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Team formation is the most rudimentary form of interactions in distributed AI and 

multiagent systems as it allows coherent collections of agents to work together in a 

beneficial manner towards a common goal of interest. Basically, individual expertise are 

assembled together in an additive fashion for accomplishing tasks together.  A plethora of 

the related studies found in the literature often make several unrealistic assumptions such 

as coordination amongst the agents, or agents having knowledge of the whole 

environment, or agents and/or tasks are of the same kind, or a static environment setting. 

Against this background, we argue that there are real-world characteristics that make 

team formation more challenging: (1) There is no or minimal pre-coordination since 

storage and retrieval is a costly affair, (2) There is diversity amongst types of agents 

(Apprentices, Generalists, and Specialists) and tasks (Low, Medium, and High), (3) The 

environment is open i.e., agents and tasks can leave and enter the environment, and (4) 

Agents are continuously learning and improving their capabilities.  

The main contribution of this research is to study in great depths the impacts of 

various permutations of open and diverse environments on team formation and how 

agents learn to form these teams. Based on the findings of these studies, we demonstrate 

that both diversity and openness have impacts on the team formation. Having evaluated 

the results of the impacts of openness and diversity on the environment we, to strengthen 

the robustness of the original model, we introduce an enhanced version of this model. 
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The next contribution of this thesis is putting forth an enhanced probabilistic modelling 

solution. To be able to carry out new investigations and introduce the new model, we 

have restructured and cleaned up the simulation software used for building the original 

model. Having implemented the enhanced model, we then show how this new model 

performs better than the original model. The final contribution of this thesis was to show 

why the new model performed better than the original model.  
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Chapter 1  

 

INTRODUCTION 
 

 

1.1 Team Formation 

Human beings show natural traits of working in teams towards accomplishing a common 

goal. Real-world environments foster upon skilled organizations that work towards 

performing different duties as a team. The performance of such an environment depends 

on both the individual level as well as the team level efficiency and effectiveness. 

Effectiveness is the measure of the agent’s ability and skillset to perform, the task 

assigned and efficiency is the measure of how well the task was solved and the rewards 

that were earned. Individual and team-level efficiency and effectiveness are the measure 

of rewards earned and the measure of the abilities respectively at agent and team level, 

respectively. This realm of the real world can be extended to artificial societies through 

incorporating it in multiagent systems. Thus, team formation amongst agents is one of the 

most researched areas (Ray and Vohra, 2014); Procaccia and Rosenschein, 2006). Given 

this background, there are many applications of team formation from the real world that 

are mapped to a multiagent environment, for example, search and rescue operation, teams 

playing soccer, the predator prey domain, etc. There is a plethora of literature in a wide 

spectrum that studied the domain of team formation in multiagent systems, ranging from 

agents in teams learning by observing human users (Oblinger et al. 2006; Rybski et al. 

2008), applications that learnt algorithms from observational models (Debhi, et al. 2012), 

teaching robots to solve puzzles, (Lee et al. 2013), learning to fly (Isaac and Sammut 
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2003; Sammut et al. 1992), driving a simulated tank in formation (Fernlund et al. 2009), 

clustered data (Chaimontree et al. 2012).  

 

1.2 Challenges 

Horling and Lesser (2005) defined a set of key characteristics of a team as follows: 

“Teams in general are goal-directed and short-lived; they are formed with a purpose in 

mind and dissolve when that purpose no longer exists, or when they cease to suit their 

designed purpose, or when the profitability is lost as agents depart.” 

The three primary functions comprising the team formation process include, (1) 

an agent finding a suitable task, (2) team formation and (3) execution of the task. There 

are environmental factors that make it difficult for an agent to decide which tasks are 

suitable, and how an agent should decide which tasks are better than the others if there 

are multiple suitable tasks. There are also issues with team formation when agents have 

to be assigned to a task for a task to be successfully completed.  In particular, we see four 

key challenges: (1) forming teams with no or minimal pre-coordination, (2) forming 

teams under open environments, (3) forming teams under diverse environments, and (4) 

forming human teams where human learning is present.  These challenges are especially 

significant when human teams are involved. 

No or Minimal Pre-Coordination.     Most of the previous works in the field of 

team formation in multiagent systems assume that agents have knowledge about the other 

agents, or they know the environment really well beforehand. There is a good amount of 
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research in literature which studies team formation with coordination under multiagent 

systems (Shehory et al. 1998b; Shehory and Kraus 1998a; Brooks and Durfee 2003; 

Caillou et al. 2002).  However, such assumptions are somewhat impractical in cases 

when, information is costly to be conveyed across agents, or the agent population is high 

and it is not possible for every agent to store information about the others, or maybe the 

environment is dynamic and new agents keep joining and leaving the environment, 

especially so in human teams. No or minimal pre-coordination makes team formation 

challenging because agents have incomplete information of the environment. For 

example, agents are not aware of the other agents in the environment or their expertise 

and capabilities, hence they are not sure which tasks to bid on or who their perspective 

teammates could be. Thus, no or minimal pre-coordination makes teams formation more 

complex.  

Openness.   Other works (Shehory and Kraus 1998; Liemhetcharat and Veloso 

2001) which have not based their work on the assumption that every agent is well-versed 

with the formation information, assumes that the environment is not open (static) and 

thus no new agents or tasks leave or enter the environment. However, this is not always 

the case in the real world. We see new humans and tasks leave and enter an environment. 

For example, in a company, employees leave and new ones join, or the company might 

open a new branch which deals with tasks that the company had never seen before.   

Openness causes the expertise in the environment subject to fluctuation, thus in return 

affecting the decision making of agents. For example, in a software development 

scenario, an effective software coder leaves the team, the entire team might get a negative 
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hit along with the project. Or if a certain task that a team was good at happened to get 

absorbed then the team will have to start over and learn a new task, rendering the present 

skillsets useless. On the other hand, if a new task enters the environment, then the agents 

will be motivated to learn and improve their capabilities to be suitable for the new task. 

Thus, openness causes the agents to be uncertain of the environment as they are not sure 

of the agents and tasks being available in the environment. This uncertainty also makes it 

difficult to optimize the long-term expected utility while forming teams. This is how 

openness is a challenge to form teams on account of the uncertainty it introduces. 

Diversity.   Most prior works deal with a non-diverse (homogenous) set of agents 

and tasks Albrecht and Ramamoorthy (2012), they assume that all agents have the same 

capabilities or show the same traits and the tasks are of similar kind as well. However, we 

do not see this in reality. All human beings have different levels of capabilities, for 

example, a cook is good at cooking but need not be good at coding. The tasks that 

humans work on are different, some of them are very easy like writing documentation for 

a codebase, and some of them are relatively harder, like creating a system of agents to 

help human beings form teams. And not all the tasks require the same type of expertise 

either, tougher tasks may require more experienced and skilled personnel as compared to 

an easier task. Diversity amongst agents helps the agents learn a variety of capabilities 

through a diverse set of agents and a diverse set of tasks presents every agent a more 

varied opportunity to be able to get a task assigned. Diversity along with openness in the 

environment makes team formation even more complex.  For example, when there is 

high task diversity and low agent diversity along with high agent openness, it might be 
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difficult for existing agents in the environment to cope with the wide variety of tasks 

available. Also on account of high agent openness, when some agents do start getting the 

hang of tasks present in the environment, there is a high chance that they might exit from 

the environment. Whereas on the other hand in the same scenario if there was high 

diversity amongst the agents as well then, the agents would have a wider variety of 

capability to deal with the high diversity of tasks present in the environment, as well as 

teach their peer agents how to get better at tasks. Thus, diversity along with openness 

makes the environment complex and team formation more complicated. 

Human Learning.   While there exist numerous works that model their agents to 

learn the behaviors of the other agents based on past observations and interactions 

(Abdallah and Lesser 2004; Sun 2001; Chalkiadakis 2007; Jiang et al. 2008) and 

incorporate learning into team formation, few take into consideration environments 

where there will be human presence.  When humans are present in the environment, they 

inevitably tend to learn from each other or they keep enhancing their skills as and how 

they keep performing tasks, also humans teach each other as well.  Human learning is a 

challenge because it is hard to model. Also with learning humans tend to improve. With 

this improvement in the agents through learning, there is uncertainty in the environment 

due to incomplete information of these changes. This makes it more difficult to model the 

potential teammates that could work on tasks together. Also by introducing human 

learning it might become complex to form optimal teams in the long run since the agents 

will keep getting better on account of the learning.  
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1.3 Proposed Approach 

To overcome the assumptions and drawbacks in the previous research works that have 

encroached the domain of team formation in multiagent systems, Chen (2017) proposes 

an autonomous and open environment in a multiagent environment for team formation 

and we extend this model to introduce diversity. To summarize the model Chen et al. 

(2015), the term autonomous refers to the ability that agents do not have any information 

about the other agents in the environment, there is autonomy amongst agents, they are 

only aware of the tasks in the environment. Openness is the measure of new agents and 

tasks joining and leaving the environment. Diversity is defined as the spectrum of types 

of agents and tasks available in the environment. Along with a realistic environment the 

model also equips the agents with learning and modelling uncertainty in task 

accomplishment. There are two types of learning Chen et al. (2015) – learning by 

observation and doing. Learning by observation helps us reduce the time it would take an 

expert agent to teach a novice agent, since the novice agent can simply learn by observing 

the expert agent and improve. Learning by doing helps agents improve their capabilities 

by putting their skillsets to execution. Modeling of the task assignment is needed because 

of the openness in the environment. There is no guarantee that a task or an agent present 

in the environment will be present in the future as well or new tasks and agents may 

enter, changing the dynamics of the environment. The probabilistic modeling helps the 

agent realize the chances of it being assigned to a task and also there being sufficient 

teammates for the task to be executed successfully. 
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 Since this model Chen (2017) mostly focused on the openness in the environment, 

we extended this model to include diversity as well. As seen from the challenges in 

section 1.2, adding diversity to an open environment complicates the team formation 

further. After having simulated the model to handle diversity as well, we analyze the 

environment at finer details. Having carried investigations at minute levels for both 

diversity and openness we realized that we could fine tune the probabilistic modeling 

Chen (2017) to further enhance its robustness in an open and diverse environment. We 

realized that with Chen (2017), probabilistic modeling the agents are in a continuous 

chase of finding a task with the right number of teammates. This leads to fewer tasks 

being auctioned off, since even though there is the right amount of expertise available in 

the environment, they are all split over different tasks rather than being channeled on 

common tasks. To overcome this, we improve the probabilistic modeling to let the agents 

also be aware of the possible number of teammates a given task can expect. This now 

helps the agents to bid for tasks which are more likely to have the right number of 

teammates rather than chasing the teammates around. 

 With the new enhancements, we now carry out further investigations to analyze 

the impacts of diversity and openness on this new enhanced approach. A series of 

investigations helps us realize that the proposed enhancement does better than the 

original model. 

1.4 Contributions of this research 

The primary goal of this thesis focuses on analyzing the impacts of agent and task 

openness and diversity on the robustness and dynamics of team formation and the 
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environment. For this, several analyses were conducted with different permutations and 

combinations of diversity and openness to analyze at fine levels what the impacts of these 

could be on the environment.  Along the way, we also enhanced the simulation software 

system to allow for configuration and simulation of task and agent diversity in the 

environment. 

After having deeply studied the impacts of diversity and openness on the 

environment and the team formation, we identified several key relations between 

diversity and openness. Upon further investigations, we realized that the model’s 

robustness could be enhanced by fine tuning the probabilistic modeling further. 

The next contribution of this research is to enhance the model Chen (2017) to 

tackle diversity along with openness and help agent to better probabilistically model their 

environment and hence contribute better to the environment. 

Having implemented an enhanced version of the approach, we conducted a series 

of comparison tests to prove that the new improved approach works well and better than 

the original approach Chen (2017). We also conducted experiments to find the impacts of 

diversity and openness on the environment based on this new approach. 

 

1.5 Overview 

• Chapter 2 situates this thesis in the literature in this related field and sheds light 

on the drawback of some of these works and the need for our research. 
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• Chapter 3 gives a summarized account of the autonomous and open team 

formation model approach proposed in Chen (2017). It also describes our 

extension of this model to introduce diversity in the environment. 

• Chapter 4 presents the analysis conducted to evaluate the aforementioned 

approach to better understand the impacts of diversity and openness on the 

environment and the results obtained from these findings. 

• Chapter 5 puts forth the new proposed solution which will help enhance the 

probabilistic modeling approach for agents to better form teams. 

• Chapter 6 describes the implementation details. 

• Chapter 7 finally concludes this Thesis and emphasizes on the implications made 

from our investigations and the key findings of this research.  

The recommended reading order is as shown by the arrows in Figure 1.1. 
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Figure 1.1. Thesis Structure Flowchart. 
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Chapter 2 

 

RELATED WORK 
 

 

An extensive literature review helps us understand what work has been done in the human 

team formation. We are particularly interested in team formation in a diverse and open 

environment. We equip our agents with human learning by doing and observation. The 

model Chen et al. (2015) considers a tradeoff between learning and task 

accomplishment. Our Related Work section has the following subsections: 2.1 Openness, 

2.2 Diversity, 2.3 Human Learning and 2.4 Tradeoff Between Learning and Task 

Accomplishment. Through this literature review we have realized that very few research 

works incorporated both agent and task openness, and diversity. There is very little 

literature about the impacts of varying agent and/or task population and/or skillset on the 

coalition1 formation and the rewards earned. We have also realized that few works took 

into consideration human learning.  Also, there are few papers that dealt with the tradeoff 

between learning and task accomplishment in open environments.  

This related work focuses on how coalition formation could be carried out in 

environments with task and agent openness and diversity. Trading-off between learning 

and task accomplishment in open environments is one of the key contributions of our work 

alongside varying both – agent and task, diversity, and openness. 

                                                 
1 We use coalition and team interchangeably throughout this chapter. 
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2.1 Openness 

 

2.1.1 Agent Openness Only 

There are some research approaches that addressed coalition formation in an agent-open 

environment.  

For example, Jamroga et al. (2013) and Shehory et al. (2000) described agent 

openness similarly to ours where agents could leave and enter environment.  Yokoo et al. 

(2005) proposed a theoretical algorithm for mapping coalition formation in an open and 

anonymous environment. Agent openness was a measure of the leaving and entering of 

agents in the environment. Agent openness was introduced theoretically in the 

aforementioned works and no experimental results were provided to investigate its role or 

impacts.  In another work, Maret et al. (2004) implemented openness in societies of agents. 

Klusch and Gerber (2002), in their research, modeled coalition formation in a dynamic 

environment, where agents can enter and leave the environment at any point. There was 

another study that proposed a trust-based coalition formation amongst agents by Griffiths 

and Luck (2003) where the authors considered their environment to be dynamic, uncertain, 

and noisy. The uncertainty in their environment came from the ability of the agents to join 

and leave the environment. Another work, by Pinoyl and Sabater-Mi (2011), developed an 

open environment that helped their agents search and work with reputable agents.  In 

addition, Huynh et al. (2006) allowed their agents to assess the quality of its peers’ 

performance in an open environment.  
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However, despite having modeled coalition formation in an agent-based open 

environment, these aforementioned approaches did not address task openness or the 

impacts of varying the amounts of agent openness on agent performances. In our work, we 

implement both agent and task openness, as well as studied the impacts of varying the 

degree of the openness on the environment as well as the rewards earned.  Our approach 

helps us hypothesize how both agent and task openness have an impact on the rewards 

earned and the coalition formation. It also helps us understand how different degrees of 

openness affected the coalition formation. In a way, the aforementioned previous work can 

be integrated with our model of task openness to enrich their environment and can also be 

extended by varying the amount of both agent and task openness to study how their model 

performs subject to varying degree of openness. 

2.1.2 Both Agent and Task Openness 

Next, we point out two approaches that are significant to us because of their similarity to 

our work. Both these approaches implemented both agent and task openness.  

First, Shehory and Kraus (1998) defined their agent openness as the ability of 

agents to appear or disappear from the environment, and their task openness was defined 

as the introduction of new tasks and removal of tasks that were already present in the 

environment.  Their environment is a dynamic and open framework, similar to our work. 

They used RETSINA, an existing web-interface to implement the agent and task openness 

in the dynamic environment. However, despite this work and our work modeling a similar 

environment, dynamic and open, there are a few striking differences between both works. 

In this work, if a new agent came into the environment it announced itself to the other 
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agents present in the environment and exchanged information about itself with them, this 

helped in the coalition formation. In our case, agents do not communicate with each other 

and the central auctioneer was responsible for the coalition formation. Their work may not 

be extended to scenarios where autonomous agents (no communication between agents) 

are driving the environment, unlike our work. Each time a new task arrived in the 

environment, the coalitions were re-calculated for these new tasks, the most beneficial 

coalition was then chosen, in this work. In our setting, coalitions are not re-formed after 

the auction has taken place. We model different degrees of both agent and task openness 

and studied their impacts on tasks and the rewards earned. This helps us formulate and test 

the hypothesis that dealt with an open environment and the degree of this openness. 

However, their work did not account for varying degree of openness. 

Second, we acknowledge the work by Jumadinova et al. (2014). They used two 

openness metrics (agent and task openness) to model the dynamic nature of both the agents 

and the tasks, in a search and rescue operation scenario. They defined agent/task openness 

as the appearance of new agents/tasks in the environment. They justified the need for both 

agent and task openness in an environment by arguing that, not every mission will have the 

same set of tasks, there may be new tasks entering the environment, when working in a 

team for a search and rescue mission, the same set of agents might not appear again for 

some other mission, there may be new agents that join the environment. They implemented 

both agent and task openness as a fraction metric of new agents or tasks entering the 

environment at the end of each time step. They also studied the impact of openness on 

multiagent learning and teaching model. Note that we extended the notion of user and task 
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openness from (Jumadinova et al. 2014; Chen et al. 2015). However, unlike Jumadinova 

et al. (2014), we do not restrict openness to only define the rate at which agents/tasks enter 

the environment. We extend openness to be a measure of new agents/tasks entering as well 

as leaving the environment. This is a key difference, in the way both approaches model 

their openness. We could integrate our openness into their model, as that would help make 

their model more realistic by not limiting their openness to agents/tasks only entering the 

environment with no provisions of leaving. While Jumadinova et al. (2014) investigated 

the impact of openness on agent performance, the authors did not consider the potential 

complications caused by diversity in tasks and agents, unlike our work. Also, it treated its 

human learning as a black box and did not model its learning process formulaically, unlike 

our work. 

 

2.2 Diversity 

 

2.2.1. Agent Diversity Only 

There are approaches that modeled agent diversity in the environment for agent coalition 

formation.   

For example, Shehory and Kraus (1998) defined agents like our setting—each agent 

has a capability vector. They defined diversity as different classes of agents, where each 

class performed specific tasks (they introduced, interface, task, and information agents in 

their environment for simulations). Amongst the same class of agents too, each agent had 
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a different capability vector which differentiated it from the other agents during 

considerations for the execution of tasks.  

In another study, Liemhetcharat and Veloso (2011) talked about diversity of agents. 

They defined diversity by introducing roles (e.g., for simulations they mapped a soccer 

scenario where the roles were defined as, defense, midfield and offense players). Further 

agents amongst the same role had different level of capabilities.  Each agent had different 

levels of capabilities.  

Chalkiadakis and Boutilier (2008) modeled agent diversity similar to our work. In 

their model, they considered agents of different professions such as carpenters, electricians, 

and plumbers. Depending on how different the capabilities of a pool of agents within the 

same profession was, this work clustered their agents as good, medium, and bad. This 

consideration for diversity was like ours. In our model, agents had different sets of 

capabilities, and for each capability, there was a level of expertise associated. For example, 

agents who had high level of skills for some of their capabilities, are experts. However, the 

emphasis of diversity in this work and ours differed.  

However, there are three key differences between the aforementioned research 

approaches and ours.  These approaches (1) did not consider the effects of varying the 

diverse agent population on coalition formations or the rewards earned, (2) modeled only 

agent diversity and did not account for task diversity, and (3) defined agent diversity as the 

clustering of agents based on their professions/roles.  First, we carry out our experiments 

to test the impact of the diversity of the agents on coalition formation by varying the 

population of our agents (more generalists or more specialists at a given time). This 
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diversity variance allows us to study the real-world human coalition formation more 

accurately as diversity plays an important role in the human world (Marcolino et al. 2013). 

This helps us record hypothesis for testing impacts of different types of populations of a 

given skillset and their effect on the environment and task accomplishment. This also 

makes our environment more realistic. Second, unlike our work, the aforementioned works, 

did not account for task diversity. We have different types of tasks available (Low, 

Medium, and High) depending on the capabilities required to accomplish these tasks. It 

would be nice to see them account for task diversity, they assume no diversity amongst 

these tasks. Task diversity helps us replicate the real-world scenario closely. Third, the way 

the aforementioned approaches and our work define agent diversity differs. These works 

divided their agents based on professions/roles, amongst these classes the agents had 

different capability vectors.  For these approaches, agent diversity is presence of different 

class of agents based on their profession with varied capabilities in the environment. Agent 

diversity in our investigation is the measure of how different the capabilities of the pool of 

human users is. We conceptualize agent diversity by introducing three types of users: 

generalist, specialist, and apprentice. Generalists are described as having a moderate skill 

level in a moderate number of capabilities. Specialists are described as having a high skill 

level in a small number of capabilities. Apprentices are described as having low skill levels 

in all capabilities. Following this definition, a set of users of all three user types is more 

diverse than a set of users with only one or two user types. Users of each type have differing 

levels and numbers of capabilities, all drawn from normal distributions specific to their 

type. 
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2.2.2. Agent Diversity and Task Diversity 

There are some interesting approaches that modeled both agent and task diversity together.  

For example, Albrecht and Ramamoorthy (2013) presented their work on coalition 

formation without any pre-coordination between the agents. They formalized their 

framework as a Bayesian game where the behavior of the player was determined by its 

type. They tested their framework in a foraging domain. They implemented agent and task 

diversity, in the form of variations in the abilities of the agents and the level of agent ability 

required various tasks associated with a food item. The impact of diversity on team 

formation was studied by Van de Vijsel and Anderson (2004). They defined agent diversity 

as the presence of heterogeneous agents (different capabilities) in the environment, and 

task diversity as the presence of a number of different tasks (requiring different agent 

capabilities) in the environment. 

However, both Albrecht and Ramamoorthy (2013); Van de Vijsel and Anderson 

(2004) did not carry out experiments to show any link between varying agent and task 

diversity and nor did they consider openness in their environment, unlike our work. In our 

model, we take into consideration both agent and task diversity. We also carry out 

experiments to study the impacts of varying agent and task diversity on the environment 

as well as if there exists any link between agent and task diversity and openness. 

2.2.3. Variations of Agent Diversity or Task Diversity 

There were a few interesting approaches which focused their study on analyzing the 

impacts of varying either agent or task diversity on the environment and on coalition 

formation, similar to the interests of our work.  
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For example, Campos and Willmott (2004) modeled agents, similar to our research, 

they also examined the impact of agent diversity on the environment by varying the 

population of these diverse agents. They considered a diverse set of agents depending on 

the level of expertise of their capabilities, similar to our model. They further created 

environments with varying number of expertise available in the environment. They ran 

experiments with pure populations of 100% of each strategy and 50:50% ratios of each 

combinations of agents. 

There was another research which focused on varying the task diversity and its 

impacts, Kraus et al. (2003); Kraus et al. (2004), proposed a heuristic coalition formation 

method in a “Request for Proposal” domain. They accounted for task diversity by 

introducing two types of tasks, specialized tasks, and regular tasks. These are distinguished 

based on the probability of being assigned to an agent. Specialized tasks had a smaller 

probability of assignment than regular tasks. During their experimentation, they defined 

50% specialized tasks and the others as regular tasks.  

On the other hand, in our research we defined both agent and task diversity 

variations, unlike Campos and Willmott (2004) who defined only variations in agent 

diversity and Kraus et al. (2003); Kraus et al. (2004) defined only variations in task 

diversity. In our work, agent diversity is defined based on the threshold of the capabilities 

an agent had (Apprentice, Generalist, and Specialist). Task diversity is classified as the 

level of variety between tasks present in the task pool (Low, Medium, and High diverse). 

This diversity helps us capture the real-world scenario and helps us evaluate how diversity 

could possibly impact the coalition formation and the learning process. Even though both 
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models our work and Campos and Willmott (2004) modeled varying agent diversity 

population, both works however used this for different analysis. We utilize it to answer the 

impact of population diversity on the environment, coalition formation, rewards earned and 

the bids made.  We also analyze it to form hypotheses about openness and diversity, 

however Campos and Willmott (2004) did not account for openness. On the other hand, 

Campos and Willmott (2004) utilized the varied population split and analyzed its effects 

on the dynamics of the coalition: when did agents leave a coalition, when did agents join a 

coalition, etc. Unlike our work, this work did not account for task diversity. They only had 

the same task over all the episodes (simulation runs). It would be interesting to see 

experiments implementing their model of task diversity as well. Then interesting questions 

relating to relationships between task and agent diversity could be analyzed. As for the 

work by Kraus et al. 2003; Kraus et al. (2004), it is possible to extend it by implementing 

our agent diversity model. This would help investigate how good their model is when 

subjected to agent diversity and investigate any relationships between agent and task 

diversity. 

As seen from all the works mentioned in 2.2, we realize that there have been very 

few research efforts that incorporated both agent and task diversity, together. There have 

been even fewer studies that investigated the impacts of varying both the agent and task 

populations in the environment. However, our work integrates both agent and task 

diversity. We also carry out experiments to study the impacts of varying this diversity on 

coalition formation and the rewards earned. 
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2.3 Human Learning 

 

2.3.1 Learning by observation 

Through our literature review we realize that a few research approaches that modeled their 

agents with learning by observation.  

For example, Moura and Sarma (2005) implemented an imitation process in 

multiagent systems. The agent was provided the context of the environment and the actions 

performed by its peers, at regular intervals. These contexts helped the agent imitate the 

actions of its teammates and then worked towards achieving the goal. They executed their 

imitation learning through two agents: the smart and the ignorant agent. The smart agent 

was provided with all the knowledge of the environment beforehand whereas the ignorant 

agent was provided with only some knowledge of the whole environment. The ignorant 

agent learned by observing the behaviors of the smart agent. They implemented the 

imitation process through a process they called imitation algorithm. They allowed their 

agents to observe the state of the environment and the public state of other agents, and the 

actions executed by other agents. The smart agents willingly let the ignorant agents observe 

their public information. This work could be extended to include probabilistic modeling to 

model the probability of the actions of an agent on the environment, rather than just viewing 

the present state of the environment. The learning gain in this work was accomplished 

when addition of new useful knowledge to the ignorant agent’s knowledge model. This 

work did not involve uncertainty in the environment caused by openness. 

Collins et al. (1991) presented their work on learning through apprenticeship. The 

teacher showed the apprentice how to execute a task in steps, starting from easy steps. Then 
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as the apprentice learned, the teacher further showed the student how to execute higher 

levels of the task, this process of learning through observation in phases was carried out 

until the apprentice became capable enough to execute the task on its own. The learning 

gain metric is the learning of the apprentice through the observation of teacher, in the form 

of the teacher doing actions and the apprentice noting the actions and the consequences. It 

would be interesting to see how would this model perform in presence of openness. What 

happens in during the teaching process the apprentice left the environment or immediately 

after learning? This would be a waste of time for the teacher. Or what if the teacher left in 

between the process of teaching? We could extend our probabilistic model to this work to 

see how it could enhance their model. 

Van de Vijsel and Anderson (2004) modeled learning through observation as well.  

An agent learned about the new attributes of the surrounding agents (their actions and the 

corresponding consequences) through observation and started formulating coalitions when 

it was advantageous to all concerned thus allowing stability for the environment. An agent 

modeled its environment (by observation) for every coalition, this helped it form 

perspectives about the agents it worked with and also, the coalition that it had joined. 

Through observations, an agent learned the information about the peers it worked with by 

learning the actions taken by the peers and also the consequences of the actions. It also 

learned about the environment by learning the coalitions an agent worked with and the 

outcomes of this coalition formation. This way by constantly updating its beliefs, it learned 

more about the other agents’ attributes and the consequences of their actions. By constantly 

updating an agent’s beliefs through observation (of teammates and environment), the 
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learning gain increased in the form of gained beliefs. Like the previous works, this work 

has not accounted for openness in the environment. 

In another study, Schatten (2014) applied learning by observing to smart residential 

buildings. The author equipped the agents to learn by observing the actions of other agents 

as well as human-beings in the residential building. Such observation is modeled in the 

form of waiting for actions to take place and then add this updated actions and 

consequences to its own knowledge base. They implemented this observational learning in 

the form of observer behavior. The observer waited for actions to take place, and then 

added additional rules and facts to the knowledge base. They also provided an example, 

where a newly installed speaker should be able to adjust its volume level by observing the 

volume of the other speakers that are already installed in the household. This work did not 

integrate openness. The learning was a measure of the addition of new rules and facts from 

observations of new tasks to the knowledge base of an agent. 

Barrett et al. (2013) studied coalition formation in the pursuit domain. They 

implemented generalized learning and transfer learning methods that in return helped their 

agents to better model the behavior of their present peers to be able to predict the models 

of the unseen future peers. The agents observed the action and consequence of their peers 

and modeled this. The agents build a model of all the peers (through observation) that they 

have worked with and store it offline, when they go online there is a chance they may 

encounter new teammates during the coalition formation. These models are an action-and-

consequence map, of the peers, which was observed by the agent. Agents refer to these 

offline models when forming a new coalition. These models equipped the agents with the 
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knowledge of their peers beforehand and accordingly the agents select actions which will 

be beneficial. However, the agent selected from all the offline models, assuming that the 

past teammates are a representative of the future teammates. They implemented Transfer 

Learning using TrAdaBoost, that uses boosting to learn models of agents. However, the 

generalized learning could get complicated on introduction of openness, it will raise the 

question of how many models to store. It would be interesting to extend their model and 

include openness and test our probabilistic modeling on their work, to test to see how the 

learning gets affected in presence of dynamic agents. The learning gain was directly related 

to the addition of new learnt models through observation. 

Floyd and Esfandiari (2011) developed a framework which enabled their agents to 

learn through observation, in a partially-observable environment. An agent observed an 

expert agent and its interactions with the environment as an observer. The observer agent 

observed the expert agent over a period while the expert interacted with the environment. 

The observer observes the actions performed by the expert and the responses it received 

from the environment for it. It then learned to perform the same task as the expert agent 

and updated its training model to perform better. There was no openness considered in the 

environment. There are interesting questions that could be answered with openness, what 

happens if an expert left the environment while the observer was learning? Does the 

observer reset the knowledge it gained? Or does it figure out the rest of the actions on its 

own? The learning gain for this work is the knowledge gained by the observer from 

observing the expert agent. 
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Johnson and Gonzalez (2013) built a model where a group of agents observed or 

imitated another group of agents while they performed a task. They implemented this is a 

Collaborative Context Based Reasoning framework. One group of agents learned from 

another group only if they were working on the same task. They used behavior maps and 

case based reasoning to employ learning by observation in their framework. These behavior 

maps are built on the observed expert team. The learning team then uses these behavior 

maps to plan their next actions. This work did not account for openness. Learning gain for 

the observing team is the addition of new knowledge achieved through observation of the 

expert team. Learning gain is the addition of behavior maps.  

There were some studies, that presented their findings on learning of probabilistic 

human-user models. Dillenbourg (1991), designed a learning strategy that helped agents to 

understand the dynamics of their environment. The agents learnt the models of their 

assigned human counterparts, and hence better chose and performed tasks with efficiency. 

In other research works Greer et al. (2001); Vassileva et al. (1999); Vassileva et al. (2002); 

Vassileva et al. (2003); Bull et al. (2001) implemented models wherein their agents learnt 

the probabilistic models of their assigned human-users and communicated this information 

amongst themselves. After having exchanged this information the agents formed coalitions 

to assist their assigned human-users. 

2.3.2 Learning through reflection 

There are a few approaches that have presented their work on learning through reflection, 

analogous to an agent observing its own processes and reasoning about them to improve 

its performance. 
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Wu et al. (2011) incorporated learning through self-observation amongst agents. 

Their algorithm helped agents observe the recent history of interactions as well as the utility 

gains from these interactions. Agents took into consideration this recent history of 

interactions (which is limited to a certain amount) and chose their next actions. This 

selection of the next action was based on the probability of optimality. Where an optimal 

solution was an action that led the agent towards gaining optimal rewards. Their framework 

gave the agents the liberty to plan their own coalition. However, the algorithm did not 

consider the learning capabilities of agents at any point of time in the history. The 

environment is assumed to be static and no agent leaves or enters the environment. The 

learning gain is the addition of new histories of interactions. 

In another approach, Schon (1987) studied about human-learning through reflection 

from a phycology’s perspective. A human re-thought the solution carried out by himself or 

herself to execute a task successfully. The human then reflected upon this re-thinking 

process and learned through it.  Thus, in this case, the observation was done by the person 

who carried out the task of his or her own work.  Schon argued that a person truly learns 

when he/she starts to evaluate his/her own actions with a critical eye. The rethinking began 

with the recognition of a doubt. This process of “catching oneself” was important for 

reflectivity. These doubts are best clarified through eliminating any actions that lead to the 

doubt and then trying to rectify them. Then after the settlement of the doubt, people affirm 

their knowledge of the situation. Now they can deliberate about if they carried out the right 

action for the given situation, by answering the questions: what do I do? How did I do it? 
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How does it affect others and me? For our future work, we could integrate this model of 

re-thinking in our agents. 

2.3.3 Learning by doing 

Learning by doing has also been modeled in a few research approaches. 

For example, Inaba et al. (2000) studied human learning in collaborative setting. 

Their studies showed that humans were capable of learning through the experiences gained 

by doing and the learning gains increased with completion of each task. The agents came 

up with a common learning goal and formed coalitions. The agent that had the highest 

capability then performed the task and the other agents learned by performing the same 

actions, the authors however did not dive deep into the implementation details. The authors 

suggested that, when performing tasks in a collaborative setting, humans learned through 

the performance of the tasks and there was also a change in their behavior as and how they 

learned through the experiences of doing those tasks. Learning gain the knowledge gained 

by doing the same tasks as done by an expert agent. There was no openness considered in 

the environment. 

Steinhage and Bergener (2000) implemented learning by doing for a robot. The 

robot maintained a voting matrix, wherein the matrix encoded and stored the effects of 

every single behavior of the robot with respect to performing the respective task (context). 

There is a learning signal which is a metric of the correlation between memory and context. 

If memory and context had a direct correlation, then the robot was invoked to implement 

the actions learned in the past context and apply them to the present situation. Through this 

matrix codes the robot learned through experience (picks the codes that prove beneficial). 
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The addition of new contexts provided the learning gain. This work did not consider task 

openness. 

Fisch et al. (2009) presented their work in a classification domain. The agents were 

shown items and were asked to classify them. They modeled their agents with some 

characteristics of learning by doing. They defined learning by doing as the ability of the 

agent to improve its expertise and skillset through practice and self-perfection. When a new 

situation came into the environment, the agent created a premise for this new situation and 

asked a teacher to help with the conclusion of this premise. In this way, when applying 

already existing knowledge, the agent improved its knowledge with the help of a teacher. 

The teacher did not support the agent at every step but only with the premises that were 

presented by the student. Learning gain is a measure of the new conclusions learned by a 

student from a teacher. This work’s environment is stable and there is no uncertainty 

accounted on cause of openness. 

Research work by Jia-hai et al. (2005) demonstrated learning by doing in a 

negotiation domain. Agents were programmed to negotiate for the participating human 

parties via the Internet. These agents were modeled to be adaptive to the market situations 

as well as they learned by the previous actions taken by them and the corresponding 

rewards achieved, over a period of time. The agents maintained a strength parameter 

throughout the negotiation. If taking a certain action under a given state proved fruitful 

then its strength parameter was increased for the next round of negotiation. The initial 

strength value was set by the agent based on its experiences so far, and would be updated 

throughout the negotiation process by reinforcement learning. This work accounted for 
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learning gain in the form of a numeric increase in the strength parameter. This learning 

gain thus is similar to the approach used in our framework as the learning gain in our work 

is measured as a change of a numeric entity. We account for openness in the environment 

as well, unlike this work. 

Blikstein and Wilensky (2005) presented an agent-based simulation as a powerful 

learning tool for Material Sciences. The paper reported a user study of a computer-aided 

learning environment, designed specifically for Material Sciences. They proved that a rich 

and motivating learning could be achieved through learning by doing, by humans, where 

the humans learned by carrying out various activities related to Material Sciences. Since 

this is a user study, there is no algorithm that describes the human learning through 

observation, just a theoretical perspective of it. The learning gain was the addition of new 

knowledge achieved by doing. There was no openness modeled in this work. 

As seen from Sections 2.3.1, 2.3.2 and 2.3.3, there have been research approaches 

that equip their agents with learning, while working in a team. However, all these 

approaches except (Jia-hai et al. 2005) computed their learning gains as an addition of 

knowledge, context, history of actions, or behavior maps. However, like (Jia-hai et al. 

2005), we compute learning gain as a numeric entity.    

The agents in our work are modelled on a framework following human-inspired 

learning strategies Chen (2017).  Specifically, we incorporate the Bandura’s Social 

Cognitive Learning Theory. This theory states that learning can be achieved by doing 

and observation. The learning gain curve is a downward shaped parabola for an agent that 

learns a specific capability under a given skill. This is because when an agent begins with 
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little knowledge, it learns more quickly as it begins to gain expertise. This occurs to a peak 

point, at which the marginal learning gains begin to slow down. 

The learning by observation consists of four levels: attention, retention, 

reproduction, and motivation. For learning by observation, the learner should have skills 

at par with the teacher to be able to learn from it, and they should also be working on the 

same task. If a learner learns through observation during a task execution, after successful 

completion of that task, the learner updates its capability vector based on the gain from 

observation. Since learning by observation does not cost the agents at all, this keeps the 

agents constantly motivated to learn. 

Thus, as it is seen from Section 2.3, there is research that integrates human-inspired 

learning approaches in the environment, we summarize three types of such learning: 

learning by observation, learning by reflection and learning by doing. In our work, we have 

employed learning by doing and learning by observation Chen et al. (2015).  We indeed 

could further enrich our work by extending the learning by reflection models from Wu et 

al. (2011) and Schon (1987). We compute learning gain as a numeric entity just as 

computed by Jia-hai et al. (2005). We could integrate their learning model into our work, 

since their learning gain computation fits in our work, as is it measured as a numeric entity. 

The other works measure numeric entity as an addition of knowledge, context, history of 

actions, or behavior maps. Though this is not something we can employ right away in our 

work because our learning gains are a numeric entity, but we can look at these types of 

learning gain computations as a part of our future work to further enhance our model.  One 

major difference between the works specified above and our work is that these works did 
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not account for an uncertain environment, such as an environment which employs 

openness. We tackle learning in an open environment by employing probabilistic models 

which is further described in detail in Section 2.4. 

 

2.4 Tradeoff Learning versus task accomplishment 

There are research works that employ a tradeoff between different entities such as 

exploration versus exploitation or agent’s personal preferences versus an agreement, etc. 

when crafting their coalition formation. In our work, we incorporate the tradeoff between 

learning versus the accomplishment of tasks Chen et al. (2015).  

For example, Liemhetcharat and Veloso (2010), did not model learning but 

introduced a risk factor. Risk factor was a measure of the metric of risk associated with 

taking up the assigned roles (Roles were allocated based on the capabilities calculated, e.g. 

in soccer, an attacker, a defender, etc.). This risk factor depended on the capabilities 

calculated, and the capabilities in return depend on the observations of the teammates. Risk 

factor was a metric which helped the agents’ tradeoff between taking up a role and its own 

capabilities. But it may take long for a team to have enough observations before to derive 

the capabilities and in return slowing down the risk calculation and hence role assignment. 

So, by incorporating learning, the agents can learn the risk factor dynamically instead of 

having to depend on the capabilities of itself and the teammates. For future work, we can 

take into account assigning roles to agents and that’s when the risk factor modeled in this 

paper can be used to enrich our work. This work does not take learning or openness into 

consideration. 
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In another study, Emery-Montemerlo et al. (2004), proposed an algorithm for 

dealing with the intractability in Partially Observable Stochastic Games, by converting it 

into smaller series of Bayesian games. They tested their algorithm in a robot tag game, 

where the robots worked in teams to chase down a target. They state that their algorithm 

“Traded off limited look-ahead in uncertainty (no access to the whole world at every 

timestep) for computational feasibility, and resulted in policies that are locally optimal with 

respect to the selected heuristic”. There was no communication amongst the agents. The 

agent maintained a belief state based upon its observations (since no communication) of 

actions in the environment, and it then conditions its policies for the next action selection 

based on this belief state and the action histories. The Bayesian game approximation 

maintains a type space for each robot that includes its position as well as its observation at 

each timestep. The probability of such a type could have been updated both by using the 

policies computed by the algorithm and through a mutual observation. This is how the 

agents looked ahead into the immediate round of coalition formation to approximate the 

reward gain in the future. This work did not consider openness. There is no learning 

accounted for in this paper and nor is there openness accounted for. For now, we do not 

need the position of our agents at any point of time, so it is unlikely to extend this work to 

our work. 

Chalkiadakis (2007) presented his work on multiagent coalition formation. He 

introduced a tradeoff between exploration and exploitation while his agents considered the 

next action to be taken. The agents addressed the tradeoff between accumulating short-

term versus long-term rewards. This tradeoff policy incorporated the tradeoffs between 
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exploration and exploitation, both with respect to the underlying (dynamics and reward) 

model, and with respect to the behavior of other agents. But what would happen if an agent 

left the environment or some new agents joined? Will this change the model that the agents 

have modeled for the behavior of the agents? We could test these notions by introducing 

openness and hence probabilistic modeling in their environment. 

Stone and Kraus (2010) presented a multi-arm bandit problem where the teacher 

and the learner agent together tried to achieve a common team goal of collecting maximum 

number of cans. For the teacher, there is a tradeoff between teaching or gaining more 

rewards for itself. At any point, the teacher can either pull-off its best move and earn 

rewards for itself or teach the learner. The teacher teaches the learner by pulling arms and 

displaying the resulting rewards for this action to the learner. For finding the optimal 

actions for the teacher, the authors had two types of distributions for the arms, first a 

discrete distribution and second a Gaussian distribution. For discrete distribution of the 

arms the authors had a polynomial time and memory algorithm, using finite horizon 

dynamic programming. For the Gaussian case, they convert the instance to a discrete one, 

and then solve it as a discrete distribution mentioned earlier. 

In another research, Shintani and Ito (1998) presented a negotiation algorithm for a 

distributed meeting scheduler in a multiagent environment. For scheduling a meeting, the 

agent had to negotiate with the other agents in the environment and reach a mutual decision. 

For this social decision, this work had to clarify a trade-off between "reaching a consensus" 

and "reflecting private preferences in the social decision". With a view to improve the 

trade-off, this work proposed a new multi-agent negotiation protocol that had an effective 
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characteristic function and the persuasion protocol. The characteristic function was used to 

map the user’s (human-user counterpart assigned to the agent) preferences in the 

negotiation process for the coalition formation of the agents. This work did not employ 

learning or openness. For our future work, we could integrate this model into our work and 

include private preferences for agents in the social decision. There is communication 

amongst our agents presently, so the coalitions are not formed as a part of mutual decision 

but the auctioneer plays a major role in assigning tasks and hence resulting in a coalition 

formation. For future work, we could also include the coalition formation as a mutual 

decision of the agents by getting rid of the auctioneer (assigner) and then we could extend 

this model to employ a tradeoff between consensus and private preferences.  

Coalition formation amongst agents to tackle disasters had been studied by 

Ramchurn et al. (2010). They implemented a tradeoff between maximizing the working 

time of a coalition and not losing a future task. To deal with no losing any future tasks, 

their algorithm performed a one-step look-ahead to find out the consequence of each 

coalition completing that future task. This will not be fruitful in an open environment since 

there is no surety of a future task. The one-step look-ahead will then have to be done in 

probabilistic manner. Our work can help enrich this work and also make their environment 

more realistic by introducing openness. 

In another study, Kenari et al. (2011) studied coalition formation in multiagent 

systems. They implemented Infinite Horizon technique to define the optimality equations 

for their Partially Observable Markov Decision Process. They mapped a tradeoff between 

present rewards and future rewards for the coalition formation. They state that, when the 
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decision for coalition formation is being made, the agent should not solely depend on the 

immediate reward. The expected discounted future reward should also be considered. The 

agents can use the transition model (probability of reaching a state by performing an action) 

to predict the future coalitions that will be formed. But by using the updated beliefs in 

prediction of the next coalitions, agents' decisions will be more rational and the sequential 

rationality will be guaranteed. This tradeoff is similar to the way we deploy our tradeoff. 

We tackle the tradeoff between learning and task accomplishment by using probabilistic 

modeling. 

Khandaker and Soh (2010), designed a web-based collaborative learning tool. Their 

proposed Multiagent Human Coalition Formation comprised of intelligent agents that 

firstly, learned a model of the students by keeping a track of their activities, secondly, a 

Bayesian Network is learned for a probabilistic modeling of groups of agents’ models onto 

their current as well as future task rewards. Using their learned models and this mapping, 

the agents are now equipped to negotiate to form student groups. This helps the students to 

perform current as well as future tasks efficiently. This work did not take into consideration 

openness. We could extend this work by including the Bayesian network for learning a 

probabilistic modeling of groups of agents’ models onto their current as well as future task 

rewards. 

As seen from Section 2.4 there are works that employ tradeoff between private 

preferences and coalition formation, exploration and exploitation, etc. The tradeoff in this 

study is employed in a different manner compared to these works though the underling 

spirit is the same. Neither of these works take into consideration, openness. Openness 
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causes uncertainty in the environment because new tasks and agents entering and old ones 

leaving. However, our environment integrates openness which causes uncertainty in 

choosing tasks. We could enrich these approaches by introducing openness and hence 

extending our probabilistic modeling. 

In our work, an agent’s objective is to maximize the cumulative reward earned by 

its user over the sequence of tasks. This requires non-myopic planning. However, due to 

uncertainty caused by agent openness, this makes it difficult for the agent to predict which 

other agents would be present in the environment and what their bids would look like. 

Thus, the agent needs to estimate an expected task reward that accounts for this uncertainty. 

Our task selection strategy incorporate probabilistic modeling (Chen et al. 2015) to help 

the agents deal with the uncertainty caused on account of openness. This requires the 

agents to model the likelihood of a given task being assigned, given the observation of the 

environment. The three probabilities that determine the likelihood of succeeding are 1) 

Probability of agent winning the bid, 2) Probability of task being assigned, given that the 

agent won the bid, and 3) Probability of successfully completing the task, given that the 

task is assigned. Then we compute the expected utility of the revised expertise/skills given 

tasks, in an open and dynamic environment. In real-world situations, trading-off learning 

and task accomplishment needs to consider openness, and this is one of the key 

contributions of this work. 
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2.5 Diagrammatic Summary of the Related Work 

We present a diagrammatic summary of all the literature reviews in Figure 2.1. Note, 

references that did not have Diversity and Openness researched are at the origin of the 

Figure 2.1. 

 

 

Figure 2.1. Summarization of the Related Work. 
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Chapter 3   

 

METHODOLOGY 
 

In this chapter, we describe the framework of the model Chen (2017) we extended to 

include diversity and carried our experiments. We then describe the approach we took to 

conduct analysis on this model. Following which we present a new approach which will 

further help enhance the robustness of this model. 

  

3.1 Framework 

 

This section presents the framework of the model Chen et al. (2017), Chen (2017) that we 

extend to incorporate diversity. The framework helps us simulate our multiagent 

environment for the problem of agent-based collaborative task assignment. 

The environment, comprises of three main components: 

• The agents present in the environment (𝐴) 

• The tasks present in the environment (𝑇) 

• The auctioneer used for assigning tasks (𝐶𝐴) 

The environment has five main qualities: 

• Autonomy 

• Diversity 

• Openness 

• Modelling Human Learning 
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• Probabilistic Modelling 

3.1.1 Environment Component Description 

 

This section gives an overview of the three major components that comprise the 

environment: Agent (Section 3.1.1.1), Task (Section 3.1.1.2), and Auctioneer (Section 

3.1.1.3).  Agents are the entities that bid for the tasks for their human counterparts. 

Auctioneer is the central administration responsible for managing the bids submitted by 

the agents and allocating the tasks to the appropriate agents.  

 

3.1.1.1 Agents 

Agents (A) are the software entities that bid for tasks on behalf of their human 

counterparts. Each agent (𝑎) has a set of capabilities (𝑪), where each capability (c ∈ 𝑪) 

has a level of expertise associated with it, 𝑐 ∈ [0,1]. The level of expertise defines how 

good an agent is at that capability and it is also the metric that helps the auctioneer decide 

which agent is the best fit for which task. For example, suppose a software engineer has 

the skillset of {Coding, Debugging, Writing, Analyzing}. The software engineer will 

typically have very good level of expertise for Coding and Debugging. However, the 

engineer—also an agent—may not be good at Writing and Analyzing. These levels of 

expertise also help the auctioneer determine which agent is a better fit for a given task. 

For example, a Writer will have a higher level of expertise in Writing as compared to a 

Software Engineer. Hence, for a task that requires the subtask of Writing, the agent with 
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highest level of expertise for Writing will be picked (provided that agent has bid for that 

task), over the other agents.  

To investigate diversity, we have added agent types to the original framework by 

Chen (2017).  The agents are categorized as one of three types: Apprentice, Generalist, or 

Specialist. The three levels are determined by the level of expertise in capabilities of the 

agents. An Apprentice is a novice and does not have a level of expertise as good as the 

other two types. These can be thought of as interns in a company. Interns are not skilled 

at most of the tasks and are in the process of acquiring knowledge to get better. 

Generalists are the agents that have a decent level of expertise for a spectrum of 

capabilities. These can be mapped to Software Developers in the real-world scenario. 

Software Developers have a decent level of expertise at writing code, debugging, testing, 

and writing documentation. Thus, Software Developers can be either assigned to various 

tasks such as Coding, Testing, or Writing Documentation. A Specialist is an agent that 

has a good level of expertise at fewer capabilities as compared to a Generalist. For 

example, the Managing Director of a company, even though she might have a set of 

capabilities like Management, Coding, Writing, and Cooking, she has a very high level of 

expertise in Management.  

The agents also have an ability to learn by observing its teammates and/or 

performing tasks, and thus improve its capabilities over time. We describe learning in 

detail in Section 3.1.2. Every time it learns, there is an increase in the level of expertise of 

its capabilities. This increase in expertise also helps it become a higher agent type, such 

as promoting itself from an Apprentice to a Generalist. This in return helps an agent be 
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more qualified for bidding for more tasks and increase its chances of being assigned a 

task. Thus, an agent’s capabilities are not static and evolve dynamically with the 

teammates it encounters or the tasks it performs. 

3.1.1.2 Tasks 

The tasks (𝑇) in the environment are the entities that the agents bid for. These can be 

mapped to real-world tasks like, Software Development, Cooking, Writing, Painting, etc. 

Tasks are composed of subtasks (𝑡). For example, the task of software development will 

require subtasks like {Coding, Testing, Documenting, Managing}. Each of these tasks 

requires a specific number of agents (nagents ∈ ℕ) to accomplish this task. Each subtask 

within a task also requires a capability, and this capability has a threshold requirement 

(𝑞𝑡 ∈ (0,1]) to be met. For every auction round, we have a fixed number of tasks in the 

pool for agents to bid on. Each of these tasks has a reward 𝑅(𝑎, 𝑇) ∈ ℝ associated with it, 

and this reward is only granted to the agents that successfully accomplished this task. 

Since there are multiple agents that work on a task, the reward is split amongst the agents 

depending on their share of contribution.  

During each round of auction, each agent casts a single bid, if the bid is won, the 

agent is then allocated to only a single subtask for every auction round. A task is 

auctioned off if and only if each subtask under the task is successfully assigned to an 

agent. Thus, there might occur a situation in which an agent might get assigned to a 

subtask, but the task never gets auctioned off on account of having insufficient number of 

agents for the other subtasks for that task. If an agent does not find a task suitable for it 

then it might choose to not bid for that auction round.  
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3.1.1.3 Auctioneer 

This is the central administration in the environment responsible for allocating tasks 

based on agent bids, and serves more as a convenience for our simulation system. The 

auctioneer has access to the tasks and the bids in the environment. For every auction 

round, there is a set fixed number of tasks available in the environment for the agents to 

bid on. For the agents to have access to these tasks, the auctioneer posts them on a 

blackboard. Blackboard is a common entity which displays all the tasks available, to 

which all agents and the auctioneer have access. All the agents get access to the 

Blackboard simultaneously at the start of every auction round. If an agent wants to cast a 

bid for a particular subtask, its bidding amount is its own corresponding level of expertise 

for that subtask. Note that agents do not have any knowledge about the bids of other 

agents in the environment or the other agents present and their capabilities, as this is part 

of the requirement of having no or minimal pre-coordination among the agents, as 

discussed in Chapter 1. Accordingly, neither do the agents have any idea about their 

perspective teammates. If an agent does not find a suitable task, then it may not bid for 

that auction round and sit out. At the end of an auction round, the auctioneer has all the 

bids. It then allocates a subtask to the agent with the highest bid. If all the subtasks within 

a task are auctioned to an agent, then the task is considered to be auctioned off. The 

agents that have been assigned to the same task are considered teammates. Once the task 

is auctioned off, in the current design, it is assumed that the task runs to completion. Each 

task takes one tick to be completed. Since the task completion is a collaborative task of 

the teammates and each teammate has a different contribution to the task (depending on 

the level of expertise), the reward each teammate receives is based on the total reward 
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(𝑅𝑇𝑜𝑡𝑎𝑙) being split by the share of its contribution, thus keeping it fair for all teammates. 

The reward for a particular agent 𝑎 of the 𝑛 agents that worked for a given task T for 

every 𝑖𝑡ℎ subtask, 𝑡𝑖, composing 𝑇 each requiring a quality threshold 𝑞𝑡𝑖, is calculated as 

shown in Equation 3.1, from Chen (2017): 

𝑅(𝑎, 𝑇) = ∑
𝛿(𝑎,𝑡𝑖)⋅𝑞𝑡𝑖

𝑛𝑖⋅𝑞𝑡𝑖
𝑅𝑇𝑜𝑡𝑎𝑙𝑡𝑖∈𝑇                                       (3.1) 

where 𝛿(ℎ, 𝑡𝑘) = 1 if agent 𝑎 was assigned to subtask 𝑡𝑘, else 0. 

Our publish-subscribe system Woolridge (2009) for black-board auctioning works as 

shown in the Algorithm 3.1 Chen (2017). 

Algorithm 3.1 Auctioning algorithm from (Chen 2017). 
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3.1.2 Environment Qualities Description 

The three primary functions comprising the coalition formation process include: (1) an 

agent finding a suitable task, (2) coalition formation and (3) execution of the task. There 

are environmental factors that make it difficult for an agent to decide which tasks are 

suitable, and how an agent should decide which tasks are better than the others if there 

are multiple suitable tasks. There are also issues with coalition formation when agents 

have to be assigned to a task for a task to be successfully completed.  In particular, we see 

four key challenges: (1) forming coalitions with no or minimal pre-coordination, (2) 

forming coalitions under open environments, (3) forming coalitions under diverse 

environments, and (4) forming human coalitions where human learning is present. We 

have seen how these challenges impact and make coalition formation complex from 

Chapter Introduction.   

3.1.2.1 No or minimal pre-coordination 

As identified as one of the key challenges in multiagent coalition formation problem, no 

or minimal pre-coordination dictates that an agent’s knowledge or awareness of the other 

agents is non-existent or extremely limited at all times.  Indeed, the agents in our 

environment do not have any knowledge about its fellow agents or their capabilities. 

Unlike most of the research studies in this field where the agents can communicate with 

each other, our agents do not communicate with each other at all. The only thing known 

to the agent are their own capability vector and the tasks that are up for bidding for a 

given auction round. They are not even aware of the bids cast by other agents.  



54 
 

As mentioned earlier in Chapter 1, with minimal or no pre-coordination helps us 

better map to certain types of real-world problems. For example, in a basketball pickup 

game scenario, the individual players often do not have the liberty to pick their 

teammates as they need to form, say, a team of 3 or 5 quickly with whomever is available 

at the basketball court, could comprise of teammates that have never even met before, let 

alone played together. However, the team can play together as a whole and also get better 

with learning from their teammates and/or through the practice sessions.  

3.1.2.2 Diversity 

We take into consideration diversity in our environment. As described in Chapter Related 

Work, there are very few works that take into consideration diversity in the environment. 

However, in the real world, the environment is diverse when it comes to both humans as 

well as the tasks that they work on.  

Agent Diversity.     Agent Diversity (AD) accounts for the variety amongst the 

agents. We classify our agents into either of the three categories: (1) Apprentice, (2) 

Generalist, and (3) Specialist. All agents in the environment fall under at least one of 

these three categories. All the agents have the same number of capabilities; however, the 

distinguishing factor is the level of expertise at which these capabilities are.  

Gaussian distributions help us pick the number of capabilities each of the agent 

types should be skilled at and also the level of expertise for these capabilities. The 

general form for the distribution of number of capabilities n for an agent 𝑎 is 

𝑛𝑎~𝑁(𝑘, 𝜎𝑐𝑜𝑢𝑛𝑡
2 ), where k is the mean and 𝜎𝑐𝑜𝑢𝑛𝑡 the standard deviation, while the skill 

level distribution for capability 𝑐𝑖  for agent 𝑎 is 𝑐𝑖,𝑎~𝑁(𝜇, 𝜎𝑙𝑒𝑣𝑒𝑙
2 ), µ being the mean and 
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𝜎𝑙𝑒𝑣𝑒𝑙 the standard deviation.  Table 3.1 shows the µ and k, or mean values, for the 

Gaussian distributions from which each user draws its set of capabilities, where 𝜇𝑙𝑜𝑤 <

 𝜇𝑚𝑒𝑑 < 𝜇ℎ𝑖𝑔ℎ, and 𝑘𝑙𝑜𝑤 < 𝑘𝑚𝑒𝑑 < 𝑘ℎ𝑖𝑔ℎ. That is, on average, a specialist has 𝑘𝑙𝑜𝑤 

number of high-level (𝜇ℎ𝑖𝑔ℎ) capabilities and 𝑘ℎ𝑖𝑔ℎ number of low-level (𝜇𝑙𝑜𝑤) 

capabilities; an apprentice has a high number (𝑘ℎ𝑖𝑔ℎ) of low-level capabilities; and a 

generalist has a mixture (𝑘𝑚𝑒𝑑) of low and medium-level (𝜇𝑙𝑜𝑤, 𝜇𝑚𝑒𝑑) capabilities. We 

define the values of these metrics used for our experimentation in detail in the Chapter 

Experimentation and Results. 

 𝑘𝑙𝑜𝑤  𝑘𝑚𝑒𝑑  𝑘ℎ𝑖𝑔ℎ 

𝜇𝑙𝑜𝑤  Generalist Apprentice, Specialist 

𝜇𝑚𝑒𝑑  Generalist  

𝜇ℎ𝑖𝑔ℎ Specialist   

Table 3.1. µ and k values for Agent Capability Set Distributions. 

Apprentices.   We define Apprentices as the agents who have low level of 

expertise for all their capabilities. In the real-world these can be thought of as interns at a 

company. They are not as skilled as their capabilities yet and still have a lot of learning 

and improving to do. However, the company does need Apprentices to teach and guide 

them, and help them become the future of the company. They are the ones to whom the 

knowledge is passed down to, which is really important when openness also comes into 

picture, as some skilled worker might just leave the environment abruptly. For example, 

consider a case where there is only one Software Engineer in the project that knows how 

to code in Java.  Further consider a scenario where this Software Engineer who is really 

good at coding in Java suddenly leaves the project.  This would hamper the project. 

However, if there were interns or Apprentices in the project then this intern could have 
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been learning Java from the skilled Software Developer, and in case when the Software 

Developer leaves, the intern can start contributing in Java. Apprentices are also needed to 

carry out easy tasks which would not be as beneficial if allocated to a professional. Since 

a professional could instead be assigned to a more difficult task as he or she has high 

desired skills for that task, unlike an Apprentice. For example, an intern could be hired 

for writing documentation, or adding comments to the code, at the same time the intern 

could be learning from professionals by observing them. 

Generalists.   We defined Generalists as agents that have a decent level of 

expertise at a wider variety of capabilities. Generalists can be thought of as Software 

Engineers in a company. These people have fairly good knowledge about a variety of 

Software Engineering domains like coding, documenting, debugging, testing, etc. Thus, 

making them eligible to work on a wide variety of tasks. These types of agents are 

needed in the environment since they are the drive force. Also, they can help the 

Apprentices evolve by displaying how tasks are performed, for Apprentices to learn by 

observation. 

Specialists.  We conceptualize Specialists as agents that are good at few 

capabilities. These can be mapped to a Machine Learning Engineer within a company. A 

Machine Learning Engineer can be thought of as a Generalist who has decent Software 

Engineering capabilities but is really good at the Machine Learning subfield, making 

her/him Specialist at Machine Learning. Specialists are needed in the environment 

because these are the ultimate source of knowledge in the environment. They have 

mastery over a skill which neither an Apprentice or a Generalist has still achieved. Very 
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difficult tasks which require very good knowledge of a given capability can be assigned 

to Specialists. 

Task Diversity.    Task Diversity (TD) is used for characterizing the variations in 

the tasks available in the environment. As seen in the real world, not all tasks are of the 

same type.  Some of them are easy while others are comparatively difficult to solve. 

Some of them require agents that have really good expertise in capabilities while some do 

not. Thus, we map the real-world picture of Task Diversity in our model. We split our TD 

into three categories: (1) Low, (2) Medium, and (3) High. These three categories are 

conceptualized based on the degree of variety in the tasks available in the task pool. In an 

environment with 𝑐 unique capabilities, and all tasks having 𝑠 subtasks that require those 

capabilities, the number of possible subtasks combination is 𝑐 𝑐ℎ𝑜𝑜𝑠𝑒 𝑠, or 𝐶𝑠
𝑐. We 

assume 𝑠 remains constant, and as 𝑐 becomes greater, so does task diversity level 

increase. The values of 𝑐 and 𝑠 are detailed in the Chapter Experimentation and Results.  

 

3.1.2.3 Openness 

This section talks about the environment quality of openness. Our environment is not 

static: new agents and new tasks can enter and old ones can leave the environment, 

making the environment open. 

Agent Openness.    Agent Openness (AO) is conceptualized as the rate at which 

new agents enter or existing ones leave the environment. For example, in a company, 

new employees keep joining and old ones keep leaving. Introduction of new employees 

into the environment signifies potentially new expertise for existing employees learn 
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from. However, department of existing agents could hamper the system, since when an 

agent leaves the environment so does its level of expertise in his or her capabilities.  

Task Openness.    Task Openness (TO), correspondingly, the rate at which new 

tasks enter and existing tasks leave the environment. For example, suppose that the 

primary service or activities of a company are building websites using Javascript.   Then 

with the release of HTML5, using Javascript for websites has become non-preferable.  

And now there is a new task at hand: coding websites using HTML5.  Another example 

is the procedure for a disaster response operation. The disaster response consists of a 

number of stages (Wikipedia, 2017) such as, evacuation, search and rescue, assistance, 

and restoration. 

 There are a number of tasks involved under each stage in a disaster response 

mission. In the beginning, during the search-and-rescue stage, there are tasks such as: 

searching for survivors and victims, retrieving survivors from debris, applying emergency 

care to survivors, moving victims to appropriate places, etc.  Then, as time progresses, 

the assistance stage takes hold where food and shelter are provided to the survivors.  

Thus, tasks involved during the assistance phase are food-related such as collecting, 

moving, and distributing food and water supplies, and shelter-related such as building 

tents and providing sanitary facilities.  As the disaster response moves from one stage to 

another, some tasks become obsolete or less significant, while other tasks become more 

important and necessary.  This exemplifies task openness.  Furthermore, if a disaster 

strikes again at the same place—such as aftershocks after a major earthquake, then the 
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cycle could re-start at the search-and-rescue stage, bringing back those tasks carried out 

during that stage. 

3.1.2.4 Human Learning Model 

We equip our agents to be able to learn like real-world humans, which helps us maps the 

real world more accurately. We focus on two types of learning: (1) learning by doing and 

(2) learning by observation. We extend our learning models from Chen et al. (2017). 

Learning by doing. Learning by doing Chen et al. (2017) is learning by 

performing a given task at hand that leads to an increase in the level of expertise of the 

capability used while performing that task. Roediger III and Smith (2012); Wifall et al. 

(2014) show that different tasks have different learning curves. For example, some tasks 

might require a steep learning curve but once the skills are acquired it is easier to execute 

these tasks (like learning to play a musical instrument), whereas on the other hand, some 

tasks might be quick to pick-up but difficult to become an expert at (playing chess, for 

example). Also, when an agent has a low level of expertise in a given skill, it tends to 

learn lesser, but as and how its expertise increases its learning rate increases as well. 

However, this rate increases only up to a certain peak point after which it learns lesser. 

This makes the learning curve a downward facing parabola. Thus, for an agent 𝑎’s gain 

via learning by doing for performing a subtask, with skill s with a learning curve capped 

by 𝛼𝑑𝑜, using its capability 𝑐𝑎𝑝𝑎,𝑠, we have: 

𝛥𝑑𝑜𝑐𝑎𝑝𝑎,𝑠 = 𝑐𝑎𝑝𝑎,𝑠̇ = 𝛼𝑑𝑜 ∙ 𝑐𝑎𝑝𝑎,𝑠 ∙ (1 − 𝑐𝑎𝑝𝑎,𝑠)   (3.2) 
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Learning by observation. Learning by observation Chen et al. (2017) is based 

on Bandura’s Social Cognitive Theory Bandura (1968), which states that there are four 

stages involved in learning by observation: (1) Attention, (2) Retention, (3) Initiation, and 

(4) Motivation. Our model borrows clues from pattern to model the learning by 

observation. A user pays attention to the performance of its teammates while working on 

the same task, and in updates its capability after the observation to retain it in memory. 

Initiating the observed skill can only be possible if the agent is at a comparable level of 

expertise as the agent it is learning from. The learning gain follows the same sigmoidal 

curve as for learning by doing. Thus, we model the learning gain function of an agent 𝑎 

observing a teammate 𝑏 performing subtask 𝜏𝑙 using skill 𝑠 as follows: 

𝛥𝑜𝑏𝑠𝑐𝑎𝑝𝑎,𝑠 = {  
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
�̇� 0 ≤ 𝑞𝑡𝑠 − 𝑐𝑎𝑝𝑎,𝑠 < 𝛽     (3.3) 

where 𝛽 is the threshold under which 𝑞𝑡𝑠 − 𝑐𝑎𝑝𝑎,𝑠 is small enough for learning by 

observation to take place.  Note that in Equation 3.3 above, we use 𝑞𝑡𝑠 − 𝑐𝑎𝑝𝑎,𝑠 to denote 

the difference between the capability of the learner agent a (i.e., 𝑐𝑎𝑝𝑎,𝑠) and the 

capability of the performing agent b (i.e., 𝑞𝑡𝑠), instead of using 𝑐𝑎𝑝𝑏,𝑠.  This is because of 

two reasons.  First, using 𝑐𝑎𝑝𝑏,𝑠 would mean that agent a has information or knowledge 

of the performing agent b’s capability. Since we are dealing with no or minimal pre-

coordination as discussed earlier in Chapter 1, we aim to constrain the environment such 

that this information is not shared so readily.  Second, when an agent is successfully 

assigned to use its capability or skill s for a subtask 𝜏𝑙, even if its skill level is higher than 

the required quality threshold of the subtask, 𝑞𝑡𝑠, we assume that the agent would only 
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contribute at least that level of skill to complete the subtask.  Thus, we use 𝑞𝑡𝑠 in 

Equation 3.3 above. 

The learning gain �̇� for observational learning is modeled as: 

�̇� = 𝛼𝑜𝑏𝑠 ∙ (𝑞𝑡𝑠 − 𝑐𝑎𝑝𝑎,𝑠) ∙ (𝛽 − (𝑞𝑡𝑠 − 𝑐𝑎𝑝𝑎,𝑠))    (3.4) 

where 𝛼𝑜𝑏𝑠 refers to the cap for the corresponding learning curve for observational 

learning for that capability. If the level of capability between the learner agent and the 

performing agent is too small or too large, then learning by observation is not effective.  

Here, we use 𝛽 as the upper bound on this difference: if the difference is greater than 

𝛽,   then the gain from learning by observation is zero.  

Also, note that in the model, if an agent is already capable of performing a 

subtask, then the agent does not learn by observing another agent performing that 

subtask.  

3.1.2.5 Probabilistic Modelling 

Section 3.1.2.3 reflected upon the openness in the environment introduced on account of 

agent and task uncertainty. Task openness causes uncertainty in the environment, because 

the agents are not sure if the task they successfully executed will be available in the 

environment or not during the next iteration. Even after an agent has won a bid for a 

given task, the agent cannot be sure if the task will be allocated since it is unsure of the 

agents that will leave or enter the environment. There can be chances that more qualified 

agents enter the environment causing the agents to remodel their probabilities of winning 
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a bid, or agents that come together to form teams might leave which might cause the 

agents left behind to remodel their probabilities of winning bids. 

 To address these uncertainties, Chen et al. (2015) model the probability that the 

agent will successfully get assigned task  𝑇 ∈ 𝔗 for its user in the current round of 

bidding as a probability comprising of three parts: (1) the probability that the agent will 

win a submitted bid, 𝑃𝑤𝑖𝑛𝐵𝑖𝑑(𝑇) (i.e., the agent is one of the top 𝑛𝑘 bidders for some 

subtask 𝜏𝑘), (2) the probability that the task will be auctioned off, 𝑃𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑(𝑇|𝑤𝑖𝑛𝐵𝑖𝑑) 

(i.e., enough agents bud on the task to form a collaborative team), conditioned on the 

event that the agent wins the bid, and (3) the probability of successfully completing a 

task, 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝑇|𝑤𝑖𝑛𝐵𝑖𝑑, 𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑), conditioned on it being auctioned off to the agent. 

Task rewards are composed of two parts: (1) Rewards earned by successfully completing 

a task, and (2) Gains acquired through learning which will lead to higher rewards in the 

future. Thus, the total utility for an agent 𝑎 for a given task 𝑇 is calculated as the sum of 

the rewards earned and the gains in the utility from learning: 

𝑈(𝑎, 𝑇) = 𝑅(𝑎, 𝑇) + 𝑈𝐿𝑒𝑎𝑟𝑛(𝑎, 𝑇)   (3.5) 

Thus, by introducing openness in Equation 3.5, the expected utility under uncertainty is 

calculated as: 

      𝐸[𝑈(𝑎, 𝑇)] = 𝑃𝑤𝑖𝑛𝐵𝑖𝑑(𝑇) ⋅ 𝑃𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑(𝑇|𝑤𝑖𝑛𝐵𝑖𝑑) ⋅ 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝑇|𝑤𝑖𝑛𝐵𝑖𝑑, 𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑) ⋅

 (𝐸[�̂�(𝑎, 𝑇)] + 𝐸[𝑈𝐿𝑒𝑎𝑟𝑛(𝑎, 𝑇)])  (3.6) 
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The probabilities in Equation 3.6 are updated throughout the presence of the agent in the 

environment. They are updated based on the experience an agent has with the tasks and 

teammates in the environment for the given auction rounds.  

To learn 𝑃𝑤𝑖𝑛𝐵𝑖𝑑(𝑇),  the agent takes into consideration its history of bids cast. If 

an agent is on a winning streak for a given task, then it understands that it is one of the 

strongest bidders for the given task, thus making it likely that it will win a bid on the task 

𝑇 as well.  On the other hand, if an agent happens to lose a bid quite often, then it learns 

that it is not wise for it to continue to bid for that task as the probability will be low, 

rendering the expected utility low. 

Based on this intuition, the agent considers the 𝑠-most similar tasks 𝑆(𝑇) that it 

previously bid on (where task similarity is calculated using the Euclidian distance 

between the 𝑞𝑡𝑘 and 𝑛𝑘 values required for the subtasks 𝜏𝑘 ∈ 𝑇).  Within these 𝑠 tasks, it 

considers the proportion of won bids: 

𝑃𝑤𝑖𝑛𝐵𝑖𝑑(𝑇) =
1

|𝑆(𝑇)|+𝜖 𝑤𝑖𝑛𝐵𝑖𝑑
′ ∑ 𝑤𝑜𝑛𝐵𝑖𝑑(𝑇′)𝑇′∈𝑆(𝑇) + 𝜖𝑤𝑖𝑛𝐵𝑖𝑑   (3.7)  

where, 𝑤𝑜𝑛𝐵𝑖𝑑(𝑇) signifies if the bid was won (1) or not (0),  𝜖𝑤𝑖𝑛𝐵𝑖𝑑 and 𝜖 𝑤𝑖𝑛𝐵𝑖𝑑
′  are, 

small constants providing a non-zero (albeit small) probability of winning a bid, even if 

the agent has never previously won a similar task (noting that its situation might have 

changed due to human learning and agent openness). 

To learn 𝑃𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑(𝑇|𝑤𝑖𝑛𝐵𝑖𝑑) a similar approach to the above is followed 

wherein, the similar tasks for which an agent won a bid and also the task was auctioned 
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off as there were sufficient number of teammates present to accomplish the task is 

calculated as: 

𝑃𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑(𝑇|𝑤𝑖𝑛𝐵𝑖𝑑) =
1

|𝑆(𝑇)| + 𝜖 𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑
′ ∑ 𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑𝑂𝑓𝑓(𝑇′)

𝑇′∈𝑆(𝑇)

 

+𝜖𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑      (3.8) 

where, 𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑𝑂𝑓𝑓(𝑇) signifies if the task 𝑇 is auctioned off (1) or not (0), 𝜖𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑 

and 𝜖 𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑
′  are small constants providing a non-zero (albeit small) probability of the 

task being auctioned. 

To learn 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝑇|𝑤𝑖𝑛𝐵𝑖𝑑, 𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑), a similar approach to the above is 

followed wherein, the similar tasks for which an agent won a bid and the task that got 

auctioned off and successfully completed as well are taken into consideration. 

𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝑇|𝑤𝑖𝑛𝐵𝑖𝑑, 𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑) is calculated as: 

𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝑇|𝑤𝑖𝑛𝐵𝑖𝑑, 𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑) =
1

|𝑆(𝑇)| + 𝜖 𝑠𝑢𝑐𝑐𝑒𝑠𝑠
′

∑ 𝑠𝑢𝑐𝑐𝑒𝑒𝑑(𝑇′)

𝑇′∈𝑆(𝑇)

 

               +𝜖𝑠𝑢𝑐𝑐𝑒𝑠𝑠   (3.9) 

where, 𝑠𝑢𝑐𝑐𝑒𝑒𝑑(𝑇) signifies if the task 𝑇 was successfully completed (1) or not (0), 

𝜖𝑠𝑢𝑐𝑐𝑒𝑠𝑠 and 𝜖 𝑠𝑢𝑐𝑐𝑒𝑠𝑠
′  are small constants providing a non-zero (albeit small) probability 

of the task being successfully completed. 

3.2 Approach to analysis 

The above framework is used to set up the environment for our investigation stage. We 

carried out a series of experimentations with different permutations and combinations of 
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Agent and Task Diversity, and Agent and Task Openness and studied their impacts on the 

environment as well as the agent reasoning and performance. We took detailed 

investigations into the results at regular intervals of the total time period the 

experimentation was run for. This helped us study the environment and agent activities at 

finer details and hence notice the trends which wouldn’t have been visible if the results 

had only been viewed from a higher level. We investigated the impacts of diversity and 

openness on a number of factors like the tasks auctioned off, the learning gains, the types 

of teams and teammates, etc. which is described in great details in the following chapter, 

Chapter Experimentation and Analysis. 

 Having examined the results and the trends at finer levels helped us realize that 

Equation 3.8 could be enhanced further to be able to tackle diversity. This has ultimately 

led us to proposing a new solution which is presented in Section 3.3 and the results of this 

new solution are described in detail in Chapter 5. 

 

3.3 Tackling Diversity with New Solution 

 

Equation 3.8 is designed in such a way that it allows an agent to learn not to bid for tasks 

that did not get auctioned off despite the agent winning the bid. This can prove to be a 

shortcoming in an agent- and task-diverse environment. Since in a task- and agent-

diverse environment, there is a variety of tasks and agents present. Because of this variety 

of tasks and agents, agents are split across by bidding for different tasks, instead of 

coming together to work on common tasks. Thus, most of the agents win the bids they 
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cast but do not get the tasks assigned on account of insufficient number of teammates 

targeting the same tasks. But Equation 3.8 teaches these agents to stop bidding for tasks 

for which they won bids but never got auctioned off. Thus, most of the agents abandon 

those bids and look for new tasks to bid on. Diversity causes many possible permutations 

for the agents to pick the next task, which will then cause them to have insufficient 

number of teammates. In effect, this causes the agents to keep chasing each other and in 

return reduces the number of tasks that are auctioned off. A reduction of number of tasks 

auctioned off also impacts the learning gains of agents since they do not work on tasks 

and hence do not learn by doing and observing their teammates. 

Thus, to make Equation 3.8 suitable for both open and diverse environments, we 

add an additional entity to this equation; the summation of the fraction of teammates that 

won their bid for the given task, irrespective of whether the task was auctioned off or not. 

Note, if the task was auctioned off then the value of the fraction is 1. Therefore, we 

modify Equation 3.8 as shown in Equation 3.10 and we now term this equation as 

𝑃𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑+(𝑇|𝑤𝑖𝑛𝐵𝑖𝑑) since it is an enhancement of 𝑃𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑(𝑇|𝑤𝑖𝑛𝐵𝑖𝑑): 

 

𝑃𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑+(𝑇|𝑤𝑖𝑛𝐵𝑖𝑑) =
1

2∗|𝑆(𝑇)|+𝜖 𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑
′ ∑ (𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑𝑂𝑓𝑓(𝑇′)𝑇′∈𝑆(𝑇) +

𝑡𝑒𝑎𝑚𝑚𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜(𝑇′)) + 𝜖𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑             (3.10) 

 

where, 𝑡𝑒𝑎𝑚𝑚𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜(𝑇′) signifies the ratio of the total number of subtasks that were 

successfully assigned—for which an agent successfully won its bid—to the total number 

of subtasks required for the task 𝑇. It is a metric which shows how close a team was to 

filling in all the subtasks and getting a task auctioned off.  The higher the value of this 
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metric, the higher the number of subtasks is successfully assigned. Note, in the worst-

case scenario, all the similar tasks will not be auctioned off because of only one (or zero) 

agent bidding on the task, making the probability ~0. The best-case scenario is when all 

the similar tasks will be auctioned off because all the teammates were present, making 

the probability 1. 

Thus, by adding this new metric, we now modify Equation 3.8, such that it does 

not just allow agents to learn to start bidding for different tasks—when an agent is able to 

win its bids but the tasks are not getting auctioned off—but also takes into consideration 

how close a task was getting auctioned off, in terms of finding sufficient number of 

teammates to fulfill all its required subtasks.  If the task was close to getting sufficient 

number of teammates to get the task auctioned off then the probability of having the task 

auctioned off should be higher than one that was missing a large number of teammates.  

This should lead to agents being more persistent in trying those “close” misses instead of 

abandoning them.  Conversely, if there happens to be a task that had many unassigned 

subtasks, then Equation 3.10 should guide the agents to bid for different tasks. Thus, 

instead of chasing each other around, Equation 3.10 could now help channel stray agents 

to work on common tasks, thus addressing the impacts of diversity in open environments.  

As shown in Chen et al. (2015), Equation 3.8 can be effective in open environments, and 

since Equation 3.10 is an extension of it, this new approach should still be fit to work in 

open environments. 
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Chapter 4 

 

EXPERIMENTATION AND INVESTIGATIONS 
 

 

In this chapter, we present the results of the experiments carried out with the objective of 

investigating the impact of openness and diversity on team formation and how agents 

learn to form teams over time. As seen from the Chapter Introduction, team formation is 

a complex task made even more challenging in an open and diverse environment. With a 

view of analyzing these impacts, our investigations are based on data collected from a set 

of simulation runs using the multiagent system framework described in Chapter 3.   

 For our simulation runs, as shown later in Section 4.1, we used multiple 

configurations in terms of Agent Diversity (AD), Task Diversity (TD), Agent Openness 

(AO), and Task Openness (TO).  For each of these parameters, we used multiple values.  

For example, AO was set to 0, 0.05, and 0.1 in different configurations.  Thus, each 

configuration is a unique combination of these parameters.  For each configuration, we 

conducted multiple runs (e.g., 100) to obtain the average2 performance, which included 

the average number of tasks completed, the average rewards per tick, the average rewards 

per task, the average learning gains per tick, and the average learning gains per task.  For 

each run, there were multiple agents and tasks in the environment for some duration 

measured in ticks (e.g., 1000 ticks).  We collected data for each agent during each tick.  

                                                 
2 Throughout this chapter, average refers to the average over all the 100 runs for each of the 
configurations. 
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We also collected data on tasks—and their subtasks—and teams.  Details of these are 

provided later in Chapter Implmentation.  

In this Chapter, Section 4.1 gives a detailed overview of our experiment setup. 

Section 4.2 analyzes how diversity and openness impact agent performance. To do so we 

take a look at the average rewards per tick—the most important performance metric as 

agents were designed to maximize expected utility or rewards over time, as discussed 

earlier in Chapter 3—and the impacts of diversity and openness on this metric.  We also 

establish the relationships between the average rewards per tick and the average number 

of tasks auctioned off (i.e., the number of tasks completed) such that we focus on the 

average number of tasks auctioned off to subsequently investigate how the impacts come 

about.  Therefore, the rest of the chapter—Sections 4.3, 4.4, and 4.5—investigates the 

impacts of diversity and openness on team formation and how agents learn to form teams, 

with respect to the number of tasks auctioned off.  

4.1 Experiment Setup 

This section gives an overview of our experimentation environment setting. We carried 

out our experiments under the following environment configuration shown in Table 4.1.  

Note that we denote each AD configuration as a triplet of agent type percentages in the 

environment, represented as G-S-A percentages. For example, 25-25-50 signifies that 

there are 25% Generalists, 25% Specialists, and 50% Apprentices in the environment. In 

our investigation on the impacts of agent diversity as discussed in Section 4.2 later, we 

used the following AD configurations:  25-25-50, 0-50-50 (no Generalists, but 50% 
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Specialist and 50% Apprentices), and 50-0-50 (no Specialists, but 50% Generalists and 

50% Apprentices). For these configurations (recall, the metrics defined in Chapter 

Methodology), we define 𝜇𝑙𝑜𝑤 = 0.15, 𝜇𝑚𝑒𝑑 = 0.5, and 𝜇ℎ𝑖𝑔ℎ = 0.85 for the sampling 

of capability skill levels.  𝑘𝑙𝑜𝑤= 2, 𝑘𝑚𝑒𝑑  = 6, and 𝑘ℎ𝑖𝑔ℎ = 10 for the sampling of number 

of agent capabilities. We use 𝜎𝑙𝑒𝑣𝑒𝑙 = 0.175 for sampling capability levels and 𝜎𝑐𝑜𝑢𝑛𝑡 = 1 

for sampling number of agent capabilities to ensure little overlap between each agent 

types’ distributions. 

We took into consideration three levels of task diversity (TD) for our 

experimentation, High, Medium, and Low. We calculated each of the three levels of TD 

as shown in Equation 4.1 (Recall the metrics were defined in Chapter Methodology): 

𝐿𝑜𝑤 =  𝐶5
9      (a) 

      𝑀𝑒𝑑𝑖𝑢𝑚 =  𝐶5
10    (𝑏)                                                         

             𝐻𝑖𝑔ℎ =  𝐶5
11     (c)    (4.1) 

In the above,  𝐶𝑘
𝑛 means n choose k.  Thus, in the TD = High configuration, the 

tasks have the highest diversity as each task’s subtasks are randomly chosen from a pool 

of 11 subtasks, for example. 

In the following sections, one of the performance metrics that we will keep track 

of is the number of teams formed during each tick or iteration of the simulation. We use 

this term interchangeably with the percentage of tasks auctioned off or the percentage of 

tasks completed as teams are formed when every subtask under a given task is auctioned 
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off to an agent. An agent can be assigned to only one task per auction round to do one 

subtask. 

Configuration Parameters Values 

# Agents (Total population of agents) 100 

# Ticks (#Iterations of the simulation) 1000 

Agent Openness (AO) 0.0, 0.05, 0.1 

Task Openness (TO) 0.0, 0.05, 0.1 

Task Diversity (TD) Low, Medium, High 

Agent Diversity (AD) %Generalists-%Specialists-%Apprentices:  

25-25-50, 00-50-50 and 50-00-50 

Agent type Agent type 1: Generalist (G),  

Agent type 2: Specialist (S),  

Agent type 3: Apprentice (A) 

Number of Runs per Configuration 100 

Table 4.1. Configuration parameters of the environment in our simulations. 

 

4.2 Impacts of diversity and openness on agent performance 

This section helps us analyze the impacts of diversity and openness on the rewards earned 

per tick. Table 4.2 presents the average rewards earned per tick over the 100 runs for each 

of the AD = 25-25-50, 00-50-50, and 50-00-50, TD = Low, Medium, and High, and AO 

= TO = 0, 0.05, and 0.1, respectively. 

  AD = 25-25-50 AD = 00-50-50 AD = 50-00-50 

 TD Low Med High Low Med High Low Med High 

AO, 

TO 

0, 0 0.0035 0.0046 0.0070 0.0014 0.0025 0.0051 0.0024 0.0041 0.0065 

0.05, 0.05 0.0066 0.0067 0.0094 0.0029 0.0038 0.0069 0.0046 0.0053 0.0074 

0.1, 0.1 0.0068 0.0076 0.0095 0.0037 0.0056 0.0074 0.0049 0.0070 0.0086 

Table 4.2. Average rewards per tick (100 runs for each configuration) for AD = 25-25-50, 00-50-50, and 

50-00-50, TD = Low, Medium (Med), and High, and AO = TO = 0, 0.05, and 0.1, respectively, standard 

error = 0.0004. 

 

Diversity.    As seen from Table 4.2 we see that the average rewards per tick is 

the highest for the 25-25-50 AD configuration, followed by 50-00-50 and then 00-50-50, 
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for all three TD configurations. The 25-25-50 AD configuration performed the best since 

the diversity in agent types helped the agents learn a more varied set of capabilities at 

different levels of expertise and work on a wider variety of tasks. As discussed in Chapter 

Methodology, we referred to Bandura’s theory for calculating learning by observation. 

Based on Equation (3.3), we see that if the difference between an observer’s expertise 

level and a performer’s is too large or too small, then the observer does not benefit much 

from learning by observation. Thus, it is easier for an Apprentice to learn from a 

Generalist than it is for an Apprentice to learn from a Specialist. Thus the 50-00-50 (i.e., 

only Generalists and Apprentices) configuration did better than the 00-50-50 (i.e., only 

Specialists and Apprentices) configuration. It can also be observed that the average 

rewards earned per tick increased with the increase in the level of task diversity. This 

happened because, if the level of task diversity is low and agents do not find a suitable 

task then it is likely going to be difficult for them to find a task through the auction 

rounds. On the other hand, a high level of task diversity affords agents more opportunities 

to find suitable tasks and also get better at a wider variety of capabilities. Thus, we see 

that diversity—agent or task—does have an impact on agent performance. The higher the 

diversity is in an environment, in general, the higher is the average reward per tick 

earned. 

Openness.    Agents in the most open environment earned the highest rewards 

(AO, TO = 0.1, 0.1) followed by the comparatively less open environment (AO, TO = 

0.05, 0.05) and finally the environment with no openness (AO, TO = 0, 0). Openness 

presents agents with the opportunity to be able to work with new agents and in return be 
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able to learn a wider variety of capabilities at different levels of expertise. Openness also 

helps agents in finding new tasks that they are good at, which also provides more 

opportunities for them to sharpen their capabilities. On the other hand, in an environment 

with no openness, there are no new agents entering or no new tasks entering the 

environment, which restricts the agents to the same set of potential teammates and the 

same pool of tasks to consider. This restriction takes away the opportunity from the 

agents to get better at a wider variety of capabilities. Thus, openness also has an impact 

on agent performance. The average rewards earned per tick increases in general with the 

level of openness in our setup.  This confirms the findings reported in Chen (2017). 

 Interactions between Openness and Diversity.  When we looked at the average 

rewards per tick for AO = TO = 0, for AD = 25-25-50, 00-50-50, and 50-00-50, and 

across TD = Low, Medium, and High, we realized that the rates of rise of the average 

rewards per tick were much closer between Low and Medium TD (i.e., 0.0011, 0.0011, 

and 0.0017, across the three AD configurations, respectively.) and were farther apart 

between Medium and High TD (i.e., 0.0024, 0.0026, and 0.0024, across the three AD 

configurations, respectively). This pattern was consistent across all three AD and TD 

configurations in the absence of openness. Thus, there is a pseudo-linear relationship 

between AD and TD configurations and average rewards per tick particularly in the 

presence of diversity but without openness. However, the rates of rise of the average 

rewards earned per tick did not follow a linear pattern when openness was introduced 

with diversity.  From Table 4.2, again, we see that the average rewards per tick across the 

increasing levels of task diversity for AD = 25-25-50, for AO = TO = 0.05, and 0.1 did 
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not follow a consistent linear pattern. For example, the rates of rise of the average 

rewards per tick for AD 25-25-50, with AO = TO = 0.05 and 0.1, between Low and 

Medium were 0.0001 and 0.0008, respectively, and that between Medium and High were 

0.0027 and 0.0019, respectively. This shows that the impact caused by openness or 

diversity individually becomes less predictable when both together are present in the 

environment. This also helps support our claims made in Chapters 1 and 3 that openness 

when combined with diversity makes the environment more challenging for agents to 

reason with. 

Since our primary objective is to analyze the impacts of diversity and openness on 

the team formation and how agents learn to form teams, we are particularly interested in 

task-related metrics. For example, we look at the task assignments, the team makeup, and 

the type of agents that come together to form teams. To be able to analyze these task-

related metrics, we thus prefer to focus on investigating the tasks auctioned off. But, in 

order to be able to measure impacts on team formation we need to focus on the most 

important performance metric, which is the average rewards per tick as discussed above, 

since the agent reasoning was designed to maximize the expected utility over time.  Thus, 

here we seek to establish the relationship between the average rewards per tick and the 

average number (or percentage) of tasks auctioned off.  A positive correlation between 

these two metrics will help us use task-related metrics for our investigations that follow. 

With this in view, Tables 4.3, 4.4, and 4.5 present the correlation between the average 

rewards per tick and the average percentage of tasks auctioned off over time for AO = TO 
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= 0, 0.05, and 0.1, AD = 25-25-50, 00-50-50, and 50-00-50, and TD = Low, Medium, and 

High, respectively. 

TD = Low AD = 25-25-50 AD = 00-50-50 AD = 50-00-50 

(AO, TO) = (0, 0) 0.8940 0.8875 0.8843 

(AO, TO) = (0.05, 0.05) 0.8947 0.8674 0.8855 

(AO, TO) = (0.1, 0.1) 0.9582 0.9124 0.9236 

Table 4.3. Correlation between average rewards per tick and average percentage of tasks auctioned off for 

AO = TO = 0, 0.05, and 0.1, AD = 25-25-50, 00-50-50, and 50-00-50, and TD = Low, respectively. 

 

TD = Medium AD = 25-25-50 AD = 00-50-50 AD = 50-00-50 

(AO, TO) = (0, 0) 0.8974 0.8692 0.8867 

(AO, TO) = (0.05, 0.05) 0.9240 0.9339 0.9246 

(AO, TO) = (0.1, 0.1) 0.9874 0.9748 0.9853 

Table 4.4. Correlation between average rewards per tick and average percentage of tasks auctioned off for 

AO = TO = 0, 0.05, and 0.1, AD = 25-25-50, 00-50-50, and 50-00-50, and TD = Medium, respectively. 

 

TD = High AD = 25-25-50 AD = 00-50-50 AD = 50-00-50 

(AO, TO) = (0, 0) 0.9238 0.8874 0.8768 

(AO, TO) = (0.05, 0.05) 0.9785 0.9857 0.9785 

(AO, TO) = (0.1, 0.1) 0.9890 0.9886 0.9839 

Table 4.5. Correlation between average rewards per tick and average percentage of tasks auctioned off for 

AO = TO = 0, 0.05, and 0.1, AD = 25-25-50, 00-50-50, and 50-00-50, and TD = High, respectively. 

 

As observed from Tables 4.3, 4.4, and 4.5, we realize that the correlation between 

average rewards per tick and the average percentage of tasks auctioned off is high (all 

above 0.86). Given this high correlation and the observations of the impacts of diversity 

and openness on agent performance, for the rest of the chapter, to simplify our 

discussions, we will concentrate on the task-related metrics for our further investigations 

for analyzing the impacts of diversity and openness on the team formation and how the 

agents learn to form teams over time. 

 Now, to investigate the impacts of diversity and openness, we have the following 

three investigations (depicted in Figure 4.1) with respect to the task-related metrics:    
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Figure 4.1. Objectives of the three investigations carried out to analyze the impacts of diversity and 

openness on team formation. 

 

 

Investigation I: Impacts of Agent Diversity.    The primary purpose of this 

investigation is to help us analyze the impacts agent diversity has on the team formation, 

with respect to the number of tasks completed (or auctioned off).  To help us understand 

how diversity plays a role, we further look at the team makeup—including homogeneous 

and heterogeneous teams—and at how agent types are promoted, say, from Apprentice to 

Generalist, from Generalist to Specialist, as presented in Section 4.3.2.1. Note that type 

promotion is an indication that an agent learned and became better at its capabilities.  

This allows us to look at an agent’s potential teammates and competitors. 

Investigation II: Impacts of Task Diversity.    The primary purpose of this 

investigation is to help us analyze the impacts of task diversity has on the team formation, 

Investigation I: 

Impacts of Agent 
Diversity

•On Team Formation: This will help us understand the role that 
diversity plays in team makeup.

•On Agent Type Promotions: This will help us analyze whether 
diversity has an impact on the learning gains of the agents, 
which in turn leads to agent type promotions.

Investigation II: 

Impacts of Task 
Diversity

•On Average Percentage of Tasks Auctioned Off: This will help 
us analyze whether different types of tasks influence the 
percentage of tasks auctioned off. 

Investigation III: 

Impacts of Agent and 
Task Openness with 
Agent/Task Diversity

•On Average Percentage of Missed opportunities: This will help 
us analyze wheather openness and task diversity have an impact 
on the average percentage of the missed opportunities.

•On Average Learning Gains: This will help us analyze the 
impacts of openness and agent diversity on the evolution of 
agents.
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with respect to the number of tasks completed (or auctioned off).  To help us understand 

how diversity plays a role, we further look at the average percentage of tasks auctioned 

off under the configurations with different types of tasks present in the environment.  

Investigation III: Impacts of Combining Openness with Agent/Task 

Diversity.    Note that Chen (2017) already established that both agent and task openness 

have an impact on team formation and how agents learn to form teams.  Thus, here in this 

Investigation, we did not treat agent and task openness separately.  Further, as argued in 

Chapters 1 and 3, we suspected that there might be complications brought on by 

combining openness with diversity.  Thus, we put forth here an initial step towards 

understanding the impacts of combining openness and diversity, by focusing only on one 

diversity at a time. The primary purpose of this investigation is to help us analyze the 

impacts openness and task diversity has on the team formation, with respect to the 

average percentage of missed opportunities. We also take a look at the learning gains 

under openness and agent diversity to analyze the evolution of the agents.   

4.3 Investigation 1: Investigating the Impacts of Agent Diversity 

In this section, we focus on the impacts of agent diversity on team formation and the 

team makeup (Section 4.3.1), and on the impacts of learning and agent diversity (Section 

4.3.2).  Note, that in all of the following experiments in this Section, we used AD 

configurations 25-25-50, 50-0-50, and 0-50-50, and set TD = Medium, and AO = TO = 0. 

We set openness to zero so as to be able to focus on agent diversity completely, this is 

also the reason why the level of task diversity is set to Medium only. 
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4.3.1 Teammates and Impact of Agent Diversity on Team Formation 

First, we investigate the impact of diversity on the average number of tasks completed 

(i.e., the average number of tasks auctioned off).  This will help us understand how the 

teams were formed, thus helping us understand how diversity plays a role in the agent 

types that come together to form teams. We also want to investigate the impacts of a 

diversified team on learning and in return on team formations.  

4.3.1.1 Teammate Statistics and Agent Diversity 

This Section presents the results of the statistics of the various teams formed and the 

tasks allocated under each of the three AD configurations as shown earlier in Table 4.1. 

Overall Statistics. Table 4.6 presents the average number of tasks auctioned off 

for each AD configuration: 25-25-50, 00-50-50, and 50-00-50, with TD = Medium and 

no openness.  Note, average throughout this chapter is the average over the 100 runs for 

each of the configuration. As seen from Table 4.6, the highest average number of teams 

(i.e., average number of tasks auctioned off) is formed when all the three agent types (G, 

S and A) are present in the environment, i.e., in the 25-25-50 configuration. Specialists 

have certain expertise at which they are better as compared to the other two agent types. 

For tasks at which Specialists do not have the qualifying expertise a Generalist may step 

up to win its bid for it. When most of the Generalists and Specialists are allocated to tasks 

that benefit them the most, the remaining subtasks could be allocated to the Apprentices 

(if they qualify). These Apprentices could learn from a diverse agent set and improve 
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their expertise through learning, in return proving to be more beneficial to the 

environment. 

 Agent Diversity Configurations 

25-25-50  00-50-50 50-00-50 

# of Tasks Available  1,000,000 1,000,000 1,000,000 

# of Tasks Not Auctioned Off 

(%) 

392,101.7650 

(39.21%) 

496,107.9820 

(49.61%) 

417,022.6000 

(41.70%) 

# of Tasks Auctioned off (%) 607,799.5654 

(60.78%) 

503,809.1183 

(50.38%) 

582,912.0070 

(58.29%) 

Table 4.6. Average statistics about the tasks for each AD configuration (25-25-50, 00-50-50, and 50-00-

50), with TD = Medium, and AO = TO = 0, standard errors = 0.0005. 

 

The average number of teams formed (i.e., average number of tasks auctioned off) 

in the 00-50-50 and 50-00-50 configurations, where either Generalists or Specialists are 

absent, is lower than that in the 25-25-50 configuration. Also, it can be seen that the 

average number of teams formed in 00-50-50 is lower than that in 50-00-50. This is 

because of two reasons.  First, as discussed in Chapter Methodology, we referred to 

Bandura’s theory for calculating learning by observation. Based on Equation (3.3), we 

see that if the difference between an observer’s expertise level and a performer’s is too 

large or too small, then the observer does not benefit much from learning by observation. 

Thus, it is easier for an Apprentice to learn from a Generalist as compared to an 

Apprentice learning from a Specialist. Second, though a Specialist has higher level of 

expertise than a Generalist in a particular capability, a Generalist is qualified or fit for a 

wider variety of capabilities3 compared to a Specialist.  Thus, when an Apprentice is 

                                                 
3 Note that the concept of “wide variety of capabilities” means that an agent has a large number of 
capabilities with non-zero and decently high level of expertise.  
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teamed up with other Generalists for a task, it will have a higher chance of learning by 

observation more diverse capabilities.   

To further understand the impact on how agents, form teams to solve tasks, let us 

look at also how they bid for tasks.  First, we will refer to the phenomenon of “bidding 

for a wider variety of tasks” further.  This means that the agent bids for different tasks 

over time rather than bidding for the same task repeatedly. That bidding for a wider 

variety of tasks is possible because of two situations: (1) the agent learns and expands its 

number of capabilities of non-zero level of expertise, and (2) the agent learns and 

increases its level of expertise in some of its capabilities.  These situations allow an agent 

to model and realize over time that its chance of winning a bid for a task has increased or 

reduced.  This drives the agent’s selection of the best task to bid for at each iteration.  

Now, on account of being fit (or qualified to perform) at a wider variety of capabilities, a 

Generalist can bid for a wider variety of tasks as compared to a Specialist. This in return 

increases the chance of a Generalist being considered for a wider variety of tasks as 

compared to a Specialist. Indeed, upon further investigation, we found that Generalists 

bid for a wider variety of tasks 62% of the times, as compared to Specialists bidding for a 

wider variety of tasks 57% of the times.  In summary, this helps Apprentices become 

better at a wider set of capabilities—indeed, 98% of Apprentices showed that they had a 

wider capability set at the end of the simulation—and in return start bidding for a wider 

spectrum of tasks, leading to more tasks being auctioned off overall in the system. 

Team Makeup.   Here we investigate further into which agent types came 

together to form teams. Table 4.7 presents the average number and the average 
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percentage of teams formed by different agent types, under all three AD configurations 

(25-25-50, 00-50-50, and 50-00-50). To help with our analysis, we also identify 

homogeneous teams where there was only one type of agents on a team, and 

heterogeneous teams where there were two or more agent types present. 

Total # of 

teams (%) 

25-25-50 00-50-50 50-00-50 

G only 58,104.6940 (9.56%) 0 224,592.8510 (38.53%) 

S only 53,304.0000 (8.77%) 164,877.0004 (32.72%) 0 

A only 48,441.8302 (7.97%) 99,924.1769 (19.83%) 72,222.2888 (12.39%) 

Total # of 

homogeneous 

teams 

159,85.5242 (26.27%) 264,801.1770 (52.56%) 296,815.1400 (50.94%) 

G and S only 153,408.1000 (25.24%) 0 0 

G and A only 47,165.5102 (7.76%) 0 286,097.0192 (49.08%) 

S and A only 29,478.2262 (4.85%) 239,055.3243 (47.44%) 0 

G, S and A only 217,897.4290 (35.85%) 0 0 

Total # of 

heterogeneous 

teams 

447,949.2650 (73.72%) 239,055.3243 (47.44%) 286,097 (49.08%) 

Table 4.7 Average (over the 100 runs) Count and percentage of the teams formed by the different Agent 

types for each AD configuration (25-25-50, 00-50-50, and 50-00-50), with TD = Medium, and AO = TO = 

0, standard error = 0.0004. 

As seen from Table 4.7 it is interesting to see how Apprentices, with very low 

level of expertise in their capabilities, especially in the beginning in the simulation, still 

manage to complete tasks on their own (i.e., under “A only”).  Upon further 

investigation, we realize that all of the tasks that only had Apprentices as teammates had 

a low expertise level requirement and hence all the bidders were of the type Apprentice, 

whereas the Generalists and/or Specialists available in the environment had submitted 

their bids for tasks that required level of expertise suiting their skillset.  Note that the 

level of Task Diversity (TD) here was set at Medium and the AO and TO are both set to 

0.  With the availability of tasks requiring capabilities at different levels of expertise, all 
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agent types had a chance to bid, win, perform tasks, and learn by doing and observation 

and improve further.  

 We also see that Apprentices also tried to compete with Generalists and 

Specialists for tasks. For example, in the 25-25-50 AD configuration, out of all the teams 

that were formed with only Generalists and Specialists (total of 153,408.1000 average 

teams, shown in Table 4.7), 52% of these successfully auctioned off tasks actually also 

received bids from Apprentices4.  However, the Apprentice bidders were not allocated 

any of the subtasks because of their lower expertise levels as compared to the Generalist 

and Specialist bidders’. Thus, even though an Apprentice qualified for a certain subtask, 

there was a Generalist or Specialist that was more qualified and ended up winning the bid 

in these situations. 

 One interesting finding from Table 4.7 is that, for the AD 25-25-50 configuration, 

the average number of heterogeneous teams was more than the average number of 

homogeneous teams. One reason for this is that the learning gain is higher in a 

heterogeneous team as compared to a homogeneous team. Since a heterogeneous team 

has high diversity in the capabilities and levels of expertise in its members, one can learn 

from multiple types of agents through observation as compared to when in a 

homogeneous team. To further investigate this, Figure 4.2(a) shows the average learning 

by observation gain for the homogeneous versus the heterogeneous teams, for AD 25-25-

                                                 
4 Note that an agent should be able to learn and model the probability of winning a bid for a particular 
task as time progresses and thus avoid bidding for a task that it cannot win with its bid.  However, in this 
case where the Apprentices submitted these bids and competed with other, more-capable agents, the 
Apprentices did so as these were the only tasks that they were qualified for. 
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50.  As seen from Figure 4.2(a) the average learning gain for heterogeneous teams was 

higher than that for homogeneous teams. Thus, it is also possible for agents to bid for 

tasks that require more diverse capabilities—involving heterogeneous members—in order 

to reap benefits from learning, and thereby forming more heterogeneous teams over time. 

We see similar trends from Figure 4.2(b) and Figure 4.2(c) for AD configurations 00-50-

50 and 50-00-50 respectively. 

 

(a) AD 25-25-50                                (b) AD 00-50-50 

 

(c) AD 50-00-50 

 

Figure 4.2. Average gains from learning by observation for homogeneous and heterogeneous teams for all 

three AD configurations (25-25-50, 00-50-50, and 50-00-50), with TD = Medium, and AO = TO = 0, p < 

0.0001. 

 

Based on the above understanding, one would expect that Generalists should 

dominate the teams as a member in the number of tasks solved.  To reassure us of this 



84 
 

expectation, we look at the average dominant agent types.  An agent type is dominant in a 

heterogeneous team if there are more members of that agent type than the others 

combined in the team. Table 4.8 presents the average number of times a given agent type 

is dominant in a heterogeneous team. Note that we exclude homogeneous teams from 

Table 4.8.  As seen from Table 4.8, Generalists are the highest average number of 

dominants.  This is a really re-assuring finding. Most of the subtasks within a task are 

taken up by Generalists, since they are the ones having a better skillset along with a 

decent level of expertise in this skillset, at a wider variety of tasks compared to an 

Apprentice and a Specialist. 

# teams under 

dominant agent types 

(% of these teams) 

25-25-50 00-50-50 50-00-50 

G 372,839.1926 (49.18%) 0 (0) 173,736.0037 (45.32%) 

S 137,162.0006 (18.09%) 72,362.2273 (32.01%) 0 (0) 

A 48,759.1473 (6.43%) 34,881.1545 (15.43%) 14,354.2033 (3.74%) 

Table 4.8. Average (over the 100 runs) number of teams formed by corresponding dominant agent type for 

each AD configuration (25-25-50, and 00-50-50, and 50-00-50, with TD = Medium, and AO = TO = 0, 

standard error = 0.0004. 

 

4.3.1.2 Teammate Statistics over Time and Agent Diversity 

This Section presents teammate statistics over the entire simulation duration to allow us 

to observe the evolution or dynamics of how different agent types formed teams.  Thus, in 

contrast of the overall statistics presented in Section 4.3.1.1, here we look at the results 

after each 100-tick interval.  Here, we first take a look at the task related statistics over 

time.  And then we analyze the type of agents that come together to form teams over 

time. 
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Overall Statistics: Tasks Auctioned Off over Time. This section presents the 

task-related statistics for all three AD configurations, at a finer level. By observing the 

tasks at every 100-tick interval we can analyze how the average number of tasks 

auctioned off changes over time.  To simplify our presentation, here we focus only on the 

average percentage of tasks auctioned off. Figure 4.3 presents the average percentage of 

tasks auctioned off for each of the three AD configurations per 100th tick. We can see that 

the average percentage of tasks auctioned off increased over time for all three AD 

configurations. This is because that, over time, the agents by learning acquired the level 

of expertise for the tasks available in the environment, and became capable of being 

assigned more tasks. 

 
Figure 4.3. Average percentage of tasks auctioned off for each of the three AD configurations (25-25-50, 

00-50-50, and 50-00-50) every 100th tick, with TD = Medium, and AO = TO = 0, p < 0.0001. 

Team Makeup over Time.  Here we want to investigate how the role of each 

agent type changes over time in the teams formed.  In the following, Figures 4.4-4.6 

display team makeup for the average number of tasks auctioned off over time for the 
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three AD configurations, respectively.  Tables 4.9-4.11 show the actual numbers 

correspondingly. 

           

Tic

k 

G only 

(%) 

S only 

(%) 

A only 

(%) 

Homogen

eous (%) 

G and S 

only (%) 

G and 

A only 

(%) 

S and A 

only 

(%) 

G, S and 

A (%) 

Heterogen

eous (%) 

Total 

100 12288.20 

(27.42%) 

6275.85 

(14.00%) 

7349.76 

(16.39%) 

25913.81 

(57.82%) 

6301.39 

(14.06%) 

5890.51 

(13.14%

) 

4564.99 

(10.18%

) 

2144.21 

(4.78%) 

18901.1 

(42.17%) 

44814.91 

200 7792.41 

(20.17%) 

7931.08 

(20.53%) 

6566.04 

(16.99%) 

22289.53 

(57.70%) 

7486.17 

(19.38%) 

2429.62 

(6.28%) 

2078.61 

(5.37%) 

4344.68 

(11.24%) 

16339.08 

(42.29%) 

38628.61 

300 8013.34 

(17.16%) 

7492.21 

(16.04%) 

6702.66 

(14.35%) 

22208.21 

(48.63%) 

10403.68 

(22.28%) 

2523.00 

(5.40%) 

2627.88 

(5.62%) 

8921.82 

(19.11%) 

24476.38 

(52.42%) 

46684.59 

400 7369.37 

(13.63%) 

7148.85 

(13.22%) 

5324.07 

(9.85%) 

19842.29 

(36.71%) 

12562.71 

(23.24%) 

3789.67 

(0.70%) 

2586.91 

(4.78%) 

15260.70 

(28.23%) 

34199.99 

(63.28%) 

54042.28 

500 5793.18 

(9.14%) 

6753.64 

(10.65%) 

4553.00 

(7.18%) 

17099.82 

(26.98%) 

16404.76 

(25.88%) 

4809.01 

(7.58%) 

2652.78 

(4.18%) 

22401.63 

(35.35%) 

46268.18 

(73.01%) 

63368.00 

600 6057.59 

(7.96%) 

6506.38 

(7.95%) 

5839.08 

(7.67) 

18403.05 

(24.18%) 

20425.97 

(26.84%) 

5248.33 

(6.89%) 

3113.48 

(4.09%) 

28901.16 

(37.98%) 

57688.94 

(75.81%) 

76091.94 

700 5110.80 

(0.60%) 

5427.73 

(6.38%) 

5635.17 

(6.62%) 

16173.7 

(19.01%) 

23220.45 

(27.30%) 

6279.77 

(7.38%) 

3706.69 

(4.35%) 

35655.39 

(41.93%) 

68862.30 

(80.98%) 

85035.47 

800 6171.23 

(5.98%) 

6206.60 

(6.02%) 

5151.34 

(4.99%) 

17529.17 

(17.01%) 

27765.04 

(26.94%) 

8746.06 

(8.48%) 

4651.42 

(4.51%) 

44350.71 

(43.04%) 

85513.23 

(82.98%) 

103042.4 

900 7102.48 

(6.04%) 

6222.44 

(5.29%) 

6506.86 

(5.54%) 

19831.78 

(16.88%) 

31892.76 

(27.16%) 

9702.56 

(8.26%) 

4983.64 

(4.42%) 

51012.75 

(43.44%) 

97591.71 

(83.11%) 

117423.49 

100

0 

6745.91 

(5.23%) 

6539.28 

(5.07%) 

6725.02 

(5.21%) 

20010.21 

(15.51%) 

34888.65 

(27.05%) 

9429.84 

(7.31%) 

5835.93 

(4.52%) 

58787.03 

(45.58%) 

108941.45 

(84.48%) 

128951.66 

Table 4.9. Average types of agents forming teams together for AD 25-25-50 configuration, with TD = 

Medium, and AO = TO = 0, p < 0.0001. 

 
Figure 4.4. Average (over 100 runs) number of teams—with different combinations of agent types—

formed for the AD 25-25-50 configurations, with TD = Medium, and AO = TO = 0, p < 0.0001. 
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Tick G 

only 

(%) 

S only 

(%) 

A only 

(%) 

Homogeneous 

(%) 

G 

and 

S 

only 

(%) 

G 

and 

A 

only 

(%) 

S and A 

only (%) 

G, 

S 

and 

A 

(%) 

Heterogeneous 

(%) 

Total 

100 0 6259.21 

(34.94%) 

6147.04 

(34.31%) 

12406.25 

(69.53%) 

0  0  5507.44 

(30.47%) 

0 5507.44 

(30.47%) 

17913.69 

200 0 8530.65 

(49.25%) 

5485.32 

(31.67%) 

14015.97 

(80.93%) 

0  0  3303.42 

(19.07%) 

0 3303.42 

(19.07%) 

17319.39 

300 0 7640.19 

(45.35%) 

4955.86 

(29.41%) 

12596.05 

(74.78%) 

0 0 4520.11 

(25.22%) 

0 4520.11 

(25.22%) 

17116.16 

400 0 6729.11 

(42.60%) 

3787.43 

(23.97%) 

10516.54 

(66.59%) 

0 0 5276.86 

(33.41%) 

0 5277.86 

(33.41%) 

15794.4 

500 0 6440.92 

(41.51%) 

3127.29 

(20.15%) 

9568.21 

(61.68%) 

0 0 5946.39 

(38.32%) 

0 5946.39 

(38.32%) 

15514.6 

600 0 6270.01 

(35.55%) 

3919.16 

(22.22%) 

10189.17 

(57.78%) 

0 0 7446.60 

(42.22%) 

0 7447.60 

(42.22%) 

17636.77 

700 0 6070.77 

(28.80%) 

3410.84 

(16.18%) 

9481.61 

(44.99%) 

0 0 11596.10 

(55.01%) 

0 11596.10 

(55.01%) 

21077.71 

800 0 7567.10 

(27.46%) 

3494.22 

(12.68%) 

11061.32 

(40.15%) 

0 0 16493.42 

(59.85%) 

0 16493.42 

(59.85%) 

27554.74 

900 0 8613.44 

(24.42%) 

5491.30 

(15.57%) 

14104.74 

(40.00%) 

0 0 21160.13 

(60.00%) 

0 21160.13 

(60.00%) 

35264.87 

1000 0 9855.87 

(24.12%) 

5001.70 

(12.24%) 

14857.57 

(36.38%) 

0 0 25993.25 

(63.62%) 

0 25994.25 

(63.62%) 

40851.82 

Table 4.10. Average types of agents forming average number of teams together for AD 00-50-50 

configurations, with TD = Medium, and AO = TO = 0, p < 0.0001. 

 
Figure 4.5. Average types of agents forming average number of teams together for AD 00-50-50 

configurations, with TD Medium, and AO = TO = 0, p < 0.0001. 
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Tick G only 

(%) 

S 

only 

(%) 

A only 

(%) 

Homogeneo

us (%) 

G 

and 

S 

only 

(%) 

G and A 

only (%) 

S 

and 

A 

only 

(%) 

G, 

S 

and 

A 

(%) 

Heterogene

ous (%) 

Total 

100 15068.23 

(52.76%) 

0 6013.00 

(21.05%) 

21081.23 

(73.83%) 

0 7476.53 

(26.17%) 

0 0 7476.53 

(26.17%) 

28557.76 

200 10336.00 

(52.48%) 

0 5384.12 

(27.33%) 

15720.12 

(79.82%) 

0 3975.21 

(20.18%) 

0 0 3975.21 

(20.18%) 

19695.33 

300 10719.65 

(49.44%) 

0 5327.87 

(24.57%) 

16047.52 

(74.03%) 

0 5631.19 

(25.97%) 

0 0 5631.19 

(25.97%) 

21677.71 

400 10531.80 

(44.87%) 

0 4165.34 

(17.74%) 

14697.14 

(62.63%) 

0 8772.94 

(37.37%) 

0 0 8772.94 

(37.37%) 

23470.08 

500 11159.11 

(40.93%) 

0 3393.87 

(12.44%) 

14552.98 

(53.38%) 

0 12710.14 

(46.62%) 

0 0 12710.14 

(46.62%) 

27263.12 

600 13578.39 

(39.15%) 

0 4597.00 

(13.25%) 

18175.39 

(52.42%) 

0 16502.29 

(47.58%) 

0 0 16502.29 

(47.58%) 

34677.68 

700 13767.66 

(33.72%) 

0 3888.17 

(9.52%) 

17655.83 

(43.26%) 

0 23164.32 

(56.74%) 

0 0 23164.32 

(56.74%) 

40820.15 

800 18364.93 

(35.45%) 

0 3902.92 

(7.53%) 

22267.85 

(42.99%) 

0 29534.21 

(57.01%) 

0 0 29534.21 

(57.01%) 

51802.06 

900 21179.22 

(33.09%) 

0 5529.32 

(8.64%) 

26708.54 

(41.74%) 

0 37283.93 

(58.26%) 

0 0 37283.93 

(58.26%) 

63992.47 

100

0 

23019.98 

(32.25%) 

0 5294.39 

(7.41%) 

28314.37 

(39.68%) 

0 43043.35 

(60.32%) 

0 0 43043.35 

(60.32%) 

71357.72 

Table 4.11. Average Types of agents forming teams together for AD 50-00-50 configurations, with TD = 

Medium, and AO = TO = 0, p < 0.0001. 
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Figure 4.6. Average types of agents forming average number of teams together for AD 50-00-50 

configurations, with TD = Medium, and AO = TO = 0, p < 0.0001. 

As seen from Figures 4.4, 4.5 and 4.6 as the simulation progressed, the agents 

started forming more heterogeneous teams than homogeneous teams.  For example, in 

AD 25-25-50, the average percentages of homogeneous and heterogeneous teams were 

57.82% and 42.17% at the 100th tick of the simulation and over time, they changed to 

26.98% and 73.01% at the 500th tick, and eventually reached 15.51% and 84.48% at the 

1000th tick, respectively.  We see similar trends for AD 50-00-50 and AD 00-50-50.   

Figure 4.7 presents the linear regressions for each of the three AD configurations 

for the average percentage of the number of homogeneous and heterogeneous teams 

formed timely. 
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(a) Homogeneous AD 25-25-50                               (b) Homogeneous AD 00-50-50 

 
(c) Homogeneous AD 50-00-50 

     
          (d) Heterogeneous AD 25-25-50                                  (e) Heterogeneous 00-50-50 

 
(f) Heterogeneous 50-00-50 

Figure 4.7. Linear Regression Plots for Average Percentages of Homogeneous and Heterogeneous teams 

formed for all three AD configurations (25-25-50, 00-50-50, and 50-00-50), with TD = Medium, and AO = 

TO = 0, p < 0.0001. 
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Diversity helps an agent bid for a wider variety of tasks as well as learn from a 

wider skillset and be able to contribute more beneficially to the environment as compared 

to a homogeneous agent group. The increase in the heterogeneous teams formed shows 

that it is more beneficial to have a diverse agent skillset as compared to a homogeneous 

group of agents, to evolve the agents through learning by observation. Also, in a diverse 

group an agent learns through observation and doing, there is a rise in the level of 

expertise in the skillset, which in return equips the agents to be able to bid for a variety of 

subtasks and increase the chances of the subtask being allocated to an agent. To further 

investigate this, Figure 4.2 shows the average learning by observation gain for the 

average percentage of homogeneous versus the heterogeneous teams formed for all the 

three AD configurations.  Indeed, as seen from Figure 4.2, the average learning gain for 

heterogeneous teams was higher than that for homogeneous teams, for all three AD 

configurations. Thus, it is also possible for agents to bid for tasks that require more 

diverse capabilities—involving heterogeneous members—in order to reap benefits from 

learning, and thereby forming more heterogeneous teams over time.  

The above understanding leads us to expect that the majority of the population of 

the team should be composed of Generalists. As there is a wider variety of capabilities at 

a decent level of expertise to learn from if there are majority Generalists, and this 

majority agent type could be influencing the learning by observation of the other 

teammates as well. This helps the entire team evolve as a whole, since Apprentices can 

learn a wider variety of skills from Generalists, Generalists can learn from other 

Generalists as well, and Specialists can learn from Generalists that have qualified level of 

expertise that Specialists might not have.  
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To further investigate into this, Figure 4.8 presents the dominant agent type 

present in each team for all the three AD configurations. As seen from Figure 4.8, in a 

diverse environment composed of all three types (G, S, A), more number of teams are 

dominated by Generalists. As Generalists are the dominant agent types over time, 

Generalists get to learn from other Generalists while Apprentices also get to learn a 

variety of skillsets from the Generalists and get better. This backs up our expectation of 

Generalists being the dominant agent types and contributing to the timely increase of 

heterogeneous teams and then the decrease of homogeneous teams. 

 
Figure 4.8. Average total number of teams under dominant Agent type for each of the three AD 

configurations (25-25-50, 00-50-50, 50-00-50), with TD = Medium, and AO = TO = 0, p < 0.0001. 
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4.3.2 Impacts of Learning and Agent Diversity 

Here we investigate how an agent changes its type as a result of learning by doing and 

learning from observation, and if agent diversity has an impact on this learning. For our 

simulation, recall that an agent qualifies as a Specialist if at least 1/5 of their skills are 

above 0.85 level of expertise, for a Generalist 3/5 of their capabilities are above 0.5 level 

of expertise. Apprentices have a 0.15 mean of distribution for all the levels of expertise of 

their capabilities, as described in detail in Section 4.1 and Chapter Methodology. When 

an agent changes its type, we define this as “promotion”.   

For example, say a Generalist agent has the following capabilities and levels of 

expertise:  0.5, 0.6, 0.7, 0.3, 0.2, through learning, the agent’s updated capability vector 

now is 0.5, 0.6, 0.9, 0.4, 0.2.  According to our definition of a Generalist and a Specialist, 

the agent now is both a Specialist and a Generalist.  We deem this phenomenon as a type 

promotion.  Likewise, an Apprentice agent can become either a Specialist or a Generalist 

or both given enough experience of working on teams to solve tasks.  However, it is not 

possible for a Specialist to become a non-Specialist. 

4.3.2.1 Promotion Statistics and Diversity 

This section presents the promotions for all three AD configurations (25-250-50, 00-50-

50, and 50-00-50) and TD = Medium, and TO = AO = 0 and helps us understand if AD 

has an impact on the promotion of agents.  
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Overall Statistics. Table 4.12 presents the average percentage of the promoted 

and non-promoted agent types for each of the three AD configurations (the values are 

normalized by the count of each agent type, since there are configurations when one 

agent type may have more agents than the other). 

 25-25-50 00-50-50 50-00-50 

% A→ only G 0.0025 0.0018 0.0027 

% A→ only S 00.8570 00.1708 00.3082 

% A→ both {S,G} 99.1292 99.8200 99.6749 

% G→S 97.7638 0 97.9222 

% Non-promoted G 1.07322 0 1.0307 

% Non-promoted S 100 100 0 

% Non-promoted A 0.0112 0.0072 0.0096 
Table 4.12.  Average (over 100 runs) percentages of promoted and non-promoted agents for all three AD 

configurations (25-25-50, 00-50-50, and 50-00-50), with TD = Medium, and AO = TO = 0, standard error = 

0.0003. 

As seen from Table 4.12 it can be seen that Apprentices get the most number of 

promotions.  This is because this is the agent type at a lower level of expertise as 

compared to the other two agent types and they can learn the most by observing the other 

two types. Generalists already have a decent level of expertise as compared to an 

Apprentice, Generalists can learn by observing their fellow Generalists or Specialists and 

improve by learning through observation.  

We also see that the number of Apprentices that were not promoted is smaller for 

the 00-50-50 configuration than it is for the 50-00-50 configuration (though the 

difference is not high).  This hints that Apprentices tend to improve more in the presence 

of Generalists than Specialists because it is easier for Apprentices to learn a wider variety 

of capabilities from a Generalist than a Specialist, and thus Generalists are important for 

bridging the gap between Apprentices and Specialists. 
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4.3.2.2 Learning Gains over Time.   

This helps us analyze if agent diversity has an impact on the learning of the agents in a 

team and in return help the agent types evolve through learning by doing and observation 

from each other. Figure 4.9 presents the average learning gain plots for all three agent 

types for all three AD configurations with TD = Medium, and no openness.  

 

(a) AD 25-25-50                                                      (b) AD 00-50-50 

 

 

(c) AD 50-00-50 

Figure 4.9. Average (over 100 runs) learning gains per tick for all three agent types, for all three AD 

configurations (25-25-50, 00-50-50, and 50-00-50), with TD = Medium, and AO = TO = 0, p < 0.0001. 

First, as seen from Figure 4.9 the average learning gain is the highest for AD 25-

25-50, followed by 50-00-50 then 00-50-50. This indicates that a more diverse 

environment helps produce higher learning gains. We see better gains in a 25-25-50 

environment than the other environments because the Apprentices were able to learn a 

wider variety of tasks from the Generalists. Once they had learned a level of expertise 
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from Generalists beyond which they no longer learn anything new, they could then start 

learning from Specialists and continue to get better. Thus, the Generalists helped bridge 

the gap between the Apprentices and the Specialists. In the other configurations, absence 

of any agent type hampers this balance. In the 00-50-50, the Apprentices, in the absence 

of the Generalists, take longer to reach a level where they can start learning from 

Specialists. Once they reach a point where Apprentices start learning the few capabilities 

the Specialists are good at. However, since there are only a few capabilities that the 

Specialists are good at, the Apprentices and Specialists reach a point where they do not 

learn anything new. This also explains why the curves for 25-25-50 and 00-50-50 tend to 

stabilize after going up and then coming down, but for the 50-00-50 (only Apprentices 

and Generalists), the curve does not stabilize after going up and coming down. The 

Apprentices and Generalists in the latter kept learning because they did not reach a point 

at which the agents had gotten good at capabilities such that their learning gains began to 

diminish and converge with that of the agents it learned from. Generalists kept observing 

the other Generalists and getting good at a wider variety of capabilities; similarly, 

Apprentices also kept observing the Generalists as well as the other Apprentices and kept 

sharpening their capabilities. Also, the Generalists could observe and learn from the 

Apprentices in the environment for the few capabilities that the Generalists were not 

good at. Thus, the agents’ learning gains kept rising as they had not reached at a same 

level of expertise as their counterparts. The curve for the 25-25-50 environment stabilized 

the smoothest and then for 00-50-50. A reason for this is that the agents gained the same 

level of knowledge in the 25-25-50 environment causing the learning gains of the agents 

to converge and hence the curve stabilizes. Also, the learning gains converge at an earlier 
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tick for the 25-25-50 as compared to the 00-50-50, this also backs the fact that diversity 

helps the agents learn faster and evolve by getting good at their capabilities. 

Second, it can be seen that the learning gain for the Generalists is the most in the 

environment. But the learning gain is lesser for them in the 50-00-50 as compared to the 

25-25-50 environment because they do not have the Specialists to help them evolve more 

effectively further. 

Third, we take a look at the average learning gains per task to evaluate the 

efficiency with which the agents learned in each AD configuration. Figure 4.10 shows the 

average learning gains per task for each of the three AD configurations. 

       

                     (a) AD 25-25-50                                                                       (b) AD 00-50-50 

 

(c) AD 50-00-50 

Figure 4.10. Average (over 100 runs) learning gains per task for all three agent types, for all three AD 

configurations (25-25-50, 00-50-50, and 50-00-50), with TD = Medium, and AO = TO = 0, p < 0.0001. 
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As can be seen in the 25-25-50 configuration, the Generalists gained the highest 

learning because initially they were eligible for bidding and winning a wider variety of 

tasks, as the Specialists were good at only very few capabilities and Apprentices hardly 

had any decent level of expertise in any of their capabilities. Thus, the Generalists 

showed the highest learning gain curve, as they had a chance to sharpen a wider variety 

of capabilities by performing a variety of tasks. The Specialists, on the other hand, tended 

to bid for the same type of tasks utilizing the same set of their capabilities, since they 

were good at only select few capabilities, which in turn reduced their learning gain from 

each task. In the 00-50-50 configuration, the Apprentices showed the highest learning 

gain as they had larger numbers of capabilities at a low level of expertise which they kept 

improving. Also in the absence of Generalists, the Specialists were able to bid on a 

variety of tasks and kept increasing their learning gain.  In the 50-00-50 configuration, on 

account of the absence of the Specialists as teammates, the Generalists did not gain much 

in their learning from each task. However, the Apprentices on the other hand kept 

learning from Generalists and showed a larger learning gain consistently over time until 

the Apprentices gained enough expertise to render learning non-effective towards the end 

of the simulation. Another observation is that the learning gain of the Specialists was 

higher in the 00-50-50 environment as compared to the learning gain of the Generalists in 

the 50-00-50 environment. Because the Specialists were good at very few capabilities as 

compared to the Generalists who were good at a wider variety of capabilities, the 

Specialists had more diverse “rooms” to improve as compared to the Generalists, even 

just learning from the other Apprentices the capabilities in which the Specialists had very 



99 
 

low level of expertise.  This makes the learning gain of the Specialists higher than that of 

the Generalists.  

4.3.3 Discussions 

We have investigated the impacts of agent diversity on team formation and team makeup 

(Section 4.3.1), and on the impacts of agent diversity on learning (Section 4.3.2).  In 

particular, we investigated teammate statistics and how they evolved over the duration of 

the simulation under different levels of agent diversity in Section 4.3.1, and how agents’ 

levels of expertise in their capabilities changed over time—leading to promotion from 

one agent type to another—and the effectiveness and efficiency of their learning in terms 

of learning gains over time, in Section 4.3.2. 

Here we summarize the key findings and implications:   

(1) From Sections 4.3.1.1 and 4.3.1.2, we reported that the average number of 

teams formed (and thus the average number of tasks auctioned off) was highest for the 

AD = 25-25-50 configuration, considered to be the most diverse among the three 

configurations used in our experiment.  The better performance by the 25-25-50 

configuration was attributed to the presence of all three agent types (i.e., Specialists, 

Generalists, and Apprentices) causing the following to happen:  

(a) A combination of Specialists—for their “high-level” expertise—and 

Generalists—for their “wide” range of decent-level capabilities—allow more tasks to be 

auctioned off, providing more opportunities for agents to learn;  
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(b) The three agent types learned more effectively (e.g., average learning gain per 

tick highest for AD = 25-25-50) and more efficiently (e.g., average learning gain per task 

highest for AD = 25-25-50) because of the reduced learning gap as modeled by Equation 

(3.3); this is because all three agent types have a key role to play in the environment, and 

without any agent type a balance cannot be established. Apprentices are a major learning 

force in the environment, the “next-generation” of the environment. The Generalists are 

the agent type which helps bridge the gap between the Apprentices and the Specialists. 

They are the agents that bring a wider perspective to the environment. The Specialists 

bring the highest level of expertise (in few capabilities) to the environment than do the 

other two types. The Generalists need the Specialists to sharpen their expertise else their 

learning will come to a stagnant still; and  

(c) As agents gained in expertise in their capabilities, they were able to form more 

teams to complete tasks.  From this Investigation, there is clear evidence that Agent 

Diversity has an impact on the team-formation and tasks auctioned off as diversity helps 

the agents learn and flourish and accomplish more tasks. 

(2) From Section 4.3.2.1, we observed the impact of learning on agent types 

as we computed the “type promotion” occurrences.  Again, the 25-25-50 configuration 

(the most diverse one) yielded the highest average number of type promotions. First, the 

Apprentices were found to be the major learning force on account of their low level of 

expertise for all of their capabilities.  Second, the number of promoted Apprentices was 

the highest in the 25-25-50 configuration.  Again, this is due to the human learning model 

that produces the largest learning gain when the teacher and learner agents’ levels of 
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expertise are not too close or too far apart, and that the 25-25-50 configuration facilitated 

that.   This thus confirms the above findings. 

(3)  From Section 4.3.2.2, we observed the average learning curves of the 

agents in the three AD configurations. We reported that all configurations yielded 

average learning curves of similar slopes but the 25-25-50 configuration had a higher 

starting point due to the advantage of being able to complete more tasks to begin with. 

Again, we confirm that agent diversity plays an important role in learning as well as for 

improving agent promotions. 

4.4 Investigation 2: Impacts of Task Diversity 

In this section, we investigate whether and how Task Diversity (TD) has an impact on the 

team formation by analyzing the average percentage of tasks auctioned off (i.e., 

completed).  

4.4.1 Tasks Auctioned Off over Time and Task Diversity 

To be able to focus on task diversity, we set openness to zero and consider only one AD 

configuration.  Figure 4.11 shows the average percentage of tasks auctioned off for TD = 

Low, Medium, and High, with AD = 25-25-50, AO = TO = 0.  
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Figure 4.11. Average (over the 100 runs) percentages of tasks auctioned off for TD = Low, Medium, 

and High, with AO = TO = 0, and AD = 25-25-50, p < 0.0001. 

It can be seen from Figure 4.11 that the number of tasks auctioned off was the 

lowest for low TD (just above 70%). One reason for this is that since AO and TO were 

both zero, agents who always ended up winning their bids kept winning throughout all 

auction rounds. The average percentage of tasks auctioned off increased with the increase 

in the task diversity level.  

Figure 4.12 shows the average percentage of tasks auctioned off for TD = Low, 

Medium, High, with AO = TO = 0 and, only Apprentices (Only A), only Generalists 

(Only G), and Only Specialists (Only S) present. This investigation helps us further 

analyze each agent type separately.  
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                                    (a) TD = Low                                                                (b) TD = Medium 

Gene  

(c) TD = High 

Figure 4.12. Average (over 100 runs) percentage of tasks auctioned off for TD = Low, Medium, and High 

for AD = Only A, Only G, and Only S, with AO = TO = 0, p < 0.0001. 

As can be seen from Figure 4.1, the Generalists achieved a higher average 

percentage of tasks auctioned off than did the other two agent types. This was because the 

Generalists had a wider variety of capability set than the other two types, making the 

Generalists eligible to bid for a wider variety of tasks. The Apprentices secured the least 

number of tasks since these agents had low level of expertise in all their capabilities. 

Thus, it became more difficult for them to be able to bid for tasks.  

One possible reason for the low average percentages of tasks getting auctioned off 

could be on account of insufficient number of agents casting their bids for the task. A 

probable reasoning for this insufficiency could be because agents may have been bidding 

for different tasks, and even if they were winning bids, they did not have sufficient 
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number of teammates. However, all these agents that won bids but still never got tasks 

assigned could have worked together and completed more tasks, instead of missing an 

opportunity by bidding on different tasks. Thus, we calculate the average number of 

missed opportunities by matching the capabilities of the agents that won bids but did not 

get tasks assigned with the capability threshold requirements of tasks not auctioned off. 

An opportunity is considered to be a missed opportunity if an agent won a bid and the 

task was not auctioned off on account of insufficient teammates. However, these unfilled 

teammate posts could have been filled up by the other agents in the environment who 

won their bids as well but their tasks were not auctioned off for the same reason. Table 

4.13 shows the average percentages of missed opportunities for all three TD 

configurations (Low, Medium, and high) for AD = Only A, Only G and, Only S, with TO 

= AO = 0. 

 Low TD Medium TD High TD 

Only A 11.1354% 12.0210% 13.9830% 

Only G 78.8921% 79.5736% 79.9892% 

Only S 34.3947% 35.2857% 38.2191% 

Table 4.13. Average (over 100 runs) percentages of missed opportunities for each of the three TD 

configurations (Low, Medium, and High), for Only A, Only G, and Only S, with AO = TO = 0, standard 

error = 0.0004. 

It can be seen that as the level of Task Diversity increases, the average percentage 

of missed opportunities increases as well. Also, the average percentage of missed 

opportunities is the highest for the Generalists, followed by the Specialists and then the 

Apprentices. Of course, as the Generalists have more diverse capabilities in which they 

have decently fit level of expertise, they also become eligible to bid for a wider variety of 
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tasks. Thus, instead of them going for the same tasks, they are more likely to split across 

by bidding on different tasks.  

Therefore, even though there were sufficient capabilities in the agent population, 

and there were agents that ended up winning bids, some tasks never got auctioned off 

because there were not sufficient number of Generalists bidding for a given task. Having 

more Generalists tended to hamper the tasks that could have been auctioned off. Had the 

Generalists channeled their expertise together on the same tasks, more tasks would have 

auctioned off instead of splitting themselves over different tasks and resulting in lesser 

tasks running to completion. The same logic applies to the other two agent types as well. 

However, since they were not at a decent level of expertise for such a wide variety of 

capabilities, their missed opportunity average percentages were lower than that of 

Generalists.   

This brings us to another point.  Our equations and modeling of human learning in 

Section 3.1.2 were designed such that agents learn what to bid for and what not to bid for 

over time.  That is, if a Generalist continues to win its bids for a task T but realizes that T 

is never getting auctioned off, will it learn to not bid for T?  Figure 4. shows over time the 

average percentages of missed opportunities every 100th tick of the simulation, for all 

three TD configurations (Low, Medium, and High) for Only A, Only G, and Only S, with 

AO = TO = 0. It can be seen that the percentages of missed opportunities remained 

almost the same throughout the 1000 ticks for each of the three TD configurations. One 

reason for this could be that there were many permutations possible for agents to pursue 

another task. Because of this reason, agents would still end up with insufficient number 
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of teammates. To make sure that the agents were attempting to bid for different tasks in 

case of task not being auctioned, we carried out analysis to calculate the average 

percentage of agents that submitted bids for different tasks in case they won a bid but the 

task was never auctioned off. We realized that for all three TD configurations (Low, 

Medium, and High) for each of the agent type, ~90% of the agents did bid for different 

tasks during the next auction round.   But this did not lead to higher success in terms of 

the number of tasks assigned, and did not stop the vicious cycles of bidding for another 

task during the next auction round. 

  

                                    (a) TD = Low                                                                (b) TD = Medium 

 

(c) TD = High 

Figure 4.13. Average (over 100 runs) percentage of Missed opportunities for all three TD configurations 

(Low, Medium, and High), for AD = Only A, Only G, and Only S, with TO = AO = 0, p < 0.0001. 
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4.4.2. Discussions 

To analyze the impacts of task diversity on the tasks that were auctioned off as well as 

agent learning, we looked at the average percentage of tasks auctioned off and the 

average learning gains for the agents for all three levels of Task Diversity (Low, Medium, 

and High).  

The key observations and findings were: 

(1) We saw that higher average percentage of tasks was auctioned off with an 

increase in the level of Task Diversity. This occurred because low Task Diversity causes 

the same teammates to keep coming together again and again to perform similar tasks and 

this restricts the capabilities they get to sharpen and the experience they gain by working 

on more varied tasks. On the other hand, higher levels of TD have more diversified tasks 

which presents the agents with the opportunity to work on a wider variety of tasks and 

hence learn more capabilities and in return causing more tasks to be auctioned off. 

Section 4.4.1 backed the investigation of Task Diversity having an impact on the team 

formation by providing evidence for the higher average percentage of tasks auctioned off 

with an increase in the level of Task Diversity.  

(2) We learnt that the average percentage of missed opportunities increase with 

the increase in the level of Task Diversity. The missed opportunities were because there 

weren’t insufficient number of teammates for the tasks to be auctioned off. The 

insufficiency arose because, instead of channeling their bids on the same tasks, the agents 

are split across different tasks as they bid for different tasks and even though they win 
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their respective bids, the tasks never get auctioned. Task Diversity has an impact on the 

missed opportunities and hence as seen earlier on the tasks auctioned off as well. 

4.5. Comparing the Roles of Agent and Task Diversity 

As seen earlier in Sections 4.3 and 4.4, both Agent and Task Diversity have an impact on 

the team formation and how agents learn to form these teams. Here we compare their 

impacts on the average percentage of tasks auctioned off and agents average learning 

gains, to analyze if either of Agent or Task Diversity has a greater impact on the team 

formation than the other. 

4.5.1 Impacts on percentages of tasks auctioned off 

From Figure 4.1 we plot the slopes for the average percentage of tasks auctioned off 

under each of the three AD (25-25-50, 00-50-50, and 50-00-50) and three TD (Low, 

Medium, and High) configurations with no openness. There is no openness since we wish 

to focus on the roles of diversity only. The p-values for all the AD and TD configurations 

(all 27 permutations) are less than 0.0001, which shows that the slopes of the all the three 

AD configurations are statistically significantly different as compared to the TD 

configurations. This shows that both AD and TD have different levels of impact on the 

percentage of tasks auctioned off. The slopes for all three AD configurations were higher 

than all those for the three TD configurations. This shows that the rate of tasks auctioned 

off is higher for Agent Diversity as compared to Task Diversity which shows that AD is 

more impactful than TD.  



109 
 

Agent Diversity has a greater impact on the team formation than Task Diversity. 

This is because even if there is no diversity amongst tasks in the environment, a diverse 

group of agents can learn to perform these tasks even if they have the basic expertise for 

it. Agents can learn by observation or learn by doing and keep sharpening their skills to 

get better at solving tasks. However, if there are tasks that require a high level of 

expertise and that level of expertise (for example, Specialists) is absent from the 

environment, then these tasks will not be auctioned off throughout the auction rounds. 

This is because neither the Apprentices nor the Generalists will ever be eligible for that 

task since they do not have that high level of expertise. Also, they cannot learn this high 

level of expertise since agents with that high level of expertise are absent. The same case 

follows for Generalists: in their absence, many tasks will not be auctioned off. This 

happens because Apprentices do not have anyone from which to learn a wide variety of 

tasks. Also on account of the learning gap between the Apprentices and the Specialists, it 

will take time for the Apprentices to start learning the few skills the Specialists are good 

at (and not a wide variety). Thus, in the presence of a diverse agent pool, it is easier to 

sharpen the level of expertise already present in the environment. 

Agent Diversity (R-squared) Task Diversity (R-squared) 

25-25-50 00-50-50 50-00-50 Low Medium High 

5.9270 

(0.9243) 

4.9800 

(0.8863) 

5.8825 

(0.9090) 

0.0114 

(0.3009) 

0.0072 

(0.4021) 

0.0652 

(0.9078) 

Table 4.14. Slopes for average (over 100 runs) percentage of tasks auctioned off over time for all three AD 

(25-25-50, 00-50-5-, and 50-00-50) and TD (Low, Medium, and High) configurations, with AO = TO = 0 

respectively.  p < 0.0001 
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4.5.2 Impacts on learning gains 

To compare the results of Agent Diversity and Task Diversity on the learning gains we 

picked the 25-25-50 AD configuration since this is our most agent-diverse environment, 

and applied TD = Low, Medium and High on this configuration to compare the learning 

gains. 

Figure 4.14(a)-(c) show the learning gains for AD = 25-25-50, TD = High, 

Medium, and Low, with AO = TO = 0, respectively. Again, there is no openness since we 

wish to focus on the role of diversity. 

 

(a) TD = Low                                                             (b) TD = Medium 

 

(c) TD = High 

Figure 4.14. Average (over 100 runs) learning gains per tick for TD = Low, Medium, and High, AD = 25-

25-50, with AO = TO = 0, p < 0.0001. 

As Task Diversity increases, the average learning gains also increase. This is 

because in a more task-diverse environment, agents have an opportunity to work on a 
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variety of tasks. Because of this opportunity, the agents keep learning a wide variety of 

capabilities and keep improving their learning gains. 

Third, we take a look at the average learning gains per task to evaluate the 

efficiency with which the agents learned in each AD configuration. Figure 4.15 shows the 

average learning gains per task for each of the three AD configurations. 

       

                     (a) AD 25-25-50                                                                       (b) AD 00-50-50 

 

(c) AD 50-00-50 

Figure 4.15. Average (over 100 runs) learning gains per task for all three agent types, for all three AD 

configurations (25-25-50, 00-50-50, and 50-00-50), with TD = Medium, and AO = TO = 0, p < 0.0001. 

As can be seen in the 25-25-50 configuration, the Generalists gained the highest 

learning because initially they were eligible for bidding and winning a wider variety of 

tasks, as the Specialists were good at only very few capabilities and Apprentices hardly 

had any decent level of expertise in any of their capabilities. Thus, the Generalists 

showed the highest learning gain curve, as they had a chance to sharpen a wider variety 
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of capabilities by performing a variety of tasks. The Specialists, on the other hand, tended 

to bid for the same type of tasks utilizing the same set of their capabilities, since they 

were good at only select few capabilities, which in turn reduced their learning gain from 

each task. In the 00-50-50 configuration, the Apprentices showed the highest learning 

gain as they had larger numbers of capabilities at a low level of expertise which they kept 

improving. Also in the absence of Generalists, the Specialists were able to bid on a 

variety of tasks and kept increasing their learning gain.  In the 50-00-50 configuration, on 

account of the absence of the Specialists as teammates, the Generalists did not gain much 

in their learning from each task. However, the Apprentices on the other hand kept 

learning from Generalists and showed a larger learning gain consistently over time until 

the Apprentices gained enough expertise to render learning non-effective towards the end 

of the simulation. Another observation is that the learning gain of the Specialists was 

higher in the 00-50-50 environment as compared to the learning gain of the Generalists in 

the 50-00-50 environment. Because the Specialists were good at very few capabilities as 

compared to the Generalists who were good at a wider variety of capabilities, the 

Specialists had more diverse “rooms” to improve as compared to the Generalists, even 

just learning from the other Apprentices the capabilities in which the Specialists had very 

low level of expertise.  This makes the learning gain of the Specialists higher than that of 

the Generalists.  
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4.6 Investigation 3: Impacts of Agent and Task Openness and Agent/Task 

Diversity 

In this section, we investigate the impacts of Agent and Task Openness and agent 

diversity on the percentage of tasks auctioned off and the learning gains of the agents. 

Since this is the first time we put forth a step towards understanding the impacts of 

combining openness and diversity, instead of looking at both agent diversity and task 

diversity together in an open environment, we investigate these two aspects of diversity 

separately.  Note that as alluded earlier in Chapter 1, we will address the impacts of all 

these aspects of openness and diversity in Chapter 5. 

4.6.1 Impacts on average percentage of missed opportunities 

 

In this Section, we investigate whether and how both openness and task diversity have an 

impact on the average percentage of missed opportunities. As seen from Figure 4.16, the 

average percentages of missed opportunities remained the same throughout the 1000 ticks 

even with an increase in the level of TD but in the absence of openness. One reason for 

this is that in a closed environment, there are many permutations of tasks not auctioned 

off and agents that won a bid but the task wasn’t auctioned off. This makes it difficult for 

the agents to bid for a probable task that will be auctioned off. To further investigate into 

this in the presence of openness, in Figure 4.16. we carried out configurations for all three 

TD (Low, Medium, and High), with Only A, Only G, and Only S with AO = TO = 0.05 

and 0.1, respectively. Note, in the figure legend, for example, “Only S (0.05, 0.05)” 

means Only Specialists with AO = TO = 0.05. 
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(a) TD = Low                                                                              (b) TD = Medium 

 

(c) TD = High 

Figure 4.16. Average (over 100 runs) Percentage of missed opportunities for all three TD (Low, Medium, 

and High) configurations with Only A, Only G, and Only S, with AO = TO = 0, 0.05, and 0.1, respectively, 

p < 0.0001. 

 

It can be seen that the average percentage of missed opportunities increased for all 

the agent types as the level of Task Diversity increased along with the task and agent 

openness. Openness introduces uncertainty to the task-diverse environment causing even 

more missed opportunities for the agents. Even if certain teammates were comfortable 

working with each other on a certain task and running it to completion, openness could 

cause either of the teammates or the task that they had worked on to be removed from the 

environment, which causes an imbalance in this harmony that they had established and 

that led to more missed opportunities. New tasks and agents kept entering the 

environment as well which prompted the agents to keep remodeling their probabilities 
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(pauctioned of Equation 3.8) of bidding and getting tasks assigned, in the process of which 

they might miss out on tasks. 

From Figure 4.16, the average percentages of missed opportunities increased with 

the level of task diversity as well as openness. As seen earlier in Section 4.4 as well, this 

happened since all the agents were in a long chase of finding teammates; that is why they 

kept bidding for different tasks at each auction round rather than all the agents coming 

together. Openness complicated this chase further by introducing uncertainty about the 

presence of teammates and tasks which caused the agents to constantly remodel their 

probabilities of winning a bid cast. 

4.6.2 Impacts on Learning 

Here we investigate if agent and task openness have an impact on agent’s learning. 

Figure 4.17 (a)-(c) shows the impact of (AO = 0, TO = 0), (AO = 0.05, TO = 0.05) and 

(AO = 0.1, TO = 0.1) on the learning gain per tick of agents for all three AD 

configurations and TD = Medium, respectively. Note, in the figure legend, for example, 

“Specialist (0.05, 0.05)” means the configuration with only Specialists with AO = TO = 

0.05.  Again, we did not consider both types of diversity here, and only looked at how 

agent diversity and openness interact to impact agent learning. And we will present a 

detailed analysis of the learning gains in an agent- and task -open, and agent- and task- 

diverse environment in Chapter 5. 
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(a) AD 25-25-50 

 

(b) AD 00-50-50 
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(c) AD 50-00-50 

Figure 4.17. Average (over 100 runs) learning gain per tick for all three AD configurations, with TD = 

Medium, AO = TO = 0, 0.05, and 0.1, p < 0.0001. 

From Figure 4.17 it can be observed that as agent and task openness increased 

from 0 to 0.05 to 0.1, the average learning gains for all three agent types increased for all 

three AD configurations. Thus, this shows that openness does have an effect on the 

learning gains of the agents. In fact, it can also be seen that when TO and AO was non-

zero, the learning curves did not converge. We suspect that since agents have some 

capability they keep improving by observing new agents or working on new tasks, their 

knowledge never reaches a stagnant still and they keep learning more and evolving. To 

confirm this suspicion, we further investigated to find if agents keep sharpening their 

skills by working on new tasks or teaming up with new agents. We found that at 86.7% 

of the time, agents kept on improving their skills because they worked on tasks they had 

not before or they teamed up with agents with capabilities they had not seen before. Thus, 

openness creates a balance between old and new capabilities and presents agents with an 
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opportunity to keep learning more skills and be more beneficial to the environment. This 

also explains the flat learning curves for the non-zero openness.  

Figure 4.18 represents the average learning gain per task for every 100th tick of 

the 1000 ticks, for (AO = 0, TO = 0), (AO = 0.05, TO = 0.05) and (AO = 0.1, TO = 0.1) 

on the learning gain per tick of agents for all three AD configurations and TD = Medium, 

respectively. Note, in the figure legend, for example, “Specialist (0.05, 0.05)” means 

Specialists with AO = TO = 0.05. 

 

(a) AD 25-25-50 
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(b) AD 00-50-50 

 

(c) AD 50-00-50 

Figure 4.18. Average (over 100 runs) learning Gain per task for all three AD (25-25-50, 00-50-50, and 50-

00-50) configurations, with TD = Medium, with AO = TO = 0, 0.05, and 0.1, p < 0.0001. 

It can be seen from Figure 4.18 that an increase in AO and TO caused the learning 

gain per task to increase as well. This is because on account of new tasks coming in and 

new agents coming in or old ones leaving, agents always have something new to learn by 

doing tasks. This causes an increase in the learning gain with increasing AO and TO.  



120 
 

It can be observed that for non-zero openness (AO = TO = 0.05 or 0.1) the 

learning gain curves showed a slight increasing trend—meaning that the agents were 

learning throughout the entire duration. This is because openness presented the agents 

with an opportunity to work on new tasks and with new teammates. This opportunity 

helped the agents improve their capabilities consistently. On the contrary, in the case of 

no openness (AO = TO = 0), agents kept working with the same set of teammates with 

the same set of tasks.  As a result, they reached a point beyond which they stopped 

learning anything new and the learning curves thus showed a downward trend, as 

previously discussed in Section 4.3.2. 

As seen earlier in Section 4.3.2 under Learning gains over time, Generalists had 

higher average learning gains than the other agent types. A similar trend was also 

observed from Figure 4.18 (a) and (c), the Generalists had higher average learning gains 

that their counterparts. This is because the Generalists had a decent level of expertise at a 

wider variety of capabilities which helped them be fit to bid and win a wider variety of 

tasks as compared to the other types of agents. This in return presented the Generalists an 

opportunity to keep learning something new with each task by doing and observation. It 

can also be seen that in the absence of the Generalists, the Apprentices and Specialists 

saw a rise in their learning gains. Also, it can be seen that in the absence of the 

Specialists, the Generalists saw a rise in the learning gain since they now get assigned to 

tasks which were assigned to Specialists had they been present. Thus, we see evidently 

that Agent and Task openness along with agent diversity has an impact on the learning 

gains of the agents. Introduction of openness to an agent diverse environment caused 
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positive impacts on the learning gains of agents. This positive impact was attributed to 

the continuously increasing levels of the learning gains in the presence of openness in an 

agent diverse environment.   

4.6.3 Discussions  

The key observation and findings were: 

 

(1) From Section 4.6.1 we realized that, the average percentages of missed 

opportunities increased with the level of task diversity as well as openness. 

This happened since all the agents were in a long chase of finding teammates; 

that is why they kept bidding for different tasks at each auction round rather 

than all the agents coming together. Openness complicated this chase further 

by introducing uncertainty about the presence of teammates and tasks which 

caused the agents to constantly remodel their probabilities of winning a bid 

cast. 

(2) Section 4.6.2 helped us realize that with the increase in the level of openness 

and agent diversity, the learning gains showed an increase as well. This is 

because on account of new tasks coming in and new agents coming in, agents 

always have something new to learn by doing tasks and observing agents. We 

also observed that Generalists had higher average learning gains than the other 

agent types. This is because the Generalists had a decent level of expertise at a 

wider variety of capabilities which helped them be fit to bid and win a wider 

variety of tasks as compared to the other types of agents. 
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4.7 Summary 

In this section, we present a brief summary of the findings of our investigations and point 

out the weaknesses of our results.  

The findings of our investigations helped us realize that both diversity and 

openness have an impact on the team formation and how agents learn to form these 

teams. Furthermore, we breakdown the key findings of our investigations: 

Impacts on agent performance.   From the analyses of diversity and openness 

on average rewards per tick (Section 4.2) we see that the average rewards earned per tick 

by the agents increases with the increase in the level of agent- and task-, diversity and 

openness.  However, upon observing the rate of rise of the average rewards per tick, we 

realize that the introduction of openness to an agent and task diverse environment, 

decreases the predictability of the impacts of both diversity and openness together on 

agent performance. This is based on the observation of the rates of rise of the average 

rewards earned per tick not following a linear pattern when openness was introduced 

along with diversity. On the other hand, in case of a diverse environment alone, these 

rates of rise of the average rewards per tick did follow a consistent pattern, making the 

impacts of diversity alone quite predictable. 

AD versus TD on average percentage of tasks auctioned off.   From 

Investigations I, II, and III, we now know that the average percentage of tasks auctioned 

off (or the number of task completed) increases with the level of agent and task diversity, 

respectively. Since we have established a direct correlation between average rewards per 
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tick and the average percentage of tasks auctioned off (Section 4.2), Investigations I, II, 

and III helped us realize that, a diverse environment does prove beneficial for the agent 

performance. To be able to observe which diversity has a greater impact on the agent 

performance, we analyze the slopes of the average percentage of tasks auctioned off 

under agent and task diversity, separately (Section 4.3). The p-values across these slopes 

prove that both AD and TD are statistically significantly different. The slopes for AD are 

higher than those for TD, thus showing that AD has a greater impact on the agent 

performance than does TD. 

Evolution (Learning gains).   Furthermore, from Investigations I, III, and 

Section 4.5, we also understand that with the increase in the level of agent and task 

diversity the average learning gains increases as well. To be able to analyze which of 

AD or TD has a greater impact on the evolution/learning gains of the agent, again, we 

look at the slopes for the average learning gains under each. The p-values prove that both 

the learning gains under AD and TD are statistically significantly different. On 

comparing the slopes of the average learning gains per tick we realize that the impacts of 

AD are greater than those of TD on the evolution of the agents. 

Average percentage of missed opportunities.  With the increase in the level of 

task diversity and openness, the average percentage of missed opportunities increases as 

well (as shown in Investigation III). This is because agents end up in a long chase of 

chasing each other around to find teammates, rather than focusing on common tasks. To 

overcome this chase in an open and diverse environment, we propose a refined approach 

in Chapter 5, with the goal of helping agents choose common tasks more frequently to 

bid on and find the needed number of teammates, rather than chasing each other around.  
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There are a few weaknesses of our results. First, we did not calculate the standard 

deviations. The standard deviations would have helped us understand the distribution of 

various metrics in our investigations. However, we failed to keep the raw data due to 

storage issues and neglected to compute the standard deviations before deleting them. 

Second, we studied only some AO-TO combinations ((AO, TO) = (0,0), (0.05, 0.05), and 

(0.1, 0.1)) instead of all the 9x9 combinations.  This was done to save time as running all 

9x9 combinations would have taken much more time in both simulations and subsequent 

analyses.  We thought that by only looking at the above three combinations, we would 

have sufficient representation and insights. Having now derived insights from the data, it 

would make sense to continue with all combinations in the future to fill in the gap and to 

further confirm the above findings.    
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Chapter 5 

 

pauctioned+ ANALYSIS 
 

In this chapter, we compare pauctioned+ and pauctioned in terms of key performance metrics:  

average rewards per tick, average rewards per task, average percentage of tasks 

completed (i.e., auctioned off), average learning gains per tick, and average learning 

gains per task. Note, average throughout this chapter refers to the average over the 100 

runs for all the configurations. Recall that pauctioned+ is designed to help maximizing 

utility in an agent- and task-diverse environment, specifically by reducing or preventing 

agents from “chasing each other around” while submitting bids to successfully complete 

tasks. We conducted a series of investigations to help us test whether and why pauctioned+ 

performs better than pauctioned. 

 

5.1 Comparisons between pauctioned+ and pauctioned  

In this section, we compare pauctioned+ and pauctioned  in terms of key performance metrics:  

average rewards per tick, average rewards per task, average percentage of tasks 

completed (i.e., auctioned off), average learning gains per tick, and average learning 

gains per task.  Tables 5.1-5.5 show the averages for rewards per tick, average rewards 

per task, average percentage of tasks completed (i.e., auctioned off), average learning 

gains per tick, and average learning gains per task, for pauctioned and pauctioned+, 

respectively. The configurations used for these tables are: AO = TO = 0, 0.05, and 0.1, 

AD = 25-25-50, 00-50-50, and 50-00-50, and TD = Low, Medium, and High.   
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  AD = 25-25-50 AD = 00-50-50 AD = 50-00-50 

 TD Low Med High Low Med High Low Med High 

AO, 

TO 

0, 0 0.0035 0.0046 0.0070 0.0014 0.0025 0.0051 0.0024 0.0041 0.0065 

0.05, 0.05 0.0066 0.0067 0.0094 0.0029 0.0038 0.0069 0.0046 0.0053 0.0074 

0.1, 0.1 0.0068 0.0076 0.0095 0.0037 0.0056 0.0074 0.0049 0.0070 0.0086 

(a) pauctioned 

  AD = 25-25-50 AD = 00-50-50 AD =50-00-50 

 TD Low Med High Low Med High Low Med High 

AO, 

TO 

0, 0 0.0049 0.0063 0.0084 0.0040 0.0058 0.0078 0.0043 0.0062 0.0081 

0.05, 0.05 0.0068 0.0069 0.0096 0.0052 0.0056 0.0087 0.0059 0.0065 0.0092 

0.1, 0.1 0.0074 0.0079 0.0098 0.0061 0.0068 0.0091 0.0068 0.0071 0.0094 

(b) pauctioned+ 

Table 5.1. Average rewards earned per tick, for AO = TO = 0, 0.05, and 0.1, AD = 25-25-50, 00-50-50, 

and 50-00-50, and TD = Low, Medium (Med), and High, (a) pauctioned, and (b) pauctioned+, standard error = 

0.0003. 

 

  AD = 25-25-50 AD = 00-50-50 AD =50-00-50 

 TD Low Med High Low Med High Low Med High 

AO, 

TO 

0, 0 0.0396 0.0426 0.0454 0.0333 0.0400 0.0402 0.0390 0.0423 0.0431 

0.05, 0.05 0.0420 0.0532 0.0553 0.0401 0.0438 0.0499 0.0411 0.0520 0.0546 

0.1, 0.1 0.0545 0.0565 0.0630 0.0459 0.0487 0.0606 0.0500 0.0519 0.0622 

(a) pauctioned 

  AD = 25-25-50 AD = 00-50-50 AD =50-00-50 

 TD Low Med High Low Med High Low Med High 

AO, 

TO 

0, 0 0.0429 0.0465 0.0468 0.0397 0.0412 0.0422 0.0402 0.0453 0.0440 

0.05, 0.05 0.0510 0.0547 0.0564 0.0454 0.0492 0.0507 0.0499 0.0534 0.0563 

0.1, 0.1 0.0547 0.0581 0.0697 0.0529 0.0560 0.0669 0.0538 0.0567 0.0676 

(b) pauctioned+ 

Table 5.2. Average rewards earned per task, for AO = TO = 0, 0.05, and 0.1, AD = 25-25-50, 00-50-50, 

and 50-00-50, and TD = Low, Medium (Med), and High, (a) pauctioned, and (b) standard error = 0.0003. 

 

  AD = 25-25-50 AD = 00-50-50 AD =50-00-50 

 TD Low Med High Low Med High Low Med High 
AO, 

TO 

0, 0 60.8548 65.0392 66.4827 50.5746 55.4833 59.9183 58.5869 60.1892 62.3828 

0.05, 0.05 63.2929 66.1943 68.9275 52.1832 58.8765 61.2282 60.0193 65.8832 66.1911 

0.1, 0.1 64.1939 70.5873 74.326 55.4883 60.1930 65.7865 61.1838 69.1921 72.1885 

(a) pauctioned 

 

  AD = 25-25-50 AD = 00-50-50 AD =50-00-50 

 TD Low Med High Low Med High Low Med High 
AO, 

TO 

0, 0 65.4320 66.5432 71.2000 53.4332 60.5838 63.3372 60.9273 62.5982 66.5921 

0.05, 0.05 69.0000 72.8922 74.5731 57.5890 68.1382 70.9737 65.6832 70.4881 73.5939 
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0.1, 0.1 70.3221 76.4383 78.0098 59.9281 71.9982 74.5432 68.5929 75.0282 77.2478 

(b) pauctioned+ 

Table 5.3 Average percentage of tasks auctioned off for AO = TO = 0, 0.05, and 0.1, AD = 25-25-50, 00-

50-50, and 50-00-50, TD = Low, Medium (Med), and High respectively, (a) pauctioned, and (b) standard error 

= 0.0004. 

  AD = 25-25-50 AD = 00-50-50 AD =50-00-50 

 TD Low Med High Low Med High Low Med High 

AO, 

TO 

0, 0 6.43E-04 7.29E-04 8.00E-04 3.28E-04 3.58E-04 4.67E-04 5.37E-04 6.37E-04 7.38E-04 

0.05, 0.05 7.68E-04 8.34E-04 8.57E-04 4.92E-04 5.92E-04 6.84E-04 6.38E-04 7.64E-04 8.14E-04 

0.1, 0.1 8.61E-04 8.92E-04 9.01E-04 5.38E-04 6.11E-04 7.18E-04 7.39E-04 8.49E-04 8.59E-04 

(a) pauctioned 

  AD = 25-25-50 AD = 00-50-50 AD =50-00-50 

 TD Low Med High Low Med High Low Med High 

AO, 

TO 

0, 0 7.22E-04 7.96E-04 8.03E-04 4.56E-04 5.38E-04 5.55E-04 6.39E-04 6.99E-04 7.99E-04 

0.05, 0.05 7.99E-04 8.55E-04 8.76E-04 4.98E-04 6.18E-04 6.98E-04 6.77E-04 7.99E-04 8.16E-04 

0.1, 0.1 8.92E-04 8.98E-04 9.11E-04 6.68E-04 7.38E-04 7.76E-04 8.32E-04 8.68E-04 9.04E-04 

(b) pauctioned+ 

Table 5.4 Average learning gains per tick for AO = TO = 0, 0.05, and 0.1, AD = 25-25-50, 00-50-50, and 

50-00-50, TD = Low, Medium (Med), and High respectively, (a) pauctioned, and (b) standard error = 0.0002. 

 

  AD = 25-25-50 AD = 00-50-50 AD =50-00-50 

 TD Low Med High Low Med High Low Med High 

AO, 

TO 

0, 0 5.33E-03 6.00E-03 7.00E-03 5.03E-03 5.48E-03 6.34E-03 5.21E-03 5.76E-03 6.93E-03 

0.05, 0.05 6.45E-03 6.89E-03 7.90E-03 5.82E-03 5.85E-03 6.47E-03 6.01E-03 6.40E-03 6.67E-03 

0.1, 0.1 7.38E-03 7.48E-04 8.75E-03 6.03E-03 6.61E-03 7.08E-03 6.55E-03 6.98E-03 7.44E-03 

(a) pauctioned 

  AD = 25-25-50 AD = 00-50-50 AD =50-00-50 

 TD Low Med High Low Med High Low Med High 

AO, 

TO 

0, 0 6.41E-03 6.89E-03 7.03E-03 6.33E-03 6.49E-03 7.00E-03 6.39E-03 6.55E-03 7.02E-03 

0.05, 0.05 6.55E-03 6.92E-03 8.02E-03 5.96E-03 6.01E-03 7.11E-03 6.48E-03 6.59E-03 7.53E-03 

0.1, 0.1 7.83E-03 7.99E-03 8.88E-03 6.44E-03 6.69E-03 7.66E-03 7.77E-03 7.86E-03 7.89E-03 

      (b) pauctioned+ 

Table 5.5. Average learning gains per task for AO = TO = 0, 0.05, and 0.1, AD = 25-25-50, 00-50-50, and 

50-00-50, TD = Low, Medium (Med), and High respectively, (a) pauctioned, and (b) pauctioned+ standard error = 

0.0002. 

 As observed from the Tables 5.1-5.5, pauctioned+ outperformed pauctioned in all 

performance metrics, in all configurations.  
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5.2. Reasoning for pauctioned+ outperforming pauctioned 

 

In this section, we present the reasoning for why pauctioned+ performed better than pauctioned 

as seen from Section 5.1. As seen from Chapter Methodology, pauctioned+ was designed 

such that it could reduce the agents chasing each other around. We intuit that the reason 

why pauctioned+ outperformed pauctioned was because with pauctioned+ the agents were realizing 

to stop chasing each other and to focus on common tasks which would more likely get the 

needed number of teammates bids for the task to be auctioned off. Thus, this reduction in 

the chase around led to pauctioned+ performing better than pauctioned.  

To confirm this intuition, in the pauctioned+ solution, if more agents did start coming 

together to work on tasks rather than chasing each other, then this would hint that the 

number of different tasks for which agents submitted their bids with the pauctioned+ should 

be smaller than that in the pauctioned solution, since agents would be coming together more 

often to work on common tasks. To prove this, we take a look at the average percentage 

of unique tasks that agents bid for under both pauctioned and pauctioned+. Figures 5.1 and 5.2 

present the average percentage of unique tasks bid for pauctioned and pauctioned+, respectively 

with AO = TO = 0, 0.05, and 0.1, AD = 25-25-50, 00-50-50, and 50-00-50, and TD = 

Low, Medium, and High, respectively, over time, after every 100th tick in the simulation. 
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             (a) TD = Low      (b) TD = Medium 

 

(c) TD = High 

  

             (d) TD = Low (0.05, 0.05)     (e) TD = Medium (0.05,0.05) 

 

(f) TD = High (0.05,0.05) 
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             (g) TD = Low (0.1,0.1)     (h) TD = Medium (0.1,0.1) 

 

(i) TD = High (0.1,0.1) 

Figure 5.1 Average percentage of unique tasks bid for TD = Low, Medium, and High, with AD = 25-25-

50, 00-50-50, and 50-00-50, AO = TO = 0, 0.05, and 0.1, for pauctioned, p < 0.0001. 

  

             (a) TD = Low (0,0)     (b) TD = Medium (0,0) 
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(c) TD = High (0,0) 

 

  

             (d) TD = Low (0.05, 0.05)     (e) TD = Medium (0.05,0.05) 

 

(f) TD = High (0.05,0.05) 
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             (g) TD = Low (0.1,0.1)     (h) TD = Medium (0.1,0.1) 

 

(i) TD = High (0.1,0.1) 

Figure 5.2 Average percentage of unique tasks bid for TD = Low, Medium, and High, with AD = 25-25-

50, 00-50-50, and 50-00-50, AO = TO = 0, 0.05, and 0.1, for pauctioned+, p < 0.0001. 

As seen from Figures 5.1 and 5.2, pauctioned+ did reduce the average percentage of 

unique tasks that agents bid for.  We see that pauctioned+ guided the agents in the direction 

of tasks which would have a higher chance of being auctioned off because of presence of 

sufficient number of teammates. As opposed to pauctioned, which only guided agent with 

the information of a task being auctioned off or not irrespective of the number of 

teammates that might be present. By not providing the teammate posts filled information, 

the agents would not be able to realize how close a task was to being auctioned off and 

would tend to keep bidding for different tasks with incomplete information and hence 

ending up getting fewer tasks auctioned off. As also seen from Figure 5.2, while the 
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agents with pauctioned+ did reduce the number of unique tasks and start bidding for common 

tasks, they did not repeatedly keep bidding for these common tasks, else the percentages 

would have gone down to be very close to 0. This is also a good thing that agents keep 

aiming for tasks which they probabilistically view to be assigned to them and also 

auctioned off. By working on a variety of tasks they also get to sharpen a wider variety of 

skills by working with different teammates. Agents tend to not bid for the same task 

throughout since as seen from Chapter Methodology, we see that the probabilistic 

modelling depends on similar tasks. Hence, at the start of every bid the agents calculate 

their chances of winning and getting a task auctioned off for a number similar tasks and 

not just one task which helps them choose from a number of task options. 

 

5.3 Summary 

In Section 5.1, we carried out analyses to test whether pauctionted+ performed better than 

pauctioned.  To compare, we carried out analyses on the average rewards per tick, average 

rewards per task, average percentage of tasks auctioned off, average learning gains per 

tick, and average learning gains per task. The analyses showed that pauctioned+ 

outperformed pauctioned. This superior performance was because of agents realizing to bid 

on common tasks rather than chasing each other around. This reduction in the chase was 

further confirmed by analyzing the unique tasks agents were bidding for. Analyzing the 

unique tasks agents bid for showed that pauctioned+ did reduce the average percentage of 

unique tasks agents bid for by helping them reduce the chase around.   
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Note, to further analyze how pauctioned+ is better than pauctioned, we carried out time-

based analyses in Appendix A, on the average rewards per tick, average rewards per task, 

average percentage of tasks auctioned off, average learning gain per tick, and average 

learning gain per task for pauctioned and pauctioned+ respectively. These comparison results 

helped us gain additional insights as to how pauctioned+ performed better over time. We see 

that this reduction in the agent chase led to more tasks auctioned off timely and in return 

to higher rewards and learning gains over time, thus leading to better agent performance. 

Having established that pauctioned+ does perform better than pauctioned, the next 

question is the reason behind it being better. Recall, our goal is to keep the probabilistic 

modelling (Chapter Methodology) as accurate as possible with no/minimal pre-

coordination (Chapters Introduction and Methodology). By providing the information 

about the unfilled teammate posts we still keep the pre-coordination minimum, since this 

is the information the agents deserve to know as it is the information which is a part of 

the result of the tasks the agent bid for. But is sharing of this information of the unfilled 

teammate posts the main reason behind pauctioned+ doing better? Or is giving the 

information about the unfilled posts behaving similarly to a self-fulfilling prophecy for 

the agents? Having received the information about the number of unfilled teammate 

posts, the agents take the hint to stay put in a hope that the wandering agents will come 

find this task. Is it possible that this action of the agent to stay put lead to the better 

performance by pauctioned+? As a part of the future work, we wish to dive deeper to 

investigate what was contributing to the better performance of pauctioned+, (1) Including the 
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information about unfilled teammate posts in pauctioned+, or/and (2) Agents taking the hint 

to stay put and these actions causing the pauctioned+ to get better.  
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Chapter 6 

 

IMPLEMENTATION 
 

In this chapter, we describe the implementation details of the model Chen (2017) which 

we extended to incorporate diversity as well. The environment is based off a simulator 

called Multi Agent Ad-Hoc Team Formation Simulator+ (MAAHTFormS+), which is 

extended from Chen (2017). However, since the original model implementation Chen 

(2017) was not designed with object oriented concepts, most of the codebase had to be re-

organized under different parent and child classes. This re-organization involved a lot of 

code re-write as well. Also, the original model did not handle invoking of objects and 

inheritance of classes in a straightforward manner which lead to further re-writing of the 

codebase. The original implementation did not calculate a number of metrics used in our 

research, such as, the number of unfilled teammate posts, number of unique tasks agents 

bid for (Chapter Methodology), etc. However, since the analyses in our research required 

these metrics, we had to add more code to be able to compute these metrics. To be able to 

deal with the results of these new metrics we had to code new post-processing scripts as 

well. Thus, along with basing the original model into the object-oriented structure, we 

also had to add many additional modules.  

 

6.1 Programming Language 

We chose Java as the primary programming language for our environment, for it being 

robust, object oriented and is platform-independent. Java helped us organize our 
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codebase into modular units or classes. So that the whole code wasn’t dependent on a 

single function or file, but each functionality had its own unique class and file. This also 

helps with the extensibility because if there is only a specific functionality that needs to 

be updated then we do not re-code the entire codebase but just the class corresponding to 

that functionality. 

The post-processing of the data and the plotting of graphs were done in Python. 

Python is an extensive support for libraries and third-party modules which makes post-

processing and graph plotting seamless. The built-in and dictionary based data structures 

made the post-processing on a lot of data really easy. Python has its own unit testing 

framework along with its strong text processing capabilities which makes it high in speed 

and productivity. This high-speed processing helped us post-process our results faster. 

 

6.2 Integrated Development Environment 

Eclipse was our primary Integrated Development Environment (IDE). We picked Eclipse 

over other IDE environments since it is open source and free. Code completion comes in 

handy since it saves the time of digging through the documentation. Syntax checking 

helps get rid of Syntax errors as and how the code is written rather than waiting till the 

compilation time. Refactoring was also of great help since there might come instances 

where a lot of renaming might be required for such a huge codebase. 
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6.3 Codebase build-up 

Figure 6.1 shows the three major modules of the codebase. 

 

Figure 6.1. Overview of the main modules of the codebase. 

 

6.3.1 Collaboration 

This module includes the entire logic of the working on the environment. This module is 

further divided into object classes for each of the individual functionalities. The main 

division of this parent is as follows: 

(1) Agent.java 

This class is responsible for all the properties and activities that are related to 

agents, for example, agents viewing the blackboard for the tasks available for the 

auction, submitting bids, reading the assigned tasks, executing the tasks, etc. 

Recall, each agent has a type associated with it, (1) Apprentice, (2) Generalist, or 

Collaboration
Framework

• Main 
Logic

Utils
• Obtaining 

Results

Post
processing

• Analyzing 
Results

Main Modules 
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(3) Specialist (Chapter Methodology). Depending on the agent type, this class is 

responsible for assigning the capability vector with the corresponding level of 

expertise (Chapters Methodology and Introduction) to the agents. 

(2) Blackboard.java 

The primary function of this class is the functionality of the publish-subscribe 

system Wooldridge, (2009) and the central auctioneer. It is the primary medium 

of communication between the agents and the auctioneer. This parent class has 

modules for posting tasks, accepting bids, and posting winning agents and their 

corresponding tasks. The flowchart of the role of the central auctioneer is as 

shown in Figure 6.2 (described in detail in Chapter Methodology): 

 

Figure 6.2. Central Auctioneer Working Flowchart. 

(3) Debug.java 

This class is for the developers working on this codebase. Since the codebase is 

large (approximately 16,552 number of lines) and it cannot be possible to keep 

extending more functionalities without debugging at regular intervals, we have 

added this class. Developers can add debug statements at breakpoints of their 

choice in order to be able to analyze the working of the codebase in details. This 

class has Booleans for switching debugging on or off. When the debugging is 

switched on the terminal of the IDE presents nice debug statements which can 

Discover Tasks Post Tasks Collect Bids Evaluate Bids Post Results
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help the developer not only analyze if the code is working as expected but also 

understand the working on the system in detail. When the Boolean is toggled off, 

these debug statements will not be displayed. This toggling off is useful when the 

code is running on Supercomputers since debug statements cause I/O operations 

which can slow down the processing of the experiments. 

(4) Learning.java 

This module deals with the probabilistic modeling (Chapters Introduction and 

Methodology) and updating the capabilities of the agents that they gained through 

learning by observation or/and doing. 

(5) Parameters.java 

This class deals with reading the parameters that define the configuration, Agent 

and Task Openness, Agent and Task Diversity, Number of ticks in the simulation, 

and number of agents from the user (these parameters are described in detail in 

Chapter Methodology).  

(6) Environment.java 

This class is responsible for creating the entire environment based on the 

parameters specified by the user. It is also primarily responsible for introducing 

new agents and/or tasks into the environment based on the AO and TO 

parameters. 

(7) Results.java 

Since the code base is huge and serves many functionalities, the number of results 

achieved are also high. At a given time, it may not be required to produce all the 

results related to all the functionalities. In order to add flexibility to the results we 
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allow users to specify which results they want, related to which functionalities. 

This not only saves on the processing time but also on the space used and the 

amount of data that the user receives.  

 

6.3.2 Utils 

The primary function of this module is to create the command files for a variety of 

utilities like: 

(1) Creating the AO TO Timer 

This module keeps a check on whether it is time for either Agent or Task 

replacements to occur. These timers can take any decimal value between 0 and 1, 

and are specified by the user. These timers are implemented as the likelihood of 

each agent or task being present after each tick. At the end of each tick, a uniform 

random decimal number generator generates a decimal number between 0 and 1. 

If this decimal number is less than or equal to AO or TO, then the corresponding 

agent and/or task will leave and a new agent and/or task will enter the 

environment. A departing agent or task is replaced by the same type of agent or 

task. For example, if an Apprentice is removed from the environment, then 

another Apprentice is added to the environment. However, the capability vector 

associated with the new agent or task, is randomly generated all over again 

depending on its type. 

(2) Creating Agent Types 

Based on the Agent Diversity configurations supplied, the different percentages of 
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agent types are created by this file. Note, as explained in Chapter Methodology, 

this parameter is specified as %Generalists-%Specialists-%Apprentices. And the 

percentages of these individual agent types should always add up to a 100%. For 

example, if the AD configuration is 25-25-50, then 25% Generalists, 25% 

Specialists, and 50% Apprentices are created. 

(3) Creating CSV Files 

All the results required to be output are compiled together in nicely formatted 

CSV files. These CSV files are later supplied to the Python Scripts for post 

processing. Depending on the results that are being generated the content of these 

CSV files changes as well. These files are very large in size on account of the 

different parameters and their values that we log. The log files are generally 

~30MB in size each (the size can be greater than 30MB as well, depending on the 

results that are being logged), and there are 50 random seeds generally. We log 

3x3 (AO, TO) combinations, (0, 0), (0.05, 0.05), and (0.1, 0.1). Thus, the total 

number of the result files combined for one run can become: 3x3x50 = 450 files. 

Making the total size of one run of results to be ~450*30  ~13.5GB. We normally 

ran 100 such runs for each configuration for a given set of analyses, as indicated 

in Chapters 4 and 5 where we discussed our investigations and results. We ran 

over 40 different configurations for our analyses, and each of this configuration 

was run for 100 times. On account of so much data being generated, we ran into 

storage problems fairly soon. 

(4) Creating Slurm Files 

We use Slurm to run our code on Clusters. Slurm is an open source cluster 
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management and job scheduling system. This module helps us create the 

thousands of files that we need for running the experiments on clusters. 

(5) Creating Task Types 

This module is used for creating different types of tasks based on the Task 

Diversity parameter specified. (Recall that we specify the type of the task as Low, 

Medium, or High (Chapter Methodology).)  

6.3.3 Postprocessing 

All the postprocessing is done in Python 3.0. Depending on the experiments executed, 

there are different Python scripts for postprocessing. They are written crisply and have 

comments at each step along with a brief description at the start of the program. These 

well documented programs help the user understand the working of the scripts. Along 

with this good documentation, the variable and function names are intuitive enough to 

know what’s happening at each step as well. All the post-processing scripts are 

independent of each other and hence extensibility should be easy. To run any of the 

scripts the only command-line argument needed is the path to the results folder one is 

looking to postprocess. 

 

6.4 Specifications of the Cluster the Experiments were run on 

We ran our experiments on Tusker (cluster name), it is a 106-node Production-mode 

LINUX cluster. Its processors are Opteron 6272 2.1GHz, 4 CPU/64 cores per node. RAM 

specifications are: 256 GB RAM per node, 2 Nodes with 512GB per node, and 1 Node 

with 1024GB per node. 
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6.5 Execution Steps of the Environment 

Figure 6.3 presents a brief flowchart for the execution steps of the environment. The 

detailed explanation of each step of this flowchart has already been presented in Chapter 

Methodology. 
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Figure 6.3. Flowchart of the working of the environment. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 

In this Chapter, we compile together our contributions and key findings (Section 7.1). We 

also present our plans for the future work (Section 7.2). 

 

7.1 Conclusions 

In this section, we present the contributions of our research and the key findings of the 

investigations carried out. The primary goal of this thesis focused on analyzing the 

impacts of agent and task openness and diversity on the robustness and dynamics of team 

formation and how the agents learnt to form these teams. For this, several investigations 

were conducted with different permutations and combinations of diversity and openness 

to analyze at fine levels what the impacts of these could be on team formation.  The 

findings of our investigations helped us realize that both diversity and openness have 

an impact on the team formation and how agents learn to form these teams. After 

having deeply studied the findings of our investigations, we identified several key 

relations between diversity and openness: (1) Introduction of openness to an agent and 

task diverse environment decreased the predictability of the impacts of both diversity and 

openness together on agent performance, (2) A diverse environment did prove beneficial 

for the agent performance, (3) With the increase in the level of agent and task diversity 

the average learning gains increased as well, (4) Agent diversity had a greater impact on 
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agent performance and the learning gains than task diversity did, and (4) With the 

increase in the level of diversity and openness, the average percentage of missed 

opportunities increased as well. 

The next contribution of this thesis was to analyze why the average percentages of 

missed opportunities increased with the increase in the level of openness and diversity. A 

series of investigations helped us realize that the agents were in a long chase of chasing 

each other around, rather than bidding on common tasks. 

After having figured out the reason behind the missed opportunities, our next 

contribution was to introduce and implement pauctioned+, an enhancement to pauctioned  Chen 

(2017). The goal of pauctioned+ was to help agents choose common tasks more frequently to 

bid on and find the needed number of teammates, rather than chasing each other around.  

We subsequently conducted a series of comparison tests comparing the performances of 

pauctioned and pauctioned+. These tests helped us realize that pauctioned+ outperformed pauctioned. 

This superior performance was because of agents realizing to bid on common tasks rather 

than chasing each other around. This reduction in the chase was further confirmed by 

analyzing the unique tasks agents were bidding for. Analyzing the unique tasks agents bid 

for showed that pauctioned+ did reduce the average percentage of unique tasks agents bid for 

by helping them reduce the chase around.   

The final contribution of this research work was to clean up the original 

simulation software Chen (2017). To implement the clean-up, the main modules were 

divided into parent and child classes and appropriate objects were made use of. Our 

investigations required metrics that were not computed by the original simulation 

software. For the computation of these new metrics we added additional modules and 
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postprocessing scripts. This simulation software package is available for others to 

experiment with. 

 

7.2 Future Work 

 

In this Section, we chalk out our plans for the future work.  

First, we studied only some AO-TO combinations ((AO, TO) = (0,0), (0.05, 0.05), 

and (0.1, 0.1)) instead of all the 9x9 combinations. This was done to save time as running 

all 9x9 combinations would have taken much more time in both simulations and 

subsequent analyses.  We thought that by only looking at the above three combinations, 

we would have sufficient representation and insights. Having derived insights from the 

data of these combinations it would make sense to continue with all combinations in the 

future to fill in the gap and to further confirm the findings for various investigations.  

Second, we realized that pauctioned+ performed better than pauctioned as pauctioned+ was 

reducing the agents chasing each other around over time. As a part of the future work, we 

can analyze the reason behind pauctioned+ reducing the chase. We wish to dive deeper to 

investigate what was contributing to the better performance of pauctioned+, (1) Including the 

information about unfilled teammate posts in pauctioned+, or/and (2) Agents taking the hint 

to stay put and these actions causing the pauctioned+ to get better.  

Third, we would like to make the simulation software more robust and intuitive 

than it presently is.  This would include incorporating abstraction, polymorphism, 

renaming the variable and function names, and making use of appropriate data structures. 
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We also plan to include an elaborate documentation for the whole codebase. This 

documentation would make it easier for new developers to understand and contribute to 

the codebase. 
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APPENDIX A 

 

How pauctioned+ performs better than pauctioned 
 

In this Appendix, we investigate how the new solution pauctioned+ as described in Chapter 

Methodology Equation 3.10 performs better than pauctioned, as seen in Chapter 5. Recall 

that  pauctioned+ is design to help maximizing utility even in an agent- and task-diverse 

environment, specifically at reducing or preventing agents from “chasing each other 

around” while submitting bids to successfully complete tasks. 

 

A.1 Comparisons between pauctioned+ and pauctioned  

In this section, we carry out a series of investigations to study how pauctioned+ is better than 

pauctioned.  We conducted tests to analyze the average rewards per tick, average rewards per 

task, average percentage of tasks auctioned off, average learning gains per tick, and 

average learning gains per task. The motive of introducing pauctioned+ was to help make the 

environment robust and tackle diversity, and in return get more tasks auctioned off 

timely.   

 

A.1.1 Impacts on the Rewards earned 

In this Section, we analyze the impacts of both pauctioned+ and pauctioned on the rewards 

earned by the agents per tick and task respectively. 
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A.1.1.1 Rewards earned per tick 

In this Section, we analyze the impacts both pauctioned+ and pauctioned have on the average 

rewards earned per tick. Figure A.1, A.2, A.4, and A.5 present the average rewards 

earned per tick and per task for AO = TO = 0, 0.05, and 0.1, TD = Low, Medium, and 

High, and AD = 25-25-50, 00-50-50, and 50-00-50, respectively for pauctioned+ and 

pauctioned. 

 

(a)  TD = Low 
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(b) TD = Medium 

 

(c) TD = High 

Figure A.1. Average rewards earned per tick, AO = TO = 0, 0.05, and 0.1, TD = Low, Medium, and High, 

AD = 25-25-50, 00-50-50, and 50-00-50 for pauctioned, p < 0.001. 
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(a) TD = Low. 

 

(b) TD = Medium. 
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(c) TD = High. 

Figure A.2. Average rewards earned per tick, AO = TO = 0, 0.05, and 0.1, TD = Low, Medium, and High, 

AD = 25-25-50, 00-50-50, and 50-00-50 for pauctioned+, p < 0.001. 

In order to be able to analyze Figures A.1 and A.2 in detail, we prune out AD = 

25-25-50, AO = TO = 0.05, and TD = Low, Medium, and High and present the same 

results in Figure A.3. 

 

                            (a) pauctioned      (b) pauctioned+ 

Figure A.3. Average rewards earned per tick, AO = TO = 0.05, TD = Low, Medium, and High, AD = 25-

25-50. 
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(a) TD = Low 

 
(b) TD = Medium 
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(c) TD = High 

Figure A.4. Average rewards earned per task, AO = TO = 0, 0.05, and 0.1, TD = Low, Medium, and High, 

AD = 25-25-50, 00-50-50, and 50-00-50, pauctioned, p < 0.001. 

 
(a) TD = Low 
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(b) TD = Medium 

 
(c) TD = High 

Figure A.5. Average rewards earned per task, AO = TO = 0, 0.05, and 0.1, TD = Low, Medium, and High, 

AD = 25-25-50, 00-50-50, and 50-00-50, pauctioned+, p < 0.001. 

In order to be able to analyze Figures A.4 and A.5 in detail, we prune out AD = 

25-25-50, AO = TO = 0.05, and TD = Low, Medium, and High and present the same 

results in Figure A.6. 
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(a) pauctioned                     (b) pauctioned+ 

Figure A.6. Average rewards earned per task, AO = TO = 0.05, TD = Low, Medium, and High, AD = 25-

25-50, p < 0.001. 

As seen from Figures A.1, A.2, A.4, and A.5, pauctioned+ leads to better average 

rewards earned per tick and task as compared to pauctioned. This is further confirmed from 

Figures A.3 and A.6. It can also be seen that for both the methods the trends on the 

rewards earned is the same for diversity and openness. 

Diversity. The average rewards are the highest for the 25-25-50 

configuration, followed by the 50-00-50, and then the 00-50-50 configuration. As seen 

earlier, a highly diverse configuration helps more tasks get auctioned off and since the 

learning gaps between Apprentices and Generalists is more ideal as compared to 

Apprentices and Specialists, hence the 50-00-50 does better than 00-50-50. As discussed 

in Chapter Methodology, we referred to Bandura’s theory for calculating learning by 

observation. Based on Equation (3.3), we see that if the difference between an observer’s 

expertise level and a performer’s is too large or too small, then the observer does not 

benefit much from learning by observation. Thus, it is easier for an Apprentice to learn 

from a Generalist as compared to a Specialist, and a Generalist to learn from a Specialist. 

Therefore, the rewards are higher for the 50-00-50 than the 00-50-50 configuration. The 
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average rewards increased with the level of task diversity as the agents could get a wide 

variety of tasks auctioned off because they were able to learn a wide variety of 

capabilities. 

Openness.  As the openness increases the average rewards earned increase as 

well. Task diversity helps agents find tasks suitable for them as opposed to when there is 

no task diversity and if some agent doesn’t find a suitable task then the chances of the 

agent finding a task throughout the auction rounds reduces. Agent diversity helps agents 

of different expertise to keep coming together and helping to get tasks auctioned off. 

 

 

A.1.2 Impacts on Percentage of Tasks Auctioned off 

Here we analyze the impacts on the average percentage of tasks auctioned off. To do so, 

Figure A.7 presents the average percentage of tasks auctioned off for TD = Low, 

Medium, High with AD = 25-25-50, 00-50-50, and 50-00-50, and AO = TO = 0, 0.05, 

and 0.1, respectively for pauctioned and pauctioned+. 
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(a) TD = Low (pauctioned) 

 

(b) TD = Medium (pauctioned) 
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(c) TD = High (pauctioned) 

 

(d) TD = Low (pauctioned+) 
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(e) TD = Medium (pauctioned+) 

 

(f) TD = High (pauctioned+) 

Figure A.7. Average percentages of tasks auctioned off for TD = Low, Medium, and High, for AD = 25-

25-50, 00-50-50, and 50-00-50, with AO = TO = 0, 0.05, and 0.1, respectively, for pauctioned, pauctioned+, p < 

0.001.  

To be able to better observe the results plotted in Figure A.7, we focus on TD = 

Low, Medium, and High, with AO = TO = 0.05, and AD = 25-25-50 in Figure A.8 to 

better understand the graphs. 
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                  (a)  pauctioned     (b) pauctioned+ 

Figure A.8. Average percentages of Tasks auctioned off for TD = Low, Medium, and High, with AO = TO 

= 0.05, and AD = 25-25-50, p < 0.001. 

As seen from Figure A.7, we realize that pauctioned+ does better than pauctioned. This 

is further proved by Figure A.8 as well. We notice that pauctioned+ gets more tasks 

auctioned off than does pauctioned. This is because with pauctioned+ the agents were realizing 

to stop chasing each other and to be focusing on tasks which will see the right number of 

teammates needed for the task to be auctioned off. Thus, resulting in increasing the 

average percentage of tasks auctioned off. We also notice the same diversity and 

openness impact trends on both the methods: 

Diversity.   The average percentage of tasks auctioned off is the highest for the 

25-25-50 configuration, followed by the 50-00-50 and then the 00-50-50 configuration. 

This happens because the 25-25-50 is the most diverse configuration and hence the 

agents get to work with a diverse agent set and in return be able to learn a wide variety of 

capabilities and different levels of expertise. 50-00-50 does better than 00-50-50 because 

the Generalists can bid and win a wider variety of tasks and hence help the Apprentices 

get better at a wider variety. As opposed to the Specialists who are good at fewer 

capabilities as compared to the Generalists. With the decrease in the level of task 
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diversity, the average percentage of tasks auctioned off decreased as well. This is because 

in a low level of task diversity, if agents do not find tasks suitable for them then it is 

likely that they will find it difficult to find tasks throughout the auction rounds. 

Openness.    The AO = TO = 0.1 configurations gets the most tasks auctioned off 

followed by the 0.05 and then the configuration with no openness. A more open 

environment sees a flow of different capabilities at different level of expertise into the 

environment which helps the agents learn a wider variety of capabilities at different level 

of expertise. As compared to when the environment does not have openness since there 

are no new agents joining or old agents leaving the environment. Thus, the agents keep 

working with the same set of capabilities and hence do not sharpen a wider set of 

capabilities as compared to an open environment. 

 

A.1.3 Impacts on the Learning Gains 

This Sections helps us analyze the impacts of both pauctioned+ and pauctioned on the learning 

gains. 

A.1.3.1 Learning Gains per Tick 

Here we analyze the impacts of diversity and openness with pauctioned+ on the learning 

gains. Figure A.9 presents the learning gains for TD = Low, Medium, and High, with AO 

= TO = 0, 0.05, and 0.1 and AD = 25-25-50, 00-50-50, and 50-00-50, respectively with 

pauctioned+. Figure A.10 presents the learning gains for TD = Low, Medium, and High, 

with AO = TO = 0, 0.05, and 0.1 and AD = 25-25-50, 00-50-50, and 50-00-50, 

respectively with pauctioned. To be able to analyze these graphs in more detail we pick AD 
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= 25-25-50 configuration for TD = Low, Medium, and High, with AO = TO = 0.05 and 

plot the same results in Figure A.11. 

 

(a) TD = Low 

 

(b) TD = Medium 
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(c) TD = High 

Figure A.9. Average Learning gains per tick for TD = Low, Medium, and High, for AD = 25-25-50, 00-50-

50, and 50-00-50, with AO = TO = 0, 0.05, and 0.1, respectively, for pauctioned, p < 0.001. 

 

(a) TD = Low 
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(b) TD = Medium 

 

(c) TD = High 

Figure A.10. Average Learning gains per tick for TD = Low, Medium, and High, for AD = 25-25-50, 00-

50-50, and 50-00-50, with AO = TO = 0, 0.05, and 0.1, respectively, for pauctioned+, p < 0.001. 
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                     (a) pauctioned       (b) pauctioned+ 

Figure A.11. Average Learning gains per tick for AO = TO = 0.05, TD = Low, Medium, and High, AD = 

25-25-50, p < 0.001. 

From Figures A.9 and A.10 we notice that the learning gains are better with 

pauctioned+ as compared to pauctioned. This is also confirmed from Figure A.11 which shows 

that the learning gains per tick is higher for pauctioned+ than for pauctioned.  We see this 

because with pauctioned+ we have more tasks that get auctioned off and also presents the 

agents with a chance to learn by observing and doing. Both methods show the same 

trends in presence of openness and diversity: 

Diversity.    It can be seen that the agents learn the most in the most diverse 

environment, which is the 25-25-50 configuration, this is because in a more diverse 

environment there is more diverse set of capabilities available, which helps the agents 

learn a diverse set of capabilities. Higher levels of task diversity also helped agents learn 

more, since a wider variety of tasks helped agents get better at a wider variety of 

capabilities. Thus, a more diverse environment helps the agent nurture through learning 

from a wider variety of teammates and in return get more tasks auctioned off. It can also 

be observed that with the increase in the level of task diversity, the average learning gains 

increased as well. This is because, a high task diversity presents the agents with an 
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opportunity to be able to learn a wide variety of capabilities and in return increase their 

learning gains. 

Openness.    The more open an environment, the more agents learn. Thus, as seen 

the AO = TO = 0.1, saw the highest learning gain followed by the 0.05 configuration 

followed by no openness. This is because in an open environment, agents do not keep 

working with the same set of agents or on the same set of tasks. Openness presents them 

with an opportunity to work with a varied set of teammates on different sets of tasks 

which helps them get better at a wider variety of capabilities. Thus, in an open 

environment, agents can learn more from a wider variety of teammates and different 

tasks. 

A.1.3.2 Learning Gains per Task 

Figure A.12 presents the learning gains per task for all three TD configurations Low, 

Medium, and High, with AO = TO = 0, 0.05, and 0.1, and AD = 25-25-50, 00-50-50, and 

50-00-50, respectively, with pauctioned+. Figure A.13 presents the learning gains per task 

for all three TD configurations Low, Medium, and High, with AO = TO = 0, 0.05, and 

0.1, and AD = 25-25-50, 00-50-50, and 50-00-50, respectively, with pauctioned. 
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(a) TD = Low 

 

(b) TD = Medium 
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(c) TD = High 

Figure A.12. Average Learning gains per task for TD = Low, Medium, and High, for AD = 25-25-50, 00-

50-50, and 50-00-50, with AO = TO = 0, 0.05, and 0.1, respectively, for pauctioned, p < 0.001. 
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(b) TD = Medium 

 

(c) TD = High 

Figure A.13. Average Learning gains per task for TD = Low, Medium, and High, for AD = 25-25-50, 00-

50-50, and 50-00-50, with AO = TO = 0, 0.05, and 0.1, respectively, for pauctioned+, p < 0.001. 

 



179 
 

 

                       (a) pauctioned       (b) pauctioned+ 

Figure A.14. Average Learning gain per task for AO = TO = 0.05, AD = 25-25-50, and TD = Low, 

Medium, and High, p < 0.001. 

It can be seen that the learning gains for pauctioned+ are better than pauctioned. As seen 

earlier, this is because the latter gets fewer percentage of tasks auctioned off as compared 

to pauctioned+. This is because the agents tend to reduce chasing each other and instead 

focus on common tasks and in return get more tasks auctioned off and hence increase the 

learning gains per task. They show similar trends for diversity and openness: 

Diversity.    It can be seen that in the most diverse environment (25-25-50), the 

learning gain per task is the highest. This is because there is a mixture of all three types 

of agents, Apprentices, Generalists, and Specialists, this different level of expertise at a 

wide variety of tasks helps all the agents mutually learn and benefit from each other and 

hence get more tasks auctioned off. This also helps agents evolve which further lets them 

gain more expertise at a wider variety of skills and hence seeing more tasks auctioned off. 

50-00-50 configuration does better than the 00-50-50 but not as good as 25-25-50. We 

saw a similar trend earlier from Figure A.10 as well, this trend is observed because the 

learning gap between Apprentices and Generalists is more ideal as compared to that 

between Apprentices and Specialists, thus Apprentices evolve faster and get better at a 
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wider variety of capabilities in presence of Generalists. The reason behind this is that, as 

discussed in Chapter Methodology, we referred to Bandura’s theory for calculating 

learning by observation. Based on Equation (3.3), we see that if the difference between 

an observer’s expertise level and a performer’s is too large or too small, then the observer 

does not benefit much from learning by observation. Thus, it is easier for an Apprentice 

to learn from a Generalist as compared to a Specialist, and a Generalist to learn from a 

Specialist. With an increase in the level of task diversity, the average learning gains 

increased as well since the agents had a wider variety of capabilities they learnt and could 

get a wider variety of tasks auctioned off as well. With the increase in the level of task 

diversity, the average learning gains increased as well. This is because in a task diverse 

environment, agents are presented with the opportunity to be able to learn a wide variety 

of capabilities. 

Openness.    The most open environment, AO = TO = 0.1 does the best followed 

by AO = TO = 0.05 and then the environment with no openness at all. We saw similar 

trends earlier with learning gains per tick as well (Figure A.10), an increase in AO and 

TO causes the learning gain per task to increase as well. This is because on account of 

newer tasks that keep coming in and new agents coming in or old ones leaving, agents 

always have something new to learn by doing tasks. This causes an increase in the 

learning gain with increasing AO and TO.  It can be observed that for non-zero openness 

(AO = TO = 0.05 and 0.1) the learning gain curves are pretty flat. This is because 

openness helps the agents get acquainted with teammates with skills that were not present 

in the environment before, or to work on tasks that are new in the environment. This 
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helps the agents improve their capabilities. On the contrary in case of no openness (AO = 

TO = 0), agents keep working with the same set of teammates with the same set of tasks.  

As a result, they reach a point beyond which they stop learning anything new and the 

learning curves thus show a downward trend. 
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