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SUMMARY 
 
 

 

Biomimetic materials that recapitulate the complex mechanical and biochemical cues in 

load-bearing tissues are of significant interest in regenerative medicine and tissue engineering 

applications. Several investigators have endeavored to not only emulate the mechanical 

properties of the vasculature, but to also mimic the biologic responsiveness of the blood vessel 

in creating vascular substitutes. Previous studies in our lab generated the elastin-like protein 

polymer LysB10, which was designed with the capability of physical and chemical crosslinks, 

and was shown to display a range of elastomeric properties that more closely matched those of 

the native artery. While extensive validation of the mechanical properties of elastin-mimetic 

polymers has demonstrated their functionality in a number of tissue engineering applications, 

limited cell growth on the surfaces of the polymers has motivated further optimization for 

biological interaction. Recent biologically-inspired surface strategies have focused on 

functionalizing material surfaces with extracellular matrix molecules and bioactive motifs in order 

to encourage integrin-mediated cellular responses that trigger precise intracellular signaling 

processes, while limiting nonspecific biomaterial interactions. Consequently, this dissertation 

addresses three approaches to modulating cellular behavior on elastin-mimetic analogs with the 

goal of promoting vascular wall healing and tissue regeneration: (1) genetic engineering of 

elastin-like protein polymers (ELPs) with cell-binding domains, (2) biofunctionalization of elastin-

like protein polymers via chemoselective ligation of bioactive ligands, and (3) incorporation of 

matrix protein fibronectin for engineering of cell-seeded multilamellar collagen-reinforced 

elastin-like constructs. 

We sought to design a second generation elastin-mimetic triblock copolymer with the 

ability to guide endothelial cell behavior while maintaining the elastomeric properties of the 

protein polymer. Adhesion-promoting sequences, ligand density, presentation, and clustering, 
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and ELP morphology were manipulated in order to tailor material properties. Our biomolecular 

engineering approach introduced cell-adhesive peptide motifs within a bio-inspired recombinant 

elastin-like protein polymer and was able to elicit an integrin-mediated cellular response. 

While genetic engineering has allowed researchers to recombinantly express elastin 

polypeptides with cell-binding domains and other bioactive ligands to direct cellular behavior, 

chemical immobilization of short peptides to a recombinant protein polymer surface presents the 

opportunity to easily incorporate ligands that cannot be processed via the biosynthetic 

machinery. We were able to develop a bioconjugation strategy for chemoselective ligation of 

peptides to the recombinant elastin hydrogel surface, and illustrated increased cellular 

interaction on modified substrates.  

Finally, we evaluated the bioactivity and biostability of elastin-mimetic hydrogels with the 

addition of matrix protein fibronectin. We found that optimized presentation of the fibronectin 

molecule provided a system in which to present multiple bioactive domains for cellular 

interaction. Moreover, we utilized this engineered platform to promote cellularization of collagen-

reinforced elastin-mimetic multilamellar constructs for vascular tissue engineering applications.  

The synthesis of recombinant elastin-like protein polymers that integrate biologic 

functions of the extracellular matrix provides a novel design strategy for generating clinically 

durable vascular substitutes. Ultimately, the synthesis of model protein networks provides new 

insights into the relationship between molecular architecture, biomimetic ligand presentation, 

and associated cellular responses at the cell-material interface. Understanding how each of 

these design parameters affects cell response will contribute significantly to the rational 

engineering of bioactive materials. Potential applications for polymer blends with enhanced 

mechanical and biological properties include surface coatings on vascular grafts and stents, as 

well as composite materials for tissue engineered scaffolds and vascular substitutes.
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 MOTIVATION AND RATIONALE 

Development of a small diameter vascular replacement for coronary bypass surgery has 

been elusive, even as the incidence of cardiovascular disease remains the leading cause of 

death in the United States [1]. Limited availability of healthy autologous vessels for bypass 

grafting procedures has led to the fabrication of prosthetic vascular conduits. Synthetic 

polymeric materials, while providing the appropriate mechanical strength, lack the compliance 

and biocompatibility that bioresorbable and naturally occurring protein polymers offer. While 

these materials are relatively successful in withstanding arterial pressures and are functional as 

large diameter vascular grafts, they are not suited for small diameter (less than six millimeters) 

vascular applications due to destructive biological reactions at the blood-material and tissue-

material interface [2-5].  

Biomimetic materials that recapitulate the complex mechanical and biochemical cues in 

load-bearing tissues are of significant interest in regenerative medicine and tissue engineering 

applications. One approach in generating suitable materials is to mirror the multiscale structural 

hierarchy of the extracellular matrix itself. Thus, proper selection and assembly of scaffolds that 

replicate the anatomic features of the tissue of interest is vital in promoting tissue integration 

and directing cellular behavior. The generation of protein polymers that mimic native structural 

proteins and adopt the characteristics of the vascular wall offers a unique strategy to develop a 

vascular graft with clinical performance results that match or exceed those of a native vessel. 

Additionally, endothelialization of the luminal surfaces of vascular conduits has been proposed 

to mimic the biologic responsiveness of native vasculature. Studies involving the in vitro 
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endothelialization of grafts with cultured endothelial cells prior to implantation have shown that a 

confluent endothelium prevents thrombogenic complications and improves long-term patency 

[6-13]. Ultimately, the success of these strategies is dependent on controlling cell-material 

interactions, including cell migration, adhesion, extracellular matrix production, and proliferation 

on modified surfaces, in order to drive tissue regeneration and integration. 

The development of recombinant elastin-mimetic proteins has demonstrated that 

through selective engineering of block structure, a wide range of mechanical responses can be 

produced. Previous studies in our lab have explored the design of elastin-like protein polymers 

(ELPs) with the capability of physical and chemical crosslinks, and have yielded elastomeric 

properties that more closely match those of the native artery [14]. Moreover, these protein 

polymers have been used as non-thrombogenic hydrogel coatings on the luminal surface of 

ePTFE prostheses [15]. Biocompatibility studies of the elastin-mimetic LysB10 have revealed 

long-term in vivo biostability and minimal inflammatory responses, which makes LysB10 an 

ideal candidate in engineering tissues and biocompatible surface coatings.  

The extracellular matrix is a complex structural component of tissues composed of 

adhesive proteins, growth factors, and proteoglycans. Recent biologically-inspired surface 

strategies have focused on functionalizing material surfaces with extracellular matrix molecules 

and bioactive motifs in order to encourage integrin-mediated cellular responses that trigger 

precise intracellular signaling processes, while limiting nonspecific biomaterial interactions. 

While extensive validation of the mechanical properties of elastin-mimetic polymers has 

demonstrated their functionality in a number of tissue engineering applications, limited cell 

growth on the surfaces of the polymers has motivated further optimization for biological 

interaction. Consequently, the long term goal encompassing this work is to engineer bioactive 

surfaces on elastin-like protein polymers that specifically direct cellular behavior in order to 

improve vascular wall regeneration. We anticipate that recombinant proteins with enhanced 
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mechanical and biological properties can be utilized as surface coatings on vascular grafts and 

stents, and as composite materials for vascular tissue engineering.  

1.2 CENTRAL HYPOTHESIS AND SPECIFIC AIMS 

The central hypothesis encompassing the work in this manuscript is that vascular wall 

regeneration can be achieved with the use of recombinant elastin-mimetic protein polymers that 

are functionalized with bioactive domains mimicking the extracellular matrix, thus providing a 

rational approach for generating an elastin substitute for tissue engineered vascular grafts. In 

particular, elastin analogs that are able to form both physical and chemical croslinks were 

investigated for their ability to direct endothelial cell and mesenchymal stem cell behavior. 

Consequently, the overall objectives of this dissertation are to obtain an understanding of (1) 

the structural features of recombinant protein polymers and their functionalized derivatives 

which govern optimized presentation of bioactive molecules within the stable polymer network; 

and (2) the directed behavior of cells on modified elastin-like substrates.  

The central hypothesis was tested with the following specific aims. The goal of Specific 

Aim 1 was to synthesize and characterize the second generation of recombinant elastin-

mimetic protein polymers with genetically engineered cell-binding sequences. We 

hypothesized that an elastin analog containing alphavbeta3 integrin-binding sequence V2 

would enhance endothelial cell adhesion and migration to the otherwise non-adhesive polymer 

surface. Moreover, genetic engineering techniques enabled us to control spatial distribution and 

optimize ligand presentation. We tested the ability of the novel recombinant protein polymer V2 

to direct endothelial cell behavior using a number of in vitro studies, and the results are 

presented in Chapter 3. 

The goal of Specific Aim 2 was to develop a chemoselective approach to conjugate 

bioactive peptides to the elastin-mimetic protein polymer hydrogel surface in order to modulate 

cellular behavior. We anticipated that the reaction between thiol-derivatized LysB10 and 
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maleimide-terminated RGD peptide would enable localized delivery of bioactive ligand for 

surface functionality. We tested this hypothesis by assessing the ability of conjugated LysB10-

RGD surfaces to promote endothelial and mesenchymal stem cell adhesion, proliferation, 

migration, and spreading. These results are presented in Chapter 4. 

The goal of Specific Aim 3 was to evaluate the bioactivity and biostability of elastin-

mimetic hydrogels with the addition of matrix protein fibronectin. We hypothesized that 

optimized presentation of the fibronectin molecule would provide a system in which to present 

multiple bioactive domains for cellular interaction. Moreover, we anticipated that this engineered 

platform would promote cellularization of collagen-reinforced elastin-mimetic multilamellar 

constructs for vascular tissue engineering applications. We tested our hypothesis with a number 

of in vitro endpoints to determine endothelial and mesenchymal stem cell behavior. 

 

1.3 SIGNIFICANCE 

The synthesis of recombinant elastin-like protein polymers that integrate biologic 

functions of the extracellular matrix provides a novel design strategy for generating clinically 

durable vascular substitutes. The motivation for incorporating biomolecular analogs of elastin 

into current engineering schemes is two-fold: (1) the generation of a non-thrombogenic acellular 

conduit will stimulate in situ arterial wall regeneration by displaying cell-binding sites and matrix 

assembly motifs for migration and proliferating vascular wall cells that are repopulating the 

construct, and (2) fabrication of cell-seeded constructs will promote accelerated vascular tissue 

regeneration. Ultimately, the synthesis of model protein networks provides new insights into the 

relationship between molecular architecture, biomimetic ligand presentation, and associated 

cellular responses at the cell-material interface. Understanding how each of these design 

parameters affects cell response will contribute significantly to the rational engineering of 

bioactive materials. Potential applications for polymer blends with enhanced mechanical and 
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biological properties include surface coatings on vascular grafts and stents, as well as 

composite materials for tissue engineered scaffolds and vascular substitutes. 
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CHAPTER 2 

Background and Literature Review 

 

 

2.1 Challenges and current approaches to vascular tissue engineering 

Coronary and peripheral vascular bypass graft procedures are performed in 

approximately 600,000 patients each year in the United States, most commonly with the 

saphenous vein or the internal mammary artery [1]. Although the use of autogenous vascular 

substitutes has had a major impact on advancing the field of reconstructive arterial surgery, 

these tissue sources may be inadequate or unavailable. Moreover, their harvest adds time, cost, 

and the potential for additional morbidity to the surgical procedure [16-18]. Currently, ePTFE, 

Dacron, and polyurethane are used to fabricate synthetic vascular grafts [19]. However, owing 

to thrombus formation and compliance mismatch, none of these materials have proved suitable 

for generating grafts less than 6 millimeters in diameter that would be required to replace the 

saphenous vein, internal mammary or radial artery as a vascular substitute [2-5]. 

The functional importance of normal physiologic responses of the vascular wall in 

controlling thrombosis and inflammation has guided attempts to closely mimic the native arterial 

wall in the design of a new generation of vascular prostheses. These features include the 

structural components collagen and elastin, which are responsible for the tensile strength and 

viscoelasticity of the blood vessel, and create a fatigue-resistant tissue with long-term durability 

[20]. Furthermore, the endothelial lining in the native vasculature not only serves as a protective, 

thromboresistant barrier between blood and the surrounding tissue, but also controls vessel 

tone, platelet activation and leukocyte adhesion. Other elements that define an ideal biomaterial 

necessary to the design of a vascular graft are biocompatibility, infection resistance, suturability 

and off-the-shelf availability. 
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The first tissue-engineered blood vessel substitute was created by Weinberg and Bell in 

1986 [21].  They generated cultures of bovine endothelial cells, smooth muscle cells, and 

fibroblasts in layers of collagen gel supported by a Dacron mesh.  Although physiologic 

pressures were sustained for only 3 to 6 weeks, they did demonstrate the feasibility of a tissue 

engineered graft with human cells.  Since then, strategies to create a suitable material for a 

vascular graft have focused on three areas of research: coatings and surface chemical 

modifications of synthetic materials, biodegradable scaffolds, and biopolymers. Each group can 

be further organized into tissue engineering strategies for in situ vascular regeneration, in which 

the body‘s natural healing response is modulated by material design and fabrication, or 

strategies for ex vivo formation of a blood vessel substitute, whereby in vitro culture of human 

cells on polymer substrates before implantation defines their mechanical and biological 

properties. 

Polymer Functionalization 

The poor patency rates of synthetic polymers have motivated further strategies to 

functionalize the luminal surface of grafts and direct tissue regeneration.  Coatings, chemical 

and protein modifications, and endothelial cell seeding on otherwise inert materials have been 

employed to improve endothelialization and inhibit inflammation [22-25].  As a result, carbon 

deposition, photodischarge, and plasma discharge technologies have been utilized to deposit 

reactive groups onto polymer surfaces to interact with cell-specific peptides and influence 

protein adsorption to the surface [26].  For example, Nishibe and colleagues found that in a dog 

carotid implant model, fibronectin bonding improved graft healing in high-porosity ePTFE grafts 

[27].  Recent studies have documented that cell adhesion peptide sequences, such as the P15 

peptide found in type I collagen, increase endothelial cell adhesion to ePTFE in vivo via integrin-

specific binding [28].  Endothelial cell attachment can be significantly improved on surfaces 
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coupled with another potent adhesion peptide, RGD, when compared with fibronectin-coated 

grafts [29, 30].  To this end, Zilla and colleagues were able to improve cell retention on shear 

stressed grafts by precoating them with RGD-crosslinked fibrin [6].  In addition, delivery of 

growth factors from polymer surfaces has also facilitated the rate of in situ endothelialization 

[28, 31]. For example, ePTFE grafts impregnated with fibrin glue containing fibroblast growth 

factor (FGF)-1 and heparin have promoted transmural endothelialization and smooth muscle 

cell proliferation in a dog model [32-34]. 

Several investigators have endeavored to endothelialize the luminal surfaces of 

synthetic vascular grafts to mimic the biologic responsiveness of the native vasculature [6-13].  

The success of cell transplantation is limited because of difficulties in cell sourcing and cell 

attachment and retention during pulsatile flow conditions [35].  Strategies that promote in situ 

regeneration of a functional endothelial lining have also met with difficulties owing to chronic 

inflammatory and prothrombotic responses to the synthetic polymeric materials [36]. Endothelial 

cells that display a procoagulant phenotype can, in principle, promote rather than retard 

thrombosis [37].  Furthermore, activated ECs may increase growth factor production and 

secretion that encourages smooth muscle cell (SMC) proliferation.  Indeed, subintimal SMC 

proliferation occurs predominantly in areas that have an overlying endothelium [33].  This 

response can be seen with ePTFE grafts coated with anti-CD34 antibodies and implanted in 

pigs [38]. While the antibodies are able to capture endothelial progenitor cells and increase 

endothelial cell coverage, intimal hyperplasia at the distal anastomosis is significantly increased 

at four weeks.  The high rates of aneurysm and thrombus formation on vascular substitutes 

have led researchers to focus on modulating adverse inflammatory responses.  One such 

example is the creation of nitric oxide (NO)-producing polyurethanes, in which the NO donor 

diazeniumdiolate is covalently bound to a polyurethane backbone [39].  Nitric oxide is produced 

by endothelial cells and functions to regulate vascular tone, prevent platelet aggregation, and 
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inhibit smooth muscle hyperplasia.  Consequently, in vitro studies investigating the release of 

nitric oxide from modified polyurethane films have determined that the material does reduce 

platelet adhesion and vascular smooth muscle cell growth, while stimulating endothelial cell 

growth [40]. 

Degradable Scaffolds 

The use of biodegradable polymers as scaffolds on which layers of cells are grown is an 

alternate tissue engineering approach for the development of a functional vascular graft. The 

scaffold degrades and is replaced and remodeled by the extracellular matrix (ECM) secreted by 

the cells.  Polyglycolic acid (PGA) is commonly used in tissue engineering applications as it 

degrades through hydrolysis of its ester bonds, and glycolic acid, in turn, is metabolized and 

eliminated as water and carbon dioxide.  PGA loses its strength in vivo within 4 weeks and is 

completely absorbed by 6 months.  Biodegradation rates can be controlled by copolymerization 

with other polymers, such as poly-L-lactic acid (PLLA), polyhydroxyalkanoate (PHA), 

polycaprolactone-copolylactic acid, and polyethylene glycol [41-48]. 

Several investigators have explored the potential of PGA composite scaffolds in 

fabricating vascular conduits in situ and ex vivo.  For example, partially resorbable Dacron grafts 

have facilitated infiltration and proliferation of vascular cells, and promotion of capillary growth 

[49].  The regenerative potential of these conduits has led to further PGA and Dacron fiber 

blends with the purpose of optimizing compositional ratios for in vivo healing responses and 

graft strength maintenance [50, 51].  As in situ regeneration via polymer degradation limits exact 

control over the remodeling process, other groups have demonstrated the ability to construct 

functional grafts ex vivo.  Mooney and colleagues have seeded cells onto a PLLA/polylactide-

coglycolide (PLGA) copolymer-coated PGA mesh [46, 52].  Similarly, Vacanti and colleagues 

used PLGA to generate capillary networks for artificial microvasculature applications [53].  
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Furthermore, Niklason and colleagues have developed a pulsatile bioreactor to remodel PGA 

scaffolds seeded with bovine smooth muscle and endothelial cells [54].  After a 10-week culture 

period, the resulting tissue engineered vessel displayed a burst pressure of up to 2300 mm Hg.  

After 5 weeks, the PGA scaffold had degraded to 15% of its initial mass.  Consequently, 

mechanical stability was dependent on smooth muscle cell production of collagen and culture 

medium supplements that promoted collagen crosslinking.  Although the lumen of the graft did 

not present a confluent endothelium lining, vessels did display contractile responses to 

serotonin, prostaglandin, and endothelin-1, and implants remained patent for 1 month in a swine 

model.  Attempts to translate this approach to human cells have led to poor mechanical 

properties due to the limited proliferative capacity of human SMCs, especially when harvested 

from elderly patients.  In addition, the notable absence of elastic fibers could limit fatigue 

resistance and predispose the vessels to subsequent aneurysmal degeneration. 

Polyhydroxyalkanoates (PHA), linear polyesters that are produced by bacterial 

fermentation of sugar or lipids, have also been employed in graft design, as they can be 

modified to display a wide range of degradation rates and mechanical properties.  Shum-Tim et 

al. engineered an aortic graft consisting of a polymer scaffold of PGA and polyhydroxyoctanoate 

(PHO) seeded with ovine carotid artery cells [55].  The inner layer of the construct was made of 

nonwoven mesh of PGA fibers, while the outer layers were composed of nonporous PHO.  The 

PGA scaffold promoted cellular growth and extracellular matrix production, while the slower 

degradation rate of PHO provided mechanical support as this remodeling occurred.  

Significantly, the graft did not require extensive in vitro conditioning.  The construct was 

implanted directly in the abdominal aorta of lambs with 100% patency noted at five months.  

Histological analysis revealed that the remodeled graft contained uniform collagen and elastin 

fibers that had aligned in the direction of blood flow.  The mechanical stress-strain curve of the 

engineered construct approached that of the native vessel, although some permanent 
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deformation was observed six months after implantation, indicating either insufficient or non-

crosslinked elastin.  Fu and colleagues investigated the effects of ascorbic acid and basic 

fibroblast growth factor, which stimulated cells on a PGA-poly(4-hydroxybutyrate) construct to 

proliferate and generate large quantities of collagen, thereby accelerating the improvement in 

mechanical integrity [56]. 

Yet another versatile polymer, polycaprolactone (PCL), slowly degrades by hydrolysis of 

ester linkages, with elimination of the resultant fragments by macrophages and giant cells.  

Shin‘oka et al. reported the use of PCL-based scaffolds to engineer venous blood vessels [57, 

58].  The PCL-PLA copolymer was reinforced with woven PGA and seeded with autologous 

smooth muscle and endothelial cells harvested from a peripheral vein.  After 10 days, the 

construct was implanted as a pulmonary bypass graft into a four-year old child [59].  

Subsequent studies with autologous bone marrow cells on the constructs have reported > 95% 

patency at a mean follow-up of 16 months [60].  Further evaluation of endothelial cell function 

and mechanical properties of vascular grafts constructed with autologous bone marrow cells 

was conducted with a canine inferior vena cava model [61].  Interestingly, the biochemical 

properties and wall thickness of cell-seeded scaffolds were similar to those of the vena cava 6 

months after implantation. 

Biodegradable polymer systems provide the opportunity for spatial and temporal release 

of various growth factors to promote vascular wall regeneration.  For example, vascular 

endothelial growth factor release from PLGA scaffolds has been shown to promote 

angiogenesis in situ [62].  Likewise, FGF-2 release from poly(ester urethane) urea (PEUU) 

scaffolds amalgamates the favorable mechanical properties of polyurethanes with the bioactivity 

of an angiogenic protein [63].  While degradation via hydrolysis serves as a powerful tool in 

vascular tissue engineering to control the release of bioactive molecules from the polymer 



12 
 

matrix, incorporation of proteolytic sites into the material can further optimize presentation of 

these molecules to the surrounding environment via cell-mediated degradation.  

Although tissue-engineered vascular grafts based on biodegradable scaffolds have 

yielded promising results, some drawbacks exist.  Challenges of cell sourcing are compounded 

by long culture periods that range between 2 and 6 months, and the proliferative capacity of 

cells isolated from elderly patients is limited.  The mechanical strength of the materials may be 

comparable to that of native vessels, but compliance mismatch limits long-term patency.  

Biopolymers 

An alternative strategy to synthetic and degradable scaffold-based vascular grafts is the 

manipulation of proteins that constitute the architecture of native ECM.  The generation of 

protein polymers that mimic native structural proteins and adopt the characteristics of the 

arterial wall offers a unique approach to develop a vascular graft.  Ultimately, the success of this 

approach is dependent on appropriate cell migration, adhesion, and proliferation, as well as 

extracellular matrix production, on the biomimetic surfaces. 

One such protein is Type I collagen, a major ECM component in the blood vessel [64].  

Collagen fibers function to limit high strain deformation, thereby preventing critical rupture of the 

vascular wall [65, 66].  Collagen gels and fibers reconstituted from purified collagen are ideal in 

artificial blood vessel development due to their low inflammatory and antigenic responses [67].  

Furthermore, integrin binding sequences in collagen allow for cell adhesion during 

fibrillogenesis.  As mentioned previously, Weinberg and Bell first reported the use of collagen 

gels as substrates for cells in vascular tissue engineering. Since then, Habermehl and 

colleagues have developed a process to obtain large quantitites of collagen from rat tail tendons 

to scale up production [68].  
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Variables such as fiber orientation, crosslinking conditions, and cell seeding techniques 

have been explored to improve the mechanical integrity of collagen-based constructs.  A wide 

range of crosslinking agents can enhance covalent links between the collagen fibers, the most 

efficient of which is glutaraldehyde [69].  The cytotoxicity of this chemical, however, has led to 

the development of alternative crosslinking mechanisms, such as the cytocompatible chemical 

genipin, the enzymatic reactions of lysyl oxidase and transglutaminase, as well as 

photocrosslinking [70-72]. Various groups have investigated fiber orientation and smooth 

muscle cell alignment as a means to increase mechanical properties in the circumferential 

direction of a tubular construct [73-75].  Preconditioning treatments involve applying mechanical 

strain or shear stress to the construct and compaction of SMC-containing collagen gels around 

a mandrel in order to increase mechanical strength [76-78].  

The shortcomings of a stiff collagen-based scaffold have motivated researchers to 

explore the potential of more elastic fibrin gels in vascular tissue engineering [79].  Fibrin is 

formed when fibrinogen polymerizes into a fibrillar mesh with the addition of thrombin.  An 

advantage of this biopolymer is the ability to produce it with the patient‘s own blood, thereby 

preventing an inflammatory response upon implantation [80].  Fibrin also binds to critical 

proteins that direct cell fate, such as fibronectin and vascular endothelial growth factor [81].  In 

vivo degradation can be controlled with the proteinase inhibitor aprotonin and crosslinking 

agents, although there are concerns that the concentrated presence of these natural proteins 

may interfere with local coagulation cascades [82]. 

Interestingly, smooth muscle cells embedded in fibrin gels produce more collagen and 

ECM than cells that are entrapped in collagen gels [83].  One such example is the fibrin-based 

vascular graft developed by Swartz and colleagues, who incorporated ovine SMCs and 

endothelial cells into the gel [84].  The grafts were implanted in the jugular veins of lambs, and 

remained patent for 15 weeks.  Upon histologic examination, the constructs were found to 
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contain both collagen and elastin, with the mechanical integrity comparable to that of native 

coronary arteries.  Furthermore, Tranquillo and colleagues demonstrated that the enmeshed 

SMCs directed compaction and alignment of both the fibrin fibers and the cell-synthesized 

collagen fibers in a circumferential orientation around a nonadhesive mandrel [85]. 

The elasticity afforded by fibrin-based grafts is a critical factor in vascular tissue 

engineering design.  Researchers have also explored the potential of incorporating scaffolds 

with more extensible proteins such as elastin, a key structural element in native vasculature.  

Crosslinked elastic fibers form concentric rings around the medial layer of arteries, providing 

elasticity to the vascular graft by stretching under a stress and recoiling back to the original 

dimensions as the load is released [86-89].  In addition, elastin regulates vascular smooth 

muscle cell activity by inhibiting SMC proliferation.  Unlike collagen, the stable crosslinked fiber 

network of native elastin makes isolation and purification techniques difficult.  Therefore, 

different strategies have emerged to incorporate elastin into tubular constructs.  Whereas some 

investigators have attempted to promote elastogenesis in vascular grafts indirectly with smooth 

muscle cell culture techniques [90-92], others have developed protocols to process insoluble 

and soluble elastin [93].  One such example includes a freeze-drying protocol for collagen and 

elastin to produce a porous scaffold [94].  

More recently, the development of recombinant genetic and protein engineering has 

enabled the synthesis of bio-inspired protein polymers that not only mimic structural proteins but 

also direct cellular fate by emulating the extracellular matrix in vivo [95-98].  Specifically, 

polymers with pentapeptide repeat motifs similar to VPGVG exhibit elastic behavior with 

features that are consistent with native elastin, including a mobile backbone and the presence of 

beta turns [99-102].  The biosynthetic machinery of micro-organisms can be exploited to 

produce significant quantities of these recombinant protein polymers that have been designed 

from primary amino acid sequences and self-assemble into a distinct three-dimensional folded 
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structure [100, 103].  These elastin-mimetic biopolymers, in turn, can be cast as hydrogels or 

electrospun into nanofibrous scaffolds [104-108]. 

Nanocomposites 

Recent developments in the field of nanotechnology have facilitated vascular tissue-

engineering efforts in mimicking the nanostructure of native vasculature, thereby directing 

mechanical and biologic performance of the bulk material. One such application is 

electrospinning of synthetic polymers and naturally occurring materials into nanofibers [41, 101, 

109-111]. The advantages of this strategy include the ability to form scaffolds with high porosity 

as well as high surface area-to-volume ratio, thus simulating the dimensions and structure of 

native collagen and elastin fibrils [112, 113].  In particular, He and colleagues have 

demonstrated the utility of electrospinning with the generation of a nanofibrous scaffold 

composed of collagen-blended degradable poly(L-lactic acid)-co-poly(ε-caprolactone) [114].  

Results indicated that the blended nanofibers supported endothelial cell attachment and 

spreading, and preserved the endothelial cell phenotype.   

Enhancement of base material properties with the addition of fillers has resulted in 

various nanocomposites.  In general, these materials have demonstrated a reduction in 

thrombogenicity while improving mechanical properties.  For example, Kannan and colleagues 

have generated a polymer based on poly(carbonate-urea)urethane (PCU) and polyhedral 

oligomeric silsesquioxane nanoparticles, and have reported the nanocomposite‘s heparin-like 

behavior at the blood-material interface [115, 116].  Furthermore, the polymer displayed a 

greater degree of compliance match to natural arteries compared to ePTFE and Dacron.  Other 

groups have utilized the strength and flexibility of carbon nanotubes as fillers to enhance base 

polymer properties [117, 118].  These efforts have indicated that although the composite 
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polymers decrease thrombogenicity on their surfaces, toxicity of carbon nanotubes remains a 

concern [119, 120]. 

Biologic Tissue Sources 

Decellularized allogeneic or xenogenic tubular tissues that contain an intact and 

structurally organized ECM have been investigated as vascular conduits, which include human 

umbilical vein and bovine and porcine carotid arteries.  Although a readily available supply of 

artificial arteries is attractive, drawbacks include the inability to tailor matrix content and 

architecture, progressive biodegradation, and the risk of viral transmission from animal tissue.  

Decellularization removes most cellular antigenic components in allogeneic and xenogeneic 

tissue.  A combination of physical agitation, chemical surfactant removal, and enzymatic 

digestion disrupts cells and removes protein, lipids, and nucleotide remnants [121-124].  

Following decellularization, chemical crosslinking is used to enhance mechanical strength and 

reduce immunogenicity [125, 126].  The addition of an external support such as a Dacron mesh 

is also common to provide mechanical strength and prevent late dilation.  Efforts to improve the 

durability and the healing response of decellularized scaffolds have included coating with 

heparin and FGF, as well as seeding with endothelial cells, bone marrow-derived cells, and 

adipose-derived stem cells [127-135]. 

Alternative tubular tissue sources have been utilized as vascular substitutes as well.  For 

example, decellularized small intestinal submucosa (SIS) is composed of collagen, fibronectin, 

proteoglycans, growth factors, glycosaminoglycans, and glycoproteins [136].  Consequently, 

implantation of the SIS construct as a vascular graft leads to neovascularization, host cell 

migration and adhesion, and matrix remodeling [137-140].  The development of a tissue-

engineered vascular conduit from yet another avascular tissue source has been documented by 

Campbell and colleagues [141].  The intraperitoneal graft model employs the peritoneal cavity 
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as an in situ bioreactor for the creation of a tubular construct seeded with layers of host cells.  

The investigators observed that foreign objects implanted into the peritoneal cavity became 

encapsulated by a fibrous capsule containing myofibroblasts and a surrounding layer of 

mesothelial cells [142].  They then inserted Silastic tubing into the peritoneal cavities of dogs, 

rabbits, and rates.  After 2 to 3 weeks, the tubing was removed, and the cell-encapsulated 

construct was grafted into the carotid artery (rabbit), abdominal aorta (rat), and femoral artery 

(dog) of the animal in which it was grown [143, 144].  Remodeling of the autologous grafts 

included differentiation of myofibroblasts to smooth muscle-like cells, increased wall thickness, 

elastin and collagen production, and circumferential alignment of cells and matrix proteins [145].  

The constructs displayed endothelium-dependent relaxation when stimulated with acetylcholine 

and were patent in rabbits for at least 16 months and in dogs for 6.5 months. 

Recently, sheet-based tissue engineering and bioreactor conditions have enabled the 

expansion of in vitro culture of cells into a cohesive cell sheet comprised of various cell types 

and endogenously expressed extracellular matrix. Thermoresponsive polymers, such as poly N-

isopropylacrylamide and methylcellulose, have served as coatings on culture flasks in order to 

facilitate the removal of cultured cells and underlying ECM as a uniform sheet. These sheets 

have been further processed into blood vessels by layering and wrapping them around a 

mandrel for incubation [146-148]. While this maturation period can be as extensive as ten 

weeks, the resulting graft does not require exogenous biomaterials for mechanical support. 

L‘Heureux at al have demonstrated the utility of assembling arterial bypass grafts exclusively 

from a patient‘s own cells by implanting the substitutes into primate models [149]. In vivo results 

indicated that the grafts were antithrombogenic and mechanically stable for 8 months, with 

histology and microscopy displaying complete tissue integration, regeneration of a vascular 

media, as well as elastogenesis and a collagen fiber network. 

Concluding Remarks and Future Perspectives 
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The development of a synthetic arterial substitute represents a major milestone of 

twentieth century medicine yielding technology that has saved the lives of millions of patients.  

Nonetheless, a durable small-caliber (d<6mm) conduit remains elusive, and patency rates for 

infrainguinal revascularization through the use of a prosthetic graft have changed little over the 

past 30 years.  The challenges of creating the ideal tissue engineered vascular substitute are 

numerous, but significant progress has been made to understand the importance of both the 

mechanical and biologic requirements of biomaterials for this application.  Investigators continue 

to strive for the generation of multifunctional materials with optimized release and presentation 

of bioactive molecules in order to guide in situ vascular regeneration.  For example, the 

challenges of sufficiently balancing polymer degradation rates with ECM production and cellular 

infiltration has resulted in polymers designed with cell-binding sequences, enzymatic cleavage 

sites, and tethering of chemoattractant molecules [150, 151].  This ―bottom-up‖ approach to 

materials design enables researchers to finely modulate the nanostructure of a material in order 

to influence its bulk properties.  The success of these efforts will depend on the generation of 

composite scaffolds that mimic the complexity of native vascular matrix in order to improve 

elasticity and compliance of the native blood vessel while inhibiting adverse responses at the 

blood-material interface.  In vitro, in vivo, and computational models are also providing new 

insights into the complex interplay of cellular, biochemical, and biomechanical processes that 

lead to graft failure.  However, a better understanding of vascular progenitor cell biology is 

required to harness the potential of progenitor cells in endothelialization of arterial grafts.  

Through continued collaboration among vascular surgeons, biologists, material scientists, and 

biomedical engineers, existing barriers in the creation of an arterial substitute will undoubtedly 

be broken.   

2.2 Extracellular Matrix (ECM): Composition and Role 
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The extracellular matrix is a meshwork of fibrous proteins surrounded by 

glycosaminoglycans, growth factors, and cytokines sequestered by the matrix [152] . These 

components provide mechanical support to resident cells and serve as biochemical cues for 

intracellular communication. Moreover, most cells are able to actively secrete and remodel the 

extracellular matrix during tissue formation and repair. ECM proteins are multifunctional 

molecules, and include collagen, elastin, fibronectin, fibrinogen, vitronectin, and laminin [153].  

While ECM proteins play fundamental roles in providing mechanical stability to cells, 

they also serve to promote cell adhesion and intracellular signaling critical to tissue function. 

The interaction between ECM molecules and cell surface receptors regulates cell behavior by 

activating intracellular pathways, and results in precise alterations in cell spreading, migration, 

and differentiation [154]. In particular, cells recognize ECM ligands primarily via integrins. 

Integrins are transmembrane , heterodimeric proteins consisting of two associated subunits 

(alpha and beta) [154]. While integrins bind to the ECM through their extracellular domains, they 

are linked to the cytoskeleton via intracellular domains. Most integrins recognize key motifs as 

binding sites, such as the ubiquitous arginine-glycine-aspartic acid (RGD) sequence present in 

a variety of ECM proteins. Integrin binding is a dynamic process that requires mechanical 

coupling to the ligand. This activation involves conformation changes in the receptor into high 

affinity orientations, which then translates intracellularly into aggregation and clustering of focal 

adhesion molecules. Ultimately, focal adhesion formation leads to stable links between the ECM 

and cellular cytoskeleton, as well as activation of discrete signaling pathways. The coupling of 

integrins and ECM ligands modulates and directs a number of cell functions, including adhesion, 

spreading, proliferation, migration, transcription factor activity, and differentiation [154]. 

Engagement of distinct integrins will often direct particular cell responses in various tissues. For 

example, interaction with alphavbeta3 integrins leads to endothelial cell proliferation and 

migration.  
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2.3 Fibronectin 

 Fibronectin is a 440 kDa matrix associated glycoprotein that is found as a fibrillar 

network in the ECM and in the blood plasma at a concentration of approximately 300 ug/mL 

[155]. Fibrillar fibronectin matrix is also secreted and organized by cells themselves, and is 

responsible for regulating a number of cell functions via intracellular signaling pathways, 

including cell cycle progression, migration, differentiation, and assembly of other ECM  

components [156-158]. The protein exists as a dimer that is covalently linked by two disulfide 

bonds near the C-terminus of each monomer. In addition, each monomeric unit is composed of 

repeating domains named type I, II, and III, which in turn are grouped together into functional 

domains with specific bioactivity. Fibronectin serves as a multifunctional ligand that binds 

directly to cells, as well as heparin, collagen, and fibrin molecules, thereby modulating the ECM 

microenvironment [159]. 

 Pretreatment of vascular grafts with fibronectin has been investigated by several groups 

in order to improve in vitro and in vivo endothelialization of graft surfaces [160]. Fibronectin has 

been shown to improve endothelial cell binding and spreading, and to enhance shear stress-

induced adhesion strength with the onset of blood flow. For example, Nishibe and colleagues 

covalently bonded fibronectin to the luminal surface of ePTFE grafts and demonstrated 

accelerated transmural tissue ingrowth and neointima formation in both canine and porcine 

models [27, 161]. Although there were concerns that fibronectin treatment would increase graft 

thrombogenicity due to platelet activation and adhesion, no significant decrease in patency was 

observed. On the contrary, thrombus area was significantly lower on fibronectin-coated grafts 

compared to untreated ePTFE grafts. 

2.4 Fibronectin-derived integrin-selective ligands 
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Fibronectin contains many cell recognition sites that, when isolated, are able to mimic 

the biological activity of the entire ECM molecule to varying degrees. The most well-known 

sequence is the peptide RGD, which is recognized primarily by the alpha5beta1 and 

alphavbeta3 integrin receptors, but has also been found to bind to approximately 12 other 

receptors [162]. For this reason, RGD is most often employed in coating synthetic surfaces for 

enhanced biological interaction. The sequence is able to maintain both affinity and specificity 

when flanked by residues taken from the native protein. For example, it has been shown that 

linear GRGDSP retains the highest bioactivity, followed by RGDS, and then RGD [163]. 

Recombinant fragments of fibronectin incorporating the 10th type III repeat (RGD) and the 9th 

type II repeat (PHSRN or synergy site) have demonstrated over a 40-fold increase alpha5beta1 

integrin selectivity and adhesion strength [164]. Furthermore, conformation of the sequence 

itself influences the manner in which it is presented to the cell receptor, and has been shown to 

regulate integrin selectivity. In particular, the cyclopeptide RGD enhances binding to the 

alphavbeta3 integrin over the linear sequence [165]. In addition, immobilized cyclic RGD 

peptides have been able to support higher shear stress cell detachment resistance compared to 

linear peptides [166, 167]. Cyclic RGD coating of stents deployed in porcine coronary arteries 

resulted in increased endothelial cell coverage as well as reduced neointimal and stenosis 

areas [167].  

 The lack of integrin specificity associated with RGD is tempered by another fibronectin-

derived ligand, REDV. REDV was isolated from the alternatively spliced V region of fibronectin 

distant from the central cell-binding domain (residues 1-25 of the IIICS), and was found to 

primarily associate with alpha4beta1 integrin, which is expressed in a limited number of cell 

lines, including leukocytes, endothelial cells, and some muscle and fibroblast cell lines, but not 

in platelets [168, 169]. For example, investigators found that REDV peptides coated on 

microfluidic devices and subjected to shear stress preferentially bound to endothelial cells over 

smooth muscle cells [170]. 
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 Most cell types remodel synthetic substrates by depositing their own ECM in order to 

ensure effective biochemical and mechanotransduction signaling. An important facet of ECM 

architecture and fibronectin functionality is the self-assembly of fibronectin monomers into a 

fibrillar structure. This process is facilitated by fibronectin-fibronectin binding domains in the 

protein itself. In particular, a 13-amino acid sequence, AHEEICTTNEGVM, isolated from the 

fibronectin collagen binding domain, nucleates the assembly of robust fibrillar fibronectin matrix, 

which in turn serves as a template for collagen I fiber assembly and enhanced cellular 

responses, such as high cell adhesion and proliferation rates [171]. Based on the relationship 

between matrix assembly and FN13 density, a nucleation theory was proposed for the 

functionality of FN13, in which the sequence bridges extended forms of the fibronectin dimer, 

thereby assisting matrix assembly [172]. Ultimately, the significance of a FN13-functionalized 

material lies in its ability to directly promote cell-mediated synthesis of fibrillar ECM in order to 

control cellular function.  

2.5 Laminin-derived motifs 

Laminins are a family of heterotrimeric glycoproteins that assemble into a crosslinked 

network, interwoven with type IV collagen fibers [173]. Bioactive domains within laminin have 

been identified as short motifs which regulate cell functions, including the ever-present RGD 

sequence. Furthermore, YIGSR peptide-functionalized materials promote adhesion and 

spreading of numerous cell lines, including endothelial cells, fibroblasts, smooth muscle cells, 

and nerve cells [174-176]. Interestingly, YIGSR does not interact with integrins on the cell 

surface, but binds to a 67-kDa laminin receptor (67LR) [177]. Previous in vitro studies 

demonstrated that YIGSR incorporated into a polyurethane urea backbone (PUUYIGSR-PEG) 

inhibited platelet adhesion while increasing endothelial cell adhesion, spreading, and migration 

[178, 179]. However, in comparison to the RGD motif, YIGSR displays slower spreading rates 
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and less focal adhesion formation. Other studies have located the IKVAV sequence, which has 

been able to promote neurite outgrowth, cell adhesion, and tumor growth [180].  

2.6 Collagen-mimetic and elastin-derived cell-adhesive ligands 

Adhesion sequences have been identified that regulate collagen-integrin interactions, 

including the peptide DGEA and the alpha2beta1-specific hexapeptide sequence GFOGER 

from collagen I. Once again, tertiary structure plays a key role in the affinity and adhesive 

strength of these motifs, with a stable triple-helical structure presenting the ligand to the integrin 

binding site. While immobilized DGEA peptide from collagen was reported to mediate 

alpha2beta1 integrin-based neurite outgrowth [181, 182], extensive work with GFOGER peptide 

coatings have targeted the alpha2beta1 receptor on osteoblasts for improved bone formation, 

matrix calcification, and functional osseointegration [183, 184].  

The sequence VAPG, isolated from elastin, is a non-integrin binding ligand that interacts 

with the laminin receptor 67LR, and has proven to be a potent chemoattractant to fibroblasts, 

endothelial cells, smooth muscle cells, and certain tumor cells [185]. However, surfaces coated 

with VAPG have demonstrated enhanced smooth muscle cell adhesion compared to endothelial 

cells and fibroblasts [170]. 

2.7 CCN1 and its biomimetic derivatives: Role in vascular regeneration  

We have chosen to utilize a non-RGD ligand isolated from CCN1, a matrix-associated 

protein known to play a critical role in vascular tissue regeneration and wound healing [186-

190]. CCN1, or cysteine-rich 61, is a secreted heparin-binding protein of 40 kDa that displays 

pro-angiogenic activities, including endothelial cell adhesion, migration, proliferation, and tubule 

formation [191]. As a regulator of vascular development, CCN1 controls a set of genes 

responsible for angiogenesis and matrix remodeling. CCN1-null mice undergo embryonic death 

due to vascular defects in the placental labyrinth and loss of vascular integrity in the embryo. 
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Furthermore, larger vessels of CCN1-deficient mice display a disorganized basal lamina, a 

reduced number of smooth muscle cells, and apoptotic vascular cells [192]. Overexpression of 

CCN1 promotes vascularization and tumor growth, and is associated with human breast cancer 

[186, 193]. The protein also promotes migration and adhesion of circulating endothelial 

progenitor cells, while inducing them to secrete various growth factors and chemokines to 

remodel the vascular wall [194]. 

CCN1 is non-covalently associated with the extracellular matrix and communicates with 

cells via interactions between distinct sequences and cell surface integrins [195, 196]. The 

protein is organized into four structural domains with sequence similarities to: insulin-like growth 

factor-binding protein (domain I), von Willebrand factor type C repeat (domain II), 

thrombospondin type I repeat (domain III), and carboxyl-terminal domains of extracellular matrix 

proteins such as mucins  (domain IV). Mechanistically, distinct integrins are involved in 

mediating the role of CCN1, depending on cell type and function. For example, CCN1 binds 

directly to alphavbeta3 to mediate a range of biological responses, such as promoting cell 

adhesion and survival, stimulating chemotaxis, and inducing DNA synthesis and tubule 

formation [197]. CCN1 protects activated endothelial cells from apoptosis by ligation to integrin 

αvβ3 and supports smooth muscle cell adhesion and migration through α6β1 with heparan sulfate 

proteoglycans (HSPGs) as coreceptors [198]. Furthermore, adhesion to CCN1 in platelets and 

monocytes is mediated through integrins αIIbβ3 and αMβ2, respectively [199]. Paradoxically, 

CCN1 induces fibroblast apoptosis through adhesion receptors α6β1 and HSPG syndecan-4 

[200].  

Previous analysis of a C-terminal truncated CCN1 mutant indicated the presence of an 

integrin alpha6beta1 binding site within the first three domains. A 17-residue sequence, 

designated T1 (GQKCIVQTTSWSQCSKS), was first isolated from domain III of CCN1, and was 

found to be a novel integrin alpha6beta1 binding site in fibroblasts [201]. It is also recognized as 
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a regulator in angiogenesis due to observations that T1 blocks CCN1-induced endothelial tubule 

formation. Thus, T1 provides the basis for the development of peptide mimetics to examine the 

role of alpha6beta1 in CCN1-induced angiogenesis. Additional binding sites were discovered in 

the 16-residue sequences, H1 (KGKKCSKTKKSPEPVR) and H2 (FTYAGCSSVKKYRPKY), 

isolated from domain IV of CCN1, with the ability to support alpha6beta1- and HSPG-dependent 

cell adhesion [202].   

Previous studies also indicated the presence of an alphavbeta3 binding site within the 

first three domains of CCN1. Furthermore, deletion analysis revealed that a fragment containing 

domains II and III was sufficient to support alphavbeta3- mediated cell adhesion. This study led 

to an analysis of a panel of synthetic peptides to determine the exact region of biological 

activity. Thus, a 20 amino acid sequence in the von Willebrand factor type C repeat (domain II) 

of CCN1 was identified as a site that binds specifically to the alphavbeta3 integrin [203]. The 

sequence (NCKHQCTCIDGAVGCIPLCP) supports alphavbeta3- mediated endothelial cell 

adhesion in a dose-dependent manner, with the aspartate residue playing a key structural role 

in presenting the peptide to the ligand-binding pocket of the integrin. These conclusions were 

based on the following observations: (1) while immobilized V2 peptide was shown to support 

HUVEC adhesion, blocking studies revealed that addition of the integrin alphavbeta3 antagonist 

LM609 inhibited this adhesion. (2) Soluble V2 was able to prevent direct binding of purified 

alphavbeta3 to full-length, wild type CCN1 in a dose-dependent manner. (3) Alanine substitution 

of the single aspartate residue completely abolished the adhesion of HUVECs to the V2 peptide.  

Although V2 peptide does not bear any similarities in sequence homology to other 

ligands of alphavbeta3, it does contain certain amino acids thought to be important in binding 

the integrin. For example, the aspartate residue has been identified to play a key role in ligand 

binding to alphavbeta3 [204, 205]. Furthermore, studies on disintegrins and phage display 

analysis of alphavbeta3 binding sites have suggested that flanking cysteine residues may form 
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disulfide bonds to present binding sequences as a loop to the integrin active site [206-208]. 

While the aspartate and cysteine residues in V2 are critical to the peptide‘s functionality, the 

presence of disulfide bonds within the V2 peptide has not been explored.   

2.8 Structural requirements in designing a vascular graft 

The challenges of vascular tissue engineering include mechanical strength, elasticity, 

compliance match to the adjacent native vessel, and non-thrombogenicity.  A detailed look at 

the vessel anatomy is instructive in addressing these challenges. While the tunica intima is 

composed of a non-thrombogenic endothelial monolayer and the tunica adventitia provides 

structural support with collagenous extracellular matrix and fibroblasts, the tunica media is 

composed of lamellar units of smooth muscle cells, elastin fibers, and collagen fibrils [87].  The 

elastic lamellar units are arranged in concentric rings around the arterial media, and enable the 

artery to maintain physiologic systolic and diastolic blood pressures. In particular, elastin is the 

dominant extracellular matrix protein deposited in the medial layer, and comprises 50% of the 

arterial wall‘s dry weight. Smooth muscle cells secrete the monomer tropoelastin (72 kDa) as a 

soluble protein, and post-translational modifications such as enzymatic crosslinking via lysyl 

oxidase result in an insoluble elastin matrix. The elastin monomer is organized into hydrophobic 

and crosslinking domains. While the hydrophobic domains are rich in the amino acids valine, 

glycine, and proline, lysine residues separated by alanines facilitate intermolecular crosslinking 

[209-211]. 

Elastin and collagen play critical structural and regulatory roles in the arterial wall by 

dictating tissue mechanics in response to blood flow. Stiff collagen fibers prevent aneurysm 

formation by limiting high strain deformations. Elastin, in contrast, allows for distensibility and 

elastic recovery in low-strain environments, thereby preventing tissue creep due to cyclic 

loading. Elastin also maximizes the resilience, durability, and health of the blood vessel tissue 
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by absorbing energy from mechanical loading of the arterial wall and releasing that energy in 

the form of diastolic blood pressure rather than dissipating that energy as heat [86, 88, 89, 212]. 

Furthermore, elastin regulates vascular smooth muscle cell proliferation, phenotype, and 

organization by participating in biomechanical signaling between vascular smooth muscle cells 

and the surrounding extracellular matrix [213, 214]. This bioactivity is especially crucial in 

inhibiting intimal hyperplasia. 

2.9. Protein engineering: a biosynthetic strategy for the fabrication of a vascular graft  

The native blood vessel‘s matrix composition and architecture have been closely studied 

to elucidate structure-function relationships. The ability to tailor the mechanical and biologic 

performances of polymers for vascular tissue engineering applications is similarly dependent 

upon the monomeric building blocks.  The development of recombinant protein engineering 

enables the synthesis of bio-inspired protein polymers that not only mimic structural proteins but 

also direct cellular fate by emulating the extracellular matrix in vivo. The biosynthetic machinery 

of micro-organisms can be exploited to produce significant quantities of recombinant protein 

polymers that have been designed from primary amino acid sequences and translate to a 

distinct three-dimensional folded structure [96, 97, 100, 103, 215]. The most significant impact 

of this strategy is the capacity to introduce precise changes in the amino acid sequence to 

modulate properties of the entire protein network. 

The protein engineering process begins by cloning a selected artificial gene and 

verifying its sequence. The gene is then placed in a second expression vector that contains a 

promoter site for recognition by mRNA polymerase and regulation of protein production from the 

gene of interest. The expression plasmid is transformed into the bacterial host, and the host 

cells are allowed to grow to high cell density. After sufficient cell density is reached, expression 

of the desired protein is induced. As a final step, protein purification techniques isolate the 

desired product from crude bacteria cell lysates.  
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2.10 Rational design of peptide sequences for elastin-mimetic protein polymers  

Native elastin‘s intrinsic insolubility has limited its use in biomedical applications. Unlike 

collagen, the stable crosslinked fiber network of native elastin makes isolation and purification 

techniques difficult. However, structural and sequence analyses of tropoelastin have determined 

that pentapeptide repeat motifs similar to VPGVG exhibit elastic behavior with features that are 

consistent with native elastin, including a mobile backbone and the presence of β turns [99, 

101].  Genetic and protein engineering techniques have enabled the synthesis of protein 

polymers containing these repeat domains [102]. Furthermore, elastin-like protein (ELP) 

polymers display an inverse temperature transition (Tt), defined by their high solubility and 

random coil conformations in aqueous solutions and ordered structure formation upon raising 

the temperature of the system [216]. The loss of entropy resulting from the β-spiral conformation 

is compensated by the release of multiple water molecules from the polymer chain [99]. The 

elastic properties of the polymer are maintained with the valine, proline, and glycine residues 

[102, 106]. However, the coacervation temperature can be modulated by varying the fourth (X) 

position residue in the pentapeptide (VPGXG) sequence [217].  While hydrophobic residues 

lower the Tt of the protein polymer, polar amino acids such as glutamic acid increase the phase 

transition temperature. Other parameters that affect the Tt are pH, protein concentration, and 

the relative proportions of hydrophobic and hydrophilic residues [106]. In addition, substituting 

an alanine residue in place of the third glycine in the repeat sequence changes the mechanical 

properties of the polymer from elastomeric to plastic. 

The synthesis of amphiphilic triblock ELP copolymers (ABA) consisting of hydrophobic 

(A) and hydrophilic (B) domains results in the formation of a hydrogel. The copolymer 

undergoes selective aggregation of the more hydrophobic blocks above their Tt to form a 

physically crosslinked network, while the hydrophilic domains remain solvated in an aqeous 

solution [218, 219]. Thus, elastin-mimetic protein copolymers represent a unique class of 
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thermoreversible hydrogels for tissue engineering applications, as their gelation properties can 

be finely tuned for physiologically relevant conditions. More specifically, Chilkoti and colleagues 

have demonstrated the potential of elastin-like block copolymers as injectable biomaterials that 

can form in situ load-bearing hydrogel scaffolds [220]. Additional studies conducted by Keeley 

and colleagues as well as Chaikof and coworkers have reported that platelet activation and 

adhesion is minimal on recombinant elastin-like polymer surfaces [15, 221]. This feature makes 

them attractive candidates for blood-contacting materials such as non-thrombogenic vascular 

graft coatings or electrospun nanofibrous scaffolds. 

The introduction of residues with reactive side groups, such as glutamic acid and lysine, 

enable the protein polymer to be further functionalized to control structural and biologic 

parameters, including permeability, swelling ratio, viscoelasticity, mechanical strength, 

biostability, and biocompatibility. For example, enzymatic crosslinking of native elastin stabilizes 

the fiber network through the deamination of ε-amino groups on lysine side chains [222, 223]. 

Similarly, various lysine crosslinking strategies for elastin-mimetic protein polymers have been 

investigated to increase their elastic modulus and tensile strength, and include enzymatic-based 

as well as chemical crosslinking approaches [224, 225]. Colleagues in the Chaikof lab reported 

the synthesis of LysB10, a triblock elastin-like protein polymer, capable of physical and 

chemical crosslinking that stabilize mechanical responses and biostability of the protein 

polymers [14]. Synthetic gene construction was utilized to insert lysine crosslinking sites at 

positions flanking the hydrophobic and hydrophilic domains. Rheological analysis of the 

expressed recombinant protein polymer confirmed the formation of a viscoelastic gel above 

13°C. Below the coacervation temperature, non-crosslinked copolymer films dissolved 

immediately due to disruption of physical crosslinks, while glutaraldehyde-crosslinked films 

retained approximately 86% of their mass. In addition, preconditioned crosslinked polymer films 

exhibited a two- to three-fold increase in Young‘s modulus and a 50% decrease in strain at 

failure, with a slight increase in ultimate tensile strength, as compared to non-crosslinked films. 
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While crosslinking enhanced strength and modulus, a small reduction in resilience was noted. 

Table 2.1 summarizes the mechanical parameters evaluated in LysB10.  

2.11 Functionalizaton of elastin-like protein polymers 

Genetic Engineering 

Various groups have incorporated bioactive ligands into elastin-like protein polymers 

(ELPs) to mimic the functions of the extracellular matrix and guide cellular behavior. To date, 

the majority of these recombinant proteins have been genetically engineered with relatively 

short block sequences that limit structural polymorphism (see Table 2.2). The ligands chosen to 

add to the elastin-like backbone provide structural, mechanical, biochemical, and degradative 

properties to the elastin-like scaffolds for a wide range of tissue engineering applications. For 

example, Girotti and coworkers have placed elastase target sequences (VGVAPG) in an elastin 

analog to control proteolytic degradation of the structural scaffold in response to cellular 

infiltration and tissue repair during wound healing [226, 227]. Similarly, sequences sensitive to 

cleavage by urokinase plasminogen activator (uPA) have been genetically engineered into 

ELPs in order to induce local neuronal remodeling of the ECM-mimetic . Tirrell and colleagues 

have been able to increase endothelial cell attachment and spreading on protein substrates 

comprised of elastin sequences by incorporating the well-characterized cell-binding domain 

RGD. They have also targeted the endothelial cell surface integrin α4β1 with the CS5 sequence 

isolated from fibronectin (GEEIQIGHIPREDVDYHLYP) in order to achieve endothelial cell 

adhesion. The relationship between cell adhesion and the spatial distribution of bioactive 

domains within the context of the CS5 protein polymer has been explored as well. It has been 

demonstrated that ELPs with lysine crosslinking sites in the interior of the elastin domain are 

unable to support adhesion, while ELPs with N- and C-terminal crosslinking sites enable high 

rates of endothelial cell spreading and adhesion. Crosslinked ELP films have been PEGylated in 
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order to reduce nonspecific cell adhesion on surfaces [228]. These studies underscore the 

importance of minimizing conformational interference with ligand-receptor affinity and 

accessibility. Table 2.2 displays previous work with genetically engineered cell-responsive 

peptide domains within elastin-like polypeptides.  

Chemical Modification 

 While genetic engineering enables precise control in amino acid sequence, further 

functionalization of the amino acid side chains requires chemical modification. For example,  

Nagapudi and colleagues modified the lysine residues in their ELPs to methacrylate moieties in 

order to facilitate site-specific solid-state photocrosslinking [229]. Kaufmann and colleagues 

were able to achieve solution phase chemical conjugation of linear GRGDSF-OH to the glutamic 

acid in an ELP-polypeptide in order to promote osteoblast adhesion [230]. Their results indicate 

a 50% grafting efficiency of RGD molecules to the polypeptide backbone (4 RGDs per ELP 

molecule). Interestingly, the investigators were not able to detect any cell adhesion on those 

ELP hydrogels that were chemically conjugated to RGD via a solid-state reaction scheme. 

Teeuwan and colleagues were able to promote site-specific coupling of proteins to ELPs via Cu-

catalyzed azide-alkyne cycloaddion, thereby synthesizing ―clickable‖ ELP derivatives [231]. 

2.12 Applications of Elastin-like Proteins 

Elastin plays a vital role as a structural protein in many tissues [87]. Moreover, the 

capacity of elastin-based protein polymers to be processed as gels, films, or nanofibers 

demonstrates their versatility in a number of tissue engineering applications. For example, Urry 

and colleagues have found that elastin-like thin hydrogels act as effective physical barriers to 

adhesion formation in a contaminated peritoneal wound model [232]. ELPs have also been 

utilized as drug delivery vehicles to target tumors in vivo [233, 234]. The load-bearing properties 

of the ELP have been investigated for use as cartilage and intervertebral disc repair, small-
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diameter vascular grafts [228, 235-238], stem cell matrices [239], scaffolds for promotion of 

neuronal repair [240], and cell sheets [241, 242]. 

 

 

 

Table 2.1. Summary of mechanical parameters of LysB10. 

Protein Treatment Resilience 
(%) 

Young’s 
Modulus 
DMTA (MPa) 

Young’s 
Modulus 
Minimat 
(MPa) 

UTS 
(MPa) 

Strain at 
Failure (%) 

LysB10 GTA Xlinked 39±1* 1.10±0.45* 1.60±0.48* 3.62±0.98 223±30* 

LysB10 Non-Xlinked 52±2 0.49±0.03 0.53±0.02 2.88±0.71 463±43 

 
p<0.05 between crosslinked and non-crosslinked samples 
Average values obtained from 3-10 replicates. Resilience and Young‘s modulus determined from 
DMTA testing. Young‘s modulus, ultimate tensile stress (UTS), and % strain determined from 
Minimat testing. 
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Table 2.2. Design of cell-interactive domain within the context of elastin-like protein polymers. 
Reference Elastin Sequence Functional Domain Biological Activity 

[243] [(APGVGV)12-RGD]4 RGD sequence is a cell-binding 
domain that engages multiple 
integrins on cell surface, 
including α5β1 and αvβ3 

Fibroblast adhesion on 
substrate coated with 500nM 
ELP solution was  ~ 80% of that 
on fibronectin-coated surface 
(100nM solution) 
 

[244] {LDYAVTGRGDSPASSK
PIA[(VPGIG)2VPGKG(VP
GIG)2]4VP}3-LE 

RGD is a cell-binding domain 
that engages multiple integrins 
on cell surface, including α5β1 
and αvβ3 

 

RGD-ELP was ~ 50% as 
effective as fibronectin in 
promoting CHO cell spreading 
on coated substrates 

[238] 
 
 

(a) [LDCS5(GVPGI)40]3LE 
 

(b) [LDCS5(GVPGI)20]5LE 
 
CS5 = GEEIQIG 
HIPREDVDYHLYP 

CS5 is a cell-binding domain 
isolated from fibronectin that 
engages with the integrin α4β1 

(b) substrates were 4.5 times 
more effective in supporting 
HUVEC adhesion compared to 
(a)  

[237] (a)   (LD-
YAVTGRGDSPASS
KPIA(VPGIG)2VPGK
G(VPGIG)2)4VP)3-LE 
 

(b) (LD-EEIQIG 
HIPREDVDYHLYPG(
(VPGIG)2VPGKG(VP
GIG)2)4VP)3-LE 

While RGD sequence binds 
multiple integrins, REDV more 
specifically binds to integrin α4β1 

RGD-ELP coated substrates 
were 2.5 times more effective in 
supporting HUVEC adhesion 
than REDV-ELP coated 
substrates. Furthermore, 
HUVECs spread more rapidly 
on RGD-ELP coated surfaces 
than on REDV coated surfaces. 

[235, 236] 
 

(a) {LDCS5-G 
[(VPGIG)2VPGK
G(VPGIG)2]4VP}3

LE 
 
(b) RKTMG[LDCS5G 

           (VPGIG)25VP]3-
LEKAAKLE 

CS5 is a cell-binding domain 
isolated from fibronectin that 
engages with the integrin α4β1 

(b) substrates supported higher 
HUVEC adhesion and rapid 
spreading compared to (a) 

[233] Bac-
(VGVGVPGVGVPGGGV
PGAG VPGVG 
VPGVGVPGVGVPGGG 
VP GAGVPGGGVPG)15- 
p21 
Bac = 
MRRIRPRPPRLPRPRPR
PLPFPPRP 
 
p21 = 
GRKRRQTSMTDFYHSK
RRLIFSKRKP 

Cell penetrating peptide Bac, a 
24 amino acid peptide of the 
bactenecin family, has been 
shown to deliver cargo inside 
cells and was used to facilitate 
entry of ELP across cell 
membrane. 
 
p21 peptide mimetic has been 
shown to exhibit cyclin-CDK 
inhibitory activity and also inhibit 
human cancer cell proliferation 

The use of hyperthermia 
(42°C) increased the 
antiproliferative effect of Bac-
ELP1-p2 in ovarian cancer 
cells.  Nuclear-localized 
polypeptide enriched in the 
heated cells. Also induced  
caspase activation, PARP 
cleavage, and cell cycle arrest 
in S-phase and G2/M-phase. 
These studies indicate that 
ELP is a promising 
macromolecular carrier for the 
delivery of cell cycle inhibitory 
peptides to solid tumors. 
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[240] (a) {LDASTVYAVTG
RGDSPASSAA 
SA 
[(VPGIG)2VPGK
G(VPGIG)2]3VP}4

-LE 
 

(b) {LDASAAGRILA
RGEINFAAASA 
[(VPGIG)2VPGK
G(VPGIG)2]3VP}4

-LE 
 

(c) {LDASVCDPGYI
GSRCDDCASSA 
[(VPGIG)2VPGK
G(VPGIG)2]3VP}4

-LE 
 
 

b. Neural cell adhesion 
molecule is a cell-cell 
adhesion protein 
 

c. YIGSR is a cell-binding 
sequence isolated from 
laminin-1 

RGD-ELP enhanced neurite 
extension of PC-12 cells. The 
NCAM and YIGSR analogues 
have yet to be evaluated. 

 

 

 

 



35 
 

CHAPTER 3 

Genetic engineering of elastin-mimetic protein polymer with cell-binding domains 

3.1 INTRODUCTION 

Extracellular matrices provide structural and signaling cues that organize and regulate 

cellular behavior and activity, leading to tissue repair and homeostasis [245, 246]. However, the 

inability of synthetic materials to reconstitute higher order structures of native extracellular 

matrix limits biointeraction for regenerative medicine. To induce specific cell and tissue 

responses, biomaterials are being developed to incorporate defined biomolecules, such as 

adhesion ligands and growth factors. The use of recombinant fragments extracted from ECM 

proteins offers many advantages over entire ECM molecules, including reduced antigenicity, 

enhanced integrin specificity, and coating of a higher density of bioactive epitopes. Ultimately, 

the success of this approach is dependent on appropriate cell migration, adhesion, proliferation, 

and extracellular matrix production, on the biomimetic surfaces. 

The development of genetic and recombinant protein engineering has enabled the 

synthesis of bio-inspired protein polymers composed of repetitive amino acid sequences and 

peptide blocks, whose structural complexity impart specific mechanical, chemical, and biologic 

properties [215, 218]. The biosynthetic machinery of micro-organisms can be exploited to 

produce significant quantities of recombinant protein polymers that have been designed from 

primary amino acid sequences and translate to a distinct three-dimensional folded structure [96, 

97, 100, 103, 246]. The most significant impact of this strategy is the capacity to introduce 

precise changes in the amino acid sequence to modulate properties of the entire protein 

network. This ―bottom-up‖ approach to materials design enables researchers to finely modulate 

the nanostructure of a material in order to influence its bulk properties.   
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Recently, we reported a new class of recombinant elastin-mimetic protein polymer for 

the purpose of designing materials for small-diameter vascular grafts [14]. Synthetic grafts have 

been known to fail in vivo due to compliance mismatch between the grafts and surrounding 

arterial tissue [2-5].  Therefore, researchers have explored the potential of incorporating 

scaffolds with more extensible proteins such as elastin, a key structural element in native 

vasculature [87]. While native elastin‘s intrinsic insolubility has limited its use in biomedical 

applications, structural and sequence analyses of tropoelastin have determined that 

pentapeptide repeat motifs similar to VPGVG exhibit elastomeric behavior with features that are 

consistent with native elastin, including a mobile backbone and the presence of β turns [247, 

248].  Therefore, elastin-like protein polymer LysB10 was designed with the capability of 

physical and chemical crosslinks, and was shown to display a range of elastomeric properties 

that more closely match those of the native artery [14, 222-225]. This amphiphilic triblock 

copolymer (ABA) consisting of hydrophobic (A) and hydrophilic (B) domains was synthesized 

such that phase separation of the more hydrophobic blocks occurs in water under 

physiologically relevant conditions to form virtual crosslinks, while the hydrophilic domains 

remain non-crosslinked and solvated by the aqeous environment [218, 219]. Thus, elastin-like 

protein copolymers (ELPs) represent a unique class of thermoreversible hydrogels for soft 

tissue engineering applications. Furthermore, this multiblock system results in structural 

polymorphism and the potential for a wide range of functional responses, including mechanical 

and biological performance. 

The generation of protein polymers that mimic native structural proteins and adopt the 

characteristics of the arterial wall offers a unique approach to develop a vascular graft.  Several 

investigators have endeavored to minimize graft failure due to thrombosis and intimal 

hyperplasia by mimicking the biologic responsiveness of the native vasculature. In particular, 

the poor patency rates of synthetic polymers have motivated strategies to functionalize the 
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luminal surface of grafts in order to promote endothelialization of the material surface [7, 9, 11, 

12, 26-29, 31, 32, 34, 249, 250].  

The goal of this work was to add desired biological functionality to the recombinant 

elastin analog LysB10. It was postulated that the elastin analog containing an αvβ3 integrin-

binding sequence would enhance endothelial cell adhesion and migration to an otherwise non-

adhesive substrate, thereby facilitating repopulation of vascular cells and endothelialization. To 

this end, a 20 amino acid cell binding sequence named V2, isolated from the pro-angiogenic 

protein CCN1, was incorporated into the central domain of LysB10. Genetic engineering 

techniques enabled facile control over multiblock molecular assembly, which in turn led to 

optimized spatial distribution and presentation of bioactive peptides incorporated into the 

previously studied protein polymer LysB10.In this chapter, we describe the design, production, 

and characterization of a cell-adhesive artificial protein polymer for use in vascular tissue 

engineering applications. The results demonstrate that polymer morphology and surface ligand 

density influence endothelial cell activity and integrin-binding specificity. 
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3.2 MATERIALS AND METHODS 

Reagents, Antibodies, and Cells 

Single-stranded V2 oligonucleotides were purchased from  Sigma Genosys. BL21(DE3) 

and Top10F‘ E.coli cell line was obtained from Invitrogen. Bacterial cell culture reagents were 

obtained from Fisher Scientific. TALON column purification kit was purchased from Clontech. 

The 20 amino acid peptide V2 (NCKHQCTCIDGAVGCIPLCP) and scrambled peptide 

(NCKHQCTCIAGAVGCIPLCP) were custom-synthesized by Invitrogen. Fibronectin and 

vitronectin solutions were purchased from Sigma Aldrich. Human umbilical vein endothelial cells 

and cell culture reagents were obtained from Clonetics. Monoclonal mouse anti-human integrin 

αvβ3, mouse anti-human E-selectin, and mouse anti-human ICAM-1 antibodies were purchased 

from Millipore. Monoclonal anti-vinculin (clone hVIN-1) was purchased from Sigma Aldrich. 

Immunostaining reagents goat anti-mouse IgG antibody, streptavidin-AlexaFluor 488, phalloidin-

AlexaFluor 568, and ProLong Gold antifade reagent with DAPI were all purchased from 

Invitrogen (Molecular Probes). 

Synthetic gene construction of bioactive domains  

Work on various ELPs has indicated that biologic responses can be produced through 

selective engineering of the bioactive domain (see Table 2.2). Moreover, ligand clustering leads 

to integrin receptor aggregation and increased adhesion strength [251]. In light of these 

investigations, the V2 domain was designed as a 10-repeat block, approximately 15% of the 

ELP molecular weight composition. Sequences were based on preferred codon usage to enable 

expression from E.coli expression systems. The elastin analog V2 was designed and 

synthesized so that the integrin-binding sequence was inserted in the central elastomeric 

domain of triblock LysB10 (Table 3.1, Scheme 3.1). Crosslinking residues were sequestered 
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between the hydrophobic and hydrophilic domains, and at the terminal ends of the protein 

polymer.  

Single stranded oligonucleotides encoding the sense and anti-sense strands of V2 

monomer units were chemically synthesized to include flanking BamHI/HinDIII restriction sites, 

as well as internal BbsI/BsmBI restriction sites flanking the monomer sequences. The DNA was 

diluted in 10 mM Tris buffer (pH 8) to a final concentration of 0.5 mg/mL to begin the protocol for 

double-stranded DNA formation. A solution of 10 μg of each corresponding oligonucleotide 

strand, 5M NaCl, 1M MgCl2, and sterile ddH2O in a final volume of 200 μL was subjected to an 

annealing procedure initiated at a reaction temperature of 99°C, with temperature decrements of 

0.5°C every 3 min to a final reaction temperature of 30°C for 15 minutes. The resulting double-

stranded DNA cassette was analyzed by agarose gel electrophoresis (4% GTG NuSieve 

agarose, 1X TBE buffer), with the V2 monomer being 127 base pairs long. Double-stranded 

synthetic DNA was phosphorylated during a 2-hour incubation period with T4 Polynucleotide 

Kinase (New England Biolabs) in the presence of T4 DNA ligase buffer with 10 mM ATPs (New 

England Biolabs). Enzymes and other protein contaminants were removed with 

phenol/chloroform/isoamyl alcohol (25:24:1) and the double-stranded DNA (dsDNA) was 

recovered through an ethanol precipitation. The dsDNA units were then placed in a plasmid in 

order to select for the correct insert sequences and further cloning work. 

The pZErO-1 acceptor plasmid (1 μg), was prepared via BamHI and HinDIII double 

digestion for 30 minutes, followed by heat inactivation of the enzymes at 65°C. The monomer 

units were designed with BamHI and HinDIII overhangs to enable cloning into pZErO-1 at these 

restriction sites. The DNA cassette and respective acceptor plasmid were ligated together in a 

10 μl volume in the presence of T4 DNA ligase at 16°C for 30 min. A 2μL aliquot of the ligation 

reaction was used to transform 40 μL of electrocompetent TOP10F' E. coli cells. A total of 100 
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Table 3.1. Molecular assembly of elastin analogs. 

 
Elastin 
Analog 

 

N-terminal 
Plastic Domain 

(An) 

 

Elastic Domain 
(B) 

 

 

Bioactive 
Domain (C) 

 

C-terminal 
Plastic Domain 

(Ac) 

 

Final Design 

LysB10 VPAVGK[(VPAVG) 
(IPAVG)4][(IPAVG)5]33 
 

(IPAVG)KAAK(VPGAG) 
(VPGAG)2VPGEG(VPGAG)2]28 
(VPAVG)KAAK(VPGAG) 
 

---- [(VPAVG)(IPAVG)4 
[(IPAVG)5]33 
IPAVGKAAKA 

 

AnBAc 

V2 VPAVGK[(VPAVG) 
(IPAVG)4][(IPAVG)5]33 
 

(IPAVG)KAAK(VPGAG) 
(VPGAG)2VPGEG(VPGAG)2]14— 

C— 

[(VPGAG)2VPGEG(VPGAG)2]14 
(VPAVG)KAAK(VPGAG) 
 

[VPGVG-GG- 
NCKHQCTCIDGAVG 
CIPLCP-GG-PGVG]10 

[(VPAVG)(IPAVG)4 
[(IPAVG)5]33 
IPAVGKAAKA 

AnBAc 

    

 

Scheme 3.1.  Design of recombinant V2 copolymer 
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μL of the transformation mixture was spread onto low salt Luria Broth (LSLB) agar 

supplemented with Zeocin (50 μg/μL). The plates were incubated for 16 hours at 37°C, and five 

colonies were selected from each plate to inoculate 5 mL cultures of LSLB/Zeocin. Cultures 

were rotary incubated for 12 hours at 37°C. Plasmid DNA was isolated following a Qiagen Spin 

Miniprep protocol (Qiagen, Inc.). DNA was screened by a BamHI and HinDIII double digestion. 

Positive transformants were verified by agarose gel electrophoresis (4% GTG NuSieve agarose, 

1X TBE buffer). Automated DNA sequencing utilizing the M13 forward and M13 reverse primers 

confirmed correct DNA products.  

Recombinant plasmids containing correct inserts of each of the selected sequences 

were re-transformed into competent Top 10F‘ cells and plated on LSLB agar plates under 

Zeocin antibiotic resistance. A single colony from each plate was used to inoculate 500 mL 

LSLB medium and grown overnight at 37°C in a shaker at 225 rpm. Preparative amounts of 

plasmid DNA were isolated using QIAfilter Plasmid Maxi protocol (Qiagen, Inc). Monomer 

cassettes were excised from the plasmid via sequential digestion by BbsI (10U/μL) and BsmB I 

(10U/μL) restriction enzymes. Fragments were isolated via preparative gel electrophoresis (4% 

GTG NuSieve, 1 X TBE buffer), extracted using Amicon Ultrafree Centrifugal Filter Units 

(Milipore), and isolated via ethanol precipitation. 

Multimerization reactions utilized 3.0 μg of the BbsI/BsmBI digested DNA and ligated 

monomers end-to-end via T4 DNA ligase. Multimer mixtures were separated by size using 

agarose gel electrophoresis (1% agarose, 1 X TBE buffer). Concatemers were excised in 

blocks, <500 bp, 500-1000 bp, 1000-3000 bp, and purified using Zymoclean Gel DNA Recovery 

protocol (Zymo Research, Inc). Multimers of 500-1000 and 1000-3000 bp in size were ligated 

into the acceptor plasmid at the BbsI site at 16°C for 16 hours. The acceptor plasmid was 

prepared from the pZErO-1 plasmid containing the original monomer repeat unit associated with 

each gene. The acceptor plasmids were digested with BbsI, and dephosphorylated via SAP 



42 
 

(Shrimp Alkaline Phosphatase) to prevent self ligation. Ligation mixtures were used to transform 

competent Top 10F‘ cells and 100μL of the transformation mixture was plated on LSLB/Zeocin 

agar plates. DNA from positive clones were isolated via Qiagen Spin Miniprep and screened 

through double digestion using BamHI and HinDIII restriction enzymes. Clones of 

predetermined sizes were isolated (10-repeat monomer units of V2). Similarly, the elastic 

(midblock) unit (VPGAG)2VPGEG(VPGAG)2, which was previously synthesized in the lab, was 

multimerized to a 14-repeat block for further cloning work. Scheme 3.2 demonstrates the 

multimerization technique. 

 

 

 

 

 

 

 

 

Scheme 3.2. Multimerization of DNA monomers for the synthesis of repeat 
polypeptides. dsDNA monomers are ligated to form DNA multimers of various lengths. 
The target length is inserted into the cloning vector for further gene assembly. 
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Assembly of V2 triblock 

Previous work with the plastic blocks was utilized to assemble the V2 triblock. Coupling 

of the plastic block from LysB10 with the short (14-repeat) elastic block was attained with 

BsmBI/XmaI and BbsI/XmaI restriction digestions, respectively, and ligation of the large 

fragments from each plasmid digestion. Briefly, the larger fragment from each of these 

digestions was isolated via preparative gel electrophoresis (1% agarose, 0.7X TBE) and purified 

using the Zymoclean gel recovery kit. The plastic and elastic fragments were ligated by T4 DNA 

ligase, transformed into Top 10F‘, and plated on LSLB plates under Zeocin resistance. As the 

XmaI site cuts within the Zeocin coding region, only clones containing the correctly assembled 

diblock, and thus, the correctly reassembled antibiotic resistance coding region, will propagate, 

as seen in Scheme 3.3. Insert sequence was verified with DNA sequencing. The V2 domain 

was coupled to the AnB block with a similar digestion scheme, and verified with agarose gel 

electrophoresis analysis of a BamHI and HinDIII double digestion and DNA sequencing. To form 

the triblock, the AnB14-V210 block was digested with BsmBI /XmaI and the plasmid containing the 

B14Ac block with Bbs I/ XmaI. Similar protocols for ligation, transformation, and propagation were 

followed. Via antibiotic selection, only colonies containing the correctly assembled triblock 

survived. As a final step, the gene was placed into the lysine adaptor.   

The lysine adaptor is a 50-bp DNA cassette designed with BsmBI restriction enzyme cut 

sites midway through the cassette for insertion of an insert. The adaptor encodes for a single N-

terminal lysine residue and two C-terminal lysine residues. The careful positioning of lysine 

residues has been incorporated to enhance the potential of intermolecular crosslinking. 

Furthermore, it enables cloning into the final expression vector by correctly inserting the gene of 

interest in frame with the N-terminal polyhistidine tag. The V2 triblock was extracted from the 

pZErO-1 plasmid with BbsI and BsmBI sequential digestion and subsequent purification, while 

the lysine adaptor was digested with BsmBI and SAP dephosphorylated in preparation for 
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triblock insertion. Ligation of the insert and adaptor vector was performed, and the ligation 

reaction was transformed into Top10F‘ cells, as described above. Colonies that grew on the 

LSLB agar plates under Zeocin resistance were screened via agarose gel electrophoresis 

analysis of a BamHI and HinDIII double digestion. DNA sequencing confirmed correct insertion 

and sequence of the gene within the adaptor. 

 

 

 

 

 

 

         

Scheme 3.3. General cloning strategy in the assembly of the V2 gene. Coupling of 
the V2 domain to the N-terminal elastin diblock begins with restriction enzyme double 
digestion and purification of the appropriate plasmid fragments. The fragments are then 
ligated together, with the resulting plasmids transformed into E.coli cells. As the XmaI 
site cuts within the Zeocin coding region, only clones containing the correctly assembled 
plasmid, and thus, the correctly reassembled antibiotic resistance coding region, will 
propagate. Once the V2 block was coupled to the N-terminal elastin diblock, the cloning 
strategy was again repeated with the C-terminal elastin block. 
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Expression vector 

The pQE80-L expression plasmid (1 μg, Qiagen, Inc) was prepared via BamHI and 

HinDIII double digestion, followed by gel isolation and purification. The V2 gene was released 

from the pZErO-1 vector at analogous sites. Adaptor and plasmid were ligated together in the 

presence of T4 DNA ligase at 16°C for 16 hours. A 2 μL aliquot of the ligation reaction mixture 

was used to transform 40 μL of electrocompetent Top10F‘ cells. A 100 μL aliquot of the 

transformation mixture was spread onto LB agar supplemented with ampicillin (100 μg/μL). The 

plates were incubated for 16 hours at 37°C. Colonies were selected from each plate to inoculate 

5 mL cultures of LB/ampicillin media. Cultures were rotary incubated for 16 hours at 37°C. 

Plasmid DNA was isolated and screened by a BamHI and HinDIII double digestion. Positive 

transformants were verified by agarose gel and submitted to automated DNA sequencing 

utilizing the T7 promoter and T7 terminator primers. The pQE-80L plasmid contains an N-

terminal histidine tag which allows for downstream purification and detection methodologies. 

Protein expression and purification 

The high-level expression of proteins in E.coli using the pQE vectors is based on T5 

promoter transcription-translation system. Briefly, expression of recombinant proteins encoded 

by the pQE vectors is induced by addition of isopropyl-β-D-thiogalactoside (IPTG), which binds 

to the lac repressor protein and inactivates it. Once this occurs, the host cell‘s RNA polymerase 

can recognize the T5 promoter, and transcribe the downstream sequence. Once the triblock 

genes were placed in the pQE80L vector, they were transformed into the E.coli expression 

strain BL21(DE3). 35 mL of Luria Broth (LB) media with 100 μg/μL ampicillin was inoculated 

with the E.coli cells containing the V2 plasmids and grown for 16 hours at 37°C. Large scale 

expression was performed in an orbital shaker (225rpm) at 37°C in Luria Broth medium 

supplemented with ampicillin (100 μg/μL) by further inoculating 500 mL LB media with 25 mL of 
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the overnight cultures and ampicillin antibiotic. Cells were grown until the optical density 

reached 0.8 (approximately 2 hours). IPTG (1 mM) was added to the culture to induce protein 

expression for 4 hours.  

The purification protocol of the protein products was modified from earlier work with 

LysB10. Cells were harvested via centrifugation (4°C/1660rcf/20 min), the cell pellet 

resuspended in equilibration buffer (50 mM sodium phosphate, 300 mM sodium chloride, pH 

7.0), and stored at -80°C. Frozen cells were lysed via three freeze (-80°C)/thaw cycles. Once 

cells were resuspended, six cycles of sonication, consisting of 20 second bursts followed by 20 

second rests in an ice bath, were utilized to completely break the cells. Unbroken cells were 

pelleted out during a centrifugation spin, resuspended in buffer, and resonicated. The cold cell 

lysate was centrifuged at 20,000g for 40 minutes at 4°C. The supernatant was transferred to a 

cold, sterile tube and poly(ethyleneimine) (PEI) was added to a final concentration of 0.5% to 

precipitate out nucleic acids and contaminating cellular material. The contaminants were 

removed by another centrifugation cycle at 20,000g for 40 minutes at 4°C, and the supernatant 

was transferred to a sterile tube. The elastin-mimetic protein was salted out of solution by 

adding NaCl to a 2M final concentration for 45 minutes at 25°C. The precipitate was recovered 

with 9500g/15minute/25°C centrifugation (hot spin). The supernatant was then discarded and 

the protein pellet was resuspended in cold, sterile PBS for 20 minutes. The solution was then 

centrifuged at 20,000g for 40 minutes at 4°C (cold spin) to remove unwanted contaminates. The 

supernatant was once again placed in a sterile tube and NaCl was added to precipitate out the 

protein. The hot and cold spin cycles were repeated twice more before the histidine-tagged 

proteins were further purified and isolated via cobalt-based affinity chromatography. The protein 

solutions were dialyzed to remove salt and PEI and reconstituted in TALON equilibration buffer. 

TALON Resins (Clontech) are durable, cobalt-based immobilized metal affinity 

chromatography resins designed to purify recombinant polyhistidine-tagged proteins with 
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enhanced selectivity. The resin was placed in a sterilized glass column to settle, and a 

batch/gravity-flow protocol was followed, according to the manufacturer‘s guidelines. All work 

was conducted in a cold room (4°C), with solution temperatures well below the inverse transition 

temperature. The protein sample was applied to the column and incubated with the resin for 30 

minutes, with gentle mixing on a platform shaker. The solution was then allowed to drain by 

gravity from the resin and column, with the flow-through re-loaded to the column to ensure 

complete protein binding to the resin. The resin was then washed with 20 resin volumes of 

equilibration/wash buffer (50 mM sodium-phosphate, 300 mM sodium chloride, 5 mM imidazole, 

pH 7.0) in order to remove nonspecific protein binding interactions. The second wash buffer 

contained 6M urea in order to remove endotoxin from the resin. A final wash of 10 resin 

volumes of equilibration/wash buffer rinsed the column of urea buffer before recombinant 

protein was eluted from the resin with the addition of 5 volumes of elution buffer (50 mM 

sodium-phosphate, 300 mM sodium chloride, 250 mM imidazole, pH 7.0). The eluted protein 

solution was concentrated, dialyzed, and frozen before being lyophilized. 

Identification of elastin-mimetic proteins 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis 

revealed protein bands at 250 kDa. A total of 40 μg of elastin-mimetic proteins was run along 

with molecular weight markers (Precision Plus Protein Kaleidoscope, Bio-Rad) on a 7.5% gel 

and stained with Coomassie stain (Bio-Rad). Amino acid composition analysis was performed 

by the W.M. Keck Biotechnology Resource Laboratory at Yale University. Lyophilized protein 

was resuspended in HPLC grade water and filter-sterilized with a 0.22 um filter. Solutions of 1 

mg/mL were submitted for analysis, with samples hydrolyzed in 6N HCl and the resulting amino 

acids examined with a Beckman Model 7300 ion exchange instrument.  Improved quantitation of 

cysteine was obtained via performic acid oxidation. It is important to note that following normal 

acid hydrolysis, proline values are artificially elevated (Table 3.2). 
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Differential Scanning Micro-Calorimetry (Micro-DSC) 

Experiments were performed using a Setaram Micro DSC III calorimeter (Setaram Inc, 

France). Lyophilized protein samples of 1 mg/mL were first dissolved at 4°C in sterile distilled, 

deionized water. The solutions were then filter-sterilized through a 0.22 μm syringe filter. The 

thermal transition data was investigated over a temperature range of 4°C to 70°C at a scan rate 

of 1°C/min. Reversibility was confirmed upon cooling of the sample back to 4°C following the 

initial scan. Data was analyzed using SETSOFT 200 software (Setaram Inc, France). 

Substrate preparation 

Lyophilized protein was allowed to dissolve in phosphate buffered saline at 4°C for 16 

hours before being sterile-filtered through a 0.22 um syringe filter. Protein solutions were 

prepared in PBS to final concentrations of 10, 5, 2.5, 1, 0.5, and 0.1 mg/mL. 50uL of each 

solution was evenly spread in four wells of a non tissue-culture treated polystyrene 96-well 

plate. The protein was then allowed to passively adsorb for 6 hours at 37°C before rinsing the 

wells three times with PBS. Fibronectin was adsorbed in a similar manner from a 50 µg/mL 

solution in PBS. Blocking of non-specific interactions was achieved by placing 0.5% heat-

inactivated bovine serum albumin (BSA) in wells for 1 hour before once again rinsing three 

times with PBS. Wells treated with BSA only were used as negative controls. 

V2 hydrogels were fabricated by casting the protein solutions into non tissue culture 

treated polystyrene wells at 4°C, and subsequently placing the 96-well plate in a 37°C incubator 

for 2 hours. The resulting soft gel adhered firmly to the bottom of the wells, and was crosslinked 

with a 6 mg/mL genipin solution for 24 hours. Excess genipin was removed with PBS rinsing 

over a 12 hour period.  
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Cell Studies 

Protein Adsorption 

Protein polymers that were adsorbed onto polystyrene plates were quantified via the 

bicinchoninic acid (BCA) method (kit purchased by Pierce). To create a calibration curve, known 

concentrations of protein solutions were added to the 96-well plate, as documented by the Tirrell 

group [237].  

Adhesion 

Human umbilical vein endothelial cells (HUVECs) were purchased from Clonetics and 

maintained in endothelial growth medium-2 (EGM-2, 2% serum, Clonetics). They were kept in a 

humidified, 5% CO2 environment at 37°C, and passaged every 2 days via standard culture 

techniques. HUVECs between passages 3 and 10 were used for all experiments. To begin, cells 

were harvested with Cell Dissociation Solution (EDTA, glycerol, sodium citrate, PBS, from 

Sigma) in order to maintain integrin functionality on the cell surface. After centrifugation at 220g 

for 5 minutes, cell suspensions were prepared at a density of 200,000 cells/mL in basal medium 

containing 0.5% bovine serum albumin (BSA). For peptide inhibition studies, detached HUVECs 

were treated with LM609 (50 ug/mL) and soluble V2 peptides (1 mM)  for 30 minutes at room 

temperature before plating. 100uL of the cell suspension was plated into each well treated with 

elastin-mimetic protein polymer, and after incubation at 37°C for 4 hours, wells were washed 

three times with phosphate-buffered saline (PBS). Cell adhesion activity was evaluated with the 

CyQuant Cell Proliferation Assay Kit (Molecular Probes), which utilizes a fluorescent dye with 

strong fluorescence enhancement when bound to cellular nucleic acids (excitation/emission 

maxima ~480/520 nm). Briefly, after thawing frozen cells to enhance lysis, the CyQuant cell 

lysis buffer was added to each sample, along with CyQuant fluorescence reagent. Samples 
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were then measured in a microplate spectrofluorometer. Results were normalized to adhesion 

levels on fibronectin-coated wells, which acted as the positive control.  

Haptotactic migration 

Haptotactic cell migration assays were performed using modified Boyden chambers 

(Transwell filters, 80um pore size). The lower surfaces of the filter membranes were coated with 

10 mg/mL and 5 mg/mL LysB10 and V2 solutions. Positive control filters were coated with 50 

ug/mL solutions of vitronectin. 80,000 cells were placed in the upper chamber of each well insert 

in 0.2% BSA-containing media. Cells were allowed to migrate across inserts for 6 hours at 37°C. 

Cells were fixed in 10% formaldehyde and stained in hematoxylin, after which the upper 

membrane surface was swabbed with a wet cotton swab and rinsed in distilled, deionized water.  

The average number of migrated cells in six randomly chosen 40x magnification fields of view 

per insert was taken to quantify the extent of migration. In addition, the experiment was run in 

triplicate.  

Fluorescence microscopy 

Fluorescent staining of cytoskeletal components were performed on HUVECs cultured on 

elastin-mimetic protein polymer-coated polystyrene 8-well chamber slides (Nalge Nunc, 

International). 200uL cell suspensions (approximately 15,000 cells/well) were seeded onto the 

slides and cultured for a period of 4 hours in serum-free medium. To achieve HUVEC activation, 

100 ng/mL of TNFα was added to cells cultured on fibronectin-coated slides for 4 hours prior to 

immunostaining. Cells were fixed in 4% paraformaldehyde (10 minutes), permeabilized with 

PBS containing 0.5% Triton X-100 (10 minutes), rinsed once with 100 mM glycine (10 minutes), 

and incubated with block buffer (PBS+/+, 0.2% Triton X-100, 6% goat serum) for 1 hour at room 

temperature. For F-actin staining, cells were incubated with Alexa Fluor 568-conjugated 

phalloidin for 30 minutes. Vinculin staining was performed with 10ug/mL mouse anti-human 
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vinculin IgG1 (1 hour incubation), 2.5 ug/mL biotinylated goat anti-mouse IgG secondary (45 

minute incubation), and 2.5 ug/mL streptavidin-AlexaFluor 488 tertiary (30 minutes). Nuclei were 

counterstained with Prolong Gold mounting medium with DAPI, and the resultant staining was 

imaged using confocal microscopy (Emory University). 10ug/mL solutions of E-selectin and 

ICAM-1 monoclonal antibodies were substituted into the above protocol in order to evaluate 

HUVEC activation/quiescence states.  

 
Statistical Analysis 

 Comparison between groups was analyzed via ANOVA and a paired, two-tailed 

student‘s t-test, with p<0.05 considered to be significant. Results are presented as mean ± 

standard deviation. Data represent characteristic results from a particular experimental run 

(each group run in quadruplicate), although at least three independent runs were conducted. 
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3.3 RESULTS 

Synthesis of V2 protein copolymer  

Previous work with the elastomer LysB10 has demonstrated that a chemically 

crosslinkable ELP significantly increases the material‘s tensile strength and creep resistance. 

The improved mechanical properties make this polymer an ideal candidate for subsequent 

studies in the rational design of second generation proteins. Work on various ELPs has 

indicated that biologic responses can be produced through selective engineering of the 

bioactive domain. In light of these investigations, V2 repeats were designed as approximately 

15% of the ELP molecular weight composition. Sequences were based on preferred codon 

usage to enable expression from E.coli expression systems. As Figure 3.1A demonstrates, final 

assembly of the V2 triblock yields a gene size of 8.4 kilobases (kb), while the size of vector 

pQE80L is 4.8 kb.  

Small-scale expression cultures of the two analogs was first pursued to verify 

recombinant protein expression from E coli, and a time-course analysis of this expression was 

performed via SDS-PAGE to optimize the induction conditions (Figure 3.1B). The theoretical 

molecular weight of V2 is 233.1 kDa. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE) analysis revealed that before IPTG induction (time=0 hours), the recombinant 

protein was not expressed. However, Coomassie staining displayed an increasing intensity of 

protein bands at around 250 kDa with 1mM IPTG induction from one to four hours. As 

previously reported, molecular weights observed by SDS-PAGE for elastin-mimetic proteins are 

approximately 20% greater than calculated molecular weights due to their relative 

hydrophobicity. With the confirmation of V2 protein production over a 4 hour time course, large 

scale expression and purification were performed for each recombinant protein. Dialysis and 

lyophilization resulted in protein V2 as a fibrous solid in yields of 35 mg/L of culture.  



53 
 

Bacterial endotoxin contamination of the resulting protein was evaluated with the 

Limulus Amebocyte Lysate (LAL) assay, a quantitative test for gram-negative endotoxin. 

Repeated testing (n=5) of various purified batches of LysB10 and V2 indicate that endotoxin 

content was below the level of 0.1 EU/mg, where 1 EU = 100 pg of endotoxin. This is 

acceptable for further cell studies, as clinically used alginate (Pronova sodium alginate) contains 

100 EU/g. 

The inverse temperature transition is a key feature of elastin-mimetic protein polymers, 

as discussed earlier. Specifically, the endothermic peak seen in Figure 3.2 is consistent with 

phase separation of the hydrophobic endlocks into beta turn aggregates. Differential scanning 

microcalorimetry of dilute aqueous solutions of V2 (1 mg/mL) confirmed the presence of a single 

endothermic transition at 21°C. In comparison, LysB10, a more hydrophobic protein polymer, 

forms a viscoelastic gel at temperatures above 13°C [14]. 

Surface adsorption of LysB10 and V2 

 The hydrophobic nature of the elastin-like polypeptides allows for passive adsorption of 

the proteins onto non tissue culture-treated polystyrene. In particular, the ability to precisely 

characterize the relationship between input ELP concentration and adsorbed ELP surface 

density enables us to modulate ligand presentation for optimal cellular behavior. To this end, 

protein polymer solutions ranging from 0.1 – 10 mg/mL were physically adsorbed onto 

substrates, after which a quantitation assay was performed. It was demonstrated that the two 

protein polymers, LysB10 and V2, followed a similar adsorptive profile, presumably through 

self-assembly into thin hydrogel surface layers. Furthermore, it was found that adsorbed surface 

density increased linearly with the concentration of the protein solutions (Figure 3.3A). This data 

indicates that control over peptide density can be achieved by varying coating concentration 

accordingly. 
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Figure 3.1. (A) Analytical restriction digests of elastin plasmids. 1% TAE (Tris-acetate-
EDTA) agarose gel depicting the gene and vector sizes of the final construct after 
BamHI/HinDIII digests. A 1 kilobase (kb) DNA standard ladder was used on the left of 
the gel to determine the appropriate DNA size.  (B) Protein expression analysis of V2 
analogue over a 4-hour timecourse, starting with time=0 (no IPTG) through 4 hours after 
IPTG induction. Briefly, cells were grown to an optical density of 0.8 in Luria Broth 
supplemented with ampicillin. Before IPTG induction, an aliquot of culture was sampled 
for SDS-PAGE analysis (time=0 hrs). IPTG was then added to the culture for a final 
concentration of 1 mM to induce recombinant protein expression. The culture was 
maintained at 37°C for 4 hours, with samples taken hourly for expression analysis. Cells 
were harvested by centrifugation, resuspended in 1X PBS, and exposed to three 
freeze/thaw cycles to ensure cell lysis. The lysates were then run on a gel to determine 
expression levels over a time course of 4 hours. Protein staining was performed with 
Coomassie stain.    (C) SDS-PAGE analysis of V2 analogue after purification. 
Coomassie staining was utilized to visualize the protein bands. Molecular weight 
markers indicate size. The SDS-PAGE gels display the purity of the protein product 
after reconstituting 1 mg of lyophilized protein into 1 mL of distilled, deionized molecular 
grade water. The gel displays one clean band, with limited contamination products.  
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Table 3.2. Amino acid composition analysis 

Amino Acids Observed mol% 
(expected mol%) 

Alanine 17.4 (17) 

Histidine 0.9 (0.6) 

Threonine 0.2 (0.4) 

Glutamic Acid 0.7 (1) 

Glycine 25.7 (26) 

Valine 18.3 (19.2) 

Isoleucine 15.3 (13) 

Proline 21.8 (18.8) 

Lysine 0.4 (0.6) 

Methionine - 

Asparagine 0.5 (0.4) 

Glutamine 0.4 (0.4) 

Aspartic Acid 0.5 (0.4) 

Leucine 0.3 (0.4) 

Cysteine 1.2 (1.9) 

 

 

 

 

 

Figure 3.2. Differential scanning microcalorimetry of V2, indicating an inverse 

temperature transition at 21°C. 
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Adhesion, Specificity, and Migration of HUVECs on ELP-coated Surfaces 

A comparative analysis of human umbilical vein endothelial cell (HUVEC) adhesion on 

elastin-like protein polymer (ELP)-coated surfaces was the first step in identifying those 

formulations that promoted enhanced bioactivity. To this end, a range of protein polymer 

densities was assessed for their ability to support robust cell adhesion. Serum-free culture was 

utilized to minimize competitive adsorption effects occurring with other serum proteins. LysB10 

(with no cell-binding site) concentrations were compared to V2 (containing cell-binding sites).  

All values reported were corrected against the negative control, which was defined as blank 

wells blocked with 0.5% BSA. The data was further normalized against the fibronectin positive 

control and were presented as fraction of adherent cells relative to that on fibronectin-coated 

substrates under a given set of conditions. As Figure 3.3B demonstrates, LysB10 was unable to 

support robust cell attachment, while surface concentrations of V2 (above 40 pmol/cm2) were 

able to increase adhesive efficiency.  

In order to evaluate whether HUVEC adhesion to V2 is mediated through integrin 

specificity, competitive inhibitors of αvβ3 function were employed. As Figure 3.4 demonstrates, 

substrates were no longer able to sustain adhesion of HUVECs treated with the anti- αvβ3 

monoclonal antibody LM609. HUVEC treatment with soluble V2 peptide blocked adhesion as 

well, but this muted response was recovered when cells were treated with scrambled soluble 

peptide. Taken together, these results indicate that the V2 sequence localized within the elastin-

like protein polymer is critical in supporting αvβ3-mediated HUVEC adhesion.  

The αvβ3 integrin is known to have a critical role in cell migration and survival [252]. 

Given these findings, an in vitro haptotaxis assay was performed to determine whether HUVECs 

would readily migrate toward immobilized V2. In particular, the lower surfaces of Boyden 

chamber filter membranes were coated with 10 mg/mL and 5 mg/mL LysB10 and V2 solutions. 
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Positive control filters were coated with 50 ug/mL solutions of vitronectin. HUVECs were seeded 

onto the upper membrane of the Boyden chamber, and the extent of HUVEC migration across 

the membrane (towards the immobilized chemoattractant) was evaluated after 6 hours. The 

results showed that V2 significantly induced HUVEC migration compared to LysB10. This result 

was concentration-dependent as well, with a higher V2 density stimulating an increased 

migratory effect (Figure 3.5). 

Immunofluorescence Analysis 

Since HUVECs assemble robust focal adhesions containing clustered integrins and 

intracellular structural and signaling proteins, focal adhesion assembly as well as cytoskeletal 

organization on the engineered interfaces was examined. In particular, two markers were 

chosen to further evaluate cell function: F-actin stress fibers and vinculin, a focal adhesion 

associated protein that functions as a linker between actin filaments and integrins (Figure 3.6). 

Well-developed actin stress fiber network and vinculin clustering was apparent with V2-coated 

and fibronectin-coated substrates. However, on the LysB10-coated surface, actin and vinculin 

were nonspecifically distributed throughout the few adherent cells, which assumed rounded 

morphologies. These results further confirm that cell adhesion is mediated through integrin-

ligand binding, and the V2-coated surface is sufficiently robust to induce cytoskeletal 

organization and focal adhesion formation characteristic of well-spread cells. 

  Further functionality of the HUVECs was assessed with immunofluorescence staining of 

the cellular adhesion molecules ICAM-1 and E-selectin, which are upregulated in activated 

HUVECs and mediate rolling of blood leukocytes in microvessels at sites of inflammation. The 

functional state of an endothelial cell monolayer determines its ability to act as a 

thromboresistant barrier for blood-contacting material applications. Therefore, the success of an 

endothelialized surface is dependent on either activation or quiescence of the endothelial cells. 
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Cells that were cultured on fibronectin-coated polystyrene and maintained in culture overnight in 

serum-free media assumed a quiescent state, with little ICAM-1 and E-selectin expression on 

the cell surface. Activation of HUVECs was achieved by adding 100ng/mL TNFα to the media 

for 4 hours. The positive and negative controls were compared to those cells adherent for 4 

hours in serum-free media on V2-coated surfaces. Limited ICAM-1 and E-selectin staining was 

observed. Thus, endothelial cells are not only able to adhere, spread, and migrate on substrates 

coated with V2 protein polymer, but can maintain a quiescent state phenotype (Figure 3.7).  

V2 Hydrogels 

While the surface coating method (passive adsorption onto a two-dimensional surface) 

utilized in analyzing the ELPs provided some insight into their functionality, alternative 

formulations of the ELPs were also explored.  In particular, the triblock construction of plastic 

and elastic domains in V2 and LysB10 facilitates the formation of three dimensional hydrogels 

at physiologic temperatures. Furthermore, the physical crosslinks resulting from the aggregation 

of hydrophobic, plastic blocks within the ELPs can be stabilized by chemical crosslinking of the 

lysine residues. While previous work by Sallach and colleagues have demonstrated the superior 

mechanical properties of LysB10 films and hydrogels for soft tissue engineering applications, it 

was hypothesized that the hydrophilic elastic domains that are solvated by an aqueous 

environment should provide a favorable setting for the presentation of localized bioactive 

sequences for improved biological responses. Thus, 10 mg/mL and 5 mg/mL solutions of 

recombinant ELPs were formulated into soft gels at 37°C and stabilized by genipin crosslinking 

of the lysine residues. HUVEC adhesion was approximately twice as effective on genipin-

crosslinked V2 as on LysB10 hydrogels. (Figure 3.8). Integrin-specific adhesion was observed 

on V2 hydrogels while a background level of nonspecific adhesion was seen on LysB10 gels.  
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Figure 3.3. (A) V2 and LysB10 protein solutions ranging from 0.5 mg/mL to 10 mg/mL 

were adsorbed at 37°C. Quantitation was performed with bicinchoninic acid protein 

assay.  (B) HUVEC adhesion to varying amounts of adsorbed proteins. 50 ug/mL 

fibronectin was allowed to adsorb to surfaces to serve as a positive control, and all data 

was normalized to this control. Data represent one of three similar experiments, with 

each condition run in quadruplicate.
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Figure  3.4. HUVEC adhesion and specificity to adsorbed protein polymer V2. The 

protein polymer supports αvβ3-dependent HUVEC adhesion. Cells were treated with 

LM609 (50 ug/mL) antibody, soluble V2 peptide (1mM), and scrambled V2 peptide 

(1mM) for 30 minutes prior to plating. All data was normalized to the fibronectin control. 

Data represent one of three similar experiments, with each condition run in 

quadruplicate. All values reported were corrected against blank wells blocked with 0.5% 

BSA. Competitive inhibitors LM609 and V2 peptide significantly reduced cell adhesion 

to substrates (* versus ‗no block‘ treatment group, p<0.05). 
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Figure 3.5. Haptotactic migration assay. 80,000 cells were allowed to migrate across inserts for 5 hours at 37°C. The 

average number of migrated cells in six randomly chosen fields of view per insert was taken to quantify the extent of 

migration. Red bars signify 500 um. (A) Quantitation of cells counted. Representative images of cells migrated to the 

lower insert surfaces of (B) 10mg/mL LysB10 (C) Vitronectin (D) 10 mg/mL V2 and (E) 5 mg/mL V2.  *p<0.05
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Figure 3.6. Representative confocal images of HUVECs cultured on adsorbed proteins 

for a period of 6 hours in serum-free media. Red bars represent 20um. 10 mg/mL 

LysB10 (A & B) and V2 solutions (E & F), along with 50 ug/mL fibronectin solution (C & 

D), were allowed to adsorb to glass slides and blocked in 0.5% BSA prior to cell 

seeding. Fluorescently labeled actin is shown in red (A, C, & E), while vinculin is 

displayed in green (B, D, & F). 
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Figure 3.7. Representative confocal images of HUVECs cultured on protein polymer 
V2.  Cells that were cultured on fibronectin-coated slides without TNFα stimulation (A & 
B) maintained a quiescent phenotype. Activation was achieved with the addition of 
TNFα to the culture medium (E&F). HUVEC activation or quiescence was compared to 
that on V2-coated slides (C & D). Markers of HUVEC activation were ICAM1-1 (A,C, 
and E) and E-selectin (B,D, and F). Red bars signify 20um. 
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Figure 3.8. (A) HUVEC adhesion on genipin-crosslinked V2 and LysB10 hydrogels. (B) 
Integrin specificity was examined with the LM609 antibody. Cells were treated with 
LM609 (50 ug/mL) antibody for 30 minutes prior to seeding. 50 ug/mL fibronectin 
adsorbed onto polystyrene served as a positive control, and all data was normalized to 
this control. Data represent one of three similar experiments, with each condition run in 
quadruplicate. * p<0.05 
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3.4 DISCUSSION 

In the present study, we sought to design a second generation elastin-mimetic triblock 

copolymer with the ability to guide endothelial cell behavior while maintaining the elastomeric 

properties of the protein polymer. Adhesion-promoting sequences, ligand density and clustering, 

and ELP morphology were manipulated in order to tailor material properties. To this end, a 

ligand isolated from pro-angiogenic, extracellular matrix–associated protein CCN1 was cloned 

into the central, hydrophilic domain of LysB10. Actin and vinculin staining confirmed that 

adherent cells were well-spread on the V2 substrates. It was found that increasing densities of 

adsorbed V2 protein polymer induced increased HUVEC adhesion. In particular, a density of at 

least 40 pmol/cm2 was required to effectively influence endothelial cell adhesion onto modified 

substrates. To place this value in perspective, recent work by Tirrell and colleagues using RGD-

incorporated elastin analogs documented a ligand density of approximately 2.4 pmol/cm2 for 

maximal HUVEC adhesion [237, 243, 244]. This difference in surface concentration can be 

attributed to the ligand-receptor interactions on the cell surface. The RGD sequence, which 

engages multiple integrins on the endothelial cell surface (α5β1 and αvβ3) is more efficient than 

the V2 ligand, which is solely dependent on integrin αvβ3 [253-255]. Similarly, adsorbed 

fibronectin is more effective as an adhesive coating because of its ability to target numerous 

integrin binding sites [256].   

To determine whether V2 was capable of modulating endothelial cell function in an 

integrin-dependent manner, or whether nonspecific electrostatic interactions were primarily 

responsible for cell behavior, blocking studies were performed. First, incubation of LM609 

antibody with HUVECs eliminated their adhesion to V2-coated surfaces. As previously 

mentioned, this αvβ3integrin specificity has been well-documented in previous studies with the 

V2 sequence [203]. Vitronectin served as a positive control, as it utilizes αvβ3 as the primary 

binding site on the endothelial cell surface [257]. Furthermore, the soluble 20 amino acid V2 
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sequence, when incubated with HUVECs, also muted cell adhesive response to the V2-coated 

substrates, while the scrambled version did not affect HUVEC adhesion. This work confirms the 

ability to specifically modulate endothelial cell behavior on elastin-like protein polymers by 

tailoring their primary sequence.  

Integrin-mediated cellular functions occur via diverse mechanisms. Previous studies 

have shown that the density of ECM proteins regulates cell adhesion, spreading, and migration 

speed.  However, differences in experimental protocols and surface chemistry have resulted in 

a range of reported values for the minimal surface concentration required for cell adhesion and 

spreading. For example, Underwood and Bennet have demonstrated that a vitronectin density 

of 450 fmol/cm2 and fibronectin density of 140 fmol/cm2 is sufficient in inducing maximal cell 

adhesion [258]. Massia and Hubbell have reported that a minimal RGD peptide density of 10 

fmol/cm2 is required for fibroblast cell spreading and focal contact and stress fiber formation on 

glass [259]. In contrast, Patel et al have demonstrated a higher RGD peptide density ranging 

from 0.2-3 pmol/cm2 for robust endothelial cell adhesion and spreading on interpenetrating 

polymer networks [260].  

The multimeric structure of native ECM molecules such as fibronectin, a dimer with dual 

adhesion sites, and tenascin-C, which presents six repeats of cell adhesion domains, suggests 

that ligand clustering as well as ligand density regulates cell signaling [251]. Several studies 

have shown that the clustering of ligand-bound integrin receptors is essential in propagating 

intracellular signaling for proper cell function. For example, αvβ3 integrins can undergo affinity 

maturation, resulting in the recruitment of αvβ3 to focal adhesions in the cell periphery [261]. 

Nanoscale arrangement of RGD peptides has revealed that peptides presented as one peptide 

per molecule are poor substrates for fibroblast adhesion, while peptides presented in clusters of 

nine peptides per molecule or higher induce comparable cell attachment to matrix proteins 

[262]. Cell migration and spreading are dependent on this clustering mechanism as well.  
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It has been reported that endothelial cells increase the activation and ligation of αvβ3 , 

while decreasing the activation and ligation of α5β1, in order to facilitate migration for vascular 

wound healing [263, 264].  Integrin αvβ3, in turn, has been shown to interact with several 

transmembrane and membrane-associated proteins in an ―outside-in‖ signaling mechanism 

important to cell mobility [265]. For example, vitronectin, a multivalent ligand, is able to increase 

integrin avidity, which leads to the propagation of intracellular signaling events, ultimately 

resulting in focal adhesion sites, cell adhesion, and migration [266, 267]. Given the role of the 

V2 sequence in binding to αvβ3, it is not surprising that the V2 protein polymer was able to 

regulate HUVEC migration. This functionality is particularly useful when applied to vascular 

tissue engineering, as the migration of vascular cells can facilitate vascular wall regeneration 

and promote endothelialization of a graft or stent.                       

Adhesive strength and ligand surface density are critical factors in endothelial cell 

motility. In particular, previous results from experiments and mathematical modeling have 

shown that cell migration rates have a biphasic dependence on the surface density of ligands 

and cell attachment strength [260, 268, 269]. At low adhesiveness, the cell cannot form strong 

and stable adhesions at the leading edge to allow traction to pull itself forward. At high 

adhesiveness, the trailing edge of the cell cannot be released [270, 271]. Furthermore, growth 

factors and other chemotactic agents can influence the dynamics of the cytoskeleton leading to 

cell motility. For example, controlled release of sphingosine 1-phosphate, vascular endothelial 

growth factor, and basic fibroblast growth factor have been proven to promote endothelial cell 

migration by increasing lamellipodia formation and extension in the leading edge of the cell 

[272-274]. 

  Many tissue engineering applications require the use of three-dimensional scaffolds and 

porous coatings. Therefore, we also explored ligand presentation in a three-dimensional 

environment, seeding HUVECs onto LysB10 and V2 hydrogels. The lysine residues within the 

protein polymers were crosslinked with genipin, a cytocompatible chemical crosslinker, in order 
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to stabilize the intermolecular, physical crosslinks within the elastin-like network [275-280]. 

While the LysB10 hydrogel presented a relatively non-adherent surface to cells, V2 continued 

to be able to support cell adhesion, at both 5 mg/mL and 10 mg/mL formulations. It is interesting 

to note, however, that cell adhesion was lower on the 10 mg/mL V2 hydrogel than on its 

passively adsorbed V2 counterpart. This phenomenon is most likely due to the differences in 

ligand presentation between a passively adsorbed V2 molecule, and one that is suspended 

within the three-dimensional hydrated polymer network. In particular, both physical and 

chemical crosslinking of the plastic domains in the V2 hydrogel impart a strain on the entire V2 

molecule, limiting any conformationally favorable mobility within the cell-binding sequence for 

receptor-ligand recognition. Although the exact three-dimensional structure of the V2 active site 

is poorly understood in the literature, mutational analysis has identified that the aspartate 

residue, as well as two cysteine residues flanking the sequence, are critical in binding to the 

αvβ3 receptor [203]. Other studies with integrins and phage display analysis of αvβ3 binding sites 

have suggested that two cysteine residues flanking the core binding sequence may form 

disulfide bonds to present the binding site as a loop, which would increase binding affinity [206-

208]. If a tertiary looped structure is involved in V2 presentation to the integrin binding site, any 

conformational strain upon the V2 sequence would limit cell adhesion. 

 Integrin specificity is critical in directing cell fates such as migration, proliferation, and 

differentiation, as different integrins trigger specific signaling pathways [265, 281]. Thus, a major 

disadvantage of short peptides such as RGD, which binds multiple integrins, is their inability to 

elicit specific cell responses based on defined intracellular pathways. In contrast, the ability of 

V2 to target αvβ3 provides a unique approach to facilitating robust endothelial cell adhesion, 

focal adhesion assembly, and migration. In particular, this CCN1-mimetic ligand has been 

shown to promote neovascularization and angiogenesis, and is therefore an ideal biomolecule 

in vascular tissue engineering and wound healing applications [186-190]. While V2 does act as 
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an endothelial cell adhesion ligand, further experiments need to be performed to evaluate its 

effectiveness in binding other cell types. For instance, although integrin αvβ3 is highly expressed 

in angiogenic endothelial cells, it is also expressed on leukocytes. 

3.5 CONCLUSION 

Integration of biologic and structural functions of the extracellular matrix provides a 

robust design strategy for generating biomaterials that stimulate arterial wall regeneration. 

Therefore, the long-term goal encompassing this work was to utilize a biomolecular engineering 

approach that introduced cell-adhesive peptide motifs within a bio-inspired recombinant elastin-

like protein polymer in order to elicit an integrin-mediated cellular response.  

The LysB10 triblock copolymer provides a versatile, non-fouling platform for engineering 

bioactive ligands mimicking the functions of the extracellular matrix.  The ability to precisely 

control ligand presentation is an important design parameter, and ultimately directs cell fates 

such as adhesion, migration, focal adhesion assembly, spreading, proliferation, and 

differentiation. Thus, endothelial cell adhesion, migration, and morphology were evaluated as 

markers of surface functionality on the recombinant protein polymers. The improved biological 

activity of V2 engineered surfaces compared to LysB10 alone can be attributed to enhanced 

binding of integrin αvβ3.  This approach of conveying specificity may provide a robust 

biomolecular strategy to elicit directed biological responses. In addition, integrin-specific 

biomimetic surfaces utilizing recombinant peptides of matrix molecules often exhibit lower 

immunogenicity and higher stability than the whole proteins. Ultimately, the generation of 

modified protein polymers presents a clinically relevant approach to promoting endothelialization 

of vascular tissue-engineered scaffolds and coatings. 
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CHAPTER 4 

Chemical conjugation of cell-binding domain to elastin-mimetic protein polymer 

 

4.1 INTRODUCTION 

Recently, we reported a new class of recombinant elastin-mimetic protein polymer for 

the purpose of designing materials as small-diameter vascular grafts [14]. Synthetic grafts have 

been known to fail in vivo due to compliance mismatch between the grafts and surrounding 

arterial tissue [2-5].  Therefore, researchers have explored the potential of incorporating 

scaffolds with more extensible proteins such as elastin, a key structural element in native 

vasculature [87]. While native elastin‘s intrinsic insolubility has limited its use in biomedical 

applications, structural and sequence analyses of tropoelastin have determined that 

pentapeptide repeat motifs similar to VPGVG exhibit elastomeric behavior with features that are 

consistent with native elastin, including a mobile backbone and the presence of β turns [247, 

248].  Consequently, elastin-like protein polymer LysB10 was designed with the capability of 

physical and chemical crosslinks, and was shown to display a range of elastomeric properties 

that more closely match those of the native artery [14, 222-225]. This amphiphilic triblock 

copolymer (ABA) consisting of hydrophobic (A) and hydrophilic (B) domains was synthesized 

such that phase separation of the more hydrophobic blocks occurred in water under 

physiologically relevant conditions to form virtual crosslinks, while the hydrophilic domains 

remained non-crosslinked and solvated by the aqeous environment [218, 219]. The introduction 

of lysine residues enabled chemical crosslinking to stabilize the resulting hydrogel. This 

multiblock system results in structural polymorphism and the potential for a wide range of 

functional responses, including mechanical and biological performance. Thus, elastin-like 
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protein copolymers (ELPs) represent a unique class of thermoreversible hydrogels for soft 

tissue engineering applications. 

The generation of protein polymers that mimic native structural proteins and adopt the 

characteristics of the arterial wall offers a unique approach to develop a vascular graft.  Several 

investigators have endeavored to minimize graft failure due to thrombosis and intimal 

hyperplasia by mimicking the biologic responsiveness of the native vasculature. In particular, 

the poor patency rates of synthetic polymers have motivated strategies to functionalize the 

luminal surface of grafts in order to promote endothelialization of the material surface [7, 9, 11, 

12, 26-29, 31, 32, 34, 249, 250].  

While genetic engineering has allowed researchers to recombinantly express elastin 

polypeptides with cell-binding domains and other bioactive ligands to direct cellular behavior, 

chemical immobilization of short peptides to a recombinant protein polymer presents several 

advantages. Genetic cloning and recombinant protein expression is a time-intensive and 

expensive process, and therefore, is not an ideal tool for screening a wide range of bioactive 

domains. The synthesis of short peptides with functionalized endgroups does offer a more 

versatile approach for biomaterial testing. Furthermore, chemical synthesis offers the possibility 

of incorporating ligands that cannot be processed via the biosynthetic machinery.  

A number of surface modification techniques have been developed in order to impart 

further biofunctionality to a material. For example, substrates used for studying cell behavior are 

prepared by adsorbing extracellular matrix proteins and their bioactive derivatives onto surfaces. 

This method results in a heterogeneous population of molecules and adsorption states on the 

surface due to possible unfolding events and conformational differences [282-285]. Presentation 

of bioadhesive motifs can be more tightly controlled with covalent tethering of biomolecules onto 

a biomaterial [286, 287]. This approach frequently involves reactions between the side chains of 
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amino acids and activated surface functional groups. The most popular but least specific 

method is coupling to the amino group of a lysine residue, which reacts efficiently with a number 

of functional groups, including aldehydes and activated carboxylic acids. Another reactive side 

group, the thiol side chain on cysteine, can be utilized in conjugation reactions to form disulfide 

bonds. However, disulfide formation is a fully reversible reaction through the use of standard 

reducing agents, and surfaces which have been RGD functionalized via disulfide formation lack 

stability [288, 289]. 

A major drawback to the approaches discussed above is that it is extremely difficult to 

control the bioconjugation reaction in such a way that only one specific linker between the 

protein and the target is created. For instance, if a bioactive ligand contains amino acids with 

similar reactive side groups at a critical integrin-binding site, chemical conjugation to a 

functionalized surface may lead to loss of bioactivity.  Selective ligation chemistries have been 

developed in order to resolve the problems that arise with nonspecific covalent linkages. In this 

work, we have utilized maleimide-thiol chemistry for surface biofunctionalization. The high 

degree of specificity and reactivity of sulfhydryl groups with maleimide moieties to form stable 

thioether bonds has been exploited extensively in the field of bioconjugate chemistry for the 

construction of immobilized antibodies, enzymes, and peptide-conjugate haptens [290-293]. 

Maleimide reacts approximately 1000 times faster with thiols than with amines at neutral pH and 

below, and this reaction is widely used for conjugation of cysteine-containing peptide and 

proteins [294-296]. 

The RGD sequence was utilized in this study as a model peptide conjugate. The RGD 

sequence has been identified in many ECM proteins, including fibronectin, vitronectin, 

fibrinogen, von Willebrand factor, and collagen, and binds to numerous integrins, notably 

alpha5beta1 and alphavbeta3 [162]. As a result of its ability to promote cell adhesion, 

proliferation, migration, and survival in an integrin-dependent manner, the sequence is most 
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often employed for promoting cellular responsiveness on otherwise bioinert substrates. A wide 

range of polymers and hydrogels have been derivatized with the RGD peptide. These materials 

include polymers such as PEG hydrogels [297, 298], polyacrylamide [260, 299], poly(2-

hydroxyethyl methacrylate) [300, 301], poly(lactic acid-co-lysine) [302] [303], poly(propylene 

fumarate) [304-306], polyurethanes [307-309], and more natural materials, including collagen 

[310-312], fibrin [182, 250], hyaluronic acid [313, 314], alginate [315, 316], dextran [317, 318], 

elastin-like proteins [230, 311, 319], and silk-like proteins [320]. 

The aim of this study was to develop a strategy for chemoselective ligation of bioactive 

peptides to the recombinant elastin hydrogel LysB10. In particular, the carboxylic acid 

functional group on glutamic acid residues along the LysB10 polymer chain was utilized to 

chemically modify the recombinant protein polymer. It was hypothesized that the synthesis of 

thiolated LysB10 along with an RGD conjugate functionalized with a terminal maleimide group 

would provide an effective conjugation scheme for spatial presentation and localization of 

bioactive ligands on the LysB10 surface. Moreover, this controlled peptide presentation onto 

the functionalized hydrogel surface would stimulate vascular cell adhesion and growth. In this 

chapter, we outline the chemistry used for modifying LysB10 with the RGD ligand, and illustrate 

increased cellular interaction on LysB10-RGD hydrogels, utilizing endothelial cells and 

mesenchymal stem cells as model cell types. This work is the first step in creating a synthetic 

ECM with ELPs for vascular tissue engineering applications. 
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4.2 MATERIALS AND METHODS 

Reagents, Antibodies, and Cells 

The synthesis and characterization of the RGD-maleimide linker (Scheme 4.2) is 

described in Appendix B, with LysB10 protein expression and purification described in 

Appendix A. The chemicals N-(3-dimethylaminopropyl)-N‘-ethylcarbodiimide (EDC) and 

cystamine dihydrochloride, and protein fibronectin were purchased from Sigma Aldrich. The 

reducing agent TCEP and maleimide-PEG2-biotin linker were purchased from Pierce. Ellman‘s 

reagent and L-cysteine were procured from ThermoScientific. The sequences GRGDSP and 

GRGESP were synthesized by Anaspec. Fluoreporter biotin quantitation assay kit for 

biotinylated proteins was purchased from Molecular Probes. Porcine mesenchymal stem cells 

(pMSCs) were a kind gift from Dr. Steven Stice (University of Georgia). Human umbilical vein 

endothelial cells and EGM-2 media supplements were obtained from Clonetics, while pMSC 

basal media and supplements were purchased from Fisher Scientific and Invitrogen. Fibronectin 

solution was obtained from Sigma Aldrich. Radial migration of cells on LysB10 surfaces was 

measured with the use of the Oris cell migration assembly kit, from Platypus Technologies, and 

calcein AM (Molecular Probes). Immunofluorescence studies were performed with mouse anti-

human E-selectin and mouse anti-human ICAM-1 antibodies  purchased from Millipore. 

Immunostaining reagents goat anti-mouse IgG antibody, streptavidin-AlexaFluor 488, phalloidin-

AlexaFluor 568, and ProLong Gold antifade reagent with DAPI were all purchased from 

Invitrogen (Molecular Probes). 

Synthesis of modified LysB10 

LysB10 was chemically modified utilizing aqeous carbodiimide chemistry (Scheme 4.1) 

[295]. LysB10 was dissolved at a concentration of 10mg/mL in cold phosphate-buffered saline. 

Cystamine (Sigma Aldrich) was added to the solution at a 20 fold molar excess over the amount 
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of LysB10. To activate the carboxylic acid groups in LysB10, a 5-fold molar excess of N-(3-

dimethylaminopropyl)-N‘-ethylcarbodiimide (EDC) over the amount of cystamine was added to 

the solution. The reaction was allowed to continue for 72 hours at 4°C. The cystamine-modified 

LysB10 polymer was purified by dialysis. After lyophilization, the yield of the modified protein 

polymer was approximately 81%. 

 

 

 

 

Scheme 4.1. Reaction scheme of bulk modification of LysB10 (1) molecule via glutamic 
acid residues. Amide bond formation is mediated by the carbodiimide through the carboxylic 
group of the amino acid and the amine of cystamine, resulting in thiolated LysB10 (2).  
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Scheme 4.2. RGD peptide linker. Peptides were generated via solid phase synthesis (see 
Appendix B), with key features incorporated in the design. The N-terminus of the molecule 
contains the thiol-reactive maleimide linker (black). Four glycine residues act as a spacer 
between the cell-binding RGD domain (red) and the remaining sequence to facilitate ligand-
integrin presentation. A biotinyl-PEG3 tag (gray) was incorporated into the peptide for detection 
of the molecule.  
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Hydrogel modification 

Lyophilized cystamine-modified LysB10 protein was dissolved in PBS at a 10wt% 

concentration. 40 uL of solution was carefully pipetted and uniformly coated into wells of a 

polystyrene 96-well plate at 4°C. Hydrogel formation was achieved by placing the plate at 37°C, 

well above the transition temperature of the protein polymer, for 1 hour. Lysine residues of the 

protein polymer were crosslinked with a 6 mg/mL genipin solution for 24 hours, followed by 

stringent PBS rinsing to remove all genipin. The thiol groups were reduced with the addition of 

26mM Tris(2-carboxyethyl)phosphine (TCEP) for 6 hours. After rinsing the gels with three 20 

minute PBS washes, gels were ready for conjugation and characterization experiments. 

Unmodified LysB10 hydrogels were generated in a similar manner, with the exception of the 

reducing (TCEP) step. 

Characterization of free sulfhydryl groups  

Ellman‘s reaction was utilized to quantify the extent of thiolated LysB10. A cysteine 

standard curve was generated with 0 to 1.5 mM cysteine dilutions in a reaction buffer of 0.1 M 

sodium phosphate with 1 mM EDTA, pH 8.0. Ellman‘s reagent solution was prepared by 

dissolving 4 mg Ellman‘s reagent in 1 mL of reaction buffer. Reduced 10 mg/mL LysB10-

cystamine solutions and the surfaces of a 10wt% hydrogel were reacted with Ellman‘s Reagent 

solution diluted in reaction buffer and incubated at room temperature for 15 minutes. 

Absorbance at 412 nm was measured in a 96-well plate. Values obtained for the standards 

generated a standard curve, which was then used to determine the experimental sample 

concentrations. 

Conjugation Efficiency 

Maleimide-PEG2-biotin linker was incubated for 2 hours at room temperature to 

unmodified and thiol-modified LysB10 hydrogels. 1 mg/mL, 150 ug/mL, 50 ug/mL, 25 ug/mL, 10  



78 
 

 
 
Scheme 4.3. Reaction scheme of peptide coupling to 10wt% thiolated-LysB10 hydrogel. 
(1) Hydrogel formation was achieved by placing 10wt% thiol-LysB10 solution (Scheme 4.1) at 
37°C, well above the transition temperature of the protein polymer. Lysine residues of the 
protein polymer were crosslinked with a 6 mg/mL genipin solution for 24 hours, followed by 
stringent PBS rinsing to remove all genipin. The thiol groups were reduced with the addition of 
26 mM Tris(2-carboxyethyl)phosphine (TCEP) to form free sulfhydryls. (2) After rinsing the gels 
with three 20 minute PBS washes, thiol-reactive peptide linker (Scheme 4.2) was incubated for 
2 hours at room temperature to form a thioether bond with the protein polymer. 
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ug/mL, and 5 ug/mL linker concentrations were added to hydrogel surfaces to evaluate 

conjugation efficiency. Upon linker grafting, daily PBS changes were performed for 5 days to 

remove nonspecifically-bound linker. In order to assess the moles of biotin conjugated to the 

LysB10 hydrogel surface, the fluoreporter biotin quantitation assay kit (Molecular Probes) was 

utilized. Briefly, the kit provides a sensitive fluorometric assay for accurately determining the 

number of biotin labels on a protein. A standard curve was developed with known amounts of 

biocytin added to unmodified LysB10 gel surfaces. Once conjugation with the model linker was 

demonstrated, the assay was repeated with the RGD-maleimide linker to verify results. RGD-

maleimide linker synthesis and characterization is discussed in Appendix B. 

Cell Studies 

Thiol-modified and unmodified 10wt% LysB10 hydrogels were formulated as described 

previously (hydrogel modification section). The substrates were then incubated with RGD linker  

solutions at room temperature for 2 hours. PBS rinsing over a 5-day period ensured complete 

removal of unbound peptide prior to cell studies. 

Cell Adhesion and Specificity Assays 

Human umbilical vein endothelial cells (HUVECs) were purchased from Clonetics and 

maintained in endothelial growth medium-2 (EGM-2, 2% serum, Clonetics). Porcine 

mesenchymal stem cells were cultured in alpha-MEM basal medium supplemented with 10% 

fetal bovine serum, 50U/mL penicillin, 50ug/mL streptomycin, and 2mM L-glutamine. They were 

kept in a humidified, 5% CO2 environment at 37°C, and passaged every 2 days via standard 

culture techniques. HUVECs and pMSCS between passages 3 and 9 were used for all 

experiments. To begin, cells were harvested with Cell Dissociation Solution (EDTA, glycerol, 

sodium citrate, PBS, from Sigma) in order to maintain integrin functionality on the cell surface. 

After centrifugation at 220g for 5 minutes, HUVEC suspensions were prepared at a density of 
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200,000 cells/mL in basal medium containing 0.5% bovine serum albumin (BSA). MSCs were 

prepared at the same density in low-serum medium (1% serum). For peptide inhibition studies, 

detached cells were treated with soluble GRGDSP or GRGESP (2 mM) for 30 minutes at room 

temperature before plating. 100uL of the cell suspension was plated onto LysB10 surfaces, and 

after incubation at 37°C for 2 hours, wells were washed three times with phosphate-buffered 

saline (PBS). Cell adhesion activity was evaluated with the CyQuant Cell Proliferation Assay Kit 

(Molecular Probes), which utilizes a fluorescent dye with strong fluorescence enhancement 

when bound to cellular nucleic acids (excitation/emission maxima ~480/520 nm). Briefly, after 

thawing frozen cells to enhance lysis, the CyQuant cell lysis buffer was added to each sample, 

along with CyQuant fluorescence reagent. Samples were then measured in a microplate 

spectrofluorometer. Results were normalized to adhesion levels on fibronectin-coated wells, 

which acted as the positive control. 

Cell Proliferation Assay 

Proliferation rates were evaluated with the CyQuant Cell Proliferation Assay Kit. Cells 

were seeded onto various LysB10 gels at a density of 5,000 cells/well for 2 hours. Unbound 

cells were removed with media washes and substrate-bound cells were maintained in culture for 

another 48-hour period. Cell counts at 48 hours were compared to those at 2 hours. 

Cell Migration Assay 

LysB10 hydrogels with varying treatment groups (n=4) and fibronectin-coated wells 

were formulated in 96-well plates (black, clear bottom) provided by the manufacturer of the Oris 

cell migration assay FLEX kit (Platypus Technologies). Cell seeding stoppers with diameters of 

2mm were placed on top of the hydrogels and wells to prevent cells from adhering to the central 

detection zone. Cells were harvested with Cell Dissociation Solution (EDTA, glycerol, sodium 

citrate, PBS, from Sigma) in order to maintain integrin functionality on the cell surface. After 
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centrifugation at 220g for 5 minutes, HUVEC suspensions were prepared at a density of 

400,000 cells/mL in serum-free basal medium. MSCs were prepared at the same density in low-

serum medium (1% fetal bovine serum). Cell suspensions were treated with 10ug/mL mitomycin 

C (Sigma Aldrich) in order to arrest cell proliferation. 100uL of the cell suspension was seeded 

onto the outer annular region of the hydrogel surfaces (30 mm2). Cells were allowed to adhere 

to the seeding region for 6 hours at 37ºC, at which point the stoppers were removed to allow for 

migration into the central detection zone (3.14 mm2). Several reference wells were designated, 

in which the stoppers remained in place until wells were read (t=0 pre-migration controls). 

Unbound cells were gently removed by rinsing the wells with complete media, after which all 

wells were filled with 150uL complete media. Cells were incubated at 37ºC for 36 hours. 

Quantitation of migration was performed by staining the adherent cells with Calcein AM. Briefly, 

wells were washed three times with PBS, after which a 2uM Calcein AM solution was added to 

each well and incubated for 1 hour.  Migrated cells in the central detection zone were analyzed 

with a fluorescent plate reader. The Oris detection mask was secured to the bottom of the 96-

well plate in order to prevent signal detection of the outer annular region. Therefore, any 

fluorescent signal detected was isolated from migratory cells in the central detection zone. 

Readings from the pre-migration control wells were subtracted from the post-migration wells to 

eliminate noise due to background. Data was normalized to the fibronectin positive control. 

Immunofluorescence Studies 

Fluorescent staining of cytoskeletal component F-actin (HUVECs and pMSCs) and cellular 

adhesion molecules ICAM-1 and E-selectin (HUVECs) were performed on cells cultured on 

LysB10 hydrogels or RGD-conjugated LysB10 hydrogels in polystyrene 8-well chamber slides 

(Nalge Nunc, International). Fibronectin controls were formulated by adsorbing 50ug/mL 

solutions overnight at 4°C.  200uL cell suspensions (approximately 15,000 cells/well) of 

HUVECs were seeded onto the slides and cultured for a period of 2 hours (for F-actin staining) 
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or 4 hours (for ICAM-1 and E-selectin staining) in serum-free medium. pMSCs were cultured in 

low-serum (1% FBS) media. To achieve HUVEC activation, 100 ng/mL of TNFα was added to 

cells cultured on fibronectin-coated slides for 4 hours prior to immunostaining. Subsequently, 

the cells were fixed in 4% paraformaldehyde (10 minutes), permeabilized with PBS containing 

0.5% Triton X-100 (10 minutes), rinsed once with 100 mM glycine (10 minutes), and incubated 

with block buffer (PBS+/+, 0.2% Triton X-100, 6% goat serum) for 1 hour at room temperature. 

For F-actin staining, cells were incubated with Alexa Fluor 568-conjugated phalloidin for 30 

minutes. 10ug/mL solutions of E-selectin and ICAM-1 monoclonal antibodies were incubated for 

1 hour in order to evaluate HUVEC activation/quiescence states. Primary antibody incubation 

was followed by 45 minute incubation with  2.5 ug/mL biotinylated goat anti-mouse IgG 

secondary 30 minute incubation with 2.5 ug/mL streptavidin-AlexaFluor 488 tertiary. Nuclei were 

counterstained with Prolong Gold mounting medium containing DAPI, and the resultant staining 

was imaged using confocal microscopy (Emory University).  

 

Statistical Analysis 

Comparison between groups was analyzed via ANOVA and a paired, two-tailed 

student‘s t-test, with p<0.05 considered to be significant. Results are presented as mean ± 

standard deviation. Data represent characteristic results from a particular experimental run 

(each group run in quadruplicate), although at least three independent runs were conducted. 
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4.3  RESULTS 

Design of the RGD peptide linker 

The RGD peptide linker was designed to optimize ligand presentation to integrin 

receptors on the cell surface (Scheme 4.2, Appendix B). Enhanced cell adhesion has been 

shown for the sequence GRGDSP due to the contributions that the flanking residues make 

toward the overall peptide conformation and stability. Thus, this short sequence was chosen as 

a model ligand that would elicit a robust cellular response. Another concern in the peptide 

design was its spatial arrangement on the conjugated surface. The RGD sequence in native 

ECM is presented as an exposed loop of the protein. Similarly, the peptide must stand out from 

the artificial surface in order to interact with the crevice of the integrin receptor. Various 

investigators have resolved this issue by creating oligo glycine spacer lengths ranging from 2 to 

12 glycines in order to distance the tether site from the RGD sequence. Based on these 

observations, 4 glycine residues were utilized in our peptide. An N-terminal maleimide was 

synthesized to facilitate covalent linkage to a thiol-modified surface. Finally, detection of the 

immobilized peptides was facilitated by the addition of a biotin moiety.  

Chemistry 

To confirm chemical modification of LysB10, the extent of thiol modification was first 

determined. Ellman‘s reaction was performed on reduced LysB10-cystamine solutions and 

hydrogels. Results indicated that 54.7±1.9% and 48.6±2.5% of carboxylic acids were modified, 

respectively. This correlates to 13 to 15 of the 28 available carboxylic groups being converted to 

thiol moieties in every LysB10 molecule. Control reactions without thiol reduction were run, 

resulting in 0% modification. 
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To optimize the maleimide-thiol chemical reaction and incorporation onto modified 

LysB10 gels, a wide concentration range of input RGD linker was first explored (5 ug/mL – 5 

mg/mL). Passive adsorption onto unmodified LysB10 hydrogels served as an internal control in 

order to distinguish between chemically conjugated linker and its adsorbed counterpart. As 

shown in Figure 4.1, incorporation of the peptide linker steadily increased, reaching a plateau at 

1 mg/mL. While linker incorporation onto unmodified LysB10 hydrogels was nonexistent at 

lower concentrations, background associated with nonspecific passive adsorption increased at 

the 150 ug/mL  to 5 mg/mL RGD range. Thus, the 5-day PBS rinsing protocol to remove 

nonspecific adsorption of linker was only successful when applied to gels with low concentration 

linker solutions (50 ug/mL and below).  

Although solid-phase conjugation requires less peptide to coat the hydrogel surface (as 

opposed to bulk solution phase peptide-LysB10 modification), it is difficult to calculate peptide 

grafting efficiency using this methodology. However, surface densities of linker were calculated 

assuming a 50 nm penetration of reactants, similar to the assumption made by Mooney and 

colleagues [303, 315]. In this case, grafting efficiency of 50 ug/mL RGD linker solution is 

approximately 37%, correlating to 5 RGD peptides per LysB10 molecule. 
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Figure 4.1. Coupled RGD peptide as a function of the amount of input peptide in 
surface modified LysB10. Data represent one of three similar experiments, with each 
condition run in quadruplicate. Peptide conjugation was assessed with the use of the 
biotin tag. In order to determine the moles of biotin conjugated to the LysB10 hydrogel 
surface, the fluoreporter biotin quantitation assay kit was utilized. 
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Cell Studies 

Cell Adhesion 

Success of the peptide immobilization scheme was characterized by cellular response to 

the RGD-conjugated 10wt% LysB10 hydrogels. Unmodified LysB10 gels were treated with 

varying concentrations of RGD to compare cellular behavior between RGD adsorption and RGD 

conjugation on LysB10 surfaces. A 50 ug/mL RGD linker solution was allowed to passively 

adsorb for 2 hours at room temperature onto polystyrene to demonstrate the bioactivity of the 

RGD peptide. Similarly, a 50ug/mL fibronectin solution was passively adsorbed onto polystyrene 

and served as the positive control against which all other data was normalized. 

Cell culture experiments with HUVECs and pMSCs were utilized to illustrate enhanced 

ligand-receptor interactions. Data was normalized to the number of adherent cells on 

fibronectin-coated polystyrene (positive control). As previously mentioned, a 5-day PBS rinse 

period after peptide incubation was introduced into the protocol in order to remove any 

nonspecifically adsorbed peptides on the LysB10 surface. Based on RGD incorporation studies 

(Figure 4.1), HUVEC adhesion experiments focused on four input RGD concentrations (10 

ug/mL, 50 ug/mL, 150ug/mL, and 1 mg/mL). HUVECs seeded onto the RGD-coupled hydrogels 

attached and began spreading by 2 hours (Figure 4.2). Minimal HUVEC adhesion was observed 

on LysB10 hydrogels with no RGD added. For those surfaces treated with 10 ug/mL and 50 

ug/mL RGD, adhesion on thiol-modified LysB10 was approximately 6-fold higher than that of 

the unmodified LysB10. An increase in peptide input concentration from 50 ug/mL to 1 mg/mL 

did not significantly increase adhesion levels, reaching a plateau at approximately 80% 

adhesion (compared to fibronectin positive control). However, adhesion due to nonspecific RGD 

adsorption on unmodified LysB10 was doubled. The results underscore the importance of 

minimizing effects due to RGD adsorption on LysB10, while maximizing adhesion due to thiol- 
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reactive peptide conjugation to LysB10. Thus, 50 ug/mL peptide input concentrations were 

utilized as optimal conditions in further cell experiments.  

Mesenchymal stem cell (MSC) experiments were performed in low-serum media (1% 

fetal bovine serum added) because of MSC sensitivity to complete serum starvation. The 

interaction of serum proteins with the thiol-functionalized LysB10 surface resulted in a 1.5-fold 

increase in MSC attachment to non-RGD treated, thiol-modified gels compared to HUVECs. 

However, RGD tethering to modified LysB10 increased MSC adhesion by a factor of 4.5 

compared to MSC adhesion on non-RGD treated, modified LysB10 alone (Figure 4.3A). 

Furthermore, adhesion levels on RGD-conjugated LysB10 matched those of the positive control 

(fibronectin-coated polystyrene). Cell spreading was greatly enhanced on RGD-conjugated 

LysB10, with well-developed actin stress fiber networks apparent in HUVECs and pMSCs. 

However, on unmodified LysB10, cells assumed rounded morphologies, with actin molecules 

distributed in a nonspecific manner (Figure 4.2B-D and Figure 4.3B-D).  

Cell Specificity 

To ensure that improved adhesion and spreading were mediated by RGD-specific cell 

adhesion receptors, competitive inhibition studies were performed. Thiol-modified LysB10 gels 

were treated with 50 ug/mL maleimide-PEG2-biotin linker or 50 ug/mL RGD linker. Unmodified 

LysB10 gels were treated with 50 ug/mL RGD linker and served as a control. The specificity of 

HUVEC and pMSC adhesion was illustrated by adding soluble GRGDSP or soluble GRGESP at 

2mM to the cell solution to compete for binding sites with the RGD-coupled LysB10 surfaces. 

Commercially available maleimide-PEG2-biotin was chosen for its similarity to the RGD peptide 

linker, and was utilized in RGD specificity studies to examine whether the chemical conjugation 

reaction itself (maleimide linkage to free sulfhydryls to form a thioether bond) would affect cell 

adhesion. Cell attachment was significantly impaired on RGD-conjugated LysB10 gels when 
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cells were incubated with GRGDSP. Quantification of the number of HUVECs and MSCs on 

RGD-functionalized LysB10 revealed an 8-fold and 5-fold decrease in adhesion with soluble 

GRGDSP present in the seeding medium, respectively (Figure 4.4). However, cell attachment 

was not affected by the soluble scrambled sequence GRGESP, thereby confirming integrin-

specific interaction between the cells and the RGD sequence. As expected, minimal non-

specific cell adhesion was observed on unmodified LysB10 gels and those with conjugated 

PEG linker (no RGD sequence). 

Cell Proliferation Studies 

Cell proliferation over a 48-hour period on treated hydrogels was next quantified (Figure 

4.5).  While unmodified LysB10 hydrogels were not able to support adhesion and proliferation 

of cells, RGD-modified LysB10 did promote a 3.5-fold increase in HUVEC density (Figure 

4.5A), closely matching the proliferation rate on fibronectin-coated polystyrene. Proliferation rate 

was lower for pMSCs seeded onto RGD-grafted LysB10 (approximately two-fold increase), 

while the positive control (fibronectin) supported a three-fold increase (Figure 4.5B). 

Radial Migration Studies 

Radial migration is a key factor in endothelialization of a biomaterial surface. To evaluate 

the ability of treated LysB10 gels to modulate cell migration, HUVECs were seeded onto an 

outer annulus area and monitored for motility into an inner radial zone over a 36 hour period.  

Calcein AM staining of the migrated cells enabled fluorescent measurement of the number of 

migrated cells into the detectable inner zone, which was normalized against the number of 

migrated cells on fibronectin-coated polystyrene (Figure 4.6A). RGD-conjugated LysB10 was 

able to stimulate a significantly higher number of HUVECs (74% of Fn control) to cross to the 

inner detection zone than its unmodified LysB10 hydrogels (6-fold increase), p<0.05.  
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Similarly, an important characteristic of mesenchymal stem cells is that they migrate to 

sites of tissue injury as a result of the local production of inflammatory mediators in order to 

modulate tissue remodeling and repair [321]. When the radial migration assay was performed 

with pMSCs, the RGD-conjugated LysB10 substrate was also able to stimulate migration 

(57.4% of Fn control) that was significantly higher than on unmodified LysB10 (10-fold 

increase), p<0.05. As expected, the non-adherent LysB10 surface prevents cell spreading, and 

thus, is unable to promote a directional migratory response (Figure 4.6B). 

HUVEC Activation State 

Finally, the functional state of an endothelial cell monolayer determines its ability to act 

as a thromboresistant barrier for blood-contacting material applications. Therefore, the success 

of an endothelialized surface is dependent on either activation or quiescence of adherent 

endothelial cells. To monitor endothelial phenotype, HUVECs were assessed with 

immunofluorescence staining of the cellular adhesion molecules ICAM-1 and E-selectin (Figure 

4.7). Cells that were cultured on fibronectin-coated polystyrene and maintained in culture 

overnight in serum-free media assumed a quiescent state, with little ICAM-1 and E-selectin 

expression on the cell surface. Activation of HUVECs was achieved by adding 100ng/mL TNFα 

to the media for 4 hours. The positive and negative controls were compared to those cells 

adherent for 4 hours in serum-free media on RGD-conjugated LysB10. Limited ICAM-1 and E-

selectin staining was observed. Thus, endothelial cells are not only able to adhere, spread, 

proliferate, and migrate on RGD-grafted LysB10 substrates, but can maintain the phenotype 

necessary to limit platelet adhesion.   
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Figure 4.2. (A) HUVEC adhesion to varying LysB10 hydrogel surfaces after 2 hours. 50 ug/mL fibronectin adsorbed to 
polystyrene served as a positive control, and all data was normalized to this control. Data represent one of three similar 
experiments, with each condition run in quadruplicate. *p<0.01 compared to unmodified LysB10-RGD at the same 
concentration.  **p<0.05 compared to unmodified LysB10-no add control. Representative confocal images of HUVECs 
cultured on LysB10 gels are shown, with red bars representing 20um. 10 wt% unmodified LysB10 with adsorbed 50 ug/mL 
RGD linker (B), modified LysB10 with conjugated 50 ug/mL RGD linker (C), along with fibronectin-coated glass (D). 
Fluorescently labeled actin is visualized in red. 
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Figure 4.3. (A) pMSC adhesion to varying LysB10 hydrogel surfaces after 2 hour assay. 50 ug/mL fibronectin adsorbed to 
polystyrene served as a positive control, and all data was normalized to this control. Data represent one of three similar 
experiments, with each condition run in quadruplicate. *p<0.05 compared to thiol-modified LysB10-no add.  **p<0.05 
compared to unmodified LysB10-no add control. Representative confocal images of pMSCs cultured on LysB10 gels are 
shown, with red bars representing 20um. 10 wt% unmodified LysB10 with adsorbed 50 ug/mL RGD linker (B), modified 
LysB10 with conjugated 50 ug/mL RGD linker (C), along with fibronectin-coated glass (D). Fluorescently labeled actin is 
shown in red.
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Figure 4.4. HUVEC (A) and pMSC (B) adhesion and specificity to treated LysB10 
hydrogel surfaces. Adhesion on RGD-conjugated LysB10 gels is sequence-specific. 
Cells were treated with soluble GRGDSP (2 mM) and soluble GRGESP peptide (2 mM) 
for 30 minutes prior to plating. All data was normalized to the fibronectin, no add control. 
Data represent one of three similar experiments, with each condition run in 
quadruplicate. * p<0.05 compared to no-add treatment group. 
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Figure 4.5. Proliferation rate of (A) HUVECs and (B) pMSCs over a 48 hour period. 
Cells were seeded onto various LysB10 gels at a density of 5,000 cells/well for 2 hours. 
Unbound cells were removed with media washes and substrate-bound cells were 
maintained in culture for another 48-hour period. All cell counts were normalized to the 
2-hour adhesion value on fibronectin-coated polystyrene. Cell counts at 48 hours were 
compared to those at 2 hours for each treatment group.  
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Figure 4.6. Radial migration assay of HUVECs (A) and pMSCs (B). Cells were seeded 
onto an outer annulus area and monitored for motility into an inner radial zone over a 36-
hour period.  Quantitation was achieved with fluorescent measurement of the number of 
migrated cells into the detectable inner zone, which was normalized against the number 
of migrated cells on fibronectin-coated polystyrene .*p<0.05 compared to non-RGD 
treated, unmodified LysB10. 
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Figure 4.7. Representative confocal images of HUVECs cultured on various substrates.  
Cells that were cultured on fibronectin-coated slides without TNFα stimulation (A & B) 
maintained a quiescent phenotype. Activation was achieved with the addition of TNFα to 
the culture medium (E&F). HUVEC activation or quiescence was compared to that on 
RGD-conjugated LysB10 films (C & D). Markers of HUVEC activation were ICAM1-1 
(A,C, and E) and E-selectin (B,D, and F). Red bars signify 20um. 
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4.4 DISCUSSION 
 
 

Many tissue engineering applications require the use of three-dimensional scaffolds and 

porous coatings. Therefore, we explored ligand presentation in a three-dimensional 

environment, seeding HUVECs onto RGD-modified 10wt% LysB10 gels. The lysine residues 

within the protein polymers were crosslinked with genipin, a cytocompatible chemical 

crosslinker, in order to stabilize the intermolecular, physical crosslinks within the elastin-like 

network [275-280].. Chemical conjugation was utilized to covalently couple the cell adhesion 

peptide GRGDSP to the surface of elastin-like protein polymer hydrogels. This chemistry 

successfully modulated biological interactions on ELPs, as illustrated with HUVECs and pMSCs. 

This work is the first step in creating a model synthetic ECM for vascular tissue engineering 

applications, using ELPs as the base material, with which ligand presentation may be varied in a 

controlled manner.  

There are some caveats associated with the use of maleimide-thiol chemistry. In 

particular, nonspecific covalent linkages between a thiol-containing sequence (one that contains 

cysteine) and the thiolated LysB10 can disrupt the bioactivity of the peptide. To date, however, 

the majority of short cell-adhesive peptides, including the sequences RGD, REDV, IKVAV and 

GFOGER, do not contain cysteine residues.  

In order to functionalize the LysB10 molecule, the carboxylic acid groups on the 28 

glutamic acid residues were first modified to incorporate free sulfhydryls. The efficiency of the 

chemical reaction resulted in 48.6% conversion (13-14 modified carboxylic acids per LysB10 

molecule). Further conjugation of varying input peptide-maleimide linker concentrations onto 

10wt% LysB10 hydrogels resulted in an increase in peptide surface density that reached a 

plateau at 11 pmol/cm2 (8 RGD moieties per LysB10 molecule). This apparent limit in grafting 

efficiency may be due to steric hindrance of multiple bulky ligands immobilized onto the LysB10 
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backbone. Ultimately, HUVEC adhesion studies demonstrated that a peptide density of 8 

pmol/cm2 was sufficient in promoting robust cellular behavior. 

Integrin-mediated cellular functions occur via diverse mechanisms. Previous studies 

have shown that the density of ECM proteins regulates cell adhesion, spreading, and migration 

speed.  However, differences in experimental protocols and surface chemistry and roughness 

have resulted in a range of reported values for the minimal surface concentration required for 

cell adhesion and spreading. For example, Massia and Hubbell have reported that a minimal 

RGD peptide density of 10 fmol/cm2 is required for fibroblast cell spreading, focal contact, and 

stress fiber formation on modified glass surfaces [259]. In contrast, Patel et al have 

demonstrated a higher RGD peptide density ranging from 0.2-3 pmol/cm2 on an interpenetrating 

polymer network coating for robust endothelial cell adhesion and spreading [260]. Our own cell 

studies were performed on RGD-conjugated LysB10 hydrogels, with grafting densities ranging 

from 4 to 12 pmol/cm2. It was found that 8 pmol/cm2 RGD grafting elicited maximal cell adhesion 

while minimizing peptide adsorption effects.  

The multimeric structure of native ECM molecules such as fibronectin, a dimer with dual 

adhesion sites, and tenascin-C, which presents six repeats of cell adhesion domains, suggests 

that ligand clustering as well as ligand density regulates cell signaling [251] . Several studies 

have shown that the clustering of ligand-bound integrin receptors is essential in propagating 

intracellular signaling for proper cell function. For example, alphavbeta3 integrins can undergo 

affinity maturation, resulting in the recruitment of alphavbeta3 to focal adhesions in the cell 

periphery [261]. Nanoscale arrangement of RGD peptides has revealed that peptides presented 

as one peptide per molecule are poor substrates for fibroblast adhesion, while peptides 

presented in clusters of nine peptides per molecule or higher induce comparable cell attachment 

to matrix proteins [262]. Cell migration and spreading are dependent on this clustering 

mechanism as well. Peptide chemistry with thiolated-LysB10 resulted in 5 RGD peptides 
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grafted per LysB10 molecule (8 pmol/cm2), which was sufficient in stimulating HUVEC and 

MSC adhesion, spreading, proliferation, and migration. 

Adhesive strength and ligand surface density are critical factors in endothelial cell 

motility. The chemoselective ligation of RGD to thiolated-LysB10 was shown to stimulate an 

increase in HUVEC radial migration across the hydrogel surfaces. Further optimization of 

migration rate may be achieved by modulating RGD grafting density. In particular, previous 

results from experiments and mathematical modeling have shown that cell migration rates 

display a biphasic dependence on the surface density of ligands and cell attachment strength 

[260, 268, 269]. At low adhesiveness, the cell cannot form strong and stable adhesions at the 

leading edge to allow traction to pull itself forward. At high adhesiveness, the trailing edge of the 

cell cannot be released [270, 271]. For example, work with RGD-grafted IPNs by Patel et al 

demonstrated that endothelial cell migration speed was relatively high on 0.2 pmol/cm2 RGD 

treated surfaces and decreased as peptide density increased to 3 pmol/cm2 . Moreover, growth 

factors and other chemotactic agents have been shown to influence the dynamics of the 

cytoskeleton leading to cell motility. Controlled release of sphingosine 1-phosphate, vascular 

endothelial growth factor, and basic fibroblast growth factor have been proven to promote 

endothelial cell migration by increasing lamellipodia formation and extension in the leading edge 

of the cell [272-274]. 

Integrin specificity is critical in directing cell fates such as migration, proliferation, and 

differentiation, as different integrins trigger specific signaling pathways. Thus, a major 

disadvantage of short peptides such as RGD, which binds multiple integrins, is their inability to 

elicit specific cell responses based on defined intracellular pathways. This lack of specificity 

results in non-discriminatory attachment of cells to RGD-coated surfaces. These concerns can 

be addressed in multiple ways. For example, in order to promote alpha5beta1-mediated 

adhesion, both the RGD sequence in the 10th type III repeat of fibronectin as well as its synergy 
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site, the PHSRN sequence in the 9th type III repeat domain, are required to be presented 

together [164]. Another peptide with increased integrin affinity and selectivity is the sequence 

REDV, which binds to the integrin alpha4beta1, and thus, is capable of cellular interaction with 

leukocytes, endothelial cells, and some muscle and fibroblast cell lines, but not with platelets 

[168].  

 

4.5 CONCLUSION 

 The results of this study demonstrate that chemical conjugation of a bioactive ligand via 

maleimide-thiol chemistry is a viable means of functionalizing surfaces of elastin-like hydrogels. 

HUVEC and MSC adhesion, actin fiber formation, proliferation, radial migration, and HUVEC 

activation states were characterized in order to evaluate the efficacy of RGD-functionalized 

LysB10. To our knowledge, this study is the first report of direct chemical ligation of moieties 

onto the surfaces of recombinant elastin-mimetic protein polymer hydrogels. 
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CHAPTER 5 

 Incorporation of matrix protein fibronectin into ELP blends 
 and its application to cell-seeded vascular constructs 

 

 

5.1 INTRODUCTION 

Biomimetic materials that recapitulate the complex mechanical and biochemical cues in 

load-bearing tissues are of significant interest in regenerative medicine and tissue engineering 

applications. One approach in generating suitable materials is to mirror the multiscale structural 

hierarchy of the extracellular matrix itself. Thus, proper selection and assembly of scaffolds that 

replicate the anatomic features of the tissue of interest is vital in promoting tissue integration 

and directing cellular behavior. 

The functional importance of normal physiologic responses of the vascular wall in 

controlling thrombosis and inflammation has guided attempts to closely mimic the native arterial 

wall in the design of a new generation of vascular prostheses. These features include the 

structural components collagen and elastin, which are responsible for a fatigue-resistant tissue 

with long-term durability [20, 322]. In this study, we utilized elastin-like protein polymer (ELP) 

LysB10, which displays a range of elastomeric properties that more closely match those of the 

native artery [14]. This amphiphilic triblock copolymer (ABA) consisting of hydrophobic (A) and 

hydrophilic (B) domains was synthesized such that phase separation of the more hydrophobic 

blocks occurs in water under physiologically relevant conditions to form virtual crosslinks, while 

the hydrophilic domains remain non-crosslinked and solvated by the aqeous environment [218, 

219]. The introduction of lysine residues enabled chemical crosslinking to stabilize the hydrogel. 

This multiblock system results in structural polymorphism and the potential for a wide range of 

functional responses, including mechanical and biological performance. We have previously 

demonstrated the ability of elastin-mimetic triblock copolymers to be used as non-thrombogenic 
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hydrogel coatings on the luminal surface of ePTFE prostheses [15, 221]. Further 

biocompatibility studies on ELPs have revealed long-term in vivo biostability and minimal 

inflammatory responses, which makes LysB10 an ideal candidate for a structural component of 

engineered tissues and as a biocompatible surface coating [14, 15, 221, 323]. Thus, elastin-

mimetic protein copolymers represent a unique class of thermoreversible hydrogels for soft 

tissue engineering applications. 

LysB10 is a relatively bioinert material, and therefore requires further functionalization in 

order to allow for integration at the cell-material interface. Once again, we take inspiration from 

the native extracellular matrix by utilizing an ECM-associated protein. Fibronectin is an adhesive 

glycoprotein secreted by cells to form a fibrillar matrix, and regulates a number of cell functions 

via intracellular signaling pathways, including cell cycle progression, migration, differentiation, 

and assembly of other ECM components [156-158]. Unlike short peptide adhesive sequences, 

fibronectin contains multiple sites for functional engagement. The monomeric fibronectin 

molecule is 220kDa, but the functional unit exists as a disulfide-crosslinked heterodimer. The 

RGD and synergy cell-binding sequences interact directly with integrins on the cell surface, 

while binding sites for heparin, collagen, and fibrin molecules modulate the microenvironment 

around the cells [159]. 

Several investigators have endeavored to minimize graft failure due to thrombosis and 

intimal hyperplasia by mimicking the biologic responsiveness of the native vasculature. In 

particular, the poor patency rates of synthetic polymers have motivated strategies to promote 

endothelialization of the material surface and cellularization of a vascular construct [7, 9, 11, 12, 

26-29, 31, 32, 34, 249, 250]. The endothelial lining in the native vasculature not only serves as a 

protective, thromboresistant barrier between blood and the surrounding tissue, but also controls 

vessel tone, platelet activation and leukocyte adhesion. In addition, mesenchymal stem cells 

have recently emerged as a promising therapeutic modality for tissue regeneration and repair. 

Mesenchymal stem cells (MSCs) are multipotent adult stem cells that can differentiate into a 
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number of cell types, including skeletal muscle cells, vascular endothelial cells, smooth muscle 

cells, and cardiomyocytes [324-328]. Interest has been raised by the observation that MSCs 

display immunomodulatory capacities that can be harnessed for vascular tissue engineering 

[321, 329-332]. 

We postulate that biologically inspired structures produced from synthetic or molecularly 

engineered collagen and elastin analogs, which recapitulate the biomechanical and biochemical 

features of the native extracellular matrix, provide an advanced foundation for engineering living 

tissue.  As a case in point, we have previously reported the generation of an acellular vascular 

substitute consisting of a multilamellar structure formulated from integrated synthetic collagen 

microfibers and a recombinant elastin-like protein [333]. In this study, we further describe the 

fabrication and cellularization of thin lamellae consisting of continuous synthetic collagen fiber 

embedded within a recombinant elastin-like protein polymer matrix.  Production of multilamellar 

structures affords flexible, protein-based composite sheets whose properties are dependent 

upon both the elastomeric matrix and the content and hierarchical organization of collagen 

fibers. The laminated geometry offers the potential to incorporate living cells at controlled spatial 

intervals throughout a stacked sheet, akin to cell sheet tissue engineering methods.  

The goal of this study was to define the important parameters in generating an elastin-

like protein polymer for soft tissue engineering. We hypothesized that optimized presentation of 

the fibronectin molecule would provide a system in which to display multiple bioactive domains 

for cellular interaction. Moreover, we anticipated that this engineered platform would promote 

cellularization of collagen-reinforced elastin-mimetic multilamellar constructs for vascular tissue 

engineering applications. We tested our hypothesis with a number of in vitro endpoints to 

determine endothelial and mesenchymal stem cell behavior. 
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5.2 MATERIALS AND METHODS 

Reagents, Antibodies, and Cells 

Fibronectin solution was obtained from Sigma Aldrich. Genipin was purchased from 

Wako, Inc, while Fibronectin EIA kit was procured from Takara Bio Inc. LysB10 protein 

expression and purification is described in Appendix A. Porcine mesenchymal stem cells 

(pMSCs) were a kind gift from Dr. Steven Stice (University of Georgia). Human umbilical vein 

endothelial cells and EGM-2 media supplements were obtained from Clonetics, while pMSC 

basal media and supplements were purchased from Fisher Scientific and Invitrogen. Radial 

migration of cells on LysB10 surfaces was measured with the use of the Oris cell migration 

assembly kit, from Platypus Technologies, and calcein AM (Molecular Probes). 

Immunofluorescence studies were performed with mouse anti-human E-selectin and mouse 

anti-human ICAM-1 antibodies purchased from Millipore. Immunostaining reagents goat anti-

mouse IgG antibody, streptavidin-AlexaFluor 488, phalloidin-AlexaFluor 568, and ProLong Gold 

antifade reagent with DAPI were all purchased from Invitrogen (Molecular Probes). For gene 

expression analysis, RNeasy micro kit was obtained from Qiagen, while cDNA reverse 

transcription kit was procured from Applied Biosystems. GAPDH, IL-1beta, and COX-2 primers 

for the species S.scrofa were purchased from Applied Biosystems as well. 

Percent Extractables Study 

 To determine the percent of potentially extractable protein polymer, 200uL of 10wt% 

protein solution was cast as a disk measuring 1 cm in diameter. Films were crosslinked in 0.5% 

glutaraldehyde or 6 mg/mL genipin solutions for 24 hours, and rinsed in ddH20 for 12 hours, with 

4 buffer changes to remove any residual crosslinker. The weight of dried samples was recorded 

prior to incubating the films in water at 4°C (below the inverse transition temperature). After a 7-

day incubation period, the films were dried and weighed once more to determine material loss. 
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The mass retention was calculated with the following equation: 

 

] x 100 

 

Mechanical Data 

10wt% and 6wt% LysB10 solutions were loaded into 1mL syringes (diameter of 

4.67mm) at 4°C, and subsequently gelled at 37°C. The tip of the syringe was removed with a 

sterile scalpel and the molded protein gel was extruded into room temperature PBS. The 8mm-

long gel was cut into 2mm sections. Treatment gels were placed in 1mg/mL fibronectin solution 

for 4 hours prior to genipin crosslinking. Control gels were placed directly in 6 mg/mL genipin 

solution for 24 hours to enable crosslinking. Following crosslinking, samples were washed in 

PBS for 12 hours with 4 buffer changes. For compression loading, samples were tested using a 

10 pound load cell and hydration chamber at 37°C. A preconditioning protocol was employed for 

LysB10 samples that consisted of 10 cycles of 20% strain. Constructs were compressed to 

failure at a rate of 0.025 mm/s. Stress relaxation was measured by compressing the samples to 

a strain of 50% using a crosshead speed of 0.025mm/sec, and then allowing the crosshead to 

rest for 15 minutes or longer until the force decay is minimal or roughly .001Mpa per minute. 

Compressive modulus E was defined as the slope of the line at a particular strain percent. 

Fibronectin Enzyme Immunoassay  

An ELISA was used to determine the extent of fibronectin immobilization on LysB10 

hydrogel surfaces. The assay is a solid-phase EIA based on a sandwich method. LysB10 

solutions were formulated by adding lyophilized LysB10 protein at a 10wt% or 6wt% 
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concentration in PBS at 4°C for 16 hours. 40 uL of solution was carefully pipetted and uniformly 

coated onto the EIA plate wells at 4°C. Hydrogel formation was achieved by placing the plate at 

37°C, well above the transition temperature of the protein polymer, for 1 hour. Fibronectin 

solutions ranging from 0 to 1 mg/mL were allowed to adsorb onto the hydrogel for 6 hours at 

room temperature. Crosslinking was performed with a 6 mg/mL genipin solution for 24 hours, 

followed by stringent PBS rinsing over a 12-hour period to remove all genipin. Fibronectin 

antibody labeled with peroxidase was incubated in treatment wells, after which a substrate 

(tetramethylbenzidine) was added to react to bound peroxidase. The resulting color 

development and associated intensities are proportional to the amount of human fibronectin 

present in samples and standards. Standard curves were generated by adding known amounts 

of fibronectin to the immobilized antibody in each well. Absorbance was measured at 450nm. 

Hydrogel formulations 

Fibronectin-blended LysB10 gels 

Fibronectin-LysB10 blend solutions were formulated by adding lyophilized LysB10 

protein at a 10wt% or 6wt% concentration in appropriate dilutions of fibronectin in PBS at 4°C 

for 16 hours in order to ensure uniform blending. 40 uL of solution was carefully pipetted and 

uniformly coated into wells of a polystyrene 96-well plate at 4°C. Hydrogel formation was 

achieved by placing the plate at 37°C, well above the transition temperature of the protein 

polymer, for 1 hour. Lysine residues of the protein polymer were crosslinked with a 6 mg/mL 

genipin solution for 24 hours, followed by stringent PBS rinsing to remove all genipin.  

Fibronectin-adsorbed LysB10 gels 

LysB10 solutions were formulated by adding lyophilized LysB10 protein at a 10wt% or 

6wt% concentration in PBS at 4°C for 16 hours. 40 uL of solution was carefully pipetted and 
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uniformly coated into wells of a polystyrene 96-well plate at 4°C. Hydrogel formation was 

achieved by placing the plate at 37°C, well above the transition temperature of the protein 

polymer, for 1 hour. 1 mg/mL of fibronectin solution was allowed to adsorb onto the hydrogel for 

6 hours at room temperature. Crosslinking was performed with a 6 mg/mL genipin solution for 

24 hours, followed by stringent PBS rinsing over a 12-hour period to remove all genipin.  

 Cell Studies 

HUVEC and MSC Adhesion  

Human umbilical vein endothelial cells (HUVECs) were purchased from Clonetics and 

maintained in endothelial growth medium-2 (EGM-2, 2% serum, Clonetics). Porcine 

mesenchymal stem cells were cultured in alpha-MEM basal medium supplemented with 10% 

fetal bovine serum, 50U/mL penicillin, 50ug/mL streptomycin, and 2mM L-glutamine. They were 

kept in a humidified, 5% CO2 environment at 37°C, and passaged every 2 days via standard 

culture techniques. HUVECs and pMSCS between passages 3 and 9 were used for all 

experiments. To begin, cells were harvested with Cell Dissociation Solution (EDTA, glycerol, 

sodium citrate, PBS, from Sigma) in order to maintain integrin functionality on the cell surface. 

After centrifugation at 220g for 5 minutes, HUVEC suspensions were prepared at a density of 

200,000 cells/mL in basal medium containing 0.5% bovine serum albumin (BSA). MSCs were 

prepared at the same density in low-serum medium (1% serum). 100uL of the cell suspension 

was plated onto LysB10 surfaces, and after incubation at 37°C for 2 hours, wells were washed 

three times with phosphate-buffered saline (PBS). Cell adhesion activity was evaluated with the 

CyQuant Cell Proliferation Assay Kit (Molecular Probes), which utilizes a fluorescent dye with 

strong fluorescence enhancement when bound to cellular nucleic acids (excitation/emission 

maxima ~480/520 nm). Briefly, after thawing frozen cells to enhance lysis, the CyQuant cell 

lysis buffer was added to each sample, along with CyQuant fluorescence reagent. Samples 
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were then measured in a microplate spectrofluorometer. Results were normalized to adhesion 

levels on fibronectin-coated polystyrene wells, which acted as the positive control. 

 Biostability Study 

Non-crosslinked and genipin-crosslinked fibronectin-LysB10 gels were allowed to 

incubate in 1xPBS for 1 week, with daily PBS changes. Following the 1 week incubation period, 

a 2 hour HUVEC adhesion assay was performed in order to evaluate possible destabilizing 

effects of fibronectin release from the hydrogels and the corresponding effects on HUVEC 

adhesion. 

HUVEC and MSC Proliferation Assay 

Proliferation rates were evaluated with the CyQuant Cell Proliferation Assay Kit. Cells 

were seeded onto various LysB10 gels at a density of 5,000 cells/well for 2 hours. Unbound 

cells were removed with media washes and substrate-bound cells were maintained in culture for 

another 48-hour period. Cell counts at 48 hours were compared to those at 2 hours. 

Cell Migration Assay 

LysB10 hydrogels with varying treatment groups (n=4) and fibronectin-coated wells 

were formulated in 96-well plates (black, clear bottom) provided by the manufacturer of the Oris 

cell migration assay FLEX kit (Platypus Technologies). Cell seeding stoppers with diameters of 

2mm were placed on top of the hydrogels and wells to prevent cells from adhering to the central 

detection zone. Cells were harvested with Cell Dissociation Solution (EDTA, glycerol, sodium 

citrate, PBS, from Sigma) in order to maintain integrin functionality on the cell surface. After 

centrifugation at 220g for 5 minutes, HUVEC suspensions were prepared at a density of 

400,000 cells/mL in serum-free basal medium. Cell suspensions were treated with 10ug/mL 

mitomycin C (Sigma Aldrich) in order to arrest cell proliferation. 100uL of the cell suspension 
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was seeded onto the outer annular region of the hydrogel surfaces (30 mm2). Cells were 

allowed to adhere to the seeding region for 6 hours at 37ºC, at which point the stoppers were 

removed to allow for migration into the central detection zone (3.14 mm2). Several reference 

wells were designated, in which the stoppers remained in place until wells were read (t=0 pre-

migration controls). Unbound cells were gently removed by rinsing the wells with complete 

media, after which all wells were filled with 150uL complete media. Cells were incubated at 

37ºC for 36 hours. Quantitation of migration was performed by staining the adherent cells with 

Calcein AM. Briefly, wells were washed three times with PBS, after which a 2uM Calcein AM 

solution was added to each well and incubated for 1 hour.  Migrated cells in the central 

detection zone were analyzed with a fluorescent plate reader. The Oris detection mask was 

secured to the bottom of the 96-well plate in order to prevent signal detection of the outer 

annular region. Therefore, any fluorescent signal detected was isolated from migratory cells in 

the central detection zone. Readings from the pre-migration control wells were subtracted from 

the post-migration wells to eliminate noise due to background. Data was normalized to the 

fibronectin positive control. 

Immunofluorescence Studies 

Fluorescent staining of cytoskeletal component F-actin and cellular adhesion molecules 

ICAM-1 and E-selectin were performed on cells cultured on fibronectin-adsorbed LysB10 

hydrogels (see above for formulation description) in polystyrene 8-well chamber slides (Nalge 

Nunc, International). Fibronectin controls were formulated by adsorbing 50ug/mL solutions 

overnight at 4°C.  200uL cell suspensions (approximately 15,000 cells/well) of HUVECs were 

seeded onto the slides and cultured for a period of 2 hours (for F-actin staining) or 4 hours (for 

ICAM-1 and E-selectin staining) in serum-free medium. To achieve HUVEC activation, 100 

ng/mL of TNFα was added to cells cultured on fibronectin-coated slides for 4 hours prior to 

immunostaining. Subsequently, the cells were fixed in 4% paraformaldehyde (10 minutes), 
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permeabilized with PBS containing 0.5% Triton X-100 (10 minutes), rinsed once with 100 mM 

glycine (10 minutes), and incubated with block buffer (PBS+/+, 0.2% Triton X-100, 6% goat 

serum) for 1 hour at room temperature. For F-actin staining, cells were incubated with Alexa 

Fluor 568-conjugated phalloidin for 30 minutes. 10ug/mL solutions of E-selectin and ICAM-1 

monoclonal antibodies were incubated for 1 hour in order to evaluate HUVEC 

activation/quiescence states. 10ug/mL solutions of vinculin antibody was utilized for assessment 

of focal adhesion assembly. Primary antibody incubation was followed by 45 minute incubation 

with  2.5 ug/mL biotinylated goat anti-mouse IgG secondary 30 minute incubation with 2.5 

ug/mL streptavidin-AlexaFluor 488 tertiary. Nuclei were counterstained with Prolong Gold 

mounting medium containing DAPI, and the resultant staining was imaged using confocal 

microscopy (Emory University).  

Fabrication of mesenchymal stem cell-seeded, collagen fiber-reinforced elastin laminates  

 The generation of collagen-reinforced recombinant elastin sheets has been previously 

described by Caves et al in the fabrication of small-diameter vascular grafts [333]. Based on 

earlier work with fibronectin-immobilized hydrogels, we applied this technology further by 

generating mesenchymal stem cell-seeded constructs for tissue engineering. Briefly, protein 

fiber sheets were fabricated by winding defined collagen fiber layouts onto rectangular frames 

and implementing the transition temperature fiber embedding and lamination protocol (Scheme 

5.1).  Synthetic collagen microfibers were produced as described by Caves and colleagues 

[333, 334]. To arrange fibers with defined spacing and orientation, the frame translation speed, 

translation distance, and rotation speed were computed with a MATLAB script.  An automated 

linear actuator (Velmex, Inc, Bloomfied, NY) and a DC gear motor translated and rotated the 

frames.  After winding, each fiber layout was transferred onto a sheet of ultrasoft polyurethane 

and secured with tape. Solutions of protein polymer were prepared at 10-wt% concentration in 

ice-cold ddH2O.  To embed the fiber layouts, precision 50 µm thick plastic shims (Precision 
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Brand, Inc., Downers Grove IL) were placed around the layouts, and all embedding materials 

were cooled to 4°C.  The protein polymer solution was distributed over the fibers and a sheet of 

acrylic was pressed on top of the solution.  The fibers and the protein polymer solution were 

located within a 50 µm space, sandwiched between the acrylic sheet and polyurethane base 

that were separated by precision shims.  The embedding assembly was incubated at 4°C for 

one hour to allow the protein polymer solution to hydrate the fiber layout, followed by transfer of 

the assembly to a 37°C incubator for 1 hour.  When the polyurethane and acrylic sheets were 

peeled apart, the fiber layout remained embedded in a gel film of protein polymer, adherent to 

the polyurethane base.  After a 5-minute incubation in 37°C ddH2O, the fiber-reinforced film 

could be separated from the polyurethane base. The protein sheet was further sectioned into 1 

centimeter by 1 centimeter square pieces. 1 mg/mL fibronectin solution was incubated on the 

surface of each square piece for 6 hours. Both sides of the protein sheet were treated with 

fibronectin, followed by genipin crosslinking (6mg/mL) for 24 hours. Residual genipin was 

removed with three PBS buffer changes over a 12-hour period. An additional cycle of fibronectin 

adsorption was added after crosslinking in order to maximize cell adhesion onto the surfaces of 

protein sheets.  

Mesenchymal stem cells were seeded onto fibronectin-treated, fiber-reinforced protein 

sheets via a two-stage seeding protocol. pMSCs were seeded at a density of 1x105 cells/cm2 in 

200uL complete medium (10% FBS) for 6 hours. The protein sheets were then placed in 

another 24-well plate and seeded a second time with pMSCs at a density of 1x105 cells/cm2 in 

200uL complete medium (10% FBS) for 12 hours. The seeded sheets were transferred once 

again into new wells and incubated in fresh media for a period of 72 hours, or until a confluent 

monolayer for observed, with medium changes every two days.  

Laminates consisted of a multilamellar stack of two or three, 50 µm thick layers. The 

layers were sandwiched between nylon meshes with 70 micron pores and incubated in culture 
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medium for 7 days, with medium exchanges every 2 days, in order to facilitate interlamellar 

bonding. 

 

 

 

 

 

 

 

 

 

Scheme 5.1.  Fabrication of a collagen microfiber reinforced elastin-like protein sheet. (a) 

Collagen microfiber is wound about rectangular frames to obtain the desired orientation and 

average spacing. (b) A cooled protein polymer solution is distributed over the microfiber layout 

and molded into a thin membrane. (c) Stacked, cell-seeded membranes are laminated by 

sandwich molding and 1 week incubation to form a (d) multilamellar composite sheet. Image 

modified from Caves et al. 
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Evaluation of MSC viability 

 Cell-seeded single sheets and multilamellar protein fiber sheets were incubated in 2uM 

Calcein AM solution for 1 hour at room temperature, and the resultant staining was imaged with 

confocal microscopy (Emory University). 

In vitro evaluation of inflammatory response of MSCs on multilamellar protein fiber 

sheets: RNA isolation and real-time reverse transcriptase polymerase chain reaction 

 For in vitro studies, pMSCs were seeded onto tissue culture-treated polystyrene with and 

without 10 ug/mL lipopolysaccharide (LPS) added to the culture medium for 96 hours. Cell-

seeded trilamellar constructs were cultured for 96 hours prior to RNA isolation as well. Medium 

was exchanged for all treatment groups every 2 days. Gene expression of interleukin-1beta (IL-

1beta) and cyclooxygenase 2 (COX-2) was evaluated in quiescent cells, LPS-activated cells, 

and cell-seeded constructs (n=3).  

Cells were detached and lysed with TRIzol reagent. The cell lysate for each treatment 

group was mixed and incubated with chloroform for 1 minute at room temperature.  Phase 

separation was achieved by centrifuging the mixture for 15 minutes at 4°C. The top aqeous 

layer was collected for further RNA isolation and purification. RNA was isolated from the aqeous 

solution with the Qiagen RNeasy micro kit, according to the manufacturer‘s protocol. 

Complementary cDNA was generated using the high-capacity cDNA reverse transcription kit 

from Applied Biosystems. Thermal cycling conditions began with a 25°C incubation for 10 

minutes, 37°C incubation for 120 minutes, temperature increase to 85°C for 5 seconds, and a 

final cooling to 4°C. The reverse transcription product was used as a template for real-time PCR 

analysis on the real time PCR 7900HT system (Applied Biosystems). All PCR reactions were 

performed in triplicate with 50 ng of cDNA per well. All primers were obtained from Applied 

Biosystems. The housekeeping gene glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) 
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served as the endogenous control. Expression data was further normalized to the negative 

control (quiescent cells grown on tissue culture polystyrene). 

Histology 

Cell-seeded laminates that were maintained in culture for 1 week were cryo-sectioned as 

described by Nerurkar and colleagues [335]. Briefly, samples (n=3) were fixed in 4% 

paraformaldehdye overnight prior to flash-freezing in OCT freeze medium. Sections were 

incubated in hemotoxylin and eosin to visualize cell nuclei. Alcian Blue staining with Nuclear 

Fast read counterstain was utilized to visualize glycosaminoglycan deposition. 

Statistical Analysis 

Comparison between groups was analyzed via ANOVA and a paired, two-tailed 

student‘s t-test, with p<0.05 considered to be significant. Results are presented as mean ± 

standard deviation. Data represent characteristic results from a particular experimental run 

(each group run in quadruplicate), although at least three independent runs were conducted. 
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5.3 RESULTS 

Genipin crosslinking of elastin-mimetic LysB10 gels 

 Investigations by our group have demonstrated that covalent crosslinks can enhance the 

mechanical stability of the elastin analog LysB10 via the lysine residues [14]. While 

glutaraldyde has been effective in facilitating these covalent crosslinks, its cytotoxicity limits its 

applications in in vitro cell studies. Therefore, the naturally occurring crosslinking agent genipin 

was utilized to enhance intermolecular crosslinking within the LysB10 gel, while minimizing 

toxicity [275-280]. As a measure of the extent of crosslinking, the percent extractable protein 

was examined after incubating samples at 4°C for 7 days. Below the inverse transition 

temperature, noncrosslinked films dissolved immediately due to disruption of physical 

crosslinks. After genipin and glutaraldehyde crosslinking, films retained approximately 93.5 ± 

1.4% and 84.3 ± 6.2% of their mass, respectively, consistent with a high degree of chemical 

crosslinking. 

 

Mechanical analysis of hydrated LysB10 hydrogels 

The mechanical properties of the extracellular matrix can play a vital role in determining 

cell fate. In particular, cell response to substrate stiffness can influence a range of processes, 

including adhesion, proliferation, focal adhesion formation, migration, and differentiation 

potential. Therefore, in generating an elastin-mimetic for vascular tissue engineering 

applications, it is important to not only evaluate ligand presentation on the hydrogel surface, but 

to also determine its mechanical properties. Since cell deformation is one process that is 

thought to be important in the mechanotransduction pathway, 6wt% and 10wt% LysB10 

hydrated gels were subjected to compressive loading. Treatment groups included 
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noncrosslinked samples, genipin-crosslinked gels, and adsorbed fibronectin that was genipin-

crosslinked onto LysB10.  

As expected, the addition of surface-immobilized fibronectin did not interfere with the 

mechanical properties of LysB10. As seen in Figure 5.1, crosslinked samples without 

fibronectin behaved in a similar manner to fibronectin-crosslinked gels. Corresponding 

compressive moduli at various strain percents are calculated in Table 4.1. At low strain (20%), 

6wt% crosslinked samples exhibit a four- to five-fold increase in compressive modulus 

compared to their non-crosslinked counterparts, while 10wt% crosslinked samples display a 

two- to three-fold increase in compressive modulus compared to their non-crosslinked 

counterparts. It is interesting to note that at low strain (20%), the compressive modulus of 

noncrosslinked 10wt% LysB10 is equivalent to that of crosslinked 6wt% gel.  

Stress relaxation was measured over a 10-minute period at 50% strain for all samples, 

demonstrating the viscoelastic behavior of the elastin-mimetic protein polymers. Both 

uncrosslinked and crosslinked 6wt% gels displayed stress relaxations of 68% of the peak 

stress, while crosslinked 10wt% gels displayed a 50% decrease and uncrosslinked 10wt% gels 

displayed 82% decrease in stress. 

 

Characterization of fibronectin crosslinked onto LysB10 gels 

 To optimize incorporation onto the LysB10 gels, a wide concentration range of 

fibronectin was first explored (0 to 1 mg/mL). Passive adsorption onto unmodified 6wt% and 

10wt% LysB10 hydrogels was followed by genipin crosslinking in order to covalently immobilize 

the fibronectin molecules in place within the context of the hydrogel surface. Quantitation of 

ligand density on LysB10 surfaces was measured by means of an ELISA. As shown in Figure 

5.2, incorporation of fibronectin increased in a hyperbolic manner. Furthermore, there was a 
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marked increase in fibronectin incorporation on 10wt% gels compared to 6wt% hydrogels at 

equivalent fibronectin input concentrations. This phenomenon is most likely due to an increased 

density of LysB10 molecules at the surface of a 10wt% gel, which facilitates adsorption and 

subsequent crosslinking of adsorbed fibronectin.  

  



117 
 

 

 

 

 

Figure 5.1. Representative mechanical behavior of LysB10 hydrogels under a 

compressive load. Treatment groups include noncrosslinked LysB10, genipin-crosslinked 

LysB10, and adsorbed fibronectin that has been genipin-crosslinked with LysB10. (A) Stress-

strain behavior of 6wt% hydrogels. (B) Stress-strain behavior of 10wt% hydrogels. (C) Stress-

relaxation curves of 6wt% gels at 50% strain. (D) Stress-relaxation curves of 10wt% gels at 50% 

strain.  
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Table 5.1. Compressive modulus (in kPa) at varying strain percents. 

Strain % 6wt% 

(Noncrosslinked) 

 

E (kPa) 

6wt% 

(Crosslinked) 

 

E (kPa) 

6wt% 

(Fn-

crosslinked) 

E (kPa) 

10wt% 

(Noncrosslinked) 

 

E (kPa) 

10wt% 

(Crosslinked) 

 

E (kPa) 

10wt% 

(Fn-

crosslinked) 

E (kPa) 

20 9.2 ± 7.7 42.3 42.9 ± 5.0 44.6 ± 6.8 105.6 ± 7.1 108.8 ± 7.6 

30 19.4 ± 0.4 56.5 53.4 ± 5.6 60.5 ± 9.2 143.3 ± 17.8 150.2 ± 21.1 

40 48.7 ± 12.8 166.3 163.2 ± 12.7 98.3 ± 12.5 275.6 ± 10.5 278.6 ± 3.5 

50 161.8 ± 18.7 504.4 509.7± 33.5 213.8 ± 17.0 605.1 ± 78.1 634.7 ± 19.5 

60 321.7 ± 0.8 928.9 830.2 ± 38.8 331.8 ± 23.1 1048.9 ± 39.0 1056.6 ± 9.7 

E: compressive modulus, kPa: kilopascals, Fn: fibronectin 
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Figure 5.2. Fibronectin crosslinked onto 10wt% or 6wt% LysB10 hydrogel surfaces as a 

function of the amount of input protein. Data represent one of three similar experiments, with 

each condition run in quadruplicate. Fibronectin incorporation was assessed with the use of a 

fibronectin ELISA assay.  
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Biostability of Fibronectin-LysB10 hydrogels 

 Two strategies were employed in determining the bioactivity of fibronectin-LysB10. First, 

varying concentrations of fibronectin, ranging from 0.05mol% (50 ug/mL Fn) of total protein 

content  to 0.75mol% (1 mg/mL Fn), were uniformly blended into noncrosslinked 6wt% LysB10. 

Secondly, 1 mg/mL fibronectin solution was adsorbed onto the LysB10 hydrogel surface for 6 

hours. A 50ug/mL fibronectin solution was adsorbed onto polystyrene and served as a positive 

control against which all data was normalized. A 2 hour HUVEC adhesion assay (Figure 5.3A) 

demonstrated that increasing fibronectin incorporation in LysB10 blends incrementally 

increased cell adhesive response. However, the most effective formulation utilized fibronectin 

adsorption onto the substrate surfaces. 

 Chemical crosslinking of the lysine residues was previously utilized as a means of 

stabilizing the intermolecular physical crosslinks within LysB10. This crosslinking strategy was 

shown to improve biostability and mechanical properties of LysB10 films. To explore the 

biostability and associated bioactivity of incorporated fibronectin to sustain HUVEC adhesion, 

non-crosslinked and genipin-crosslinked fibronectin-LysB10 gels were allowed to incubate in 

PBS for 1 week, with daily PBS changes. Following the 1 week incubation period, a 2 hour 

adhesion assay was performed. As seen in Figure 5.3B, there were no significant differences 

between crosslinked and non-crosslinked Fn-LysB10 blends. However, crosslinking of 

adsorbed Fn-LysB10 gels did preserve fibronectin bioactivity, while non-crosslinked hydrogels 

exhibit a muted cell response due to fibronectin loss over the one week PBS incubation period. 

HUVEC Proliferation 

Cell proliferation over a 48-hour period on treated hydrogels was next quantified (Figure 5.4). A 

750 ug/mL fibronectin solution was uniformly blended into LysB10, which correlated to 0.5mol% 

incorporation into 6wt% LysB10 gels, and 0.33mol% of 10wt% LysB10 gels. An additional 
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treatment group included the adsorption of fibronectin onto the gel surfaces. A fibronectin 

surface density of approximately 82 fmol/cm2 was achieved by adsorbing 1mg/mL  fibronectin 

onto 6wt% gels and 0.25 mg/mL fibronectin onto 10wt% gels. A maximal surface density of 153 

fmol/cm2 was achieved by adsorbing 1 mg/mL fibronectin onto 10wt% gels. All LysB10 

hydrogels were crosslinked with genipin. Adsorbed fibronectin on polystyrene served as a 

positive control. Results indicate that fibronectin-LysB10 blends were able to stimulate a two-

fold increase in HUVEC number, while surface immobilized fibronectin-LysB10 supported a 

three-fold increase in cell number. Although proliferation rate was similar on both 10wt% and 

6wt% adsorbed Fn-LysB10 gels, there was a 24% increase in cell number on the modified 

10wt% gels compared to the 6wt% hydrogels. Thus, surface modified 10wt% LysB10 most 

closely matched the proliferative behavior of HUVECs on the positive control (adsorbed 

fibronectin on polystyrene).  

HUVEC Migration 

Radial migration is a key factor in endothelialization of a biomaterial surface. To evaluate 

the ability of treated LysB10 gels to modulate cell migration, HUVECs were seeded onto an 

outer annulus area and monitored for motility into an inner radial zone over a 36 hour period.  

Calcein AM staining of the migrated cells enabled fluorescent measurement of the number of 

migrated cells into the detectable inner zone, which was normalized against the number of 

migrated cells on fibronectin-coated polystyrene (Figure 5.5). While unmodified LysB10 

hydrogels were unable to support cell migration, 6wt% Fn-LysB10 gels did stimulate HUVEC 

motility across their surfaces. However, on 10wt% Fn-LysB10 hydrogels, only those gels with 

surface-immobilized fibronectin were able to enhance HUVEC motility. In both 10wt% and 6wt% 

LysB10 gels, surface treatment with fibronectin was the most effective in stimulating HUVEC 

migration. 
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Figure 5.3. (A) 2 hour HUVEC adhesion on uniform blends of fibronectin and 6wt% LysB10, as 

well as surface-adsorbed fibronectin. 50 ug/mL fibronectin in PBS was allowed to adsorb to 

polystyrene overnight and served as a positive control. All data was normalized to this 

fibronectin control. (B) Gels were placed in PBS for 1 week prior to performing a 2 hour 

adhesion assay to determine their biostability and associated bioactivity. The figure above 

demonstrates that crosslinking of the gels preserves fibronectin bioactivity, while non-

crosslinked hydrogels exhibit a muted cell response due to fibronectin loss over the 1 week PBS 

incubation period. * p<0.05 compared to non-crosslinked counterparts. 
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Figure 5.4. HUVEC growth on crosslinked Fn-LysB10 gels over a 48 hour period. Cells 

were seeded at a density of 5000 cells/well in low-serum media. After a 2 hour adhesion period, 

non-adherent cells were removed and complete media was added to each well. The cells that 

were maintained in culture for another 48 hours prior to performing the cell adhesion assay. (A) 

Cell growth over a 48 hour period on 6wt% LysB10-Fn gels and (B) 10wt% LysB10-Fn gels. 
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HUVEC Spreading 

 Since HUVECs assemble robust focal adhesions containing clustered integrins and 

intracellular structural and signaling proteins, focal adhesion assembly as well as cytoskeletal 

organization on the engineered interfaces was examined. In particular, two markers were 

chosen to further evaluate cell function: F-actin stress fibers and vinculin, a focal adhesion 

associated protein that functions as a linker between actin filaments and integrins (Figure 5.6). 

Well-developed actin stress fiber network and vinculin clustering was apparent with fibronectin-

coated substrates. However, on LysB10 alone, actin and vinculin were nonspecifically 

distributed throughout the few adherent cells, which assumed rounded morphologies. These 

results further confirm that cell adhesion is mediated through integrin-ligand binding, and that 

the fibronectin-coated surfaces of both 6wt% and 10wt% crosslinked gels are sufficiently robust 

to induce cytoskeletal organization and focal adhesion formation characteristic of well-spread 

cells. While a monolayer of HUVECs with characteristic ―cobblestone‖ morphology was 

observed on all crosslinked Fn-LysB10 gels and 10wt% noncrosslinked Fn-LysB10, unique 

endothelial cell morphology was observed on non-crosslinked 6wt% LysB10 that was treated 

with fibronectin (Figure 5.7). Vinculin and actin staining revealed that cordlike structures and 

networks of elongated HUVECs were formed after 2 hours in culture, indicating tubule 

formation. These results suggest that both ligand density and substrate stiffness play important 

roles in defining endothelial cell behavior. 
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Figure 5.5. HUVEC migration into detection zone on (A) 6wt% crosslinked hydrogels and (B) 

10wt% crosslinked gels. Cells were seeded onto an outer annulus area and monitored for 

motility into an inner radial zone over a 36-hour period.  Quantitation was achieved with 

fluorescent measurement of the number of migrated cells into the detectable inner zone, which 

was normalized against the number of migrated cells on fibronectin-coated polystyrene .*p<0.05 

compared to unmodified LysB10. 
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HUVEC Quiescence/Activation State 

 Further functionality of the HUVECs was assessed with immunofluorescence staining of 

the cellular adhesion molecules ICAM-1 and E-selectin, which are upregulated in activated 

HUVECs and mediate rolling of blood leukocytes in microvessels at sites of inflammation [336]. 

The functional state of an endothelial cell monolayer determines its ability to act as a 

thromboresistant barrier for blood-contacting material applications. Therefore, the success of an 

endothelialized surface is dependent on either activation or quiescence of the endothelial cells. 

Cells that were cultured on fibronectin-coated polystyrene and maintained in culture overnight in 

serum-free media assumed a quiescent state, with little ICAM-1 and E-selectin expression on 

the cell surface. Activation of HUVECs was achieved by adding 100ng/mL TNF-alpha to the 

media for 4 hours. The positive and negative controls were compared to those cells adherent for 

4 hours in serum-free media on crosslinked Fn-LysB10 gels. Limited ICAM-1 and E-selectin 

staining was observed on fibronectin-coated LysB10 compared to the activated control. Thus, 

endothelial cells are not only able to adhere, proliferate, and migrate on LysB10 substrates 

coated with fibronectin, but can maintain a quiescent state phenotype (Figure 5.8). 
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Figure 5.6. Representative confocal images of HUVECs cultured on crosslinked LysB10 

gels for a period of 2 hours in serum-free media. Red bars represent 20um. 1 mg/mL 

fibronectin was adsorbed onto LysB10 gels and crosslinked into place with genipin. 

Fluorescently labeled actin is shown in red (A, C, E, G, I), while vinculin is displayed in green (B, 

D, F, H, J). 
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Figure 5.7. Representative confocal images of HUVECs cultured on uncrosslinked Fn-

LysB10 gels for a period of 2 hours in serum-free media. Red bars represent 20um. 1 

mg/mL fibronectin was adsorbed onto LysB10 gels for 6 hours prior to cell seeding. 

Fluorescently labeled actin is displayed in red (D), while vinculin is displayed in green (A, B, C). 
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Mesenchymal stem cell adhesion and proliferation on surface immobilized Fn-LysB10 

 Mesenchymal stem cell behavior on fibronectin-treated LysB10 gels was determined 

with adhesion and proliferation assays. In particular, fibronectin density and LysB10 density 

were modulated to optimize MSC response to the material properties. 1mg/mL  fibronectin was 

surface-adsorbed onto 6wt% gels and 0.25 mg/mL fibronectin was adsorbed onto 10wt% gels, 

which correlated to a surface density of approximately 82 fmol/cm2. 1 mg/mL fibronectin was 

adsorbed onto 10wt% gels in order to maximize surface fibronectin density at 153 fmol/cm2. As 

Figure 5.9 demonstrates, hydrogel formulations without fibronectin were unable to support MSC 

adhesion and proliferation. While a fibronectin density of 82 fmol/cm2 on both 6 and 10wt% 

LysB10 did significantly increase adhesion and proliferation rate compared to LysB10 alone. 

Maximal adhesive and proliferative responses were achieved with 10wt% gels of 153 fmol 

fibronectin ligand/cm2.  

Analysis of mesenchymal stem cells on collagen-fiber reinforced elastin-like sheets 

 Previous work in our lab has demonstrated the application of acellular collagen fiber-

reinforced elastin composites in vascular graft and hernia patch engineering [333]. We sought to 

take this process a step further by replicating the structural hierarchy of the tissue and seeding 

the acellular matrix with mesenchymal stem cells. The immunomodulatory behavior of 

mesenchymal stem cells and their multipotency make them a promising therapeutic for tissue 

regeneration and an attractive cell source for a broad range of tissues.  
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Figure 5.8. Representative confocal images of HUVECs cultured on various substrates.  

Cells that were cultured on fibronectin-coated slides without TNFalpha stimulation (A & B) 

maintained a quiescent phenotype. Activation was achieved with the addition of TNFalpha to the 

culture medium (G & H). HUVEC activation or quiescence was compared to that on crosslinked 

Fn-modified LysB10 films (C, D, E, & F). Markers of HUVEC activation were ICAM1-1 (A,C, E, 

& G) and E-selectin (B,D, F, & H). Red bars signify 20um. 
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Figure 5.9. (A) pMSC 2 hour adhesion assay on crosslinked LysB10 gels with surface-

immobilized fibronectin. 50 ug/mL fibronectin in PBS was allowed to adsorb to polystyrene 

overnight and served as a positive control. All data was normalized to this fibronectin 

control.*p<0.05 compared to LysB10-only counterparts. (B) pMSC proliferation over a 48-hour 

period on crosslinked LysB10 gels with surface-immobilized fibronectin. 
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Tissue constructs were formed first as 50 micron-thick single sheets of collagen fiber 

embedded within a thin LysB10 film. Biofunctionalization of the protein sheet was achieved with 

fibronectin immobilization onto the sheet surface. MSCs were seeded onto the bioactive 

scaffolds, and then appositioned into multilamellar constructs. Two or three layers of the cell-

seeded protein sheets were sandwiched and held together between nylon screens with 70 

micron pores. These constructs were then cultured in vitro for one week to enable cellular matrix 

deposition and interlamellar bonding. After one week in culture, weak lamellar bonding was 

observed. Furthermore, as seen in Figure 5.10, MSCs remained viable on single protein sheets 

and within multilamellar constructs. While laminates remained intact in cell culture medium and 

PBS without external support, they were unable to withstand high shear forces during handling, 

during which time delamination of the layers was occasionally observed. Interlamellar bonding 

will be improved by increasing the culture period to two weeks or longer to allow for further 

matrix deposition and construct maturation. 

Histological analysis of cells cultured for 72 hours on the surfaces of single protein 

sheets revealed a uniform, dense cell layer at the scaffold surface, with no infiltration through 

the thickness of the films (Figure 5.11A). No glycosaminoglycan deposition was observed at the 

cell-sheet interface (Figure 5.11 B). After trilayer formation and one-week culture period (Figure 

5.11C), the cell layers fused in the contacting region between lamellae, forming a thin inter-

lamellar space, but did not infiltrate through the layers. Alcian blue stain with nuclear fast red 

counterstain of a bilamellar construct revealed intermittent glycosaminoglycan deposition by 

MSCs (Figure 5.11D). However, it is evident that further construct maturation in culture is 

required to strengthen interlamellar adhesion and enhance matrix deposition.  
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Figure 5.10. Representative confocal images of MSC viability on protein sheets. Cell-

seeded constructs were incubated in Calcein AM solution for 1 hour prior to imaging. (A) MSC 

viability on 40 micron-thick single protein sheet immediately following two-stage cell seeding 

protocol. (B) MSC viability on 40 micron-thick single protein sheet after culturing to confluence. 

(C) Bilayer laminate of cell-seeded protein construct. Cell viability within a tri-lamellar construct 

is visualized in (D) top layer (E) middle layer and (F) bottom layer of construct. Red bars 

represent 50 microns. 
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Figure 5.11. Histological analysis of MSC-seeded protein fiber sheets. Samples were 

cross-sectioned in order to visualize individual layer thickness and interlamellar bonding. (A) 

H&E staining of a single protein sheet retrieved after 72 hours in culture demonstrates MSC 

adhesion to the surface of the elastin-like sheet. (B) Alcian blue stain with nuclear fast red 

counterstain of a single sheet reveals limited glycosaminoglycan deposition. (C) H&E staining of 

a trilamellar construct after one week in culture demonstrates limited MSC infiltration through 

the layers, with weak interlamellar bonding. Asterisks highlight the interlamellar space. (D) 

Alcian blue stain with nuclear fast red counterstain of a bilamellar construct reveals intermittent 

glycosaminoglycan deposition by MSCs. Weak interlamellar adhesion is highlighted with an 

asterisk, where partial delamination was observed. Arrows indicate the presence of collagen 

fibers. Bars represent 50 microns. 
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In vitro evaluation of inflammatory response of MSCs on multilamellar protein sheets: 

Gene expression of IL-1beta and COX-2 

Previous in vivo studies with LysB10 and other elastin-mimetics have demonstrated 

their minimal inflammatory response. However, it is difficult to predict MSC behavior within a 

multilamellar collagen fiber-reinforced elastin-like construct. Therefore, the inflammatory 

response of MSCs cultured within multilamellar protein sheets was characterized using real time 

RT-PCR. pMSCs were seeded onto tissue culture-treated polystyrene with and without 10 

ug/mL lipopolysaccharide (LPS) added to the culture medium for 96 hours. Cell-seeded 

trilamellar constructs were cultured for 96 hours prior to RNA isolation as well. Gene expression 

of interleukin-1beta (IL-1beta) and cyclooxygenase 2 (COX-2) was evaluated in quiescent cells, 

LPS-activated cells, and cell-seeded trilamellar constructs (n=3). 

 The PCR results demonstrate that expression of the COX-2 gene was similar to that of 

the IL-1beta gene (Figure 5.12). Furthermore, cells grown in the presence of LPS had a 

significantly higher expression of the inflammatory markers IL-1beta and COX-2 compared to 

non-activated cells (negative control). However, gene expression of cells cultured within the 

collagen-LysB10 scaffolds was comparable to that of cells grown on tissue culture polystyrene 

(negative control). Thus, we were able to demonstrate that MSCs interspersed within the 

multilamellar LysB10 constructs can maintain their anti-inflammatory phenotype. 
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Figure 5.12. Relative interleukin 1beta and cyclooxygenase 2 gene expression by porcine 

mesenchymal stem cells cultured on tissue culture polystyrene (TCPS, negative control), TCPS 

with 10 ug/mL LPS (positive control), and cell-seeded trilamellar collagen-reinforced elastin-like 

sheets after 96 hours in culture. The endogenous control used was the housekeeping gene 

GAPDH. The expression data was normalized to the TCPS negative control. *p<0.01 compared 

to the TCPS negative control. N=3 
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5.4 DISCUSSION 

Fibronectin-LysB10 

Recently, we reported a new class of recombinant elastin-mimetic protein polymer, 

LysB10, for the purpose of designing materials for small-diameter vascular grafts [323]. The 

goal of this study was to add desired biological functionality to the recombinant elastin analog 

LysB10 in order to enhance cell adhesion and migration to an otherwise non-adhesive 

substrate. 

  The functional importance of the endothelium in controlling thrombosis and inflammation 

has guided attempts to closely mimic the native arterial wall in the design of a new generation of 

vascular prostheses. The endothelial lining in the native vasculature not only serves as a 

protective, thromboresistant barrier between blood and the surrounding tissue, but also controls 

vessel tone, platelet activation and leukocyte adhesion. While numerous strategies exist to 

improve cell adhesion and retention on vascular prostheses, this study focuses on the 

immobilization of fibronectin on LysB10. Fibronectin serves as a multifunctional ligand that 

binds directly to cells, as well as heparin, collagen, and fibrin molecules, thereby modulating the 

ECM microenvironment [156-158]. Pretreatment of vascular grafts with fibronectin has been 

investigated by several groups in order to improve in vitro and in vivo endothelialization of graft 

surfaces [160]. For example, Nishibe and colleagues covalently bonded fibronectin to the 

luminal surface of ePTFE grafts and demonstrated accelerated transmural tissue ingrowth and 

neointima formation in a canine model [161]. Although there were concerns that fibronectin 

treatment would increase graft thrombogenicity due to platelet activation and adhesion, no 

significant decrease in patency was observed. On the contrary, thrombus area was significantly 

lower on fibronectin-coated grafts compared to untreated ePTFE grafts. 
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Two formulations of fibronectin-LysB10 hydrogels were explored: (i) uniformly blended 

fibronectin-LysB10 solutions that were formed into hydrogels and  (ii) LysB10 hydrogels that 

were surface-adsorbed with fibronectin. While both formulations with 0.75mg/mL fibronectin 

input concentrations were able to support similar levels of endothelial cell adhesion, the latter 

proved to be more effective in eliciting endothelial cell proliferation and migration. This 

phenomenon can be attributed to the fact that most of the bioactive epitopes in uniform 

fibronectin blending are hidden within the hydrogel bulk, while surface-adsorbed fibronectin 

allows for concentrated ligand coating at the cell-material interface over a prolonged period of 

time. Thus, mechanical testing, endothelial cell spreading studies, and mesenchymal stem cell 

characterization were conducted on surface-immobilized Fn-LysB10 hydrogels. 

The adsorption profile of fibronectin on 10wt% hydrogels was greater than that on 6wt% 

gels (Figure 5.2). This phenomenon is most likely due to an increased density of LysB10 

molecules at the surface of a 10wt% gel, which facilitates adsorption and subsequent 

crosslinking of fibronectin. Therefore, two ligand densities were chosen for cell experiments: (i) 

a fibronectin surface density of approximately 82 fmol/cm2 was achieved by adsorbing 1mg/mL  

fibronectin onto 6wt% gels and 0.25 mg/mL fibronectin onto 10wt% gels. (ii) A maximal surface 

density of 153 fmol/cm2 was achieved by adsorbing 1 mg/mL fibronectin onto 10wt% gels. 

To explore the biostability and associated bioactivity of incorporated fibronectin, non-

crosslinked and genipin-crosslinked fibronectin-LysB10 gels were allowed to incubate in PBS 

for 1 week, with daily PBS changes. Following the 1 week incubation period, a 2 hour adhesion 

assay was performed. Intermolecular crosslinking with genipin is thought to occur via the 

primary amine groups and the C3 carbon of genipin, with subsequent dimerization produced by 

radical reactions [275-280] . It is important to note that crosslinking of the primary amine groups 

in fibronectin did not result in loss of bioactivity. In fact, crosslinking of fibronectin-adsorbed 

LysB10 preserved endothelial cell adhesion, while non-crosslinked hydrogels exhibited a muted 
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cell response due to fibronectin loss over the one-week PBS incubation period. This suggests 

that the bioactive sites within the fibronectin molecule were not disrupted by crosslinking activity.  

The mechanical properties of the extracellular matrix can play a vital role in determining 

cell fate. In particular, cell response to substrate stiffness can influence a range of processes, 

including adhesion, proliferation, migration, tubulogenesis, focal adhesion formation, and 

differentiation potential [337-340]. Therefore, in generating an elastin-mimetic for vascular tissue 

engineering applications, it is important to not only evaluate fibronectin ligand presentation on 

the hydrogel surface, but to also determine its mechanical properties and the interplay between 

the two factors [262, 341]. Since cell deformation is one process that is thought to be important 

in the mechanotransduction pathway, hydrated gels were subjected to compressive loading 

[342]. Previous investigations have controlled compressive moduli by varying the degree of 

crosslinking in polyacrylamide gels or altering collagen gel and matrigel concentrations [241, 

343-347]. In a similar manner, our treatment groups included noncrosslinked samples, genipin-

crosslinked gels, and adsorbed fibronectin that was genipin-crosslinked onto LysB10. 6wt% and 

10wt% formulations were chosen in order to examine a broad range of substrate stiffness. 

Moreover, previous studies in our lab have utilized these two formulations in applications 

ranging from hydrogel coatings to composite collagen-elastin vascular grafts. 

In general, cell adhesion and growth increase as substrate stiffness increases, until a 

threshold is reached, beyond which cell response does not vary. For example, a greater 

fibroblast proliferation rate has been reported on 14 kPa gels compared to 4.7 kPa gels [348]. A 

two-fold increase in apoptosis has also been reported on softer gels compared to stiffer ones. 

Thus, increases in cell number on stiff substrates can be attributed to both increased 

proliferation and decreased apoptosis [348]. Moreover, stiffer substrates have been reported to 

promote cell spreading, with the greatest degree of spreading noted on 10kPa gels, with no 
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further increase in spread area beyond that value [349, 350]. This observation confirms previous 

studies that noted increased recruitment of vinculin to adhesion sites on stiffer substrates [351].  

The interplay between stiffness and adhesive ligand presentation is apparent when 

comparing endothelial cell proliferation on LysB10 gels. Both crosslinked 6wt% and 10wt% Fn-

LysB10 hydrogels display relatively high compressive moduli, even at low strains (42 kPa and 

106 kPa, respectively). Results in Figure 5.4 and Figure 5.5 demonstrate that an increase in 

compressive modulus from 42 kPa to 106 kPa, with equivalent fibronectin density presentation, 

does not alter endothelial cell proliferation and migration. While adhesion levels, proliferation 

rate, and migration are relatively constant on those substrates grafted with 82 fmol 

fibronectin/cm2, a greater fibronectin density of 153 fmol/cm2 on 10wt% gels stimulates the 

highest endothelial proliferation and migration rate, closely matching that of fibronectin-

adsorbed polystyrene. It is difficult to predict the outcome of a higher fibronectin density on 

6wt% gels, as the maximal adsorption range that could be reasonably achieved on this 

substrate was approximately 82 fmol/cm2. Significantly, Underwood and Bennet have reported 

that a fibronectin density of 140 fmol/cm2 is required in inducing maximal cell adhesion [258]. 

The formation of blood vessels from endothelial cells, or tubulogenesis, is a multistep 

process in which alignment of endothelial cells and generation of a patent lumen is induced by 

biochemical and mechanical factors [339, 352, 353]. Numerous groups have demonstrated that 

the formation of cordlike structures and networks of elongated cells are governed by a 

combination of ligand density and substrate modulus. For example, Califano and colleagues 

observed cord-like formation of endothelial cells on 1 kPa polyacrylamide substrates derivatized 

with type I collagen, while cells on 10 kPa gels formed evenly distributed monolayers [354]. 

However, when collagen density was decreased 100-fold, network formation was seen on 10 

kPa gels as well. Similarly, Deroanne and colleagues have reported the formation of cordlike 

structures on 17 kPa matrigel while cells on 75 kPa gels formed a monolayer [355]. Our own 



141 
 

morphological observations confirm previous reports that a decrease in mechanical resistance 

is sufficient to switch endothelial cell patterning from a monolayer to differentiated tube-like 

structures. As seen in Figures 5.6 and 5.7, a decrease in compressive modulus from 42kPa 

(crosslinked 6wt% gels) to approximately 9 kPa does trigger formation of elongated cells and 

the assembly of tube-like structures. 

The interplay between substrate stiffness and ligand presentation also directs 

mesenchymal stem cell behavior. Mesenchymal stem cells have emerged as a promising 

therapeutic modality for tissue regeneration and repair. Mesenchymal stem cells are multipotent 

adult stem cells that can differentiate into a number of cell types, including osteoblasts, 

chondrocytes, skeletal muscle cells, vascular endothelial cells, and cardiomyocytes [321, 324-

326].  They are ideal for tissue engineering applications in that they are able to adhere and 

expand in culture. Moreover, MSCs have been shown to display immunosuppressive properties. 

Although the molecular mechanisms are not completely understood, numerous studies have 

revealed that MSCs avoid allorecognition and interfere with dendritic cell and T-cell function 

[252, 328, 331].  Similarities of porcine MSCs with their human counterparts make them ideal 

candidates for in vitro studies and preclinical investigations, and have contributed to enhanced 

wound healing, angiogenesis, myocardial viability, and bone formation, to name a few 

applications [332]. Rowlands and colleagues have found that the attachment of MSCs on 

polyacrylamide gels is dependent not only on gel stiffness, but also on the type of ECM 

molecule presented on the surface of the gel [345]. In general, stiffer gels supported higher cell 

adhesion and proliferation than softer ones (range explored was 0.7 kPa to 80 kPa), with similar 

proliferation rates on gels of 25 kPa and higher. Moreover, at 25 kPa and higher, fibronectin-

coated gels supported the highest number of adherent MSCs, with collagen I, laminin, and 

collagen IV coatings supporting adhesion to a lesser degree. Our studies of MSC behavior on 
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Fn-LysB10 gels yielded similar results to those of endothelial cells, with maximal adhesive and 

proliferative responses achieved with crosslinked 10wt% gels of 153 fmol fibronectin ligand/cm2.  

Although the controlled differentiation of mesenchymal stem cells is outside the scope of 

this study, other investigators have utilized substrate stiffness to direct MSC differentiation as 

well. In particular, Engler and colleagues, along with Rowlands et al., have shown that lineage 

specification can be directed by tuning the elasticity of the matrix [344, 345]. For example, 

elastic moduli of collagen I-coated polyacrylamide ranging from 0.1-1 kPa simulated that of the 

brain, moduli of 8-17 kPa mimicked that of muscle, and moduli greater than 34 kPa was 

comparable to that of collagenous bone. Using these guidelines, the investigators were able to 

demonstrate MSC differentiation into neurogenic, myogenic, and osteogenic precursors when 

cultured on gels of the appropriate elasticity. 

Cell Sheet Engineering 

Collagen and elastin networks contribute to highly specialized biomechanical responses 

in numerous tissues and species.  Specifically, acellular composite sheets were previously 

produced with properties that ranged over 13-fold in elongation to break (23 - 314%), six-fold in 

Young‘s modulus (5.3 to 33.1 MPa), and more than two-fold in tensile strength (1.85 to 4.08 

MPa), exceeding that of a number of native human tissues, including urinary bladder, pulmonary 

artery, and aorta [333]. Consequently, Caves et al. demonstrated the application of collagen 

fiber-reinforced LysB10 composites in vascular graft and hernia patch engineering [333]. Based 

on improved cellular response to fibronectin-coated LysB10, we sought to take this process a 

step further by replicating the structural hierarchy of native tissue and seeding the acellular 

matrix with mesenchymal stem cells. The laminated geometry offers the potential to incorporate 

living cells at controlled spatial intervals throughout a stacked sheet, similar to cell sheet tissue 

engineering methods.  
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While mesenchymal stem cells remained viable within the bilamellar and trilamellar 

constructs, the one week culture period limited ECM deposition within the interlamellar space, 

and resulted in weak interlamellar bonding. Delamination of the constructs can be addressed in 

a number of ways. Increase in culture time can facilitate cellular infiltration through the lamellae 

and allow for extracellular matrix production to strengthen interlamellar bonding. Furthermore, 

the addition of sodium ascorbate has been utilized by L‘Heureux and colleagues to accelerate  

cell-secreted matrix production [356]. 

After examining MSC viability, we evaluated the inflammatory potential of collagen-

reinforced LysB10 trilamellar scaffolds intended for use in stem cell engineering of tissues. 

Gene expression of the inflammatory markers interleukin-1beta (IL-1beta) and cyclooxygenase 

2 (COX-2) demonstrated that MSCs interspersed within the multilamellar constructs were able 

to maintain their anti-inflammatory phenotype [320]. These results confirm previous 

observations that protein polymer blocks composed of VPGVG, VPGKG, VPGEG, IPAVG, and 

VPAVG induce minimal inflammatory and allergic reactions [232, 357, 358]. While antibodies 

can be raised against peptides derived from the hydrolysis of native elastin, neither VPGVG nor 

VPAVG peptides are among the recognized sequences [359]. Further biocompatibility studies 

on LysB10 have revealed long-term in vivo biostability and minimal inflammatory responses, 

which makes it an ideal candidate for structural components of engineered tissues and 

biocompatible surface coatings [14].  

Three-dimensional reconstruction of functional tissues with cell sheet technology has 

been extensively explored. For example, the temperature-responsive polymer poly(N-

isopropylacrylamide) (PIPAAm) enables culturing of cells and facilitates the harvest of confluent 

cells as intact sheets [360, 361]. Promising applications of this technology have been the 

layering of mesenchymal stem cell sheets for the development of tissue-engineered cardiac 

patches as well as the creation of organ-like tubular structures [329, 362]. Other investigators 
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have utilized prolonged culture periods of up to ten weeks and the addition of media 

supplements to stimulate increased matrix deposition of cultured cells onto polymer scaffolds in 

order to generate mechanically-robust cell sheets [54, 356]. The use of collagen fibers and 

elastin-mimetic recombinant proteins allows greater independent control of scaffold properties, 

including compliance, resilience, strength, and anisotropy, than those tissue engineered 

constructs which rely on direct assembly of cultured cell sheets. The layering of two to three 

individual cell sheets has provided the groundwork for future investigations, in which three-

dimensional tissues will be comprised of eight to ten cell sheets.  
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CHAPTER 6 

CONCLUSION AND FUTURE DIRECTIONS 

 

Previous studies in our lab generated the elastin-like protein polymer LysB10, which 

was designed with the capability of physical and chemical crosslinks, and was shown to display 

a range of elastomeric properties that more closely matched those of the native artery. Several 

investigators have endeavored to not only emulate the mechanical properties of the vasculature, 

but to also mimic the biologic responsiveness of the blood vessel. In particular, the poor patency 

rates of vascular grafts composed of synthetic polymers have motivated strategies to 

functionalize the luminal surface of grafts in order to promote endothelialization, and thereby 

limit thrombosis and inflammation. Consequently, this dissertation addresses three approaches 

to modulating cellular behavior on elastin-mimetic analogs with the goal of promoting vascular 

wall healing and tissue regeneration: (1) genetic engineering of elastin-like protein polymers 

(ELPs) with cell-binding domains, (2) biofunctionalization of elastin-like protein polymers via 

chemoselective ligation of bioactive ligands, and (3) incorporation of matrix protein fibronectin 

for engineering of cell-seeded multilamellar collagen-reinforced elastin-like constructs. 

 

Chapter 3. Genetic engineering of elastin-mimetic protein polymer with cell-binding 

domains. The development of genetic and recombinant protein engineering has enabled the 

synthesis of bio-inspired protein polymers composed of repetitive amino acid sequences and 

peptide blocks, whose structural complexity impart specific mechanical, chemical, and biologic 

properties. The most significant impact of this strategy is the capacity to introduce precise 

changes in the amino acid sequence to modulate properties of the entire protein network. This 
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―bottom-up‖ approach to materials design enables researchers to finely modulate the 

nanostructure of a material in order to influence its bulk properties  

In the present study, we sought to design a second generation elastin-mimetic triblock 

copolymer with the ability to guide endothelial cell behavior while maintaining the elastomeric 

properties of the protein polymer. Adhesion-promoting sequences, ligand density, presentation, 

and clustering, and ELP morphology were manipulated in order to tailor material properties. To 

this end, an alphavbeta3-associated ligand isolated from a pro-angiogenic, extracellular matrix–

associated protein CCN1 was cloned into the central, hydrophilic domain of LysB10. The long-

term goal encompassing this work was to utilize a biomolecular engineering approach that 

introduced cell-adhesive peptide motifs within a bio-inspired recombinant elastin-like protein 

polymer in order to elicit an integrin-mediated cellular response. The ability to precisely control 

ligand presentation is an important design parameter, and ultimately directs cell fates such as 

adhesion, migration, focal adhesion assembly, spreading, proliferation, and differentiation. Thus, 

endothelial cell adhesion, migration, and morphology were evaluated as markers of surface 

functionality on the recombinant protein polymers. The improved biological activity of V2 

engineered surfaces compared to LysB10 alone can be attributed to enhanced binding of 

integrin alphavbeta3.  This approach of conveying integrin specificity provides a robust 

biomolecular strategy to elicit directed biological responses on the biomaterial interface. In 

particular, the generation of modified protein polymers presents a clinically relevant approach to 

promoting endothelialization of vascular tissue-engineered scaffolds and coatings.  

CCN1 is a matrix-associated protein known to play a critical role in vascular tissue 

regeneration and wound healing. This 40 kDa heparin-binding protein displays pro-angiogenic 

activities, including endothelial cell adhesion, migration, proliferation, and tubule formation [191]. 

The protein also promotes migration and adhesion of circulating endothelial progenitor cells 

(EPCs), while inducing them to secrete various growth factors and chemokines to remodel the 
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vascular wall [194]. Consequently, future studies will evaluate the ability of the V2 sequence to 

encourage EPC adhesion and migration within the context of the elastomeric recombinant 

protein polymer.  

The ability of V2 polymer to ultimately facilitate endothelialization and vascular wall 

regeneration must be demonstrated in vivo. We have previously coated ePTFE grafts with thin 

ELP hydrogel layers and defined non-thrombogenicity with an ex vivo baboon shunt model [15]. 

However, characterization of the extent of endothelialization and tissue integration will require in 

vivo studies as well as in vitro experiments that incorporate shear stress as a factor of 

endothelial cell retention. Two approaches can be taken to evaluate the utility of V2 as an 

appropriate biomaterial for generating clinically durable vascular substitutes; (1) The generation 

of a non-thrombogenic acellular conduit will stimulate in situ arterial wall regeneration by 

displaying cell-binding sites and matrix assembly motifs for migration and proliferating vascular 

wall cells that are repopulating the construct, and (2) fabrication of endothelial cell-seeded 

constructs will promote accelerated vascular tissue regeneration via increased endothelial cell 

retention.  

 

Chapter 4. Chemical conjugation of cell-binding domain to elastin-mimetic protein 

polymer. While genetic engineering has allowed researchers to recombinantly express elastin 

polypeptides with cell-binding domains and other bioactive ligands to direct cellular behavior, 

chemical immobilization of short peptides to a recombinant protein polymer offers several 

advantages. Genetic cloning and recombinant protein expression is a time-intensive and 

expensive process, and therefore, is not an ideal tool for screening a wide range of bioactive 

domains. The synthesis of short peptides with functionalized endgroups does offer a more 

versatile approach for biomaterial testing. Furthermore, chemical synthesis offers the possibility 
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of incorporating ligands that cannot be processed via the biosynthetic machinery. Finally, 

peptide conjugation onto a polymer scaffold allows modulation of ligand presentation that is 

independent of the recombinant protein polymer.  

The aim of this study was to develop a strategy for chemoselective ligation of bioactive 

peptides to the recombinant elastin hydrogel LysB10. In particular, the carboxylic acid 

functional group on glutamic acid residues along the LysB10 polymer chain was utilized to 

chemically modify the recombinant protein polymer. It was hypothesized that the synthesis of 

thiolated LysB10 along with an RGD conjugate functionalized with a terminal maleimide group 

would provide an effective conjugation scheme for spatial presentation and localization of 

bioactive ligands on the LysB10 surface. Moreover, this controlled peptide presentation onto 

the functionalized hydrogel surface would stimulate cell adhesion and growth. This work is the 

first step in creating a model synthetic ECM for vascular tissue engineering applications, using 

ELPs as the base material, with which ligand presentation may be varied in a controlled 

manner. Although cellular behavior onto modified scaffolds was studied in the two-dimensional 

setting in this dissertation, many tissue engineering applications require the use of cells 

embedded within a three-dimensional matrix for tissue regeneration. In the future, examination 

of these integrin-specific interactions in a three-dimensional environment will be an important 

first step towards these applications. 

The results of this study demonstrated that chemical conjugation of a bioactive ligand via 

maleimide-thiol chemistry is a viable means of functionalizing surfaces of elastin-like hydrogels. 

HUVEC and MSC adhesion, actin fiber formation, proliferation, radial migration, and HUVEC 

activation states were characterized in order to evaluate the efficacy of RGD-functionalized 

LysB10. To our knowledge, this study is the first report of direct chemical ligation of moieties 

onto the surfaces of recombinant elastin-mimetic protein polymer hydrogels. 
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While RGD served as a proof-of-concept ligand for biofunctionalization chemistry, future 

studies will exploit the bioactivity of other ligands in enhancing endothelial and mesenchymal 

stem cell behavior on ELP surfaces. For example, while RGD lacks integrin specificity, cyclic 

RGD has been found to enhance alphavbeta3 integrin binding [165]. Moreover, the cyclic 

derivative has been known to lead to higher shear stress cell detachment resistance compared 

to linear peptides . In order to promote alpha5beta1-mediated adhesion, both the RGD 

sequence in the 10th type III repeat of fibronectin as well as its synergy site, the PHSRN 

sequence in the 9th type III repeat domain, are required to be presented together [164]. Another 

peptide with increased integrin affinity and selectivity is the sequence REDV, which binds to the 

integrin alpha4beta1, and thus, is capable of cellular interaction with leukocytes, endothelial 

cells, and some muscle and fibroblast cell lines, but not with platelets [169].  

Although beyond the scope of this dissertation, future studies will also explore the 

behavior of smooth muscle cells on ELP derivatives, and their ability to simulate the medial 

layer of native vasculature. Moreover, the potential of mesenchymal stem cells to differentiate 

into a vascular phenotype for graft engineering has been explored by a few investigators, with 

mixed results. Consequently, controlled presentation of bioactive ligands on elastin-like protein 

polymers may further elucidate the mechanisms that mediate mesenchymal stem cell 

differentiation pathways. Ultimately, the contribution of cell-seeding of various cell types onto an 

elastin-like vascular construct will be validated in vivo for restoration of a physiologic vascular 

wall.   

 

Chapter 5. Incorporation of matrix protein fibronectin into elastin-mimetic protein 

polymer blends and their application to cell-seeded vascular constructs.  While numerous 

strategies exist to improve cell adhesion and retention on vascular prostheses, this study 
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focused on the immobilization of fibronectin on LysB10. Fibronectin serves as a multifunctional 

ligand that binds directly to cells, as well as heparin, collagen, and fibrin molecules, thereby 

modulating the ECM microenvironment. Pretreatment of vascular grafts with fibronectin has 

been investigated by several groups in order to improve in vitro and in situ endothelialization of 

graft surfaces. Consequently, in generating an elastin-mimetic for vascular tissue engineering 

applications, we found that fibronectin immobilization via amine crosslinking onto LysB10 

enabled endothelial cell adhesion, proliferation, migration, and spreading, and mesenchymal 

stem cell adhesion and proliferation. Moreover, we found that the interplay between matrix 

stiffness and ligand presentation influenced a number of cell processes, including adhesion, 

proliferation, migration, tubulogenesis, and focal adhesion formation.  

Three-dimensional reconstruction of functional tissues with cell sheet technology has 

been extensively explored for use in tissue regeneration. Moreover, collagen and elastin 

networks have been shown to contribute to highly specialized biomechanical responses in 

numerous tissues and species.  Previous investigations in the Chaikof lab have demonstrated 

the application of acellular collagen fiber-reinforced LysB10 composites in vascular graft [333] 

and hernia patch engineering [in press]. Based on improved cellular response to fibronectin-

coated LysB10, we sought to take this process a step further by replicating the structural 

hierarchy of native tissue and seeding the acellular matrix with mesenchymal stem cells. The 

laminated geometry offered the potential to incorporate multipotent cells at controlled spatial 

intervals throughout a stacked sheet, similar to cell sheet tissue engineering methods.  

After examining tissue structure and function with viability studies, histological analysis, 

and in vitro inflammatory responses, we found that cell-seeded multilamellar collagen-reinforced 

LysB10 scaffolds demonstrated enhanced biological properties, as well as previously reported 

mechanical stability. The use of collagen fibers and elastin-mimetic recombinant proteins allows 

greater independent control of scaffold properties, including compliance, resilience, strength, 



151 
 

and anisotropy, than those tissue engineered constructs which rely on direct assembly of 

cultured cell sheets. While the layering of two to three individual cell sheets has provided much 

of the groundwork, future investigations will rely upon the construction of three-dimensional 

tissues comprised of eight to ten cell sheets. This scale-up process will undoubtedly require 

further exploration of multiple factors, including the thickness of multilamellar units, diffusion 

limitations, and stimulation of angiogenesis within the matrix. 

While in vitro experiments that expose the constructs to physiological shear stress will 

further optimize and validate the use of cell-seeded collagen-fiber reinforced, elastin-mimetic 

constructs for vascular tissue engineering, in vivo implantation of the vascular tissue 

replacement will ultimately determine the patency of the composite vascular graft. Preliminary 

work conducted by other members in the Chaikof lab has explored the use of acellular vascular 

substitutes in a porcine carotid artery model. Further optimization to improve the patency rate of 

acellular and cellularized vascular substitutes will be dependent on a number of factors, 

including inflammatory responses, cell and tissue integration, mesenchymal stem cell 

differentiation, and shear-stress induced responses at the blood-material interface. 
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APPENDIX A 
 
 

 
Table A.1. Coding sequences of oligonucleotide cassettes employed for the construction of crosslinkable protein triblocks 
__________________________________________________________________________________________________________ 
Elastic-like Block 

 
Val Pro Gly Ala Gly Val Pro Gly Ala Gly Val Pro Gly Glu Gly Val Pro Gly 
GTT CCA GGT CGA GGC GTA CCG GGT GCT GGC GTT CCG GGT GAA GGT GTT CCA GGC 
Ala Gly Val Pro Gly Ala Gly 
GCA GGT GTA CCG GGT GCG GGT 

______________________________________________________________________________________________________________ 
Plastic-like Block 
 
 Ile Pro Ala Val Gly Ile Pro Ala Val Gly Ile Pro Ala Val Gly Ile Pro Ala 
      ATT CCG GCT GTT GGT ATC CCA GCT GTT GGT ATC CCA GCT GTT GGC ATT CCG GCT 
 Val Gly Ile Pro Ala Val Gly 
 GTA GGT ATC CCG GCA GTG GGC  
______________________________________________________________________________________________________________ 
Lysine Insert 
 
 Ile Pro Ala Val Gly Lys Ala Ala Lys Val Pro Gly Ala Gly 

ATT CCA GCT GTT GGT AAG GCG GCC AAG GTT CCA GGT GCA GGC 
______________________________________________________________________________________________________________ 
Modified Lysine Adaptor 
 

Val Pro Ala Val Gly Lys Val Pro Ala ….. Ile Pro Ala Val Gly Lys Ala Ala 
GTT CCA GCT GTT GGT AAG GTT CCA GCT    …... ATT CCA GCT GTT GGT AAG GCG GCC 
Lys Ala Stop 
AAG GCG TAA
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A.2 Synthesis of a recombinant elastin-mimetic triblock protein polymer LysB10 

Genetic engineering, expression, purification, and characterization of the elastin-mimetic 

protein polymer, designated LysB10, has been described elsewhere.  Briefly, the flanking 75 

kDa endblocks of the protein polymer contained 33 repeats of the hydrophobic pentapeptide 

sequence [IPAVG]5, and the central 58 kDa midblock consisted of 28 repeats of the elastic, 

hydrophilic sequence [(VPGAG)2VPGEG(VPGAG)2].  Additional sequences between blocks and 

at the C terminus include the residues [KAAK], which along with the N-terminal amine provide 

amino groups for chemical crosslinking.   

The protein polymer sequence is contained in a single contiguous reading frame within 

the plasmid pET24-a, which was used to transform the E. coli expression strain BL21(DE3).  

Fermentation was performed at 37°C in Circle Grow (QBIOgene) medium supplemented with 

kanamycin (50 μg/mL) in a 100 L fermentor at the Bioexpression and Fermentation Facility, 

University of Georgia.  Cultures were incubated under antibiotic selection for 24 hr at 37°C.  

Isolation of the LysB10 consisted of breaking the cells with freeze/thaw cycles and sonication, a 

high speed centrifugation (20,000 RCF, 40 min, 4°C) with 0.5% poly(ethyleneimine) to 

precipitate nucleic acids, and a series of alternating warm/cold centrifugations.  Each cold 

centrifugation (20,000 RCF, 40 min, 4°C) was followed by the addition of NaCl to 2M to 

precipitate the protein polymer as it incubated for 25 min at 25°C.  This was followed by warm 

centrifugation (9500 RCF, 15 min, 25) and resuspension of the pellet in cold, sterile PBS on ice 

for 10 to 20 min.  After 6 to 10 cycles, when minimal contamination was recovered in the final 

cold centrifugation, the material was subject to a warm centrifugation, resuspended in cold 

sterile PBS, dialyzed, and lyophilized.  Lyophilized protein was resuspended in sterile molecular 

grade water at 1 mg/mL and endotoxin levels were assessed according to manufacturer 

instructions using the Limulus Amoebocyte Lysate (LAL) assay (Cambrex).   

 



154 
 

APPENDIX B 

 

Protocol for solid phase peptide synthesis 

Synthesis scale: 0.4 mmol.  

Resin Used: Fmoc derivatized Rink amide resin that generates C-terminal amide. Loading 

capacity: 0.45 mmol/g.  Amount of resin used 1 g. 

1. Resin swelling: Weigh out 1 g of the resin; wash the resin with 20 mL dichloromethane 

for 5 min and drain. Repeat 3 times. 

2. Wash with 20 ml N,N-dimethylformamide (DMF) for 5 min and drain. Repeat 3 times. 
3. Fmoc Deprotection: Add 10 mL of 25% piperidine in DMF; Shake for 10 min and drain. 

Wash with 20 mL DMF and repeat once. 
4. Wash the resin with 20 mL DMF for 1 min and drain. Repeat 4 times. 
5. Prepare amino acid solution for coupling reaction.  

5 mL  of  1.6 mmol amino acid (4.0 eq) in DMF  
5 mL  of 1.6 mmol 2-(1H-benzotriazole-1-yl)-1,1,3,3,-tetramethyluronium 
hexafluorphosphate (HBTU) in DMF (4.0 eq) 
5 mL of 1.6 mmol HOBT in DMF (4.0 eq) 
5 mL   of 2.4 mmol diisopropylethylamine (DIEA) in DMF (6.0 eq) 
Mix amino acid and HBTU solution followed by HOBT and DMF. Add DIEA, 
shake for 3 min to preactivate the carboxylic acid. 

6. Add mixture from step 5 to the resin. Agitate the resin for 40 min and drain. 
7. Wash the resin twice with 20 mL DMF and repeat steps 5 and 6 one more time to ensure 

complete reaction. 
8. Repeat 3-7 for subsequent amino acids. 
9. Finally to cleave the peptide from resin, wash the resin once with 20 mL DCM and 

agitate the resin with 25 mL of TFA cocktail (95 % TFA, 2 % TIPS, 3 % water) 

 

Peptides used for synthesis: F-moc protected proline, serine, aspartic acid, glycine, arginine, 
glutamic acid(biotinyl-PEG), 3-maleimidopropionic acid. 
 

Solid phase peptide synthesis consists of assembling amino acids from the C-terminal to 

the N-terminal. The a-carboxyl group is attached via an acid-labile linker to a solid support resin. 

The amino terminal end of the amino acid is protected by a base-labile Fmoc (9-

fluorenylmethoxycarbonyl) protecting group while the side chains are protected by acid labile 

groups such at tertiary-butyl (tBu). After the first amino acid is loaded onto the resin, the Fmoc 

group is removed using piperidine (deprotection). A kaiser test is then performed to confirm that 
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all the Fmoc protecting groups are removed. The next Fmoc amino acid is then attached to the 

growing peptide by activation of its carboxyl group (coupling). A kaiser test is then performed to 

confirm that complete coupling has occurred on all the free amines on the resin. This cycle of 

deprotection/coupling continues until the peptide is completely synthesized. The peptide is then 

cleaved from the resin and side chain protection groups are removed using trifluoroacetic acid 

(TFA). 
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Figure B.1. Mass spectrometry analysis confirms successful synthesis of a pure 
peptide, with no other by-products present. 
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