
THE ROLE OF BONE MORPHOGENIC PROTEINS IN HUMAN 
AORTIC VALVULAR ENDOTHELIAL CELLS 

 
 
 
 
 
 
 
 
 
 

A Dissertation 
Presented to 

The Academic Faculty 
 
 
 

By 
 
 
 

Randall Francis Ankeny 
 
 
 
 

In Partial Fulfillment 
Of the Requirements for the Degree 

Doctor of Philosophy in the  
Wallace H. Coulter Department of Biomedical Engineering at the  

Georgia Institute of Technology and Emory University 
 
 
 
 
 
 

Georgia Institute of Technology 
 

May 2010 
 
 
 
 
 
 



 

THE ROLE OF BONE MORPHOGENIC PROTEINS IN HUMAN 
AORTIC VALVULAR ENDOTHELIAL CELLS 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved by: 
 
Dr. Hanjoong Jo, Chair 
Department of Biomedical Engineering 
School of Medicine, Division of 
Cardiology 
Georgia Institute of Technology 
Emory University 
 
Dr. Vinod H. Throuani 
School of Medicine, Division of 
Cardiothoracic Surgery 
Emory University 
 
Dr. John Oshinski 
School of Medicine, Division of 
Radiology 
Emory University 
 
 
 
 
 

Dr. Robert M. Nerem  
George W. Woodruff School of 
Mechanical Engineering 
Georgia Institute of Technology 
 
 
 
Dr. Ajit Yoganathan 
Department of Biomedical Engineering 
Georgia Institute of Technology  
 
 
 
 
 
 
 
 
Date Approved: March 29, 2010 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Knowledge is proud that he has learned so much; wisdom is humble that he knows no 

more. 

 
William Cowper (1731 AD - 1800 AD), Discourses 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

To Mom and Dad for the love and the support  
To Aaron and Marie for the laughter 

To Grandpa for the motivation  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 v 

ACKNOWLEDGEMENTS 
 
 
 

The completion of this dissertation would not have been possible without the help of 

numerous people.  First, I would like to acknowledge my primary thesis advisor, Dr. 

Hanjoong Jo, for the opportunity to work in his lab, present my work all across the US 

and the world, and for his support.  I would also like to thank my co-advisor Dr. Robert 

M. Nerem for his willingness to listen or answer any questions I have had, and for giving 

his opinion on the direction of my project.  I also want to say thank you to the rest of my 

thesis committee members.  Dr. Ajit Yoganathan for his willingness to share his 

enormous wealth of information, Dr. John Oshinski for offering new ideas and 

suggestions, and Dr. Vinod H. Thourani for offering his clinical perspective and have 

such a positive outlook about my research.  I am also grateful to Johnafel Crowe and 

Steve Woodard for offering their expertise in the IBB core facilities and for helping sort 

cells.  Thank-you to the staff of the bioengineering and biomedical engineering 

departments, including Sally Gerrish (who got me to come down in 2003), Leita Young, 

Lisa Simmons, Sandra Wilson, Kathy Huggins, and finally Chris Ruffin.  I would also like 

to thank two of my funding sources, American Heart Association Pre-Doctoral Fellowship 

and the George Family Fellowship.  Their support helped me along on a graduate 

student stipend.  Further support was also provided by National Institute of Health grants 

HL75209, HL87012, and HL80711.   

 

I have been part of the Jo lab sense the summer of 2003, and I’ve had the honor of 

working with numerous outstanding scientists.  The first thank-you has to go out to my 

first mentor in the lab, Dr. Manu Platt.  He gave me my initial training and got me excited 

about science; he also encouraged and taught me how to persevere though rough times 



 vi 

to see the light at the end of the tunnel.  I would also like to thank the undergraduates, 

Sarah Gerbig, Andrew Lei, Nickoaus Shrum, and Josh Kang, and graduate students, 

Erin Spinner and Charles Qiu, who had the misfortune of working under my supervision.  

The people who deserve the most thanks are those that kept the lab running while I was 

there, Deb Smith, Maria Aleman and Dong Won Kang.  There have been many people in 

and out of the lab since I started in 2003 and I would like to give credit to Dr. Hannah 

Song, Dr. Hyuk Sang Kwon, Dr. Doug Nam, Dr. Michelle Sykes, Dr. Won Jong Rhee, Dr. 

Seth Brodie, Dr. Kyung Hwa Chang, Dr. Dong Ju Son, Noah Alberts-Grill, Dr. Amir 

Rezvan, and Dr. George Sorescu for technical aid and for helping create a uniquely 

wonderful lab environment.  Many of the cells that I’ve worked with were from heart 

transplants at Emory University.  I am in the unique position of thanking Dr. Daiana 

Weiss for waking me up in the middle of the night to isolate cells off of aortic valves.  

Without her dedication to science, even at 2AM, this project would have taken on a differ 

course.  I would like to thank Chih-Wen Ni for his scientific insight, calm demeanor, and 

view of what is important in life.  Finally, I am grateful to have had the chance to work 

with and beside four talented people.  Drs. Amy Mowbray, Sarah Tressel and Mamta 

Patel were instrumental in providing assistance, support, and friendship.  Without them, I 

would not have made it this far.  Finally, I must thank Casey Holliday for the support, 

help, laughter, and confidence she has given me over the past two years.  Without her, 

this dissertation would not be complete. 

 

The last people that I need to thank are the members of my family.  I am an extremely 

lucky person to have grown up with the support of my father and mother.  They’ve 

encouraged me to peruse my goals and supported me in my failures and successes.  I 

also need to thank my brother for always being willing to talk and for actually wanting to 

read my dissertation.  Finally, I need to thank my sister, for allowing me to bug her when 



 vii 

I’m home and always being cheerful.    I would also like to thank my grandfather, for 

being willing to talk when I call and teaching me you are never too old to learn.   

 



 viii 

 
TABLE OF CONTENTS 

 
 
 

Acknowledgements   v

List of Tables xi

List of Figures xii

List of Symbols and Abbreviations xiv

Summary xvi

Chapter 1: Introduction 1

Significance   1

Aortic Valve Function and Structure 1

Valvulogenisis 3

Aortic Valve Disease   5

Aortic Valve Calcification 5

Mechanical Forces and the Aortic Valve 11

In Vitro Models of Shear Stress 11

Shear Stress and Mechanotransduction  13

Shear Stress and Inflammation in Vascular Endothelial Cells 13

Shear Stress and Valvular Endothelial Cells  15

Effects of Stretch on the Aortic Valve 16

VICs, TGFβ, and in vitro Calcification 17

Bone Morphogenic Proteins 17

Bone Morphogenic Protein Antagonists 20

BMP Receptors 20

Intracellular BMP Signaling 21



 ix 

References 22

Chapter 2: Specific Aims 40

Project Significance 40

Project Objective 42

Overall Hypothesis 42

Specific Aim 1 43

Specific Aim 2 44

Specific Aim 3 45

References 46

Chapter 3:  Preferential activation of SMAD1/5/8 on the fibrosa 
endothelium in calcified human aortic valves 

 

49

Summary 49

Introduction 50

Materials and Methods 53

Results 56

Discussion 69

References 75

Chapter 4:      Shear Response and Inflammation in Human Aortic Valve 
Endothelial Cells  

 

80

Summary 80

Introduction 81

Materials and Methods 84

Results 88

Discussion 95

References 101

Chapter 5:      Shear-Regulation of Bone Morphogenic Proteins, Bone 
Morphogenic Protein Antagonists and their Contribution to 
Inflammation in Human Aortic Valve Endothelial Cells 

107



 x 

 
Summary  107

Introduction 109

Materials and Methods 111

Results 114

Discussion 119

References 125

Chapter 5:      Discussion 
 

131

Limitations  131

Summary 133

Conclusions 137

Future Directions 139

References 143

 



 xi 

 
LIST OF TABLES 

 
 
 

Figure 3.1  Patient Characteristics 54

Figure 4.1  Primer Sequences 87

Figure 5.1  Primer Sequences 113



 xii 

 
LIST OF FIGURES 

 
 
 

Figure 1.1  Structure of the Aortic Valve 2

Figure 1.2  Schematic of the cone and plate shear apparatus 12

Figure 1.3  Bone Morphogenic Protein Signaling Pathway 19

Figure 2.1  Overall Hypothesis 42

Figure 2.2  Experimental layout for Specific Aim 1 43

Figure 2.3  Experimental layout for Specific Aim 2 44

Figure 2.4  Experimental layout for Specific Aim 3 45

Figure 3.1 Calcification and endothelial staining of AV cusps.   57

Figure 3.2 BMP-2 expression in the fibrosa and ventricularis endothelium.   58

Figure 3.3 BMP-4 expression in the fibrosa and ventricularis endothelium. 59

Figure 3.4 BMP-6 expression in the fibrosa and ventricularis endothelium. 
 

60

Figure 3.5 CV-2 expression in the fibrosa and ventricularis endothelium.   
 

62

Figure 3.6 Noggin expression in the fibrosa and ventricularis endothelium.   
 

63

Figure 3.7 DAN expression in the fibrosa and ventricularis endothelium. 64

Figure 3.8 Phospho-SMAD 1/5/8 level is high in calcified fibrosa endothelium.   66

Figure 3.9 Phospho-SMAD 2 levels in the fibrosa and ventricularis endothelium.  67

Figure 3.10 Figure 3.10 Inhibitory SMAD 6 level is highest in the ventricularis 
endothelium of non-calcified valves.   

 

68

Figure 3.11 A schematic summary of the results.   
 

71

Figure 4.1 Cell alignment of human aortic valve endothelial cells after 24 hours 
of shear. 

 

89

Figure 4.2 Laminar shear induces KLF2 mRNA and eNOS mRNA and protein 
expression. 

 

90

Figure 4.3 Phosphorylated-p65 and phosphorylated-p38 levels are not reduced 
by laminar flow.   

92



 xiii 

 
Figure 4.4 Laminar shear decreases VCAM-1 in human aortic valve endothelial 

cells. 
 

94

Figure 4.5 Laminar shear decreases monocyte adhesion in human aortic valve 
endothelial cells. 

   

95

Figure 5.1 Shear regulation of BMP-4 in human aortic valvular endothelial cells. 
 

115

Figure 5.2 Shear regulation of BMPs -2 and -6 in human aortic valvular 
endothelial cells. 

 

116

Figure 5.3 Shear regulation of CV2, follistatin and MGP in human ventricularis 
endothelial cells. 

   

117

Figure 5.4 BMP pathway activation and BMP dependent monocyte adhesion. 
   

118

Figure 6.1 Overall summaries of project findings. 
 

138

Figure 6.2 Isolation of endothelial specific mRNA from porcine valve cusps.   
 

140

 

 



 xiv 

 
LIST OF SYMBOLS AND ABBREVIATIONS 

 
 
 

ALK Activin like receptor

AV Aortic Valve

BMP Bone morphogenic protein

BMPR Bone morphogenic protein receptor

CDK2 Cyclin dependent protein kinase 2

CV-2 Crossveinless 2

EC Endothelial Cell

EMT Epithelial-to-mesenchymal-transition

eNOS Endothelial nitric oxide synthase

ERK Extracellular Signal regulated kinase

FGF4 Fibroblast growth factor 4

GAG Glycosoaminoglycans

H&E Hematoxalin and eosin

HDL High density lipoprotein

HMG-CoA 3-hydroxy-3-methylglutaryl coenzyme A

ICAM1 Inter-cellular adhesion molecule 1

JNK c-Jun-N-terminal-kinase

KLF2 Kruppel-like factor-2

LDL Low density lipoprotein

LS Laminar Shear

MCP1 Monocyte chemoattractant protein 1

MGP Matrix Gla protein



 xv 

MMP Matrix metalloproteinases

NFκB Nuclear factor-κB

NO Nitric oxide

Nrf2 NF-E2-related factor 2

OS Oscillatory Shear

PAEC Porcine aortic endothelial cells

PAVEC Porcine aortic valve endothelial cells

PBS Phosphate buffered saline

RAAVE Rosuvastatin Affecting Aortic Valve Endothelium

ROS Reactive oxygen species

SALTIRE Scottish Aortic Stenosis Lipid-Lowering Therapy, Impact on Regression

SEAS Simvastatin and ezetimibe in aortic stenosis

siRNA Small interfering RNA

TGFβ Transforming growth factor β

TGFβR Transforming growth factor β receptor

TNFα Tumor necrosis factor-α

VCAM1 Vascular cell adhesion molecule 1

VEGF Vascular endothelial growth factor

VIC Valvular interstitial cell

 

 

 

 

 

 



 xvi 

SUMMARY 
 
 
 

In the United States alone, there are nearly 49,000 aortic valvular repairs or 

replacements each year, and this number is expected to rise.  Unlike atherosclerosis, 

the molecular mechanisms contributing to this side-dependent disease development are 

limited, which contributes to the lack of therapeutic treatments. Once clinically 

manifested, options for treatment are limited to valvular replacement or repair.    

Therefore understanding the mechanobiology and cellular responses in aortic valves 

may provide important information for disease development and possible biomarkers or 

therapeutic treatments.  

 

Aortic valve disease occurs on one side of the valvular leaflet.  The fibrosa side, which 

faces the aorta, is prone to disease development, while the ventricularis remains 

relatively unaffected.  The hemodynamics is hypothesized to play a role in side 

dependent disease formation.  The fibrosa endothelium is exposed to oscillatory flow 

while the ventricularis endothelium is exposed to a pulsatile unidirectional flow.  Previous 

work by Dr. Hanjoong Jo’s research group has shown that bone morphogenic protein-4 

is a mechanosensitve inflammatory cytokine in the vasculature.  In the following study, I 

proposed that mechanosensitive bone morphogenic proteins play a role in side specific 

aortic valve disease.  

 

Recently, the bone morphogenic proteins (BMPs) have been found in calcified human 

aortic valves.  Furthermore, BMP-4 in vascular endothelial cells is increased by 

oscillatory shear stress.  However, the role of the BMPs in aortic valve endothelial cells 

and their contribution to aortic valve calcification remains unstudied.  Therefore, the 
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overall objective of this dissertation was to investigate how disease and 

hemodynamics affects the BMP pathway and inflammation in human aortic 

valvular endothelial cells.  By understanding how the bone morphogenic proteins are 

regulated and what roles they play in aortic valve disease, we will have better insight into 

endothelial cell regulation and contribution in aortic valve pathology.  The central 

hypothesis of this project was that oscillatory flow conditions on the fibrosa side 

of the aortic valve stimulate endothelial cells to produce BMP-4, which then 

activates an inflammatory response leading to accumulation of inflammatory 

cells, calcification, and ultimately valve impairment.    This hypothesis was tested 

through three specific aims using calcified human aortic valves, non-calcified human 

aortic valves, and side-specific human aortic valve endothelial cells. 

 

I first worked to establish the importance of the BMPs in the aortic valvular endothelium 

by looking at two populations of aortic valves: 1) calcified human aortic valves were 

obtained from patients undergoing valve replacement, and 2) non-calcified valves were 

obtained from recipient hearts of patients undergoing heart transplantation.  Using 

immunohistochemical techniques, I examined the BMPs, BMP antagonists, and SMADs.  

Surprisingly, I identified that the ventricularis endothelium had higher BMP expression in 

both calcified and non-calcified human aortic valves.  Furthermore, no disease-

dependent BMP expression was detected.  Next, I examined the BMP antagonists and 

found that there was robust BMP antagonist expression in the ventricularis endothelium 

and very low expression in the fibrosa endothelium.  Finally, to determine if the BMP 

pathway was activated, I stained for the canonical BMP signaling molecule 

phosphorylated-SMAD 1/5/8 and found increased staining in the endothelium of calcified 

human aortic valves.  Furthermore, a significant increase in SMAD 1/5/8 phosphorylation 

was seen in the endothelium of calcified fibrosa when compared to the non-calcified 
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fibrosa.    Finally, inhibitory SMAD 6 was significantly increased in the ventricularis 

endothelium of non-calcified human aortic valves. These findings suggest that 

preferential activation of BMP pathways, controlled by the balance between the BMPs 

and their inhibitors, play an important role in side-dependent calcification of human AVs. 

 

I next wanted to examine the role of shear stress in BMP regulation, but before doing so, 

I needed to examine the endothelial response to fluid shear stress to validate the 

phenotype of my isolated human aortic valve endothelial cells.  KLF2 and eNOS 

expression in vascular endothelial cells has been shown to be increased by laminar flow 

and to have anti-inflammatory effects by decreasing VCAM-1 levels.  Conversely, 

oscillatory shear stress has been shown to increase NFkB translocation and increase 

ICAM-1 and E-selectin.  I found laminar shear stress causes human aortic valve 

endothelial cells align parallel to flow and have robust increases of KLF2 and eNOS and 

decreases in VCAM-1 levels; however, laminar shear-treated cells had similar levels of 

NFκB activation as oscillatory treated cells while ICAM-1 and E-selectin was not affected 

by shear stress.  In contrast, oscillatory shear had higher levels of monocytes bound 

which may be due to eNOS’s protective effects under laminar shear and robust VCAM-1 

expression in oscillatory shear.  These studies suggest differential regulation of human 

aortic valvular endothelial cells than published reports on human aortic endothelial cells 

which adds to the growing evidence that valvular endothelial cells are phenotypically 

different than vascular endothelial cells. 

 

After verifying the shear response of my endothelial cells, I next determined the shear 

response of the BMPs and BMP antagonists and described BMPs’ effect on 

inflammation.  Previously, BMP-4 has been shown in vitro and in vivo to be increased in 

endothelial cells exposed to oscillatory flow, while the closely-related BMP-2 has not 
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been shown to be shear sensitive.  In this study I have found that BMPs -2 and -4 are 

shear sensitive while BMP-6 is not.  Furthermore, I have found that follistatin is 

decreased by laminar flow only in the ventricularis, while MGP1 is decreased in the 

fibrosa valvular endothelial cells under both oscillatory and laminar flow. Finally, 

incubation with noggin did not affect monocyte adhesion after shear, suggesting 

differential regulation of inflammation in human aortic valvular endothelial cells.   

 

By addressing the specific aims of this project, I have investigate disease- and side-

dependent valvular endothelial BMP expression in vivo, shear regulation of valvular 

endothelial inflammation in vitro, and shear regulation of valvular endothelial BMP 

expression in vitro.  My results suggest that the BMP pathway is playing a role in side 

specific aortic valve disease development; however, regulation of the BMPs does not 

appear to be shear regulated in vivo.  Other factors that may be affecting BMP 

production include including pulsatile pressures, bending stresses, cyclic stretch, and 

humeral stimuli present in the blood of the patients.  However, in vitro I have found 

BMPs -2 and -4 to be shear-regulated in human aortic valvular endothelial cells.  Shear-

induced inflammation in human aortic valve endothelial cells seems to be VCAM-1-

dependent, and BMP-independent.  Finally, by identifying factors that are modulated in 

calcific- and shear-dependent processes, new targets for the early detection of aortic 

valve disease can be determined and new therapeutics to slow or stop the progression 

of aortic valve disease may be discovered. 
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CHAPTER 1 
 

INTRODUCTION 
 
 
 

Significance 

Aortic valve (AV) disease is a major cause of cardiac related deaths worldwide and is 

also a strong risk factor for additional cardiac deaths 1-3.  Valvular disease is 

characterized by the development of stenosis, narrowing of the valve opening area, 

and/or insufficiency, incomplete closure of the valve, and by the time it is clinically 

manifested, it is only treatable by valve replacement or repair 4. With the aging United 

States population, the most common cardiac disease is calcified aortic valve disease, 

which is estimated to affect 20% of the population 80 years or older 5.  In 2009, there 

were nearly 93,000 valve procedures performed in the United States, with 53% of those 

procedures done on the aortic valve position 6.  Furthermore, worldwide heart valve 

replacement surgeries are estimated to triple from 290,000 in 2003 to over 850,000 by 

2050 7.  Health care costs due to this disease is estimated to be about 1 billion US 

dollars annually 8.   

 

Aortic Valve Function and Structure 

The aortic valve separates the aorta from the left ventricle.  The valve is comprised of 

three leaflets named for their position in respect to the coronary arteries:  the left, right 

and non-coronary leaflets.  The aortic valve cusp is comprised of three distinct layers.  

The fibrosa, which faces the aorta, is comprised of circumferentially aligned collagen 

fibers with few elastin fibers 9 and is believed to be the main load-bearing component of 

the valve (Figure 1.1) 10.  The ventricularis, which faces the left ventricle, is comprised of 
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radially-aligned elastin fibers with some collagen fibers in random orientation (Figure 1.1) 

11.  The spongiosa, which separates the ventricularis from the fibrosa, is comprised of 

glycosaminoglycans (GAGs) and water (Figure 1.1).  The elastin has been described as 

an organizer of the collagen fibers in the valve, while collagen fibers provide mechanical 

strength for the valve 10. 

 

 

Figure 1.1 Structure of the Aortic Valve.  Aortic valve is made of three layers:  The 
fibrosa, the spongiosa and the ventricularis. 
 

Aortic valve interstitial cells (VICs) reside in all three layers.  VICs are comprised of 

several different cell types, including myofibroblasts, fibroblasts and smooth muscle cells 

(Figure 1.1) 12.  The myofibroblasts, which are characterized by the stress fibers and 

smooth muscle α-actin, are the most common interstitial cell in diseased valves and are 

thought to be involved remodeling and regulation of the extracellular matrix 13-14.  Finally, 
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endothelial cells, which will be described in more detail below, surround and provide a 

non-thrombogenic barrier for the valve.   

 

Valvulogenisis 

Many of the components involved in aortic valve degeneration are also involved in 

valvulogenesis.  There are four stages to valvular formation: endocaridal cushion 

formation, epithelial-to-mesenchymal transition (EMT), valve primordia, and 

diversification of cell types / maturation 15.  These stages are described below.  

 

Endocardial Cushion Formation 

The first signs of valvular formation in the human embryo occur between 

embryonic day E31 to E35, with the formation of the endocardial cushion 16.  

Bone morphogenic proteins (BMPs) -2 and -4 are major myocardial-derived 

signals in the formation of the endocardial cushion 17-18.  In the myocardium, BMP 

expression drives the secretion of hyaluronan and versican, the two components 

of the cardiac jelly 18-19. Mice lacking BMP-2 fail to form a proper endocardial 

cushion because of the lack of extracellular matrix deposition 19-20.  During this 

time, the endocardium is producing vascular endothelial growth factor (VEGF) 

which causes endothelial proliferation 15.   

 

EMT 

EMT occurs when a portion of the endothelial cells from the endocardium 

dissociate, move into the cardiac jelly, and turn into a mesenchymal cell type. 

Numerous proteins have been associated with EMT including BMP-2, 

transforming growth factor beta (TGFβ), Notch-1, and WNT/β-Catenin 15, 21-22.  All 

have been shown to play essential roles in EMT in valvulogenisis.   
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Valve primordia 

After EMT and during valve primordia, proliferation of the mesenchymal and 

endothelial cells occurs. The endothelium proliferates through a VEGF- and 

extracellular signal regulated kinase (ERK) -dependent processes while the 

mesenchymal cells proliferate through Wnt/β-catenin, TGFβ, BMP and fibroblast 

growth factor-4 (FGF-4) signaling 23-27.  Interestingly, mice lacking BMP-6 and -7 

develop hypoplastic valves, while mice lacking inhibitory SMAD-6 (inhibitor of 

BMP signaling) develop hyperplasia demonstrating the balance in BMP signaling 

necessary for proper valve development 28-30.  

  

Diversification of cell types / maturation 

Little is known about the diversification of cell types in the developing aortic 

valve, however hemodynamics is thought to play a pivotal role 15.    Notch-1 

signaling has been localized to the ventricularis side of the valvular leaflet, and is 

hypothesized to be regulated by shear stress; however, this has not been shown 

31-32.  In the spongiosa, BMP-2 signaling is prominent and it drives production of 

the transcription factor SOX9 and aggrecan in the spongiosa 33.  Less is known 

about the fibrosa; however, it is hypothesized that Wnt signaling predominates 

fibrosa maturation 27.  
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Aortic Valve Diseases 

There are two clinical categories of aortic valve diseases that can occur in concert or 

independently.  Aortic stenosis occurs when the maximum valve opening area 

(experienced during systole) decreases.  This causes a larger pressure drop across the 

valve and when severe, may cause hypertrophy of the heart in order to pump sufficient 

blood to the body 34.  The causes of aortic stenosis include congenital defects, 

calcification 35, or bacterial infection of the valve 34.  Diagnosis of aortic stenosis is made 

when a heart murmur is observed.  Patients may experience shortness of breath, chest 

pain and dizziness 34.  Once diagnosed and if stenosis is severe, the patient can 

undergo aortic valve replacement.   

 

The second category of aortic valve disease is aortic regurgitation or incompetence.  

During diastole, in a healthy aortic valve, the three leaflets provide a barrier that stops 

blood flowing from the aorta into the left ventricle.  In patients who have aortic valve 

regurgitation, the leaflets do not provide an adequate barrier.  When the left ventricle is 

filling, the higher pressure in the aorta causes reverse blood flow across the aortic valve.  

This change in hemodynamics causes stretching of the heart cavity and hypertrophy of 

the left ventricle 34.  Causes of this disease include bacterial infection, ischemic heart 

disease, calcification and congenital defects 34.  As with aortic stenosis, a patient with 

severe aortic regurgitation may undergo aortic valve replacement 34.   

 

Aortic Valve Calcification 

Until recently, aortic valve calcification was thought to be an age-associated disease 36-

37, but it is now believed to be an active inflammatory process that is characterized by 

lipid accumulation, neovascularization, inflammation, calcified nodules and, in some 

cases, the formation of lamellar bone 36, 38.   
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Risk Factors 

There are many similarities between the pathogenesis of atherosclerosis and 

aortic valve calcification including potential risk factors for disease development.  

Risk factors associated with aortic valve disease and atherosclerosis include the 

increase in age, the male gender, cigarette smoking, diabetes mellitus, 

hypertension, high total cholesterol, raised low density lipoprotein (LDL) 

cholesterol, raised triglycerides, low high density lipoprotein (HDL) and raised 

lipoprotein (a) 39-43.  Other risk factors associated with aortic valve disease 

include bone diseases such as Paget’s and hyperparathyroidism, uraemia and 

raised serum creatinine and calcium levels 41-42, 44-45. 

 

Genetics 

There have been several studies looking at how genetics may be playing a role 

in calcific aortic valve disease.  Increases in promoter polymorphisms in 

interleukin-10, an anti-inflammatory cytokine, has been associated with calcium 

content in calcified human aortic valves 46.  Studies have indicated that 

polymorphisms in the vitamin D receptor are associated with increase calcific 

aortic valve stenosis while decreasing bone density.  It is hypothesized that these 

polymorphisms are causing calcium mobilization from the bone which then can 

promote ectopic calcification in the aortic valve 47.    A nonsense mutation in the 

Notch1 gene causes developmental defects and also plays a role in aortic valve 

calcification progression 31.  Notch1 is a repressor of Runx2 which is an important 

osteogenic transcription factor in osteoclasts. It is hypothesized that the defect in 

Notch1 may an increase in Runx2 and calcium deposition in the aortic valve 31.  

Research has also shown that cell cycle genes may also be regulated in aortic 
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valve calcification.  Expression of the p21 gene, a repressor of CDK2 and cell 

movement from G(1) to G(2), is decreased in calcified human aortic valves, 

suggesting cell cycle control may be involved in aortic valve sclerosis 48. 

 

 

Lipids and Statin Treatment 

Lipid deposits are often found on diseased valves and are believed to be an 

initiation point of calcification 49-50.  In vitro studies have found several important 

roles of lipids in the development of aortic valves.  Cholesterol has been shown 

to aid in the precipitation of calcium crystals 51, while 25-hydroxy cholesterol 

accelerates valvular calcification 52.  Oxidized lipids are believed to stimulate 

inflammation in a similar manner to the mechanisms seen in atherosclerosis 

through membrane scavenger receptors 53.   

 

Statins are a class of inhibitors of the 3-hydroxy-3-methylglutaryl coenzyme A 

reductase (HMG-CoA).  By inhibiting HMG-CoA reductase, statins decrease 

cholesterol production, have anti-inflammatory effects, and preserve endothelial 

function 54.  In rabbits fed an atherogenic diet, atorvastatin reduces progression 

of aortic valve calcification through Lrp5 and endothelial nitric oxide (eNOS) 

pathways 55-56.   Atorvastatin also decreases alkaline phosphotase activity in 

interstitial aortic cells that have been incubated in an osteogenic media 57.   In the 

aortic valve, studies have shown that statins limit the formation of calcified 

nodules and alkaline phosphotase of aortic valve myofibroblasts; however, in 

osteoblasts statins increase alkaline phosphotase 58.  These data suggest that 

timing of statin treatment may play an important role in aortic valve disease 36. 
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Statin treatment in calcific aortic valve disease has had varied outcomes.  Three 

clinical studies have investigated statin’s effect on aortic valve disease.  The first 

study performed by the Scottish Aortic Stenosis Lipid-Lowering Therapy, Impact 

on Regression (SALTIRE), was a prospective study investigating aortic valve 

stenosis progression and use of atrovastatin.  The primary endpoints were aortic-

jet velocity and aortic valve calcium score.  They found a trend showing slowing 

in stenosis of the aortic valve, but it was not significant.  They concluded that 

lipid-lowering therapy does not halt progression of aortic valve stenosis 59. 

 

In second clinical study, Rosuvastatin Affecting Aortic Valve Endothelium 

(RAAVE) trial, aortic valve area decreased in statin-treated and untreated 

patients; however, the statin-treated patients had half the disease progression of 

untreated patients, suggesting rosuvastatin has a protective effect.  It is important 

to note that patients in this group had higher aortic valve opening areas than the 

SALTIRE study, suggesting an earlier stage in aortic valve disease   

development 60. 

 

The final clinical study, simvastatin and ezetimibe in aortic stenosis (SEAS), was 

a large scale study (1,873 subjects) looking at the long term (52 months) 

cardiovascular outcomes of patients receiving simvastatin and ezetimibe.  They 

found no difference between placebo or the statin-treated patient when looking at 

the end-point of aortic valve-related and cardiovascular events; however this 

study did find that treatment decreased risk for ischemic events 61.  

 

Based on these studies, it has been concluded that statins may have a beneficial 

effect on the slowing of aortic valve disease; however, it has not been directly 
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shown.  It is hypothesized that the timing of application of statins may play an 

important role in its efficacy 36.  Furthermore, its maximal effect may be during the 

early stages of aortic valve disease progression 36.  Recent studies have 

supported this hypothesis by showing, in a retrospective study, that statins can 

reduce aortic valve stenosis only in mild degrees of disease.  When disease is 

more severe, statins had no effect 62.   

 

Neovascularization 

Neovascularization in heart valves is a necessary condition for calcification to 

occur, although it is not sufficient 63.  One reports has found neovascularization in 

all heart valves that have undergone ossification 64;  however, two reports have 

shown that vascular density was higher in aortic valves with low to medium 

calcification, while low vascular density was found in severely stenotic valves 65-

66.  The neovessels provide oxygen and nutrients to cells that are beyond the 

diffusion distance of oxygen.  They provide angiogenic factors that have effects 

on calcifying cells 67, and they also can secrete cytokines, including BMP-2 and 

BMP-4, that cause osteoprogenitor cells to differentiate in certain contexts 68-71.  

Matrix modifying enzymes appear to be important in the neovascularization of 

these valves.  Reports have shown cathepsins V, S, and K to be present in 

neovessels and to be increased in calcified human aortic valves72, and further 

studies have implicated chondromodulin 1 as a necessary factor for the formation 

of neovessels 73.   

 

Inflammation 

As in atherosclerosis, inflammation is an important hallmark of disease 

development.  Sclerotic and calcified aortic valves show an increase in the 



10 
 

inflammatory molecule TGF-β1, matrix tumor necrosis factor-α (TNFα) and also 

an increase in T-cells and monocyte infiltration 74-78, suggesting an active 

inflammatory process rather than a passive one 79.  Studies have also shown an 

increase in the level of vascular cell adhesion molecule 1 (VCAM-1), inter-cell 

adhesion molecule 1 (ICAM-1) and E-selectin in diseased valves when compared 

to healthy valves, suggesting endothelial dysfunction that may be caused by 

aortic valve calcification risk factors 80-81.  Further studies have found that patients 

with aortic valve calcification have higher levels of circulating E-selectin, and 

when the calcified valve is replaced, circulating E-selectin levels returns to 

normal 82.  Further, research investigating the inflammatory Toll-like receptors 2 

and 4 found active receptors in normal aortic valve.  Activation of these receptors 

can cause nuclear factor-κB (NFκB) pathway activation while also increasing 

inflammatory and osteogenic markers 83.   

 

Calcification 

Calcium deposition in the aortic valve is a significant indicator of valve disease 

progression.  Most cases of aortic valve calcification are idiopathic in nature 84.  

Calcified deposits in the aortic valve primarily occur beneath the fibrosa 

endothelium 75.  Through immunohistochemical and protein studies, many factors 

have been shown to be upregulated in calcified human aortic valves.  These 

factors include bone related factors (osteopontin, osteonectin, matrix gla protein, 

bone morphogenic proteins 2 and 4 and TGF-β1) 64, 79, 85-86 and matrix regulatory 

factors (matrix metalloproteinases (MMP) 1, 2, 3, 9 and cathepsin S 72, 85, 87.  As 

previously noted, calcified deposits occur beneath the fibrosa endothelium.  

Because of its subendothelial presence, it is believed that the VICs present in the 
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interstitum are responsible for the calcification and are discussed in detail    

below 88.   

 

Mechanical Forces and the Aortic Valve 

The aortic valve is in a complex mechanical environment that includes fluid shear 

stresses, varying pressures and bending stresses 89.  Changes in one mechanical 

condition of the valve can cause structural and biological changes in the valve 90-93.  As 

an aortic valve becomes diseased, the diameter of the valve opening area decreases, 

and the shear stresses experienced by the valve can change.  Clinically, this is 

manifested by the existence of a heart murmur 34.  In a healthy human heart, the heart 

beats at a frequency of about 1 Hz, and during diastole the aortic valve experiences a 

pressure of about 100 mmHg.  Although, if the patient is hypertensive, the pressure felt 

by the aortic valve may be elevated to 200 mmHg 92.  Increases in pressures and 

frequencies have been shown to affect the biological properties of the valve 92-93.  By 

virtue of the ventricularis and fibrosa touching each other, the fibrosa during systole is 

under compression and experiences oscillatory shear stresses while the ventricularis is 

under tension and experiences pulsatile shear stress 94-96.   

 

In vitro Models of Shear Stress 

To determine how fluid shear stress affects the endothelium, two devices have been 

developed for use in endothelial cell biology: the cone and plate viscometer and the 

parallel plate flow chamber.  The cone and plate viscometer is a circular, Teflon cone 

with a very small angle (0.5°).  When placed in a circular dish it can be rotated to 

produce fluid flow, and by using Navier-Stokes equations the shear stress profiles can 

be calculated 97.  The second device that can be used to produce fluid flow is the parallel 

plate.  A roller pump is used to apply steady, uniform laminar flow to the endothelial cells 
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attached to a glass slide.  The height, width, length and pressure drop determine the 

fluid flow rate and thus the applied shear stress to the endothelial cells 98.   

 

There are draw backs and benefits for both systems.   For example the cone and plate 

shear apparatus can expose many more cells to shear stress when compared to the 

parallel plate with its small glass slide.  Although, this shear system results in a gradient 

of shear stress, cells at the center of the dish are exposed to lower shear stresses than 

the cells at the perimeter.  Conversely, the parallel plate has a uniform shear stress 

gradient across the endothelial cell monolayer.  Finally, the cone and plate shear 

apparatus can create a reversal of flow by rotating the cone back and forth.  Therefore, 

this system can expose endothelial cells to both a unidirectional and oscillatory shear 

stress (Figure 1.2).   

 

 

Figure 1.2 Schematic of the cone and plate shear apparatus.  
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Shear Stress and Mechanotransduction 

As mentioned previously, aortic valve calcification preferentially occurs on the fibrosa of 

the aortic valve 75, 86.  The fibrosa and ventricularis are exposed to significantly different 

mechanical forces during the cardiac cycle.  The ventricularis experiences a 

unidirectional pulsatile flow and a stretching force during systole, while the fibrosa is 

exposed to unstable hemodynamic flow and compression during systole 96.    The 

preferential disease development in aortic valve calcification is similar to the 

development of atherosclerosis.  In the vasculature, atherosclerosis preferentially occurs 

in areas of unstable hemodynamic flow, while areas experiencing stable, unidirectional 

flow are atheroprotected 99.  Furthermore, researchers have found that areas that 

experience a low mean shear stress preferentially develop atherosclerosis 100. 

 

At the cellular level, the endothelial cells exposed to blood flow feel a drag force, 

commonly called shear stress.  Endothelial cells sense this force through a variety of 

mechanisms including the actin cytoskeleton, stretch-activated ion channels, G-protein 

coupled receptors, junctional proteins and integrins 101.  Through biochemical signaling 

pathways, the cell can change gene transcription, leading to various signaling pathways 

that may affect cell function and its surroundings 101. 

 

Shear Stress and Inflammation in Vascular Endothelial Cells 

When exposed to laminar flow, aortic endothelial cells align parallel to the flow and 

exhibit increases in atheroprotective genes such as Kruppel-like factor-2 (KLF2), KLF4, 

and eNOS 98, 102-107; however, endothelial cells exposed to oscillatory flow express pro-

inflammatory molecules such as monocyte chemoattractant protein 1 (MCP1), BMP-4 

and inflammatory adhesion molecules 108-112.  Regulation of these inflammatory genes 
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has been linked to signaling molecules such as p38, ERK, NFκB, and c-Jun-N-terminal-

kinase (JNK) 113-118.   

 

In vascular endothelial cells, application of laminar shear causes a robust increase of 

KLF2 107.  Interestingly, KLF2 was found not to be induced by other mechanical or 

biochemical stimuli in endothelial cells 107 and may regulate several anti-inflammatory 

genes including JNK 119.   Furthermore, KLF2 has been found in protective regions of the 

vasculature in vivo 120, has been found to be upstream of eNOS 121, and helps improve 

the function of nuclear localization of Nrf2, a powerful anti-oxidant gene transcription 

factor 122.   In vascular endothelial cells, eNOS is increased by unidirectional flow 123.  Its 

product, nitric oxide (NO), is a potent vasodilator, promotes vascular health, and is able 

to reduce intracellular oxidative stress 104-106.  Interestingly, in mice lacking eNOS have 

the propensity to develop bicuspid aortic valves and eNOS dysfunction was also found in 

patients with bicuspid aortic valve disease 124-125.  Studies have found that in calcified 

human aortic valves, increases in reactive oxygen species (ROS) surrounding areas of 

calcification, are in part due to uncoupled eNOS 126.  Furthermore, in an in vitro study, 

nitric oxide donors supplemented to porcine aortic valve interstitial cells blocked TGFβ-

mediated calcified nodule formation 127.   Finally, mRNA analysis of porcine aortic valve 

endothelium found that eNOS was increased on the fibrosa endothelium when 

compared to the ventricularis endothelium 128.   

 

High unidirectional shear stress has been shown to inhibit activation of JNK, p38 and 

NFκB 113-118, while oscillatory flow induces NFκB activation in vivo 129.  The NFκB family 

members are involved in many physiological and pathophysiological mechanisms 

including cell differentiation, inflammation, proliferation, apoptosis and atherogenesis 130.  
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NFκB is a key regulator in shear regulation of inflammatory genes, and the p50/p65 

heterodimer binds to shear stress responsive elements 131.  p38 has been shown in to 

both enhance and repress NFκB activity in endothelial cells 132-133. 

 

Shear Stress and Valvular Endothelial Cells 

Valvular endothelial cells are phenotypically distinct from aortic endothelial cells.   This 

finding was first noticed by pathologists observing the aortic valve.  They noticed the 

endothelial cells were aligned perpendicular, not parallel, to the flow as seen in aortic 

endothelial cells 134.  Studies by Butcher et al. then showed that when exposed to 

unidirectional shear stress, porcine aortic endothelial cells align parallel to the fluid flow 

while porcine valvular endothelial cells align perpendicular to the flow.  Through the use 

of immunofluorescent studies, it was also noted the actin cytoskeleton was 

perpendicular to the flow in porcine aortic valvular endothelial cells.  Finally, the group 

determined alignment of valvular endothelial cells was dependent on Rho-kinase while 

aortic endothelial cells were dependent on phosphatidylinositol 3-kinase signal and Rho-

kinase pathways 135.  

 

Several studies have looked at transcription profiles of endothelial cells in vitro and in 

vivo.  Peter Davies’ research group investigated the mRNA content of pig aortic valve 

endothelial cells removed from the valve immediately after sacrifice using a special 

technique 128.  The results show different transcription profiles between the fibrosa and 

the ventricularis.  Briefly, the fibrosa, which experiences unstable flow conditions, has a 

lower expression of inhibitors of calcification when compared to the ventricularis.  Genes 

downregulated include osteoprotegrin, C-type natriuretic peptide, parathyroid hormone 

and chordin, which is an inhibitor of the bone morphogenic proteins.  Furthermore, they 
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found that BMP-4, a pro-bone growth cytokine, has a higher expression on the fibrosa 

compared to the ventricularis endothelium; however, the study found that transcriptional 

profiles for many proinflammatory cytokines and adhesion molecules were not 

differentially expressed 128.  Further studies investigating how hypercholesterolemia 

affects the valvular endothelium in pig; found that BMP-4 mRNA was decreased in 

hypercholesterolemic pigs.  The authors hypothesized that this difference was due to a 

protective response 136.  

 

A final study that investigated flow dependent transcriptional profiles of aortic valve 

endothelial cells was performed 137.  The objective of the study was to compare porcine 

aortic (PAEC) to valvular endothelial cells (PAVEC) and their flow dependent gene 

expression.  The group exposed aortic and valvular endothelial cells to a unidirectional 

shear stress of 20 dynes/cm2 or static conditions for 48 hours, collected the mRNA and 

studied the changes in transcriptional profiles.  They found that PAVEC were intrinsically 

less inflammatory and expressed more genes associated with chondrogenesis while 

PAEC expressed more osteogenic genes.  Finally, they showed that shear stress had a 

protective effect against calcification 137. 

 

Effects of Stretch on the Aortic Valve 

As previously mentioned, hypertension is a strong risk factor for aortic valve disease 

(odds ratio 1.23-1.74) 138.  A recent study measuring the stretch of the porcine aortic 

valve in vitro has shown that in super-hypertensive conditions the aortic valve can reach 

20% stretch 84, while  under normal physiological conditions the aortic valve experiences 

10% stretch during diastole 139. Studies looking at pathological stretch have shown ex 

vivo stretch can alter valvular properties and cellular function.  Balachandran et al. have 

shown that elevated stretch can alter matrix remodeling enzymes including, MMP-1, -2, -
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9 and cathepsin S and K.  Stretch also affected cellular proliferation and apoptosis 109.  

Furthermore, studies have implicated the TGFβ and BMP pathway in stretch induced 

calcification.  Porcine aortic valve leaflets were stretched in an osteogenic media with 

addition of TGFβ and formed calcified nodules if placed under 20% stretch.  However, 

calcification was inhibited by the BMP antagonist noggin, suggesting BMP involvement 

in pathological stretch calcification (Balachandran et al. in press).  

  

VICS, TGFβ, and in vitro Calcification 

Progression of aortic valve disease, specifically sclerosis and calcification, is primarily 

mediated by VICs 88.  In a normal adult human aortic valve, the VICs are quiescent with 

little cell proliferation 140-141;  however, as the disease state increases the VICs become 

more synthetic 140, 142.  One of the predominate hypotheses is that the matrix stiffness 

and TGFβ play an important role in VIC pathophysiology 143-144.  Recent studies have 

shown that VICs placed on stiff substrates, mimicking the stiffness of sclerotic tissues, 

adopt myofibroblastic phenotype and form calcified nodules 139.  The primary mechanism 

of myofibroblast differentiation is believed to be the mechanical tension experienced by 

the cell and TGFβ 145;  however, if VICs are placed on a compliant substrate, calcified 

nodules formed but were the cells were less responsive to TGFβ and had more 

osteogenic marker expression.   These results suggest differentiation of VICs is, in part, 

due to matrix stiffness139.   

 

Bone Morphogenic Proteins 

BMPs were first found as a bone growth and repair molecule 146.  They are members of 

the transforming growth factor beta superfamily (TGF-β), which includes TGF-βs, 

inhibitins, bone morphogenic proteins, growth differentiation, activins and myostatin 147.  
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Currently, there have been over 30 different BMPs identified, while the BMP2/4 and 

BMP5/6/7 classes are the best characterized.  BMPs are important in embryonic 

development, cartilage and bone formation, cell differentiation, valvulogenisis, and 

apoptosis 147-148.  

 

BMP-4 is synthesized as a 408-amino acid precursor that is proteolytically cleaved by a 

pre-proconvertase 149-150 which then leaves a C-terminal mature protein (116 amino 

acids) that has seven conserved cysteine residues.  BMP-4 is then secreted in its active 

form,  must homodimerize before binding to its receptor 151. 

 

BMPs were first implicated in vascular biology when they were found in atherosclerotic 

plaques 152, although the sources of the BMPs were never investigated.  BMPs in 

endothelial cells have been shown to have important roles.  BMP-6 has been shown to 

have angiogenic properties 153-154.  BMP-2 mRNA and protein is upregulated during 

hypoxia and incubation with VEGF in microvascular endothelial cells, while TNF-α 

mRNA levels are also increased in capillary endothelial cells 155.  In endothelial cells, 

BMP-4 has been shown to be involved in apoptosis 156, and BMP-4 produced by 

endothelial cells can modulate mineral deposition in calcifying vascular cells 71.  BMP-2, 

-4, and -6 have all been identified as important players in valvulogenesis.  BMP-2 and -4 

are important in endocardial cushion formation, EMT, and cellular proliferation during 

heart valve development 15.  

 

Dr. Hanjoong Jo’s lab has investigated BMP-4 extensively in endothelial cells through 

DNA microarrays and functional studies and has reported several important findings.  

BMP-4 expression is upregulated in endothelial cells exposed to disturbed flow, inducing 

and inflammatory response through a NFκB and NADPH oxidase-dependent 
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mechanisms, which then lead to monocyte adhesion that can be inhibited through the 

use of BMP-4-specific small interfering RNA (siRNA) 110-111.  Further, infusion of 

exogenous BMP-4 increases systolic blood pressure in an endothelium-dependent 

mechanism, while infusion of noggin or apocynin, an inhibitor of the NADPH oxidase, 

completely blocked the BMP-4 effects 157.  Recent studies have shown porcine aortic 

valve leaflets increase ICAM-1 and VCAM-1 under altered shear stress ex vivo.  Addition 

of the BMP inhibitor noggin decreased expression of these inflammatory molecules 158. 

 

 

Figure 1.3 Bone Morphogenic Protein Signaling Pathway 
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Bone Morphogenic Protein Antagonists 

BMP antagonists bind to the BMPs with varying degrees of affinity. Once bound, they 

inhibit the interaction of the BMPs with their cognate receptors 159-164. BMP antagonists 

include, noggin, crossveinless 2 (CV-2, also known as BMPER), chordin, follistatin, DAN 

and matrix Gla protein-1 (MGP-1) 165.  In cultured vascular endothelial cells, BMP 

antagonists noggin, follistatin and MGP-1, which are co-expressed with BMP-4, provide 

a negative feedback mechanism inhibiting BMP-4’s inflammatory effect 165.  

Furthermore, follistatin and noggin are found in advanced atherosclerotic lesions 165.  In 

porcine aortic valve leaflets, the mRNA of the BMP antagonist chordin was increased on 

the ventricularis endothelium 128.  Mice lacking noggin at the embryonic stage, have 

increased thickening of endocardial cushion due to cell proliferation 166.   Finally, 

uncarboxylated MGP is decreased in the plasma of patients that have aortic valve 

calcification than the healthy cohort 167.   It is hypothesized that this decrease in 

uncarboxylated MGP is due to decreased release of MPG from the vascular wall.  In the 

aortic valve, little research has looked at BMP antagonist expression at the VIC or 

endothelial cell level. 

 

BMP Receptors 

The BMPs and TGFβ have two types of specific signaling receptors:  bone morphogenic 

protein receptor-1 (BMPR) and BMPR-II, or transforming growth factor β receptor-1 

(TGFβR) and TGFβR-II, respectively, and both are required for signaling.  Once the 

ligand is bound to its receptors, the active domain of the type II receptor phosphorylates 

the type I receptor, which in turn phosphorylates the R-SMADs (SMAD 1, 2, 3, 5, 8) 168-

170.  The functional role of BMPRs in vasculature is not well-studied and in the valve is 

non-existent.  Loss of BMPR-II in vascular smooth muscle cells results in familial primary 

pulmonary hypertension in humans 171.  In endothelial cells, transfection with 
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constitutively active mutants of activin like receptor 2 (ALK2), ALK3 and ALK6 have been 

shown to stimulate expression of id gene (inhibitor of differentiation gene, a well-known 

BMP target) and angiogenic responses 172. Finally, BMPRIa knockout mice have 

impaired valve development 15.   

 

Intracellular BMP Signaling 

SMAD 2/3 and SMAD 1/5/8 are canonical mediators of TGFβ and BMP signaling, 

respectively.  When BMPR-1 or TGFβR-1 is phosphorylated, its kinase activity is 

activated and it then can phosphorylate SMAD 1/5/8 or 2/3, respectively 173.  These 

phospho-SMADs then bind with co-SMAD 4 and are then translocated into the nucleus, 

regulating a wide range of gene expression.  SMAD 6, an inhibitory SMAD, can block the 

R-SMADs from being phosphorylated by competing for activation through the type I 

receptors 168-170.  SMAD6 was shown to be induced by laminar shear stress in vascular 

endothelial cells 174.  Moreover, SMAD6 deficiency was shown to cause cardiac valve 

hyperplasia in mice 28, demonstrating its importance in AV biology.  Furthermore, 

SMAD6 deficient mice have extensive ectopic calcification throughout the vasculature 28.  
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CHAPTER 2 
 

SPECIFIC AIMS 
 

 
 
Project Significance 

Aortic valve (AV) disease is a major cause of cardiac-related deaths worldwide and is a 

strong risk factor for additional cardiovascular events1-3.  In 2009, there were nearly 

93,000 valve procedures performed in the United States, with 53% of those procedures 

done on the aortic valve position4.  With the aging population in the United States, the 

incidence of aortic valve disease is rising.  While gross pathological changes and 

surgical treatments of diseased valves have received much attention, the molecular 

mechanisms underlying aortic valve inflammation, calcification, and subsequent valve 

dysfunction are not well understood and remain vastly understudied 5.   Aortic valve 

disease is diagnosed by severe symptoms at which only invasive surgical repairs or 

replacements are treatment options 5.  By understanding the mechanism by which aortic 

valve disease occurs, we may determine early biomarkers of disease and possible 

therapeutic targets and therefore may slow or stop further disease progression. 

 

AV leaflets  function under complex hemodynamic conditions, including pulsatile 

pressures, unidirectional and disturbed fluid flows, bending stresses, and cyclic stretch 6.  

The vascular endothelium is a critical sensor and mediator of hemodynamic and humoral 

stimuli.  Similar to the vascular endothelium, where atherosclerosis preferentially occurs 

in areas of disturbed flow, AV calcification and sclerosis primarily occur in a side-

dependent manner 7-11.  The fibrosa endothelium experiences disturbed flow conditions 

throughout the cardiac cycle and is prone to accelerated AV calcification 6,  12‐13.   

Conversely, the ventricularis endothelium, which is located toward the left ventricle, 
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experiences pulsatile flow during systole and remains relatively unaffected 12‐13.  Recent 

work studying porcine AV endothelium has shown distinct side-dependent gene and 

protein expression profiles 14. The aortic side of porcine AV endothelium showed 

propensity for calcification while the ventricularis endothelium was protected 14.    

Bone morphogenic proteins (BMPs) are likely to play an important role in the 

development and progression of aortic valve disease.  BMPs are members of the 

transforming growth factor β (TGFβ) superfamily 15, and are now known to play important 

roles in embryonic development, patterning, cartilage formation, and cell     

differentiation 16-17.  More specifically, BMP-4 is a mechanosensitive and proinflammatory 

cytokine in vascular endothelial cells 18-19.   In valvular endothelial cells, BMP-4 

expression is decreased on the fibrosa endothelium as compared to the ventricularis 

endothelium of healthy porcine aortic valves in vivo14.  Further, BMP-4 was also found to 

be decreased by laminar flow in porcine aortic valve endothelial cells in vitro; however, 

BMPs and BMP antagonists have been never been studied in the endothelium of human 

aortic valves in the context of disease 7.  In the following study, I investigate endothelial 

expression of BMPs, BMP antagonists, and SMAD activation in calcified and non-

calcified human aortic valves.  To provide more mechanistic insight into the shear 

response of valvular endothelial cells, I also investigated inflammatory responses as well 

as presence of BMP members and activation of the BMP pathway post-shear in vitro.  In 

the following study, I investigate disease- and side-dependent valvular endothelial BMP 

expression in vivo, shear regulation of valvular endothelial inflammation in vitro, and 

shear regulation of valvular endothelial BMP expression in vitro.  
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Project Objective 

The goal of this project was to investigate how disease and hemodynamics affects the 

BMP pathway and inflammation in human aortic valvular endothelial cells.  

Understanding the mechanisms by which BMPs and the BMP pathway are regulated in 

valvular endothelial cells may provide important insight into the initiation, progression, 

and offer possible therapeutic targets of aortic valve disease. 

 

Overall Hypothesis 

Oscillatory flow conditions on the fibrosa side of the aortic valve stimulate 

endothelial cells to produce BMP-4, which then activates an inflammatory 

response leading to accumulation of inflammatory cells, calcification, and 

ultimately valve impairment.  This hypothesis was tested through three specific aims 

using calcified human aortic valves, non-calcified human aortic valves, and side-specific 

human aortic valve endothelial cells. 

 

 

Figure 2.1 Overall Hypothesis   
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Specific Aim 1 

Characterization of BMPs, BMP antagonists, and SMADs in Calcified and Non-

Calcified Human Aortic Valve Endothelial Cells.   

Hypothesis: Side-dependent expression of bone morphogenic proteins (BMPs) and BMP 

antagonists in the endothelium of ventricularis and fibrosa is associated with human AV 

calcification. 

 

Figure 2.2 Experimental layout of Specific Aim 1 

 

To determine whether AV calcification is connected with the BMPs or BMP antagonists, 

immunohistochemical studies were performed on human AVs looking at the following 

markers: BMP, BMP antagonists, and SMAD levels in calcified and non-calcified human 

aortic valve endothelium.  
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Specific Aim 2 

Characterization of anti- and pro-inflammatory shear responses in human aortic 

valve endothelial cells.  

Hypothesis: Oscillatory shear stress increases the pro-inflammatory phenotype of 

human aortic valve endothelial cells.   

 

Figure 2.3 Experimental layout of Specific Aim 2 

 

Characterization data from Specific Aim 1 showed an increase in SMAD 1/5/8, a 

canonical BMP activation marker, in calcified human aortic valves.  Before examining 

shear regulation of the BMPs in vitro, I wished to establish the shear response of human 

aortic valve endothelial cells to laminar and oscillatory shear stress by looking at anti- 

and pro-inflammatory molecules.  In these studies, laminar and oscillatory shear 

stresses were applied to side-specific endothelial cells and then assayed for anti- and 

pro-inflammatory proteins at the mRNA and protein levels using quantitative PCR and 

western blot techniques respectively.  Subsequently, a monocyte adhesion assay was 

used to determine the functional inflammation state of the human aortic valvular 

endothelial cells.  
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Specific Aim 3 

Characterization of BMPs and BMP antagonists under shear stress and their role 

in inflammation in human aortic valve endothelial cells.  

Hypothesis: Oscillatory shear stress induces BMP-4 protein expression and this increase 

contributes to the inflammatory response of human aortic valve endothelial cells. 

 

Figure 2.4 Experimental layout of Specific Aim 3 

 

In Specific Aim 1, BMP-dependent SMADs were activated on the fibrosa of calcified 

human aortic valves.  Specific Aim 2 characterized the inflammatory response of human 

aortic valvular endothelial cells.  To determine if the BMPs and their antagonists were 

regulated by shear, I used quantitative PCR and western blot analysis to determine 

mRNA and protein levels, respectively.  Finally, to determine if BMPs play a role in 

functional inflammation of the human aortic valve endothelial cells, a monocyte adhesion 

assay with addition of noggin was employed.  Unlike vascular endothelial cells, BMPs do 

not affect functional inflammation in human aortic valve endothelial cells in vitro.  
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CHAPTER 4 
 

SHEAR RESPONSE AND INFLAMMATION IN HUMAN AORTIC 

VALVE ENDOTHELIAL CELLS  

 
 
 
In Chapter 3, I identified that bone morphogenic proteins (BMPs) and their antagonists 

were expressed in the valvular endothelium and that BMP pathway activity was 

significantly increased in calcified valves and was highest on the fibrosa side of calcified 

cusps.  In this chapter, my goal was to determine the shear response of  valvular 

endothelial cells by looking at shear responsive elements such as endothelial nitric oxide 

synthase (eNOS) and Kruppel-like factor 2 (KLF2).  I also investigated valve endothelial 

cell inflammation.  More specifically, I aimed to determine which inflammatory 

transcription factors are affecting the endothelial cells.  For the first time, I have 

characterized the shear and inflammation responses of human aortic valve endothelial 

cells. 

 

Summary 

Background. ICAM1, VCAM1 and E-Selectin have shown to be increased in sclerotic 

aortic vales.  These molecules attract inflammatory cells (monocytes, T-cells) from the 

peripheral blood and as they accumulate, the disease progresses.  The role of fluid 

shear stress on the regulation of anti- and pro-inflammatory responses in human aortic 

valves, however, remains understudied.  I hypothesized that oscillatory shear would 

cause an increase in inflammation markers (ICAM-1, VCAM-1) while laminar shear 

would increase anti-inflammatory transcription factors/molecules such as KLF2 and 

eNOS.  
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Methods and Results.  To test this hypothesis in vitro, OS or unidirectional LS was 

applied to side-specific human aortic valvular ECs.  Known shear responsive gene levels 

were examined through immunoblotting and quantitative PCR (qPCR) while the shear 

effect on inflammation was determined through a monocyte adhesion assay.  I confirmed 

that both fibrosa and ventricularis ECs exhibit an increase of KLF2 and eNOS under 

laminar shear when compared to oscillatory shear while seeing the endothelial cells 

aligned parallel to flow.  However, phospho-p38 and NFkB, known inflammatory 

transcription factors, were not increased by oscillatory shear.  This trend continued for 

ICAM-1 and E-selectin.  However, VCAM-1 mRNA and protein was decreased by 

laminar flow, I hypothesize it is due to increased NO production.  Finally, an increase (2-

fold) in monocyte binding under oscillatory shear stress when compared to laminar shear 

stress was shown. 

 

Conclusions.  For the first time, I describe human aortic valve endothelial cell anti- and 

pro-inflammatory function under fluid shear stress.   I found that laminar shear stress 

increased KLF2 and eNOS while decreasing VCAM-1 and monocyte adhesions.  

Furthermore, understanding the interaction between reactive oxygen species, nitric 

oxide production (eNOS), and inflammation (VCAM-1) may give us insight and offer 

possible avenues for pharmaceutical intervention to stop or slow the progression of 

aortic valve disease.  

 

Introduction 

Aortic valve calcification is the number one pathology responsible for an aortic valve 

replacement procedure in the western world.  In fact, 20% of people over the age of 80 

are believed to have calcification of the aortic valve 1.  This disease’s hallmark is ectopic 
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calcification and is characterized by the accumulation of inorganic phosphates, calcium, 

bone-related proteins (bone morphogenic proteins (BMPs), osteopontin, osteonectin, 

transforming growth factor β (TGFβ)), inflammatory cells (monocytes, leucocytes and T-

cells), and osteoblast like cells 2‐9.  While the gross pathology, surgical replacement, and 

clinical manifestations of aortic valve disease have received much attention, the cellular 

mechanisms leading to aortic valve degeneration has received little 10.   

 

Inflammation plays a central role in numerous pathologies.  During the initial stages of 

atherosclerosis, the endothelial cells that line the blood vessel exhibit an upregulation of 

inflammatory molecules including inter-cellular adhesion molecule 1 (ICAM1), vascular 

cell adhesion molecule 1 (VCAM1), and E-Selectin 11-12.  These molecules attract 

inflammatory cells (monocytes, T-cells) from the peripheral blood and as they 

accumulate, the disease progresses2‐5.  Aortic valve lesions have similar cellular 

presences, with the majority of peripheral blood cells being T-cell and macrophages 2‐5.  

Further, ICAM1, VCAM1 and E-Selectin have shown to be increased in sclerotic aortic 

vales13.  Integration of this data suggests an active inflammatory response, similar to 

atherosclerosis, occurs in degenerative aortic valve disease 14‐15.   

 

A second similarity between atherosclerosis and aortic valve calcification is disease 

location.  Atherosclerosis preferentially occurs in areas that are exposed to disturbed, 

oscillatory, or low mean shear stress 16-17.  Aortic valve calcification also occurs in a side-

dependent fashion, where the fibrosa, which faces the aorta and experiences oscillatory 

flow conditions, develops calcified lesions more readily  than the ventricularis 3.   
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When exposed to laminar flow, aortic endothelial cells align parallel to the flow and 

exhibit increases in athero-protective genes such as Kruppel-like factor 2 (KLF2), KLF4, 

and endothelial nitric oxide synthase eNOS 18-24; however endothelial cells exposed to 

oscillatory flow express pro-inflammatory molecules such as monocyte chemo-attractant 

protein 1 (MCP1), BMP-4 and inflammatory adhesion molecules 25-29.  Regulation of 

these inflammatory genes has been linked to signaling molecules such as p38, 

extracellular signal regulated kinase (ERK), nuclear factor-κB (NFκB), and c-Jun-N-

terminal-kinase (JNK) 30-35.   

 

In vascular endothelial cells, application of laminar shear causes a robust increase of 

KLF2 24.  Interestingly KLF2 was found not to be induced by other mechanical or 

biochemical stimuli in endothelial cells 24 and may regulate several anti-inflammatory 

genes including JNK 36.   Furthermore, KLF2 has been found in protective regions of the 

vasculature in vivo 37, has been found to be upstream of eNOS 38, and helps improve the 

nuclear localization of NF-E2-related factor 2 (Nrf2), a powerful anti-oxidant gene 

transcription factor 39.   In vascular endothelial cells, eNOS is increased by unidirectional 

flow 40.  Its product, nitric oxide (NO), is a potent vasodilator, promotes vascular health, 

and is able to reduce intracellular oxidative stress 21-23.  Interestingly, in mice lacking 

eNOS have the propensity to develop bicuspid aortic valves and eNOS dysfunction was 

also found in patients with bicuspid aortic valve disease 41-42.  Studies have found that in 

calcified human aortic valves, increases in reactive oxygen species (ROS) surrounding 

areas of calcification, are in part due to uncoupled eNOS 43.  Furthermore, in an in vitro 

study, supplemented NO donors to porcine aortic valve interstitial cells (VICs) blocked 

TGFβ-mediated calcified nodule formation 44.   Finally, mRNA analysis of porcine aortic 

valve endothelium found that eNOS was increased on the fibrosa endothelium when 

compared to the ventricularis endothelium 45.   
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In this study, I investigate the shear response and regulation of anti- and pro-

inflammatory genes in side specific aortic valve endothelial cells.  I hypothesize that 

oscillatory shear will induce pro-inflammatory genes including ICAM1, VCAM1, and E-

Selectin while laminar shear induces eNOS and KLF2 production.   

 

Materials and Methods 

Cell Isolation 

Side-specific endothelial cells were harvested from patients undergoing heart transplants 

at Emory University according to an IRB-approved protocol.  Valves were excised from 

the heart and washed three times in Hank’s Buffered Saline Solution (HBSS).  They 

were then incubated in a 5X antibiotic solution (Gibco) for 30 minutes.  The leaflets were 

then oriented so the fibrosa or ventricularis endothelium were facing the same direction.  

A 600 units/mL solution of collagenase type II (Worthington 4176) was incubated on the 

valve for 5 minutes.  Leaflets were then washed with growth media and the 

collagenase/growth media mixture was collected in a centrifuge tube.  Leaflets were then 

scraped two times in succession (lightly and then harder) with a sterile scalpel.  Between 

scrapes the leaflets were rinsed with growth media and the solution was placed in 

separate collection tubes.  The leaflets were then placed in a new dish and washed.  

The same procedure of collagenase and scraping was then performed on the opposite 

side.  Cells were spun down at 1000 RPM for 5 minutes and plated in a 12-well dish and 

sequentially expanded into a 6-well and T-75 dish.  The cells were then sorted using 5 

µg/mL of DiL-Acetylated-LDL (Biomedical Technologies Inc.) and the BD FACS Aria Cell 

Sorter. 
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Human Aortic Valve Endothelial Cell Culture and Shear Stress Studies 

Endothelial cells obtained from human aortic valves were cultured in growth medium 

[MCDB131 (Cellgro®) containing FBS (Cellgro®, 10%), bovine ECGS (1%), L-Glutamine 

(Gibco, 1%), Penicillin-Streptomycin (Gibco, 1%), hydrocortisone (Sigma, 0.001 mg/mL), 

hFGF (R&D, 0.002 µg/mL), hEGF (Invitrogen, 0.01 µg/mL), IGF (Invitrogen, 0.002 

µg/mL), VEGF (R&D, 0.001 µg/mL), ascorbic acid (Sigma, 50 µg/mL)] and used between 

passages 4 and 5.  Confluent endothelial cell monolayers were grown in 10 cm dishes 

and were exposed to an average ventricularis unidirectional laminar shear level (20 

dynes/cm2) or an OS bidirectional flow (± 5 dynes/cm2) for 24 hours using a Teflon cone 

and plate viscometer (α =0.5°) as described previously.  As a control, cells were cultured 

in a no flow (static) conditions.  One hour before shear studies, media was replaced 

[MCDB131 (Cellgro®) containing FBS (Cellgro®, 2.5%), L-Glutamine (Gibco, 1%), 

Penicillin-Streptomycin (Gibco, 1%)]. 

 

Western Blots 

Following shear exposure, cells were rinsed three times with phosphate buffered 

solution (PBS) and then lysed using a cell lysis buffer (RIPA) supplemented with 

phosphotase (Sigma) and protease (Roche) inhibitor cocktails.  Following a modified 

Lowery protein assay, equal amounts of total protein were resolved by SDS-PAGE as 

previously described 46.  Protein was transferred from the SDS-gel to an immobilio-P-

membrane (Millipore, PVDF) and probed with anti-BMP4 (Santa Cruz, 1:1000), anti-

SMAD 1/5/8 (Cell Signaling, 1:1000), anti-phosphorylated SMAD 1/5/8 (Cell Signaling, 

1:1000), or anti-actin (Santa Cruz, 1:1000).  A secondary antibody conjugated to alkaline 

phosphate was used to detect protein levels by  chemiluminescence method 46.   
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Immunohistochemistry Studies 

After 24 hours of shear, endothelial cells were washed 3 times in phosphate buffer 

solution (PBS) and were fixed in 4% formaldehyde for 10 minutes.  After fixing the cells 

were washed in PBS, permeabilized for 15 minutes with 0.05% Triton X, washed again, 

and then blocked with 10% donkey serum for 30 minutes.   Cells were then incubated 

with an anti-phospho-NFκB (SAB) primary antibody for 2 hours, followed by incubation 

with a specific secondary antibody and Hoechst counterstain. Cells were then imaged at 

a 63x original magnification and imaged using a Zeiss confocal microscope. 

 

Quantitative PCR 

Following shear exposure, cells were washed three times with ice cold PBS.  Total RNA 

was then isolated using RNeasy Mini Kit (Qiagen).  1 µg of total RNA was reverse 

transcribed using random hexamer primers and a SuperScript®III First Strand Kit 

(Invitrogen).   The resulting cDNA was then amplified using real time PCR (ABI Step 

One Plus) and a master mix containing, gene-specific forward and reverse primers (IDT, 

Table 1), ROX reference Dye (Stratagene, 1:50), and 2x Brilliant II SYBR® Green QPCR 

master mix (Stratagene).  The PCR conditions were 2 minutes at 56°C, 10 minutes at 

95°C, 40 cycles of 30s at 95°C and 1 minute at 60°C, with a melting curve of 15 seconds 

at 95°C and 1 minute at 60°C.  All values were normalized to 18S (Ambion). 
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Monocyte Binding 

Monocyte binding was done under static conditions using purchased THP1 Monocytes 

(ATCC) as described previously.  THP1 monocytes, at a concentration of 1x106 cells/mL 

were incubated with a fluorescent dye 2’;7’-bis(carboxyethyl-5) (6)-carboxyfluroscein-AM 

(BCEFC, Molecular Probes, 1 mg/mL) in serum-free RPMI (Cellgro®) for 30 minutes at 

37°C.  During which, endothelial cells, which were exposed to shear stress for 24 hours, 

with or without noggin (R&D, 50 ng/mL), were washed with RPMI media before addition 

of monocytes (6 million).  Monocytes were incubated with endothelial cells for 30 

minutes at 37°C to allow binding.  Unbound monocytes are removed by washing with 

HBSS with calcium and magnesium (Cellgro®).  Bound monocytes were then quantified 

by counting the number of monocytes bound per viewing area (5x Original 

Magnification).  Images were captured using an epifluorescent microscope (Zeiss).  
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Statistics 

Data is presented was mean ± standard error with n’s representing number of replicates.  

Student’s t-test was used to establish significance between groups.  P<0.05 was 

considered statistically significant with at least 3 independent experiments.   

 

Results 

Shear response of HAVEC 

Fibrosa and ventricularis endothelial cells were placed under unidirectional or oscillatory 

shear for 24 hours.  After shear both fibrosa and ventricularis endothelial cells aligned 

parallel to the laminar flow; however endothelial cells under oscillatory flow maintained 

the cobblestone morphology (Figure 4.1).   
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Figure 4.1 Cell alignment of human aortic valve endothelial cells after 24 hours of 
shear. 

 

Endothelial Nitric Oxide Synthase (eNOS) and Kruppel-like Factor 2 (KLF2) are 

increases by laminar flow in human aortic valvular endothelial cells 

KLF2 and eNOS mRNA was increased by laminar flow in both fibrosa and ventricularis 

endothelial cells (Figure 4.2a, b).  To further examine the responsiveness to shear, 

eNOS protein was investigated.  The total eNOS and the activated phosphorylated 

eNOS were significantly upregulated by laminar shear 2-fold when compared to static 

and oscillatory shear (Figure 4.2c, d).  Interestingly, mRNA levels of eNOS were 
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upregulated in ventricularis cells under laminar flow when compared to the ventricularis.  

However, protein levels between the two cell types were similar (Figure 4.2b, c, d). 

 

Figure 4.2  Laminar shear induces KLF2 mRNA and eNOS mRNA and protein 
expression.  Fibrosa (F) and ventricularis (V) endothelial cells were shear for 24 hours 
in static (S) laminar (L) or oscillatory shear conditions (O).  After shear cellular mRNA or 
protein was collected.  (a) and (b) KLF2 and eNOS mRNA was analysis respectively.  
(a)* p<0.05  (b) *p<0.05 against FS, VL, and FO.  ** p<0.05 against VS and VO.  n- 4 
from 3 different patients. (c) and (d) Total and phosphorylated eNOS protein analysis 
respectivly.* n- 4 from 4 different patients.   * p<0.05.  (Means ± SE). 
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NFkB and p38 are not reduced by laminar flow 

To give insight into inflammatory pathway, known inflammatory signaling molecules were 

examined.  After 24 hours of shear, no significant differences were detected between 

ERK and JNK activation (data not shown).  A 4-fold increase of phosphorylated p38 was 

detected under laminar shear while no difference was detected with total p38 levels 

(Figure 4.3a).  The final inflammatory pathway examined was the NFkB pathway.  Total 

IκB was examined and showed a 2-fold increase under laminar flow (Figure 4.3b); 

however, when investigating the active subunit of NFkB (phosphorylated-p65), little 

change seen when comparing laminar flow to oscillatory flow (Figure 4.3c).  To 

determine if IκB was blocking translocation of phospho-p65 into the nucleus, cells were 

stained using a specific phosphoralated-p65 antibody to investigate translocation into the 

nucleus.  Equal levels of p-p65 were seen in the nucleus cells after laminar and 

oscillatory flow in both cell types (Figure 4.3d, e).   
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Figure 4.3 Phosphorylated-p65 and phosphorylated-p38 levels are not reduced by 
laminar flow.  Fibrosa (F) and ventricularis (V) endothelial cells were shear for 24 hours 
in static (S) laminar (L) or oscillatory shear conditions (O).  After shear cellular protein 
was collected.  (a) and (b) phospho-p38 and IkB protein levels respectively.  n- 4 from 4 
different patients. In (a) * p<0.05 against FO and ** p <0.08 against VO.  In (b) * p<0.05. 
(c) Phosphorylated p65 protein analysis. n=3 from 3 different patients.   (d) and (e) 
immuocytochemistry of phosphorylated-p65 in laminar or oscillatory treated side-specific 
endothelial cells.  (Means ± SE). 
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VCAM-1 Levels are decreased by laminar flow 

VCAM-1 mRNA and proteins were downregulated by laminar shear by 2-fold (Figure 

4.4b, d).  No differences were seen between fibrosa and ventricularis endothelial cells.  

No changes in ICAM-1 mRNA were detected in either endothelial cell type; however, at 

the protein level, ICAM-1 was only significantly higher in the fibrosa endothelial cells 

under laminar flow when compared to fibrosa oscillatory (Figure 4.4a, c).  Furthermore, 

ICAM-1 and E-selectin were increased by laminar flow (Figure 4.4a, c Figure 4.5a).  

Because of the conflicting results seen between ICAM-1, E-Selectin and VCAM-1, I 

sought to determine the inflammation state of the aortic valve endothelial cell by 

performing a monocyte adhesion assay.  In both fibrosa and ventricularis endothelial 

cells, oscillatory shear significantly increased (2-fold)  the amount of monocyte adhesion 

compared to oscillatory shear demonstrating functional inflammation in human aortic 

valve endothelial cells (Figure 4.5b). 
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Figure 4.4 Laminar shear decreases VCAM-1 in human aortic valve endothelial 
cells.  Fibrosa (F) and ventricularis (V) endothelial cells were shear for 24 hours in static 
(S) laminar (L) or oscillatory shear conditions (O).  After shear cellular mRNA or protein 
was collected.  (a) and (b) ICAM-1, and VCAM-1 mRNA analysis respectively.  * p<0.05 
against FS, and FO.  ** p<0.05 against VS and VO.  n= 4 from 3 different patients. (c) 
and (d) ICAM-1 and VCAM-1 protein analysis respectively. n= 4 from 4 different patients.   
(c) * p<0.05 against FL.  (d) * p<0.05. (Means ± SE). 
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 Figure 4.5 Laminar shear decreases monocyte adhesion in human aortic valve 
endothelial cells.  Fibrosa (F) and ventricularis (V) endothelial cells were shear for 24 
hours in static (S) laminar (L) or oscillatory shear conditions (O).  After shear cellular 
mRNA.  (a) E-selectin mRNA analysis, n=4 with 3 different patients.  (b) After 24 hours 
of shear, fluorescently labeled monocytes were incubated with the conditioned 
endothelial cells.  Monocytes were counted per viewing area.  * p<0.05 against FO.   ** 
p<0.05 against VO. n=5. Error bars are standard error.  (Means ± SE). 

 

Discussion 

Vascular endothelial cells are critical mediators in the health of the vascular system47.  

They secrete vasoactive compounds that can regulate vascular tone and mechanical 

properties47.  Recently, studies have found that valvular endothelial cells can have 

similar effects on the valvular interstitium and play a critical role of the mechanical 

properties of the valvular leaflet 47.  Furthermore, studies investigating calcified valvular 

stenosis have found increased levels of endothelial inflammatory adhesion molecules 13, 

leukocyte infiltrate 3, 48, and increased levels of reactive oxygen species surrounding 

areas of valvular calcification 43, 49.  Because of the correlation of the preferential side 

development of aortic valve disease and the hemodynamics experienced on the fibrosa, 

I tested the hypothesis that the oscillatory flow experienced on the fibrosa side of the 
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valvular leaflet causes an increase in inflammatory molecules while unidirectional flow 

blocks inflammation. 

 

I first tested the shear responsiveness of the fibrosa and ventricularis endothelial cells by 

looking at cell alignment, and known shear-sensitive genes.  Porcine aortic valve 

endothelial cells were shown to align perpendicular to flow 50.  In fibrosa and ventricularis 

human aortic valve endothelial cells, I found that cells aligned parallel to the fluid flow 

(Figure 4.1).  To further determine the shear responsiveness of these endothelial cells, 

transcription factor KLF2 was examined at the mRNA level.  In vascular endothelial cells, 

application of laminar shear causes a robust increase of KLF2 24.  Interestingly KLF2 

was found not to be induced by other mechanical or biochemical stimuli in endothelial 

cells 24 and may regulate several anti-inflammatory genes including JNK 36.   

Furthermore, KLF2 has been found in protective regions of the vasculature in vivo 37, 

has been found to be upstream of eNOS 38, and helps improve the nuclear localization of 

Nrf2, a powerful anti-oxidant gene transcription factor 39.   I have found that laminar 

shear increases KLF2 in both fibrosa and ventricularis endothelial cells (Figure 4.2a).  In 

order to mimic physiological conditions, I investigated fibrosa cells under oscillatory flow 

compared to the ventricularis cells under laminar flow.  In this case, I see a dramatic 

increase in KLF2 mRNA in the ventricularis cells suggesting a more anti-inflammatory 

state is present on the ventricularis side of the aortic valve.  

 

I next looked downstream of KLF2 at eNOS.  In vascular endothelial cells, eNOS is 

increased by unidirectional flow.  Its product, NO, is a potent vasodilator, promotes 

vascular health, and is able to reduce intracellular oxidative stress 21-23.  Interestingly, in 

mice lacking eNOS have the propensity to develop bicuspid aortic valves and eNOS 

dysfunction was also found in patients with bicuspid aortic valve disease 41-42.  Studies 
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have found that in calcified human aortic valves, increases in reactive oxygen species 

(ROS) surrounding areas of calcification, are in part due to uncoupled eNOS 43.    

Furthermore, in an in vitro study, supplemented nitric oxide donors to porcine aortic 

valve interstitial cells blocked TGFβ-mediated calcified nodule formation 44.   Finally, 

mRNA analysis of porcine aortic valve endothelium found that eNOS was increased on 

the fibrosa endothelium when compared to the ventricularis endothelium 45.  I found that 

laminar shear increases total and phosphorylated eNOS levels (Figure 4.2b-c).  It 

remains to be seen if this endothelial specific NOS can affect ROS surrounding calcified 

nodules in vivo, however recent ex vivo studies have found endothelial produced NO 

can relax valvular interstitial cells 47.  The differences between the porcine in vivo results 

to my in vitro findings suggest factors other than shear stress may be playing a role.   

 

After determining the shear response at the transcriptional and translational level of two 

molecules known to be upregulated by unidirectional laminar shear, I then investigated 

four inflammatory signaling molecules, JNK, p38, ERK1/2 and NFκB.  High unidirectional 

shear stress has been shown to inhibit activation of JNK, p38 and NFκB 30-35, while 

oscillatory flow induces NFκB activation in vivo 51.  I was surprised to find that p38 

activation, measure by phosphorylated-p38, was increased by laminar flow (Figure 

4.3a).  This increase was not different between the fibrosa and ventricularis and further 

investigation into the mechanism by which p38 is upregulated may provide fundamental 

information in regulation of this map kinase.  Interestingly, reports have found p38 is 

essential in cytoskeletal remodeling, and endothelial cells under laminar flow fail to align 

with the flow when p38 is inhibited 52-53.  I found that the inhibitor of NFκB, IκB, was 

increased two-fold by laminar flow (Figure 4.3b); however the level of activated NFκB, 

phosphorylated p65, was not decreased by laminar flow when compared to oscillatory 
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flow (Figure 4.3c).  To determine if this transcription factor translocates into the nucleus 

in this environment, I performed phosphorylated p65 immunostaining.  I found that all 

phosphorylated p65 was located in the nucleus (4.3d, e).  Because of these results I 

decided to look downstream of these transcription factors by looking endothelial 

adhesion molecules.   

 

ICAM-1, VCAM-1 and E-selectin are important regulators of inflammation in the 

vasculature.  In vascular endothelial cells ICAM-1 and E-selectin are increased by 

oscillatory flow 28, 54 while unidirectional flow has little effect on either adhesion   

molecule 55-56.  In contrast, VCAM-1 is decreased by unidirectional laminar flow while not 

being affected by oscillatory flow 57-58.  As previously mentioned, ICAM-1, VCAM-1, and 

E-selectin are all found in calcified human aortic valves.  Furthermore, in porcine valvular 

endothelial cells, laminar shear was found to decrease VCAM-1 mRNA levels.  My 

results found a small increase between ICAM-1 protein levels in laminar or oscillatory 

shear stress conditions (Figure 4.4a, c).  This result is correlated with my data 

concerning NFκB activation, as ICAM-1 has a NFκB responsive element in its    

promoter 59.  VCAM-1 has also been shown to be responsive to NFκB 59;however, unlike 

ICAM-1, VCAM-1 had a promoter that is responsive to NO and Nrf2 60.  I found VCAM-1 

protein and mRNA was decreased by laminar flow in fibrosa and ventricularis endothelial 

cells (Figure 4.4b, d).  In conjunction with endothelial expression of eNOS, I hypothesize 

that the NO produced by eNOS under laminar shear effects VCAM-1 expression and 

overrides NFkB.  To determine the overall inflammatory state of the valvular endothelial 

cells, a monocyte adhesion assay was performed to determine the inflammatory state of 

the valvular endothelial cells.  In both cell types, oscillatory shear significantly increased 

the number of monocyte bound to the endothelium when compared to laminar 
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conditioned cells (Figure 4.5b).  With consideration to the above ICAM-1 and VCAM-1 

data, it is likely that VCAM-1 is responsible for the monocyte adhesion in these cells, 

although this needs to be tested.   

 

It is important to emphasize that the cells used in this study come from a diseased 

population, some of which had vascular inflammation at the time of cell isolation.  

Inflammatory signaling molecules, i.e. p38 and NFkB, and endothelial cell adhesion 

molecules, i.e. ICAM-1 and E-selectin, may be affected by the patients’ medical 

condition at the time of harvest.  Furthermore, the in vitro conditions that I use in these 

experiments are approximations of the hemodynamic and humeral stimuli experienced in 

vivo.   

 

This study, for the first time, chronicles the effect of shear stress on side specific human 

aortic valve endothelial cells.  Both cell types have similar patterns of shear upregulation 

for KLF2 and eNOS.  These valvular endothelial cells have an unexpected response to 

laminar shear stress with ICAM-1 and E-Selectin, which may be due to p38 and NFκB 

activation. VCAM-1 mRNA and protein was decreased in laminar flow, in a similar 

manner to published reports, possibly due to the anti-inflammatory effect of NO.  Finally, 

it appears that VCAM-1 is responsible for the oscillatory shear-induced monocyte 

binding, although direct testing needs to be conducted.  Finally, this information is critical 

in understanding the mechanisms by which aortic valve disease occurs.  Understanding 

the inflammatory phenotype and pathways can help in developing a successful tissue 

engineered aortic valve.  Furthermore, understanding the interaction between reactive 

oxygen species, nitric oxide production, and inflammation may give us insight and offer 

possible avenues for pharmaceutical intervention to stop or slow the progression of 

aortic valve disease.  



100 
 

Acknowledgments 

This work was supported by funding from National Institute of Health grants HL75209, 

HL87012, and HL80711 (HJ), as well as an American Heart Association pre-doctoral 

fellowship (RFA).    Authors would also like to recognize Casey J. Holliday and Chih-

Wen Ni in contributing to the content and direction of this manuscript. 



101 
 

References 
 
1. Thourani VH, Myung R, Kilgo P, Thompson K, Puskas JD, Lattouf OM, Cooper 

WA, Vega JD, Chen EP, Guyton RA. Long-term outcomes after isolated aortic 
valve replacement in octogenarians: A modern perspective. The Annals of 
Thoracic Surgery. 2008;86:1458-1465 

2. Olsson M, Dalsgaard C, Haegerstrand A, Rosenqvist M, Ryden L, Nilsson J. 
Accumulation of t lymphocytes and expression of interleukin-2 receptors in non-
rheumatic stenotic aortic valves. J Am Coll Cardiol. 1994;23:1162-1170 

3. Otto CM, Kuusisto J, Reichenbach DD, Gown AM, O'Brien KD. Characterization 
of the early lesion of 'degenerative' valvular aortic stenosis. Histological and 
immunohistochemical studies. Circulation. 1994;90:844-853 

4. Shao J-S, Cai J, Towler DA. Molecular mechanism of vascular calcifcation 
lessons learned from the aorta. Arterioscler Thromb Vasc Biol. 2006;26:1423-
1430 

5. Wallby L, Janerot-Sjoberg B, Steffensen T, Broqvist M. T lymphocyte infiltration 
in non-rheumatic aortic stenosis: A comparative descriptive study between 
tricuspid and bicuspid aortic valves. Heart. 2002;88:348-351 

6. Jian B, Jones PL, Li Q, Mohler ER, 3rd, Schoen FJ, Levy RJ. Matrix 
metalloproteinase-2 is associated with tenascin-c in calcific aortic stenosis. Am J 
Pathol. 2001;159:321-327 

7. Jian B, Narula N, Li QY, Mohler ER, 3rd, Levy RJ. Progression of aortic valve 
stenosis: Tgf-beta1 is present in calcified aortic valve cusps and promotes aortic 
valve interstitial cell calcification via apoptosis. Ann Thorac Surg. 2003;75:457-
465; discussion 465-456 

8. Mohler ER, 3rd, Gannon F, Reynolds C, Zimmerman R, Keane MG, Kaplan FS. 
Bone formation and inflammation in cardiac valves. Circulation. 2001;103:1522-
1528 

9. O'Brien KD, Reichenbach DD, Marcovina SM, Kuusisto J, Alpers CE, Otto CM. 
Apolipoproteins b, (a), and e accumulate in the morphologically early lesion of 
'degenerative' valvular aortic stenosis. Arterioscler Thromb Vasc Biol. 
1996;16:523-532 

10. Baxley WA. Aortic valve disease. Curr Opin Cardiol. 1994;9:152-157 



102 
 

11. Zarins C, Giddens D, Bharadvaj B, Sottiurai V, Mabon R, Glagov S. Carotid 
bifurcation atherosclerosis. Quantitative correlation of plaque localization with 
flow velocity profiles and wall shear stress. Circ Res. 1983;53:502-517 

12. Caro C, Fitz-Gerald J, Schroter R. Arterial wall shear and distribution of early 
atheroma in man. Nature. 1969;223:1159-1160 

13. Müller AM, Cronen C, Kupferwasser LI, Oelert H, Müller K-M, Kirkpatrick CJ. 
Expression of endothelial cell adhesion molecules on heart valves: Up-regulation 
in degeneration as well as acute endocarditis. The Journal of Pathology. 
2000;191:54-60 

14. Ghaisas NK, Foley JB, O'Briain DS, Crean P, Kelleher D, Walsh M. Adhesion 
molecules in nonrheumatic aortic valve disease: Endothelial expression, serum 
levels and effects of valve replacement. J Am Coll Cardiol. 2000;36:2257-2262 

15. Muller AM, Cronen C, Kupferwasser LI, Oelert H, Muller KM, Kirkpatrick CJ. 
Expression of endothelial cell adhesion molecules on heart valves: Up-regulation 
in degeneration as well as acute endocarditis. J Pathol. 2000;191:54-60 

16. Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in 
the human carotid bifurcation. Positive correlation between plaque location and 
low oscillating shear stress. Arteriosclerosis. 1985;5:293-302 

17. Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S. 
Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization 
with flow velocity profiles and wall shear stress. Circ Res. 1983;53:502-514 

18. Levesque MJ, Nerem RM. The elongation and orientation of cultured endothelial 
cells in response to shear stress. J Biomech Eng. 1985;107:341-347 

19. NEREM RM, ALEXANDER RW, CHAPPELL DC, MEDFORD RM, VARNER SE, 
TAYLOR WR. The study of the influence of flow on vascular endothelial biology. 
The American Journal of the Medical Sciences. 1998;316:169-175 

20. Uematsu M, Ohara Y, Navas JP, Nishida K, Murphy TJ, Alexander RW, Nerem 
RM, Harrison DG. Regulation of endothelial cell nitric oxide synthase mrna 
expression by shear stress. Am J Physiol Cell Physiol. 1995;269:C1371-1378 

21. Cooke JP, Rossitch E, Andon NA, Loscalzo J, Dzau VJ. Flow activates an 
endothelial potassium channel to release an endogenous nitrovasodilator. The 
Journal of Clinical Investigation. 1991;88:1663-1671 



103 
 

22. Girerd X, Hirsch A, Cooke J, Dzau V, Creager M. L-arginine augments 
endothelium-dependent vasodilation in cholesterol- fed rabbits. Circ Res. 
1990;67:1301-1308 

23. Pohl U, Holtz J, Busse R, Bassenge E. Crucial role of endothelium in the 
vasodilator response to increased flow in vivo. Hypertension. 1986;8:37-44 

24. Dekker RJ, van Soest S, Fontijn RD, Salamanca S, de Groot PG, VanBavel E, 
Pannekoek H, Horrevoets AJG. Prolonged fluid shear stress induces a distinct 
set of endothelial cell genes, most specifically lung kruppel-like factor (klf2). 
Blood. 2002;100:1689-1698 

25. Chien S. Mechanotransduction and endothelial cell homeostasis: The wisdom of 
the cell. Am J Physiol Heart Circ Physiol. 2007;292:H1209-1224 

26. Balachandran K, Sucosky P, Jo H, Yoganathan AP. Elevated cyclic stretch alters 
matrix remodeling in aortic valve cusps: Implications for degenerative aortic valve 
disease. Am J Physiol Heart Circ Physiol. 2009;296:H756-764 

27. Sorescu GP, Song H, Tressel SL, Hwang J, Dikalov S, Smith DA, Boyd NL, Platt 
MO, Lassegue B, Griendling KK, Jo H. Bone morphogenic protein 4 produced in 
endothelial cells by oscillatory shear stress induces monocyte adhesion by 
stimulating reactive oxygen species production from a nox1-based nadph 
oxidase. Circ Res. 2004;95:773-779 

28. Sorescu GP, Sykes M, Weiss D, Platt MO, Saha A, Hwang J, Boyd N, Boo YC, 
Vega JD, Taylor WR, Jo H. Bone morphogenic protein 4 produced in endothelial 
cells by oscillatory shear stress stimulates an inflammatory response. J Biol 
Chem. 2003;278:31128-31135 

29. Iiyama K, Hajra L, Iiyama M, Li H, DiChiara M, Medoff BD, Cybulsky MI. Patterns 
of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 
expression in rabbit and mouse atherosclerotic lesions and at sites predisposed 
to lesion formation. Circ Res. 1999;85:199-207 

30. Chiu Y-J, Kusano K-i, Thomas TN, Fujiwara K. Endothelial cell-cell adhesion and 
mechanosignal transduction. Endothelium: Journal of Endothelial Cell Research. 
2004;11:59 - 73 

31. Partridge J, Carlsen H, Enesa K, Chaudhury H, Zakkar M, Luong L, Kinderlerer 
A, Johns M, Blomhoff R, Mason JC, Haskard DO, Evans PC. Laminar shear 
stress acts as a switch to regulate divergent functions of nf-{kappa}b in 
endothelial cells. FASEB J. 2007;21:3553-3561 



104 
 

32. Sheikh S, Rahman M, Gale Z, Luu NT, Stone PCW, Matharu NM, Rainger GEL, 
Nash GB. Differing mechanisms of leukocyte recruitment and sensitivity to 
conditioning by shear stress for endothelial cells treated with tumour necrosis 
factor&#x2010;<i>&#x03b1;</i> or interleukin-1<i>&#x03b2;</i>. British Journal 
of Pharmacology. 2005;145:1052-1061 

33. Sheikh S, Rainger GE, Gale Z, Rahman M, Nash GB. Exposure to fluid shear 
stress modulates the ability of endothelial cells to recruit neutrophils in response 
to tumor necrosis factor-{alpha}: A basis for local variations in vascular sensitivity 
to inflammation. Blood. 2003;102:2828-2834 

34. Surapisitchat J, Hoefen RJ, Pi X, Yoshizumi M, Yan C, Berk BC. Fluid shear 
stress inhibits tnf-α activation of jnk but not erk1/2 or p38 in human umbilical vein 
endothelial cells: Inhibitory crosstalk among mapk family members. Proceedings 
of the National Academy of Sciences of the United States of America. 
2001;98:6476-6481 

35. Yamawaki H, Lehoux S, Berk BC. Chronic physiological shear stress inhibits 
tumor necrosis factor-induced proinflammatory responses in rabbit aorta 
perfused ex vivo. Circulation. 2003;108:1619-1625 

36. Boon RA, Leyen TA, Fontijn RD, Fledderus JO, Baggen JMC, Volger OL, van 
Nieuw Amerongen GP, Horrevoets AJG. Klf2-induced actin shear fibers control 
both alignment to flow and jnk signaling in vascular endothelium. Blood. 
2009:blood-2009-2006-228726 

37. Dekker RJ, van Thienen JV, Rohlena J, de Jager SC, Elderkamp YW, Seppen J, 
de Vries CJM, Biessen EAL, van Berkel TJC, Pannekoek H, Horrevoets AJG. 
Endothelial klf2 links local arterial shear stress levels to the expression of 
vascular tone-regulating genes. Am J Pathol. 2005;167:609-618 

38. Lin Z, Kumar A, SenBanerjee S, Staniszewski K, Parmar K, Vaughan DE, 
Gimbrone MA, Jr, Balasubramanian V, Garcia-Cardena G, Jain MK. Kruppel-like 
factor 2 (klf2) regulates endothelial thrombotic function. Circ Res. 2005;96:e48-
57 

39. Fledderus JO, Boon RA, Volger OL, Hurttila H, Yla-Herttuala S, Pannekoek H, 
Levonen A-L, Horrevoets AJG. Klf2 primes the antioxidant transcription factor 
nrf2 for activation in endothelial cells. Arterioscler Thromb Vasc Biol. 
2008;28:1339-1346 

40. Harrison DG, Widder J, Grumbach I, Chen W, Weber M, Searles C. Endothelial 
mechanotransduction, nitric oxide and vascular inflammation. Journal of Internal 
Medicine. 2006;259:351-363 



105 
 

41. Aicher D, Urbich C, Zeiher A, Dimmeler S, Schäfers H-J. Endothelial nitric oxide 
synthase in bicuspid aortic valve disease. The Annals of Thoracic Surgery. 
2007;83:1290-1294 

42. Lee TC, Zhao YD, Courtman DW, Stewart DJ. Abnormal aortic valve 
development in mice lacking endothelial nitric oxide synthase. Circulation. 
2000;101:2345-2348 

43. Miller JD, Chu Y, Brooks RM, Richenbacher WE, Peña-Silva R, Heistad DD. 
Dysregulation of antioxidant mechanisms contributes to increased oxidative 
stress in calcific aortic valvular stenosis in humans. Journal of the American 
College of Cardiology. 2008;52:843-850 

44. Kennedy JA, Hua X, Mishra K, Murphy GA, Rosenkranz AC, Horowitz JD. 
Inhibition of calcifying nodule formation in cultured porcine aortic valve cells by 
nitric oxide donors. European Journal of Pharmacology. 2009;602:28-35 

45. Simmons CA, Grant GR, Manduchi E, Davies PF. Spatial heterogeneity of 
endothelial phenotypes correlates with side-specific vulnerability to calcification in 
normal porcine aortic valves. Circ Res. 2005;96:792-799 

46. Jo H, Sipos K, Go Y-M, Law R, Rong J, McDonald JM. Differential effect of shear 
stress on extracellular signal-regulated kinase and n-terminal jun kinase in 
endothelial cells. Journal of Biological Chemistry. 1997;272:1395-1401 

47. El-Hamamsy I, Balachandran K, Yacoub MH, Stevens LM, Sarathchandra P, 
Taylor PM, Yoganathan AP, Chester AH. Endothelium-dependent regulation of 
the mechanical properties of aortic valve cusps. Journal of the American College 
of Cardiology. 2009;53:1448-1455 

48. Olsson M, Dalsgaard C, Haegerstrand A, Rosenqvist M, Ryden L, Nilsson J. 
Accumulation of t lymphocytes and expression of interleukin-2 receptors in 
nonrheumatic stenotic aortic valves. J Am Coll Cardiol. 1994;23:8 

49. Liberman M, Bassi E, Martinatti MK, Lario FC, Wosniak J, Jr, Pomerantzeff PMA, 
Laurindo FRM. Oxidant generation predominates around calcifying foci and 
enhances progression of aortic valve calcification. Arterioscler Thromb Vasc Biol. 
2008;28:463-470 

50. Butcher JT, Penrod AM, Garcia AJ, Nerem RM. Unique morphology and focal 
adhesion development of valvular endothelial cells in static and fluid flow 
environments. Arterioscler Thromb Vasc Biol. 2004;24:1429-1434 



106 
 

51. Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao 
G, DeLisser H, Schwartz MA. A mechanosensory complex that mediates the 
endothelial cell response to fluid shear stress. Nature. 2005;437:426-431 

52. Kadohama T, Akasaka N, Nishimura K, Hoshino Y, Sasajima T, Sumpio BE. P38 
mitogen-activated protein kinase activation in endothelial cell is implicated in cell 
alignment and elongation induced by fluid shear stress. Endothelium: Journal of 
Endothelial Cell Research. 2006;13:43 - 50 

53. Azuma N, Akasaka N, Kito H, Ikeda M, Gahtan V, Sasajima T, Sumpio BE. Role 
of p38 map kinase in endothelial cell alignment induced by fluid shear stress. Am 
J Physiol Heart Circ Physiol. 2001;280:H189-197 

54. Chappell DC, Varner SE, Nerem RM, Medford RM, Alexander RW. Oscillatory 
shear stress stimulates adhesion molecule expression in cultured human 
endothelium. Circ Res. 1998;82:532-539 

55. Morigi M, Zoja C, Figliuzzi M, Foppolo M, Micheletti G, Bontempelli M, Saronni 
M, Remuzzi G, Remuzzi A. Fluid shear stress modulates surface expression of 
adhesion molecules by endothelial cells. Blood. 1995;85:1696-1703 

56. Nagel T, Resnick N, Atkinson WJ, Dewey CF, Gimbrone MA. Shear stress 
selectively upregulates intercellular adhesion molecule-1 expression in cultured 
human vascular endothelial cells. The Journal of Clinical Investigation. 
1994;94:885-891 

57. Korenaga R, Ando J, Kosaki K, Isshiki M, Takada Y, Kamiya A. Negative 
transcriptional regulation of the vcam-1 gene by fluid shear stress in murine 
endothelial cells. Am J Physiol Cell Physiol. 1997;273:C1506-1515 

58. Ohtsuka A, Ando J, Korenaga R, Kamiya A, Toyamasorimachi N, Miyasaka M. 
The effect of flow on the expression of vascular adhesion molecule-1 by cultured 
mouse endothelial cells. Biochemical and Biophysical Research 
Communications. 1993;193:303-310 

59. Orr AW, Sanders JM, Bevard M, Coleman E, Sarembock IJ, Schwartz MA. The 
subendothelial extracellular matrix modulates nf-{kappa}b activation by flow: A 
potential role in atherosclerosis. J. Cell Biol. 2005;169:191-202 

60. Tsao PS, Buitrago R, Chan JR, Cooke JP. Fluid flow inhibits endothelial 
adhesiveness: Nitric oxide and transcriptional regulation of vcam-1. Circulation. 
1996;94:1682-1689 

 



49 
 

Chapter 3 
 

PREFERENTIAL ACTIVATION OF SMAD 1/5/8 ON THE FIBROSA 

ENDOTHELIUM IN CALCIFIED HUMAN AORTIC VALVES 

 
 
 
The overall objective of this dissertation is to examine the production and regulation of 

the bone morphogenic proteins (BMPs), the BMP antagonists, and the SMAD proteins in 

human aortic valve endothelial cells.  In Specific Aim 1, I sought to determine endothelial 

BMP expression in calcified and non-calcified human aortic valves in vivo.  I then sought 

to determine the shear response of human aortic valve endothelial cells in vitro by 

investigating well known shear responsive genes and endothelial inflammation.  Finally, 

in Specific Aim 3, I investigated the shear regulation of the BMPs, the BMP antagonists, 

and BMP dependent inflammation.  The use of an in vitro shear system was used in 

Specific Aims 2 and 3 to generate shear stress profiles to simulate the oscillatory and 

unidirectional laminar flow seen by the valve endothelium.  For the first time, I have 

characterized valvular endothelial BMP and BMP expression in vivo.  Furthermore, I 

have also characterized shear dependent regulation of the BMP, BMP antagonists, and 

inflammation in human aortic valve endothelial cells in vitro.   

 

Summary 

Background.  Aortic valve (AV) calcification preferentially occurs on the fibrosa-side 

while the ventricularis-side remains relatively unaffected.  Here, I tested the hypothesis 

that side-dependent expression of bone morphogenic proteins (BMPs) and BMP 

antagonists in the endothelium of ventricularis and fibrosa is associated with human AV 

calcification.   
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Methods and Results. Human calcified AVs obtained from AV replacement surgeries 

and non-calcified AVs from heart transplantations were used for immunohistochemical 

studies.  I found that BMP2/4/6 expression was significantly higher on the ventricularis 

endothelium compared to the fibrosa in both calcified and non-calcified AV cusps.  

However, BMP antagonists (crossvienless-2 and noggin) expression was significantly 

higher on the ventricularis endothelium compared to the fibrosa in both disease states.  

While phospho-SMAD-1/5/8 (a canonical BMP pathway) level was high in the calcified 

fibrosa endothelium, phospho-SMAD-2 (a canonical TGFβ pathway) was not different in 

any groups.  Moreover, significant expression of inhibitory SMAD-6 expression was 

found only in the non-calcified ventricularis endothelium.  

 

Conclusions. SMAD1/5/8 is preferentially activated in the calcified fibrosa endothelium of 

human AVs.  These findings suggest that preferential activation of BMP pathways may 

be controlled by the balance between the BMPs and their inhibitors, leading to side-

dependent calcification of human AVs. 

 

Introduction 

Aortic valve (AV) stenosis is a major cause of cardiac related deaths worldwide, and 

remains a strong risk factor for cardiac-related death 1-3.  While gross pathological 

changes and surgical treatments of the diseased valves have received much attention, 

the molecular mechanisms underlying AV inflammation, calcification, and subsequent 

valve dysfunction are not well understood and remain vastly understudied 4.  AV 

calcification is characterized by the accumulation of calcium, inorganic phosphates, 

extracellular matrix proteins, bone-related factors 5-7, and osteoblast-like cells 5, 8 in the 
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fibrosa, or aortic side, of the valve cusp 7, 9.  Surprisingly, few studies have investigated 

AV endothelial cell involvement in those patients with aortic stenosis.   

 

AV leaflets  function under complex hemodynamic conditions, including pulsatile 

pressures, unidirectional and disturbed fluid flows, bending stresses, and cyclic     

stretch 10.  The vascular endothelium is a critical sensor and mediator of hemodynamic 

and humoral stimuli.  Similar to the vascular endothelial system, where atherosclerosis 

preferentially occurs in areas of disturbed flow, AV calcification and sclerosis primarily 

occur in a side-dependent manner 11-15.  The fibrosa endothelium experiences disturbed 

flow conditions throughout the cardiac cycle and is prone to accelerated AV calcification.   

Conversely, the ventricularis endothelium, which is located toward the left ventricle, 

experiences unidirectional pulsatile flow during systole and remains relatively unaffected.  

Recent studies using porcine AV endothelium have shown distinct side-dependent gene 

and protein expression profiles. The aortic side endothelium showed propensity for 

calcification (increased bone morphogenic protein 4 (BMP-4) while decreasing BMP 

antagonist chordin), while the ventricularis endothelium was protected 16.   Dr. Robert M. 

Nerem’s lab has also shown that unidirectional laminar shear stress decreases BMP-4 

mRNA and protein expression in cultured porcine AV endothelial cells 11.   In addition, ex 

vivo studies using normal porcine AV leaflets have shown that altered shear conditions 

induces inflammation by a BMP-4-dependent pathway 17. 

 

BMPs are members of the transforming growth factor β (TGFβ) superfamily.  Initially 

discovered as inducers of bone formation 5, the BMPs are now known to play important 

roles in embryonic development, patterning, cartilage formation, and cell   

differentiation18-19.  Dr. Hanjoong Jo’s lab has shown that BMP-4 is a mechanosensitive 

and proinflammatory cytokine in vascular endothelial cells 20-21.  Furthermore, BMP-4 
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infusion induced hypertension in mice in a NADPH oxidase-dependent manner 22.    In 

addition, BMP-2 and -4 expression are increased in calcified human AVs and human 

atherosclerotic lesions 23-24.   

 

BMP antagonists bind to the BMPs with varying degrees of affinity. Once bound, they 

inhibit the interaction of the BMPs with their cognate receptors 25-30. BMP antagonists 

include, noggin, crossveinless 2 (CV-2, also known as BMPER), chordin, follistatin, DAN 

and matrix Gla protein-1(MGP-1) 31.  In porcine aortic valve leaflets, the mRNA of the 

BMP antagonist chordin was increased on the ventricularis endothelium 16.  Finally, 

uncarboxylated MGP is decreased in the plasma of patients that have aortic valve 

calcification than the healthy cohort 32.    

 

The BMPs and TGFβ have two types of specific signaling receptors:  BMPR-I and 

BMPR-II, or TGFβR-1 and TGFβR-II, respectively, and both are required for signaling.  

Once the ligand is bound to its receptors, the active domain of the Type II receptor 

phosphorylates the type I receptor, which in turn phosphorylates the R-SMADs (SMAD 

1, 2, 3, 5, 8) 33-35.  SMAD2/3 and SMAD1/5/8 are canonical mediators of TGF-β and 

BMP signaling, respectively.  These phospho-SMADs then bind with co-SMAD 4 and are 

then translocated into the nucleus, regulating a wide range of gene expression.  SMAD 

6, an inhibitory SMAD, can block the R-SMADs from being phosphorylated by competing 

for activation through the type I receptors 33-35. 

 

At present, it is not known whether BMPs and BMP antagonists play a role in human AV 

calcification.   I hypothesized that the fibrosa endothelium, exposed to disturbed flow 

conditions, upregulates BMP expression while downregulating BMP antagonists, 

contributing to side-specific human AV calcification. My study using calcified and non-
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calcified human AVs suggests that side-dependent activation of the BMP pathway is 

regulated by the balance between BMPs and BMP antagonists in endothelium, 

contributing to the preferential AV calcification in the fibrosa.   

 

Materials and Methods 

Human AV Procurement 

AVs were received from two patient populations according to the IRB approved protocols 

at Emory University with informed consent. Calcified human AVs were obtained 

immediately following valve replacement surgeries in 16 patients at Emory University 

Hospital Midtown.  Fifteen patients had tri-leaflet valves, while 1 patient had a bicuspid 

AV.  Non-calcified AV (n=6, all tri-leaflet AV) were harvested from recipient patients 

undergoing heart transplantation at Emory University Hospital.   Patient demographics 

are presented in Table 1.  Immediately following harvesting, the AVs were 

photographed, washed in ice-cold phosphate buffered saline (PBS), and cusps were 

individually snap-frozen in optimal cutting temperature (O.C.T.) compound (Tissue-Tek).  

Valves were then sectioned (7µm) in the radial direction to include the base and free 

edge (tip), stored at -80°C and used for immunohistochemical staining studies.   
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Histochemistry and Immunohistochemistry   

Hematoxalin and eosin (H&E for general histology), Verhoeff Van Giessen (elastin), and 

Alizarin Red (calcification) staining was carried out for histomorphometric analysis. 

Immunohistochemical studies were carried out as previously described 31 using specific 

antibodies as following: endothelial marker (von Willebrand Factor, (Dako, 1:400)), 

BMPs (BMP-2 (Lifespan Biosciences, 1:100), BMP-4 (Biovision, 1:25), and BMP-6 

(Santa Cruz. 1:25) ), BMP antagonists (noggin (LabFrontier, 1:100, CV-2 (R&D, 1:100, 

MGP-1 (ABCAM, 1:100) and DAN (R&D, 1:25), phospho-SMAD-1/5/8 (Cell Signaling, 

1:200) and phospho-SMAD-2 (Cell Signaling, 1:100), and inhibitory SMAD (SMAD-6, 

(Lifespan Biosciences 1:25) Rhodamine Red X antibody (Jackson Labs) was used as a 

secondary antibody with a Hoechst dye nuclear counter staining.  Fluorescent images 

were taken with a Zeiss Axioskopepifluorescence microscope using a 10X objective.  

Briefly, valve sections were allowed to thaw to room temperature for 10 minutes, and 
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then fixed in ice cold acetone for 5 minutes.  After fixing, slides were allowed to dry for 

10 minutes, washed three times for 5 minutes in PBS, incubated with 10% antibody 

specific serum for 1 hour, and then overnight with the primary antibody in a 10% 

antibody specific serum.  Valve section was then washed three times for 5 minutes in 

PBS, incubated with the Rhodamine Rex X antibody for 1 hour, washed three times for 5 

minutes in PBS, and then incubated with Hoechst dye for 8 minutes.  After incubation 

slides were washed three times for 5 minutes in PBS and then mounted using Dako 

mounting media.   

 

Image Analysis 

Three cross-sectional images were obtained from each AV section, where endothelial 

layer was present based on Hoechst staining.  Digital images were then blindly graded 

for endothelial staining intensity from 0 (no positive staining) to 5 (most intense positive 

staining) by three individuals.  The grades of the three cross-sections were averaged to 

determine the staining intensity of each antibody examined. The fibrosa and ventricularis 

endothelia were separately graded.   

 

Statistical Analysis 

All data are reported by mean ± SE with n signifying the number of different AV leaflets 

stained.  Significant differences were determined by ANOVA using a Tuckey posthoc 

testing.  All p-values <0.05 were considered significant. 
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Results 

Immunohistochemical examination of AVs 

H&E staining for general histology (Figure 3.1a, e), Alizarin Red (Figure 3.1b, f) for 

calcification and Verhoeff Van Giessen (Figure 3.1c, g) for elastin was carried out with 

calcified and non-calcified human AVs.  All human AVs (n=6 patients) obtained from the 

heart transplantation patients were negative for Alizarin Red staining (Figure 3.1a, c), 

suggesting that they were not calcified. In contrast, all calcified AVs (n=16 patients) 

obtained from AV replacement surgeries were confirmed by Alizarin Red staining (Figure 

3.1b, f).  To examine the presence of an intact endothelium, von Willebrand factor 

staining was performed on the AV leaflet (Figure 3.1d, h).  Intact endothelium was 

confirmed on valves used in my study.   

 

Side-dependent expression of BMPs and BMP antagonists in human AV 

Robust expression of BMPs 2, 4, and 6 was observed in all the tested AV endothelium.  

However, unlike my original hypothesis, BMP-2, -4, and -6 expression was higher in the 

ventricularis endothelium than fibrosa endothelium (Figures 3.2, 3.3, and 3.4).  BMP-2 

and BMP-4 expression was significantly higher in the non-calcified ventricularis 

endothelium compared to the fibrosa endothelium of both calcified and non-calcified AVs 

(Figures 3.2 and 3.3 a-g). BMP-6 expression was significantly higher in the calcified 

ventricularis endothelium than the fibrosa endothelium (Figure 3.4 a-h).  There was no 

difference in expression levels of all three BMPs in the ventricularis endothelium of 

calcified and non-calcified AVs.  The same was true for the fibrosa endothelium of 

calcified and non-calcified AVs (Figures 3.2, 3.3, and 3.4). 
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Figure 3.1 Calcification and endothelial staining of AV cusps.  Valves were obtained from either heart transplant (non-calcified) 
or valve replacement (calcified) surgeries, snap frozen and sectioned.  Sections were then stained for H&E (a, e), alizarin red (b, f), 
Verhoeff Van Giessen (c, g) or von Willebrand factor (d, h).  Representative staining (n=12 patients) shows side-specific calcification 
(*) in calcified leaflets (b, f), while maintaining an intact endothelial layer (d, h: arrows).  Verhoeff Van Giessen stain was used to 
stain for elastin (shown in black, arrows) to help in leaflet orientation (c, g). f: fibrosa, v: ventricularis 
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Figure 3.2 BMP-2 expression in the fibrosa and ventricularis endothelium.  Calcified and non-calcified AV sections were stained 
for BMP-2 (a-f) and a rhodamine-labeled secondary antibody.  Shown are representative images. Bar graphs show staining 
intensities of fibrosa- and ventricularis-endothelium for each BMP-2 (g) (mean ± SEM). For BMP-2, n=13 calcified and n=13 non-
calcified.*p<0.05. v and f denote ventricularis and fibrosa respectively. 
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Figure 3.3 BMP-4 expression in the fibrosa and ventricularis endothelium.  Calcified and non-calcified AV sections were stained 
for BMP-4 (a-f) and a rhodamine-labeled secondary antibody.  Shown are representative images. Bar graphs show staining 
intensities of fibrosa- and ventricularis-endothelium for each BMP-4 (g) (mean ± SEM). For BMP-4, n=9 calcified and n=8 non-
calcified.*p<0.05. v and f denote ventricularis and fibrosa respectively. 
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Figure 3.4 BMP-6 expression in the fibrosa and ventricularis endothelium.  Calcified and non-calcified AV sections were stained 
for BMP-6 (a-f) and a rhodamine-labeled secondary antibody.  Shown are representative images. Bar graphs show staining 
intensities of fibrosa- and ventricularis-endothelium for each BMP-6 (g) (mean ± SEM). For BMP-6, n=12 calcified and n=11 non-
calcified.*p<0.05. v and f denote ventricularis and fibrosa respectively. 
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Next I examined whether BMP antagonists (CV-2, noggin, DAN, follistatin, chordin, and 

MGP-1) were expressed in a side-dependent manner in human AV endothelium.  CV-2 

and noggin expression was significantly lower in the fibrosa endothelium both in calcified 

and non-calcified AVs (Figure 3.5a-g).  Furthermore, I found that CV-2 expression was 

significantly reduced in the calcified ventricularis endothelium than the non-calcified 

ventricularis endothelium (Figure 3.5g), while this disease-dependency was not 

observed for noggin (Figure 3.6g). DAN expression was not significantly different in the 

endothelium; although a trend of decreased staining was seen between the calcified and 

non-calcified fibrosa endothelium (Figure 3.7a-g).  At this time, none of the available 

antibodies that I examined resulted in specific staining patterns for follistatin, chordin, 

and MGP-1. 
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Figure 3.5 CV-2 expression in the fibrosa and ventricularis endothelium.  Calcified and non-calcified AV sections were stained 
for CV-2 (a-f), and a rhodamine-labeled secondary antibody.  Shown are representative images. Bar graphs show staining intensities 
of fibrosa- and ventricularis-endothelium for each antagonist (g) (mean ± SEM). For CV-2, n=20 calcified and n=14 non-calcified. 
*p<0.05. v and f denote ventricularis and fibrosa respectively. 
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Figure 3.6 Noggin expression in the fibrosa and ventricularis endothelium.  Calcified and non-calcified AV sections were 
stained for noggin (a-f) and a rhodamine-labeled secondary antibody.  Shown are representative images. Bar graphs show staining 
intensities of fibrosa- and ventricularis-endothelium for noggin (g) (mean ± SEM). For noggin, n=14 calcified and n=6 non-calcified. 
*p<0.05, #<0.06. v and f denote ventricularis and fibrosa respectively. 
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Figure 3.7 DAN expression in the fibrosa and ventricularis endothelium.  Calcified and non-calcified AV sections were stained 
for DAN (a-f) and a rhodamine-labeled secondary antibody.  Shown are representative images. Bar graphs show staining intensities 
of fibrosa- and ventricularis-endothelium for DAN (g) (mean ± SEM). For DAN, n=10 calcified and n=8 non-calcified. *p<0.05. v and f 
denote ventricularis and fibrosa respectively. 
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Side-dependent activation of a BMP-sensitive SMAD pathway in human AV 

Above staining results indicated that while BMPs were modestly decreased in the 

calcification-prone fibrosa-endothelium, the BMP antagonists (CV-2 and noggin) seemed 

to be much more abundant in the ventricularis endothelium.  To determine whether the 

relative abundance of the BMP antagonist over the BMPs were affecting the side-

dependent BMP pathway activation, I examined the level of phosphorylated SMAD 1/5/8 

(phospho-SMAD 1/5/8) - a BMP activation pathway marker- in AV endothelium.  Intense 

phospho-SMAD 1/5/8 staining was observed only in the calcified fibrosa endothelium 

(Figure 3.8). In contrast, non-calcified AV endothelia in either fibrosa or ventricularis 

showed only faint levels of phospho-SMAD 1/5/8 (Figure 3.8).   

 

As a comparison, phospho-SMAD 2 levels, a canonical TGFβ signaling activation 

marker, was used.  Overall, I did not observe any statistically significant differences in 

phospho-SMAD 2 levels in any of the AV endothelial groups.  However, I found a trend 

for lower phospho-SMAD 2 levels in the non-calcified fibrosa endothelium (p<0.1) 

compared to the non-calcified ventricularis endothelium (Figure 3.9).   

 

Lastly, I examined the level of inhibitory SMAD 6.  SMAD 6 expression was significantly 

higher in the non-calcified ventricularis endothelium compared to non-calcified fibrosa 

endothelium and endothelium of calcified valves (Figure 3.10).
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Figure 3.8 Phospho-SMAD 1/5/8 level is high in calcified fibrosa endothelium.  Calcified and non-calcified AV sections were 
stained for phospho-SMAD 1/5/8 (a-f), and a rhodamine-labeled secondary antibody.  Shown are representative images. Bar graphs 
show staining intensities of fibrosa- and ventricularis-endothelium for phospho-SMAD 1/5/8 (g) (mean ± SEM). For phospho-SMAD 
1/5/8, n=13 calcified and n=12 non-calcified. *p<0.05.  v and f denote ventricularis and fibrosa respectively. 
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Figure 3.9 Phospho-SMAD 2 levels in the fibrosa and ventricularis endothelium.  Calcified and non-calcified AV sections were 
stained for phospho-SMAD 2 (a-f), and a rhodamine-labeled secondary antibody.  Shown are representative images. Bar graphs 
show staining intensities of fibrosa- and ventricularis-endothelium for phospho-SMAD 2 (g) (mean ± SEM). For phospho-SMAD 2, 
n=13 calcified and n=12 non-calcified. For phospho-SMAD 2, n=14 calcified and n=13 non-calcified. For SMAD 6, n=22 calcified and 
n=15 non-calcified. *p<0.05.  v and f denote ventricularis and fibrosa respectively. 
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Figure 3.10 Inhibitory SMAD 6 level is highest in the ventricularis endothelium of non-calcified valves.  Calcified and non-
calcified AV sections were stained for phospho-SMAD 6 (a-f), and a rhodamine-labeled secondary antibody.  Shown are 
representative images. Bar graphs show staining intensities of fibrosa- and ventricularis-endothelium for phospho-SMAD 6 (g) (mean 
± SEM). For SMAD 6, n=22 calcified and n=15 non-calcified. *p<0.05.  v and f denote ventricularis and fibrosa respectively.
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Discussion 

AV calcification and sclerosis primarily occur in the fibrosa, while the ventricularis is 

relatively unaffected 7, 9.  However, the specific mechanisms underlying this side-

dependent AV disease is unclear.  A potential mechanism is the different hemodynamic 

environment that is experienced by each side of the valvular leaflet.  The fibrosa 

endothelium is exposed to disturbed flow conditions including oscillatory flow whereas 

the ventricularis endothelium is exposed to pulsatile laminar flow conditions 10.  This 

suggests that oscillatory shear experienced by the fibrosa endothelium may be 

responsible for the pro-osteogenic environment leading to the side-dependent 

calcification.  This hypothesis has been supported by previous studies using mainly 

normal porcine AVs and cultured porcine AV endothelial cells.   

 

Previously, Dr. Hanjoong Jo’s lab have shown that oscillatory shear stress induces BMP-

4 expression in vascular endothelial cells, and this BMP-4 expression leads to 

inflammatory response in a NFκB and NADPH oxidase-dependent manner 21.  In 

humans, BMP-2 and -4 are found in atherosclerotic plaques, endothelium overlying 

advanced atherosclerotic lesions, and in calcified regions of AVs 23-24.   Furthermore, in 

normal pig AVs, BMP-4 mRNA and protein levels are higher on the fibrosa    

endothelium 11, 16. Also, laminar shear inhibits expression of BMP-4 in cultured pig AV 

endothelial cells 11.  Based on these findings, I hypothesized that the fibrosa endothelium 

exposed to oscillatory flow would express a high level of BMPs, which in turn leads to 

side-dependent calcification of the AV.    However, my results did not support my initial 

hypothesis. I found that BMP-2 and -4 expression was higher on the non-calcified 

ventricularis endothelium compared to fibrosa endothelium of both calcified and non-

calcified AV (Figures 3.2, 3.3, and 3.11).  BMP-6 expression also seemed to be higher 

on the ventricularis endothelium compared to the fibrosa endothelium of both calcified 
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and non-calcified AVs (Figure 3.4).  These results indicate that BMP expression levels in 

the diseased (both calcified and non-calcified) human AV endothelium do not correlate 

with the side-dependent AV calcification.  It is important to note that the previous studies 

used normal pig AV endothelium to demonstrate the higher BMP-4 levels in the fibrosa 

endothelium than the ventricularis 11, 16.  However, a recent study showed that BMP-4 

levels were decreased in the fibrosa endothelium of the hypercholesterolimic pig AVs 

compared to the normal pig AV 15.  This surprising result in diseased pigs is consistent 

with my current finding in diseased human AVs. Therefore, I next tested an alternative 

hypothesis that decreased expression of BMP antagonists is responsible for the 

preferential calcification in human AVs.   

 

In cultured vascular endothelial cells, BMP antagonists noggin, follistatin and MGP-1, 

which are co-expressed with BMP-4, provide a negative feedback mechanism inhibiting 

BMP-4’s inflammatory effect 31.  Furthermore, follistatin and noggin are found in 

advanced atherosclerotic lesions 31.  In healthy pig AVs, chordin mRNA levels are higher 

on the ventricularis endothelium than the fibrosa endothelium 16.  Here, I found that CV-2 

and noggin were differentially expressed in the human AVs (Fig. 3.5, 3.6, and 3.11).  

Noggin and CV-2 expression levels were lower in the fibrosa endothelium than the 

ventricularis in both calcified and non-calcified AVs.  Furthermore, CV-2 expression was 

highest in the non-calcified ventricularis. These results suggest that abundant levels of 

BMP antagonists in the ventricularis endothelium, especially in non-calcified human AVs, 

provide an anti-calcific environment.  This result is also consistent with the previous 

result showing higher chordin expression on the ventricularis endothelium of normal pig 

AV compared to the fibrosa 16. 
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Figure 3.11 A schematic summary of the results.  Shown in the left is a calcified human AV and the right is a non-calcified human 
AV.  Endothelial expression of BMP, BMP antagonists, inhibitory SMAD and phospho-SMADs in a side-dependent manner, 
summarizing the results are also shown.  Pulsatile laminar shear in the ventricularis and oscillatory shear in the fibrosa sides are 
shown.   
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Inhibitory SMAD6 could play an important role in the side-dependent AV calcification.  

SMAD6 was shown to be induced by laminar shear stress in vascular endothelial      

cells 36.  Moreover, SMAD6 deficiency was shown to cause cardiac valve hyperplasia in 

mice 37, demonstrating its importance in AV biology.  This led us to hypothesize that 

side-dependent expression of SMAD6 would play a role in fibrosa calcification.  

Consistent to this hypothesis, I found that SMAD 6 expression levels were highest in the 

non-calcified ventricularis endothelium, contributing to the anti-calcific environment on 

the ventricularis-side of the AV (Figure 3.10 and 3.11).   

 

Since my findings thus far suggested that the preferential calcification on the fibrosa may 

be correlated with decreased endothelial BMP antagonists and the inhibitory SMAD 

levels, I examined whether BMP pathways were activated in the AV endothelium.  My 

result showed that phospho-SMAD 1/5/8, the canonical BMP pathway activation marker, 

was significantly activated in the calcified fibrosa endothelium compared to non-calcified 

fibrosa endothelium (Fig. 3.8). In contrast, I found no significant differences in phospho-

SMAD 2 levels among all groups (Fig. 3.9), indicating that there was no differential 

activation of the canonical TGFβ signaling pathway.  These findings clearly demonstrate 

the correlation between the phospho-SMAD1/5/8 activation in the endothelium and 

calcification in the fibrosa-side in human AVs.   

 

It was somewhat surprising to find that BMP, BMP antagonists, and SMAD 6 levels were 

similar between the fibrosa endothelium of calcified and non-calcified human AVs, while 

phospho-SMAD 1/5/8 levels on the calcified fibrosa endothelium was significantly higher 

than the non-calcified fibrosa. There are several potential mechanisms that may explain 

my unexpected findings. First, a recent study found that patients with AV 



73 
 

calcification have significantly lower levels of circulating uncarboxylated MGP 

(ucMGP) than the healthy cohort 32.  They hypothesized that the low levels of 

ucMGP is because of the lack of release of MGP into the circulation from the 

vascular wall due to consumption of MGP.  The deficiency of circulating MGP in 

calcified AV patients may tip the balance in favor of the BMPs (Figure 3.11), promoting a 

pro-calcific environment compared to the non-calcified AV patients.  Second, activities of 

some BMP antagonists such as noggin are subject to post-translational regulations 38-39.  

The hydrophobic ring of Pro-35 of noggin inserts into a hydrophobic pocket on BMP-7 

and that point mutation of Pro35Arg reduces its binding affinity to BMP-7 39.  ROS is 

capable of oxidizing proline residues 40.  Importantly, ROS level is known to be increased 

in the calcified regions, but not in the non-calcified regions of human AVs 41. In addition, I 

have shown that OS produces ROS production by the BMP4-dependent mechanisms in 

vascular endothelial cells 20-21. Therefore, I propose that OS-dependent production of 

ROS in the fibrosa endothelium and the adjacent regions may oxidatively modify the 

BMP4 antagonists which could reduce their binding affinities to BMPs. Third, some BMP 

antagonists (e.g. follistatin, chordin, MGP-1) that I could not examine due to the lack of 

specific antibodies for immunostaining studies may also be responsible for my finding. 

Fourth, expression of the BMP receptors may also contribute to the observed difference.  

 

It is important to emphasize that the non-calcified AVs used for this study were obtained 

from recipient hearts following heart transplantations. Therefore, these samples were 

from heart failure patients, not from a “healthy” subject population, and should not be 

viewed as non-diseased AVs although they were not calcified.   

 



74 
 

In summary, I showed that BMP pathways are preferentially activated in the calcified 

fibrosa endothelium human AVs. This side- and disease-dependent activation of BMP 

pathway correlates with the deficiency of BMP antagonists and an inhibitory SMAD in 

the fibrosa endothelium.  These findings suggest that preferential activation of BMP 

pathways is controlled by the balance between the BMPs and their inhibitors play an 

important role in side-dependent calcification of human AVs. 
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CHAPTER 5 
 

SHEAR-REGULATION OF BONE MORPHOGENIC PROTEINS, 

BONE MORPHOGENIC PROTEIN ANTAGONISTS AND THEIR 

CONTRIBUTION TO INFLAMMATION IN HUMAN AORTIC VALVE 

ENDOTHELIAL CELLS 

 
 
 
In Chapter 3, I identified that bone morphogenic proteins (BMPs) and their antagonists 

are expressed in the valvular endothelium and that BMP pathway activity is significantly 

increased in calcified valves and is expressed highest on the fibrosa side of calcified 

cusps.  In Chapter 4, I found that human endothelial cells isolated side-specifically from 

the ventricularis and fibrosa endothelium were shear-responsive in vitro, and had distinct 

inflammatory shear responses from each other.  In this chapter, my goal was to: 1) 

determine the shear responsiveness of BMPs and BMP antagonists and 2) establish the 

functional importance of BMPs in valvular endothelial cell inflammation.  For the first 

time, I have characterized the shear response of the BMPs in human aortic valve 

endothelial cells, and have found that increased expression of BMPs, unlike aortic 

endothelial cells, does not induce inflammation as measured by a monocyte binding 

assay.  

 

Summary 

Background.  Previous studies indicate that bone morphogenic proteins (BMPs) may 

play a role in aortic valve disease.  Specifically, porcine valvular endothelial cells (ECs), 

like porcine aortic, decrease their production of BMP4 when exposed to laminar shear 

stresses in vitro.  The role of fluid shear stress on the regulation of BMPs in human 
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aortic valves, however, remains understudied.  I hypothesized that OS would cause an 

increase in BMP4 production and enhance inflammation in valvular ECs in a BMP-

dependent process.     

 

Methods and Results.  To test this hypothesis in vitro, OS or unidirectional LS was 

applied to side-specific human aortic valvular ECs.  BMP, BMP antagonists, and SMAD 

levels were examined through immunoblotting and quantitative PCR (qPCR) while the 

BMPs’ effect on inflammation was determined through a monocyte adhesion assay in 

the presence or absence of a BMP antagonist, noggin.  I confirmed that both fibrosa and 

ventricularis ECs exhibit a 2-fold increase of BMP-4 protein and BMP-2 mRNA under OS 

when compared to LS while seeing no changes in BMP-6 mRNA.  The BMP antagonist, 

crossveinless-2, was not regulated by shear stress, while follistatin was decreased by LS 

in ventricularis ECs but not fibrosa ECs.  Finally, no difference in monocyte adhesion 

was seen between noggin-treated and untreated ECs. 

 

Conclusions.  These results demonstrate differences between fibrosa and ventricularis 

ECs under different shear conditions while also demonstrating differences between 

human aortic valvular ECs and human aortic ECs.  The differences described here may 

have important implications in disease development and in the design of a tissue 

engineered heart valve.   
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Introduction 

 Until recently, aortic valve calcification was thought to be an age-associated disease 1-2, 

but it is now believed to be an active inflammatory process that is characterized by lipid 

accumulation, neovascularization, inflammation, calcified nodules and, in some cases, 

the formation of lamellar bone 1, 3.  Aortic valve disease and atherosclerosis share many 

similarities and risk factors.  Atherosclerosis preferentially develops in areas that 

experience disturbed or low oscillating flow conditions such as the common carotid 

bifurcation, coronary arteries, and the abdominal aorta, while areas that experience 

laminar flow conditions remain athero-protected 4-5.  As with the vessel wall in 

atherosclerosis, the aortic valve disease preferentially occurs on the fibrosa-side of the 

valvular cusp were it experiences oscillatory fluid shear stresses 6-7.  In contrast, the 

ventricularis, which experiences a pulsatile unidirectional flow, remains relatively 

unaffected 7.   

 

The vascular endothelium is a critical mediator of mechanical and humoral stimuli and is 

an active participant in vascular biology.  Fluid shear stress plays a critical role in the 

physiological state of the endothelial cell 8.  When endothelial cells are subjected to a 

unidirectional fluid shear stress, they align parallel to the fluid flow and secrete several 

factors that promote endothelial cell survival and vascular wall health; however, when 

endothelial cells experience oscillatory fluid shear stress, they do not align to the flow, 

secrete inflammatory cytokines, and promote leukocyte migration through the expression 

of adhesion molecules9-20.  One of the inflammatory cytokines secreted by endothelial 

cells that is of interest is BMP-4 18-19.   

 

The BMPs are members of the transforming growth factor β (TGFβ) superfamily of 

proteins and were originally discovered as a bone growth and repair protein21-22; 
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however this family of proteins and their antagonists have been shown to have diverse 

and important roles in embryonic development, dorsal ventral formation, 

chondrogenesis, and cell differentiation 22-23.  Functionally, BMPs are secreted in an 

active from and bind to specific receptors thereby inducing phosphorylation of SMAD 1, 

5, or 8.  SMAD 1, 5, or 8 then becomes a transcription factor, regulating BMP-related 

genes24-28.  In the vascular endothelium, BMP4 has been shown in vitro and in vivo to be 

increased in endothelial cells exposed to oscillatory flow, while the closely related BMP2 

has not been shown to be shear sensitive18-19.  I have shown that BMP4 is a 

mechanosensitive and proinflammatory cytokine in vascular endothelial cells 18-19.  

Furthermore, it is known that BMP4 infusion induced hypertension in mice in a NADPH 

oxidase-dependent manner 29.    Moreover, BMP-2 and -4 expression is increased in 

calcified human AVs and human atherosclerotic lesions 30-31.   

  

The BMP antagonists serve as a regulator of BMP activity, and have important functions 

in endothelial cell biology.  BMP antagonists are secreted glycol proteins which include 

noggin, DAN, crossveinless 2 (CV-2), follistatin, matrix Gla protein (MGP), chordin and 

gremlin32.  Each antagonist has a different affinity for BMPs 32.  Most BMP antagonists 

bind to BMPs to block signal transduction; however CV-2 can act either as an antagonist 

or an agonist  in endothelial cells 33. 

 

Here, I hypothesize that disturbed flow conditions, which are see on the aortic side of the 

valve, will 1) cause an increase in BMPs (specifically BMP4), and 2)decrease antagonist 

expression.  These phenomena will cause an increase in the inflammatory state of the 

aortic valve ECs.  My results indicate that OS increases BMP-2 and -4 and also causes 

a modest increase in phosphorylated SMAD 1/5/8, a marker of BMP pathway activation.  

Finally, it appears that in aortic valve ECs, BMPs are not playing a role in inflammatory 
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activation as indicated by a monocyte binding assay.  These results give us important 

information regarding differential shear regulation of the BMPs in aortic valve endothelial 

cells and may have implications in the pathogenesis of aortic valve disease. 

 

Materials and Methods 

Cell Isolation 

Side-specific endothelial cells were harvested from patients undergoing heart transplants 

at Emory University according to an IRB-approved protocol.  Valves were excised from 

the heart and washed three times in Hank’s Buffered Saline Solution (HBSS).  They 

were then incubated in a 5X antibiotic solution (Gibco) for 30 minutes.  The leaflets were 

then oriented so the fibrosa or ventricularis endothelium were facing the same direction.  

A 600 units/mL solution of collagenase type II (Worthington 4176) was incubated on the 

valve for 5 minutes.  Leaflets were then washed with growth media and the 

collagenase/growth media mixture was collected in a centrifuge tube.  Leaflets were then 

scraped two times in succession (lightly and then harder) with a sterile scalpel.  Between 

scrapes the leaflets were rinsed with growth media and the solution was placed in 

separate collection tubes.  The leaflets were then placed in a new dish and washed.  

The same procedure of collagenase and scraping was then performed on the opposite 

side.  Cells were spun down at 1000 RPM for 5 minutes and plated in a 12-well dish and 

sequentially expanded into a 6-well and T-75 dish.  The cells were then sorted using 5 

µg/mL of DiL-Acetylated-LDL (Biomedical Technologies Inc.) and the BD FACS Aria Cell 

Sorter. 

 

Human Aortic Valve Endothelial Cell Culture and Shear Stress Studies 

Endothelial cells obtained from human aortic valves were cultured in growth medium 

[MCDB131 (Cellgro®) containing FBS (Cellgro®, 10%), bovine ECGS (1%), L-Glutamine 
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(Gibco, 1%), Penicillin-Streptomycin (Gibco, 1%), hydrocortisone (Sigma, 0.001 mg/mL), 

hFGF (R&D, 0.002 µg/mL), hEGF (Invitrogen, 0.01 µg/mL), IGF (Invitrogen, 0.002 

µg/mL), VEGF (R&D, 0.001 µg/mL), ascorbic acid (Sigma, 50 µg/mL)] and used between 

passages 4 and 5.  Confluent endothelial cell monolayers were grown in 10 cm dishes 

and were exposed to an average ventricularis unidirectional laminar shear level (20 

dynes/cm2) or an OS bidirectional flow (± 5 dynes/cm2) for 24 hours using a Teflon cone 

and plate viscometer (α =0.5°) as described previously.  As a control, cells were cultured 

in a no flow (static) conditions.  One hour before shear studies, media was replaced 

[MCDB131 (Cellgro®) containing FBS (Cellgro®, 2.5%), L-Glutamine (Gibco, 1%), 

Penicillin-Streptomycin (Gibco, 1%)]. 

 

Western Blots 

Following shear exposure, cells were rinsed three times with phosphate buffered 

solution (PBS) and then lysed using a cell lysis buffer (RIPA) supplemented with 

phosphotase (Sigma) and protease (Roche) inhibitor cocktails.  Following a modified 

Lowery protein assay, equal amounts of total protein were resolved by SDS-PAGE as 

previously described 34.  Protein was transferred from the SDS-gel to an immobilio-P-

membrane (Millipore, PVDF) and probed with anti-BMP4 (Santa Cruz, 1:1000), anti-

SMAD 1/5/8 (Cell Signaling, 1:1000), anti-phosphorylated SMAD 1/5/8 (Cell Signaling, 

1:1000), or anti-actin (Santa Cruz, 1:1000).  A secondary antibody conjugated to alkaline 

phosphate was used to detect protein levels by  chemiluminescence method 34.   

 

Quantitative PCR 

Following shear exposure, cells were washed three times with ice cold PBS.  Total RNA 

was then isolated using RNeasy Mini Kit (Qiagen).  1 µg of total RNA was reverse 

transcribed using random hexamer primers and a SuperScript®III First Strand Kit 



113 
 

(Invitrogen).   The resulting cDNA was then amplified using real time PCR (ABI Step 

One Plus) and a master mix containing, gene-specific forward and reverse primers (IDT, 

Table 1), ROX reference Dye (Stratagene, 1:50), and 2x Brilliant II SYBR® Green QPCR 

master mix (Stratagene).  The PCR conditions were 2 minutes at 56°C, 10 minutes at 

95°C, 40 cycles of 30s at 95°C and 1 minute at 60°C, with a melting curve of 15 seconds 

at 95°C and 1 minute at 60°C.  All values were normalized to 18S (Ambion). 

 

 

 

Monocyte Binding 

Monocyte binding was done under static conditions using purchased THP1 Monocytes 

(ATCC) as described previously 18-19.  THP1 monocytes, at a concentration of 1x106 

cells/mL were incubated with a fluorescent dye 2’;7’-bis(carboxyethyl-5) (6)-
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carboxyfluroscein-AM (BCEFC, Molecular Probes, 1 mg/mL) in serum-free RPMI 

(Cellgro®) for 30 minutes at 37°C.  During which, endothelial cells, which were exposed 

to shear stress for 24 hours, with or without noggin (R&D, 50 ng/mL), were washed with 

RPMI media before addition of monocytes (6 million).  Monocytes were incubated with 

endothelial cells for 30 minutes at 37°C to allow binding.  Unbound monocytes are 

removed by washing with HBSS with calcium and magnesium (Cellgro®).  Bound 

monocytes were then quantified by counting the number of monocytes bound per 

viewing area (5x Original Magnification).  Images were captured using an epifluorescent 

microscope (Zeiss).  

 

Statistics 

Data is presented was mean ± standard error with n’s representing number of replicates.  

Student’s t-test was used to establish significance between groups.  P<0.05 was 

considered statistically significant with at least 3 independent experiments.   

 

Results 

Laminar shear decreases intracellular BMP4 levels 

Laminar shear stress (LS) in both the ventricularis and fibrosa endothelial cells 

decreased pro- and mature-BMP4 by two-fold when compared to oscillatory shear stress 

(OS).  No significant difference was seen between cells isolated from either side, or 

between OS and static conditions.  Interestingly, a side-specific difference in BMP-4 

levels exists at the transcription level.  LS caused a 2.5-fold decrease in BMP-4 mRNA 

of ventricularis endothelial cells when compared to OS, which corroborates with the 

protein levels; however, no BMP-4 mRNA differences were observed when comparing 

laminar shear to OS in fibrosa endothelial cells.  As a comparison, BMPs -2 and -6 

shear-dependent mRNA expression levels were investigated in HAVEC.  Interestingly, 
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BMP-2 mRNA expression was upregulated (2-fold) by OS in both fibrosa and 

ventricularis endothelial cells (Figure 5.2a).  Although, not significant, a modest increase 

in BMP-2 mRNA levels was seen in ventricularis endothelial cells when compared to 

fibrosa endothelial cells.  BMP-6 mRNA was not altered by the different shear conditions 

(Figure 5.2b).  Protein levels were not detected in the cell lysate due to the secretory 

nature of these proteins.  

 

Figure 5.1 Shear regulation of BMP-4 in human aortic valvular endothelial cells.  
Fibrosa (F) and ventricularis (V) endothelial cells were shear for 24 hours in static (S) 
laminar (L) or oscillatory shear conditions (O).  After shear cellular mRNA or protein was 
collected.  (a) and (b) mature and pro-BMP-4 were examined respectively. n=4 (a) * 
p<0.05 against FS.  # p<0.10.  (b) * p<0.05.  # p<0.05 against FS. ** p<0.05 against FO.  
(c) BMP-4 mRNA level.*p<0.05 against VO and FO.  n=4 from 3 different patients.   
(Means ± SE). 
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Figure 5.2 Shear regulation of BMPs -2 and -6 in human aortic valvular endothelial 
cells. Fibrosa (F) and ventricularis (V) endothelial cells were shear for 24 hours in static 
(S) laminar (L) or oscillatory shear conditions (O).  After shear cellular mRNA was 
collected.  (a) and (b) BMP-2 and BMP-6 mRNA levels were examined respectively. (a) * 
p<0.05 against V O and FO.  ** p<0.05 against VO.  n=4 from 3 different patients.   
(Means ± SE). 
 

Differential regulation of BMP antagonists 

I found differential regulation of BMP antagonists on the fibrosa and ventricularis sides of 

the aortic valve. I found a trend of an increase by LS of the BMP antagonist CV-2 in both 

endothelial cell types.  Follistatin mRNA showed a different regulation pattern when 

compared to that of CV-2.  In fibrosa endothelial cells, I saw no shear regulation of 

follistatin.  In the ventricularis endothelial cells LS caused significant reduction (4 fold) in 

follistatin mRNA when compared to OS.  The BMP antagonist, MGP, in fibrosa 

endothelial cells was significantly reduced (2-fold) by shear, both laminar and oscillatory 

shear, when compared to static conditions; no difference was seen between LS and OS 

in the fibrosa endothelial cells.  There was no shear regulation of MGP in the 

ventricularis endothelial cells.  Noggin and chordin were also investigated, but mRNA of 

these antagonists was near the detection limit of qPCR.  
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Figure 5.3 Shear regulation of CV2, follistatin and MGP in human ventricularis 
endothelial cells.  Fibrosa (F) and ventricularis (V) endothelial cells were shear for 24 
hours in static (S) laminar (L) or oscillatory shear conditions (O).  After shear cellular 
mRNA was collected.  (a) CV-2 mRNA levels were examined and an increase was seen 
under laminar flow. * p<0.05 against FO.  ** p<0.09 against VO.  n=4 from 4 different 
patients (b) Follistatin mRNA levels were examined and laminar shear decreased 
follistatin in ventricularis endothelial cells but not fibrosa.   * p<0.05 against VO. n=4 from 
3 different patients. (b) MGP mRNA levels were examined and shear decreased MGP in 
fibrosa endothelial cells but not ventricularis.   * p<0.05 against FS. n=4 from 3 different 
patients.   (Means ± SE). 
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Laminar shear reduces SMAD 1/5/8 signaling in aortic valve endothelial cells in vitro 

To determine the effect of BMPs on the endothelium phosphorylated SMAD 1/5/8, a 

marker of BMP pathway activation, was examined (Figure 5.4a).  LS significantly 

downregulated phosphorylation of SMAD 1/5/8 in both cell types when compared to 

static.  However, no difference was detected when comparing laminar versus oscillatory 

flow.  Additionally, no shear regulation was found of total SMAD 1/5/8 protein levels.   

 

Figure 5.4 BMP pathway activation and BMP dependent monocyte adhesion.  
Fibrosa (F) and ventricularis (V) endothelial cells were shear for 24 hours in static (S) 
laminar (L) or oscillatory shear conditions (O).  After shear cellular protein was collected.  
(a) and phospho- and total-SMAD 1/5/8.  Laminar shear decreased phospho-SMAD 
1/5/8 levels when compared to static after densiometric analysis.  *p<0.05 n=4 against 
FO.  ** p<0.05 n=4 against VL and VO.  (b) During oscillatory shear, endothelial cells 
were incubated with noggin for 24 hours.  A monocyte adhesion assay was then 
performed.  No difference was detected between the oscillatory shear control and the 
oscillatory + noggin.    n= 4 from 4 different patients.  (Means ± SE).  
 

BMPs do not play a role in endothelial inflammation 

To test the BMPs’ effect on endothelial cell inflammation, noggin was added for the 

duration of the shear and a monocyte adhesion assay was used to access the 
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inflammatory state of the endothelial cell.  To first assess noggin’s ability to block BMP 

signaling in valvular endothelial cells, the cells were sheared for 24 hours with and 

without noggin.  Western blot analysis showed significantly less phosphorylated SMAD 

1/5/8 in OS-conditioned endothelial cells treated with noggin than OS-conditioned 

endothelial cells treated without noggin.  In fibrosa and ventricularis endothelial cells 

exposed to OS, noggin had no effect on the number of monocytes bound.  

 

Discussion 

AV calcification and sclerosis primarily occur in the fibrosa, while the ventricularis side is 

relatively unaffected 7, 35; however, the specific mechanisms underlying this side-

dependent AV disease is unclear.  A potential mechanism is the different hemodynamic 

environment that is experienced by each side of the valvular leaflet.  The fibrosa side of 

endothelium is exposed to disturbed flow conditions including oscillatory flow whereas 

the ventricularis endothelium is exposed to pulsatile laminar flow conditions 6.  This 

suggests that oscillatory shear experienced by the fibrosa endothelium may be 

responsible for the pro-osteogenic environment leading to the side-dependent 

calcification.  This hypothesis has been supported by previous studies using mainly 

normal porcine AVs and cultured porcine AV endothelial cells 36.   

 

Previously, I have shown that oscillatory shear stress induces BMP-4 expression in 

vascular endothelial cells, and this BMP-4 expression leads to inflammatory response in 

a NFκB and NADPH oxidase-dependent manner 18-19.  In humans, BMP-2 and -4 are 

found in atherosclerotic plaques, endothelium overlying advanced atherosclerotic 

lesions, and in calcified regions of AVs 30-31.   Furthermore, in normal pig AVs, BMP-4 

mRNA and protein levels are higher on the fibrosa endothelium 36-37.  Also, laminar shear 

inhibits expression of BMP-4 in cultured pig AV endothelial cells 36.  Based on these 



120 
 

findings, I hypothesized that the fibrosa endothelium exposed to oscillatory flow would 

express a high level of BMPs, which in turn leads to side-dependent calcification of the 

AV; however, my results in Chapter 3 did not confirm my initial in vivo hypothesis.  To 

determine if BMP decrease on the fibrosa side of the valvular leaflet was due to the 

oscillatory shear stress, I examined BMPs, BMP antagonists, and SMAD levels in 

human AV endothelial cells in vitro. 

 

Based upon previous results, I hypothesized that the oscillatory flow conditions would 

cause an increase BMP-4 expression similar to that of human vascular endothelial cells 

and porcine valvular endothelial cells.  Not surprisingly I found that BMP-4 protein, both 

pro- and mature-forms, was decreased by LS in vitro.  Furthermore, no differences were 

seen between fibrosa and ventricularis endothelial cells.  A physiological comparison of 

OS-conditioned fibrosa endothelial cells to LS-conditioned ventricularis cells showed 

results contrary to my in vivo findings (Chapter 3); BMP-4 was increased in the fibrosa 

endothelial cells.  Further, I examined BMPs -2 and -6 mRNA expression.  My previous 

in vitro results suggested, like BMP-4, ventricularis endothelial cells should have more 

BMP-2 and -6.  No reports have suggested shear regulation of BMPs -2 or -6; however, I 

found that BMP-2 mRNA in both fibrosa and ventricularis endothelial cells was increased 

by OS, while no regulation of BMP6 was seen.   Next I compared in vivo and in vitro 

BMP antagonist levels.  

 

It is important to study BMP antagonists’ role in aortic valves for the following reasons. In 

cultured vascular endothelial cells, BMP antagonists, noggin, follistatin and MGP-1, 

which are co-expressed with BMP-4, provide a negative feedback mechanism inhibiting 

BMP-4’s inflammatory effect 32.  Furthermore, follistatin and noggin are found in 

advanced atherosclerotic lesions 32.  In healthy pig AVs, chordin mRNA levels are higher 
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on the ventricularis endothelium than the fibrosa endothelium 37.  Furthermore, in 

patients with aortic valve calcification circulating uncarboxylated MGP is decreased 

when compared to the healthy cohort38.  The authors hypothesized that the lower levels 

of circulating MGP may be because it is being used up in the vascular wall and therefore 

has less secretion into the circulation.  In Chapter 3, I found that noggin and CV-2 were 

differentially expressed in the human AVs.  Noggin and CV-2 expression levels were 

lower in the fibrosa endothelium than the ventricularis in both calcified and non-calcified 

AVs.  MGP expression was not affected by shear in ventricularis endothelial cells; 

however, in fibrosa endothelial cells, shear exposure, LS or OS, decreased this BMP 

antagonist’s expression.  mRNA expression of follistatin, which I could not find an 

appropriate antibody for immunohistochemical studies, was differentially regulated by 

shear in the ventricularis endothelial cells but not the fibrosa endothelial cells.  The final 

antagonist for which I detected mRNA was CV-2.  CV-2 mRNA expression was not 

regulated by shear, but was a trend of an increase was observed of laminar shear 

increasing CV-2 mRNA.  Finally, noggin was examined but only low mRNA levels were 

detected and thus not shown here.   Synthesis of these results suggest that  BMP 

antagonists can provide a negative feedback mechanism similar to what is found in 

vascular endothelial cells in which the antagonists help regulate BMP action. In order to 

assess the effect the antagonists are having on the valvular endothelium, I then looked 

at the canonical BMP pathway activation. 

 

The BMPs have two types of specific signaling receptors:  BMPR-I and BMPR-II, and 

both are required for signaling.  Once the ligand binds to its receptors, the active domain 

of the type II receptor phosphorylates the type I receptor, which in turn phosphorylates 

the R-SMADs (SMAD 1, 5, 8) 25-27.  SMAD1/5/8 is the canonical mediator of BMP 

signaling.  This phospho-SMAD then binds with co-SMAD 4 and translocates to the 
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nucleus thereby regulating a wide range of gene expression 25-27.  I found that in fibrosa 

and ventricularis endothelial cells, phospho-SMAD 1/5/8 levels are decreased by laminar 

flow when compared to static, but were not significantly different from oscillatory shear.   

Further, no differences were detected between the fibrosa and ventricularis endothelial 

cells.   

 

Finally, in Chapter 4 I found that laminar shear decreased the inflammation state of the 

aortic valve leaflet.  Considering that laminar shear decreases BMP-2 and -4 both 

fibrosa and ventricularis endothelial cells, I hypothesized that BMPs are playing an 

active role in inflammation in the aortic valve endothelial cells.  Recent studies have 

shown that BMP-4 in vascular endothelial cells is partly responsible for the oscillatory 

shear induced inflammatory response 18-19.  BMP-4 works though a NFκB and NADPH 

oxidase to induce monocyte binding though ICAM-1 18-19.  Furthermore, a recent report 

using porcine aortic valves has shown increased ICAM-1, VCAM-1 and BMP-4 on the 

fibrosa endothelium exposed to pulsatile fluid flow.  ICAM-1 and VCAM-1 expression 

was reduced when valve leaflets were incubated with the BMP antagonist noggin 

indicating BMP dependent inflammation 39; however, in valvular endothelial cells, no 

modulation in monocyte adhesion when blocking the BMP pathway with noggin was 

observed.   

 

During valvulogenisis the BMPs, BMP antagonists, and SMADs play important roles in 

epithelial-to-mesenchymal transition (EMT), cardiac cushion formation, and valve 

primordia40-54.  Further, if the BMPs, BMP antagonists, BMP receptors, or SMADs are 

removed during valvulogenisis, valve deformation occurs 40-54.  Endocardial endothelial 

cells will transform into a mesenchymal cell when exposed to BMP 45.  Furthermore, 

EMT in adult porcine aortic valvular endothelial cells has been shown to occur by 
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addition of TGFβ 55.     My results suggest that the canonical BMP and BMP-dependent 

inflammatory pathways are not activated by shear in valvular endothelial cells which is 

unlike in vascular endothelial cells.  I hypothesize that valvular endothelial cells maintain 

tight control of the BMP pathway in order to stop EMT from occurring.  The mechanism 

behind the relationship of BMPs and EMT needs to be determined.  Possible regulation 

markers to investigate include the inhibitory SMADs, other BMP antagonists, or the BMP 

receptors in the context of EMT.   

 

Several differences are seen when comparing the in vitro results to the in vivo results 

presented in Chapter 3.  There are potential mechanisms that may explain these 

differences.  First, in the aortic valve, endothelial cells are in close proximity to the 

interstitial cells that lay beneath the endothelium.  This proximity allows for 

communication between the two cell types that is not present in my in vitro system.  

Second, the hemodynamics used in my studies are simplified.  The aortic valve functions 

under complex hemodynamic conditions, including pulsatile pressures, unidirectional 

and disturbed fluid flows, bending stresses, and cyclic stretch.  My studies are using a 

time-average shear stress of 20 dynes/cm2, while, in the heart, the shear stress 

experienced by the ventricularis of the aortic valve experience a maximum shear stress 

of80 dynes/cm2 39.  Finally, endothelial cells are harvested from diseased hearts.  This 

condition may have adverse effects on the valvular endothelial cells.  Furthermore, the 

plasma components of the blood may have contributed to the in vivo endothelial 

phenotype I saw, and thus affecting BMP signaling in vivo. 

  

In summary, this chapter shows for the first time that BMPs -2 and -4 expression is 

regulated by shear stress in human aortic valvular endothelial cells.  I also found shear 

regulation of follistatin and MGP; however this regulation of follistatin was only detected 
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in ventricularis endothelial cells.  Unlike aortic endothelial cells, CV-2 was not regulated 

by shear.  No noggin or chordin mRNA was detected in my endothelial cells, which was 

detected in vascular endothelial cells.  Finally, I found that the BMPs had no effect on 

inflammation in human aortic valve endothelial cells through the addition of noggin.  I 

hypothesize that this is due to tight control of the BMPs in order to stop EMT from 

occurring.   These results offer us important functional information about how shear 

stress affects BMP signaling in valvular endothelial cells.   
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CHAPTER 6 
 

DISCUSSION 
 
 
 
Limitations 

There are several limitations in the work presented here and are described in detail 

below.   

 

Lack of proper control for immunohistochemical staining of human aortic valves 

The valves used in the immunohistochemical presented here are categorized by their 

calcification state; however, the non-calcified valves are taken from older patient 

populations who have severe cardiomyopathy.  The hemodynamics, in this patient 

population, are significantly altered and the shear and strain felt by the valvular leaflet 

will, in turn, be different than a healthy patient population.  Finally, this patient population 

has significant pharmaceutical use, which I could not control for, that may affect the 

endothelial gene and protein responses seen in this study.   

 

Finally, in my study, I did not separate the differences in the base, belly or free edge on 

the valvular leaflet.  I also did not perform BMP, BMP antagonist, or SMAD analysis 

based on the leaflet position.  The fluid profiles, and disease profiles can and do differ 

between leaflet position and location on the leaflet and may provide for an interesting 

study in the future.   

 

Cell source and the vitro studies 

The cells isolated and used in these studies come from a diseased population.  The 

environment from which these endothelial cells come from may have an effect on the 
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endothelial cell phenotype that I see in my study.  Furthermore, in vivo the endothelial 

cells are in close proximity to the valvular interstitial cells, and cells present in the blood.  

The cross talk between these two cells types may play an important role in the response 

of the endothelial cells1.  Furthermore, the components, i.e. cytokines and platelets, of 

the blood may have important signaling functions that are not present in the in my in vitro 

studies2, and may explain differences between Chapters 3 and 5.  Finally, the protein 

coating used in these studies was exclusively gelatin, a hydrolyzed form of collagen.  In 

vivo the basement membrane is a mix of type I collagen, type IV collagen, and 

fibronectin.  It is likely that difference in these matrix molecules can modulate endothelial 

function in my culture system in a similar matter as vascular endothelial  cells 3.   

 

Shear Stress Application 

The shear patterns used in these studies are different from the cyclic pattern of shear 

stress seen on the ventricularis and fibrosa endothelium in vivo.  For the 

atheroprotective waveform used in this study, I used the reported average physiological 

shear magnitude of 20 dynes/cm2 4-5; however, in ex vivo studies have now detailed the 

shear stress waveform over the cardiac cycle and report that shear stress can reach 80 

dynes/cm2 during peak systole, and during diastole is at a resting state of 0 dynes/cm2 6.  

The shear stress conditions used in this thesis was a simplified model to determine the 

effect of shear stress on the valvular endothelium.   

 

Inflammatory Pathway Analysis was limited 

In Chapter 4, I investigated several transcription factors that I believed may be 

responsible for the inflammation induced in human aortic valvular endothelial cells; 

however, other transcription factors, such as AP1, Egr-1, and Nrf2, may play an 

important role in the shear response of human aortic valvular endothelial cells.  
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Furthermore, inflammatory pathway analysis may also be hindered due to 

heterogeneous patient characteristics.  To determine shear stress’ effect on 

inflammation, ideally cells from a healthy patient should be used.  Due to the lack of this 

subject population, analysis may have to be performed on porcine aortic valvular 

endothelial cells. 

 

Lack of a Model System of Aortic Valve Calcification 

The in vitro and in vivo data from this dissertation provides molecular insight by which 

BMPs and their antagonists function in human aortic valvular endothelial cells exposed 

to shear stress.  However, the disconnect between the in vivo data present in chapter 3 

and the in vitro data in chapter 5 may be explained using a mouse model system which 

are not used in my studies.  Mouse model systems enable manipulation of disease state 

in a tightly controlled in vivo environment.   

 

Summary 

The overall objective of this dissertation was to investigate the disease- and shear-

dependent endothelial expression of the BMPs and their contribution to inflammation.  

By understanding the expression and effect of the BMPs on the valvular endothelium, I 

will have better insight into the role of the endothelium and the BMP family in the 

pathogenesis of aortic valve disease.  The central hypothesis of this dissertation was 

that oscillatory flow conditions on the fibrosa side of the valve stimulate endothelial cells 

to produce BMP-4, which then activates an inflammatory response leading to 

accumulation of inflammatory cells, calcification, and ultimately valve impairment.  This 

hypothesis was tested in the following three specific aims using diseased human aortic 

valves, and cultured side-specific human aortic valve endothelial cells from transplanted 

hearts.  
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- Specific Aim 1:  Characterization of the BMPs, BMP antagonists, and SMADs 

in Calcified and Non-Calcified Human Aortic Valve Endothelial Cells. 

   

- Specific Aim 2:  Characterization of anti- and pro-inflammatory shear 

responses in Human Aortic Valve Endothelial Cells  

 
 

- Specific Aim 3:  Characterization of BMPs and BMP antagonists under shear 

stress and their role in inflammation in human aortic valve endothelial cells  

 

To establish the importance of BMPs in the endothelium of aortic valves, two populations 

of valves were used: calcified and non-calcified human aortic valves.  Previously, I have 

shown that oscillatory shear stress induces BMP-4 expression in vascular endothelial 

cells, and this BMP-4 expression leads to inflammatory response in a NFκB and NADPH 

oxidase-dependent manner 7.  In humans, BMP-2 and -4 are found in atherosclerotic 

plaques, endothelium overlying advanced atherosclerotic lesions, and in calcified 

regions of AVs 8-9.   Furthermore, in normal pig AVs, BMP-4 mRNA and protein levels 

are higher on the fibrosa endothelium 10-11. Also, laminar shear inhibits expression of 

BMP-4 in cultured pig AV endothelial cells 11 however, my results showed that the BMP-

2 and -4 are significantly higher in the ventricularis endothelium of non-calcified human 

aortic valves when compared to the fibrosa of either disease state.  Furthermore, BMP-6 

endothelial expression was significantly higher in the ventricularis of calcified valves 

when compared to the fibrosa of either disease state.  Because of these results I 

investigated BMP antagonist expression, and found that the BMP antagonists, noggin 

and CV-2, were highest in the ventricularis endothelium when compared to the fibrosa 
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regardless of disease state.  To determine if the BMP antagonist levels were sufficient to 

inhibit BMP pathway activation, phosphorylated SMAD 1/5/8 was examined.  

Phosphorylated SMAD 1/5/8 levels were significantly increased on the fibrosa 

endothelium of calcified valves compared to the fibrosa endothelium of non-calcified 

valves.  The BMP results differ from previously mentioned reports of BMP-4 mRNA 

expression in porcine aortic valve endothelium.  It is important to note that both valve 

populations are from a diseased population.  Furthermore, a recent study has shown 

that pigs fed an atherogenic diet have decreased BMP-4 mRNA in the valve endothelium 

12.  The authors hypothesize that this decrease is a protective mechanism12.  A similar 

mechanism may be at work in my study.  My results suggest that the increased levels of 

BMP antagonists may play an important protective role in the ventricularis, by inhibiting 

BMP signaling, as seen through SMAD 1/5/8.  Finally, circulating levels of the BMP 

antagonist, MGP, are decreased in patients with aortic valve calcification, and may help 

explain why phosphorylation of SMAD 1/5/8 is seen in the fibrosa endothelium of 

calcified valves but not non-calcified valves 13.  These findings suggest that preferential 

activation of BMP pathways, controlled by the balance between the BMPs and their 

inhibitors, play an important role in side-dependent calcification of human AVs. 

 

I next wanted to examine the role of shear stress in BMP regulation, but before doing so, 

I needed to examine the endothelial response to fluid shear stress to validate the 

phenotype of my isolated human aortic valve endothelial cells.  Previous studies in 

porcine and canine have indicated that valvular endothelial cells should align 

perpendicular to flow 11, 14-15.  KLF2 and eNOS expression in vascular endothelial cells 

has been shown to be increased by laminar flow and to have anti-inflammatory effects 

by decreasing VCAM-1 levels 16-19.  Conversely, oscillatory shear stress has been 

shown to increase NFkB translocation and increase ICAM-1 and E-selectin 7, 20-24.  I 
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found laminar shear stress causes human aortic valve endothelial cells align parallel to 

flow and have robust increases of KLF2 and eNOS and decreases in VCAM-1 levels; 

however, laminar shear-treated cells had similar levels of NFκB activation as oscillatory 

treated cells while ICAM-1 and E-selectin were not affected by shear stress.  In contrast, 

oscillatory shear had higher levels of monocytes bound which may be due to eNOS’s 

protective effects under laminar shear and robust VCAM-1 expression in oscillatory 

shear 16.  Future studies looking at valvular endothelial cells from a healthy subject 

population will need to be done to confirm the results shown here.    

 

After verifying the shear response of my endothelial cells, I next determined the shear 

response of the BMPs and BMP antagonists and described BMPs’ effect on 

inflammation.  Previously, BMP-4 has been shown in vitro and in vivo to be increased in 

endothelial cells exposed to oscillatory flow, while the closely-related BMP-2 has not 

been shown to be shear sensitive.  Previously, I have shown that BMP4 is a 

mechanosensitive and pro-inflammatory cytokine in vascular endothelial cells 7, 23.  In 

this study I have found that BMPs -2 and -4 are shear sensitive while BMP-6 is not.  

Furthermore, I have found that follistatin is decreased by laminar flow only in the 

ventricularis, while MGP1 is decreased in the fibrosa valvular endothelial cells under 

both oscillatory and laminar flow. Finally, incubation with noggin did not affect monocyte 

adhesion after shear, suggesting differential regulation of inflammation in human aortic 

valvular endothelial cells.   
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Conclusions 

By addressing the specific aims of this project, I have investigated disease- and side-

dependent valvular endothelial BMP expression in vivo, shear regulation of valvular 

endothelial inflammation in vitro, and shear regulation of valvular endothelial BMP 

expression in vitro.  My results suggest that the BMP pathway is playing a role in side 

specific aortic valve disease development; however, regulation of the BMPs does not 

appear to be shear regulated in vivo.  Activation of the canonical BMP pathway in 

endothelial cells of calcified human aortic valves may enhance the pro-osteogenic 

environment on the fibrosa side of the valvular leaflet leading to increased disease.  

Other factors that may be affecting BMP production include pulsatile pressures, bending 

stresses, cyclic stretch, and humeral stimuli present in the blood of the patients.  

However, in vitro I have found BMPs -2 and -4 to be shear-regulated in human aortic 

valvular endothelial cells.  Shear-induced inflammation in human aortic valve endothelial 

cells seems to be VCAM-1-dependent, and BMP-independent.  Finally, by identifying 

factors that are modulated in calcific- and shear-dependent processes, new targets for 

the early detection of aortic valve disease can be determined and new therapeutics to 

slow or stop the progression of aortic valve disease may be discovered. 
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Figure 6.1 Overall summaries of project findings. 



139 
 

Future Directions 

The lack of mechanistic insight into the pathogenesis of aortic valve disease, and the 

endothelium’s role in this disease provides many new avenues for future research.  The 

findings described in this dissertation have elucidated possible roles for the endothelium, 

the BMPs, and their antagonists and provide a basis for future research in aortic valve 

disease. 

 

Microarray Analysis of mRNA and microRNA in calcified human aortic valves 

The current paradigm in treatment of aortic valve disease is either the replacement or 

repair of the aortic valve.  Biomarkers for the early detection and treatment of aortic 

valve are lacking.  Discovering one pharmaceutical drug that may stop or even slow the 

degeneration of aortic valve disease would improve the outlook for patients with this 

disease.  The results presented in Chapter 3 investigate endothelial expression of the 

BMPs and BMP antagonists in aortic valve disease.  This is just one family of proteins 

that may be involved endothelial inflammation and osteogenisis. To gain further 

understanding of other possible contributors to aortic valve disease, microarray studies 

of side specific human calcified human aortic valve endothelial cells can be used.  By 

using a trizol-based assay endothelial-enriched mRNA and microRNA can be collected 

from both sides of the valvular leaflet (Figure 6.1).  microRNAs are 18-22 nucleotide 

segments which bind to the 3’ UTR of mRNA thereby inhibiting translation or signaling 

mRNA for degradation 25.  It is hypothesized that microRNAs regulate 30-50% of all 

mRNAs 25.  Further, it is known that microRNAs play an important role in the 

cardiovascular system and that some microRNAs are shear-regulated 26-28.  To date, 

microRNA’s role in human aortic valvular endothelial cells remains unknown and could 

uncover a possible mechanism by which aortic valve disease occurs 25.   Moreover, by 

performing mRNA and miRNA arrays, new biomarkers for aortic valve disease may be 
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discovered.  These biomarkers may be clinically relevant in two ways:  First, if it is a 

secreted protein it may be used as an early indicator of aortic valve disease, allowing 

physicians to detect disease development before it is clinically manifested.  Second, 

possible targets for pharmaceutical intervention may present themselves in the study.  

 

 

Figure 6.2 Isolation of endothelial specific mRNA from porcine valve cusps.  RNA 
was isolated from three sources, porcine aortic endothelial cells, porcine aortic smooth 
muscle cells, and fresh pig aortic valves using a QIAzol Lysis Reagent.  Quantitative 
PCR was then performed using and endothelial marker  (A), PECAM-1 and an interstitial 
cell marker (B), αSMA.  PECAM-1 and αSMA were normalized by 18s.  mRNA isolated 
from porcine valve tissue shows endothelial specific markers while lacking interstitial cell 
marker.   
 

Involvement of Reactive Oxygen Species and Nitric Oxide in aortic valve disease   

Recent studies looking at calcified human aortic valve disease have suggested 

involvement of both reactive oxygen species and nitric oxide synthesis in aortic valve 

calcification 29-30.  In Chapter 4 I presented that laminar shear stress increases 

phosphorylated e-NOS in human aortic valve endothelial cells.  Mouse knockouts may 

provide important information of possible mechanisms by which aortic valve disease 

occurs, specifically the role of eNOS and reactive oxygen species.  eNOS knockout mice 

have the propensity to develop bicuspid aortic valves 31. Furthermore, research has 
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shown patients with bicuspid aortic valves there was a significant endothelial eNOS 

protein levels than patients with a tricuspid aortic valve 32.   

 

By using mice in the ApoE-/- background deficient in eNOS and feeding them a high 

cholesterol diet, I can induce both an oxidative and hyperlipidemic conditions.  Using a 

sensitive osteogenic probe (OsteoSense® 680) I can look at calcification development in 

these mice at 20 weeks 33.  There is also conflicting literature about the role of NADPH 

oxidase in aortic valve disease 34.  One study has found that reactive oxygen species is 

due to the uncoupling of eNOS while NOX2 and NOX4 are decreased 29.  A second 

study was not able to confirm this result 30.  Therefore to address this discrepancy, it 

may be beneficial to look at NOX1 deficient and over expressing mice in an ApoE-/- 

background.  Without NOX1, the mice will have reduced superoxide levels while still 

having a hypercholesterolimic phenotype.  With an overexpressed NOX1, the mice will 

have higher superoxide levels while having a hypercholesterolimic phenotype.  By using 

two double knockout mice and an overexpressing NOX1 mouse, I discover new 

information the involvement of nitric oxide and reactive oxygen species.   

 

Total BMP and BMP antagonists in human aortic valves 

In Chapter 3, I presented data looking at endothelial expression of the BMPs and the 

BMP antagonists in calcified and non-calcified human aortic valves.  Previous research 

has found increased levels of BMP-2 and -4 at the whole valve level 9;  however, it may 

be useful to look at total cellular (endothelial and interstitial cell) expression and location 

of the BMPs and BMP antagonists in calcified human aortic valves as little is known 

about interstitial cell secretion of the antagonists, and how they vary throughout the 

valve. By understanding the side dependent secretion of the BMPs and their 
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antagonists, it will give us insight into the valvular interstitial cell, BMP, and BMP 

antagonist involvement in the calcification of the human aortic valve.   

 

Inflammatory Transcription Factor Signaling in Human Aortic Valve Endothelial Cells in 

vivo 

 In Chapter 4 I investigated many signaling pathways that potentially activated in human 

aortic valve endothelial cells under shear stress.  Recent studies investigating high 

cholesterol diet in pigs has seen a significant shift in inflammatory signaling at the mRNA 

level 12, however very little is known of in vivo inflammatory signaling in calcified and 

non-calcified human aortic valves, and what transcription factors are important in the 

degeneration of the aortic valve.  By using specific antibodies for NFkB, p38, and JNK I 

may be able to elucidate possible inflammatory processes that are increased in calcified 

human aortic valves. 
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