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SUMMARY 

 

Interfacing micron-sized electrodes with neural tissue could potentially transform 

the treatment of pathological conditions such as depression, pain, paralysis, and neural 

trauma.  To realize these possibilities, one must first understand neural network dynamics 

and processing capabilities through long-term neuronal signal recording.  Although 

putative in vitro neural network studies employ planar 2-D culture, they may not 

accurately represent in vivo cellular and network level functions.  In contrast, a 3-D in 

vitro culture model more closely mimics the microenvironments of in vivo neural 

networks without the extra confounding variables of in vivo neural tissue.   

This work characterized an in vitro 3-D neural co-culture model 

electrophysiologically via multi electrode arrays (MEAs), and morphologically via 

immunocytochemistry.  Since MEA surface insulation SU-8 2000 can be used in neural 

micro- and multi- electrode arrays, this investigation first developed techniques to make 

SU-8 2000 cytocompatible.  The in vitro 3-D neural co-culture model was then used to 

study viability and electrophysiological responses to physical injury as well as drugs 

known to affect network signaling.  1) SU-8 2000 cytotoxicity to neuronal cultures was 

linked to both poor adhesive properties and toxic components, such as solvents and photo 

acid generator elements.  Surface treatments of oxygen plasma or parylene coating 

following optimal combinations of heat and isopropanol sonication showed improvement 

in SU-8 2000 cytocompatibility.  2) The 3-D neural networks within the 3-D co-cultures 

maintained considerable process outgrowth and complex 3-D structure.  The cultures 

were viable up to three weeks in vitro with functional synaptic connections and 



 xiv 

spontaneous electrophysiological activity that was responsive to chemical modulation.  

This electrophysiological activity was modulated by synaptic inhibition.  3) Injury 

experiments demonstrated that both shear and compression loading significantly 

increased acute membrane permeability of cells in a strain rate dependent manner.  Cell 

death correlated with higher membrane permeability, and shear resulted in more death 

than compression in these 3-D cultures. 

While techniques were developed for making a major micro-fabrication material 

cytocompatible, engineering the 3-D neural co-culture resulted in a more physiologically-

representative neural tissue platform, allowing an increased understanding of structure-

function relationships.  Overall, this research established and characterized a neural 

culture system for the mechanistic study of cell growth, cell-cell and cell-matrix 

interactions, as well as the responses to chemical or mechanical perturbations.  This is the 

first investigation of the network-level electrophysiological activity of 3-D dissociated 

cultures.  This system can be used to model various pathological states in vitro, testing 

various reparative drugs; cell-, and tissue-engineering based strategies; as well as for pre-

animal and pre-clinical testing of neural implants. 
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CHAPTER 1 

INTRODUCTION 

 

Research Motivation 

Neural-electronic interfaces allow an increased understanding of neuronal 

communication and a direct means to manipulate network behavior.  Electronic interfaces 

between micron-sized electrodes and neural tissue could potentially transform the 

treatment of pathological conditions including depression, pain, paralysis, and effects of 

neural trauma.  Electrical signals sent directly to a limb-actuating muscle or to a 

prosthetic limb could bypass an injured spinal cord or nerves, allowing paralyzed patients 

to regain functional use of limbs.  A neural tissue-implanted electrochemical sensor could 

cause electrical stimulus or chemical release of reservoir-stored serotonin reuptake 

inhibitor in response to depression-induced chemical imbalances.  An implant responsive 

to neural trauma could send molecular sealing bandages to ruptured cells, thus 

minimizing cell death and brain damage.   

The first step in realizing these possibilities is to understand neural network 

dynamics, neural processing capabilities, and neural response to pathological stimuli and 

therapeutic treatments through electrophysiological recording from neurons.  Neural 

network recordings have been used to understand neural plasticity, trauma, disease, age-

related degeneration [1]; deafness, memory deficits, epilepsy [2-3]; and neuroprostheses 

[4].  In researching these pertinent fields with respect to neural network properties, both 

in vivo and in vitro models are used.  In vivo animal models are complex and often 

confound data interpretation, while single-cell studies (both in vivo and in vitro) preclude 
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robust network-level analysis.  In contrast, in vitro cell culture models provide for a 

relatively controlled study environment and allow for simpler experimental manipulation 

at the network level.   

Although in vitro neural network studies employ planar 2-D culture, they may not 

accurately represent in vivo cellular and network level functions, because in vivo 

conditions are 3-D in nature.  Therefore, a 3-D in vitro culture model may more closely 

mimics the microenvironment of in vivo neural networks.  The presence of 3-D growth 

and interactions may be crucial because the matrix surrounding cells, as is typical of the 

3-D in vivo environment, has been shown to affect cellular function for a variety of cell 

types [5-6] including neural cells [7-9].  There is evidence that  3-D culture conditions 

may better approximate the morphology, cytoarchitecture, gene expression, proliferation 

of neural tissue [6, 10-12], organization and types of cell-cell and cell-matrix interactions, 

[13] than 2-D culture conditions. 

We established a 3-D co-culture model of a neural network to closer approximate 

in vivo tissue, by harvesting embryonic cortical neurons and astrocytes of newborn rats 

and mixing them homogeneously within a 3-D hydrogel-based bioactive scaffold, 

Matrigel™.  The cell culture model interfaced with an array of microelectrodes where 

external electronics recorded the electrophysiological activity.   

We studied the structural and functional development of the neural networks 

within this 3-D neural co-culture model using microscopic imaging and 3-D multi 

electrode array (MEA) based electrophysiological recording.  MEA technology has been 

used to study neural electrophysiological activity in 2-D dissociated spinal cord [14], 

cortical [15], hippocampal, acute retina [16-17], and cardiac myocyte cultures [18].  
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However, few studies exist on the electrophysiological activity of 3-D dissociated neural 

culture[19]. The study published by Irons et al. in 2008, is probably the only study 

presenting electrophysiological activity recording from 3-D neural cultures; However, 

that study was done using the patch clamp technique and merely showed that the neurons 

in the 3-D cultures were electrophysiologically active; it did not characterize the 3-D 

network level activity and it's development with respect to time. Unlike the patch clamp 

technique, 3-D MEA technology allows simultaneous multi-location recording in 3-D 

environments.  Here we tracked the spontaneous electrophysiological (functional) and 

structural changes involved in 3-D neural network development in culture with respect to 

days in vitro (DIV).  We hypothesized that in vitro spontaneous electrophysiological 

activity of the cultured 3-D neural networks would directly correlate with neuronal and 

synaptic densities.  Therefore, to investigate the dynamic electrophysiological capability 

based on the structural organization of a neural network, we compared field potential 

based measurements of spike and burst rates over three weeks in vitro to markers of 

synaptic distribution and neuronal maturation.  In addition, we compared the native 

spontaneous activity of the cultures to the activity during known pharmacologically 

altered states to confirm the biological response, learn more about the nature of these 3-D 

neural networks developed in vitro, and to assess the possibility of using these networks 

for pharmacological and toxcicological testing.   

However, this approach assumes MEAs are cytocompatible for the test cultures to 

be healthy and viable.  Therefore, we developed processing protocols to increase the 

cytocompatibility of SU-8 2000, a microelectrode fabrication material that insulates the 

MEA substrates, and; therefore, would be the main material to come in contact with the 
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3-D neural cultures.  Processing increased cytocompatibility and allowed for the 

structural and functional (electrophysiological) characterization and pharmacological 

modulation of the cultures, without poor cytocompatibility interference from the MEA 

surface insulation.  Moreover, this work provided a methodology for increasing the 

potential for SU-8 2000 to be a primary microfabrication material for biological 

microelectromechanical systems (bioMEMS) and other biomedical applications.  In our 

pharmacological modulation studies we observed that excitatory drugs could increase the 

culture activity.  This pharmacological modulation provided insight into the neural 

network development within these 3-D cultures.  Furthermore, this model can be used to 

test various therapies such as single dose, time-release, mono- and combination drug 

therapies; drug-releasing devices; cell-based therapies such as stem cell delivery; study 

pathological conditions resulting from traumatic neural injury; characterize and validate 

tissue engineering strategies; and characterize and validate neural implants for continuous 

monitoring, diagnostic, and therapeutic applications to the nervous system. 

Because of the anisotropy and three-dimensionality of the neural network 

structure in these cultures, the resulting strain fields at the cellular level, upon dynamic 

deformation, are inherently heterogeneous [20].  Therefore, this 3-D culture model can 

more realistically represent the 3-D dynamic loading conditions including heterogeneous 

strain fields induced during traumatic neural injury in vivo than 2-D cell culture models.  

Furthermore, they better mimic in vivo cytoarchitecture and the distribution of cell-cell 

and cell-matrix interactions than 2-D cultures, potentially affecting the mechano-

transduction of the injury at a molecular level.  Cells respond differently to traumatic 

loading depending on the deformation mode (tensile, shear, or compression), cell 



 

5 

 

population (different cell type morphologies manifest in different cellular mechanical 

properties), cell orientation with respect to the bulk strain field (affecting principle axes 

of local cellular strains), and the number of cellular processes (affecting the complexity 

of the strain field).  Therefore, these multi-cell type comprised 3-D cell cultures offer a 

controlled and reproducible platform to better represents the mechanical injury and its 

associated pathological pathways than 2-D cultures, along with the continued benefits of 

real-time imaging and precise micro-environmental control.  Therefore, we used our 3-D 

co-culture model to study traumatic neural injury, specifically we evaluated alterations in 

plasmalemma permeability as a function of bulk deformation mode (shear versus 

compression), loading parameters (strain and strain rate), and time post-insult 

(milliseconds to hours) in our 3-D co-culture model.  These studies contributed to an 

increased understanding of cellular tolerance to injury and can be useful in computer 

modeling to more accurately predict structural and functional damage of neural tissue in 

response to large magnitude , high rate deformation. 

Thus, our multi-faceted research offers multiple applications.  Amongst them are 

the testing of different drugs and new therapeutic responses to pathologies such as 

traumatic injury, and the characterization and validation of neural implants for continuous 

monitoring, diagnostic, and therapeutic applications to the nervous system. 
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Purpose Statement 

We developed and characterized 3-D co-culture models as a more relevant 

alternative to in vitro 2-D dissociated neural networks.  After addressing the 

cytocompatibility issues with SU-8 2000, a material used in MEA fabrication, we used 

MEAs and immunocytochemistry to characterize the structural and functional 

(electrophysiological) development of these 3-D networks.  We also applied this 3-D 

culture model for studying pharmacological and injury response of neural networks using 

3-D MEA and confocal microscopic techniques.  This thesis is a product of a multi-

faceted project, broken up in to three specific aims: SU-8 2000 compatibility to neural 

networks, development of spontaneous neural network activity in a 3-D neuronal-

astrocytic co-culture model, and neural network response to traumatic neural injury.   
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Specific Aims and Research Hypotheses 

 Execution of this research work fulfilled the following three aims, each with 

specific hypotheses: improve SU-8 2000 an MEA fabrication material compatibility to 

neural networks, structural and electrophysiological (MEA) analysis of 3-D neural 

network development in culture, and neural network response to traumatic neural injury.  

The interrelationship of the three specific aims is illustrated in Figure 1.1. 

 

Figure 1.1.  Interrelationship of the three specific aims of this thesis work.  This 

research work bring together the fields of microelectrode technology, neural networks 

analysis, cell culture, and traumatic neural injury.  Applications lie at the intersections of 

these fields in the area of neuroengineering; bioMEMS; neural prosthetics; neurobiology; 

cell culture; tissue engineering; traumatic neural injury; and in vitro drug, disease, and 

diagnostic testing technologies. 
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Aim 1. Develop a procedure to improve the cytocompatibility of SU-8 2000.  The 

thermal and chemical stability of SU-8 2000 makes it ideal for the fabrication of high-

aspect ratio 3-D microelectrode systems for neurological applications.  In addition, its 

dielectric properties make it an excellent insulation material for micro electrode arrays 

(MEAs).  However, thick untreated SU-8 2000 substrates (≥ 100 µm) do not support 

living neural cells, potentially because of toxic leaching, and poor cell-adhesive 

characteristics.  SU-8 2000 being hydrophobic, resists aqueous wetting and 

macromolecular adsorption, adversely affecting neural adhesion and growth [21-22].  

Characterizing and improving the cytocompatibility of this material opens possibilities 

for SU-8 2000 to be used more frequently as a fabrication material for neural devices.  

This study is the first reported characterization of SU-8 2000 cytocompatibility for in 

vitro neurobiological applications, and presents several preparatory treatments for 

improved compatibility with neurons.  This work expands the applicability of SU-8 2000 

in the fabrication of 3-D microelectrode systems, such as in neural prosthetics, and offers 

cytocompatibility techniques for other cytotoxic microfabrication materials as well, 

especially those that are SU-8 based.   

 Study 1. Improve the cytocompatibility of SU-8 2000 substrates by reducing 

potentially toxic leaching and by promoting adhesion of neural cultures to SU-8 

2000 surfaces.  First, it was hypothesized that the toxic leaching of chemicals from SU-8 

2000 and its poor cell-adhesive character diminished its cytocompatibility.  Second, it 

was hypothesized that SU-8 2000 substrates can be made cytocompatible by one or a 

combination of the following treatments: CO2 supercritical extraction, ultra violet (UV) 

light exposure, and heating to potentially reduce toxic leaching.  Finally, it was 
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hypothesized that surface treatments such as glow discharge treatment, poly-D-lysine 

coating and laminin coating will improve neural culture adhesion to SU-8 2000 surfaces 

by increasing surface roughness, hydrophilicity, and protein adhesiveness. 

Aim 2. Characterize the spontaneous development of neural network structure and 

electrophysiological activity in a 3-D neuronal-astrocytic co-culture model.  Neural-

electronic interfaces within cell culture models allow the controlled study of specific 

components of neuronal behavior, such as understanding the spatial and temporal 

development of neural network activity.  Since 3-D cultures may better mimic the in vivo 

environment than 2-D cultures, we engineered 3-D culture models of neural tissue to 

study neural network-level properties.  Since cell type, viability, connection patterns, and 

synaptic density in a neural network contribute to electrophysiological activity, we 

characterized these 3-D cultures using both immunocytochemistry and 3-D 

multielectrode array (MEA) recordings.  We characterized network structure and 

electrophysiological activity in a 3-D dissociated neural culture model, so that we can 

understand the development of these neural networks, potentially comparing it to in vivo 

tissue behavior, and using it for the several applications discussed in the first section of 

this chapter.  Structural characteristics such as synaptic distribution and neuronal 

maturation were compared to electrophysiological activity to better understand structure-

function relationships in network development.  To confirm a biological response, the 

electrophysiological activity of these 3-D co-cultures was assessed in response to agents 

known to interfere with synaptic transmission and neuronal action potential firing. 

 Study 2. Correlate synaptic distribution and neuronal maturity with 

electrophysiological activity.  It is hypothesized that the spontaneous 
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electrophysiological activity of 3-D neural networks in culture will be a function of the 

synaptic distribution and neuronal maturation.  To investigate this hypothesis, we 

recorded the spontaneous electrophysiological activity of dissociated cortical cultures, 

measuring the spike and burst rates over three weeks in vitro, while correlating them with 

synaptic density and neuronal maturation marker staining.  Spontaneous spike and burst 

parameters represent stable modes of electrophysiological activity in neural networks that 

occur irrespective of stimulation.   

 

Aim 3. Determine the response of 3-D neural networks to traumatic injury.  

Traumatic mechanical loading to central nervous system cells can lead to devastating 

consequences.  Neural cells in the brain have a unique fluidic and osseous protection 

system, and; therefore, are not normally subjected to large deformations.  Supra-threshold 

physical loading, resulting in acute cell death or sub-lethal cellular and network damage, 

can lead to traumatic brain injury (TBI), which is a leading cause of death and disability 

in the United States [23-24].  TBI is unique from any other neurological affliction in that 

it is induced by a physical event.  The long-term outcomes of TBI are dependent on the 

severity of the primary physical event due to the mechanical insult and are compounded 

by multi-faceted secondary events due to the deleterious effects of dying cells and the 

activation of other pathways and systems (see [25-27] for reviews).  Collectively, these 

events may result in significant functional deficits and progressive neural degeneration 

[28-29].  Currently, there are no effective therapeutic interventions that directly attenuate 

injury-induced neural pathology.  Therefore, attention to the tissue and cellular 

biomechanics of injury is critically important in refining neural tolerance criteria to injury 
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and developing mechanistically-driven targeted therapies for this affliction.  The 

immediate physical consequences of loading on the cellular level may range from 

complete structural failure, such as major somatic disruption and axotomy, to more subtle 

damage, such as cytoskeletal breakdown, decoupling of sub-cellular 

structures/organelles, and micro- or nano-tears in the plasmalemma.  However, it is 

challenging to establish these potentially subtle physical effects as a direct consequence 

of loading, because secondary pathophysiology can induce similar structural damage.  In 

particular, physical disruption of the plasmalemma, termed “mechanoporation”, acutely 

increasing neuronal plasma membrane permeability through nano- and micro-scale tears, 

may be one of the initial responses and is particularly devastating as it may trigger 

disruption of normal cell function in a positive feedback manner.  The increase in 

permeability may disturb the ionic homeostasis of cells by allowing atypical flux of ions 

across the membrane, directly affecting electrical activity [27].  In a positive feedback 

fashion, these undesirable ionic currents concomitant with an excessive excitatory 

neurotransmitter release, result in prolonged increases of intracellular Ca
2+

, initiating 

many secondary detrimental pathways that may induce short- and long-term changes in 

neurons including cell death [27, 30-36].  This study focused on the primary, sub-acute, 

and acute components of injury by limiting analysis to the millisecond-to-seconds-to-

minutes periods immediately following injury, and the first 48 hours.  We evaluated 

alterations in plasmalemma permeability as a function of bulk deformation mode (shear 

versus compression), loading parameters (strain and strain rate), and time post-insult 

(milliseconds to hour) by inducing complex, three-dimensional shear or compressive 

strain fields in our 3-D neuronal-astrocytic co-culture model.  Studying the acute effects 
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of injury on neurons and neural networks can help to understand the related pathology 

and rationally develop clinical therapies for immediate action after traumatic brain 

injuries. 

 Study 3. Evaluate acute cell permeability and sub-acute cell viability as 

functions of strain rate resulting from compression and shear deformations.  It is 

postulated that there is an important link between the physical parameters of traumatic 

loading, such as loading strain, strain rate, and modality; and the physiological 

consequences of neural injury.  Therefore, trauma-specific mechanisms of physical 

damage should be identified.  Furthermore, it is hypothesized that the level/intensity of 

injury in 3-D neural co-cultures for both compressive and shear deformations will 

directly correlate to the strain rates for these two modes of deformation.  Moreover, 

based on the viscoelastic properties of brain tissue, it is postulated that neural cells are 

more sensitive to shear deformation than compression.  As discussed before, since 

plasmalemma disruptions leading to increased cellular permeability is one of the primary 

physiological disturbances of injury we quantified cell membrane disruptions during and 

following injury by analyzing per cell uptake of normally cell-impermeant dyes calcein 

and ethidium homodimer-1 as a measure of the level/intensity of the injury response.  

Furthermore, it is hypothesized that permeabilized cells during injury will directly 

correlate to subsequently dead cells.  Therefore, cell viability was tested 48 hours after 

injury.   
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Conclusion 

Collectively, these studies investigated the cytocompatibility of the MEA 

fabrication material SU-8 2000, correlated the electrophysiological development with the 

structural development of 3-D neural networks via MEAs and microscopic analysis, and 

modeled traumatic neural injury with a 3-D neural network in vitro.  Cytocompatibility 

protocols for SU-8 2000 potentiate the possibilities for biologically interfacing MEAs 

and other bioMEMS devices with high aspect ratios made using SU-8 2000.  The 

biologically developed 3-D culture models could serve as test-beds for studying neural 

network development, drug response, and pathological conditions such as those resulting 

from traumatic neural injury.  These studies propose the development of hybrid-neural-

interfaces that could diagnose, improve, or resolve functional deficits in the nervous 

system that result from damage, disease, and dysfunction.   

To inform the readers with the background for this research work and provide 

context for the motivation relating to existing, relevant studies, Chapter 2 presents a 

broader review of the literature.  The Journal of Biomedical Materials Research published 

the results of the experiments conducted under Aim 1, which Chapter 3 presents.  The 

work conducted under Aim 2, presented in Chapter 4, reports the development of 

spontaneous neural network activity in a 3-D neuronal-astrocytic co-culture model.  The 

work conducted under Aim 3 is included in Chapter 5, the study of 3-D neural injury in 

vitro.  Chapter 6 holds a broader summary of this body of work, its major conclusions, 

and its significance.  Discussions of the potential applications of these results and their 

relevance to current and future research are also found in this chapter. 
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CHAPTER 2 

BACKGROUND 

 

In Vivo vs. In Vitro Study of Neural Networks 

The continuous nature of electrochemical inputs and outputs across units in the 

nervous system complicates the understanding of neural network electrophysiological 

activity in vivo, because of the sheer amount of information recorded and the difficulty in 

isolating its components.  In addition, in vivo analysis is confounded by, the structural 

complexity of the organization of neurons and synapses within the nervous system, tissue 

damage from recording electrode insertion, and only one time-point for post-mortem 

tissue analysis per animal studied.  Furthermore, animal motion during such studies, 

interferes with the in vivo recording of activity.  On the other hand, immobilizing or 

anaesthetizing animals can alter this activity potentially influencing the experimental 

variables in question [1].   

As an alternative to in vivo study of neural networks in animal models, one can 

study neural network behavior in brain slices or dissociated neural cells cultured in vitro.  

Brain slices retain the brain’s organization, providing a partial window for understanding 

the behavior of neural networks, in a piece-meal fashion.  However, the health and 

mechanical integrity of tissue slices deteriorate over longer periods of time as cells die 

from nutrient deficiency resulting from insufficient diffusion of nutrients, and 

concomitant tissue degradation, making them preferable for acute studies.  The other 

alternative, dissociated neural cultures, not only lack native tissue architecture but also 

lack the continuous spatiotemporal sensory inputs present in vivo.  Therefore, great 



 

 18 

caution needs to be exercised while applying the results obtained from in vitro studies 

with non-human models to understanding the in vivo state [2], especially with human 

systems with comparatively different cortical neuronal properties [3-4].   

Although, in vitro dissociated culture networks, self-organized from randomized 

cell suspensions, hardly develop any "signature," in vivo micro-circuitry designed 

through coordinated development and afferent and efferent connections [5], these 

networks do share distinct qualities with the tissue from which the original cell type was 

obtained [6], implying partial behavioral similarity between dissociated networks in 

culture and the tissue of origin.  Furthermore, isolated dissociated neural cultures provide 

good long-term viability, accessibility, and visibility.  These characteristics make the 

dissociated neural network models viable alternative environments for detailed 

electrophysiological, pharmacological and genetic manipulations at the molecular, 

cellular, and network levels of neural networks over long periods of time.  One can study 

the mechanisms of how neurons connect with each other to form a network in such 

models.  On the other hand, in vivo environments do not allow such level of control over 

experimental parameters such as customizable network sizes for experimentation and 

observation.  Furthermore, in dissociated neural cultures the changes in 

electrophysiological activity can be directly tracked to changes in the neuronal states 

within the culture, and no unknown external factors.  In contrast, in in vivo studies, it is 

difficult to distinguish between intrinsic changes in the neuronal states, and those induced 

by the communication between the different regions of the nervous system that may be 

influenced by disparate parameters such as conventional inputs and outputs between the 

peripheral and central nervous systems.   
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2-D vs. 3-D Dissociated Neural Networks 

Traditionally, in vitro dissociated neural culture models have comprised of 

dissociated cells plated on a two-dimensional (2-D) substrate.  2-D dissociated neural 

networks in vitro, while lacking the brain’s three-dimensional architecture, still maintain 

some similarities in their synaptic mechanisms, inherent cellular electrophysiological 

characteristics, morphological properties, and pharmacological electrophysiological 

response to those in vivo [7-11]. 

However, 2-D models restrict spatial interaction.  Likewise, the 2-D cell-plating 

process pre-defines the cell arrangement, fixing a generally random set of synaptic 

contacts for each in vitro cell.  In contrast, in vivo, the 3-D arrangement allows cells to 

group themselves synaptically in a manner which is neither fixed nor random.  As such, 

traditional planar 2-D culture models possess atypical cell-cell/cell-matrix interactions 

and cellular morphology [12].  Moreover, cells in 2-D cultures differ from in vivo 

according to density, proliferation rates [13-14], migration [15], gene expression [16-17], 

differentiation [14, 18], cellular signaling [19], and pathological susceptibility [13, 20-

21].   

Three-dimensional (3-D) in vitro models, in which cells grow within a scaffold, 

may more accurately represent the in vivo environment than traditional 2-D culture 

models, while maintaining many of the benefits of in vitro culture models.  For example, 

3-D culture models better mimic the cytoarchitecture of in situ tissue than cells grown on 

non-physiological, hard surfaces, as in most 2-D culture models.  2-D surfaces limit cell 

growth area, whereas 3-D cultures, through an added dimension, are expected to 
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magnifies growth and migration, lending support to other cell behaviors, such as 

differentiation or maturation.  The 3-D scaffold, designed for physiological structural 

stability, may protect cells from environmental disturbances, such as media changes, 

whereas cells in 2-D cultures are more exposed.  Scaffolds can also be designed for 

optimal permeability for nutrient and waste diffusion.   

Fundamentally, 3-D configurations are more conducive to the interactions of cells 

with the matrix, soluble factors, and each other, whereas planar cultures constrain these 

interactions [12, 22-23]; [24].  Moreover, in 2-D culture, the hard, planar surface flattens 

out the cells.  In contrast, cells stay more spherical when embedded in a 3-D scaffold, 

potentially facilitating outgrowth in all directions for neurons and other process-

extending cells. 

It has been shown that dopaminergic neurons, harvested from embryonic brain, 

live longer in 3-D than in 2-D cultures [25].  Neurites grow longer, cells survive more, 

and differentiation occurs in different patterns, relative to 2-D monolayer cultures [26-

30].  For embryonic mesencephalon tissue, for instance, more cell death occurred 

dissociated in monolayers, while 3-D collagen-gel cultures survived to a much greater 

extent [31].  The same observations were made for hippocampal neurons grown on 3-D 

aragonite matrices, resulting in higher density networks [32].  In mechanical injury, 3-D 

cultures sustained more cell death than 2-D cultures subjected to the same strain 

magnitude and strain rate [33].  Thus, 3-D culture sustains a more in vivo-like 

environment than 2-D.   

3-D cultures can be formed through various preparations: spherically forming re-

aggregate cultures; rotary bioreactor cultures with cell aggregates, otherwise known as 
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microcarriers; cell cultures in polymeric hydrogel scaffolds; and organotypic slice 

cultures.  Organotypic cultures are slices of tissue which maintain the in situ architecture, 

and thus, preserve networks in the cut plane.  The other cultures utilize dissociated cells, 

which reorganize according to cell type, media conditions, substrate adhesiveness, or 

cell-cell interaction.  Rotation-induced reassociation can form reaggregate cultures [28, 

34].  With regards to semi-3-D cultures, neurons have been plated on top of hydrated 

collagen matrices [35-37], recapitulating aspects of 3-D morphology; however, cell-cell 

and cell-matrix interactions are spatially limited.  Cells that are grown within a 3-D 

scaffold or matrix produce perhaps the most controllable 3-D culture models, since cell 

type(s) can be chosen, and the extracellular composition controlled [31, 38-40]. 

3-D scaffolds allow tissue-like, multi-dimensional cell-cell/cell-matrix contacts.  

3-D cultures allow construction of a defined system with respect to cell type, cell ratios, 

and orientation (whether random for a more uniform response, or patterned in some way, 

allowing for designed culture architecture).  Transgenic animal cells also be introduced, 

allowing identification of a cell subpopulation or study of a specific mechanistic 

pathway.  Extracellular proteins and biomarkers can be added to bind to or enter cells, 

respectively.  Moreover, these cultures easily accept synthetic components, like 

electrodes or artificial micro-vessels, since one can “cast” these cultures around micro-

machined devices. 

3-D cultures may be developed to mimic in vivo cellular densities.  The human 

cortex has approximately 10
5
 neurons/mm

3
, transmitting thousands of synapses locally 

and over long distances.  Interneurons largely compose the central nervous system with 

1000s of synapses to other neurons.  Some of these neurons, as well as the projection 
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neurons, synapse with distant neurons.  Given this composition, several methods for 

manipulating cell density to resemble the brain have been explored: layered 3-D neuronal 

networks using silica beads allowed elaborate networks to form, manipulating the density 

with bead size [41]; a convective microperfusion chamber permitted the survival of high 

density cultures [42].  These developments allow 3-D neural cultures systems to continue 

to mimic the in vivo state even more closely. 

As mentioned previously, the benefits of studying dissociated neural cultures in 

vitro come at the loss of the native-tissue structural integrity, organizational architecture, 

and network connections; and with affected electrophysiological resting potentials, firing 

patterns, and other network functional aspects [5].  Despite such differences, in vitro still 

maintains comparative advantages over in vivo, and 3-D in vitro dissociated neural 

culture systems likely upgrade those advantages. 

 

Criteria for Choice of 3-D Cell Culture Scaffold 

Several criteria should be met while choosing a scaffold for 3-D dissociated 

cultures, including cell type and surface adhesion receptors; and scaffold stability and 

cytocompatibility [43].  Such consideration is vital, because scaffolds may affect gene 

expression and other functions [44].  Scaffolds for 3-D cultures must have a porous 

structure allowing for cell adherence, process-extension (neurons) and cell migration 

(microglia), while also allowing for adequate media diffusion/perfusion.  The scaffold 

should preferably have a defined composition.  Ideally, the scaffold should have 

adjustable mechanical properties, for example by adjusting the scaffold component 

concentration because properties of neural tissue vary.  In order to realistically re-create 
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ECM,  specific ECM proteins (e.g., hyaluronic acid, HSPGs, collagens, etc) should 

compose the scaffold in physiological quantities.  Since the ECM of the brain contains 

little collagen / fibrillar components, collagen I scaffolds to mimic neural tissue is 

questionable.  However, given the gelation and mechanical properties of collagen I, it 

serves as a useful structural component (natural or denatured) in combination with 

Matrigel
TM

 [45] or other proteins or peptides.  The scaffold selection should also consider 

cell adhesion surface receptors as ECM receptor interactions influence neuronal survival, 

process outgrowth, and signalling. 

Considering synthetic over natural components for a 3-D culture scaffold opens 

the possibility of developing bioartificial or combination scaffolds.  N-(2-hydroxypropyl ) 

methacrylamide polymer HPMA + collagen I hydrogels, for example, also have potential 

as a 3-D neural scaffold [40].  Other synthetic scaffold materials include poly(ethylene 

oxide) (PEO), poly(glycolic acid) (PGA), poly(L-lactic acid) (PLLA), polycaprolactone, 

polyester urethane, methylcellulose, poly(acrylonitrile) (PAN), poly(acrylonitrile), 

poly(vinyl chloride) (PAN/PVC), and polysulfone (PS).  The cytocompatibility of the 

material and the breakdown products should be carefully assessed (see [46-47] for more 

on cytocompatiblity assays).  Biological scaffolds include Matrigel
TM

, as well as chitosan 

[48], collagens, fibronectin, laminin, fibrin, hyaluronic acid derivatives, and 

decellularized tissue [43].  We chose Matrigel
TM

, for our studies, because of its biological 

origin, rich ECM molecular composition, gelation characteristics at physiological 

temperatures, and high porosity. 

The porosity is critical to cell performance within a 3-D culture.  The scaffold 

should be permeable to low molecular weight molecules, gases and nutrients, and avoid 
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waste buildup or trapping.  Sufficient pore volume should exist to permit cell-cell 

interactions,  migration, and neurite extension.  In addition, the surface area should 

maximize cell attachment and spreading.  Scaffolds should balance ligand density with 

stiffness and pore-size, a relationship that may vary for different materials.  For example, 

a decrease in pore size was observed in agarose gels when coupled to laminin peptides 

[49].   

The scaffold’s stiffness relates to its pore size.  Distance between cross-links, a 

degree of stiffness, in the polymer chains will correlate with the pore size of the hydrogel.  

For example, in agarose gels, the average pore size decreased exponentially as the 

concentration (i.e.  the stiffness) increased [50].  The elastic modulus of poly(2-

hydroxyethyl methacrylate (pHEMA) hydrogels was not, however, affected by increased 

porosity until pores became interconnected [51].  This tortuosity, or path windiness 

among the pores will also play an important role in cell behavior, as neurites extend and 

synapses form.  The charge of the gel will also affect the porosity and the cell function.  

For example, positive charge was shown to facilitate neurite outgrowth, while negative 

charge inhibits outgrowth [50]. 

 There are many methods for measuring porosity and other scaffold properties.  

The permeability coefficient can be used to estimate pore size.  A slice of the gel with 

known thickness is placed in a water column and subject to a known hydraulic pressure 

[26].  The water collection over unit time determines porosity.  Scanning or transmission 

electron microscopy may also measure porosity, but the preparation procedure may affect 

pore size, introducing an artifact into the system.  Therefore, electron microscopy under 

physiological conditions or in combination with other methods  may offer a better 



 

 25 

alternative to minimize artifacts introduced by sample preparation procedures.  In 

addition, hydrogels may swell while under culture conditions because of fluid uptake.  

Therefore, characterization of any hydrogel should include measurement of fluid uptake 

and formulation adjustment, as this may affect osmolarity of the extracellular fluid.  In 

addition, the stability of a scaffold is vital to consistent culture conditions, whether for 

short term cultures or cultures designed to support cells for weeks or months.  Scaffolds 

can be affected by enzymatic degradation or mere culture erosion over time.  This can be 

used as an advantage, however, as neurite outgrowth of photoencapsulated cells within 

polyethylene glycol has been shown to be controllable by varying the degradation rate 

[52]. 

The method for gelation is important in choosing scaffolds for 3-D culture, 

especially for those cultures in which cells are entrapped or “cast” at the same time as 

scaffold gelation.  Many different methods are possible, perhaps with temperature phase 

transition based methods being the most common.  Extreme heat or cold; however, 

should be avoided, as proteolytic processes and immediate early genes may be activated, 

and this transient insult may affect cell behavior.  Other gelation methods apply, changes 

in pH transition, ionic strength, or photo crosslinking, and may be considered based on 

applicability for particular applications.  Gelation methods should be chosen with caution 

because of potential toxicity from unpolymerized monomers, change in osmotic pressure 

during polymerization, heat production, or free radical production. 
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Matrigel
TM

 – A 3-D Extracellular Matrix Containing Hydrogel Scaffold 

An appropriate microenvironment for 3-D culture maintains relevant 

physiological conditions for long-term experiments.  Besides adequately diffusing 

nutrients and wastes, the environment for neural cell cultures must also support cell 

attachment, neurite outgrowth and functional synapse formation.  Previously described 3-

D neural culture models incorporate scaffolds of collagen [53], agarose [54-55] and fibrin 

[14] in an attempt to meet these concerns with varying levels of success.  One successful 

model contains a hydrogel scaffold comprised of bioactive extracellular matrix (ECM) 

components closely mimicking the in vivo environment.  Matrigel™ matrix, a 

reconstituted basement membrane derived from the Engelbreth-Holm-Swarm mouse 

sarcoma, includes constituents found in the developing or mature brain such as laminin, 

hyaluronan, and proteoglycans, and facilitates 3-D neural network development through 

ECM-related [56] and other cytokine-mediated [57-58] interactions.  Matrigel
TM

 has also 

been shown to promote neurite outgrowth [59-60]. 

ECM molecules play an influential role in the morphological and 

electrophysiological function of neural networks by inducing intracellular signaling 

through secondary-messenger pathways [61-63].  ECM molecules in vivo can both induce 

axonal growth through interaction with neurotrophins and nerve growth factors [64-65] 

or inhibit neurite outgrowth [66-67].  In addition, “nonspecific” adhesive interactions of 

neurons with Matrigel
TM

 components may also influence network formation via 

transmembrane signal transduction.  Given the pertinent ECM characteristics, the 

molecular structure and composition of Matrigel
TM

 provides an excellent alternative to an 

in vivo environment. 
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SU-8/SU-8 2000 Cytocompatibility 

In recording the electrophysiological activities of our 3-D dissociated neural 

cultures a MEMS based device, 3-D multi-electrode array, was used.  One material that is 

used in the manufacturing of these high-aspect ratio MEMS structures is SU-8, a 

negative, near-UV photoresist.  Both as a structural material, as well as an insulation 

material for MEMS based devices, SU-8 has great potential for many biological 

applications [68-70].  Two types of SU-8, the original formulation using gamma-

butyrolactone as the solvent [68-69], and the more recent SU-8 formulations using 

cyclopentenone as a solvent (SU-8 2000) exist [70].  Exposed SU-8/SU-8 2000 

photoresists are thermally and chemically stable due to their aromatic functionality and 

highly cross-linked matrix [69-72].This stability makes them ideal for the fabrication of 

high-aspect ratio MEMS based systems such as 3-D microelectrode culture systems. 

Long-term cytocompatibility is needed in 3-D microelectrode systems with SU-8 

or SU-8 2000 as a fabrication material [73-74].  Many current systems do not incorporate 

an appreciable amount of SU-8 within their devices, limiting its potential use.  For 

example, Ayanda Biosystem’s MEAs contain only a 5m insulation layer [75-80].  SU-8-

based devices have been used for both dissociated cultures, as well as slice cultures.  For 

example, in a microfluidic device made partially out of SU-8, chick embryonic 

motoneurons were viable for up to 48 hours [73].  In another study, electrophysiological 

activity was detected in neuronal cultures for 45-60 days within SU-8 containing MEAs, 

but no quantitative viability assessment was performed [81].  Neuroblastoma cells 

cultured on thick SU-8 2000 structures showed poor cell adhesion [82].  Several other 
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studies have used 5m insulation layer SU-8-containing structures to monitor 

electrophysiological activity in slice preparations, but again, viability as a function of 

materials in the devices was not evaluated [75-78, 80]. 

Toxicity of thick SU-8 2000 coatings with neuronal cell types has not been 

extensively studied, however non-neuronal biocompatibility of cured SU-8 has been 

investigated.  For example, Voskerician, et al., 2003 implanted SU-8 within stainless 

steel cages subcutaneously in rodents to evaluate the material’s biological interaction.  

However, these samples manifested an insignificant response relative to the control [74].  

On the other hand, Weisenberg et al.  found SU-8 to be thrombogenic [83].  SU-8 

exhibited cytotoxicity in cultured mouse fibroblasts, yet minimal negative responses were 

are found in rabbit muscle [72].  Others have also observed that untreated SU-8 is 

incompatible with mammalian cells, yet following HNO3 and ethanolamine treatments, 

HeLa cells (an immortal cell line) maintained viability up to 4 days in vitro on 

hydrophilized SU-8 surfaces [84].  Therefore, the cytocompatibility of SU-8 / SU-8 2000 

has not yet been established, likely due to differential cell responses, culture 

environments, fabrication modes, material processing, and/or exposure to surface area. 

Furthermore, the previous biocompatibility studies of SU-8 have focused on the 

original SU-8 formulation.  However, the biocompatibility of the SU-8 2000 series [70] 

(MicroChem Corporation, Newton, MA) warrants investigation since it offers several 

processing advantages over the original SU-8 formulation, including improved wetting, 

faster drying, and clean edge bead removal without the need for an intermediate bake 

step.  Improvements in the biocompatibility of SU-8 2000 would not only improve cell 
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viability, but potentially also the overall quality of data obtained using MEAs that use 

SU-8 2000 as a key fabrication material. 

 

Multi-Electrode Arrays (MEAs) 

If we successfully imitate the in vivo neural environment with a cytocompatible in 

vitro environment, then we can obtain relevant electrophysiological data with multi-

electrode arrays (MEAs).  MEAs consist of an array of 2-D or 3-D microfabricated 

voltage probes to electrically interface with neuronal somata and processes.  This array 

forms an extracellular interface to stimulate and record potential changes across a 

neuronal network simultaneously.  MEA electrodes typically appose with cells within 10-

100 nm, which helps high signal to noise ratio recording, providing a clear 

spatiotemporal “picture” of the neural network activity [85].  An MEA acquired “picture” 

depends on the electrical properties of the cellular signal sources, cell/tissue-electrode 

contact, the microelectrodes, the insulated substrate, and external hardware connected to 

the electrodes [86].   

MEAs have evolved over the years to increase utility for several neurological 

applications.  While in vitro MEAs were developed by Thomas et al.  [87], Gross [88], 

and Pine [89], in vivo 3-D multi-electrode probes were developed by the Michigan Probes 

[90] and Utah Array [91] groups.  Commercial in vitro 2-D MEA devices are available 

from Multichannel Systems (www.multichannelsystems.com), Ayanda Biosystems 

(www.ayanda-biosys.com), and Panasonic MED (www.med64.com).  3-D in vitro 

MEAs, in which electrodes extend approximately 50 μm from the surface in a cone 

shape, have also become available [77].  The 3-D MEAs overcome many of the 

http://www.med64.com/
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limitations of 2-D MEAs.  For example, 3-D electrodes penetrate tissue slices, avoiding 

the outer layer of dead and injured cells, and permit better cell contact [92].  According to 

[93], if a 3-D MEA electrode intercepts a high-density neuronal dendritic tree, it can 

record the sum of very small field potentials originating from the dendritic tree, 

traditionally undetectable by the patch clamp method.  Furthermore, 3-D cone-shaped 

electrodes possess nearly twice the surface area of comparable planer electrodes.  This 

increased surface area reduces electrode impedances by 50% and doubles the recorded 

signal amplitudes, thereby increasing the signal-to-noise ratio [77]. 

Since its development, MEA technology has been used to study neural network 

electrophysiological activity in dissociated spinal cord [79], cortical [94], hippocampal, 

acute retina [95-96], and cardiac myocyte cultures [97].  These studies have led to 

valuable insights into network correlation in learning and memory, visual perception [98-

99], spontaneous activity emergence and dynamics [100-106], and neural regeneration 

[107].   

MEA technology not only enables new studies and insights, it also presents a 

comparatively favorable network alternative to single cell screening or whole animal 

behavioral testing for drug analyses.  For example, MEAs do not contaminate or destroy 

neural circuitry nor obscure microscopic access to tissue like the patch-clamp and 

intracellular micro-electrodes [108].  MEAs also allow for multi-site recording, a 

chemically controlled sterile environment with no need for toxic potential-sensitive dyes 

[109].  MEAs allow continuous non-terminal ex vivo assaying of network activity at 

relatively high spatio-temporal resolutions without the in vivo confounds of anesthesia 

and uncontrolled sensory input [8-9, 85, 100, 102, 104, 110-113].  These functions make 
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MEAs a high-throughput tool with relatively reduced cost and labor when compared to in 

vivo and other in vitro techniques [114-115]. 

However, MEA electrodes are limited by their small microelectrode surface areas.  

Small surface areas raise selectivity, but also relatively increase impedance resulting in 

thermal electrode noise [92].  Furthermore, the extracellular MEA electrodes results in 

smaller-than-actual amplitudes of recorded electrophysiological activity, since the 

electrodes never penetrate the cellular signal source.  Additionally, the spatial resolution 

confines of the current sixty electrode MEA design (as compared to a higher electrode 

per unit area design), rarely achieve single-cell resolution of detected activity [77].   

Despite these limitations, our study used 3-D in vitro MEAs due to its potential 

advantages in recording in 3-D environments.  These potential advantages include 

increased sensitivity of recordings, reduced impedance, decreased damage to neurons, 

exclusion of in vivo interferences, better control of the cellular environment, relative cost 

effectiveness, and a relatively simplistic set-up.  However, to optimize the application of 

3-D MEAs to neural cultures, neurons must adhere to the MEA surface. 

 

Neural Adhesion to MEAs Through Surface Treatments 

To achieve MEA recordings, neurons must adhere to MEA electrodes.  However, 

MEAs are covered with a hydrophobic insulation that resists aqueous wetting and 

macromolecular adsorption, two key factors in neuronal adhesion [116-117].  Without 

adhesion, physical gaps form between the active neurons and the MEA electrodes.  These 

gaps allow current to dissipate and weaken MEA recordings.  Hydrophilizing the MEA 
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surface and physisorbing specific cell-adhesive peptides and proteins can increase MEA 

cell adhesiveness and thereby improve MEA recordings.   

Physisorption utilizes van der Waals or electrostatic forces to hold proteins to the 

MEA surface [116, 118-119].  Physisorption of poly-lysine, a polypeptide with pendant 

e-amine groups, forms an approximately 15Å thick, positively charged, hydrophilic 

monolayer of randomly coiled molecules under media pH conditions, creating an 

adhesive polar linkage between the MEA surface, and neurons [120].  Poly-D-lysine is an 

excellent candidate for ensuring long-term adhesions because mammalian neural 

proteases cannot enzymatically degrade it.  Processes to promote poly-D-lysine 

adherence includes cleaning and activating MEA surfaces with sonication, UV exposure, 

and the use of gaseous plasma functionalization [116].  Functionalization with the 

gaseous plasma technique has been shown to increase poly-lysine adhesion by adding 

oxygen-rich, hydrophilic, adhesive chemical functional groups to the surface [121].   

ECM proteins (present in Matrigel
TM

) may also improve long-term adhesion of 

the 3-D culture to the MEA [122].  One of these proteins, laminin, enhances culture 

adhesion.  While some coatings on MEA electrodes sacrifice signal quality for adhesion 

[116], coatings of poly-D-lysine, laminin, and the 3-D Matrigel
TM

-based cell culture did 

not significantly increase electrode impedance in our studies.  Lastly, to prevent the 3-D 

culture from detaching due to reduction in adhesion over time, an immobilizing Nylon 

grid-based construct was placed on top of the 3-D culture in our studies.   

The addition of oxygen rich functional groups, poly-D-lysine, and laminin renders 

the MEA surface more hydrophilic, protein adhesive, and cell adhesive.  The Nylon grid-

based construct further immobilized the 3-D cultures.  After these modifications, 3-D 
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cultures exhibited increased long-term culture adhesion to the MEA surface without 

detracting from recording signal quality. 

 

The Recording of Neural Network Electrophysiological Activity Using MEAs 

In neural networks, electrophysiological activity spreads from cell to cell via 

synaptic connections.  Ionic currents flow along the cell bodies between intracellular and 

extracellular fluid.  The distribution of ionic current corresponds to varying extracellular 

voltage gradients spatially and temporally [86].  With respect to a grounded reference 

electrode, MEA electrodes record extracellular voltage fluctuations from parts of single 

cells, such as dendrites, axon hillocks, or soma, generally within a 30 µm radius [86].  

MEAs record both slow field potential and fast action potential signals.  Fast action 

potentials are temperature-sensitive below 30ºC and decrease to a small value at room 

temperature [86, 123]; therefore, the experiments presented in this thesis were all 

conducted at 37 ºC.   

The underlying physics of the recording of an action potential involves current 

flowing into the axon hillock, representing a current point sink, which activates a neuron 

action potential [124-125].  In recording these potentials, detected voltage decreases as 

the distance from the current point sink to the electrode increases, according to the 

equation V= Iρ/4πr.  In this equation, r is the distance between the current point sink and 

electrode; ρ is the resistivity of the culture medium; I is the current during a neuronal 

action potential; and V is the detected concomitant voltage [123].  Given the extracellular 

nature of MEA recordings, r is generally large, and given these recordings take place in 
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cell culture media which has low resistivity ρ; voltages V recorded via MEAs have low 

signal magnitudes. 

Given that the signals of MEA recordings are small in magnitude, the signal-to-

noise ratio must be sufficiently large for useful data acquisition [115].  Impedances of 

across-the-electrode and electrode-to-earth paths determine the signal-to-noise ratio.  

These impedances also determine the recorded signal shape and magnitude [126].  

Ideally, when a neuronal soma is closely apposed on an electrode, the capacitive coupling 

produces a replica of the shape of the intracellular action potential.  However, a gap of 

approximately 100 nm generally exists between tissue and electrodes, resulting in sub-

optimal cell-to-electrode sealing causing the MEA electrodes to record a negative voltage 

profile with respect to time [89, 93].  As the gap between the cell and the electrode 

increases, the signal-to-noise ratio decreases. 

Using MEAs to record electrophysiological activity presents two additional 

challenges.  First, current MEA designs are not adapted for the detection and 

measurement of sub-threshold synaptic potentials [123].  Second, high-density cultures 

with many neuronal processes or somas over the electrodes limit physical isolation of the 

MEA electrode interactions to specific neurons [123].  However, the multi-cellular 

components of an MEA recorded signal can be mathematically resolved into the 

individual component voltage shapes from each neuron with respect to time [127].   

MEAs successfully capture an accurate representation of the general trend of 

electrophysiological activities within a culture while simultaneously recording small 

magnitude signals from numerous electrodes at varied distances.  Thus, MEAs enable 

tracking of the electrophysiological activity changes in a 3-D culture model.   
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The Development of Electrophysiological Activity in Dissociated Neural Networks 

The mechanical and enzymatic dissociation of neurons from rat embryo cortices 

causes the loss of many of the original cellular processes and synaptic connections.  

However, dissociated cortical neurons form neurite-driven interconnections within a few 

hours of plating [5, 94].  The development of spontaneous synchronous activity 

accompanies the extensive neurite outgrowth and, thus, the development of synaptic 

contacts in dissociated neural cultures [5, 9, 113, 128-131].  Within approximately 3 days 

in vitro (DIV), the cortical neurons spontaneously establish an electrophysiologically 

active network [128-129].  Within this period, individual neurons emit rare and irregular 

spikes or bursts of action potentials, indicating the possibility of immature synapse 

formation [129, 132-133].  Early activity has been shown to be responsive to currents 

generated via NMDA, AMPA, GABAa, and fast-sodium ionotropic receptors, although 

no signals actually propagate, indicating early receptor expression, but 

incomplete/immature synapse formation [129].  At approximately 4 DIV, synapses tend 

to grow stronger as neuronal cultures begin to exhibit signal propagation.  Between 5 to 

16 DIV, the cultures continue to exhibit a more organized firing pattern.  Regular 

sequences of synchronized bursts, or population bursts, occur almost simultaneously 

across all the MEA electrodes, in addition to isolated spikes [5, 94].  As the cultures age 

cross-network population bursts propagate more quickly [129].  The quick burst 

propagation indicates an overshoot phase of in vitro network structural development, in 

which synaptic connection strength and number of neurites both increase [128, 130, 132].  

After approximately 30 DIV, the networks exhibit elaborate temporal patterns of 
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synchronized population bursts [9, 94, 129].  This maturation phase relates to activity-

dependent processes [134] and homeostatic plasticity [135].  This stage is also indicative 

of a decline in the number of synapses or modulation of synaptic efficacy. Thus, from the 

initial build-up of electrophysiological activity, neuronal cells communicate and 

synchronize their firing of spikes and bursts to obtain a cooperative pattern of population 

bursts.  This development of neural network activity depends on the types of neurons and 

the cell density when plated [113]. 

 

Synaptogenesis in Neural Networks 

Synaptogenesis, the formation of synapses, occurs throughout an organism’s 

entire lifespan and depends on many factors [136-138].  Importantly, the rate of 

synaptogenesis depends on cellular density in culture.  Higher density cultures not only 

exhibit a higher rate of synaptogenesis, but also a greater number of synapses than lower 

density cultures.  These high-density cultures exhibit GABA and glutamate release, an 

indicator of synaptogenesis, at 3-4 DIV, much earlier than lower density cultures [139].  

Likewise, neuronal cultures have been shown to exhibit higher levels of bursting of 

action potentials when plated at a higher density of 2500 cells/mm
2
 rather than when 

plated at a lower density of 600 cells/mm
2 

as measured by MEAs [113].  Furthermore, 

higher density cultures exhibited population-based bursting at an earlier day in vitro 

(DIV), suggesting that plating density may also influence the rate of neuronal maturation 

[113]. 

Neuron-to-neuron distances and other factors also influence synaptogenesis.  In 

vitro,  how far neurites must travel to reach a synaptic target significantly affects the rate 
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of synapse formation [139].  Inter-neuronal distances are shorter in denser cultures, which 

increases the number of nearby potential synaptic contacts, enhancing neurite outgrowth 

and extension, in turn increasing the rate of synaptogenesis [139].  In addition to neuronal 

density, astroglial presence, neurotrophin concentrations, and soma size also influence 

synapse formation [139-142]. 

Pruning (purposeful loss of neurons and neurites) shows a mutualistic relationship 

between synaptic transmission and neuronal death.  Although the connection is unclear, 

synaptic activity directly correlates with cell death rate: increased synaptic activity shows 

an increase in the rate of neuronal death; conversely, suppressed synaptic transmission 

shows a reduction in neuronal death [143]. Synaptic plasticity leading to an increase in 

the number of synapses per neuron as well as the synaptic weights, tends to have a 

compensatory effect to this seeming loss of structure and function associated with the 

process of pruning [141].  For example, in the maturation of neonate mouse 

somatosensory cortex (layers II/III), a 35% reduction in neuronal density accompanies a 

five-fold increase in synaptic density.  Whereas, initially immature brains are very dense 

in neurons but with less than 250 synapses per neuron, after maturation, the brains are 

less dense but with close to 5000 synapses per neuron, resulting in approximately a 20-

fold increase in the ratio between synapses and neurons [142].  Therefore, the processes 

of synaptogenesis, synaptic plasticity, and pruning play an influential role in the process 

of development and aging. 
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Chemical Modulation of the Electrophysiological Activity of Dissociated Neural 

Networks 

Chemical modulation can allow deeper understanding of the basis of neural 

electrophysiological activity.  Chemical modulation of electrophysiological activity in 

vitro consists of bath application of a chemical to a dissociated neural culture such that all 

neuronal receptors are exposed to a similar concentration of the chemical.  Often times, 

chemicals used in such type of experiments are drugs and neurotransmitters.  In contrast 

to bath application of neurotransmitters in vitro, in vivo concentrations of 

neurotransmitters vary from region to region within the neural network and localize 

primarily in the synaptic clefts.  Likewise, the local concentration distribution of drugs 

will differ in vivo from in vitro; the latter will maintain a homogeneous concentration, 

while the former will experience higher chemical modulation in specific tissue regions.  

Thus, electrophysiological responses between in vitro and in vivo may differ, especially 

in the strength/amplitude of the response.  Nevertheless, in vitro drug-testing provides a 

simple means to test the cellular and network level response to drug application, while in 

vivo testing provides a more realistic model of the physiological response.  Together, 

such testing can help elucidate a drug’s physiological mechanism of action. 

Neurotransmitters used in the modulation of electrophysiological activity may be 

broadly classified as excitatory and inhibitory, although depending on the receptors 

certain neurotransmitter behavior may switch.  Excitatory neurotransmitters includes 

glutamate and aspartate, amino acids that increase spike rates via stimulation at the 

synapses and, at high concentrations (~10 μM), disrupt native network interactions, 

resulting in irregular high-frequency spiking [111].  N-methyl-D-aspartic acid (NMDA), 
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an exogenous glutamate analog, potentiates synaptic excitation and increases burst 

amplitude and burst rate [144].  At high concentrations (>30 μM), NMDA may lead to 

fused bursting and high-frequency spiking, followed by excitotoxicity [144-145].  

Norepinephrine and acetylcholine are primarily excitatory neuromodulators that enhance 

existing activity patterns (although these can be inhibitory as well, depending on the 

receptor).   

Other neurotransmitterss are inhibitory.  GABA and glycine are neurotransmitters 

which reduce spike and burst rates when applied in culture medium, via enhanced 

synaptic inhibition at 30 μM and approximately 60-100 µM respectively [144].  GABA 

only affects burst initiation, not synchronization [144].  Excitatory channel blockers of 

synaptic transmission, such as D-2-amino-5-phosphonovalerate (50µM, D-APV) and 6-

cyano-7-nitroquinoxaline-2,3-dione (10µM, CNQX) suppress network 

electrophysiological activity by competitively antagonizing excitatory glutamatergic 

receptors, such as N-methyl-D-aspartic acid receptors (NMDA-R) and alpha-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA-R) [8, 93, 146].   

Changing the extracellular concentration of certain ions, such as calcium, 

magnesium, potassium, and blocking intrinsic neuronal spiking mechanisms can also 

modulate network electrophysiological activity.  Bursting on a cellular level is dependent 

on calcium entry and slow calcium-gated conductance changes.  Lowering the 

extracellular calcium ion concentration eventually abolishes population bursting, even 

after initial sporadic bursting [100].  Magnesium ions not only partially block calcium 

entry into neurons, but also block the ionotropic component of NMDA-R receptors and 

suppress network electrophysiological activity.  Therefore, lowering the extracellular 
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magnesium ion concentration in mature cultures indirectly activates NMDA-receptors, 

increasing population bursting [147].  Potassium ion concentration also changes cellular 

dynamics: an increase in extracellular potassium ion concentration results in an increase 

in burst rates via depolarization [148-149].  Network activity modulation can also occur 

by blocking intrinsic neuronal spiking mechanisms.  For example, a 1 μM solution of 

tetrodotoxin can halt spontaneous electrophysiological activity by blocking sodium 

channels [5, 93, 129, 149]. 

Studying excitatory and inhibitory chemical modulation, in in vitro cultures can 

help characterize the cultures and their activity, and can potentially allow high-

throughput pharmaceutical experimentation in a more controlled manner.  It is easier in 

vitro to analyze single physiological aspects at longer periods, as opposed to animal 

behavior in vivo models or in vitro brain slices.  Besides chemical changes, these cultures 

can also model mechanical changes, such as applied stress and strain, and so can be 

useful in the study of traumatic neural injuries.   

 

Traumatic Neural Injury 

Physical suprathreshold insults can cause traumatic neuronal injury.  In 

conjunction with secondary events, these primary insults can cause persistent neuronal 

dysfunction and death both acutely (during the first few hours following injury) and 

chronically (a prolonged phase of neurodegeneration that can last up to one year post-

injury) [150].   

Knowing the injury tolerance of cells can help design therapeutic treatments for 

traumatic neuronal injury [151].  Injury tolerance cannot be accurately defined by cell 
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death because cells can experience significant functional deficits without death [152-

153].  In fact, functional changes can occur prior to any morphological damage; for 

example, a model of optic nerve stretch shows electrophysiological changes at a lower 

stretch level than morphological changes [154].  Furthermore, effects of the primary 

injury (mechanical event that lasts milliseconds only) are difficult to isolate from those of 

secondary events (that occur later) that can exacerbate cellular dysfunction.  For example, 

neighboring cells of injured ones become more at risk to damage from secondary events 

than those further apart, defining an injury penumbra [155].  For these reasons, a single 

threshold for cellular dysfunction is challenging to define.   

Since all cells are not affected in the same way, injury thresholds are likely non-

linear [151].  Differences in mechanical properties, cell type and morphology, cellular 

states (e.g., metabolic, receptor expression), and tissue architecture (i.e.  cell orientation, 

cell-cell and cell-matrix interactions) all play a part in differential injury responses [33, 

156].  Likewise, neurons are differentially susceptible to different modes and types of 

physical loading.  For example, injury-related calcium influx and membrane permeability 

increases indicate that neurons are more susceptible to biaxial stretch than uniaxial 

stretch, possibly due to the distribution of local strains [157].  Similarly, differences exist 

between cortical impact and impact acceleration models (open vs.  closed head injuries) 

in local stress and strain distributions, leading to permeability differences between cell 

populations [158-165].  Further work should correlate local cellular level stresses and 

strains with bulk tissue-level mechanical insults. 

In vitro models are relevant for the study of acute events following trauma 

because in in vitro models this window lasting only a few seconds is more accessible for 
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study than in vivo [166].  However, in vitro models lack many secondary interactions 

provided from systemic complexity, over time losing their relevance with in vivo models.  

By administering uniform loading to isolated neural components in vitro, cellular 

response and dysfunction thresholds to different mechanical loading parameters such as 

strains and strain rates can be measured [167].  While it is still unknown what strains and 

stresses are delivered on a cell-by-cell basis, as anticipated from the viscoelastic nature of 

biological tissue, in vitro models have demonstrated that injury responses depend on the 

magnitude and the rate of loading [30, 168-170]. 

One of the consequences of traumatic loading to cells, is the disruption of the 

plasma membrane.  The plasma membrane is the selective barrier and boundary of the 

cell, playing crucial roles in both neuronal structure and function.  Transient or chronic 

disruption causes neuronal dysfunction and possibly death.  Used in many models of 

traumatic neural injury, uptake of a cell-impermeant dye added to culture media or 

cerebrospinal fluid serves as a permeability marker for membrane disruptions [157, 169, 

171-173].  Use of variously sized permeability markers can help measure the 

approximate size of non-specific pores or tears from disruption [171, 173-175].  The size 

of tears and the resealing time increase with increasing strain and strain rate [169].   

Disruption of the plasma membrane allows ions such as Ca
2+ 

to diffuse down their 

concentration gradients, disrupting ionic homeostasis, action potential firing, and synaptic 

function [175-178].  Ca
2+

 influx after CNS injury has been correlated with many 

damaging downstream events: excitotoxicity caused by the release of excitatory amino 

acid neurotransmitters such as glutamate; axonal conduction impairment; necrosis caused 

by proteolytic calpain activation which leads to cytoskeletal breakdown; apoptosis caused 
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by endonuclease activation and mitochondrial damage [179-183]; [151].  Whereas, few 

studies have evaluated aspects of electrophysiological changes in individual cells in vitro 

following mild/moderate traumatic injury [177-178]; even fewer have investigated the 

overall changes in endogenous network activity following insult [30].   

Thus, the primary insult invariably leads to secondary events including efflux of 

intracellular components such as lactate dehydrogenase [168, 184], influx of extracellular 

contents such as Ca
2+

 [168, 185-186], conduction block [187], aberrant cell signaling 

[188], protease activation [189], reactive oxygen species activity [180], and 

phospholipase activation [180, 190].  Other consequences include alterations in cellular 

morphology [171, 174, 191], alterations in gene expression as in c-fos and c-jun [180, 

192],  induction of cell death processes owing the aforementioned glutamate induced 

excitotoxicity through the over activation of NMDA and AMPA receptors that result in 

sodium and calcium influx [177-178, 193] and delayed cell death  [151, 166, 168-169, 

194-197].  These and other events, such as invasion of blood-borne cells into the injured 

area, hemorrhage, ischemia, tissue deformation, and swelling of brain tissue, manifest at 

different times.  Initiation of secondary events affects cellular electrophysiological and 

biochemical functionality, and compounded with cell-to-cell alterations, can ultimately 

yield neural network level changes, which may be neurodegenerative or neuroprotective 

in nature [167].  The complexity of the series of events after the primary insult makes the 

study of traumatic injury very challenging.  A first step in this direction is to understand 

what happens during the primary insult as addressed in the third aim of this thesis. 
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Synchronized Bursts 

Synaptic interaction among the large numbers of cells within the network results 

in the firing of solitary action potentials (spikes) or the firing of spikes in repeated 

successions for extended periods (bursts).  Both can be coincident or synchronized [198].  

Compared to single spikes, bursts consistently effect the release of neurotransmitters, 

forming a possibly more reliable neural communication code [199].  Therefore, bursting 

is thought to encode the processing and storing of sensory, motor, and cognitive 

information [200].  Correlated network-wide bursting has been observed transiently 

during development [201-203], some stages of sleep [204], and pathological conditions 

resembling epilepsy [205].  Changes in synaptic efficacy [206] and long-term 

potentiation [207] in the cortex also depend on high frequency bursting of spikes.   

Several other characteristics of spontaneous synchronous activity of dissociated 

neural cultures have been studied, delving into the location [103], spread [94], origin 

[103], post-burst recovery of spontaneous bursts [101], prediction of bursts [208].  It has 

been found that culture-wide spontaneous bursts, initiated from various sites in the 

dissociated culture, occur in a variety of patterns [103].  Results of network sectioning 

suggested that a synchronized burst would spread to the entire culture by sparse 

excitatory connectivity mediated by chemical synapses, not gap junctions and/or 

diffusible factors [5].  Prediction of an upcoming network burst was shown to be possible 

by observing a set of neurons in culture, in which the firing rates increased tens of 

milliseconds before the peak of a culture-wide burst [208].  On the contrary, observation 

of varied locations of spontaneous burst origins, suggest that no single “pacemaker” cell 

drives the network to burst [103].  A period of post-bursting network depression and a 
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positive-correlation between burst duration and the preceding interval between bursts 

suggest that recovery parameters, such as replenishing neurotransmitter vesicles after the 

previous burst, modulate the proceeding burst duration [101].  This also implies the 

existence of a “burst refractory period.” The burst refractory period may control how 

quickly a burst can be re-initiated.  Given their increased temporal reliability and greater 

network-wide chemical influence, synchronized bursts may be integral to understanding 

how neural networks process and store sensory, motor, and cognitive information [209]. 

 

Inhibitory Neurons / GABAergic Neurons in Dissociated Cortical Cultures 

Neurotransmitters affect synchronized bursts.  One of these, gamma amino 

butyric acid (GABA) is a major inhibitory neurotransmitter in the adult cortex, although 

excitatory in immature networks [210-212].  In vitro the number of GABAergic neurons 

vary in response to altered levels of activity in neuronal networks [149, 213-215].  

GABA’s role in maintaining synchronous network activity, further implied as 

suppression of spiking activity, is concomitant with a decrease in GABA 

neurotransmission [149, 216]. 

 

The Microelectrode/Electrolyte Interface in the MEA-Neural-Culture System 

In the MEA-neural-culture system, the extracellular electrolyte rich solution 

interacts electrochemically with the microelectrode surface to make neural recordings 

possible.  MEAs transduce bioelectric potential signals carried by electrolyte/ionic 

currents to electronic signals and vice versa.  Neurons send these bioelectric signals into 

the MEA electrodes via capacitive field interactions, inputing these signals into high-
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impedance amplifier circuits.  These circuits amplify the signals and record them as 

microvolt fluctuations.  No charge transfer occurs from the neurons to the electrodes in 

this process [92].   

A potential difference forms between the electrode metal and its dissolved 

cations, which accumulate on the electrode’s surface at equilibrium with the excess 

concomitantly released electronic charge on the electrode’s surface.  This capacitative 

space between an electrode’s electronic charge and the dissolved cationic charge 

constitutes a space charge layer.  The cations range in concentration from some 

maximum closest to the metal electrode surface to some minimum farther from the 

charged electrode surface.  A hydration sheath of oriented water molecules forms near the 

surface of the metal electrode.  Lining the electrode, the first set of water molecules form 

the inner Helmholtz plane, while the next layer of hydrated cations outward from the 

electrode form the outer Helmholtz plane. 

Three mathematical models, the Helmholtz-Perrin model, the Gouy-Chapman 

model, and the Stern model, describe the capacitive electro-chemical behavior at the 

electrode/electrolyte interface in neural recording scenarios.  The Stern model additively 

combines the Helmholtz-Perrin and Gouy-Chapman models to account for both the 

dependence of capacitance on potential at lower voltages and the capacitance plateaus at 

higher voltages [217].  It yields an expression for the interface capacitance per unit area, 

CI, (in F/m
2
) as follows: 
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CH represents the linearly dependant capacitance per unit area on voltage in the stuck-ion 

space-charge layer up to the outer Helmholtz plane from the Helmholtz-Perrin model and 
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CD represents the exponentially dependent capacitance per unit area in the diffuse space 

charge layer beyond the outer Helmholtz plane from the Gouy-Chapman model; dOHP 

denotes the distance from the electrode to the outer Helmholtz plane, which is also the 

location of the physical transition from CH to CD; ε0 and εr  represent the dielectric 

permittivity of free space and the relative dielectric permittivity of the medium between 

the two plates, respectively; LD stands for the Debye length or the distance over which the 

potential decays “e”-fold; z designates the charge of the ion in question, while V0 and Vt 

express the potential at the electrode and the thermal voltage, respectively.   

 While magnitude of CH remains stable, the CD increases at higher ionic solute 

concentrations or applied potentials because the diffuse space charge region becomes 

more compact.  The CI obtained reflects the real capacitance in biological applications 

involving MEA electrodes.  Overall, MEA electrodes tend to behave in a completely 

capacitive manner in neural recording applications [92].  Therefore, the Stern model 

sufficiently explains the microelectrode/electrolyte interface involved.   

 

Defined Media for Neuronal-Astrocytic Neural Cultures 

In order to obtain consistent high-yield data, the culture needs controlled media 

that optimizes viability of neuronal cells.  Serum-containing media is not as well 

characterized as serum-free defined media, yet contains many essential components.  

However, in vitro neural networks that grow in undefined serum-based media result in 

low neural culture viability at low cell density [127, 148].  Serum-based media also 

promotes the growth of astrocytes.  The excess astrocyte growth may interfere with MEA 

electrode-to-neuron coupling [127].  Culture conditioned media is an option for some 
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culture conditions, yet consistency in composition needs to be verified.  To avoid these 

complications, a feasible alternative to serum-based cell-culture media is a combination 

of an optimized B27 supplement and a basal medium (Neurobasal, by Gibco) containing 

defined amounts of nutrients.  At low plating densities, this defined medium [218] 

maintains less than one percent of astrocytes in the cell culture population while allowing 

several weeks of greater than 90% primary hippocampal neuronal viability [127, 148].  

The addition of G-5 supplement with defined components helps maintain the presence of 

astrocytes in culture under controlled conditions [219].  The use of defined media in 

neural experimentation has allowed another level of control thereby minimizing the 

variable of undefined physiological components.   
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Conclusion 

A 3-D dissociated neural culture system has comparative advantages over in vivo 

systems and 2-D in vitro systems.  A culture system used in this research work comprised 

of cells embedded in a Matrigel
TM

 scaffold over a processed SU-8 2000 MEA interface, 

so that cells in culture existed in a close imitation of the in vivo environment in close 

apposition to a cytocompatible recording surface.  The use of 3-D in vitro MEAs to 

collect data instead of other devices, such as the patch clamp allows for distinct 

advantages, including simultaneous multi-location recording in 3-D environments with 

minimized impedence.  However, 3-D cultures in vitro need to adhere well to the MEAs 

in order to record electrophysiological activity of neural network.  Surface treatments 

effectuating physisorption and functionalization allow for better neural adhesion to the 

MEAs.  Despite the obstacles of small signal magnitude to recording simultaneously at 

numerous electrodes, MEAs can capture an accurate representation of 

electrophysiological activity within the culture over weeks.  Developing networks exhibit 

both synaptogenesis and pruning as they mature.  These networks can be chemically 

modulated, a useful tool in drug analysis.  Chemicals affect synchronized network bursts, 

which are thought to be responsible for the processing and storage of sensory, motor, and 

cognitive information.  Moreover, networks can be modified or injured mechanically.  

Mechanical injury affects cell membrane permeability, resulting in altered ion and 

neurotransmitter fluxes, such as those of GABA, a neurotransmitter that inhibits network-

activity.  MEA recordings are possible due to electronic and ionic interactions at the 

microelectrode/electrolyte interface in the MEA-neural-culture system.  This 

environment must have a defined media to enhance neuronal viability under controlled 
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conditions during recording.  With several factors optimized, a 3-D culture model should 

prove to be a powerful tool in a variety of neurological experiments. 
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CHAPTER 3 

SU-8 2000 RENDERED CYTOCOMPATIBLE FOR NEURONAL BIOMEMS 

APPLICATIONS 

 

Summary 

 Microfabrication advances have resulted in small, inexpensive, and precise 

devices for biological microelectromechanical systems (bioMEMS).  SU-8 / SU-8 2000 is 

an attractive material for these applications because of the high-aspect ratio fabrication 

capability, dielectric properties, and thermochemical stability.  Despite these advantages, 

the potential toxicity of SU-8 2000 may limit its use in cell-based applications.  We show 

that <10% of primary neurons survived when cultured adjacent to or on top of untreated 

SU-8 2000.  We evaluated the efficacy of various detoxification and surface treatments 

for SU-8 2000 in neuronal cultures after 7-21 days in vitro.  Viability was improved to 

45.8 ± 4.5 % (mean ± standard error of the mean) following 3-day heat treatment (150C) 

under vacuum, while UV exposure and CO2 supercritical extraction did not improve 

survival.  Furthermore, parylene coating (25 m), in combination with heat and 

sonication (in isopropanol) treatments effectively masked the SU-8 2000 and led to 86.4 

± 1.9 % viability.  Glow discharge (oxygen plasma) treatment rendered the SU-8 2000 

surface more hydrophilic and improved neuronal adhesion to the SU-8 surface.  No 

organic leachants were detected by mass spectrometry before or after heat treatment or 

after sonication.  However, XPS analysis revealed the presence of potentially neurotoxic 

elements, fluorine and antimony.  Strategies to improve SU-8 2000 cytocompatibility to 
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primary neurons will allow longer culture times and have applications for cell-based 

microfabrication.
1
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Introduction 

Microfabrication advances have resulted in small, inexpensive, and precise 

devices for biological microelectromechanical systems (bioMEMS) [1].  SU-8, a 

negative, near-UV photoresist, enables the manufacturing of high-aspect ratio thick 

MEMS structures [2-4].  The original SU-8 formulation used gamma-butyrolactone as the 

solvent [2-3], while the more recent SU-8 formulations, using cyclopentenone as a 

solvent, are referred to as SU-8 2000 [4].  Exposed SU-8/SU-8 2000 resists are thermally 

and chemically stable due to their aromatic functionality and highly cross-linked matrix 

[3-7], making them ideal for the fabrication of high-aspect ratio 3-D microelectrode 

culture systems.  A 3-D microelectrode system made using SU-8 / SU-8 2000 requires 

cytocompatibility [8-9].   

Cytocompatibility studies of SU-8 / SU-8 2000 to date have focused on the 

original SU-8 formulation using both neuronal and non-neuronal cells and tissues.  In 

addition, many current systems in use do not incorporate an appreciable amount of SU-8 

(e.g., 5m insulation layer in Ayanda Biosystem’s multielectrode arrays (MEAs)) [10-

15],
 
drastically reducing the potential toxic leachants.  Neural applications include 

dissociated cultures, as well as slice cultures.  For example, in a microfluidic device made 

partially out of SU-8, chick embryonic motoneurons were viable for up to 48 hours [8].  

In another study, while electrophysiological activity was detected in neuronal cultures for 

45-60 days within SU-8 containing MEAs, no quantitative viability assessment was 

performed [16].  Neuroblastoma cells cultured on thick SU-8 2000 structures showed 

poor cell adhesion [17].  Several other studies have used 5m insulation layer SU-8-
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containing structures to monitor electrophysiological activity in slice preparations, yet 

viability as a function of materials in the devices was not evaluated [10-11, 13, 15].
 

Because of the paucity of toxicity-related information for thick SU-8 2000 

coatings with neuronal cell types, investigations on biocompatibility of cured SU-8 using 

non-neuronal cell types may be relevant in determining conditions that contribute to cell 

toxicity.  For example, SU-8 implanted within stainless steel cages in a subcutaneous 

rodent model had less bio-fouling and similar numbers of leukocytes accumulate 

compared to controls, suggesting that SU-8 is biocompatible [9], but SU-8 has also been 

found to be thrombogenic [18].  SU-8 has been shown to be toxic to cultured mouse 

fibroblasts, yet caused no overt complications when implanted in rabbit muscle [6].  

Others have also observed that untreated SU-8 is incompatible with mammalian cells, yet 

following HNO3 and ethanolamine treatments HeLa cells preferred hydrophilized SU-8 

surfaces compared to non-hydrophilized SU-8 at least up to 4 days in vitro [19].  

Therefore, the cytocompatibility of SU-8 / SU-8 2000 has not yet been established, likely 

due to differential cell responses and culture environments, variations in fabrication, 

material processing, and/or exposure to surface area. 

Cytocompatibility of the SU-8 2000 series (MicroChem Corporation, Newton, 

MA) warrants investigation since it offers several processing advantages over the original 

SU-8 formulation, including significantly improved wetting, faster drying, and clean edge 

bead removal without the need for an intermediate bake step [4].  In the present study we 

show that thick untreated SU-8 2000 substrates (≥ 100 µm), which can be associated with 

high-aspect ratio structures, are not compatible with primary neuronal culture.  We 

postulate that the poor cytocompatibility of SU-8 2000 resulted from two sources: 1) 
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toxic leaching from the SU-8 2000 components; and 2) poor sustained neuronal adhesion.  

This study is the first reported characterization of SU-8 2000 cytocompatibility for in 

vitro neurobiological applications and presents several preparatory treatments for 

improved compatibility with primary neurons, which may be applicable to improvement 

of both SU-8 and SU-8 2000 materials. 
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Materials and Methods 

 

Fabrication of SU-8 2000 substrates 

An empirically derived modification of SU-8 2000 substrate processing, based on 

manufacturer’s recommended procedure (Nano SU-8 2000 Negative Tone Photoresist 

Formulations 2035-2100.  Newton, Microchem) [20] was used to fabricate high-aspect 

ratio (20:1) thick micro structures (up to 700 m thick) [21].  Similar adapted protocols 

have been used previously, with pre- and post-baking times and UV exposures in a range 

similar to that used here for obtaining thick high-aspect ratio structures from SU-8 2000 

[22-25].  A 100 m (or 300 m) thick layer of SU-8 2000 (either SU-8 2025 or SU-8 

2050) (MicroChem Corp., Newton, MA) was spin-coated at 500 rpm (CEE Model 

100CB Spinner, Rolla, MO) on a glass substrate (Figure 3.1) and pre-baked (30 minutes 

for the 100 m samples or 4 hours for the 300 m samples) at 95C to remove the solvent 

from the resist layer.  The two thicknesses allowed the study of two representative 

members of the SU-8 2000 series.  The SU-8 2000 substrates were subsequently exposed 

to UV light (1000 mJ for the 100 m samples and 2000 mJ for 300 m samples) through 

a checkerboard-patterned mask to initiate crosslinking of the exposed SU-8 2000 plateaus 

(OAI HYBRALIGN Series 500 system, Optical Associates, Inc.  Mask Aligner, San Jose, 

CA).  Following the UV exposure the SU-8 2000 substrates were post-baked on a 

hotplate at 95C (30 minutes for the 100 m samples or 40 minutes for the 300 m 

samples), changing the linear oligomer to a crosslinked network structure.  Both the pre- 

as well as post- baking followed the alternatively recommended ramp procedure for 

baking on hot plate by initially ramping the temperature from 65C to 95C in 10 
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minutes.  The SU-8 2000 substrate was then developed using PGMEA (Propylene Glycol 

Monomethyl Ether Acetate, Rohm and Haas Electronic Materials, North Andover, MA), 

removing the uncrosslinked regions and resulting in SU-8 2000 plateaus separated by the 

checkerboard pattern.  Individual 1 cm
2
 x 100 m (or 300 m) thick SU-8 2000 plateau 

samples were separated manually using forceps.  These were assayed as untreated 

samples and used for the various treatments described below.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A) SU-8 was spin coated on a 
glass substrate. 

B) Soft baking and UV 
exposure with a checkerboard 
pattern followed. 

C) The unexposed part was 
removed after post baking and 
developing in PGMEA solvent. 

D) Finally the developed SU-8 
samples were delaminated 
from the glass substrate. 

 
 

Figure 3.1. Microfabrication process for making SU-8 2000 samples.  The 

different stages in the fabrication process include: spin coating, soft baking, UV 

exposure, post baking, developing in PGMEA, and finally delamination.  Figure is not 

drawn to scale. 
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SU-8 2000
 
Treatments and Coating 

Initially, the effect of exposure to SU-8 2000 on neuronal culture viability was 

determined by culturing cells adjacent to untreated samples and reused SU-8 2000 

samples (used previously by us in cell culture for 34 days, to test the effect of long-term 

exposure to cell culture media on toxicity).  SU-8 samples were processed for reuse by 

rinsing with 70% ethanol, and sterile de-ionized water.  After drying, substrates were re-

coated with poly-D-lysine.  By placing cultures adjacent to the SU-8 2000 samples, we 

eliminated the variable of poor adhesion possibly contributing to the cell response.  Next, 

the following treatments were employed to assess their ability to make SU-8 2000 more 

cytocompatible to neurons in culture adjacent to the SU-8 2000 samples:  heating at 

150C for 3 days under vacuum (hard baking) (referred to as H hereafter), ultraviolet 

(UV) light exposure of 90 J/cm
2 

(OAI HYBRALIGN Series 500 system, Optical 

Associates, Inc.  Mask Aligner, San Jose, CA) (UV) and CO2 supercritical extraction for 

30 minutes (Autosamdri-815B, Tousimis Supercritical Dryer, Tousimis, Rockville, MD) 

(CO2).  The combination treatments tested were: UV + CO2, H + UV, H + CO2, H + UV 

+ CO2.   

In addition, ultrasonication in isopropanol (Mettler Electronics model # 4.6, 85 

W) (S) of H treated SU-8 2000 samples was performed for 0, 1, 3, or 15 minutes, 

followed by oxygen plasma treatment (EMS-100, Electron Microscopy Sciences, 

Hatfield, PA) and assessed for cytocompatibility.   Finally, the effect of 30, 90, 180, 270 

or 360 seconds glow discharge oxygen plasma treatments (O2) or parylene coating (25 

µm) (parylene C, poly(monochloro-p-xylylene), Cookson Electronics, Providence, RI; 

PDS 2010 LABCOATER, Specialty Coating Systems, Indianapolis, IN) (P) on the 
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cytocompatibility of H + S treated SU-8 2000 was also studied, in order to improve cell 

adhesion while testing for exposure to possible toxic leachants.  The cultures tested in the 

experiments described here, therefore, were cultured on top of the SU-8 2000 samples.   

Tissue culture treated polystyrene surfaces (Corning Inc., Corning, NY) or glass 

substrates (VWR Scientific, West Chester, PA) with or without a 25 µm parylene coat 

served as controls.  All cell culture surfaces were coated with poly-D-lysine (100 µg/ml) 

before plating.   Table 3.1 summarizes the experimental design for testing of the SU-8 

2000 treatments.  A subset of experiments was designated to simultaneously vary a 

number of conditions to identify a set of adequate conditions for further testing.  Once 

treatment conditions suggested efficacy, a time series was evaluated with additional 

power obtained with group replication (e.g., Figures 3.4 and 3.6). 
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Table 3.1.  Summary of the various SU-8 2000 treatments studied.  The various bulk 

detoxification and surface treatments used are summarized.  All culture surfaces were 

coated overnight with 100 µg/ml poly-D-lysine, n = number of replicates, DIV = days in 

vitro, Cort.  = E17-18 primary cortical neurons, Hipp.  = E17-18 primary hippocampal 

neurons, New = Untreated = new SU-8 2000 without any treatment mentioned in the 

table, Reused = SU-8 2000 without any treatment mentioned in this table but previously 

used in cell culture for 34 days, H = heating at 150°C for 3 days in vacuum, UV = UV 

light exposure of 90 J/cm
2
, CO2 supercritical extraction for 30 minutes, S = isopropanol 

sonication, P = parylene coating, O2 = O2 plasma treatment. 

 

Treatments 
n per 

Treatment 

Cell 

Type 

Plating 

Location 

with 

respect to 

SU-8 

Plating 

Density 

(cells / mm2) 

# of SU-8 

Samples per 

Culture, 

Sample 

Dimensions 

Controls 

Live/ 

Dead 

Time 

Point 

(DIV) 

Results 

Figure # 

New 4 
Cort. Adjacent 1000 

4, 10 x 10 x 

0.1 mm3 

Polystyrene, 

n=12 
21  2 

Reused 5 

H 

4 Cort. Adjacent 1000 
4, 10 x 10 x 

0.1 mm3 

Polystyrene, 

n=4 
21  3 

UV 

CO2 

UV + CO2 

H + UV 

H + CO2 

H +  UV + CO2 

Untreated 

H 

2 Hipp. On top 500 
2, 10 x 10 x 

0.3 mm3 

Glass slip, 

n=2 
7  4 

H + S (1 min, 70% IPA) 

H + S (3 min, 70% IPA) 

H + S (15 min, 70% IPA) 

H + S (30 min) 
5 Cort. On top 1000 

1, 10 x 10 x 

0.1 mm3 

25 µm 

Parylene 

coated glass 

slip, n=5 

7 5 
H + S (30 min) + P (25 

µm) 

H + S (1 min, 70% IPA) + 

O2 (30, 90, 150  sec) 
8 fields 

across one 

culture 

Hipp. On top 1000 
1, 10 x 10 x 

0.3 mm3 

Glass slip, 

n=2 
7 6 

H + S (1 min, 100% IPA) + 

O2 (30 sec) 

H + O2 (30 sec) 

H + S (1 min, 70% IPA) 

H 
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Sterilization of SU-8 2000 Samples 

 SU-8 2000 samples were attached to polystyrene cell culture wells and sterilized 

with 70% ethanol under a laminar flow hood with ultraviolet light for 30 minutes, 

followed by rinsing in sterile filtered deionized (DI) water under UV light for 30 minutes, 

aspirating off the DI water, and exposing to 60 minutes of continued UV.  SU-8 2000 

samples that were attached to glass were sterilized by 45 minutes of UV exposure only.  

During sterilization the samples were placed at distances  65 cm from the laminar flow 

hood UV lamp (minimum distance of lamp from the working bottom surface of hood) 

with an intensity ≤ 0.6 J/cm
2
. 

 

Neuronal Cell Culture 

 Timed-pregnant Sasco Sprague-Dawley rats (Charles River, Wilmington, MA) 

were anesthetized using halothane (Halocarbon Laboratories, River Edge, NJ) at 

embryonic day 17-18 and decapitated.  Fetuses were removed and placed in Hanks 

balanced salt solution (HBSS, Invitrogen).  All procedures involving animals were 

approved by the Institutional Animal Care and Use Committee (IACUC) of the Georgia 

Institute of Technology or that of the Southern Illinois University, following NIH 

guidelines for the care and use of laboratory animals (NIH Publication # 85-23 Rev.  

1985).  Cerebral cortices and hippocampi were isolated and dissociated using pre-warmed 

trypsin (0.25%) + 1 mM EDTA (Invitrogen, Carlsbad, CA) for 10 min at 37ºC followed 

by deoxyribonuclease I (0.15 mg/mL, Sigma, St.  Louis, MO) in HBSS (or papain, 2 

mg/ml in Hibernate-calcium) (BrainBits LLC, Springfield, IL).  The tissue was triturated 

with a flame-narrowed Pasteur pipette and centrifuged at 1000 rpm for 3 minutes and the 

D) 

D) 
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cells were resuspended in Neurobasal
 
medium + 2% B-27 + 500 M L-glutamine 

(Invitrogen, Carlsbad, CA).  Cultures were plated in standard polystyrene 6 well plates 

(Corning Inc., Corning, NY) or 24 x 60 mm glass cover slips (VWR Scientific, West 

Chester, PA) both pretreated with 100 µg/ml poly-D-lysine (Sigma, St.  Louis, MO).  As 

summarized in Table 3.1, neurons were plated either adjacent to or directly on test 

biomaterials (e.g., SU-8 2000, glass controls, parylene coated glass controls), which were 

adhered to polystyrene wells or glass using polydimethylsiloxane (PDMS, Sylgard
®
 184 

and 186 Silicone Elastomer Kit, Dow Corning Corporation, Midland, MI).  Cortical cells 

were plated at a density of 1000 cells/mm
2
; hippocampal cells were plated at 500 or 1000 

cells/mm
2
.  These plating densities have been used previously for MEA studies and result 

in a cell density which permits recording at the electrodes while maintaining discernable 

cell-cell distances [26-27].  Cultures were incubated at 37C and 5% CO2-95% 

humidified air, and fed every 3-4 days in vitro (DIV) by replacing half the media with 

media pre-warmed to 37C.  Both embryonic cortical and hippocampal neurons were 

used in order to evaluate various SU-8 2000 treatments on two commonly used culture 

types, which allows the isolation of cells without causing irreversible damage of sheared 

axons and dendrites, as seen in adult tissue [28-30].  A culture time of one week was used 

to test acute effects of the SU-8 2000 (surface chemistry related) on the cultures that were 

plated on top of the SU-8 2000, while a 3 week culturing time point was used for 

assessing the chronic effects of SU-8 2000 leaching on cultures that were plated adjacent 

to the SU-8 2000.  We used a sensitive and inexpensive in vitro testing method where the 

test material was directly exposed to the cell culture medium [31],
 
and immobilized so as 

not to disturb the cell culture by floating or scratching it [32].   
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Live-Dead Staining for Assessing the Cytocompatibility of SU-8 2000 after 

Treatments 

Fluorescent probes were used for distinguishing live and dead cells (LIVE/DEAD 

Viability/Cytotoxicity Kit; Molecular Probes, Eugene, OR) at 7 or 21 DIV.  Cell cultures 

were incubated with 2 M calcein AM (live cell probe) and 4 M ethidium homodimer-1 

(EthD-1) (dead cell probe) at 37 C for 30 minutes and rinsed in 0.1M Dulbecco’s 

phosphate buffered saline (D-PBS, Invitrogen, Carlsbad, CA) before imaging. 

 

Data Collection and Statistical Analysis 

Fluorescent microscopy imaging was performed with either a Nikon Eclipse 

TE300 (Nikon Instruments Inc., Melville, NY), an Olympus BX51WI (Melville, NY), or 

a Zeiss 510 Laser Scanning Confocal Microscope (Carl Zeiss AG, Göttingen/Germany).  

Two to eight photomicrographs were taken per cell culture well for quantification.  Image 

regions were randomly selected either by triangulation, or imaging at the four ends of a 

square and the center of the cultures.  To prevent counting errors, all images were 

independently quantified twice (once by drawing a circle around each accounted cell), 

and only those corresponding counts that were within ±10% of each other were 

considered.  Those counts that did not fit this criteria were recounted independently, and 

the process independently continued until consistently repeatable counts were obtained. 

Cell culture data are presented as % viability and live cell density.  Percent cell 

viability is the ratio of live over total adherent cells (live + dead) at the time of assaying, 

and not over all the cells that were originally present.  This methodology does not take 



 78 

into account cells that have been washed away from the surface during media changes 

and rinses.  Comparisons between plating and final densities of cells on the different 

surfaces, therefore, would provide an estimate of the number of cells lost, assuming no 

proliferation.  On the other hand, live cell density or live cells/mm
2
 is the live cell count 

per area of substrate at the time of assaying.  Data are presented as mean ± standard error 

of the mean.  General linear model ANOVA was performed followed by Student-

Newman-Keuls pairwise comparisons (p < 0.05 was considered significant).   

 

Mass spectrometry, X-ray Photoelectron Spectroscopy (XPS) and Contact Angle 

Measurements 

Mass spectrometry analysis was conducted to identify possible organic leachants 

from SU-8 2000 that could be toxic to the cells.  Glass vials were rinsed with ethanol, DI 

water, and isopropanol and filled with ACS reagent grade isopropanol (2 mL).  In one of 

the vials five SU-8 2000 samples (1cm x 1 cm x ~100µm) were added (S), while in 

another five SU-8 2000 samples from the same batch that were heat treated in a vacuum 

oven at 150C for three days were added (H + S) while the third vial was used as a blank 

isopropanol control (Blank S).  Vials were placed in an ultrasonication bath for 30 

minutes, followed by removal of the solvent phase for analysis by mass spectrometry.  

Gas chromatography (J & W Column, DB-5, 30 m length, 0.25 mm I.D., J & W 

Scientific, Folsom, CA) was used to separate the potential leachants in the isopropanol 

solvent, followed by electron ionization mass spectrometry (VG 70SE, VG Instruments, 

Manchester, UK).  Likewise, liquid chromatography (Agilent 1100 Series, Supelco C18, 

100 mm length, 1 mm I.D., Agilent Technologies, Palo Alto, CA) was used to separate 
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the potential leachants, followed by electrospray mass spectrometry (Micromass Quattro 

LC, Manchester, UK).  Separate samples were concentrated until completely dry, and 

reconstituted in 100 µl of isopropanol.  Samples were injected onto a gas chromatography 

column followed by electron ionization mass spectrometry, as well as vaporized in a 

heated solids probe followed by electron ionization mass spectrometry, or reconstituted in 

200 µl of water and subjected to liquid chromatgrophy followed by electrospray mass 

spectrometry. 

The elemental composition analyses of the SU-8 2000 surfaces after various bulk 

detoxification and surface treatments were performed using XPS analysis (Surface 

Sciences Instruments Model SSX-100 Small Spot ESCA Spectrometer equipped with a 

monochromatized Al K-alpha X-ray source (1486.6 eV); Mountain View, CA).  The 

operating pressure in the analysis chamber was maintained at 3.0 x 10
-9

 Torr or lower 

during the measurements.  Each sample was scanned at 1-2 spots (100 μm diameter, X-

ray spot size).  For each spot, general survey scans (analyzer pass energy of 150 eV) were 

obtained for a sample from each of the above treatments followed by high resolution C1s 

and O1s scans (analyzer pass energy of 50 eV).  The binding energies (BEs) were 

referenced to the C1s (C-H) peak at 285.0 eV, to compensate for the effects of charging.  

All treatments were done as described previously, except the oxygen plasma treatment, 

which was conducted in a Plasma Therm RIE 700 series reactive ion etcher (Plasma-

Therm, Inc., Saint Petersburg, FL) at a pressure of 200 mTorr, O2 flow of 100 standard 

cubic centimeters per minute O2, 200 W power for one min.   

The effect of oxygen plasma treatment on SU-8 2000 surface hydrophilicity was 

assessed by measuring contact angle.  The ambient air-water-substrate contact angle 
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measurements (2 l of deionized H2O) were taken with a Rame-Hart 100-00 goniometer 

(Mountain Lakes, NJ) fitted with a digital camera and analyzed using in-house image 

analysis software.  Table 3.2 summarizes the various analytical techniques used to study 

the different SU-8 2000 treatments. 

Table 3.2.  Summary of the analytical techniques used for assessing SU-8 2000 after 

various treatments.  Mass spectrometry, X-ray photoelectron spectroscopy, and contact 

angle goniometry techniques were used for assessing SU-8 2000 after the various 

treatments.  GC = gas chromatography, EIMS = electron ionization mass spectrometry, 

LC = liquid chromatography, ESMS = electro spray mass spectrometry, HPEIMS = 

heated probe electron ionization mass spectrometry, Blank S = 30 minutes blank 

isopropanol sonicated control, Untreated = new SU-8 2000 without any treatment, H = 

heating at 150 C for 3 days in vacuum, S = sonication in isopropanol for 30 minutes, O2 

= O2 plasma treatment for 1 minute, P = parylene coating of 25 µm. 

 

Analytical Techniques Treatments 

Mass Spectrometry Blank S 

1.  GC + EIMS S 

2.  LC + ESMS H + S 

3.  Samples dried and reconstituted in 100 µl isopropanol + GC + EIMS 

  

4.  Samples dried and reconstituted in 100 µl isopropanol + HPEIMS 

5.  Samples dried and reconstituted in 200 µl water + LC + ESMS 

X-Ray Photoelectron Spectroscopy 

 

 

 

 

Untreated 

H 

S 

H + S 

H + S + O2 

H + S + P 

H + S + P + O2 

Contact Angle Goniometry 

 

Untreated 

O2 
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Results 

 

Assessment of Cell Viability Resulting from Exposure to Fresh and Reused SU-8 

2000  

 At 21 DIV cortical neuronal cultures adjacent to SU-8 2000 samples had 

significantly lower viability than the plain polystyrene control groups (6.6 ± 6.6 % vs.  

70.9 ± 3.7 %) (Figure 3.2), indicating that neurons die when cultured in media contacting 

SU-8 2000.  Soaking SU-8 2000 substrates in culture medium at 37
o
C during cortical 

neuronal culture improved neuronal survival in subsequent cultures; neuronal viability 

was improved (to 40.8 ± 5.5 %) in cultures growing adjacent to reused SU-8 2000, 

suggesting that toxic leachants may be removed from SU-8 2000 during prior cell culture 

period. 

 

Assessment of Different Bulk Detoxification Treatments for SU-8 2000
 
 

 At 21 DIV, with the exception of the heat treatment(H), all other treatments (UV, 

CO2, UV + CO2, H + UV, H + CO2, H + UV + CO2) resulted in neuronal viability in 

adjacent cultures significantly lower than control cultures (Figure 3.3).  The heat 

treatment resulted in viability of 45.8 ± 4.5 % as compared to 61.1 ± 5 % in polystyrene 

controls.  Neuronal viability following UV exposure (0.3 ± 0.3 %) and CO2 supercritical 

extraction (0.1 ± 0.15 %) treatments was significantly less than untreated SU-8 2000 

samples (6.6 ± 6.6 %).  The measured cell densities for treatments and control groups at 

the end of the culturing period were lower than the cell densities at plating (500-1000 

cells/mm
2
) indicating cell loss after plating.  The control viabilities in the range of 60-
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70% at the time point tested are consistent with a previous report [33].  Comparisons 

between plating and final densities of cells on the different surfaces provide an estimate 

of the loss of cells from these materials, assuming no proliferation.   

Heat plus ultrasonication in isopropanol for 15 minutes resulted in an increased 

density of live cells on SU-8 2000 beyond that obtained through heat treatment alone 

(Figure 3.4).  The plating of cells in this experiment was on top of the SU-8 2000 

samples, indicating that sonication over a period of time improves adhesion of the 

neurons to SU-8 2000 with consequent better survival, but with less effect on the ratio of 

live to total cells. 

 

Assessment of Adhesive Surface Treatments for SU-8 2000  

There was a significant improvement in live cell density (for cells cultured on top 

of the SU-8 2000 samples) on heat and sonication treated SU-8 2000 substrates following 

parylene coating (25 µm) (556.9 ± 68.3 live cells/mm
2
) compared to uncoated (308.6 ± 

81.1 live cells/mm
2
), which was comparable with parylene-coated glass controls (626.2 ± 

58.2 live cells/mm
2
) (Figure 3.5).  Oxygen plasma treatment improved live cell density 

and greatly increased neurite outgrowth for cells cultured on top of the SU-8 2000 

samples (Figure 3.6).  The relative benefit of the heat + sonication (H+S) treatments 

reported in Figure 3.4 as can be seen in Figure 3.6. 
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Figure 3.2.  Assessment of cell viability of neural cultures plated adjacent to fresh 

and reused SU-8 2000 samples.  Cellular response to SU-8 2000 exposure quantified 

as % cell viability (A), and live cells/mm
2 

(B), with representative photomicrographs of 

neuronal cultures plated on polystyrene controls (Control, C), on polystyrene adjacent 

to new SU-8 2000 samples (New, D), and on polystyrene adjacent to reused SU-8 2000 

samples (Reused, E) labeling live cells (gray) and dead cell nuclei (white).  Neural 

cultures adjacent to SU-8 2000 samples that have been used previously in cell culture 

(Reused) have significantly higher viability than parallel cultures plated adjacent to new 

SU-8 2000 samples (New) (# p<0.005). 
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Figure 3.3.  Assessment of different bulk treatments on SU-8 2000 samples for 

improving cytocompatibility with adjacent neuronal cultures.  Representative 

photomicrographs of neuronal cultures plated on polystyrene controls (Control, A), on 

polystyrene adjacent to SU-8 2000 samples that were heat treated (H, B), on polystyrene 

adjacent to SU-8 2000 samples that were treated with UV exposure (UV, C), on 

polystyrene adjacent to SU-8 2000 samples that were treated with CO2 under supercritical 

conditions (CO2, D) labeling live cells (gray) and dead cell nuclei (white).  The cellular 

response to these treatments and their combinations are quantified as % cell viability (E), 

and live cells/mm
2 

(F).  Cell viability following heat treatment (H) was significantly 

improved compared to the other detoxifying treatments (# p<0.05). 
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Figure 3.4.  Assessment of sonication of SU-8 2000 in isopropanol for improving 

cytocompatibility with neuronal cultures.  Neuronal cultures plated on top of SU-8 

2000 after heat plus sonication treatments quantified as % cell viability (A), and live 

cells/mm
2 

(B), with representative photomicrographs of neuronal cultures plated on glass 

controls (Control, C), on heat treated SU-8 2000 samples (H, D), on heat treated SU-8 

2000 samples with 15 minutes of sonication in isopropanol (H + S (15 min), E) labeling 

live cells (gray) and dead cell nuclei (white).  Longer periods of sonication in isopropanol 

produced better live cell density in culture.  Live cell density for the 15 min isopropanol 

sonication treatment in addition to the heat treatment (H + S (15 min)), was significantly 

higher than the live cell density following the other detoxifying treatments (* p<0.0005). 
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Figure 3.5.  Assessment of parylene coating of SU-8 2000 samples for improving 

cytocompatibility with neuronal cultures.  Neurons were plated on top of SU-8 2000 

samples treated for 30 min by sonication in isopropanol following the heat treatment with 

or without parylene coating.  Cellular responses are presented as % cell viability (A), and 

live cells/mm
2 

(B), along with representative photomicrographs of neural cultures plated 

on parylene coated glass controls (Control, C), on heat treated plus isopropanol sonicated 

SU-8 2000 samples (H + S, D), on H + S treated SU-8 2000 samples followed by 

parlyene coating (H + S + P, E) labeling live cells (gray) and dead cell nuclei (white).  

Heat plus sonicated SU-8 2000 with parylene coating (H + S + P) resulted in 

significantly improved live cell density compared to just the heat plus sonicated SU-8 

2000 samples (H + S), and was statistically indistinguishable from the control cultures 

(Control) (*p<0.05). 
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Figure 3.6.  Assessment of different periods of glow discharge (oxygen plasma) 

treatment for improving cytocompatibility of SU-8 2000 samples.  Neurons plated on 

top of heat plus isopropanol sonicated SU-8 2000 samples with or without glow discharge 

treatment were quantified as % cell viability (A), and live cells/mm
2 

(B).  Representative 

photomicrographs of neural cultures are shown on the right for cells plated on glass 

controls (Control, C), on heat plus isopropanol sonicated SU-8 2000 samples (H + S, D), 

on H + S treated SU-8 2000 samples with 150 seconds of glow discharge (H + S + O2 

(150 sec), E) labeling live cells (gray) and dead cell nuclei (white).  Live cell densities for 

the glow discharge treatments at 90 seconds (H + S + O2 (90 sec)) and 150 seconds (H + 

S + O2 (150 sec)) were significantly better than the other treatments but were statistically 

indistinguishable from each other (* p<0.05). 



 88 

Mass Spectrometry, X-ray Photoelectron Spectroscopy (XPS) and Contact Angle 

Measurements 

 Mass spectrometry analyses of all the different treatments did not reveal the 

presence of organic-based leachants from the SU-8 2000.  The chromatograms and mass 

spectrograms for each of the treatments were indistinguishable from controls for all 

treatments (data not shown).  The large molecular weight sensitive mass spectrometry 

techniques we used were not tuned for the detection of metals, so although undetected, 

the presence of metallic leachants could not be ruled out. 

 In the absence of any surface treatment such as parylene coating or oxygen 

plasma treatment, XPS analysis showed that the SU-8 2000 bulk detoxification 

treatments do not change the oxygen to carbon (main elemental components of SU-8 

2000) ratio in SU-8 2000, which was approximately 0.2.  However, XPS analysis 

revealed the presence of fluorine.  Analysis showed that after oxygen plasma treatment, 

the oxygen to carbon ratio of SU-8 2000 increased from approximately 0.2 to 

approximately 1.4, and fluorine and antimony were also detected.  Parylene C coating on 

the SU-8 2000 resulted in an XPS spectra without oxygen peaks, but chlorine peaks were 

evident, as is characteristic of the parylene C molecular structure [34].  After oxygen 

plasma treatment of the parylene coated SU-8 2000 however, the oxygen to carbon ratio 

increased from 0.0 to approximately 0.4.  The presence of silicon in the SU-8 2000 is 

attributed to contamination from the processing environment, such as previous materials 

used in the processing equipments, since it is not normally expected to be present in SU-8 

/ SU-8 2000 [2-4, 35-36].  Table 3.3 summarizes the XPS results. 
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Table 3.3. Assessment of the surface elemental composition of SU-8 2000 samples 

with the various treatments tested in this study using x-ray photoelectron 

spectroscopy.  Most treatments did not affect the O/C ratio, however, the glow discharge 

(oxygen plasma) treatment significantly increased this ratio.  Presence of fluorine as well 

as antimony was revealed in the SU-8 2000. 

  

Treatments Elemental Composition   

O%/C% 

Ratio 

  C % O % F % Si % 

Sb 

% Cl %   

Untreated 82 16 2 0 0 0 0.2 

H 78 17 1 5 0 0 0.2 

S 66 14 20 0 0 0 0.2 

H + S 83 17 0 0 0 0 0.2 

H + S + O2 37 54 2 0 8 0 1.4 

H + S + P 86 0 0 0 0 14 0.0 

H + S + P + O2 67 29 0 0 0 5 0.4 

 

 Contact angle measurements were performed to study the effect of oxygen plasma 

treatments on the SU-8 2000 surface hydrophobic-hydrophilic character.  The water 

contact angle was reduced from 72.9 ± 1.5  to 37.0 ± 2.3  after oxygen plasma 

treatment.   

 Thus, while mass spectrometry reduced the possibility of organic leachants from 

the SU-8 2000 after the heat treatment and during the isopropanol sonication, XPS 

analysis pointed to fluorine and antimony as candidate leachants from the SU-8 2000.  

Parylene coating resulted in the SU-8 2000 surface being masked of fluorine and 

antimony and any other potential leachants, while oxygen plasma treatment increased the 

oxygen groups on the SU-8 2000 surface, thereby making it more hydrophilic, as 

evidenced by the decreasing water contact angle measurements.  While oxygen plasma 

appeared to expose low levels of fluorine (from a few nanometers below the SU-8 

surface), the fluorine levels are only 10% of those detected after extraction by sonication 
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alone (presumably being washed away during the poly-D-lysine coating prior to cell 

culture).  This suggests that oxygen plasma treatment (which slightly etches the surface) 

after heat and sonication treatments, simply exposes the remaining fluorine and antimony 

from depths below the SU-8 surface (which may not be sensed by the cells), in addition 

to removing any that was accessible to XPS after the sonication treatment alone. 
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Discussion 

We found that SU-8 2000 is not cytocompatible with primary cortical or 

hippocampal neuronal cultures.  While mass spectrometric analysis did not detect any 

organic leachants from the SU-8 2000, XPS analysis pointed to fluorine and antimony as 

candidate leachants from the SU-8 2000.  The idea of toxic leaching is supported by poor 

viability of neuronal cultures plated adjacent to the SU-8 2000 samples.  Both fluorine 

and antimony have the potential to be toxic and are present in the photo acid generator 

within the SU-8 2000 formulation [2, 35-38].  Heat treatment, isopropanol sonication, 

parylene coating, and oxygen plasma treatment improved SU-8 2000 cytocompatibility.  

Together these treatments improved viability and live cell density to equivalent levels of 

control grade glass or parylene coated glass, thus providing protocols to render SU-8 

2000 more cytocompatible for biological applications with neurons.   

As can be seen, the cell culture data for the different experiments conducted 

(Table 3.1) was analyzed and presented in the form of two parameters: percent cell 

viability and live cell density.  Percent of viable cells (which accounts for the dead cells 

count) was particularly sensitive, in the adjacent cell culture experiments, to assess cell 

death as a result of toxic leaching.  Whereas, the live cell density was sensitive, in 

cultures placed on top of the sample, to assess the number of viable cells that remained 

attached to the test biomaterial surfaces giving a measure of the material's cell 

adhesiveness. 

When cells were cultured adjacent to (but not touching) SU-8 2000, they were 

exposed constantly to the SU-8 2000 through the cell culture media, a similar scenario to 

many BioMEMs applications.  Decreased viability for cultures plated adjacent to SU-8 
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2000 samples indicated that SU-8 2000 contained one or more extractable substances 

toxic to neurons, in agreement with previous findings [6].  This tested the effect of 

gradual leaching that may occur from the SU-8 2000 into the cell culture media.  Reusing 

the SU-8 2000 over two rounds of cell culture possibly aided in passive diffusion of these 

toxic agents from the SU-8 2000, thereby rendering it more cytocompatible.  This 

provided an opportunity to detoxify SU-8 2000 through diffusive removal of leachants 

from the SU-8 2000.  While we cannot rule out that protein adsorption at the surface of 

the SU-8-2000 occurred over the longer incubation periods, it is not likely to be 

substantial enough to prevent the diffusion of smaller molecular species such as fluorine 

and antimony, since the adsorbed protein is believed to not form more than a monolayer 

over the surface [39].  Furthermore, the poly-D-lysine may have formed a monolayer 

over the adsorbed protein layer, normalizing the effect of the protein layer on the cell 

culture.  This is supported by the fact that the % cell viabilities as well as live cell density 

for new and reused controls were statistically indistinguishable from each other (data not 

shown).  Control experiments demonstrated that the adhesive polydimethysiloxane 

(PDMS) used to attach the SU-8 2000 to the culture dishes had no adverse effects on 

cytocompatibility (data not shown).   

 XPS analysis revealed the presence of fluorine on the SU-8 2000 after the 

sonication treatment alone (20%), indicating that the sonication treatment assisted in 

extracting fluorine from at least a shallow depth in the SU-8 2000 substrate.  

Furthermore, minimal fluorine was detected after the heat treatment alone (~1%), 

indicating possible diffusive removal aided by heat.  Finally, after heat followed by 

sonication treatment, no fluorine was detected, indicating that this treatment combination 
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resulted in the removal of fluorine from at least a shallow depth into the SU-8 2000 

surface.  This also explains the observation that after one minute of oxygen plasma 

treatment, which etches the SU-8 2000 surface by a few nanometers, low amounts of 

fluorine as well as antimony were detected, correlating with other studies [40].  While 

fluorine and antimony from the photo acid generator are potentially toxic to the cells [2, 

35-38], cyclopentenone (the solvent used in the SU-8 2000 formulation, boiling point 

130C), and PGMEA (solvent used in developing SU-8 2000, boiling point 146C) may 

also be toxic to neurons [4, 41-42].The heat and oxygen plasma treatments may remove 

residual levels of these solvents through faster diffusion and oxidation, respectively. 

Sustained heating of SU-8 2000 for 3 days at 150C under vacuum represents 

hard-baking of the material, which may enhance neuronal viability by three possible 

mechanisms:  1) by allowing for the crosslinking process of SU-8 2000 to reach 

completion as the photo-acid actively crosslinks the resist using thermal energy, 

effectively decreasing the void volume inside the polymer, increasing its viscosity, and 

thereby reducing the diffusion rates of the photocatalyzing acids as well as other species 

in the system, such as solvent molecules [3-4];
 
 2) by the faster diffusion of the toxic 

leachants out of the SU-8 2000 under high temperature and vacuum conditions;  and 3) 

by making changes in the surface characteristics of the SU-8 2000.  The mechanical 

properties of cured SU-8 films differ with the baking temperature and this difference was 

reduced when the baking temperature reached 150C [43].
 

The improved cytocompatibility of SU-8 2000 after isopropanol ultrasonication 

treatment following the heat treatment may be partially due to the high solvating 

capability of isopropanol, along with the increased kinetic energy for diffusion provided 
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by ultrasonication, further helping in the removal of toxic leachants.  The cured SU-8 

2000 photoresist is highly crosslinked, resulting in a very low diffusion rate at the 

exposed surface under static conditions.  Ultrasonication, not only may be increasing 

these diffusion rates, but also increasing turnover of the isopropanol solvating the 

leachants at the SU-8 2000 interface [5]. 

Parylene coating improves the live cell density on the SU-8 2000, presumably by 

providing a barrier to the diffusion of leachants.  This is supported by the XPS data for 

parylene coated SU-8 2000 where fluorine and antimony peaks are absent.  While 

parylene by itself cannot be used to make the high-aspect ratio MEMS structures, 

parylene coating may be useful especially for applications such as insulation on high-

aspect ratio MEMS structures made out of SU-8 2000, because of ease in fabrication and 

its coating on SU-8 2000 enhances cell viability as compared to SU-8 2000 that is 

exposed to heat and sonication alone.  Glow discharge treatment (oxygen plasma) was 

very effective in making SU-8 2000 more cytocompatible, consistent with the reported 

effects of wet chemical treatments [19, 44].  Such treatments essentially make the surface 

more hydrophilic by increasing oxygen species (as indicated both by the water contact 

angle and XPS measurements), allowing better cell adhesion.  The oxygen plasma 

treatment is not only effective at creating oxygen rich groups, but also etches the 

surfaces, thereby removing possible toxic leachants as well as roughing the surface [1], 

which may improve cell attachment.  While oxygen plasma treatment may have exposed 

new fluorine and antimony, the fluorine levels were much lower than those associated 

with sonication alone (2% as compared to 20%).  Despite, these low levels of fluorine 

and the exposed antimony detected after the oxygen plasma treatment (which, probably 
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are washed away during the poly-D-lysine coating prior to cell culture), the concomitant 

neuronal survival and neurite outgrowth suggest that it is the large increase in oxygen 

(0.2 to 1.4 oxygen to carbon ratio), which may increase surface hydroxyl groups, 

contributing to better poly-lysine binding to the surface and improved cellular adhesion 

[45-46], leading to improved neuronal viability.  In addition, since XPS probes up to a 

few nanometers below the surface contacted by the cells, the depth of the XPS probe is 

likely to be greater than the level sensed by cells. 

We also observed that UV exposure exacerbated SU-8 2000 cytotoxicity, instead 

of reducing it, as expected.  This suggests that the UV exposure possibly increases at 

least some of the toxic leachants.  The excess of strong acids generated by the photo acid 

generator after UV exposure [43] may contribute to the enhanced cytotoxicity after UV 

flood exposure.  The contribution of the UV used in sterilization to this toxicity is 

expected to be minimal because the UV dose from the biohazard hood UV lamp (used for 

sterilization, ≤ 0.6 J/cm
2
) is much lower than that of the mask aligner (used for UV 

treatment, 90 J/cm
2
) and because the distance of the samples from the UV lamp while 

sterilizing ( 65 cm) is much greater than that of the UV source in the mask aligner (7 

cm).  The detection on SU-8 2000 by XPS of fluorine and antimony, both photo-acid 

generator associated elements, supports this conclusion.  Likewise, CO2 supercritical 

extraction also exacerbated toxicity of the SU-8 2000 rather than improving it.  CO2 

treatment altered the physical characteristics of the SU-8 2000, resulting in sample 

warping.   

 The thick high-aspect ratio SU-8 2000 structures that we fabricated required 

longer pre-bake times to remove excess solvent for obtaining a similar solvent as a 
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thinner film, higher exposure energies to ensure that photo-acid generation with the UV 

was complete for the thick SU-8 structures, and longer post-bake times to allow for 

completion of the photo-crosslinking reaction, than recommended by the manufacturer 

(Nano SU-8 2000 Negative Tone Photoresist Formulations 2035-2100.  Newton, 

Microchem, www.microchem.com/products/su_eight.htm); [20-25].  In order to get a 

vertical wall profile, especially in high-aspect ratio structures, the amount of UV 

exposure and heat energy were increased.  Based on Fick’s law of diffusion, the thicker 

the SU-8 2000 material, the tougher it would be to detoxify.  Therefore, we have included 

the 3 day heat and the 30 min sonication times, which are long periods of times for 

diffusive removal.  However, as discussed earlier, in practice as the thickness of the 

photoresist increases, its behavior with respect to processing conditions is different; 

different thickness of SU-8 2000 are obtained from different formulations of SU-8 2000, 

leading to fabrication procedures that are different for the different thicknesses in terms 

of the pre and post bake times, and exposure energies which do not necessarily scale 

linearly (Nano SU-8 2000 Negative Tone Photoresist Formulations 2035-2100.  Newton, 

Microchem) ; [22, 47].  These differences can lead to the end materials with different 

amounts of possible toxic leaching materials, based on the cross-linking reaction progress 

and the cross-linking density.  There are several varying processing parameters reported 

in the literature such as soft bake, exposure and post bake, which will contribute 

differently to the properties of the SU-8 [47] / SU-8 2000 [22] .  The cytocompatibility of 

SU-8 / SU-8 2000 is directly related to the fabrication process and the processing 

environment and these protocol changes will require ongoing cytocompatibility 
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evaluation.  The treatments examined here offer several options for thick, high-aspect 

ratio SU-8 2000 applications. 
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Conclusion 

This study is the first characterization of SU-8 2000 cytotoxicity to neuronal 

cultures, potentially linking the poor SU-8 2000 cytotoxicity to components within the 

SU-8 2000, such as solvents and photo acid generator associated elements and the poor 

adhesive properties of SU-8 2000.  Furthermore, this work demonstrates that post-

processing strategies for making SU-8 2000 more cytocompatible should include a 

combination of heat and isopropanol sonication followed by surface treatments of either 

oxygen plasma or parylene coating.  In combination, these results provide a methodology 

for increasing the potential for SU-8 2000 to be a primary microfabrication material for 

bioMEMS and other biomedical applications. 
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CHAPTER 4 

DEVELOPMENT OF SPONTANEOUS NEURAL NETWORK ACTIVITY IN A 3-D 

NEURONAL-ASTROCYTIC CO-CULTURE MODEL 

 

Summary 

 Neural-electronic interfaces within cell culture models allow the controlled study 

of specific components of neuronal electrophysiological behavior, such as understanding 

the spatial and temporal development of neural network activity.  Since 3-D cultures may 

better mimic the in vivo environment than 2-D cultures, we have engineered 3-D culture 

models of neural tissue to study neural network-level properties.  Since cell type, 

viability, connection patterns, and synaptic density in a neural network contribute to 

electrophysiological activity, we have characterized these 3-D cultures using both 

immunocytochemistry and 3-D multielectrode array (MEA) recordings.  MEAs were 

oxygen plasma treated, followed by polylysine, and laminin coating before the plating of 

3-D neuronal-astrocytic (2:1) co-cultures at 2500 cells/mm
3
 in Matrigel™ matrix 

approximately 750 μm thick and at a protein concentration of 7.5 mg/mL.  The 

spontaneous electrophysiological activity of the 3-D cultures was recorded daily, and the 

cultures were stained with either viability markers or markers to investigate the number 

of nuclei, neuronal maturation, and synapstic density at 4, 7, 10, and 14 days in vitro.  

The culturing conditions promoted considerable neurite outgrowth, complex 3-D network 

structure, and good neural viability for several weeks.  Furthermore, these cultures 

displayed both spontaneous and evoked electrical field potentials and functional synaptic 

transmission as measured through culture-wide spike and burst rates.  The spike and burst 
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rates increased rapidly during the first week in culture, reached a plateau during the 

second week, suggesting an adaptation or saturation of the network activity.  A gradual 

drop in overall electrophysiological activity occurred in the third week suggesting 

pruning and/or culture degradation.  This activity was verified to be of biological origin 

by studying the influence of agents that interfere with synaptic transmission and neuronal 

action potential firing.  The neuronal and synaptic densities increased dramatically 

midway through the second week in culture as evidenced by an increase in neuronal 

MAP2 and synaptic marker expression.  The period of rapid increases in 

electrophysiological activity (function) in the first week in culture did not coincide with 

the period of rapid increases in neuronal maturation markers (structure) which occurred 

in the latter-half of the second week in culture.  It is postulated that in the first week, the 

cultures develop a highly excitatory character because most synapses that are developed 

are potentially excitatory in nature with neurons spontaneously firing action potentials 

without much inhibitory input.  However, in the second week (as the number of synapses 

increases and neurons mature), inhibitory synapses increase, creating a homeostatically 

sustainable level of culture activity.  Sensitivity of spike and burst rate response of these 

cultures to bicuculline methiodide (BMI) and gramicidin in 21 DIV 3-D cultures (both 

agents increase the culture electrophysiological activity) not only supported the biological 

origin of the electrically measured activity of these cultures, but these responses also 

suggest the hypothesized influence of inhibition on the culture activity, because BMI 

disinhibits (reversibly removes the inhibitory synaptic influence) and gramicidin causes 

poration. Overall, this work represents important contributions to methods in engineering 
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more physiologically-relevant 3-D neural tissue in culture and the understanding of its 

structure-function relationship. 

Key words.  three dimensional, 3-D culture, Matrigel
TM

, neuron, astrocyte, neural 

network, multi electrode array, MEA, electrophysiology  
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Introduction 

Neural network recordings from both in vivo and in vitro models have been used 

to understand neural plasticity, trauma, disease, age-related degeneration [1]; deafness, 

memory deficits, epilepsy [2-3]; and neuroprostheses [4].  In vivo animal models are 

complex and often confound data interpretation, while single-cell studies (both in vivo 

and in vitro) preclude extended network-level analysis.  In contrast, in vitro cell culture 

models provide for a relatively controlled study environment and allow for simpler 

experimental manipulation at the network level. 

In vitro neural network studies, which employ planar 2-D culture, may not 

accurately represent in vivo cellular and network level functions, because in vivo 

conditions are 3-D in nature.  Therefore, a 3-D in vitro culture model may more closely 

mimic the microenvironment of in vivo neural networks.  The presence of 3-D growth 

and interactions may be crucial because the matrix surrounding cells, as is typical of the 

3-D in vivo environment, has been shown to affect cellular function for a variety of cell 

types [5-6], including neural cells [7-9].  There is evidence that 3-D culture conditions 

may better approximate the morphology, cytoarchitecture, gene expression, proliferation 

of neural tissue [6, 10-12], and organization and types of cell-cell and cell-matrix 

interactions, [13] than 2-D culture conditions. 

We established a 3-D culture co-model of a neural network to closer approximate 

in vivo tissue, by harvesting embryonic cortical neurons and astrocytes of newborn rats 

and mixing them homogeneously within a 3-D hydrogel-based bioactive scaffold, 

Matrigel™.  Matrigel™ matrix, a reconstituted basement membrane derived from the 

Engelbreth-Holm-Swarm mouse sarcoma, includes constituents of the extracellular 
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matrix found in the developing or mature brain such as laminin, hyaluronan, and 

proteoglycans, facilitating 3-D neural network development through the ECM-related 

[14] and other cytokine-mediated [15-16] interactions.  Matrigel
TM

 has been shown to 

promote neurite outgrowth [17-18].  The cell culture model interfaced with an array of 

microelectrodes, where external electronics recorded the electrophysiological activity. 

We studied the structural and functional development of the neural networks 

within this 3-D neural co-culture model using microscopic imaging and 3-D multi 

electrode array (MEA) based electrophysiological recording.  MEA technology has been 

used to study neural electrophysiological activity in 2-D dissociated spinal cord [19], 

cortical [20], hippocampal, acute retina [21-22], and cardiac myocyte cultures [23].  

However, few studies exist on the electrophysiological activity of 3-D dissociated neural 

culture [24]. The study published by Irons et al. in 2008, is probably the only study 

presenting electrophysiological activity recording from 3-D neural cultures; However, 

that study was done using the patch clamp technique and merely showed that the neurons 

in the 3-D cultures were electrophysiologically active; it did not characterize the 3-D 

network level activity and it's development with respect to time. Unlike the patch clamp 

technique, 3-D MEA technology allows simultaneous multi-location recording in 3-D 

environments.  Here we tracked the spontaneous electrophysiological (functional) and 

structural changes involved in 3-D neural network development in culture with respect to 

days in vitro (DIV).  We hypothesized that in vitro spontaneous electrophysiological 

activity of the cultured 3-D neural networks would directly correlate with neuronal and 

synaptic densities.  Therefore, to investigate the dynamic electrophysiological capability 

based on the structural organization of a neural network, we compared field potential 
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based measurements of spike and burst rates over three weeks in vitro to markers of 

synaptic distribution and neuronal maturation.  In addition, we compared the native 

spontaneous activity of the cultures to the activity during pharmacologically altered states 

to confirm the biological response, learn more about the nature of these 3-D neural 

networks developed in vitro, and to assess the possibility of using these networks for 

pharmacological and toxcicological testing.  This model can be used to test various 

therapies such as single dose, time-release, mono- and combination drug therapies; drug-

releasing devices; cell-based therapies such as stem cell delivery; study pathological 

conditions; characterize and validate tissue engineering strategies; characterize and 

validate neural implants for continuous monitoring, diagnostic, and therapeutic 

applications to the nervous system; or simply to understand the development of neural 

networks.   

This work represents important contributions to engineering 3-D neural tissue in 

culture and understanding structure-function relationships of neural networks.  We 

predict that such efforts will eventually contribute to developing hybrid-neural-interfaces 

that can diagnose, ameliorate, or even resolve human functional deficits resulting from 

damage, disease, or dysfunction in the nervous system.   
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Materials and Methods 

 

The Multi-Electrode Arrays 

Ayanda system 3-D MEAs and Multichannel Systems thin optical 2-D MEAs 

(control MEAs) were used in this study.  More details about the control 2-D "Thin-

MEAs," which have a bottom thickness of only 180 μm, and conductive leads made of 

optically transparent indium tin oxide are found in [25-26]. This subsection describes the 

details of the 3-D MEA. 

The 3-D MEA biochip (Ayanda Biosystems, Lausanne, Switzerland) is a micro-

fabricated glass chip, approximately 1.5 cm x 1.5 cm x 700m, glued onto a printed 

circuit board (PCB, 4.9 cm x 4.9 cm), and covered with a glass ring culture chamber 

silicone-sealed to the PCB [27].  An aperture in the PCB defines an 8 mm-diameter 

circular area for placing a culture.   

The 3-D MEA electrode arrangement is based on an 8x8-matrix of platinum-

tipped, microelectrode hillocks (see Figure 4.1A), located centrally in the circular 

workspace.  There are 59 functioning electrodes (corner electrodes are absent, and one 

electrode is a ground) (see Figure 4.1B).  The electrodes are spaced at 200 μm (center-to-

center distance), each with an approximate base area of 1600 μm
2
 (40 μm x 40 μm), 

generating a total recording area of 1.96 mm
2
 (1.4 mm x 1.4 mm).  This matrix samples 

the electrophysiological activity of thousands of neurons within the culture space defined 

by an 8-mm diameter circular base area (See Figures 4.1C).  The effective recording area 

for each 3-D microelectrode hillock lies between the lateral surface area of a cone (2809 

μm
2
) and a pyramid (3600 μm

2
) with base and height dimensions of 40 μm each [27].   
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Platinum, the 3-D electrode material, results in noise levels of 14 to 17 μV [27].  

The electrode noise is mainly due to thermal noise, Uth, defined by Uth = (4kTRB)
½
, 

where k is the Boltzmann constant (k = 1.3807 · 10
-23

 J·K
-1

), T is the temperature, R is 

the global resistance of the electrode, and B is the electrode bandwidth [27].   

A 5 m thick SU-8 epoxy layer insulates the electrode lines reducing interfering 

capacitances between electrode leads and culture medium due to its low dielectric 

constant.  Moreover, SU-8 epoxy is optically transparent, chemically stable, and 

observably non-toxic to cells at a 5 m thickness.  However, the PCB epoxy has 

significant material toxicity; therefore, a biocompatible silicone sealant isolates the PCB 

epoxy from the cell culture region on the MEA biochip (See Figure 4.1C) [27].  Figure 

4.1  illustrates the features of the 3-D MEA. 

  

Cleaning of the MEAs, Cell Culture Chamber Rings, Teflon-Based Culture Caps, 

and Nylon-Mesh Culture Inserts for Reuse 

 MEAs were reused until high noise increased to unacceptable levels (baseline 

signal continuously greater than 17.5 V)[27]. The noise level is an indirect indicator of 

MEA biochip integrity and electrode quality; higher noise levels suggest that the MEA 

has sustained damage [27]. 

Additional custom-made cell culture chambers were prepared by pressing the 

clean, dry cell culture chamber rings made of silicone based elastomer (Sylgard 184 and 

186, Dow Corning, Midland, MI; cross-sectional area = 2 cm
2
) on oxygen plasma treated 

glass cover slips.  Upon 3-D culture plating on MEAs, a nylon mesh (70-200 µm square 

pores) insert placed on top of the 3-D cultures prevented them from detaching from the 
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MEA electrodes (See Figure 4.1G).  Finally, both MEA-based cultures and cultures in the 

custom-made cell culture chambers were sealed with O2- and CO2-permeable Teflon-

based fluorinated ethylene propylene (Teflon-FEP, or FEP) membrane [28].  

Impermeable to water, this sealing membrane maintained humidity, prevented 

evaporative losses, prevented osmolality shocks to culture, and reduced the risk of 

infection without the use of antibiotics and antimycotics (See Figure 4.1H).   

To clean the MEAs and non MEA objects (cell culture chamber rings, teflon-

based culture caps, and nylon-mesh culture inserts) of culturing components and other 

reagents used in cell culture assays, they were rinsed in DI water, followed by 70% 

ethanol, and again by DI water.  The MEAs were subsequently treated with Trypsin-

EDTA (Invitrogen, Carlsbad, CA) at room temperature for approximately 7 minutes and 

observed under a microscope while agitating using a pipette, rinsed with DI water 

afterwards.  MEAs were treated with 3% BM solution (Biomed, Munich, Germany), 

while the non MEA objects were treated with acetone (VWR International, West Chester, 

PA); each treatment was performed at room temperature for 15 minutes.  All objects were 

rinsed once again in DI water, then by 70% ethanol, followed by DI water.  Non-MEA 

objects were dried in a oven at 50C (VWR International, West Chester, PA), while 

MEAs air-dried.  In cleaning, the various solvents were gently agitated over the MEA 

using a pipette to assist in cleaning, so that the surface of the MEA was not scratched. 

 

Oxygen Plasma Treatment 

 After cleaning and drying, the MEAs and the glass cover slips (VWR 

International, West Chester, PA) used for the cell culture chambers were plasma treated 
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for 1 min using air glow discharge (EMS-100, Electron Microscopy Sciences, Hatfield, 

PA) at a pressure of 1 x 10
-1

 mbar with a discharge current of 25 mA, and a negative 

discharge polarity, to hydrophilize the generally hydrophobic MEA surface, improving its 

adhesiveness to the cell culture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1. 3-D MEA based 3-D culture system for electrophysiological recording.  

Materials used in these experiments are shown: an enlarged view of a 3-D electrode 

(A), array of electrodes (B), MEA culture dish (C), Multichannel Systems preamplifier 

(D), and multichannel recording output snapshot showings spikes and bursts in green 

(E), a schematic of the 3-D neural culture (F), nylon mesh insert (G), and teflon cap 

(H). 
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Sterilization of the MEAs and Custom-Made Cell Culture Chambers 

 MEAs are not suited for autoclave sterilization because the different constituent 

materials have different thermal expansion coefficients, making them sensitive to high 

temperature changes.  Therefore, oxygen plasma treated MEAs were sterilized with 70% 

ethanol inside a laminar flow hood under UV light for 30 minutes, then re-exposed to 

only UV light for another 30 minutes, and finally air-dried in the sterile hood for 15 

minutes with activated laminar flow.  During sterilization, the MEAs were at least 65 cm 

away from the UV lamp (minimum distance of lamp from the working bottom surface of 

hood) with intensity of at least 0.6 J/cm
2 

in the laminar flow hood.  The custom-made cell 

culture chambers were autoclaved (Tuttnauer Co.  Ltd., Jerusalem, Israel) for 45 minutes. 

 

MEA and Custom-Made Cell Culture Chamber Substrate Coatings to Promote Cell 

Adhesion 

 Dried, sterilized MEAs and custom-made cell culture chambers were incubated 

overnight in a cell culture incubator with a 100 µl drop of 100 µg/ml poly-D-lysine (MW 

> 300,000 Da; Sigma, St.  Louis, MO) solution in DI water placed at the center of each 

culture substrate in order to form an adhesive coat of poly-D-lysine.  Following 

incubation, the excess poly-D-lysine solution was removed and the culture substrates 

were rinsed once with sterile DI water, and left to air-dry.  Subsequently, at the center of 

the culture substrates, a 60 µl drop was applied of 20 µg/ml laminin in Neurobasal 

medium (both from Invitrogen, Carlsbad, CA) and incubated overnight.  Immediately 

prior to cell plating, the laminin solution was removed, the MEA surface was rinsed once 

with sterile calcium- and magnesium-free Hanks balanced salt solution (CMF-HBSS, 
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Invitrogen, Carlsbad, CA). 

 

Isolation of Primary Cortical Neurons (Embryonic Day Eighteen) and Astrocytes 

(Postnatal Day One) 

Harvesting of cells or tissue regions from whole tissue inherently involves some 

injury to the cells in the process of dissection or dissociation.  We adopted various 

minimally invasive procedures to minimize tissue destruction during dissociation: we 

used mild mechanical and enzymatic treatments; kept tissue samples cold; avoided heat 

exposure, significant pH changes, and osmolality shocks; conducted dissections and 

dissociations quickly; used nutritionally optimal media; and avoided unnecessary 

handling. 

For obtaining cortical tissue, timed-pregnant Sasco Sprague-Dawley rats (Charles 

River, Wilmington, MA) were anesthetized using isoflurane (Baxter Pharmaceutical 

Products Inc., Deerfield, IL) and decapitated at embryonic day 18 (E18).  All subsequent 

steps were done under sterile conditions.  The embryos were removed and placed in ice-

cold (4C) CMF-HBSS.  All procedures involving animals were approved by the 

Institutional Animal Care and Use Committee (IACUC) of the Georgia Institute of 

Technology, following NIH guidelines for the care and use of laboratory animals (NIH 

Publication # 85-23, revised 1985).   

The embryonic cerebral cortices, excluding the hippocampi, were isolated and 

dissociated using pre-warmed trypsin (0.25%) + 1 mM EDTA (Invitrogen, Carlsbad, CA) 

for approximately 10 min at 37ºC and followed by deoxyribonuclease I (0.15 mg/mL, 

Sigma, St.  Louis, MO) in HBSS.  Dissociated cells were centrifuged at 1000 rpm for 3 



 115 

minutes and re-suspended in a defined plating medium (Neurobasal
 
medium + 2% B-27 + 

500 µM L-glutamine; Invitrogen, Carlsbad, CA).  If necessary, cell clumps / pellet were 

further mechanically dissociated with approximately 5 passes through a 1 ml pipette tip 

[28] or a flame-narrowed and fire-polished Pasteur pipette [29].  Evaluating the exclusion 

of trypan blue (0.2%, Sigma) by the viable cells with a hemocytometer determined viable 

cell concentration.   

 Astrocytes were obtained separately from postnatal day 1 Sprague-Dawley 

cortices.  Isolated cortices were minced, digested in trypsin (0.25% + 1mM EDTA) for 3-

5 minutes at 37C, followed by DNase I (0.15 mg/ml) treatment and gentle mechanical 

trituration.  Cells were plated in DMEM/F12 with 10% fetal bovine serum.  Mechanical 

agitation was used to detach less adherent cell types at 24 and 72 hours.  For four weeks, 

the primary astrocyte culture (>95% type I astrocytes) was passaged upon reaching ~90% 

confluency.  Plating for 3-D cultures was performed between passages 4-10.   

 

3-D Primary Cortical Neural Cell Cultures 

3-D neuronal-astrocytic co-cultures were plated at a 2:1, neuron:astrocyte ratio at 

a density of 2500 cells/mm
3
 suspended in Matrigel™ matrix (up to 4000 μm thick; final 

concentration 7.5mg/mL).  The 2:1 ratio would allow ample neurons in the culture to 

measure electrophysiological activity and relatively adequate supporting astrocytes.  The 

3-D cultures were plated over a circular area of an approximate diameter of 8 mm on 

either the pre-treated 3-D MEAs or on glass coverslips (VWR international, West 

Chester, PA) using a mixture of cells re-suspended in co-culture medium (Neurobasal
 

medium + 2% B-27 + 500 µM L-glutamine + 1% G-5; Invitrogen, Carlsbad, CA) and 
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Matrigel
TM

 matrix (Catalog # 354263, BD Biosciences, San Jose, CA) at a total plating 

volume of 200 µl per 3-D culture (See Figure 4.1 ).  After matrix gelation (30- 45 

minutes incubation in a tissue culture incubator at 37C, 5% CO2, 95% Relative 

Humidity), 1 mL plating medium was gently added per culture well without disturbing 

the gel.  Being careful not to disturb the 3-D culture, the medium was completely 

replaced at 24 hours and every other day thereafter with co-culture medium pre-warmed 

to 37C.  The co-culture medium contained glial growth-supporting G-5, essential for 

long-term culture health [30].  Good cell viability results from the selected 3-D plating 

density, permitting recording at the electrodes while maintaining discernable cell-cell 

distances.  Use of embryonic cortical tissue, which is less developed and differentiated 

than adult tissue, allows the isolation of cells with minimal sheared axons and dendrites 

thus minimizing irreversible damage to the cells [31].   

 

Experimental Design 

 The 3-D cultures were analyzed in 2 batches.  The first batch consisted of  37 3-D 

co-cultures:  9 cultures on MEAs (6 on 3-D MEAs, and 3 on 2-D MEAs) and 28 cultures 

on glass cover slips.  The second batch consisted of 23 3-D co-cultures: 3 cultures on 3-D 

MEAs and 20 cultures on glass cover slips.  Electrophysiolgical activity was recorded for 

5 minutes daily from MEA cultures for 24 days after allowing each culture approximately 

5 minutes of equilibriation time on the preamplifier recording surface (maintained at 

37C).   

 Experiments assessing viability and phenotypic markers showed that 3-D cultures 

on MEAs had comparable live / dead cells and random distribution of cells in the 3-D 
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volume with neuronal and astrocytic processes in all directions with the 3-D cultures on 

the glass coverslips (n=3-4).  Separate cultures on glass coverslips were stained with 

viability markers (n = 3) or fixed for immunocytochemistry (n = 4) to quantify nuclei, 

neurons, and synapses at 5, 8, 11, and 16 DIV.  Of the cultures selected for 

immunocytochemistry, three cultures were stained with antibodies against MAP-2 

(microtubule associated protein, a neuronal marker), synapsin (a pre-synaptic vesicular 

protein marker), and nucleic acid stain Hoechst.  As a negative control, only secondary 

antibodies were added to the fourth culture.  The cultures were then imaged under a 

confocal microscope.  At 21 DIV, three MEA cultures were exposed to 

pharmacological/chemical treatments; the electrophysiological activity was recorded.  In 

additional experimental runs, other immunocytochemical markers such as GFAP (glial 

fibrillary acidic protein, an astrocyte marker), TAU-5 (a microtubule associated protein, a 

neuronal marker), NF-M (neuro filament - medium, a neuronal marker), and NeuN 

(neuronal nuclii, a neuronal marker) were used. 

 

Electrophysiological Recording from Cultures 

The MEA 3-D cultures were maintained in a tissue culture incubator (37°C, 5% 

CO2 and 95% RH) except during recording.  Electrophysiological activity was recorded 

daily  from the MEAs in random order at 37C for 5 minutes inside a sterile laminar flow 

hood.  The laminar flow was deactivated to prevent mechanical vibrations.  To ensure 

long-term stability of recordings and low noise interference, the flow hood was 

electrically grounded, all electrical lights were switched off, and recording was done at 

the same time during the day when lab-activity was low. 
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 Electrophysiological activity of the cultures was monitored by placing the 3-D 

culture containing MEAs in a Multi Channel Systems MEA60 preamplifier system 

(Multichannel Systems, Reulingten, Germany) interfaced with a computer carrying a 

Multi Channel Systems data acquisition card by MC Rack software (See Figure 4.1 ).  

Multi Channel Systems temperature controller TCO2 maintained the temperature of the 

preamplifier recording setup at 37C.  The MEA60 Preamplifier System, with surface-

mounted technology, ensures low noise level of the complete amplifier chain (1200X 

amplification, 12-bit resolution, 10 to 3 kHz) at ± 3 μV, within the expected ± 14-17 μV 

noise level range of a 3-D MEA electrode [26-27].  At  low noise interference, single 

units even in the lower range of 20 to 30 μV can be detected using the MEAs [27, 32].  

Silicone- and gold-based “zebra connectors” ensured proper electrode contact of 

preamplifier pins with MEA pads.  Noisy channels (that either had continuous baseline 

noise levels greater than ± 17.5 µV for the 3-D MEAs, or ± 20-30 µV for the 2-D MEAs, 

or in which acquired signal abruptly went out of a defined range of ± 1000 µV, or both) 

were not used for any analyses.  Data were recorded with an amplifier gain of 1200, input 

voltage range of -4096 to 4095 mV, and a sampling frequency of 25 kHz.  Data were 

filtered through a 200 Hz high pass filter to remove low frequency noise.  Several 

gigabytes of raw-data were acquired within only minutes of recording, necessitating the 

use of high capacity data storage and processing systems. 

 

Spike and Burst Detection Analysis 

 In our analysis, recordings from up to 59 channels per MEA were considered.  At 

each viable channel, a 5 minute voltage fluctuation stream with respect to time was 
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analyzed.  Neural activity present in these voltage fluctuations was then quantified in 

terms of spikes (individual deviations in voltage beyond a threshold) and bursts (clusters 

of spikes that fulfilled a minimum criteria).   

 MC Rack Software (Multichannel Systems, Reulingten, Germany) detected spikes 

with a simple algorithm that tagged a voltage trace whenever it exceeded a threshold of -

17.5 µV (signal with a larger -ve voltage value) for the 3-D MEA data [27], or 3 times 

the standard deviation of the data stream for the 2-D MEA data (See Figure 4.1).  Sources 

of noise are generally Johnson noise, diffuse neuronal activity, and power line-related (60 

Hz) interference.  False positives (overestimation of spikes) occurred when the waveform 

preceding or following an action potential had a large 'rebound' artifact exceeding the 

threshold.  Likewise, when the same electrode detected multiple neurons, overlapping 

action potentials potentially obscured the raw voltage waveforms and caused false 

negatives (underestimation of spikes).  Nevertheless, this method provides a consistent, 

non-biased criterion for data sampling and subsequent quantification of the network 

activity.  From the extracted spike data, Neuroexplorer Software (Nex Technologies, 

MA) was used to obtain raster plots and count spikes/bursts. 

 Bursts were identified by a burst detector algorithm (NeuroExplorer user Manual 

and Reference, Revision 3.193, 2005); [33].  A spike was counted as 5 ms, based on 3.5 

ms neuronal action potentials and propagation delays of approximately 1.5 ms.  This 

estimation included the axonal delay and the synaptic release latency after presynaptic 

emission, irrespective of the spatial distance between cells [34].  A cluster of 4 spikes, a 

duration of 20ms (period for 4 action potentials), and an inter-burst interval of 10 ms 

(period for 2 action potentials) set the minimum requirement for bursts.  Using Microsoft 
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Excel, average spike rates (spikes/second) and burst rates (bursts/minute) were calculated 

with respect to DIV for each replicate by adding the total number of spikes and bursts for 

all the viable channels and dividing by the total number of channels per replicate and the 

5 minute recording period to give average parameters per electrode.  Finally, statistical 

analysis was performed using one and/or two way ANOVA, followed by Tukey's pair-

wise comparison (p-value <0.05).  Such data analyses were performed for every replicate 

for each of the treatments tested, such as DIV, and chemical stimulation. 

 

Imaging Analysis 

 For viability and immunocytochemical assays, at least 3 different regions (and up 

to 6) were imaged in z-stacks for each culture using a 10X, 20X, or a 40X objective lens 

on a Zeiss 510 Confocal Laser Scanning Microscope (Carl Zeiss AG, Göttingen, 

Germany).  Image regions were randomly selected either by triangulation, or imaging at 

the four ends of a square and the center of the cultures.  Cell plating density was 

approximately 2,500 cells/mm
3
 with a 2:1 neuron to astrocyte ratio.  This density 

changed with DIV potentially with astrocytic proliferation, cell migration, cell death, and 

remodeling of gel.  Distinguishing individual neurons using automated image processing 

software was difficult due to the high packing density of neurons and neurites in 3-D.  

Therefore, images were manually analyzed using LSM Image Browser (Carl Zeiss AG, 

Göttingen, Germany).  The software converted the z-stacks into 3-D reconstructions, in 

which viability or immunocytochemistry parameters were manually quantified and 

averaged with standard deviations, when appropriate.  To prevent user bias, all images 

were independently quantified by two operators, and only those counts that were within 
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±10% of each operator's count were maintained.  Those counts that did not fit this 

criterion were recounted independently, and the process continued until consistently 

repeatable counts were obtained.  Statistical analysis was performed using one-way 

ANOVA followed by a post hoc test (p-value <0.05). 

 

Assessment of Cell Viability 

 Cell viability was measured using fluorescent probes for distinguishing live and 

dead cells (LIVE/DEAD Viability/Cytotoxicity Kit; Molecular Probes, Eugene, OR) in 

separate cultures at 4, 7, 10, 15, and 23 DIV.  Cell cultures were incubated with 2 M 

calcein AM and 4 M ethidium homodimer-1 at 37 C for 30 minutes and rinsed in 0.1M 

Dulbecco’s phosphate buffered saline (D-PBS, Invitrogen, Carlsbad, CA) before 3-D 

confocal microscopic imaging.  The percentage of viable cells per 3-D constructed image 

was determined from the number of live cells (fluorescing green by AM-cleavage) and 

the number of cells with compromised membranes (nuclei fluorescing red by EthD-1 

intercalation in the DNA). 

 

Immunocytochemistry 

Immunostaining can help identify specific cellular proteins associated with a 

particular phenotype [35]; therefore, cultures were immunostained for specific markers at 

4, 7, 10, 14, 15, and 21 DIV.  Cultures were fixed in 3.7% formaldehyde (Fisher, 

Fairlawn, NJ) in phosphate buffered saline (PBS) at room temperature for 30-35 min, 

rinsed in PBS, and permeabilized using 0.3% Triton X100 (Kodak, Rochester, NY) + 4% 

goat serum (Invitrogen) in PBS for 20 minutes.  After permeabilization, the cultures were 



 122 

thoroughly rinsed with PBS, and primary antibodies (listed in next paragraph) were 

added (in PBS + 4% goat serum) at 18-24C.  After being maintained overnight, the 

cultures were thoroughly rinsed with PBS and secondary fluorophore-conjugated 

antibodies (Alexa Fluor-conjugated IgG: Alexa Fluor 488 goat anti-rabbit, 1:500; and 

Alexa Flour 546 goat anti-mouse, 1:500; Molecular probes, Eugene, OR) were added to 

the cultures (in PBS + 4% serum) at 18-24C for 2 hours.  The cultures were again rinsed 

with PBS, maintained moist, and imaged.  Negative controls for staining were conducted 

with the same procedure, but without the primary antibodies.   

Specifically, the cultures were immunostained using primary antibodies: 1) MAP-

2 (mouse monoclonal antibody; MAB3418; 1:200; Chemicon); 2) tau-5 (MS247P, 1:200, 

NeoMarkers; Fremont, CA), a microtubule-associated protein expressed predominantly in 

neurons [36-40] 3) glial fibrillary acidic protein (GFAP) (AB5804, 1:400; MAB360, 

1:400, Chemicon; Temecula, CA), an intermediate structural filament found in astrocytes 

[41]; and 4) synapsin I (A6442, 1:200, 51-5200, Invitrogen, Carlsbad, CA), a synaptic 

vesicle protein localized in presynaptic specializations [42].  Counterstaining for nuclei 

was performed using Hoechst 33258 (1:1000, Molecular Probes).   

 High-resolution confocal microscopy was utilized to quantify the number of 

neurons, astrocytes, and synapses.  The numbers of MAP2-positive cell somata (a 

measure of mature neurons in culture), Hoechst-positive nuclei, and synapsin positive 

puncta (an approximate indicator of the number of putative synapses) were manually 

counted for each 3-D reconstructed confocal image z-stack.  Following this, the neuronal 

density (#/mm
3
) and synaptic density (#/mm

3
) were calculated per 3-D reconstructed 

image.  Our measure obtained by synapsin staining is only an approximate indicator of 
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the number of putative synapses because synapsin I is only one of the proteins present in 

the pre-synaptic vesicle regulating machinery at the synapses.  Its presence does not 

prove a mature fully-functioning synapse.  Likewise, at 400X magnification, one 

synapsin positive puncta may not directly correspond to one synapse. 

 

Application of Bicuculline Methiodide (BMI) and Gramicidin 

 Bicuculline methiodide (BMI) and gramicidin were used to test the biological 

responsiveness of the dissociated 3-D co-cultures.  To sense the influence of inhibitory 

synapses, specifically GABAergic synapses, we exposed 3-week-old cultures to 10μM, 

50μM, and 200μM BMI, a GABAA-receptor antagonist, at pH of 7.4.  At the time of 

experimentation, 0.5mL of media was carefully removed from the top of the MEA 

culture dish (containing 1ml of media), and 0.5mL of the 2X concentration BMI was 

added and gently mixed using slow pipette aspirations.  After approximately 5 minutes of 

exposure, the cultures were washed 2-6 times with complete co-culture medium changes 

and the medium was replaced.  The electrophysiological activity before, during, and after 

application of BMI was recorded and the spike and burst rates from the recordings 

compared.  Following the same procedure as BMI, testing was done for 0.01 and 1 μg/ml 

gramicidin, which forms transient pores in the neurons.  This permeabilizing effect of 

gramicidin was also studied by imaging in the presence of calcein, a normally cell-

impermeant dye, while also recording electrophysiological activity. 
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Results 

3-D neural co-cultures consisting of 2:1, neurons:astrocytes in Matrigel
TM

 matrix 

were introduced to 3-D MEAs for microscopic and electrophysiological monitoring.  

Optimization was done for selection of the 3-D culture cell density (for improving 

viability), the Matrigel
TM

 type (for minimal presence of growth factors) and concentration 

(for improving mechanical stability of gel), the media type (to maintain defined 

conditions), the 3-D culture-to-substrate adhesion and immobilization procedure (for 

improving long term adhesion of cells for long-term electrophysiological recording), the 

electrophysiological activity recording procedure (to improve signal to noise ratio), and 

the immunocytochemistry procedure (to reduce nonspecific and increase specific 

immunostaining).  The 3-D neural co-cultures contracted both horizontally (less than 

10%) and vertically (between 50 to 90%) during the three week culturing period in vitro, 

similar to that reported for cells grown in 3-D collagen [43] and collagen 

glycosaminoglycan [44] matrices [24]. Concomitant to this contraction, network density 

and matrix opacity appeared to increase.  Cells exhibited in vivo-like somatic 

morphologies with extensive process outgrowth, high viability, functional synaptic 

connections, and spontaneous electrophysiological properties as also observed previously 

in a similar 3-D culture model [24]. 

These cultures had nearly 100 % (97  3 %) viability during the three week in 

vitro culturing period.  Viability was based on the number of live and dead cells counted 

at the different time points assayed, and not based on the total cells originally plated.  

Live-dead staining in a confocal z-stack image projection of a 105 μm thick region of a 3-

D co-culture on a 3-D MEA at 24 DIV in top view are seen in Figure 4.2A.  While the 
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randomly distributed cells networked throughout the 3-D Matrigel
TM

 matrix, they also 

formed clusters (between 100-200µm in diameter) suggesting remodeling as time 

progressed.  The individual somata morphologies appeared spherical or ovoid with 

diameters of approximately 20 µm; cell processes extended in all directions, appearing 

fasciculated. 

 

 

 

 

 

 

 

Figure 4.2.  Live-dead staining (A) and immunocytochemical staining (B) in confocal 

z-stack image projections of co-cultures on 3-D MEAs at greater than 3 weeks in 

culture in top view.  Live cells (fluorescing green by AM-cleavage) and dead cells with 

compromised membranes (nuclei fluorescing red by EthD-1 binding to DNA) could be 

distinguished.  Image reveals that the co-cultures maintained significant viability at > 3 

weeks in culture with cells in close apposition to the electrodes as hilighted by the white 

circles in A).  In B), neurons, astrocytes, and cellular nuclei are seen immuno-stained 

green (Tau 5), red (GFAP), and blue (Hoechst), respectively.  Note the close apposition 

of about 5-10 cells to the conical tower shaped electrodes appearing circular in top view.  

Electrodes are likely recording electrophysiological activity from multiple cells. 
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Figure 4.2B shows an immunocytochemical staining confocal z-stack image 

projection of a 80 μm-thick region of a culture on a 3-D MEA at 22 DIV in top view.  

Neurons, astrocytes, and cellular nuclei were immuno-stained green, red, and blue, 

respectively.  As seen in the image, neurons and astrocytes randomly clustered on the 

conical towers of the 3-D MEA and throughout the 3-D culture.  Each electrode is in 

contact with approximately 5-10 cells and several neurites, giving a "picture" of the 

potential number of signal sources from which each electrode could record. 

Spontaneous network electrophysiological activity was successfully recorded 

from the 3-D co-cultures daily up to 24 DIV using both 3-D and 2-D MEAs.  The 

spontaneous activity of the neural network without chemical manipulation, referred to as 

"native activity," ranged from individual spikes (amplitudes 25 to 250 μV) to bursts.  

Figure 4.3 show the evolution of this activity in terms of average spike rate 

(spikes/second) and burst rate (bursts/minute) per electrode with respect to DIV.  

Random spiking, as well as synchronized bursting activity occurred early in the 3-D 

cultures, from 2 DIV, indicating the concurrent development of functional synapses as 

cells in the culture formed networks.  As a general trend, the spike and burst rates 

increased rapidly during the first week in culture, reached a plateau during the second 

week, suggesting an adaptation or saturation of the network activity, followed by a 

gradual drop in the third week, suggesting pruning and/or culture degradation. As can be 

seen in Figure 4.3, these electrophysiological parameters varied between cultures.  

Electrophysiological activity also varied for any single culture not only from day to day; 

but also on the same day (separate recordings spaced 2-12 hours apart, data not shown).  

The electrophysiological activity was also very sensitive to temperature: while 
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electrophysiologically active at 37C, the cultures exhibited almost no activity at 25C 

indicating a strong temperature dependence of the electrophysiological activity of these 

cultures (data not shown).  The most general feature of neural network activity was burst 

synchronization.  This was because most of the detected spikes occurring within bursts.  

Burst fusion leading to continual high-frequency spiking was also observed.  Bursting 

presumably required either a minimum background spike activity or a sudden 

subthreshold fluctuation for "ignition" from a nonspiking state, since on some occasions 

cultures were previously silent. 
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Figure 4.3.  Spike and burst rate (averaged per electrode) distribution of 3-D neural 

co-cultures with respect to days in vitro, as recorded from 3-D MEA (A and B), 

and 2-D MEAs (C and D) respectively.  The boxes show the 95% confidence interval, 

and the dark circles indicate the data points for each culture.  As a common trend, the 

spike as well as the burst rate increased rapidly in the first week in culture, maximizing 

during the second week suggesting a form of a homeostatic process or saturation, 

followed by a gradual drop in the third week suggesting pruning or culture degradation.  

The burst rate distribution follows a similar trend as the spike rate distribution, mainly 

because a majority of spikes lie within bursts.  The data appears to have a relatively 

lower variance during the first 5 days in culture, but the variance increases thereafter.  

While significant differences were observed both in the spike and burst rate analysis 

(with the burst analysis showing more significant differences), these are not shown, so 

that the general trend and data-spread can be appreciated. 
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The electrophysiological activity of the 3-D cultures responded to agents known 

to interfere with synaptic transmission (BMI) and neuronal action potential firing 

(gramicidin) (Figure 4.4).  The data were analyzed in three successive segments: native 

network activity, the response to BMI or gramicidin, and response after 2-6 complete 

blank medium changes after the introduction of each of these chemicals.  As a general 

trend, adding BMI and gramicidin (separately) to the 3-D cultures at 21 DIV, caused 

spike and burst rates to increase.  Such increased intensity of spontaneous bursts after 

exposure to GABA antagonist BMI has been reported in other studies [45-46].  The 

addition of gramicidin appeared to increase cellular permeability in general, with calcein 

localization in regions the size of cellular vesicles and synaptic boutons (Figure 4.5).  The 

two cultures studied showed varied electrophysiological response, although both cultures 

showed reduced baseline activity upon rinsing out the gramicidin (Figure 4.5).   
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Figure 4.4.  Changes in spike (A) and burst (B) rate (averaged per electrode) of 3-D 

neural co-cultures in response to BMI and gramicidin.  BMI is a disinhibitor of neural 

activity, while gramicidin increases membrane porosity.  At 21 DIV, as a general trend 

these drugs caused spike and burst rate increases, reflecting the drugs’ expected neural 

response.  The randomized network formation, different numbers of inhibitory synapses, 

and differing saturation limits for chemical excitation can partially explain the response 

variability between the cultures.  Rinses did not completely reverse the pharmacological 

effect, indicating at least two possibilities: these drugs have low dissociation constants, 

and/or given the thickness and density of the cultures, the diffusion may be mass 

transport limited.  Conditions in each MEA culture differed significantly (P < 0.05), 

except for the pairs or triplets indicated by Roman numerals for which the statistical test 

failed to show any differences. 
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A) 3D-MEA 7 

  
B) 3D-MEA 8 

  
 

Figure 4.5.  Addition of gramicidin to 3-D cultures resulted in slight increases in 

overall intra-cellular fluorescence in addition to large fluorescence increases in 

punctate regions the size of intracellular vesicles, indicating calcein uptake; and 

alterations in the electrophysiological activity of the cultures.  2-D projections of 20 

µm thick z-stack images of 25 days in vitro 3-D cultures on MEAs 7 and 8 pre- and post- 

addition of 1µg/ml Gramicidin are shown in A) and B) respectively.  Cellular areas 

indicated by white arrows show visible calcein uptake post addition of gramicidin 

indicating increased cellular permeability.  These regions are of the size of cellular 

vesicles or synaptic boutons.  The corresponding electrophysiological activity response of 

the two different cultures as expressed in the form of spike and burst rates is shown on 

the graphs on the left panel for MEAs 7 and 8 respectively.  Error bars are not seen 

because standard deviations are negligible.  Significant differences for spike rates (*) and 

burst rates (†) (averaged per electrode) are seen at P<0.05.  The two cultures show 

different trends; whereas the culture on MEA 7 does not appear to be responsive to the 

addition of gramicidin, the activity on MEA 8 significantly increased upon gramicidin 

contact.  However, upon rinsing electrophysiological activity reduced significantly for 

both the cultures as seen in the post-baseline activity.  It is worthy to note that the culture 

for which gramicidin appeared to increase electrophysiological activity showed lower 

pre-baseline activity (indicative of higher intrinsic inhibition).  Such type of testing 

methods combining microscopic and electrophysiological analysis can be used for testing 

the effects of drugs and trauma on neural tissue in vitro. 
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 We observed evidence of synapse formation and neuronal maturation within the 

3-D co-cultures with DIV.  MAP-2ab, an immunomarker of neuronal maturation, 

identified neurons as they developed in culture, while a synapsin-1 antibody stained pre-

synaptic terminals, which suggest synapse formation.  Figure 4.6 shows that the synaptic 

density (the number of synapsin 1 positively stained puncta per unit volume) and the 

neuronal density (the number of MAP-2ab positive stained cell bodies per unit volume) 

increased dramatically midway through the second week in culture.   
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Figure 4.6.  Neuronal network maturation and synaptic development with respect to 

days in vitro.  The neuronal maturation density and the putative synaptic density 

increased in proportion slowly in the first one and a half weeks in culture, followed by a 

rapid increase in the second week.  * indicates significant differences for both measures 

at 16 days in vitro, compared to previous time points, P<0.05.  Insets show 3-D z-stack 

image projections of 11 and 16 days old cultures.  Dramatic changes are seen in the 

neuronal maturation density (red MAP-2ab positive), synaptic density (green Synapsin 1 

positive), and nuclear density (Blue Hoechst positive). 
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Discussion 

 

3-D Culture Components and their Effects 

We selected primary neurons for our 3-D co-cultures, because general 

transformed cell lines may have incomplete synapse formation, altered ion-channel 

expression, and abnormally low resting membrane potentials [47-49].  Passaged 

astrocytes were added to the 3-D co-cultures to serve as substrates for neurite outgrowth; 

to provide trophic factors and metabolic precursors; and to regulate neuromodulation, 

synaptic efficacy, and synapse numbers [30, 50].  The structural intactness depended on 

cell density, matrix concentration, and duration in culture.  Low cell densities may 

diminish structural intactness by not providing adequate cell-to-cell contact and/or 

trophic support, but high cell densities may retard nutrient transport and waste removal 

by diffusion [51]. Low matrix concentration may also decrease mechanical stability.  

Cells were plated at a optimal cell density to ensure a healthy culture, potentially by 

providing the necessary cell-cell contact and trophic support.  Initially, network 

development appeared uniform in all directions (weeks 1-2), but with the passage of time 

(weeks 2-3) the 3-D network was remodeled resulting in heterogenous cell densities and 

culture contraction potentially under the influence of process outgrowth, astrocytic 

activity etc.  It is anticipated that the matrix was degraded and remodeled by astrocytic 

secretions of matrix metallo-proteinases, extracellular matrix components, and cell 

adhesive proteins [52-57]. Lipases and proteases released from dying cells and waste 

released during routine activities may also have contributed.  Culture shrinkage may have 

likely resulted from the traction generated by cellular processes networking with each 
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other, a phenomenon similarly observed in 3-D collagen [43] and collagen 

glycosaminoglycan [44] matrix-based cultures.  This contraction also probably increases 

the ratio between construct surface area and volume, allowing diffusion-based mass 

transport to support greater cell densities.  

 

Structural Development of the 3-D Cultures 

The cells in these dissociated cultures develop connectivity potentially in response 

to physiological stimulation from other cells, thereby self-organizing in to spontaneously 

active networks.  Network formation involves dendritization, neurite extension, axonal 

and synaptic development, all of which are thought to be influenced by adhesive 

molecular distribution, trophic molecular distribution, molecular orientation, and contact 

guidance based on micro-, nano- and chemo-topography of the matrix and cell surfaces 

[58]; [59]; [60-65]. Additionally, it is suspected that glial cells in the 3-D cultures guide 

neurite growth cones to reach appropriate targets [66].  Large patterns of 

electrophysiological activity in the developing network could also affect neurite 

extension, synaptic development, and thus, connection patterns [67]; for example, contact 

or proximity interaction between two cells can allow electrophysiological activity from 

one cell to modify membrane activity in another, stimulating synapse formation [62]. 

 

Functional Development of the 3-D Cultures 

The functional development of the 3-D networks was monitored by measuring the 

electrophysiological activity with respect to days in vitro (DIV) characterized by spike 

rate and burst rate, the total number of spikes with respect to the time of recording 
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(averaged per electrode) and the total number of spike-groups with respect to time 

(averaged per electrode), respectively.  Our median maximum spike rate of 30-35 

spikes/second per electrode and median maximum burst rate of 80-90 bursts/minute per 

electrode at around 10 DIV were higher than median spike rate of 4.5 (3.6-7.2) 

spikes/second and median burst rate of 20 (13-39) bursts/minute of 2-D dissociated 

neural culture as observed by [68].  These differences are potentially influenced by 

culture dimensionality, cell density, culture age, and media used, etc. 

Throughout each of the MEA recordings, the electrophysiological activity 

abruptly transitioned from unsynchronized activity (potentially resembling natural 

activity) to synchronized activity (potentially resembling epileptic-like activity). This 

synchronization suggests that the cultures already have functional neuronal 

interconnectivity, which simply gets modulated potentially based on inhibitory and 

excitatory inputs from within the culture.  Yet, the changes that occur at the structural 

level, resulting in these dynamic firing pattern switches are not known.  Rapid synaptic 

modifications, such as abrupt synaptic weight changes, may be a possibility.  

Alternatively, locally changing field potentials (either intrinsic or stimulated) could alter 

the firing pattern between neurons.  

Variation in the electrophysiological activity of cultures throughout the day 

suggests changes in the functional connectivity.  At the neuronal level, these findings 

suggest that the output of one neuron potentially depends on its connections with other 

neurons, the functional synaptic inputs, and the electrophysiological state of the neuron at 

any given time [69]. 
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Despite the randomized network organization, these 3-D co-cultures displayed 

bursts in electrophysiological activity similar to the neuronal avalanches (spontaneous 

spatiotemporal patterns of electrophysiological activity) observed in un-stimulated brain 

slices [70-71].  Bursts are a very common form of electrophysiological activity exhibited 

by neural networks; even micro-cultures containing only one or two neurons exhibit 

epileptic-like activity. Thus, burst communication can be a stimulus for individual 

neurons to order themselves into functional networks. Since bursts increase the likelihood 

of significant and reliable neurotransmitter release at the synapses over single spikes, 

they may be the main mode of neuronal communication. 

As seen in Figure 4.3, the average spike and burst rates per electrode for all the 

cultures initially increased during the first week, maximized during the second week, and 

finally reduced during the third week in culture.  The initial rise in network activity can 

be explained by rapid neurite outgrowth [72], and excitatory synaptic activity in the 3-D 

co-culture, because both processes will allow neurons in the network to influence one 

another. In the first week, it is likely that the neurons spontaneously fire action potentials 

without much inhibitory input, creating a highly excitatory culture.  However, in the 

second week (as the number of synapses increases slowly and neurons mature, Figure 

4.6), it is possible that inhibitory synapses increase, controlling the excitatory behavior of 

the culture to maintain a homeostatically sustainable level of activity. The highest 

recorded activity in the second week, followed by a fall in network activity in the third 

week (Figure 4.3) indicates the possible manifestation of several processes.  A plausible 

explanation is that an initial overshoot of network structural development in the first 

week with a predominance of excitatory synapses results in increasing activity [73-74].  
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This increased activity, in turn, initiates homeostatic plasticity within the network 

through the changing of weights and types of synapses to maintain firing rates within 

limits, preventing hyper or hypo excitability in the second week in culture [75-76].  At 

the same time, synaptic pruning, part of the process of maturation of the cultures, may 

influence the spontaneous, synchronous electrophysiological activity of the cultures. 

AMPA receptor loss as a cause of reduced electrophysiological activity at later stages of 

the 3-D culture also merits study.  For example, in Alzheimer’s Disease, a decrease in the 

number of glutamatergic AMPA receptors causes a significant reduction in neuronal 

activity.  

Data shown in Figure 4.4, which shows spike and burst rate (averaged per 

electrode) response to bicuculline methiodide (BMI) and gramicidin in 21 DIV 3-D 

cultures, supports the idea that intrinsic inhibition strongly influences the "native" 

electrophysiological activity of these cultures.  The lower initial baseline, compared to 

the final baseline, for the three cultures indicates the intrinsic inhibition.  With the 

addition of a disinhibitory drug, BMI, the electrophysiological activity increased for these 

relatively older and hence “mature” cultures (note that the variance for these data is very 

low and significant differences exist).  Figure 4.4 provides evidence suggesting that 

pharmacological stimulation must be changing the electrophysiological state of the entire 

neural network via altering functional connectivity between individual neurons, such as 

modulating the inhibitory connections.  Specifically, by blocking certain receptors 

functionally, we observe change in the electrophysiological response (in the form of 

changes in the spike and burst rates averaged per electrode).  GABA receptors are 

ionotropic receptors for the neurotransmitter GABA, responsible for fast inhibitory 
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synaptic transmission in the CNS.  When these receptors are blocked at the synapses with 

bicuculline, not only do spike rates increase indirectly via synaptic disinhibition, but 

synchronize into bursts, generating oscillatory burst patterns on all electrodes, consistent 

with previous reports [27, 77-82].  With low native burst activity, bicuculline increases 

the burst duration and rate as displayed by the 3-D co-culture on MEA 1 in Figure 4.4.  

On the other hand, a less dramatic response to bicuculline, as displayed by the 3-D co-

culture on MEA 3 in Figure 4.4 indicates culture insensitivity, potentially because of a 

lower concentration of inhibitory GABA receptors at the synapses.  In 2-D cultures, 

effects of bicuculline are reversible at low concentrations (Giugliano, Arsiero et al.  2006; 

Heuschkel, Wirth et al.  2006); however, in our 3-D co-cultures, most likely due to 

diffusion limitations, this reversibility is not seen after rinsing (via gentle repeated media 

changes), as the diffusion time constants are likely higher for 3-D systems.  As seen in 

Figure 4.5, the electrophysiological activity increased with the addition of gramicidin, 

which forms transient pores in the neurons, thereby lowering the excitation threshold. 

With these experiments, we demonstrated the responsiveness of our cultures to chemical 

stimulation; however, more statistically robust results are required before comments on 

specific characteristics and trends can be made. 

Both excitatory and inhibitory synaptic transmission must  affect the cumulative 

spontaneous electrophysiological activity of the cultures.  For example, an increase in 

GABAergic neurons would inhibit electrophysiological activity and vice versa; GABA 

levels in vitro have been shown to peak around 2-3 weeks in 2-D cultures [83].  These 

considerations may provide insight as to why the 3-D co-cultures displayed lower levels 

of "native" electrophysiological activity (potentially becoming increasingly inhibited) 
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between weeks 2 and 3 (see Figures 4.3, 4.4, and 4.5) [84-85].  Moreover, astrocytic 

proliferation, concurrent with neuronal loss with increasing DIV, could replace active 

neurons at the electrodes, thereby reducing the number of signal sources at the electrodes, 

and consequently the recorded signal.   

In 2-D cultures, De Lima et al.  have shown that the average density of all neurons 

peaks in the first week in vitro [86].  We observed that MAP-2ab staining peaked in the 

second week in our culture.  We explain this increase by two processes: as the network 

develops, more MAP2-ab is expressed in the neurons (and more synapses are formed) 

giving an indication of the maturation of the neurons rather than an increase in the 

number of neurons; and the shrinking of the cultures with respect to DIV resulting in the 

neural network being packed in a smaller volume.  The culture shrinking was estimated 

to be between 50-90% based on visual observations.   

Based on previous studies on 2-D cultures, the onset and type of bursting is 

expected to depend on the density of the culture; denser cultures tend to burst earlier at 

higher frequencies, compared to sparse cultures [87].  Three-dimensionality may also 

contribute to a faster electrophysiological development by influencing cellular signaling, 

gene expression, as well as allowing more possibilities for cell to cell connections as 

denser 2-D cultures would do. Unlike in 2-D cultures, three dimensionality allows for 

cell-ECM contact in all directions over the complete cell membrane, implying that the 

number of ligand-receptor interactions at the cell surface in 3-D cultures may be orders of 

magnitude more than those at the cell surface in 2-D cultures, resulting in differential 

physiological activity.  Figure 4.3 shows the presence of developing electrophysiological 

activity (both spikes and bursts) in 3-D co-cultures (2,500 cells/mm
3
) at 2 DIV, while 2-D 
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cultures with a comparable 2-D density (2,500 cells/mm
2
) from Wagenaar et al.  2006 

begin spiking and bursting at 3 and 5 DIV, respectively.  However, the general trend of 

increasing electrophysiological activity and its variance in the first two weeks in culture 

followed by a plateau effect as observed in our 3D co-cultures (Figure 4.3) is similar to 

that seen by Wagenaar et al.  in 2006 with their 2-D cultures, suggesting the maintainance 

of similar neural functional characteristics between the two different culture 

configurations. 

Electrophysiological activity in the cultures could be affected by changes in 

environmental conditions and long-term micro-movement of cells resulting from the 

growth, migration, and process-outgrowth of neurons and glia on the microelectrode 

surface.  However, the changes from such factors are expected to be comparably 

distributed in all sister cultures at any recording time point, and; therefore, and not 

expected to significantly alter the analyses done in this study.  Overall, we observed that 

the structural and electrophysiological (functional) characteristics of these 3-D cultures 

change with respect to DIV over a three week culturing period indicating the dynamic 

nature of these culture systems.   

 

Experimental Challenges 

The variability in the electrophysiological activity recordings between 3-D 

cultures made analyzing these data challenging.  Variability may be explained by the 

formation of these networks from initially randomized cell organization.  Yet, there is 

value in studying these cultures with a random architecture, because despite the 

randomness these cultures do evolve with repeatable trends in the gross behavioral 
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features and responses to physiologically relevant stimuli as measured in terms of the 

average spike and burst rates per electrode.   

Several steps were taken to optimize the conditions for reproducibly obtaining 

high signal-to-noise ratio electrophysiological activity recordings from the cultures. To 

help maintain consistent MEA recordings from day-to-day, unstable environmental 

conditions had to be avoided, such as pH and osmolarity shifts and infections during 

recording [68]. These challenges were addressed by sealing the cultures with O2-and 

CO2
-
-permeable Teflon membranes [28]. Temperature was maintained constant at 37C 

to prevent any pH changes and thermal noise drifts.  Placing a nylon mesh insert on top 

of the 3-D cultures immobilized the 3-D cultures on the MEA electrodes allowing more 

stable recording of electrophysiological activity signals over the three week culturing 

period.  Additionally, all electrophysiological recordings were conducted inside a UV 

sterilized laminar flow hood to reduce the likelihood of infections in the cultures.  The 

laminar flow was deactivated to prevent mechanical vibrations, and the hood electrically 

grounded to ensure long-term stability of recordings and low noise interference.  All 

power sources and the data acquisition computer unit were kept at least 1 meter away 

from the preamplifier recording set-up inside the hood to minimize noise interference.  In 

addition, all electrical lights were switched off, and recording was done at the same time 

during the day when lab-activity was low to avoid any extraneous sources of noise. 

In pilot runs, the MEAs often returned noisy signals.  To counteract this, electric 

connectivity was increased by inserting conductive zebra strips with small cylinders of 

gold between the MEA contact pads and preamplifier contact pins, thus reducing signal 

noise.  Other sources of signal noise included delamination of the platinum or insulation 
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of the MEA electrodes, which paired with capacitative coupling, resulted in good 

electrodes picking up noise from neighboring damaged electrodes.  To limit noise 

bleeding, under-functioning electrodes (that either had continuous baseline noise levels 

greater than ± 17.5 µV for the 3-D MEAs, or ± 20-30 µV for the 2-D MEAs, or in which 

acquired signal abruptly went out of a defined range of ± 1000 µV, or both) were 

excluded from the recording.  Likewise, channels were excluded that continuously fired 

for most of the recording period because these channels were not evenly distributed over 

the different cultures studied, nor across the different recording time-points. Therefore, 

excluding these channels prevented their disproportionate effect on the spike and burst 

rates measured, allowing us to see the trends followed by the majority of the channel 

recordings.   

High cell density and challenges with microscopic imaging made determining the 

network connections responsible for the spike patterns generally impossible.  The 

inverted confocal microscope objectives could not produce z-stacks of images of the 3-D 

cultures at greater than 400X magnifications through the MEAs because of their small 

working distances.  Therefore, MEAs were imaged in an inverted position after media 

removal so that the objective lens could be positioned as close as possible to the 3-D 

cultures on the MEA electrodes.  Alternatively, 2-D “Thin-MEAs” [25-26] with a 

thickness of only 180 μm and conductive leads made of optically transparent indium tin 

oxide were used in our study for both electrophysiological recording and 

immunocytochemical staining.  The "Thin MEAs" could be imaged upright, with the 

objective approaching the bottom face of the MEA. By the same method, sister cultures 

on coverslip glass were used for direct microscopic imaging of the structural 
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development of the cultures.  Fixed and stained 3-D neural network images under a 

microscope were used to quantify synapsin positive puncta development with respect to 

days in vitro.  Yet, these analyses did not reveal aspects of functional connectivities such 

as the synaptic strength, or the excitatory or inhibitory character of the synapses 

quantified.  Optical recording technologies such as voltage-sensitive dyes could measure 

intracellular calcium, intracellular pH, and voltage gradients throughout an entire cell and 

among cells in a network with excellent spatial resolution and provide information about 

the functional connectivity in the network [88].  However, voltage-sensitive dyes are 

often highly toxic, especially when excited at ultraviolet wavelengths, and ion-sensitive 

dyes respond slowly [89].   

As a limitation, recording on 3-D MEAs occur in very small z-thicknesses 

(maximum ~ 40 μm) for all the electrodes, despite the substrate being nonplanar.  

However, we still conducted our experiments with these MEAs because none of the 

commercial MEAs for in vitro use can record from or stimulate throughout the volume of 

the 3-D neural cultures examined (~ 750 μm thick). Albeit less, the Ayanda 3-D MEAs 

that we used still offered some level of three-dimensionality in measurement. This 

indicates a need for the development of higher aspect ratio MEAs that can probe the 

neural activity over greater z-dimensions. 

An alternative method, patch clamp, can be used to assess electrical properties of 

3-D neuronal cultures either when cells are cultured atop a 3-D matrix [90-91] or by 

penetrating the 3-D culture [24].  However, MEAs are still advantageous because, unlike 

the invasive patch-clamp methods, MEAs do not contaminate or destroy neural circuitry 

or obscure microscopic access to tissue, but instead allow for continuous, non-terminal, 
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multi-site recording of network activity in a chemically controlled sterile environment at 

relatively high temporal and spatial resolutions [27, 92]. 

There are several challenges in analyzing the data acquired through multi channel 

systems such as MEA. Several techniques have been developed to analyze multiple 

channels of neuronal spike train data [93-95], yet the process of acquiring, managing, 

analyzing, and conveying the data has no standardized protocol.  The analyses involve 

several variables and parameters at different levels.  Our method of analysis does not 

resolve single-channel activity (activity recorded at each electrode) into its often multiple 

active unit components. While such resolution would be necessary for understanding the 

finer nuances of network dynamics,  units tend to synchronize during bursts, so detection 

of major features of burst patterns like burst onset and duration is not obscured.  

We did not classify bursts based on duration, due to high variance.  However, 

such an analysis may reveal more information on electrophysiological activity patterns 

displayed by these cultures.  Our burst counts are a function of our criteria, and so 

changing the burst criteria would give a different number of bursts, indicating that useful 

information may be filtered out based on the detection criteria.  Another weakness in our 

analysis was that occasionally, weak bursting superimposed on tonic spiking at some 

electrodes make burst identification very difficult, and in some cases impossible, 

prompting the exclusion of those electrodes from analysis.   

Some potential limitations while experimenting with 3-D cultures should also be 

noted.  3-D cultures typically are randomly oriented; therefore, tissue architecture is 

difficult to reproduce.  Yet, the more in vivo like cell–cell and cell–matrix interactions, in 

contrast to the cell–glass / plastic interactions in 2-D cultures, warrant the use of 3-D 



 146 

cultures compared to 2-D cultures [96].  Limitations are inherent even in the type of 

scaffolds used for 3-D culture. For example, despite the benefits of Matrigel
TM

 for a 3-D 

culture system, such as a biological origin and ECM protein composition, this scaffold 

type does not have controlled composition.  Alternative biomimetic scaffolds with 

specific ligands cross linked to hydrogel backbones, such as methylcellulose [97] or 

agarose [98], may allow more control over the presentation of extracellular matrix 

ligands while continuing to provide the support necessary for neuronal function.   

Despite limitations, the advantages of experimenting with 3-D cultures are great.  

These systems allow control over cellular parameters such as phenotype, ratio, and 

density.  For example, since neurons and astrocytes were harvested separately and mixed 

in a controlled ratio in these cultures, this approach can be extended to include multiple 

cell types, such as microglia, oligodendrocytes etc, and the use of transgenic green 

fluorescent protein (GFP) positive and wild-type cell types, at different ratios for 

different experimental applications to address specific neurobiological questions. 
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Conclusion 

A 3-D co-culturing system was developed using biological materials: neurons, 

astrocytes, Matrigel™ matrix, and synthetic materials: nylon mesh, Teflon membrane, 

and 3-D MEAs.  3-D neural culturing and analysis techniques were optimized.  3-D 

cultures were characterized electrophysiologically and morphologically with respect to 

days in culture for up to three weeks.  This is the first investigation of the network-level 

electrophysiological activity of 3-D cultures.  These cultures displayed functional 

synapse formation and both spontaneous and evoked electrical field potentials.  The 3-D 

culture environment appeared to better promote the electrophysiological activity of these 

cultures as compared to a 2-D environment, as measured in terms of average spike and 

burst rates per electrode.  This electrophysiological activity may be strongly influenced 

by the changing inhibitory synaptic character of these cultures.  This work shows that 

physiologically relevant 3-D micro-environments can be created with control over cell 

density, cell types, and media conditions.  This research work represents important 

contributions to the engineering of more physiologically-conformant 3-D neural tissue in 

culture and the understanding of its structure-function relationship.  Applications range 

from testing drugs to treating pathologies such as traumatic injury, and characterizing and 

validating neural implants for continuous monitoring, diagnostic, and therapeutic 

applications to the nervous system.  We predict that such efforts will eventually 

contribute to developing hybrid-neural-interfaces that can diagnose, improve, or resolve 

functional deficits in the nervous system that result from damage, disease, or dysfunction. 
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CHAPTER 5 

TRAUMA-INDUCED PLASMALEMMA DISRUPTIONS IN THREE-DIMENSIONAL 

NEURAL CULTURES ARE DEPENDENT ON STRAIN MODALITY AND RATE 

 

Summary 

 Traumatic brain injury (TBI) results from supra-threshold physical loading, 

resulting in acute cell death or sub-lethal cellular and network damage.  Compromise of 

the neural plasmalemma has been observed following traumatic neural insults; however, 

the mechanisms and time-course of such disruptions remain poorly understood.  In order 

to investigate plasma membrane disruption as a function of time post-insult and the effect 

on long-term cell viability, we induced complex, three-dimensional shear or compressive 

strain fields on neuronal-astrocytic co-cultures distributed throughout a bioactive matrix 

(>500m thick).  Co-cultures underwent bulk mechanical loading (0.50 shear or 

compressive strain at 1, 10, or 30 s
-1

 strain rate) or static control conditions in the 

presence of impermeant dyes, which enter the cell upon a breach in membrane integrity.  

Following both bulk shear and compressive loading, permeability markers entered cells 

in a strain rate dependent manner.  Real-time imaging revealed increased membrane 

permeability in a sub-population of cells immediately upon deformation.  Cells were 

more sensitive to bulk shear deformation than compression in terms of acute permeability 

changes as well as subsequent cell survival.  Moreover, alterations in cell membrane 

permeability were transient and biphasic over the ensuing hour post-insult, consistent 

with acute membrane disruptions and resealing followed by a phase of secondary 

membrane damage.  At 48 hrs post-insult, cell death significantly increased in the high 
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strain rate group but not after quasi-static loading, suggesting that cell survival relates to 

the initial extent of transient structural compromise.  These results provide insight into 

the temporally varying alterations in membrane stability affecting neural cell survival, 

which will be critical for elucidating physical cellular tolerances.  
1
 

 

Key words.  neurotrauma, traumatic brain injury, cell mechanics, biomechanics, 

compression, shear, neuron, astrocyte, strain rate, 3-D culture, membrane permeability 

                                                 

 

 

This chapter is an adaptation of a manuscript written along with D.K.  Cullen and M.C.  
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Introduction 

Traumatic mechanical loading to central nervous system cells can lead to 

devastating consequences.  Neural cells in the brain have a unique fluidic and osseous 

protection system, and; therefore, are not normally subjected to large deformations.  

Supra-threshold physical loading can lead to traumatic brain injury (TBI), which is a 

leading cause of death and disability in the United States [1-2].  TBI is unique from any 

other neurological affliction in that it is induced by a physical event.  The long-term 

outcomes of TBI are dependent on the severity of the primary physical event and are 

compounded by multi-faceted secondary events (see [3-5] for reviews).  Collectively, 

these events may result in significant functional deficits and progressive neural 

degeneration [6-7].  Currently, there are no effective therapeutic interventions that 

directly attenuate injury-induced neural pathology.  Therefore, attention to the tissue and 

cellular biomechanics of injury is critically important in refining neural tolerance criteria 

to injury and developing targeted therapies for this affliction. 

The mechanics of brain trauma can be quite complex due to the uniqueness of 

loading parameters from individual to individual.  Typically, closed head injury is caused 

by impact and/or acceleration-deceleration based inertial loading of the head, leading to 

overt lesions or contusions, and/or, multi-focal or diffuse damage, and possibly, 

disruption of the vasculature [8-10].  The resulting injuries are a function of complex, 

three-dimensional (3-D) strain fields consisting of compressive, tensile, and shear strain 

patterns throughout the brain (Figure 5.1).  Based on these biomechanical considerations, 

as well as heterogeneous brain tissue properties, it is predicted that both shear and 

compressive deformation are relevant modes of tissue loading in impact (focal/contusion) 
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injuries, whereas shear deformation is predicted to be the dominant mode of tissue 

loading in inertial (diffuse/acceleration-deceleration) injuries [11-15].  In turn, these 

tissue-level strain patterns translate into complex combinations of cellular strains that are 

dependent on cellular orientation, cytoarchitecture, and cell-cell/cell-matrix interactions 

[16-17]. 

The immediate physical consequences of loading on the cellular level may range 

from complete structural failure, such as major somatic disruption and axotomy, to more 

subtle damage, such as cytoskeletal breakdown, decoupling of sub-cellular 

structures/organelles, and micro- or nano-tears in the plasmalemma.  However, it is 

challenging to establish these potentially subtle physical effects as a direct consequence 

of loading, because secondary pathophysiology can induce similar structural damage.  In 

particular, physical disruption of the plasmalemma, termed “mechanoporation”, may be 

one of the initial responses and is particularly devastating as it may trigger disruption of 

normal cell function in a positive feedback manner.  We postulate that there is an 

important link between the physical parameters of traumatic loading and physiological 

consequences of neural injury, and thus trauma-specific mechanisms of physical damage 

should be identified. 
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Figure 5.1.  Finite element analysis (FEA) simulations following traumatic loading in 

vivo and corresponding isolation of tissue bulk loading components in vitro.  The 

strain propagation following a focal insult (controlled cortical impact) in a rodent as 

predicted by FEA (A).  In this example, a focal insult results in heterogeneous strain 

fields at the tissue level, with regions experiencing shear- or compression-dominated 

strain fields or regions left relatively unloaded.  We developed custom in vitro devices for 

shear or compressive loading of engineered 3-D tissue surrogates (B).  These linear-

actuator driven systems impart a precise deformation based on proportional-integral-

derivative (PID) control with positional feedback from optical sensors.  The bulk loading 

occurs at a prescribed strain magnitude over a specified time, thus controlling strain rate, 

based on a trapezoidal input.  These experimental models provide control over bulk 

material deformation, while local cellular strains vary based on cellular orientation(s) 

within the matrix, resulting in various proportions of strain type (e.g., normal versus 

shear), complexity of the strain field, and strain magnitudes. 



 161 

In the current work, we evaluated alterations in plasmalemma permeability as a 

function of bulk deformation mode (shear versus compression), loading parameters 

(strain and strain rate), and time post-insult (milliseconds to hour) in 3-D tissue 

surrogates.  Neural cells were cultured in a 3-D microenvironment, consisting of a 

controlled ratio of neurons and astrocytes distributed throughout a bioactive matrix 

(>500m thick; ~1 cm in diameter).  Precise control of mechanical inputs, using custom 

built electromechanical devices, enabled delivery of a single stimulus (physical insult) to 

the 3-D neural constructs reproducibly for a range of strains and strain rates; for these 

studies we used a high shear or compressive strain (0.50) over slow (“quasi-static”) or 

dynamic (≤50 ms) durations to evaluate the effects of strain rate.  Because of the 

anisotropy and three-dimensionality of the neural network structure in these cultures, the 

resulting strain fields at the cellular level, upon dynamic deformation, are inherently 

heterogeneous [16].  The incidence and severity of acute membrane compromise were 

then correlated with longer-term cell death.  This experimental design replicates key 

features of traumatic loading in vivo, such as 3-D dynamic loading conditions, multi-

cellular composition, and a 3-D distribution of cell-cell/cell-matrix interactions.  With the 

added benefits of real-time imaging and precise micro-environmental control, this system 

was utilized to examine the acute temporal profile of membrane disruptions. 
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Materials and Methods 

 

Isolation of Primary Cortical Neurons and Cortical Astrocytes 

All procedures involving animals were approved by the IACUC of the Georgia 

Institute of Technology.  All reagents were from Invitrogen (Carlsbad, CA) unless 

otherwise noted.  Timed-pregnant Sasco Sprague-Dawley rats (embryonic day 17-18; 

Charles River, Wilmington, MA) were anesthetized using 3% isoflurane and rapidly 

decapitated.  The uterus was removed by Caesarian section and placed in calcium- and 

magnesium- free Hank’s Balanced Salt Solution (CMF-HBSS).  Each fetus was removed 

and rapidly decapitated.  After removal of the brain, cerebral cortices were isolated and 

dissociated using pre-warmed trypsin (0.25%) + EDTA (1 mM) (10 min at 37ºC).  The 

trypsin-EDTA was removed and deoxyribonuclease I (DNase I, 0.15 mg/mL, Sigma, St.  

Louis, MO) in CMF-HBSS was added.  The tissue was triturated with a flame-narrowed 

Pastuer pipette, centrifuged (1000 rpm, 3 min), and the dissociated cells resuspended in 

co-culture medium (Neurobasal medium + 2% B-27 + 1% G-5 + 500 M L-glutamine).   

Astrocytes were isolated from postnatal (day 0-1) Sasco Sprague-Dawley rats 

following anesthesia (3% isoflurane) and decapitation.  The cortices were isolated as 

described above.  Further, they were minced and dissociated following the same process 

as described above to give a cell pellet upon centrifugation that were resuspended in 

DMEM/F12 + 10% FBS, and transferred to culture flasks.  To isolate type I astrocytes, 

the flasks were mechanically agitated to dislodge less adherent cell types.  As the cells 

approached ~90% confluence they were replated (300 cells/mm
2
).  Astrocytes were used 

between passages 4-12 to permit phenotypic maturation [18-19]  
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Generation of 3-D Neuronal-Astrocytic Co-Cultures 

Co-cultures were plated in 3-D using neurons and astrocytes that were separately 

isolated and dissociated (as described above) within Matrigel
TM

 matrix in custom-made 

cell culture chambers consisting of a glass coverslip below a circular silicone-based 

elastomer mold (1:1 ratio of Sylgard 184 and 186, Dow Corning; Midland, MI; cross-

sectional area = 2 cm
2
).  Prior to plating, the chambers were pre-treated with 0.05 mg/mL 

poly-L-lysine (PLL, Sigma) followed by a Matrigel
TM

 pre-coat (0.5 mL/well at 0.6 

mg/mL; Becton Dickinson Biosciences; Bedford, MA) in Neurobasal medium.  

Matrigel
TM

 exhibits fluid-like behavior at 4C (permitting even dispersion of dissociated 

cells throughout matrix) and gels at physiological temperature (entrapping cells in 3-D) 

[20].  Co-cultures were plated at 2500 cells/mm
3
 at a 1:1 neuron:astrocyte ratio (final 

Matrigel
TM

 concentration 7.5 mg/mL) across a thickness of 500-750 m, and 

immediately placed at 37C for matrix gelation, after which 0.5 mL of co-culture medium 

was added to each culture well.  Co-cultures were maintained at 37C and 5% CO2-95% 

humidified air and medium exchanged at 24 hrs and every 2 days thereafter.  This co-

culture system has previously been characterized, demonstrating robust neurite 

outgrowth, network formation, neuronal maturation, and high viability (approx.  95%) at 

21 days in vitro (DIV) [16, 21-22].   

 

Application of Shear or Compressive Loading  

 Controlled deformation of the neuronal-astrocytic co-cultures was applied using 

custom-built electromechanical devices (Figure 5.1).  Compressive deformation was 

applied using a 3-D Cell Compression Device (CCD) and shear deformation was applied 
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using a 3-D Cell Shearing Device (CSD) [16-17, 22-23].  For each device, the 

mechanical action was driven by a linear-actuator (BEI Kimco; San Marcos, CA) coupled 

to a custom-fabricated digital proportional-integral-derivative controller (25 kHz 

sampling rate, 16 bit sampling resolution) with closed-loop motion control feedback from 

an optical position sensor (RGH-34, 400 nm resolution; Renishaw, New Mills, United 

Kingdom).  A trapezoidal input was generated by a code written in LabVIEW


 (National 

Instruments; Austin, TX), permitting application of prescribed strain type magnitudes and 

strain rates using the same parameters and control system. 

All experiments were performed between 21-33 DIV.  At the time of injury, 

cultures were removed from the incubator and mounted in one of the devices.  For 

compression, the linear actuator drove an impactor (piston) compressing the entire 

construct (piston diameter of 10 mm was greater than construct diameter which ranged 

from 7-9 mm) to impart uniform compressive loading.  For shear deformation, a cell 

chamber top plate affixed to a linear actuator permitted lateral motion of the top plate 

with respect to the fixed base of the cell chamber to impart simple shear deformation to 

the entire 3-D construct.  Experimental groups consisted of static (unloaded) control 

cultures or mechanical loaded cultures.  Both compressive or shear deformations were 

delivered using the same parameters:  a trapezoidal input of 0.50 strain at a “quasi-static” 

strain rate of 1 s
-1

 or at “dynamic” strain rates of 10 s
-1

 or 30 s
-1

 (loading onset times of 

500 ms, 50 ms, and 16.7 ms, respectively).  During the static unloaded control conditions 

for compression and shear, the constructs were placed into the respective device, but the 

device was not activated.  After mechanical deformation or static control conditions, 
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warm medium or buffer with permeability marker (based on the type of assay to be 

performed) was added and the cultures returned to the incubator.  .   

Assaying Cell Permeability 

Assaying Acute Permeability in Shear and Compression Deformed Cultures 

The normally cell-impermeant molecule calcein (629 Da) was utilized to assess 

acute alterations in plasmalemma permeability following shear and compressive loading 

at 0.50 strain at strain rates of 1 s
-1

, 10 s
-1

, 30 s
-1

 or static control conditions (n = 3-4 

constructs per loading condition per deformation mode).  Calcein only accesses cells with 

increased membrane permeability, and will remain sequestered provided membrane 

integrity is re-established.  Prior to injury, medium was removed, calcein solution 

(3.2x10
-4

 M in HBSS) was added, and the cultures were incubated at 37C for 10 min to 

allow the calcein to saturate the 3-D culture construct.  Prior to mechanical loading, 

excess calcein buffer was removed to avoid the potential artifact of fluid movement 

during the insult stimulus.  Calcein buffer remained available within the construct, 

however, due to the tortuosity of the matrix (as observed from real-time viewing, see 

Figure 5.4).  Immediately following the insult, calcein solution was re-added and the 

constructs were placed at 37C for 10 min.  Constructs were then rinsed with HBSS and 

intracellular calcein uptake was immediately imaged using confocal microscopy (LSM 

510, Zeiss, Oberkochen, Germany) (ex: 495nm / em: 515nm).  Confocal images were 

acquired across the full thickness of the cultures.  These z-stacks were converted to 3-D 

reconstructions using the LSM Image Browser.  At least three regions (defined as having 

minimum dimensions of 460.7 m x 460.7 m x 100 m) per culture were counted.  



 166 

Cells with compromised membranes (i.e.  calcein
+
) were counted and the density of 

permeabilized cells per unit volume was calculated.   

The fluorescent intensity of randomly selected calcein
+
 cells from the same 

cultures was measured to assess the degree of altered permeability.  Z-stacks from 3-4 

regions per culture were converted into 3-D reconstructions using LSM Image Browser.  

Within each reconstruction, fluorescent intensity line traces, proportional to the amount 

of calcein uptake, were acquired such that they crossed the cell body of discernable, 

randomly selected calcein
+
 cells (Figure 5.2).  An intensity ratio was calculated based on 

the formula: (peak intensity – background intensity)/(background intensity).  

Experimental groups were as follows: shear loading (0.50 strain) at strain rates of 1 s
-1

 (n 

= 5 cells), 10 s
-1

 (n = 44 cells), 30 s
-1

 (n = 51 cells); and compressive loading (0.50 strain) 

at strain rates of 1 s
-1

 (n = 19 cells), 10 s
-1

 (n = 22 cells), 30 s
-1

 (n = 75 cells).  Of note, the 

range in the number of cells analyzed per group was due to fewer calcein
+
 cells per frame 

following lower strain rate loading (see Results). 
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Figure 5.2.  Methodology employed to quantify the degree of permeability marker 

uptake.  Fluorescent intensity traces, proportional to amount of calcein uptake, from 

sample cells in (A) are shown in (C), (D) and (E).  Cells were classified into two 

populations (i.e.  calcein
+
 and calcein

-
) based on fluorescent intensity relative to 

background (B).  Cells with a significant calcein uptake exhibited much higher 

fluorescence relative to background (C).  Cells with low calcein uptake exhibit a smaller 

increase in fluorescence relative to background (D).  Cells that did not uptake calcein 

exhibited lower fluorescence than background (E).  This technique was used to quantify 

the degree of membrane permeability following trauma.  Similar methodology was 

employed to evaluate membrane permeability changes in real-time following loading. 
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Assaying Acute Permeability in Real Time 

Separate 3-D co-cultures were imaged in real-time on a confocal microscope 

during and immediately following shear strain (0.50 shear strain, 10 s
-1

 or 30 s
-1

 strain 

rate) to investigate the temporal pattern of acute membrane disruptions (n=8 constructs 

total).  Imaging was performed using a 10x (921.4 m x 921.4 m) or 20x (460.7 m x 

460.7 m) objective.  The optical slice thickness was set to establish a suitable signal-to-

noise ratio, and ranged from 5-10 m based on the magnification.  Images were captured 

at a rate of 1-2 frames/second at a resolution of 256 x 256 or 512 x 512 pixels.  On a per-

cell basis, changes in intracellular fluorescent intensity were measured as a function of 

time post-insult using LSM Image Browser (Zeiss).  Real-time analyses were only 

performed using the 3-D CSD because it was designed to mount on an inverted 

microscope stage with a glass bottom cell chamber.  Moreover, the simple shear 

deformation occurs through in-plane translation of the top plate [17], permitting tracking 

of individual cells within the focal plane.  The compression device was not built to mount 

on a confocal microscope and out-of-plane z-axis displacement does not lend the system 

to individual cell tracking.   

Assaying Sub-Acute Permeability 

To assess the sub-acute time-course of post-insult alterations in permeability, 

additional constructs were incubated with calcein solution and/or ethidium homodimer-1 

(EthD-1; 4 M, Molecular Probes, Eugene, OR) before and at various time-points up to 

60 minutes following shear deformation (0.50 strain, 10 s
-1

 strain rate).  Specifically, 

calcein was added prior to loading (0
-
) or at 10 min post-insult; EthD-1 was added at 0

-
, 

10 min or 60 min post-insult (n = 2-4 each).  Cultures were imaged 10 min following the 
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EthD-1 incubation.  Both calcein and EthD-1 gain intracellular access following 

compromise to the plasmalemma.  However, while calcein requires resealing for 

intracellular sequestration, EthD-1 labels compromised cells irrespective of membrane 

resealing by irreversibly binding DNA (causing the nuclei of the cell to fluoresce red (ex: 

495nm / em: 635nm)).  Together, calcein and EthD-1 permit distinction between re-

sealed and non-resealed cell populations.   

Assaying Permeability by Cell Type 

The subpopulation of neural cells exhibiting permeability changes was evaluated 

in separate cultures using neurons derived from transgenic mice expressing green 

fluorescent protein (GFP) cultured with wild-type rat astrocytes (isolated as described 

above).  This permitted neuronal identification (GFP
+
).  These studies used rhodamine 

(fluorescing red) as the permeability marker (3.2x10
-4

 M in HBSS), which was added to 

the construct prior to loading (as described for calcein).  These co-cultures were subjected 

to 0.50 shear strain at a strain rate of 10 s
-1 

and neuronal versus astrocytic rhodamine 

uptake was qualitatively assessed at 10 min post-insult (n = 3 constructs). 

 

Assaying Cell Viability 

 Culture viability was assessed, using fluorescent probes for distinguishing live 

and dead cells, at 48 hrs following either shear or compressive loading (0.50 strain each) 

at strain rates of 1 s
-1

, 10 s
-1

, 30 s
-1

 or static control conditions on 20-21 day old cultures 

(n = 3-7 constructs per loading condition per deformation mode).  Cell cultures were 

incubated with EthD-1 (4 M) and calcein AM (2 M) (Molecular Probes) at 37C for 30 

min and then rinsed with Dulbecco’s phosphate-buffered saline.  The percentage of 
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surviving cells was calculated by counting the number of live cells (fluorescing green by 

AM-cleavage) and the number of cells with compromised membranes - dead or dying 

cells (nuclei fluorescing red by EthD-1).  This assay is distinct from that described above 

because when AM is conjugated to calcein, it is lipid soluble and readily crosses the 

plasma membrane.  AM cleavage occurs via esterase activity, which is indicative of 

metabolically active cells.  Following this cleavage, the calcein fluoresces green (ex: 

495nm / em: 515nm) and cannot pass through the plasma membrane.  Of note, percentage 

of viable cells was based on the total cells present at the time point evaluated, and not on 

the total cells originally plated.  Also, we have previously found that post-insult astrocyte 

proliferation can mask reductions in survival [22]; therefore, we also calculated the 

density of dead cells normalized relative to the density of dead cells found in static 

control cultures.   

 

Statistical Analysis 

 Analysis of variance (ANOVA) was performed for the permeability and viability 

studies (with deformation mode and level as independent variables).  When differences 

existed between groups, post hoc Tukey’s pair-wise comparisons were performed.  

Additionally, linear regression analyses were performed to assess potential correlations 

between permeability measurements and subsequent culture viability.  For all statistical 

tests, p < 0.05 was required for significance.  Data are presented as mean ± standard 

deviation 
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Results 

 

Shear vs. Compression Permeability 

3-D neuronal-astrocytic co-cultures were subjected to static (unloaded) conditions 

or bulk compressive or shear deformation (0.50 strain each) at quasi-static (1 s
-1

) or 

dynamic (10 s
-1

 or 30 s
-1

) strain rates.  The normally cell-impermeant molecule calcein 

was utilized to investigate non-physiological membrane disruptions following the 

prescribed loading conditions.  Since calcein rinses out of cells if membrane integrity is 

not reestablished, the presence of calcein
+
 cells directly indicates transient alterations in 

membrane permeability (i.e.  membrane resealing).  Minimal calcein uptake occurred 

under either static control or quasi-static conditions (for both shear and compression 

groups) (Figure 5.3A).  However, there was increased calcein uptake following dynamic 

deformation, indicating that calcein diffused intracellularly and became sequestered 

during or within minutes following loading.  The density of calcein
+
 cells depended on 

strain rate (p < 0.001), but not the mode of deformation, and there were no significant 

interactions between these factors.  Specifically, permeability increased as a function of 

strain rate and was highest at the maximum rate for both compression and shear (p < 0.05 

each).  However, the density of calcein
+
 cells did not vary between compression versus 

shear at any matched strain rates (Figure 5.3B).  Qualitatively, more calcein
+
 cellular 

processes were observed following shear compared to compression.  In addition, we 

estimated the percentage of permeabilized cells based on the overall cell density of 

control cultures.  This showed that for both shear and compressive deformation, static 

and quasi-static controls contained less than 1% and 3% calcein
+
 cells, respectively.  
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Following 10 s
-1

 loading, approximately 10.0% of the cells took up calcein
 
following 

shear deformation, compared to 1.5% following compression (not significant).  

Moreover, for 30 s
-1

 conditions these levels rose to over 27% of cells following shear or 

compression.   

To determine the degree of cell permeability, we evaluated the intracellular 

fluorescence intensity of calcein on a per-cell basis (from the above cultures).  This 

revealed a significant increase in the mean intensity of the calcein
+
 cells strained at 30 s

-1
 

compared to quasi-static loading (p<0.05) for both shear and compression (Figure 5.3C).  

The mean intensity of calcein
+
 cells was significantly increased at 10 s

-1
 versus quasi-

static loading only for shear (p<0.05).  Additionally, at a matched strain rate of 10 s
-1

, 

there was enhanced calcein uptake in cells following shear versus compression (p<0.05) 

(Figure 5.3C). 
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Figure 5.3.  Alterations in acute membrane permeability in shear versus 

compression.  Representative confocal reconstructions of calcein stained 3-D cultures 

following static control conditions or mechanical loading (0.50 strain at 1 s
-1

, 10 s
-1

, or 30 

s
-1

 strain rate) (A).  Calcein, a normally cell-impermeant green fluorescent molecule, was 

added to the extracellular space prior to loading but becomes intracellularly sequestered 

in some of the cells in 3-D culture during or immediately following loading 

(reconstructions from 50 µm thick z-stacks; scale bar = 50 µm).  Cell density of 

permeabilized (calcein
+
) cells (B).  The 3-D cell density and percentage of calcein

+
 cells 

increased as a function of strain rate and was highest at the maximum strain rate for both 

compressive and shear loading (*p < 0.05 vs.  static control; †p < 0.05 vs.  lower strain 

rate(s)).  However, these parameters did not vary based on mode of deformation.  Degree 

of cell permeability following variable rate shear or compressive (0.50 strain) loading 

(C).  There was a significant increase in the mean intensity of calcein
+
 cells vs.  quasi-

static loading for both shear and compression at 30 s
-1

 and shear only at 10 s
-1

 (*p < 

0.05).  Also, at 10 s
-1

 loading, there was enhanced calcein uptake following shear vs.  

compression (†p < 0.05).  Data: mean  standard deviation. 
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Acute Time Course of Permeability Changes 

Immediate trauma-induced alterations in cell membrane permeability were 

investigated on a cell-by-cell basis by imaging shear strain application in real-time.  

Three-dimensional neuronal-astrocytic co-cultures were subjected to dynamic shear 

deformation (0.50 strain).  Calcein was present in the extracellular space prior to loading 

(as before), causing it to fluoresce bright green whereas cells with intact plasmalemma 

excluded the dye and appeared dark.  Immediately post-insult, a modest subset of cells 

immediately became calcein
+
 throughout the cell bodies, whereas in other cells a 

widespread loss of cell/process definition was apparent (Figure 5.4A).  These 

observations were quantified, revealing that roughly half (47.4%) of the cells showed no 

change (defined as less than a 10% change in intracellular fluorescence relative to 

background) immediately following loading.  Conversely, 42.1% of cells showed an 

immediate increase in intracellular intensity between 10-50%.  Additionally, 10.5% of the 

cells had a greater than 50% change in intracellular intensity (these cells either 

completely blended with the background or appeared brighter than background).   

We then used continuous monitoring to qualitatively track calcein entry on a per-

cell basis as a function of time post-insult (Figure 5.4B-C).  As before, clear intracellular 

calcein exclusion was observed pre-loading.  Immediately following loading, intracellular 

(in somata as well as in processes) calcein intensity increased in a small portion of cells 

consistent with earlier observations.  However, in most cells a gradual increase in 

intracellular intensity was observed over seconds to minutes post-insult leading to the 

somata and processes slowly blending into the background as calcein gradually diffused 

into the cells post-insult.  These observations provide direct evidence of plasmalemma 
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pores/tears as an immediate and direct result of high strain rate loading.  Moreover, the 

relatively protracted diffusion over the acute period post-injury likely results in the 

substantial uptake observed following rinsing (refer to Figure 5.3). 

 

The Sub-Acute Time-Course of Altered Membrane Permeability 

 The time-course of plasmalemma disruptions was investigated following 

traumatic shear loading at 0.50 strain, 10 s
-1

 strain rate.  The density of permeabilized 

cells was evaluated when permeability marker was added either pre-loading or at specific 

time points post-loading.  Here, there was significant calcein uptake when present during 

loading (consistent with our earlier results); however, when calcein was added 10 min 

post-insult, uptake was minimal (Figure 5.5).  This indicated that within minutes of the 

insult, either the cell had reestablished membrane integrity (for appropriate exclusion of 

calcein) or there was a state of dynamic pore cycling (opening and closing, preventing 

intracellular calcein sequestration).   

To differentiate between these possibilities, we evaluated the density of 

permeabilized cells at discrete time-points post-insult using calcein and an additional 

membrane-impermeant marker, EthD-1.  These are complimentary markers since calcein 

requires resealing for intracellular sequestration, whereas EthD-1 irreversibly binds DNA 

and will thus label compromised cells irrespective of membrane resealing.  Here, calcein 

was only added pre-insult (to track calcein sequestration over time), but EthD-1 was 

added either pre-insult or at 10 min or 60 min post-insult (to assess potential membrane 

resealing and secondary poration; imaging occurred 10 min after EthD-1 addition).  This 

revealed that both the density of calcein
+
 and EthD-1

+
 cells varied over time post-insult.  
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In particular, the density of EthD-1
+
 cells increased immediately after the insult, 

decreased precipitously when added 10 min post-insult, but then increased again 

gradually over hours, thus revealing a bi-phasic relationship (Figure 5.6).  In addition, the 

density of calcein
+
 cells increased at 20 min post-insult, possibly due to intracellular 

diffusion of calcein and/or persistent uptake in processes remote from the somata.  Also, 

by 60 min post-insult, calcein
+
 cellular debris was present, potentially indicating active 

removal of calcein or the breakdown of some initially calcein
+
 cells.  Collectively, these 

observations demonstrate that there is a primary, transient phase of mechanoporation that 

concludes within minutes, perhaps ten of seconds, of loading.  Also, these results suggest 

a phase of secondary poration possibly represented by persistent, cycling, or permanent 

pores and/or the initiation of cell death. 

 

Neuronal vs. Astrocytic Permeability Changes 

Acute trauma-induced alterations in membrane permeability were investigated in 

neurons versus astrocytes following shear loading at 0.50 strain at 10 s
-1

.  For these 

studies, a group of 3-D co-cultures were generated using GFP
+
 neurons mixed with wild-

type astrocytes to permit neuronal identification, and a red permeability marker, 

rhodamine, was used.  Qualitative assessment revealed that alterations in membrane 

permeability occurred in both neurons (GFP
+
/rhod

+
) and astrocytes (GFP

-
/rhod

+
), with 

robust rhodamine uptake in both the somata and cellular processes (Figure 5.7). 
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Figure 5.4.  Real-time analyses of calcein uptake following shear deformation.  

Our custom-built shear deformation device was designed to mount on a confocal 

microscope to permit real-time imaging across the 3-D constructs before, during, and 

after loading.  Calcein diffused throughout the extracellular space prior to loading.  

The 3-D cultures were then dynamically deformed at 0.50 shear strain (10 s
-1

 or 30 s
-1

 

strain rate).  Pre-loading, there were clear margins delineating neural somata and 

processes, indicating intact plasmalemma appropriately excluding calcein.  However, 

immediately post-insult, there was a subset of cells that became calcein
+
 (A, white 

arrows).  Although, most cells continued to exclude calcein (A, black arrows).  In 

other cases, a widespread loss of definition was apparent in neurites as well as somata 

(B).  Calcein uptake was tracked on a per-cell basis throughout loading (C).  Here, 

clear intracellular calcein exclusion was observed pre-loading.  Within 500 ms post-

insult, intracellular calcein intensity increased.  This process continued throughout 

the first minute, resulting in processes gradually blending with the background (white 

arrows). 
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Figure 5.5.  Sub-acute permeability alterations.  Representative confocal 

reconstructions of 3-D neuronal-astrocytic co-cultures following mechanical loading at 

0.50 shear strain, 10 s
-1

 strain rate.  Calcein was added to the cultures either prior to 

loading (0
-
) (A) or 10 min post-loading (B).  There was modest uptake when the calcein 

was present during loading but minimal uptake when calcein was added minutes post-

insult (reconstructions from 50 µm thick z-stacks). 
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Figure 5.6.  Sub-acute time-course of permeability alterations.  Representative 

confocal reconstructions of 3-D neuronal-astrocytic co-cultures following mechanical 

loading at 0.50 shear strain, 10 s
-1

 strain rate.  In addition to calcein, an alternate 

permeability marker was used, EthD-1, which permanently binds an intracellular 

substrate.  Calcein was added to the cultures only prior to loading (0
-
), whereas EthD-1 

was added either prior to loading (A, imaging done at 10 min), or 10 min (B, imaging 

done at 20 min) or 60 min (C, imaging done at 70 min) post-loading (reconstructions 

from 60μm thick z-stacks).  Over time, intracellular calcein increased given an 

additional 10 min for intracellular diffusion (B); however, by 60 min intracellular 

calcein had decreased markedly, suggesting a second phase of altered permeability, 

with indications of cellular debris (C).  In contrast, when EthD-1 was added 10 min 

post-insult, there was a decrease in EthD-1
+
 cells (C) compared to both earlier and later 

time points.  These results were quantified and normalized to the density of EthD-1
+
 

cells in static control cultures, revealing a bi-phasic relationship, where EthD-1
+
 cells 

decreased precipitously by 10 min post-insult, but increased gradually over one hour 

post-insult.  Data: mean  standard deviation. 
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Shear vs. Compression Viability 

At 48 hours post-insult, a live/dead assay was performed to evaluate the 

consequences of traumatic loading on cell survival (Figure 5.8A).  Following static 

control conditions or mechanical loading (0.50 shear or compressive strain at 1 s
-1

, 10 s
-1

, 

or 30 s
-1

 strain rate), the percentage of viable cells depended significantly on strain rate (p 

< 0.01) but not the mode of deformation, with no significant interaction between these 

factors.  In particular, following shear loading, the percentage of viable cells was 

 
 

Figure 5.7.  Trauma-induced alterations in membrane permeability in neurons 

versus astrocytes.  A subset of co-cultures was generated using GFP
+
 neurons mixed 

with wild-type astrocytes to permit neuronal identification, and a red permeability marker 

was utilized (rhodamine).  Here, there was a mix of both Rhod
+
/GFP

-
 astrocytes (A, 

denoted by arrowheads) and Rhod
+
/GFP

+
 neurons (B, denoted by arrows) exhibiting 

altered membrane permeability following injury.  This demonstrated the susceptibility of 

both cell types to acute plasmalemma disruptions following dynamic loading. 
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significantly reduced at 30 s
-1

 versus quasi-static (1 s
-1

) loading or static control cultures 

(p < 0.05) (Figure 5.8B).  We have previously shown that a mechanical insult may 

directly initiate astrocyte proliferation [22], making the density of dead cells a more 

accurate marker of post-injury survival.  The fold-increase in the density of dead cells 

(compared to static controls) varied significantly based on strain rate (p < 0.05) as well as 

deformation mode (p < 0.001), with no significant interaction between these factors.  

Specifically, following shear loading at 10 s
-1

 or 30 s
-1

, the density of dead cells increased 

by over 5-fold (p < 0.05) (Figure 5.8C).  Additionally, at matched strain rates of 10 s
-1

 

and 30 s
-1

, there were significant increases in cell death in shear versus compression (p < 

0.05 each) (Figure 5.8C). 
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Figure 5.8.  Post-insult viability in shear versus compression.  Representative 

confocal reconstructions of culture viability following static control conditions or 

mechanical loading (0.50 strain at 1 s
-1

, 10 s
-1

, or 30 s
-1

 strain rate) (A).  Live cells were 

stained green and the nuclei of dead/dying cells red (reconstructions from 100 µm thick 

z-stacks; scale bar = 50 µm).  Percentage of viable cells (B).  The percentage of viable 

cells 48 hrs following shear deformation depended significantly on injury level (*p < 

0.05 vs.  static and quasi-static controls).  Dead-cell density (C).  Post-insult proliferation 

can mask reductions in survival, thus the density of dead cells was calculated 

(normalized relative to static controls).  The density of dead cells varied significantly 

based on injury level (p < 0.05) as well as deformation mode (p < 0.001).  Pair-wise 

comparisons: *p < 0.05 vs.  static control; †p < 0.05 vs.  quasi-static; #p < 0.05 vs.  

matched strain rate.  Data: mean  standard deviation. 
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Correlation between Permeability and Viability 

 Linear regression analyses were performed to assess the potential relationship 

between acute cell damage and subsequent cell death.  Specifically, the acute density of 

compromised cells (calcein
+
) and the degree of per-cell calcein uptake measured at 10 

min post-insult were correlated with the density of dead cells across all loading 

conditions at 48 hours post-insult.  The density of permeabilized cells correlated poorly 

with later cell death following shear loading (R
2
 = 0.22).  In contrast, this parameter 

correlated strongly with cell death following compressive loading (R
2
 = 0.98) (Figure 

5.9A); however, there was a lack of distinction between quasi-static and 10 s
-1

 loading in 

this case.  Alternatively, the degree of per-cell calcein uptake, potentially proportional to 

the degree of cell damage, correlated strongly with cell death for both shear and 

compression (R
2
 = 0.96 and R

2
 = 0.95, respectively, Figure 5.9B).  Additionally, the 

increase in cell death was markedly greater with respect to strain rate for shear versus 

compression, suggesting that shear deformation is the prevalent mechanism of cellular 

damage that ultimately induces cell death.  Together, these results indicate that the degree 

of initial transient structural compromise was a stronger predictor of cell death than the 

number of compromised cells. 
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Figure 5.9.  Regression analyses to assess potential correlations between acute 

markers of cell damage and subsequent longer-term cell death.  Cell death versus the 

density of permeabilized cells (A) or versus the degree of per-cell permeability (B).  The 

degree of calcein uptake on a per cell basis was overall a stronger indicator of cell death 

than the density (or percentage) of calcein
+
 cells.  This implicates the degree of damage 

rather than the presence of damage in subsequent cell death.  Additionally, this increase 

in cell death was markedly greater for shear versus compression across all strain rates, 

substantiating that shear deformation is the prevalent mechanism of cellular damage that 

ultimately induces cell death.  Data: mean  SEM. 
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Discussion 

Traumatic loading to the brain results in complex strain fields; therefore, using 

custom-built electromechanical devices, we reproducibly imparted controlled shear and 

compressive deformation on a 3-D neural culture model.  This 3-D model is more 

appropriate to evaluate acute responses to traumatic loading than planar counterparts due 

to similarities to in vivo conditions, such as the three dimensionality of neural network 

structure, cytoarchitecture, and the distribution of cell-cell/cell-matrix interactions.  Using 

defined inputs to a heterogeneous, anisotropic culture is intended to represent different 

tissue-level deformation patterns (i.e.  shear- or compression-dominated) that may occur 

at different locations or in varying loading directions within the brain during a traumatic 

insult.  We subjected 3-D neural co-cultures to mechanical loading (0.50 shear or 

compressive strain at 1, 10, or 30 s
-1

 strain rate) or static control conditions in order to 

investigate acute and sub-acute plasma membrane disruptions and cell viability.  Our 

major findings were as follows: (1) disruptions of the plasmalemma occurred 

immediately upon shear or compressive loading and persisted over seconds post-insult; 

(2) the loading thresholds for these acute plasmalemma disruptions were lower following 

shear versus compression (≥ 10 s
-1

 in shear; ≥ 30 s
-1

 in compression), with shear resulting 

in increased degree of per-cell failure and increased compromise of cellular processes; (3) 

acute alterations in membrane permeability occurred in both neurons and astrocytes; (4) 

membrane compromise was bi-phasic over one hour post-insult, with acute disruptions 

immediately upon loading which resealed within minutes, followed by secondary loss of 

membrane integrity; and (5) both shear and compressive loading induced cell death by 48 
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hrs post-insult, with shear resulting in significantly higher cell death than compression, 

when loaded at a relatively high strain rate.   

Our results demonstrate that acute plasma membrane compromise following 

mechanical loading was strain rate-dependent, consistent with previous studies [22, 24-

26].  This behavior is due to the viscoelastic nature of cells, which predicts that in the 

case of high strain rate loading, characteristic of traumatic neural injury, the elastic 

component will be dominant causing cells to behave in a more rigid manner (i.e.  failure 

given sufficiently large deformation).  On the other hand, low strain rate loading entails 

an increasing effect of the viscous component, whereby structural components are able to 

comply with even large deformations [27].  In particular, we found that the degree of 

calcein uptake per permeabilized cell  potentially a gauge of local stress/strain 

concentrations  increased in a strain rate-dependent manner.  A noteworthy caveat in 

this analysis is that calcein will not necessarily stain all permeabilized cells, since it will 

not be retained in cells that were permeabilized but not resealed.  Likewise, pores smaller 

than a critical diameter will prevent calcein entry, which may also be affected by 

molecular charge, shape, and binding affinity.  Thus, additional studies of the nature of 

mechanically-induced membrane damage may require alternative permeability markers 

with defined characteristics.   

The acute cellular responses in 3-D cultures exposed to bulk shear or compression 

has relevance to loading profiles in TBI (see Figure 5.1).  We did not find significant 

differences in the density of permeabilized cells between these two bulk modes of 

deformation at matched strain rates.  However, the degree of damage (i.e.  calcein uptake) 

on a per-cell basis was greater following shear deformation than compression 
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deformation.  Shear conditions led to increased calcein uptake at lower strain rates, 

demonstrating a lower threshold for membrane permeability following shear versus 

compression.  Moreover, we observed preferential calcein presence in cellular processes 

following shear versus compression.  This indicates that cellular processes are either 

more vulnerable to shear loading, or increased somatic permeability leads to enhanced 

diffusion of calcein.  Sensitivity of cellular processes to deformation was also observed in 

a recent in vivo study of spinal cord contusion, which noted persistent permeability in 

axons [28].  The ramifications of immediate plasmalemma compromise may be 

devastating, triggering the loss of membrane potential, permeation of molecules, 

electrokinetic transport, and osmotic imbalance, and even cell rupture [29].  The resulting 

loss of ionic homeostasis, particularly Ca
2+

 homeostasis in neurons, has been shown to 

disrupt action potential firing and synapse function, impair axonal conduction, and play a 

role in excitotoxicity, cytoskeletal breakdown, mitochondrial dysfunction, necrosis, and 

apoptosis [5, 26-27, 30-38].   

We investigated the mechanisms of strain-induced membrane disruption by 

imaging shear strain application to 3-D neural cultures in real-time, revealing at least 

three subpopulations of cells with regard to calcein uptake, despite a uniform bulk insult.  

One subpopulation showed calcein uptake from the extracellular space immediately upon 

deformation, another subpopulation showed gradual calcein uptake that built up over tens 

of seconds to minutes, and a third subpopulation showed no calcein uptake even over 

minutes post-insult.  Local cellular strains are functions of cell morphology and 

orientation [16] and therefore it is not surprising to observe this heterogeneous response 

within individual cultures.  These responses vary due to differences in the following: cell 
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type morphologies (affecting cellular mechanical properties), orientation with respect to 

the bulk strain field (affecting principal axes of local cellular strains), and the number of 

cellular processes (affecting the complexity of the strain field).  Also, this varied response 

may indicate local differences in mechanical properties and thus cell tolerances [39-40] 

and is consistent with other studies that suggest that multiple types of primary neuronal 

and axonal injury co-exist following trauma [41-45].   

We also investigated the sub-acute time-course of alterations in membrane 

permeability discriminating between cells that were transiently porated (labeled using a 

marker requiring resealing for intracellular sequestration - calcein) and cells with 

transient or prolonged poration (labeled using a marker that bound an intracellular 

substrate – EthD-1).  Although we found significant numbers of permeable cells at the 

time of injury, membrane integrity appeared re-established by 10 minutes post injury, as 

previously reported [24-25].  Additionally, cells that became calcein
+
 at the time of injury 

became “leaky” within one hour, indicating some initially compromised cells developed a 

second phase of membrane compromise, potentially a progression towards cell death.  

Likewise, based on the number of EthD-1
+
 cells, intracellular access of EthD-1 spiked 

immediately post-insult when EthD-1 was present during injury, but decreased when 

EthD-1 was added 10 minutes post-injury.  This trend then reversed as EthD-1
+
 cells 

increased by 60 minutes.  This increased cellular uptake of EthD-1 at 60 minutes post-

injury also suggests a secondary, developing phase of membrane compromise which may 

include dying or dead cells.  This cell population may consist of initially compromised 

cells that experienced secondary membrane damage, or cells that were affected by the 

mechanical insult independent from acute mechanoporation.  Of note, EthD-1 is 
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commonly used to identify dead cells, because live cells have intact membranes and thus 

are able to exclude it.  Implicit in this distinction is that a compromised plasmalemma 

indicates a dead or dying cell.  Our results suggest that EthD-1 may be used as a marker 

of membrane permeability at acute time points, because despite no cell loss in the first 

hour post-insult, EthD-1 labeled cells immediately and at 60 minutes after loading, while 

cells exclude EthD-1 (and calcein) when added 10 minutes after the insult.  Similar to our 

use of EthD-1 as a membrane permeability marker, other studies have used propidium 

iodide [46] and ethidium bromide [47], both irreversible DNA binding dyes commonly 

used for identifying dead cells, as markers of membrane permeability following traumatic 

brain injury in animals.   

In light of the many potentially damaging consequences of high strain rate 

deformation, we evaluated cell survival within the 3-D co-cultures at 48 hours after shear 

or compressive loading.  There were significant reductions in cell viability after high (30 

s
-1

) strain rate loading compared to quasi-static (1 s
-1

) loading or static control cultures, 

indicating a strain rate-dependence for post-insult survival.  We found an over 5-fold 

increase in cell death following 10 s
-1

 and 30 s
-1

 shear strain loading, but only a 2-fold 

increase in the cell death following 30
-1

 compressive loading.  We correlated two acute 

responses, the density of permeabilized cells and the degree of per-cell permeability 

changes, with this subsequent cell death.  For both shear and compressive loading, the 

degree of acute permeability changes on a per–cell basis was a stronger predictor of cell 

death than the density of permeabilized cells.  These results implicate the degree of 

damage rather than the presence of damage in trauma-induced cell death.  Possibly, 

increased severity of the initial structural compromise may directly predispose a cell for 
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subsequent death, whereas less severe compromise is survivable.  Alternatively, different 

populations of cells may subsequently die, which is unknown, given we did not track 

individual cells.  Indeed, calpain-mediated spectrin proteolysis, an indicator of necrotic 

cell death, has been shown to occur independent of membrane disruption in vivo [41].  

On the other hand, neural cell survival following early post-traumatic permeability 

increases has also been observed [41, 44].  Thus, these studies suggest that many initially 

permeabilized cells survive the insult; however, there may be prolonged alteration in 

physiology or later death in this population.  Not surprising, there is also evidence of 

delayed cell death in cells that initially survive membrane compromise in vivo [46].  

Thus, the long-term survivability of initially permeabilized cells, as well as the functional 

state of these cells, is not completely understood and warrants further investigation. 

While further study is needed, our data suggest that many of the initial disruptions 

in the plasma membrane are repaired within minutes (perhaps seconds) of injury, 

indicating that reparative mechanisms are rapidly deployed.  These may include lowering 

the thermodynamic state of the lipid bilayer to reseal ruptures in the plasma membrane 

and/or vesicle release and fusion to the plasma membrane via calcium-dependent 

mechanisms [48-54].  Some of these emergency cellular repair mechanisms may be 

energetically taxing [55], and may occur when metabolic demands in the injured cell are 

increasing.  These reparative mechanisms may be limited or not available as secondary 

degradative events are initiated, such as calcium-dependent activation of proteases and 

phospholipases that may enzymatically digest the cytoskeleton and plasma membrane 

[56-60] - thus causing a secondary poration.  Although these secondary mechanisms of 

cell damage are not unique to trauma (see [61-62] for reviews), primary (physical) 



 191 

damage as well as the damaged/reparative context in which the secondary events ensue 

are unique to trauma.   

Collectively, our observations lead us to postulate a time-course of events 

involving post-trauma alterations in membrane permeability that may ultimately lead to 

cell death (Figure 5.10).  As a direct physical consequence of traumatic loading, a 

primary phase of mechanoporation is initiated in a subset of cells.  In some cases, this 

may be irreparable damage.  In other cases, this phase is marked by transient disruptions, 

ending within tens of seconds or minutes of the physical insult.  In our study, these 

populations were indicated by high levels of intracellular calcein and EthD-1 at the time 

of injury.  In cells that are able to reseal, the initial physical insult may provide sufficient 

perturbation to lead to a secondary phase of membrane poration/damage due to non-

mechanical causes (e.g., phospholipase and/or protease-mediated processes).  In the sub-

acute period, this phase is marked by dynamic pore turnover, captured in our studies by 

the differential levels of EthD-1 staining with respect to time, that may ultimately lead to 

cell death [56-60].  Thus, over the first hour post-insult, two related yet distinct 

mechanisms of membrane damage appear as biphasic alterations in membrane 

permeability. 
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Figure 5.10.  Postulated permeability time-course.  Mounting evidence suggests that 

the primary phase of mechanoporation ends within seconds of the physical insult, and 

thus is marked by transient, acute biophysical disruptions.  A protracted phase of 

secondary poration ensues as time progresses in some cases.  This phase is likely 

enzymatically-mediated and potentially marked by dynamic pore turnover that may 

ultimately lead to cell death.  Collectively, these two related yet distinct mechanisms 

yield the appearance of bi-phasic alterations in membrane permeability over the first 

several hours post-insult. 
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Conclusion 

In summary, our demonstrate a particular vulnerability to shear deformation, 

which resulted in increased cell structural damage/failure and death compared to 

compression.  We observed a biphasic response in cell membrane permeabilization upon 

injury, with a primary mechanoporation phase lasting seconds to minutes post injury, and 

a secondary phase of membrane damage ensuing in the hours post injury.  These results 

are the basis for a proposed sequence of membrane damage and repair dynamics that 

should be considered in light of other consequences of mechanical injury for both neural 

and other systems, as mechanoporation may be a key trigger for cellular dysfunction.  In 

addition, elucidation of acute mechanisms of structural damage using biomechanically-

characterized reduced (i.e.  in vitro) models can then be extrapolated to cellular or tissue 

loading responses in human TBI.  Further investigation of these events and their time 

course will contribute to our increased understanding of cellular tolerances and be useful 

in computer modeling to more accurately predict structural and functional damage in 

response to large magnitude, high rate deformation. 
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CHAPTER 6 

DISCUSSION AND CONCLUSION 

 

Summary and Significance 

This section integrates the major findings of the research and discusses their 

collective implications.   

Evaluating the cytotoxicity of SU-8 2000 (a microfabrication material that enables 

the fabrication of high aspect-ratio structures) and devising treatments to improve its 

cytocompatibility was the first aim of this research work.  The results suggested a link 

between SU-8 2000 cytotoxicity in neuronal cultures to poor adhesive properties and 

toxic components, such as solvents and photo acid generator associated elements.  

Several post-processing strategies were developed to improve SU-8 2000 

cytocompatibility, including combinations of heat and isopropanol sonication followed 

by surface treatments of either oxygen plasma or parylene coating.  Overall, these 

treatments diminished the cytotoxicity and poor cell adhesion of SU-8 2000, expanding 

its potential as a microfabrication material for bioMEMS and other biomedical 

applications. 

After enhancing the cytocompatibility of SU-8 2000, in the second aim of this 

research work a 3-D co-culture system of neurons and astrocytes within a bioactive 

scaffold of extracellular matrix-derived proteins and proteoglycans was generated and 

optimized.  This 3-D neural network was used to study the in vitro network development 

of both electrophysiological (functional) properties via 3-D MEA recording and structural 

properties through viability and immunocytochemical techniques.  This is the first 
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investigation of the network-level electrophysiological activity of dissociated 3-D 

cultures.  Our culture system maintained considerable neurite outgrowth and complex 3-

D network architecture that developed over time in vitro.  The cultures exhibited high 

long-term viability up to three weeks in vitro with functional network synaptic 

connections and spontaneous and evoked electrophysiological activity.  The 3-D culture 

environment appears to better promote the electrophysiological activity of these cultures 

as compared to a 2-D environment, as measured in terms of average spike and burst rates 

per electrode.  This electrophysiological activity may be strongly influenced by the 

changing inhibitory synaptic character of these cultures.  This work shows that 

physiologically relevant 3-D micro-environments can be created with control over cell 

density, cell types, and media conditions.  However, weaknesses remain with our 3-D co-

culture, as cells were isolated from critical factors usually provided in an in vivo nervous 

system, such as normal synaptic inputs, blood supply, immunological factors, systemic 

inputs, and the in vivo tissue developmental program.  Additionally, these neural cultures 

exhibited reduced synaptic density, randomized architecture, and reduced glia number as 

compared to an in vivo system.  Nevertheless, 3-D co-cultures still represent an important 

step towards engineering more physiologically-conformant neural tissue models for in 

vitro testing and tissue engineering.  Such tissue-engineered constructs may serve as 

investigative platforms to study neurobiological phenomena by more accurately 

representing in vivo interactions with the control and precision realized by in vitro 

systems.  In addition, the random architecture of the neural networks in the 3-D co-

culture allows for general statistical analyses of the gross behavioral features, patterns, 

and responses of neural networks to various physiologically relevant stimuli.  Such 
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analysis can be useful in testing drugs, understanding the structure-function relationship 

in developing neural networks, designing better tissue engineered neural constructs, and 

interfacing neural tissue with neural prostheses.  The engineering of such novel culture 

models is critical for in vitro advances in neuroscience and neural engineering, providing 

custom and modular design capabilities for the mechanistic study of cell growth, cell-cell 

/ cell-matrix interactions, as well as the responses to chemical or mechanical 

perturbations. 

As a demonstration of the utility of 3-D cultures to study neural network response 

under a pathological condition and to potentially serve as a high-throughput drug-testing 

platform, we developed a method of 3-D culture injury and analysis in the third aim of 

this work.  Physiologically relevant 3-D culture systems have the potential to be high-

throughput systems because several 3-D cultures can be reproducibly generated, in 

controlled and defined environments (with respect to cell type, cell ratios, and 

orientation) for use in varied assays both in sequence and in parallel in real-time with 

precise micro-environmental manipulation and control, from very little source animal 

tissue at a time.  Furthermore, the amount of cell markers available for study is magnified 

given that the three-dimensionality allows the presence of more cells within a given 

space.  We developed a compression injury device capable of delivering controlled high 

magnitude strains at high, uniform rates throughout the 3-D co-cultures.  This injury 

device was then validated for its ability to induce cellular trauma in the 3-D cultures, by 

measuring the number of permeabilized cells post insult from the device and the 

quantification of subsequent neuronal death.  In parallel, injury was induced using on a 

previously built shear injury device.  For the purpose of investigating neural network 
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properties throughout compressive injury, we created a hybrid device to use with 

commercially available Multi Electrode Array (MEA) system (Multi Channel Systems, 

Germany).  In the future, this device can potentially allow for injury directly within the 

MEA, concomitant recording of the electrophysiological activity during the injury and 

drug treatment to investigate the injury response.  By enabling simultaneous and 

subsequent electrophysiological recording from injured 3-D cultures, this technology 

would provide information on network property changes (such as changes in synapse 

strength, signal spread and velocity, etc.) following a traumatic neuronal injury.   

Our injury experiments demonstrated that disruptions of the cellular 

plasmalemma occurred immediately upon shear or compressive loading and persisted 

over seconds post-insult.  For both shear and compression loading, these acute 

plasmalemma disruptions resulted in significant increases in membrane permeability in a 

strain rate dependent manner.  However, the loading thresholds for these acute 

plasmalemma disruptions were lower following shear versus compression, with shear 

resulting in increased degree of per-cell failure and increased compromise of cellular 

processes.  Acute alterations in membrane permeability occurred in both neurons and 

astrocytes.  Membrane compromise was bi-phasic over one hour post-insult, with acute 

disruptions immediately upon loading which resealed within minutes, followed by 

secondary loss of membrane integrity.  Both shear and compressive loading induced cell 

death by 48 hrs post-insult, with shear resulting in significantly higher cell death than 

compression, when loaded at a relatively high strain rate.  For both shear and 

compressive loading, the degree of acute permeability changes on a per–cell basis was a 

stronger predictor of cell death than the density of permeabilized cells.  These results 
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implicate the degree of damage rather than the presence of damage in trauma-induced 

cell death.  Our 3-D co-culture model in vitro not only generated a rapid and reproducible 

injury, but, since local cellular strains in in vivo traumatic neural injury may be 

heterogenous and a function of cell orientation with respect to the bulk strain field, a 3-D 

model such as ours may better represent neural trauma-related biomechanics and 

pathophysiology than 2-D models.  Overall, our 3-D co-culture model could be important 

in elucidating cellular tolerances and in developing mechanistically-motivated 

intervention strategies for neural injury. 
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Future Directions and Applications 

 The results of our first study (Aim 1) have provided a methodology for increasing 

the cytocompatibility of SU-8 2000, enabling its use as a primary microfabrication 

material for biological microelectromechanical systems (bioMEMS) and other 

biomedical applications.  This can allow greater microfabrication advances towards the 

development of small, cheap, precise, and biocompatible devices for bioMEMS 

applications.  Since our work suggested a link between SU-8 2000 cytotoxicity in 

neuronal cultures to poor adhesive properties and toxic components, such as solvents and 

photo acid generator associated elements, future research can focus on developing SU-8 

with alternative components that are more biocompatible.  Furthermore, the 

methodologies developed in this work can be extended to testing and improving the 

cytocompatibility of any other material of interest. 

Studying 3-D neural networks with microelectrodes and an in vitro 3-D culture 

model (Aim 2) allowed us to study the interfacing and development of 3-D neural 

networks in vitro.  Further study along these lines can delve into studying the nervous 

systems’s information processing capabilities.  Likewise, our in vitro 3-D culture model, 

can help gain insight in neural prosthesis actuation and control by providing a high-

throughput economical testing option for data acquisition and analysis. 

Additionally, the 3-D culture model offers an excellent pre-clinical test-bed for 

the simulation and study of neural pathologies in a controlled environment.  New insights 

from these studies can lead to new therapeutic strategies in neural regeneration for the 

treatment of both traumatic damage and neurodegenerative disorders.  For example, drug 

and cell therapeutic strategies for the remyelination of neurons in multiple sclerosis can 
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be developed using the 3-D culture MEA system by testing for the increase in the 

conduction velocities of demyelinated neurons upon addition of the therapeutic test agent. 

Likewise, the 3-D culture model could electrophysiologically characterize stroke 

response, by testing under ischemic conditions.  Using this information, an implanted 

microchip could be programmed to detect stroke-related brain signals and notify you and 

a health care provider, quickening diagnosis and treatment.  The chip’s design could even 

enable the immediate release of device-stored medication, such as tissue plasminogen 

activator, which needs to be administered within the "golden time window" of 90 minutes 

post-stroke for effective counter-action.  Likewise, many other possibilities exist: such 

implants could seamlessly function within the body, owing their biocompatibility.  

Likewise, they could resorb upon biological or external stimulus.  Physico-chemical 

phenomena could assist in the implant’s functions; for instance, a chemical reaction could 

cause allosteric changes inducing drug-release or immune-response.   

The 3-D culture model could also aid in the research of stem-cell therapy.  

Currently, a robust testing arena is needed to verify that artificially induced stem cells 

have developed into electrophysiologically active neurons that network with each other.  

The 3-D MEA culture model would allow thorough network-level testing of neuronal 

induction of stem cells by both the recording and stimulation of the test cultures and 

comparison with standard neuronal cultures.   

This work has implication on tissue engineering research as well.  The presence of 

laminin in the 3-D matrix studied aids in the development of 3-D tissue microstructure in 

our cultures.  Future studies can throw light on how neurons develop networks in 3-D, 

and how do these networks change their structure and function with time under neural 
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developmental conditions.  This information can be used for tissue engineering surrogate 

neural tissue in vitro, that can be used to replace their damaged or degenerated 

counterparts in vivo. 

As demonstrated in the last study of this work (Aim 3), the 3-D culture model can 

be applied for studying traumatic afflictions and their subsequent pathology.  Our results 

are the basis for a proposed sequence of membrane damage and repair dynamics that 

should be considered in light of other consequences of mechanical injury for both neural 

and other systems, as mechanoporation of cells following injury may be a key trigger for 

cellular dysfunction.  In addition, elucidation of acute mechanisms of structural damage 

using biomechanically-characterized reduced (i.e.  in vitro) models, such as ours, can 

then be extrapolated to cellular or tissue loading responses in human TBI.  Further 

investigation of these events and their time course will contribute to our increased 

understanding of cellular tolerances and be useful in computer modeling to more 

accurately predict structural and functional damage in response to large magnitude, high 

rate deformation. 

As a closing note, the general methodology of 3-D co-culture analysis developed 

in this investigation provides an experimental framework on which to build, including 

varying the cell type, adding additional cell types, modifying or changing the scaffold, or 

interfacing with other systems, such as electrodes, fluidic support, or other cell systems.  

This model can be used to test various therapies such as single dose, time-release, mono- 

and combination drug therapies; drug-releasing devices; cell-based therapies such as stem 

cell delivery; study pathological conditions; characterize and validate tissue engineering 

strategies; characterize and validate neural implants for continuous monitoring, 
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diagnostic, and therapeutic applications to the nervous system; or simply to understand 

the development of neural networks. 
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