though the neuroimaging literature to date is limited, the studies that do exist 

have focused on task-positive brain activity. However, it is clear that brain functioning is a 

balance of excitatory and inhibitory activation, and that the interplay between these two 

network types is crucial to any behavioral outcome. We showed in these studies that the 

learning disability reported in individuals with PAE results from a combination of arithmetic 

processing deficit and default mode interference that leads to their poor performance. 

Although it is intuitive that any learning problem could be a combination of attentional 

modulation deficit and specific cognitive impairments, demonstration of this dual effect is a 

new finding for the PAE population and a relatively new concept in cognitive neuroimaging 

in general.  

 

There are several strengths to the design of these studies that allow for a more 

comprehensive understanding of the spectrum of clinical disorders caused by PAE. Though 

behavioral deficits have been well-documented in children with PAE, their persistence to 

adulthood is assumed but not often investigated. Our examination of adults allows for a 
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clearly documented persistence of PAE-related learning problems to adulthood. Additionally, 

studying varying degrees of exposure gives insight into how severity of exposure affects 

specific brain functions. As shown in these studies, some types of neuronal alterations are 

observed in non-dysmorphic but exposed individuals (e.g., default mode structural and 

functional connectivity) while others are not. As the question of whether moderate PAE can 

cause significant brain damage is controversial, these studies elucidate some specific areas 

of dysfunction that appear to be more susceptible to prenatal exposure to alcohol.  

 

Knowledge of specific loci of brain dysfunction in individuals with PAE can aid in adaptive 

measures for this population. At present, the main form of “treatment” for fetal alcohol 

syndrome is a specialized learning environment. Children with PAE need extra guidance in 

learning basic verbal and arithmetic skills; a better understanding of how brain regions 

involved in these subject areas are affected by exposure is useful to care-givers, social 

workers, and teachers involved with the special needs of this group of children.  

 

Another result of these studies is evidence that structural and functional data from 

individuals with PAE, who have localized brain damage, can be improved with newer image 

registration methods. In terms of group comparison and anatomy-based inferences of 

imaging measures, it is crucial that images be accurately spatially normalized. Some 

structural alterations are already shown to be classifiers of PAE; it is evident that accurate 

inter-subject registration would be vital to this or any clinically diagnostic application.  

 

The effects of prenatal exposure to alcohol on brain structure and function are part of a 

complicated process. This thesis contributes to a growing body of evidence that PAE causes 

severe and long-lasting neuronal impairments. 
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PART 2 

 

Structural and Functional Neuroimaging of Adolescen ts with  

Prenatal Cocaine Exposure



Portions of Chapter 6 reproduced/modified from Li, Z. Santhanam, P. Coles, CD. Lynch, ME, Hamman, S. and Hu, X. “Prenatal 
cocaine exposure alters ventromedial prefrontal activity associated with emotion regulation.” Proceedings of International 
Society for Magnetic Resonance in Medicine. Honolulu, HI. April 2009. 
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CHAPTER 6 

Altered Prefrontal-Amygdala Functional Modulation a nd Structural Connectivity in 

Adolescents Prenatally Exposed to Cocaine 

 

 

6.1 Background 

 

6.1.1 Prenatal Cocaine Exposure and Emotional Regulation 

 

Prenatal cocaine exposure (PCE) is associated with problems of behavioral regulation and 

possibly some cognitive deficits (Bada et al., 2007; Frank et al., 2001; Jacobson et al., 

1996). In particular, arousal dysregulation has been strongly linked to children with PCE 

(Mayes, 2002). PCE has been found to lead to disrupted emotional arousal regulation in 

children (Bendersky and Lewis, 1998b; Mayes, 2002), with suggestions that PCE creates a 

predisposition to decreased emotional and neurophysiological reactivity in infants and 

children (Dennis et al., 2006; Mayes et al., 1998b). Additional findings include increased 

response to negative affect and higher emotional reactivity when facing novel or stressful 

situations (Dennis et al., 2006; Mayes et al., 1998b).  The underlying neurodevelopmental 

causes for these behavioral outcomes are still not well understood. Functional MRI (fMRI) 

can be used to elucidate patterns of brain activity during cognitive and emotional stimulation 

in individuals with PCE, to further bridge the brain-behavior gap in this population.  
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6.1.2 Emotional Arousal and Dysfunction 

 

A previous study of our PCE cohort has shown that individuals with PCE cannot effectively 

suppress amygdala activity in the presence of emotional distracters (during a working 

memory task), and that this distraction leads to disrupted activity in areas associated with 

working memory (Li et al., 2009). Since individuals with PCE exhibit deficiencies in both 

attentional and emotionally related arousal dysregulation, connections among regions 

responsible for these functions may be disrupted. That is, since connectivity between 

attentional regions and the emotional network modulates stable cognitive functioning, 

disruption in emotional regulation may contribute to decrements in cognitive processing. 

Involuntary emotional arousal inhibition during cognitive demand has been noted in healthy 

populations (Beauregard et al., 2001; Ochsner et al., 2002), but the relationship has only 

recently been examined in the PCE population. 

 

6.1.3 Aims 

 

It is known that the ventromedial prefrontal cortex (VMPFC) is functionally connected to and 

can deactivate the amygdala (Cohen et al., 2008; Urry et al., 2006). Given the attentional 

and arousal-related problems seen with PCE, it is possible that this functional suppression is 

altered in our PCE population. In the present study, using a working memory task with 

negatively emotive distractions, VMPFC activity was examined during emotional regulation 

in both a low and high-load cognitive condition in individuals with PCE. The expectation is 

that VMPFC activity will need to be increased to meet the higher cognitive demand and 

suppress amgydala-related distraction. Additionally, as VMPFC and bilateral amygdala 

regions have been shown to be structurally connected (Cohen et al., 2008), integrity of the 

white matter tracts connecting these regions was examined using diffusion tensor imaging 
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(DTI) and tractography. It was anticipated that during higher emotional distraction, control 

subjects would show an increase in VMPFC activity with increased cognitive load, while 

PCE subjects would not. Furthermore, decreased structural connectivity, in the form of 

reduced volume of tracts and fractional anisotropy (FA), between VMPFC and amygdala 

was expected in the PCE group as compared to healthy controls.  

 

6.2 Methods 

 

6.2.1 Participants 

 

Participants were teenagers recruited from a longitudinal cohort, derived from a 

predominantly African-American, low socio-economic status (SES) population. They were 

first identified in the prenatal period between 1987 and 1989 (Brown et al., 1998a; Coles et 

al., 1999a). At the time of imaging, participants were aged 12-15. Upon explanation of the 

study procedures, assent forms were signed by participants under the age of 18, and 

informed consent was given by caregivers at the time of re-contact. From the cohort, two 

groups of participants were identified: 1) Exposed prenatally to cocaine and 2) Unexposed, 

healthy controls from the same SES population. For group 1, the average frequency of 

maternal drug use was 3-4 times a week for an average of 35 weeks of pregnancy. 

Demographics information for the cohort is shown in Tables 6.1 and 6.2. A subset of 

subjects from Tables 6.1 and 6.2 is included in the present study. Participants who were left 

handed or had some risk during the MRI procedure (e.g., due to pregnancy or metal in the 

body) were excluded. The number of subjects used in the resting state scan were: n=22 for 

controls, n=23 for PCE; for the DTI part of the study: n=16 for controls, n=30 for PCE.  
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Table 6.1.  Characteristics of Teen at Follow-Up; a: If data for a variable are not available for 
some participants, the n used for the analysis is noted next to the variable name; b: Chi-
square analyses completed for categorical variables; Independent sample t-tests completed 
for continuous variables. 

 

Variable  
Control 
(n=23)a 

PCE 
(n=33)a 

P Value b 

Age, M (SD) 14.61 (2.3) 14.64 (2.0) .962 
Gender, No. (%)     .019 

Female 15 (65.2) 11 (33.3)  
Male 8 (34.8) 22 (66.7)  

Total monthly household income - $, M (SD) n=53 1,898 (1,284) 1,221 (922) .030 
Handedness, No. (%)     .918 

Right 20 (87.0) 29 (87.9)  
Left 3 (13.0) 4 (12.1)  

Full-Scale IQ - WASI, M (SD) 88.8 (8.4) 87.0 (11.4) .497 
Verbal IQ - WASI, M (SD) 90.7 (9.5) 86.6 (12.6) .182 
Performance IQ - WASI, M (SD) 89.3 (9.5) 89.8 (11.2) .855 

 

 

 

Table 6.2.  Ascertainment of maternal characteristics. a: If data for a variable are not 
available for some participants, the n used for the analysis is noted next to the variable 
name; b: Chi-square analyses completed for categorical variables; Independent sample t-
tests completed for continuous variables. 

 

Variable  
Control 
(n=23)a 

PCE 
(n=33)a 

P 
Value b 

Age, M (SD) 26.3 (5.2) 28.2 (4.3) .138 
Education, No. (%) n=51     .006 

High school not completed 2 (9.1) 13 (44.8)  
High school graduate or more 20 (90.9) 16 (55.2)  

Monthly income, No. (%) n=51     .773 
≤$600 20 (90.9) 27 (93.1)  
>$600 2 (9.1) 2 (6.9)  

Marital status, No. (%)     .179 
Married 6 (26.1) 4 (12.1)  
Single, divorced, separated, widowed 17 (73.9) 29 (87.9)  

Other substance use in pregnancy, M (SD)      
Tobacco - cigarettes/week n=52 9.1 (32.0) 61.1 (50.1) .000 
Alcohol - oz. of absolute alcohol/week n=54 0.0 (0.1) 1.0 (1.8) .004 
Marijuana - joints/week n=54 0.0 (0.0) 1.3 (2.9) .016 
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6.2.2 Experimental Paradigm 

 

For the resting state paradigm, participants were instructed to simply gaze at a fixation cross 

and remain awake. For the functional imaging paradigm, participants were asked to perform 

a working memory task by pressing a button either when “RR” was displayed (0-back 

condition) or when the displaying letter pair matched the previous one (1-back condition). 

Emotionally neutral or negative pictures (Lang et al., 1997) were placed to alternate with 

memory stimuli, producing four different task blocks (neutral 0-back, NEU0; neutral 1-back, 

NEU1; negative 0-back, NEG0; negative 1-back, NEG1). Figure 6.1 shows an example of 

stimuli presented in the experiment. Paradigm presentation and response collection, 

including accuracy and reaction time, were collected using Eprime software. 

 

 

 
Figure 6.1.  Example of working memory paradigm with emotive distracters. Duration shown 
in milliseconds. One display cycle is letter-fixation-picture-fixation. Blocks were all “neutral” 
or “negative” (only negative shown). 
 
 

 

 

6.2.3 Image Acquisition 

 

All fMRI data was acquired on a 3T Siemens Trio scanner. High-resolution, T1-weighted, 

three-dimensional (3D) anatomical images were acquired with a 3D MPRAGE 

(magnetization prepared rapid gradient echo) sequence for all participants. Sequence 

parameters used were TR/TI/TE of 2300ms/1100ms/3.023ms, flip angle of 8°, field of view 
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of 256 mm, matrix of 256 × 224 × 176, corresponding to an isotropic resolution of 1mm. 

Scan duration was 6:56 minutes.  

Resting state scan parameters were as follows: 210-volumes, matrix=64×64, 20 axial slices 

without gap, thickness=4 mm, TR/TE=2000 ms/30 ms, flip angle=90o, FOV=192×192 cm2.  

For the working memory task, two echo planar imaging blood oxygen level dependent (EPI-

BOLD) scans were performed, lasting 6:06 minutes each, with 120 time points collected. 

Images consisted of 30 axial slices, with 3mm slice thickness. Sequence parameters were 

TR/TE/FA/FOV of 3000ms/30ms/90º/192cm.  

DTI data was acquired with a diffusion-weighted, single-shot, spin-echo EPI sequence. A 

dual spin-echo technique combined with bipolar gradients were used to minimize the 

geometric distortion induced by eddy currents. Diffusion gradients were applied in 12 

directions with a b value of 1000 sec/mm2. Thirty four contiguous axial slices were acquired 

with slice thickness of 2.5mm. The pulse sequence parameters were TR/TE/FOV of 

6500ms/90ms/22cm, with a total scan time of 8:34 minutes. 

 

6.2.4 Image Analysis 

 

6.2.4.1 Functional MRI Analysis 

 

AFNI (http://afni.nimh.nih.gov/afni, 09/2009) was used for resting and functional analysis. 

Subjects with head motion of more than one voxel (3.44mm) in any direction or with poor 

registration between EPI and T1-weighted images were excluded.  

For the resting MRI analysis, preprocessing included slice timing correction, spatial 

registration, 0.08-0.01Hz band pass filtering and 5mm full-width half max (FWHM) Gaussian 

blur.  



87 
 

For the functional MRI analysis, preprocessing included slice timing correction, scan 

concatenation, volume registration, signal normalization, and blurring with a 5mm FWHM 

Gaussian filter. Average maps including all subjects were generated after transforming the 

dataset into the Talairach space (Talairach and Tournoux, 1988a) and normalizing the F 

values into z-scores. The bilateral amygdala was functionally localized using the negative 

versus neutral contrast, following general linear modeling. The amygdala regions were 

masked and this mask was applied to the resting state data as a seeding region. Cross-

correlation analysis of low-frequency signal fluctuations (0.01-0.08Hz) revealed a cluster in 

VMPFC as functionally connected to the bilateral amygdala seed. This cluster was used to 

mask a region in the functional dataset, where regression coefficients (β-weights) 

representing the BOLD signal level for the 0-back and 1-back conditions, respectively, were 

derived for each subject using multiple regression analysis. Then a 2 (PCE vs. control) × 2 

(0-back vs. 1-back) ANOVA was used to compare activation in the VMPFC, controlling for 

gender, alcohol and marijuana exposure as covariates.   

6.2.4.2 Diffusion MRI Analysis 

All diffusion MRI analysis was conducted in FSL (http://www.fmrib.ox.ac.uk/fsl/, 09/2009). 

Pre-processing consisted of correction for eddy-current distortin and brain extraction. Then 

FA maps were generated by fiting the data in each voxel to a diffusion tensor model. Visual 

examination was done to ensure the first eigenvector was oriented along white matter fibers 

for each individual. Then local diffusion directions were obtained using a function that 

executes Markov Chain Monte Carlo sampling and allows for modeling cross-fiber 

orientations within each voxel (Behrens et al., 2003). Briefly, this process involves repetitive 

sampling from distributions on voxel-wise principle diffusion directions to obtain an 

estimation for diffusion parameters at each voxel. The parameters used were the default 

based on Behrens, et al.(2007): number of fibers modeled per voxel=2; weight =1; number 

of iterations before sampling =1000.  
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Probabilistic tractography was used to identify white matter tracts connecting the VMPFC 

and bilateral amygdala. To derive seed and target regions, masks from the functional and 

resting state analysis described above were back-projected to native space for all subjects 

individually. The left and right amygdala, respectively, were used as seeding regions, and 

the VMPFC region was used as a target and a way-point mask, such that fibers originating 

in the amygdala seed mask and either terminating or passing through the VMPFC mask 

were included. The separation of the amygdala region of interest (ROI) into left and right 

was done because of known significant inter-hemispheric white matter asymmetries (Buchel 

et al., 2004; Yasmin et al., 2009). The output of the probabilistic tractography was a group of 

fibers representing the connectivity distribution between ROIs, along with the total number of 

fibers between them (i.e., waytotal). Upon visual inspection, subjects with incomplete or 

absent tracts in one hemisphere were excluded from quantification analysis (final subject 

number for tractography: RIGHT amygdala-VMPFC:  n=12 for controls, n=22 for PCE; LEFT 

amygdala-VMPFC: n=14 for controls, n=29 for PCE).  

Tractography between ROIs was quantified by waytotal, total tract volume, and FA along the 

non-zero tracts. For the volume and FA values, tractography results were obtained by 

dividing by waytotal (this value represents the probability of tract presence at each voxel) 

and thresholding this value at 0.01 and 0.1. To ensure the tracts were present and 

continuous at a range of thresholds, the thresholded tract data was examined visually. 

Differences in waytotal, total tract volume, and FA for tracts connecting left amygdala-

VMPFC and right amygdala-VMPFC were determined between groups by t-test.    

 

6.3 Results 

 

Figure 6.2a indicates the localized bilateral amygdala from the neutral-negative contrast 

group average map. This region was used as the seeding region for subsequent resting 
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state correlation analysis. Figure 6.2b shows the correlation map for the seeding region, 

including VMPFC. The amount of activation in this region during low and high-cognitive load 

conditions is indicated for both groups in Figure 6.3. Higher working memory load caused an 

increase in VMPFC activity during emotional regulation (negative-neutral conditions) in the 

control group, but activity decreased in the PCE group with higher cognitive load.  This 

signifies a greater emotional suppression by controls but not by the PCE group. A significant 

memory by exposure interaction was found (p=0.0041).  

 

 

 

 
 
Figure 6.2.  Group activation maps showing a) bilateral amygdala seeding region obtained 
from negative minus neutral contrast and b) correlation analysis with VMPFC cluster 
identified.  Figure reproduced with permission from Z. Li. 

 a b 

VMP
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Figure 6.3.  Emotional regulation associated VMPFC signal in different experimental 
conditions and exposure groups. Functional connectivity map shown in center (VMPFC 
circled). Error bars indicate standard error. Figure reproduced with permission from Z. Li.   
 

 

 

 

Figure 6.4 indicates probabilistic tractography results from one representative individual in 

the study. Right and left amygdala were used as seeds, respectively, with VMPFC as the 

target region. The underlay for Figure 6.4 is the FA map for that individual. Structural 

connectivity between these regions was measured by waytotal, total tract volume, and FA 

along the tracts (Table 6.3). Left amygdala-VMPFC differences are notable in waytotal and 

FA at both thresholds, and right amygdala-VMPFC differences are seen in waytotal. No 

other measures showed significant differences between groups.  
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Figure 6.4.  Results of probabilistic tractography in one representative subject from the PCE 
group. Serial axial slices are shown with white clusters indicating bilateral amygdala 
(seeding regions) and VMPFC (target region). Yellow tracts are right amygdala-VMPFC 
tracts; red tracts are left amygdala-VMPFC tracts. Underlay is the FA map. 
 

 

 

 

 

 

Table 6.3.  Tractography measures, including waytotal, tract volume, and FA values along 
tracts for right and left amygdala, respectively, connections with MPFC. SEM= standard 
error of mean;* = significantly different from control group (p<0.05). 
 

ROI network  Tractography Measures (SEM) 

  Waytotal Tract volume FA 

Left amydala-MPFC Control 2042.5 (888.4) 1646.4 (236.8) 0.338 (0.00870) 

 PCE 763.3* (276.6) 1985.7 (205.0) 0.313* (0.00636) 

 

Right amygdala-MFC Control 685.3 (240.6) 2023.6 (459.3) 0.303 (0.0132) 

 PCE 169.7* (73.3) 2259.0 (298.4) 0.325 (0.00774) 

 

LA RA 

VMPFC 

z=7 z=11 
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6.4 Discussion 

 

6.4.1 Summary 

 

The goal of this study was to examine a potential disconnection between VMPFC and 

bilateral amygdala in individuals with PCE, based on strong evidence of emotional arousal 

dysregulation in this population. Functional data revealed that, in the high emotional load 

condition, VMPFC activity increases in control subjects with increased cognitive demand, 

while VMPFC activity remains unchanged in PCE subjects. Furthermore, structural 

connectivity analysis showed that there is a significantly lower FA and total number of white 

matter tracts connecting the VMPFC and left amygdala.   

 

6.4.2 Context in Current Literature 

 

Several studies of behavioral outcomes in children with PCE have shown arousal and 

emotion-related dysregulation; however, there are limited findings from neuroimaging. One 

study by Hurt, et al. showed increased activation in prefrontal areas in adolescents with PCE 

during a working memory task (Hurt et al., 2008), and a separate study found response 

inhibition required more prefrontal activation in PCE children (Sheinkopf et al., 2009). The 

present study builds on previous findings from this cohort that adolescents with PCE cannot 

suppress emotion-related amygdala activity when facing higher cognitive load (Li et al., 

2009). The current results give further evidence of a lack of coordination between prefrontal 

regions and the amygdala with PCE.  

Functional connectivity between VMPFC and amygdala is known to be reciprocally 

modulated in healthy populations (Kilpatrick and Cahill, 2003; Urry et al., 2006). 

Furthermore, clinical studies have shown that this connectivity is associated with antisocial 
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behavior suppression (Hoptman MJ, 2008). Damage to VMPFC has been shown to cause 

increase aggression and hostility (Grafman et al., 1996), and a functional disconnection with 

amygdala has been observed in populations with post-traumatic stress disorder, bipolar 

disorder, and schizophrenia (Gilboa et al., 2004; Hoptman et al., 2009; Wang et al., 2009). 

These disorders are highly characterized by impulsivity and other behavioral dysregulations 

(Gilboa et al., 2004; Hoptman et al., 2009; Wang et al., 2009) similar to those seen in 

individuals with PCE.  

 

6.4.3 Limitations 

 

Probabilistic tractography revealed a decrease in structural connectivity between the 

VMPFC and left amygdala by lower FA and reduced number of tracts in the PCE group. 

However, connectivity between VMPFC and right amygdala did not appear to be different 

between groups. One possible reason for this hemispheric discrepancy is that a greater 

number of subjects had to be excluded for this connectivity measure because tracts were 

either incomplete or absent from the probabilistic tractography output (excluded: n=4 for 

controls; n=8 for PCE). There are several possible reasons for this incomplete tractography 

in the right hemisphere. It may be that the target mask (MPFC) is not evenly distributed 

between each hemisphere (shifted more to the left), limiting the number of tracts derived on 

the right side. As the MPFC cluster was generated by functional data, it appears to span 

both hemispheres due to spatial blurring, but is not likely evenly distributed in reality. By 

visual inspection the cluster does appear to be left-side shifted, but further analysis is 

needed to determine whether this methodological factor is responsible for the asymmetry. 

Another possible reason for the asymmetry is that the tracts are anatomically unevenly 

distributed between hemispheres. As hemispheric differences in these particular tracts are 

not well-characterized in the literature, it is unclear whether anatomical differences exist.   
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6.4.4 Future Considerations 

 

The present study reveals more imaging evidence supporting the view that PCE has a long-

term effect on arousal regulation. Given that the prefrontal region shown to be affected in 

our previous study was dorso-lateral PFC, as opposed to VMPFC, it appears that multiple 

subregions of the prefrontal cortex are affected by PCE. Further study of effective 

connectivity between these distinct prefrontal and emotion-related regions could reveal 

specific directional disconnects caused by PCE. Though the precise mechanism by which 

PCE results in arousal and emotional dysfunctions is unclear, the involvement of certain loci 

in behavioral regulation in these individuals is now better understood.   
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CHAPTER 7 

Altered Default Mode Network Activity in Adolescent s with  

Prenatal Cocaine Exposure 

 

 

7.1 Background 

 

7.1.1 Prenatal Cocaine Exposure and Arousal Dysregulation 

 

Current literature on the developmental effects of prenatal cocaine exposure (PCE) 

indicates that while cognitive deficits are identifiable, the most common and potentially 

detrimental outcome may be arousal dysregulation (Mayes, 2002; Mayes et al., 1998a). 

Infants and children with PCE have been observed to show increased baseline arousal 

(Bard et al., 2000; Bendersky and Lewis, 1998a; Coles et al., 1999b; Dipietro et al., 1995; 

Karmel and Gardner, 1996) with persistence of such effects into adolescence and adulthood 

also reported (Bada et al., 2007; Dennis et al., 2006; Kable et al., 2008; Mayes et al., 

1998a). Arousal dysregulation, described as being more easily distracted by salient but task-

irrelevant stimuli, can also be noted in animal models of PCE (Garavan et al., 2000; 

Romano and Harvey, 1998); such studies are more capable of controlling for confounding 

factors often encountered in human PCE populations (e.g., prenatal care, dosage and timing 

of PCE).  

 

Arousal regulation reflects the ability to adjust and allocate mental resources for distinct yet 

interactive streams of information processing (Damasio, 1995). This process regulates 

ongoing cognition and behavior through an excitatory/inhibitory balancing mechanism, and 



106 
 

the impact of PCE on such regulation could generate a general neuronal deficit, as opposed 

to specific cognitive deficits. With functional MRI, our previous study (Li et al., 2009) showed 

that PCE adolescents could not efficiently suppress amygdala activation when challenged 

by emotional arousal, which in turn affected prefrontal working memory activation. The 

present study further investigates the PCE impact on arousal regulation by examining the 

recently characterized default mode network (DMN).  

 

7.1.2 Default Mode Network 

 

A consistent “default mode” network of regions that are more active during resting periods 

than during cognitive demand has become the focus of many clinical neuroimaging studies 

(Greicius et al., 2003a; Gusnard and Raichle, 2001). The regions typically involved are 

medial prefrontal and posterior cinglulate cortices (Greicius et al., 2003a), and are identified 

as deactivated during increased task-oriented cognition and/or very low frequency 

synchronized fluctuations in the resting state (Gusnard and Raichle, 2001; Raichle et al., 

2001). Though the physiological significance of default mode activity still remains to be fully 

understood, it is generally believed to reflect the intrinsic/spontaneous mental operations 

that are suspended during goal-oriented behaviors (Gusnard and Raichle, 2001; Raichle et 

al., 2001; Raichle and Snyder, 2007). DMN activity represents a lack of task focus (Mason et 

al., 2007), replaced by both stimulus-oriented and stimulus-independent thoughts (Gilbert et 

al., 2007; Gusnard et al., 2001; Gusnard and Raichle, 2001; Kelley et al., 2002). Given that 

PCE alters arousal regulation ability, which is closely associated with internal versus 

external attentional orientation (Nagai et al., 2004), it is hypothesized that DMN activity is 

altered by PCE.  
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7.1.3 Aims 

 

DMN activity was assessed in adolescents with PCE and healthy controls by examining 

task-related deactivation and resting state functional connectivity. The functional task used 

was a working memory task containing neutral and negatively emotive distracters, to assess 

the effect of emotional regulation on DMN deactivation during task. Additionally, baseline 

functional connectivity was measured using a seeding-correlation approach between 

regions previously reported to comprise the network core. Given known increased arousal in 

individuals with PCE, it was expected that the PCE group would have increased DMN 

activity as compared to healthy controls, reflected in less task-related deactivation and 

higher baseline functional connectivity. 

 

7.2 Methods 

 

7.2.1 Participants 

 

Participants were adolescents, aged 12-18, recruited from cohorts identified originally as 

part of two longitudinal studies of PCE on infant development (Brown et al., 1998b; Coles et 

al., 1992). Both cohorts were drawn from a low income, predominantly African-American 

population that was delivered at an urban hospital during 1987-1994. The PCE and control 

participants in the present study respectively comprised 33 and 23 participants with the 

adolescent and maternal characteristics shown in Tables 6.1 and 6.2.  
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Prenatal cocaine exposure was determined by maternal self-report and/or positive urine 

screen at recruitment post-partum and has been extensively described previously (Brown et 

al., 1998b; Coles et al., 1992). Before the imaging session, urine and blood specimens of 

the adolescents were tested to identify metabolites of 7 drugs (amphetamines, barbiturates, 

benzodiazepines, marijuana, cocaine, opiates, and phencyclidine) and problematic alcohol 

use. The majority was negative and no group differences were noted. Participating families 

were reconsented for the imaging study according to a protocol approved by Emory 

University’s Institutional Review Board. Adolescents provided written assent and adults, 

including both teens and caregivers, informed consent, to participate.  

 

7.2.2 Experimental Design 

 

We used a verbal working memory task with two memory loads in the activation fMRI so that 

the signal difference between the memory loads could be used to identify default mode 

deactivations. The memory items were lists of letter pairs. In the low memory load condition, 

adolescents were instructed to press a button on seeing the letter pair “RR” (0-back task). In 

the high memory load condition, they were to press the button whenever the displaying letter 

pair exactly matched the last one displayed (1-back task). To introduce emotional 

distraction, neutral (arousal score 3.2±0.8) and negative (5.7±0.8) pictures selected from the 

International Affective Picture System (Lang et al., 1997) were presented between the letter 

pairs. The fMRI paradigm was a factorial block-design with 4 different types of blocks 

(factorial combination of low or high memory loads with neutral or negative distraction) that 

were pseudo-randomly distributed across two data acquisition scans. Each fMRI scan run 

contained 12 blocks, each consisting of 12 trials, during which participants were instructed 
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to focus only on the memory task while ignoring the distracting pictures. A schematic 

diagram of the experimental paradigm is shown previously (Chapter 6). 

 

During the resting-state fMRI scanning, participants did not perform a specific cognitive task 

but were instructed to simply fixate on a cross shown in the center of the screen. To 

minimize potential carryover of cognitive activity associated with the memory task or the 

emotional distracters, resting-state data were always acquired first, prior to the activation 

fMRI scan. 

 

7.2.3 Image Acquisition 

 

On a 3T MRI scanner (Siemens Medical Solutions, Malvern, PA), the activation and resting-

state scans both were performed using a T2*-weighted echo-planar imaging sequence with 

the following parameters. Activation scan: 120-volumes, matrix=64×64, 30 axial slices 

without gap, thickness=3 mm, TR/TE=3000 ms/30 ms, flip angle=90o, FOV=192×192 cm2. 

Resting scan: 210-volumes, matrix=64×64, 20 axial slices without gap, thickness=4 mm, 

TR/TE=2000 ms/30 ms, flip angle=90o, FOV=192×192 cm2. Corresponding high resolution 

(256×256) 3D T1-weighted anatomical images were also collected from each subject. 

 

7.2.4 Image Analysis 

 

AFNI software package (http://afni.nimh.nih.gov, 09/2009) was used for imaging data 

analysis. For the activation fMRI, each subject’s data were preprocessed with slice timing 

correction, volume registration, signal percent change normalization, scan concatenation, 

and 5 mm FWHM spatial smoothing. A multiple regression analysis was performed 

thereafter using regressors representing the 4 experimental conditions (low vs. high memory 
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load × neutral vs. negative emotion) and with head motion parameters included as nuisance 

covariates. The experimental condition regressors were generated by convolving respective 

boxcar stimulation functions with a impulse response function [y=tb×exp(-t/c), b and c are 

constants] (Cohen, 1997a). To assess the deactivation in the DMN, the “high load – low 

load” regression coefficients difference was calculated voxel by voxel for each subject. After 

transformation into the Talairach space (Talairach and Tournoux, 1988a), this difference, 

which corresponds to deactivation, was compared between the PCE and control subjects 

using a voxel-wise linear mixed-effects modeling analysis 

(http://afni.nimh.nih.gov/sscc/gangc/lme.html, 09/2009).  

 

Instead of a simple group t-test, we used the linear mixed-effects modeling because the 

effects of prenatal cocaine exposure in humans are often confounded by other factors that 

are difficult to match between the PCE and control groups. For example, besides cocaine, 

PCE subjects are usually poly-drug (commonly tobacco, alcohol and marijuana) exposed. 

The linear mixed-effects modeling analysis can statistically control the confounding effects, 

thus ensuring that the final results are more specifically associated with the cocaine 

exposure. In the present data analysis, we included 3 nuisance variables in the model (in 

addition to EXPOSURE, which was the independent/interested variable): (i) GENDER 

(males and females may have different default mode and emotional responses and they are 

not evenly distributed in the two groups), (ii) ALCOHOL (ounces of absolute alcohol used 

weekly during pregnancy), and (iii) MARIJUANA~TOBACCO (amount used during 

pregnancy in units of joints/cigarette per week). The MARIJUANA ~TOBACCO was a joint 

variable derived by principle component factor reduction because their uses were highly 

correlated (Pearson correlation, p=0.04) in our sample. These nuisance controlling factors 

were determined by our preliminary analysis (data not shown) that revealed confounding 

effect on voxels in the DMN. Other factors (e.g. race, other drug use, preterm birth) that are 
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known to be related to cocaine effects were controlled via experimental design (Brown et al., 

1998b; Coles et al., 1992). 

  

Based on the deactivations during the working memory task, we defined a seeding area in 

the posterior cingulate region for the subsequent resting-state fMRI data analysis. 

Specifically, the regression coefficients for the 4 experimental conditions were analyzed by a 

2 (high vs. low memory load) × 2 (neutral vs. negative emotion) repeated measures ANOVA, 

and a posterior cingulate voxel cluster (centroid coordinate = 3.6, 54.9, 16.9 mm, 

volume=175 mm3) that showed a highly significant (p<10-8) negative memory main effect 

(decreased fMRI signal in the 1-back condition than 0-back) was selected. We used equal 

number of participants (23 PCE and 23 control with 10 PCE subjects randomly dropped) in 

this process so that the resultant seeding region would not be biased by deactivation of 

either group. 

 

The resting-state data processing steps were similar to those used by Fox and colleagues 

for characterizing the intrinsic resting functional networks (Fox et al., 2005a). After 

preprocessing (slice timing correction, rigid body registration, 0.009 Hz < f < 0.08 Hz band-

pass filtering, and 5 mm FWHM Gaussian smoothing), cross-correlation between the time 

courses of posterior cingulate seeding area and every brain voxel was calculated for each 

subject. Spurious contributions from the white matter and cerebrospinal fluid as well as the 

head motion parameters were removed in this cross-correlation analysis through multiple 

linear regression. Another variable often included in this regression as a nuisance effects is 

the global brain signal. However, Murphy and colleagues have recently demonstrated that 

using global signal regression can bias connectivity measures by introducing anti-

correlations (Murphy et al., 2009). As it is unclear whether using global signal regression 

would significantly affect connectivity group differences, we performed the analysis with and 
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without removing the global signal regression. In order to combine/compare correlation 

results within/between groups, correlation coefficients for each subject were converted to z-

scores and then transformed into the Talairach space. The same as in the activation data 

processing, a linear mixed-effect modeling analysis was applied to contrast the resultant 

correlation z-score maps between the PCE and control groups. 

 

7.3 Results 

 

7.3.1 Task Performance 

 

The behavioral measures of the working memory task were described in detail in our 

previous report (Li et al., 2009). Briefly, the overall memory performance was decreased 

with higher memory load (as compared to low load) and negative emotional distraction (as 

compared to neutral). However, because the task paradigm was deliberately designed to 

minimize behavioral group difference (Li et al., 2009), there were no significant group 

differences in task performance related to cocaine exposure.  

 

7.3.2 Resting-State Results 

 

The results of group comparison of resting-state data are shown in representative mid-

sagittal slices in Figure 7.1. Consistent with the reports of Murphy and colleagues, using 

global signal regression introduced more negative correlation in the results (which therefore 

reduced the positive correlation areas); however, significant positive correlations in the DMN 

could be observed regardless of whether the global signal regression was used. Though the 

group difference maps obtained with and without the use of global signal regression are not 

exactly the same, Figure 7.1 shows that the DMN positive correlation of the PCE group was 
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generally higher in both cases. By performing a “logical AND” between group difference 

maps with and without global regression, the common areas that have a higher DMN 

correlation in the PCE group were obtained. These areas, listed in Table 7.1, including 

medial prefrontal cortex, parahippocampal and cingulate regions, as well as the inferior 

parietal cortex, are all prominent nodes in DMN. In contrast, the group comparison identified 

no brain region exhibiting a significantly higher DMN correlation in the control group. 

 

 

 

Table 7.1.  Brain regions with significant PCE > CON DMN signal correlation regardless 
global regression. Significant means p<0.05/voxel plus 18 mm3 cluster, multiple comparison 
corrected p<0.01; PCE: prenatal cocaine exposure; CON: control; DMN: default mode 
network. 
 

Coordinates (mm) 
Brain Regions Volume (mm3) 

X Y Z 

Left medial frontal cortex (BA 9 / 10) 545 11.9 -52.9 19.3 
Left cingulate gyrus (BA 31) 136 2.8 30.4 38.9 
Right posterior cingulate area (BA 23) 130 -2.2 55.3 15.6 
Right parahippocampal / posterior cingulate area (BA 30) 69 -11.3 41.0 4.2 
Left parahippocampal / amygdala area (BA 28) 68 20.6 12.9 -9.4 
Left precuneus / posterior cingulate area (BA 7 / 31) 45 6.3 54.7 37.2 
Right inferior parietal cortex (BA 19 / 39) 44 -40.5 69.9 39.6 
Left parahippocampal / posterior cingulate area (BA 30) 33 17.0 44.3 7.6 
Left inferior parietal / middle temporal cortex (BA 39) 18 41.4 71.3 16.9 
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Figure 7.1.  Group comparison of resting-state DMN signal correlation with global regression 
included (pink frame) and excluded (green frame) in the data analysis. The seeding region 
of the correlation analysis is marked by a purple arrow in the slices marked with an “S”. All 
the other slices are to the left (up) and right (down) of the seeding region in steps of 2 mm. 
In the group correlation maps, positive (red/yellow) and negative (blue/azury) correlations 
are displayed at a threshold level of p<0.01/voxel plus 683 mm3 cluster (multiple comparison 
corrected p<0.01); in the group difference maps, because the comparison only restricted in 
positive correlation regions, the displaying threshold changed to p<0.05/voxel plus 18 mm3 
cluster (multiple comparison corrected p<0.01). CON: control, PCE: prenatal cocaine 
exposure. Figure reproduced with permission from Z. Li.  
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7.3.3 Functional Task-Related Results 

 

Group differences of default mode activity were also observed in the working memory fMRI 

data (Figure 7.2). Compared to the low memory load condition, both the PCE and control 

subjects exhibited a decreased BOLD signal in the DMN during the high memory load 

condition. However, the magnitude of these signal reductions was significantly higher in the 

controls; in other words, the signal of PCE subjects did not decrease as much as that of the 

controls. As shown in Table 7.2, this group difference was observed in a number of DMN 

areas including medial prefrontal cortex, posterior cingulate area and inferior parietal cortex.  

 

To further examine the emotional arousal effect on DMN fMRI signal, we defined two 

regions of interest (ROIs) based on the group difference of the deactivation. They are one 

anterior (centroid coordinate = 4.1, -51.6, 23.3 mm, volume=442 mm3) and one posterior 

(centroid coordinate = 11.3, 48.6, 9.6 mm, volume=752 mm3) cingulate clusters that showed 

a significant group difference on fMRI deactivation (Figure 7.2, the red regions). Examining 

the 4 condition regression coefficients of these two ROIs, a 2 (PCE vs. control group) × 2 

(negative vs. neutral emotion) × 2 (1-back vs. 0-back memory load) × 2 (medial prefrontal 

vs. posterior cingulate location) ANOVA (with gender and multidrug exposure as nuisance 

factors) showed a significant memory × exposure (p=0.03) and emotion × exposure (p=0.01) 

effect. With the signal regression coefficients shown in Figure 7.2 (the red frame), the 

memory × exposure effect was evident as these ROIs were defined on the group difference 

map of default mode deactivation. This ROI data simply replicated the voxel-wise group 

comparison observation that PCE adolescents could not decrease the signal as much as the 

controls during the high memory load task. However, the emotion × exposure effect in these 

two ROIs was a new observation. Compared to the neutral distracters, the negative 
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distracters generally increased the DMN signal level and this increase was greater in the 

PCE group as compared to controls. 

 

 

 

 

Table 7.2.  Brain regions with significant CON > PCE deactivation in the working memory 
task. Significant means a p<0.05/voxel plus 18 mm3 cluster, multiple comparison corrected 
p<0.01; PCE: prenatal cocaine exposure; CON: control. 
 

Coordinates (mm) 
Brain Regions Volume (mm3) 

X Y Z 

Left posterior cingulate area (BA 29) 694 11.3 48.5 9.6 
Left inferior parietal / middle temporal cortex (BA 39)  500 39.5 62.0 18.2 
Left cingulate gyrus (BA 31) 477 6.2 41.9 38.8 
Left medial frontal cortex (BA 9) 406 4.2 -51.6 23.3 
Right posterior cingulate area (BA 29) 30 -4.3 42.1 8.3 
Right posterior cingulate area (BA 30) 27 -0.6 43.6 23.1 
Right anterior cingulate area (BA 24) 24 -5.3 -28.9 -0.3 
Left posterior cingulate area (BA 30 / 31) 24 9.1 50.4 21.7 
Left middle frontal gyrus (BA 9) 19 20.1 -36.3 32.5 
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Figure 7.2.  Voxel-wise (left) and ROI level (right) group comparisons of task-state DMN 
activity. The voxel-wise comparisons are shown in successive sagittal slices that have 
exactly the same location and threshold as those in Fig.2. The shallow to deep signal 
decreases are coded by the blue to cyan color gradient. The group-difference (red) and 
group-common (green) ROIs are shown on the right with the corresponding ROI regression 
coefficients plotted above (red frame) and below (green frame). These regression coefficient 
plots used the “Neutral, 0-back” condition as the baseline. For easy visualization purpose, 
the group comparisons of the memory and emotion effects are put at the right end of these 
plots. CON: control; PCE: prenatal cocaine exposure; AC: anterior cingulate; PC: posterior 
cingulate; Neu: neutral; Neg: negative; 0: 0-back; 1: 1-back; Mem: memory effect 
(Neu1+Neg1-Neu0-Neg0); Emo: emotion effect (Neg0+Neg1-Neu0-Neu1). Figure 
reproduced with permission from Z. Li. 
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These memory and emotion effects were based on ROIs defined by group difference in 

deactivations. To examine whether these results could represent the group differences in a 

larger extent of the DMN, we defined two alternative ROIs also in the anterior (centroid 

coordinate = 0.9, -49.8, 10.8 mm, volume=7356 mm3) and posterior (centroid coordinate = 

2.9, 49.9, 23.7 mm, volume=9082 mm3) cingulate cortices (Figure 7.2, the green regions). 

Instead of group difference, these two new ROIs were defined based on the common 

deactivation map of both groups (PCE and control deactivation maps averaged together). 

Similar to the seeding area localization in the resting data analysis, this across-group 

average included equal numbers of PCE and control subjects (23 vs. 23) to avoid potential 

group bias. The regression coefficients of these common deactivation ROIs are presented in 

Figure 7.2 (the green frame) and they were analyzed by the same emotion × memory × 

group × location ANOVA mentioned above. The results of these group-common ROIs are 

generally the same as those of the group-difference ROIs. Specifically, the PCE group 

exhibited reduced DMN deactivation magnitude and increased DMN response to emotional 

arousal. However, while the group × emotion effect was still statistically significant (p=0.02), 

the group × memory effect, because many more “group-common” voxels were involved, did 

not reach statistical significance (p=0.4). 

 

7.4 Discussion 

 

7.4.1 Summary 

 

The present study examined the effect of PCE on DMN functioning, as it relates to arousal 

dysfunction. The PCE group had less DMN deactivation during a working memory task as 

compared to controls, and even less deactivation in the presence of emotional distracters. 
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Given the propensity of the PCE group for distractibility, particularly with emotional arousal, 

results suggest that inefficient DMN deactivation represents an inability in those with PCE to 

down-regulate task-unrelated stimuli. Additionally, resting state functional connectivity in the 

network was higher in PCE group than in controls, implying a higher baseline arousal level 

in exposed populations.  

 

7.4.2 Context in Current Literature 

 

Altered DMN activity been associated with several clinical disorders, including 

schizophrenia, epilepsy, chronic pain, anxiety disorder, Alzheimer’s disease, and attention 

deficit hyperactivity disorder (ADHD) (Baliki et al., 2008; Garrity et al., 2007; Laufs et al., 

2007; Uddin et al., 2008; Wang et al., 2007; Zhang et al., 2007; Zhou et al., 2007). With the 

observation of increased default mode activity in the adolescents prenatally exposed to 

cocaine, namely increased functional connectivity during rest and less suppressed activation 

during task, the present study extends the scope of reported alterations in default mode 

functionality to the domain of prenatal influences of drug exposure on cognition. As intrinsic 

brain activity reflects basic neuronal organization and comprises a high percentage of total 

brain energy used (Fox and Raichle, 2007; Raichle and Snyder, 2007), the significance of 

DMN activity in PCE is of interest as much as PCE-induced cognitive deficits.  

 

The default mode function has often been interpreted as representing either internal self-

reflective thoughts (Gusnard et al., 2001; Kelley et al., 2002) or external environment 

monitoring (Hahn et al., 2007; Shulman et al., 1997). The increased default mode activity 

observed in our PCE adolescents could represent contributions from both of these aspects 

of non-task oriented thought. With respect to the external monitoring, PCE subjects are 

reported to be more sensitive to salient stimuli in the environment (Garavan et al., 2000; 
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Romano and Harvey, 1998), and their sleep was found to be more easily disturbed 

(Platzman et al., 2001). Related to the internal thoughts, PCE children were found to have a 

higher daydreaming score, which was deemed problematic behavior by their teachers 

(Delaney-Black et al., 1998). 

 

Recent studies on the default mode function speculate that the intrinsic brain activity of DMN 

may represent a “balance” between the excitatory and inhibitory neural responses (Raichle 

and Mintun, 2006; Raichle and Snyder, 2007); namely, a neural mechanism that controls 

brain responsiveness to various inputs. Our previous report showed that PCE alters the 

excitatory and inhibitory “balance” between the emotion and working memory systems (Li et 

al., 2009). Here, a similar PCE effect is demonstrated from the view point of default mode 

function. A notable common outcome of these two studies is that PCE adolescents are more 

vulnerable to task irrelevant emotional arousal challenge (as indicated by their stronger 

emotion responses in both the amygdala and DMN). Group differences in balancing different 

streams of information processing suggest that prenatal cocaine exposure may affect the 

brain in a fundamental level that could underlie a variety of cognitive functions. 

 

The present findings based on blood oxygen level dependent (BOLD) signals are also 

consistent with previous neuroimaging observations based on cerebral blood flow (CBF) 

measurements (Rao et al., 2007). Rao and colleagues recently reported that PCE could 

increase the relative cerebral blood flow in the cingulate, insular and parietal cortices as well 

as in the amygdala area. These brain regions are largely the important nodes in the DMN, 

and higher proportion of blood supply to these regions could underlie the increased default 

mode activity in the PCEs. Rao et al. also observed that PCE was associated with a higher 

gray matter volume in the amygdala area. This result is also in accordance with both our 
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present and previous (Li et al., 2009) findings that showed an increased emotional arousal 

level in the PCE subjects. 

 

7.4.3 Future Considerations 

 

The interaction between prenatal cocaine exposure and neural development is a 

complicated process. Specifically, the interactions between emotional regulation and DMN 

functioning, which are likely strongly linked based on previous behavioral studies and the 

present study, could use more detailed examination. For example, recent findings indicate 

that the DMN functional connectivity reflects its underlying structural connectivity (Greicius et 

al., 2009; van den Heuvel et al., 2008); thus the presence or absence of alterations in DMN 

structure in individuals with PCE could further elucidate the neurobiological mechanisms 

behind behavioral outcomes.  Future studies that combine multi-modal neuroimaging 

approaches like functional, structural, and diffusion tensor imaging could lead us to a greater 

understanding of the teratogenic effects of PCE and of ways in which the brain responds to 

such challenges. 
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CHAPTER 8 

Part 2: Conclusions and Significance 

 

 

Since the cocaine-abuse epidemic of the 1980s, prenatal cocaine exposure has been a 

major public health concern. In the time shortly after the epidemic, there was great concern 

that so-called “crack babies” would have severe and irreversible cognitive impairments. 

However, behavioral and neuroimaging evidence shows relatively little cognitive deficit, but 

rather a general arousal dysfunction that affects behavior in a global manner.  

 

As the most documented behavioral problems in children with PCE are related to arousal 

and emotional regulation, the present thesis examined neuronal functioning in areas 

specifically related to such regulation. Two prominent networks involved in arousal and 

emotional regulation are the prefrontal-amygdala network and default mode network. Our 

results show significantly higher activity in the DMN, characteristic of increased baseline 

arousal, and a disconnect between prefrontal and amygdala areas, a deficit known to lead to 

problems of executive functioning due to an inability to down-regulate emotional arousal. 

Our study of the neurological basis of PCE additionally benefits from comparative study with 

the slew of other clinical disorders that manifest as socioemotional dysfunction. 

 

There are a number of strengths to the present study design that allow for a more 

comprehensive understanding of the spectrum of clinical disorders resulting from prenatal 

cocaine exposure. As multi-drug effects are an unavoidable confound in PCE studies in 

humans, documentation of all types of maternal drug abuse enabled us to control for these 

nuisance variables. Additionally, in the study of prefrontal-amygdala interactions, a 
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combination of structural and functional disconnection was found, supporting the growing 

opinion in the neuroimaging field that structure and function are closely linked and are best 

studied together.  

 

The overall goal of this part of the thesis was to apply emerging neuroimaging methods to 

the study of neuronal effects of PCE on adolescence-related development. Social and 

emotional arousal dysregulation is particularly noted at the adolescent age in this 

population, and is correlated with lower quality of life in adulthood. Though the process by 

which PCE causes brain damage is complex, the current findings contribute significantly to 

elucidating the neurobiological basis of the effect of PCE. Such knowledge can in turn be 

applied to awareness and interventional efforts.  
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