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SUMMARY 

Rhythmic neural activity is thought to underlie many high-level functions of the 

nervous system. Our goals are to understand rhythmic activity starting with small 

networks, using theoretical and experimental tools. Phase resetting theory describes 

essential properties that cause and destroy rhythms. We validate and extend one branch of 

this theory, testing it in bursting neurons coupled by excitation and then extending the 

theory to account for temporal variability found in our experimental data. We show that 

the theory makes good predictions of rhythmic activity in heterogeneous networks. We 

also note differences in mathematical structure between inhibition- and excitation-

coupling that cause them to behave differently in noisy contexts and may explain why all 

central pattern generators (CPGs) found in nature are dominated by inhibition. Our 

extension of the theory gives a method that is useful to compare experimental and model 

data and shows that noise may either create or destroy a rhythm. Finally, we described 

the cellular mechanisms in Aplysia that switch the feeding CPG from arrhythmic to 

rhythmic behavior in response to reward stimuli. Previous studies showed that a 

Dopamine reward signal is correlated to changes in electrical coupling and excitability in 

several important neurons in the CPG. Using the dynamic clamp and an in vitro analog of 

the full behavioral system, we were able to determine that electrical coupling alone 

controls rhythmicity, while excitability independently controls the rate of activity. These 

results beg for further study, including new theory to explain them fully. 

 

 



CHAPTER 1: INTRODUCTION 

Introduction 

The central problem in neuroscience is “how does the brain work.” Particularly, 

what is experience, cognition, memory, consciousness, etc.? Answers to this question 

have implications in biology, physics, mathematics, and the engineering of information 

processing and storage systems. Since Ramon y Cajal drew them for us to see, our best 

answer has been that complex networks of neurons are responsible for brain function. 

 

This drawing by Santiago Ramon y Cajal first appeared in volume two, part two of Cajal's Textura del 
Sistema Nervioso del Hombre y de los Vertebrados, published in Madrid in 1904. The image shows the six 
layers of the mouse neocortex, labeled A through F, in Cajal's hand. Cajal's drawings provided the 
foundation of modern neuroanatomy by showing that the nervous system is composed of individual nerve 
cells, as opposed to a web of continuous elements. (caption is quoted from www.sfn.org) 

Information processing and storage in the human brain is well studied, yet it is 

impossible to say that we understand it. Network structure, rate coding, and temporal 

coding are some of the major mechanisms that have been discovered to contain 

information (Dayan and Abbott 2001). The work presented here includes predictions of 

 1
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temporal coding in chapters 2 and 3 and manipulations of network structure in Chapter 4. 

Network structure contains information in the specification of connectivity- which spikes 

are routed to where and how strong is their effect. Rate coding contains information as a 

rate of spiking. Temporal coding describes information contained by the exact timing of 

spikes. 

As titled, this thesis is about prediction and control. We aimed to generate and 

verify general scalable phenomenological methods to predict complex neural network 

activity based on measures from isolated component neurons. Our goal was to find rules 

connecting properties of isolated component neurons—activity, coupling type, coupling 

strength, variability, mode switching (bistability), stability—to network behaviors—

activity, phase-locking, variability, bistability, stability. Then we aimed to analyze 

specific mechanistic methods of control to understand high-value biological pattern 

generation, with emphasis on the biological relevance of studied networks. The following 

chapters contain more detailed introduction sections relevant to their subject matter. 

Specific aims 

Aim 1- How well do pulsatile coupling methods work for predicting activity of 

excitatory networks of 2 bursting neural oscillators? 

We generated phase response curves (PRCs) by measuring phase-shifting effects 

of a synaptic input due to a presynaptic burst on the current cycle (first order PRC) as 

well as the subsequent cycle (second order PRC) in periodically bursting model and 

experimental neurons in the pyloric network of the stomatogastric ganglion (STG) of the 

lobster Homarus americanus.  A heterogeneous mix of synapse strengths, intrinsic 
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frequencies, and duty cycles were used to construct hybrid networks consisting of one 

experimental and one model neuron.  Network observations were compared to 

predictions made from PRCs of component neurons to determine whether 1:1 modes can 

be successfully predicted in networks coupled by excitation and to show how biological 

variability (or noise) affects these predictions. 

Aim 2- Can we change our prediction methods to accurately incorporate the 

effects of biological variability in networks of two neurons? 

A firing time map was constructed based on the PRCs of each component neuron 

and used to iterate through the firing of each neuron until N=M bursts had been observed, 

where M is the number of bursts observed experimentally. The novelty aspect of this 

work is that we included phase-dependent noise in the PRC, as PRCs are measured 

experimentally. Using circular statistics, results from the firing time map are compared to 

experimental observations and predictions from the noiseless method used in aim 1. 

Aim 3- Using the dynamic clamp, can we reproduce the effects of a behavioral 

training paradigm? 

We described the cellular mechanisms in Aplysia that switch the feeding CPG 

from arrhythmic to rhythmic behavior in response to reward stimuli. Previous studies 

showed that a Dopamine reward signal is correlated to changes in electrical coupling and 

excitability in several important neurons in the CPG. Using the dynamic clamp and an in 

vitro analog of the full behavioral system, we were able to determine that electrical 

coupling alone causes rhythmicity, while excitability independently controls the rate of 

activity. 
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Lay introduction 

The central problem in neuroscience is “how does the brain work?” Particularly- 

what is experience, cognition, memory, conscience, etc.? Answers to this question have 

potentially huge implications in the engineering of information processing and storage 

systems and influence a large part of modern physics. Since Ramon y Cajal drew them 

for us to see, our best answer has been that complex networks of neurons are responsible 

for brain function. The physical complexity of this cell type—still but one of many in the 

brain—is staggering, with humans averaging 20 billion neurons per brain, ~100 described 

types of neurons in the literature, each neuron connecting to many other neurons in type- 

or function-dependent graphs, and yet untold dynamic variations. All these cells interact 

incessantly, roughly robustly, and all while their internal working parts are being used, 

adjusted, destroyed, and replaced. That is the situation under non-pathological conditions. 

Neurons communicate electrically. They have wonderful electrically insulated 

membranes that maintain and conduct electrical signals, supported by a rich cast of 

voltage-sensitive membrane-bound proteins. In the era of modern computing, this is a 

benefit to us because we can easily record electrical signals coming from a neuron or 

likewise stimulate them. 

Given that something interesting is going on in and between neurons, we choose 

to study neurons that are accessible and identifiable. Accessibility allows greater 

experimental flexibility. These tend to be motor neurons that reach out away from other 

neurons to innervate muscle tissue, where we can measure and stimulate them easily 

using a wire placed nearby. Alternatively, any neurons that are located in peripheral 

ganglia with a few other neurons are relatively easy to find and work with. Identification 
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allows for an increased measure of explicitly repeatable experiments. In this case, we can 

know what set of voltage-dependent membrane and intracellular processes is present, 

which other neurons this one connects to, whether those connections are chemical or 

electrical, if chemical- what transmitting and receiving molecules are used, how this 

relationship depends on environmental or behavioral context, and sometimes what 

significance the neuron plays in transmitting its signal. In an animal with ~20,000 

neurons like a lobster or Aplysia (sea hare), several functional groups of neurons have 

been identified. In the human brain, with 20 billion neurons, few have, and progress is… 

sluggish. 

Are all neurons created equal? Why do you study sea animals if you’re interested 

in the human brain? Much of what we now know about the human brain stems from the 

work in giant squid, lamprey, snails, and lobsters. For example, first descriptions of 

voltage-dependence of ion channels, central pattern generators, neurotransmitters, 

neuromodulators, adaptation, synaptic scaling, and conditioned responses. In general, the 

basic knowledge about how neurons work comes from basic systems, those that are 

amenable to strong experimental manipulation. 

Now that I’ve laid out my motivation and hopefully answered some of your initial 

questions, this is what I did. Of course I couldn’t have done any of this alone (see 

Acknowledgements). My goal was to develop and test methods to capture the functional 

essence of neural networks as they exist in biology. The testing process implicitly 

requires knowledge of the biology, so basic research was also important. In the order 

presented, I 1) tested some methods, 2) extended those methods, and 3) did basic research 
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into how neural networks learn, which may result in new or improved methods at a future 

date. 
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CHAPTER 2: PREDICTIONS OF PHASE-LOCKING IN 

EXCITATORY HYBRID NETWORKS: EXCITATION DOES NOT 

PROMOTE PHASE-LOCKING IN PATTERN-GENERATING 

NETWORKS AS RELIABLY AS INHIBITION 

The majority of this chapter was published in 2009 (Sieling et al. 2009). The PRC 

morphology section is part of another paper (Maran et al. 2010). 

Introduction 

Synchrony, or phase-locked activity, is thought to underlie complex biological 

phenomena such as memory, facial recognition, circadian rhythms, and epileptic seizures 

(Rodriguez et al. 1999; Fell et al. 2001; de la Iglesia et al. 2004).  These phenomena are 

thought to be emergent in the sense that they arise from self-organization of the 

component elements and cannot be predicted from the individual components without 

considering their interactions (Strogatz 2003).  The most accessible preparations in which 

to study these phenomena are central pattern generating networks (CPGs).  A CPG is a 

neural network that generates rhythmic output in the absence of rhythmic input.  Here we 

address two outstanding problems in the field: to develop a framework for understanding 

how patterns emerge from CPGs, and to gain insight into the preponderance of inhibitory 

synapses in such networks.  

In order to gain insight into CPGs, we chose to start with the simplest possible 

hybrid network comprised of one bursting neuron and one model neuron. Hybrid network 

construction has the advantage of providing a controlled environment for testing our 
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methodology that incorporates an actual biological neuron and realistic synapses. 

Endogenously bursting neurons have been shown to be important in the pyloric network 

(Hartline 1979; Hartline and Gassie 1979; Miller and Selverston 1982), the heartbeat of 

crustaceans (Tazaki and Cooke 1990), the gastric CPGs of the crustacean stomatogastric 

system (Selverston and Moulins 1987; Harris-Warrick et al. 1992; Panchin et al. 1993), 

the feeding CPG in mollusks (Arshavsky et al. 1989; Arshavsky et al. 1991), and 

appetitive conditioning in the buccal ganglia of Aplysia (Nargeot et al. 1997; Nargeot et 

al. 2007).  Therefore we chose to examine circuits constructed with endogenous bursters. 

For the biological neuron, we chose the pacemaking kernel of the pyloric network of the 

stomatogastric ganglion (STG) in Homarus americanus (Fig. 1A), comprised of three 

neurons, the anterior burster (AB) neuron and two pyloric dilator (PD) neurons. The 

AB/PD complex is electrically coupled, and we consider it to be a single functional unit, 

which we henceforth refer to as the biological neuron.  The biological neuron was 

isolated pharmacologically and coupled to a bursting model neuron via excitatory 

synapses using the dynamic clamp (Fig. 1B). 



 

Figure 1. Experimental setup.  A: Simplified pyloric network.  The pacemaking kernel (AB/PD complex) 
consists of the AB and PD neurons, which are coupled via gap junctions.  B: Schematic of the dynamic 
clamp.  The membrane voltage recorded in the AB/PD complex was used to calculate synaptic current (Isyn) 
received by the model cell.  The model cell was updated in real time, and the updated model neuron’s 
membrane voltage was used to calculate Isyn received by the AB/PD complex.  C: Measurement of phase 
resetting in a biological neuron.  Shown is a membrane potential recording from a free-running AB/PD 
complex with intrinsic period P0, perturbed at ts (dotted vertical line) by a an excitatory synaptic input, 
gsyn=60nS and duration=650ms.  An upward crossing of the voltage threshold  (horizontal dashed line, see 
Phase response curves) was defined as the start of a burst and assigned a phase of zero.  The first burst 
after the perturbation was advanced such that the first perturbed period P1 was less than P0.  The 
subsequent period P2 was delayed by a small amount such that P2>P0.  In this case, a new burst was 
triggered after a short delay of 100ms, so that P1>ts and tr=100ms.  D: Measurement of phase resetting in a 
model neuron.  Analogous to the biological neuron, the free-running model neuron was perturbed at ts by 
an excitatory synaptic input with gsyn=60nS.  This perturbation was strong and triggered a new burst 
immediately, such that P1≈ts and tr≈0.  The burst threshold is shown as a horizontal dashed line.  (Panel B 
adapted from DailyClipArt.net.) 

A phase response curve (PRC) tabulates the effect of a perturbation on cycle 

length as a function of the phase at which it is delivered. Our methods use the PRCs of 

individual component neurons measured in the open loop configuration with 

unidirectional synaptic stimuli (Fig. 1C, D) to predict patterned activity in the closed loop 
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network configuration with bidirectional coupling. Several assumptions are required so 

that these PRCs can be used to predict the activity of a network.  First, we assume that all 

component neurons in our circuits exhibit an oscillation in the membrane potential that 

drives bursting.  Quiescent or tonically spiking neurons in the circuit are not within the 

scope of our methods. Second, we assume that the input received in the closed network is 

similar to that used to generate the PRC. We do not require the weak coupling 

assumption that is often used in network analysis (Ermentrout and Chow 2002; Netoff et 

al. 2005; Mancilla et al. 2007) and that assumes phase response is linear.  Instead, we 

make a third assumption, that the effects of one input die out before the next one is 

received.  This approach treats the perturbation as a whole, reducing the analysis to a 

cycle-by-cycle mapping, and is equally valid for weak or strong coupling.  We consider 

only 1:1 phase-locking between two bursting neurons in which a stable pattern of activity 

is established in which each neuron fires one burst per cycle. 

These methods have to date been evaluated in model networks (Canavier et al. 

1997; Canavier et al. 1999; Luo et al. 2004; Achuthan and Canavier 2008; Gurel Kazanci 

et al. 2008; Maran and Canavier 2008; Oh and Matveev 2008) as well as in hybrid 

networks coupled with inhibition (Oprisan et al. 2004). Here we test the applicability of 

PRC-based firing time maps (Ermentrout and Chow 2002) to excitatory coupling of 

significant strength and duration, using a wide range of synaptic strengths (from 1nS to 

10,000nS) and input durations (from 0.3 to 1.5s). 

Our motivation for studying excitatory synapses was in part to understand why 

they are less commonly observed in CPGs, as all known real CPGs are dominated by 

inhibitory synapses.  Leech heartbeat (Calabrese and Peterson 1983), stomatogastric 
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ganglion (Marder and Calabrese 1996), lamprey swimming (Cangiano and Grillner 

2005), salamander locomotor (Cheng et al. 1998), and mammalian locomotor (McCrea 

and Rybak 2008) CPGs are all functionally dominated by inhibitory synapses, as 

evidenced by the lack of a single identified excitatory synapse in the first two systems 

listed. We present experimental and theoretical data showing that a CPG dominated by 

typical excitatory synapses would need to be carefully tuned to function and in many 

configurations would be highly sensitive to noise. 

Methods 

Electrophysiology 

Homarus americanus were purchased from Inland Seafood (Atlanta, GA).  They 

were maintained in artificial seawater at 10–14ºC until used. The stomatogastric nervous 

system was dissected and pinned out in a dish coated with Sylgard (Dow Corning, 

Midland, MI), and the STG was desheathed with fine forceps. Throughout the 

experiments, the stomatogastric nervous system was superfused with chilled (9–14ºC) 

saline containing (in mM) NaCl, 479; KCl, 12; CaCl2, 18; MgSO4, 20; Na2SO4, 4; 

HEPES, 5; pH 7.45. Extracellular recordings were made with stainless steel pin 

electrodes in Vaseline wells on the motor nerves and amplified with a differential AC 

amplifier (Model 1700, A-M Systems, Carlsborg, WA). Intracellular recordings from 

cells in the STG were obtained with an Axoclamp-2B amplifier (Axon Instruments, 

Foster City, CA) in discontinuous current clamp (DCC) mode using microelectrodes 

filled with 0.6M K2SO4 and 20mM KCl; electrode resistances were in the range of 10–

25MΩ. Extracellular and intracellular voltage traces were digitized with a Digidata 
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1200A board (Axon Instruments), recorded using Clampex 9.2 software (Axon 

Instruments), and analyzed with Spike2 (Cambridge Electronic Design), Matlab (The 

MathWorks), and in-house software. The AB and PD neurons were identified based on 

their membrane potential waveforms, the timing of their activity in the pyloric rhythm, 

and, for PD only, their axonal projections to the appropriate motor nerves. The only 

chemical synaptic feedback to the pyloric pacemaker group through the lateral pyloric 

neuron (LP) to PD inhibitory synapse was removed by applying 0.01mM picrotoxin to 

the bath. The pharmacologically isolated pyloric pacemaker was monitored by impaling 

either the AB neuron or one of the PD neurons (Fig 1A).  Experimental preparations were 

discarded when the pacemaking kernel did not burst consistently. 

Dynamic clamp 

We recorded the membrane potential of the AB/PD complex and used the 

dynamic clamp (Sharp et al. 1993; Sharp et al. 1993; Prinz et al. 2004) to measure 

biological PRCs and to construct hybrid networks consisting of the AB/PD complex and 

a model neuron coupled by artificial synapses (Fig. 1B).  The membrane potential at the 

AB or PD cell body was amplified, fed into a National Instruments DAQ board (PCI-

6051E) and digitized at 20kHz. Dynamic clamp programs were written in C++ and 

designed to use the Real Time Linux Dynamic Controller (RTLDC) (Dorval et al. 2001).  

One program was written to measure the biological PRC.  This program used a 

membrane potential threshold to detect bursts in the ongoing AB or PD rhythm and 

monitored the cycle period. Artificial synaptic stimuli were injected at different phases of 

the rhythm by playing a saved synaptic activation waveform into the artificial synapse 
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(see Phase response curves).  This stimulus was a conductance waveform used to 

calculate the momentary current that would flow through the cell membrane at a given 

time if the stimulus conductance were present in the membrane.  To inject this 

momentary synaptic current into the AB or PD neuron, the program computed the 

corresponding command voltage, which was turned into an analog voltage by the DAQ 

board and sent to the electrode amplifier in order to compute the synaptic current 

described in the next section using the command voltage as Vpost.. 

A second program was written to construct hybrid networks.  This program 

implemented two artificial synapses to couple the neurons reciprocally (see Artificial 

synapses, Fig. 1B).  At increments of 50μs of real time, the following steps were looped:  

1) the biological membrane voltage was read from the electrode and used to calculate the 

synaptic current applied to the model neuron.  2) This current was applied to the model 

neuron as it was advanced through 50μs of simulation time.  3) The model membrane 

voltage was read and used to calculate the synaptic current applied to the biological 

neuron.  4) This current was applied to the biological neuron.  Note that synaptic current 

was applied “continuously” to the biological neuron using the DCC mode of the 

Axoclamp amplifier.  In step 4, this “continuously” injected current is updated to reflect 

changes in the presynaptic model neuron.   When the model neuron was quiescent, the 

current delivered to the biological neuron was calculated to be zero.  The time resolution 

of coupling was 50μs, which was effective to approximate real-time coupling for this 

system because biological variability of intrinsic period was relatively large and artificial 

synapses were sufficiently slow (see Fig. 2 for examples of rise time and fall time of 



synaptic activation).  Biological variability of intrinsic period was approximately 10% or 

100ms for a typical burst period.   

 

Figure 2. A,B: Snippets of free-running membrane voltage traces (black) and synaptic activation variables 
(gray) are shown for model neurons 1 to 4 (A, top to bottom) and for biological neurons 1 to 5 (B, top to 
bottom).  Dashed lines show burst thresholds specific to each neuron.  Timescale for both panels is shown 
in B.  Synaptic activation variable s is unitless. 
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 We created hybrid networks by coupling one biological neuron to one model 

neuron via artificial synapses.  Artificial synapses mapped the membrane voltage in one 

neuron to a synaptic conductance in its partner neuron, so bursts in the presynaptic 

neuron caused current to be injected in the postsynaptic neuron (Fig. 1B).  For all 

artificial synapses implemented here, the synaptic current Isyn was calculated according to 
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a model of chemical synaptic transmission (Abbott and Marder 1999), where gsyn is the 

maximal conductance of the synapse, s is the synaptic activation, Vpost is the membrane 

potential of the postsynaptic neuron, sinf is the asymptotic value of s in time, Δt is the 

simulation timestep, τs is the synaptic time constant, Vth is the half-activation voltage of 

synaptic activation, Vpre is the presynaptic membrane potential, kmin is the backward rate 

constant of direct ligand binding to the ion channel, and Esyn is the synaptic reversal 

potential, which was set to 0mV for all synapses to make them excitatory.  Vth  and kmin 

were chosen so that the synapse was fully activated during a presynaptic burst and fully 

deactivated otherwise.  For the networks presented here, Δt = 50μs, kmin = 0.1ms-1 and Vth 

was set equal to the burst threshold of the presynaptic neuron (Fig. 2).  

Hyperpolarizations between spikes within a burst cause the model neuron voltage to drop 

below Vth during a burst.  The synaptic time constant τs (which is controlled by the 

parameter kmin) acts as a lowpass filter, smoothing repeated crossings of Vth by the model 

neuron so that bursts are clear in the s trace.  For each neuron, this threshold was chosen 

so that it was in the steepest part of the slow membrane voltage oscillation, giving the 

highest tolerance to baseline drift.  The synaptic activation variable s varies between 0 

and 1, so that the synaptic current Isyn is equal to the driving force (Vpost-Esyn) scaled by a 

value between 0 and gsyn.  Thus, when s = 0, the synapse is “off” (Isyn = 0), while when s 

= 1, the synapse is “on” and Isyn = gsyn(Vpost-Esyn).  Experimental values of gsyn varied 

from 1 to 10,000nS for the biological to model synapse and from 1 to 150nS the model to 

biological synapse.  Model to biological synapse strength was limited by stability of the 

dynamic clamp (Preyer and Butera 2007). 



Model neurons 

In each hybrid network experiment we used one of four endogenously bursting 

model neurons, each a single compartment with eight Hodgkin-Huxley type membrane 

currents and an intracellular calcium buffer. The membrane currents were based on 

voltage-clamp experiments on lobster stomatogastric neurons (Turrigiano et al. 1995) and 

included a fast sodium current (INaF), a fast and a slow transient calcium current (ICaT and 

ICaS), a fast transient potassium current (IA), a calcium-dependent potassium current 

(IKCa), a delayed rectifier potassium current (IKd), a H-type current (IH), and a leak current 

(Ileak). The model neurons differed only in the maximal conductances of their eight 

membrane currents; these conductances were chosen to produce different burst periods 

and duty cycles in the different model neurons (Fig. 2A). The model was described in 

detail in (Prinz et al. 2003).  Model parameters are given in Table 1.  The model was 

implemented in C++, and all differential equations were integrated with the Exponential 

Euler Method (Abbott and Marder 1999) at a time resolution of 50μs. 

Table 1. Model neurons used in this study.  The form of these models is given in Prinz et al. (Prinz et al. 
2003), and the maximal conductances for the eight membrane currents are given here. 

Model  Neuron gNa gCaT gCaS gA gKCa gKd gH gleak
1 251.32 0 6.28 12.57 6.28 15.71 0.03 0.01
2 125.66 0 6.28 6.28 12.57 62.83 0.01 0
3 251.32 1.57 3.77 25.13 6.28 47.12 0.03 0
4 188.49 3.14 6.28 0 6.28 47.12 0.03 0.02

Maximal conductance (μS)
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PRCs 

To make phase locking predictions for each of the 86 hybrid networks we present, 

we generated 172 PRCs, one for each neuron of each network.  The PRC for each 

component neuron was constructed in open loop configuration (Fig. 1C,D) using a pulse 

in postsynaptic conductance that was elicited by a single spontaneous burst in the partner 

neuron and parameterized by synaptic strength.  Other parameters of the artificial synapse 

were held constant.  For example, to measure the PRCs of biological neuron 1 due to 

stimulus from model neuron 2 with synapse strength of 30nS, we first estimated what the 

profile of synaptic conductance received by the biological neuron would be in a closed 

loop network.  To do this, we ran a simulation of the model neuron combined with the 

artificial synapse but isolated from the biological neuron.  From this simulation we saved 

a snippet of the synaptic activation variable s.  This snippet was equal to the length of one 

burst cycle of the model neuron, beginning at the start of a burst, where the synaptic 

activation variable s rapidly changed from 0 to 1, and ending with the quiescent interval 

of the neuron, where s was zero (Fig. 2A).  To deliver a stimulus, this snippet of s was 

played into the artificial synapse, which defined the current injected into the biological 

neuron.  The injected conductance was this snippet of s scaled by the maximal 

conductance of the synapse gsyn.  Next, we determined the intrinsic period of the 

biological neuron, P0,bio, from 20 consecutive periods of unperturbed activity.  We 

defined P0,bio as the time between two successive crossings of a voltage threshold with 

positive slope.  This burst threshold was equal to the synaptic parameter Vth so that the 

synaptic activation and burst thresholds were crossed simultaneously.  The slow 

oscillation was isolated by filtering the voltage waveform according to 



 18

Vfilt(t+Δt)=Vfilt(t)+(V(t+Δt)-Vfilt(t))/τfilt, where Vfilt is the filtered waveform, Δt is the time 

step, and τfilt=1ms.  For parity, the filtered voltage Vfilt was used for all burst detection in 

both model and biological neurons.  P0,bio was divided into 100 equally spaced stimulus 

intervals ts and 100 phase response trials were run.  For each value of stimulus phase 

φ=ts/P0, ts is the delay from start of burst to start of stimulus, a stimulus is delivered and 

the phase response is measured.  We define the first order phase response F1(φ)=(P1-

P0)/P0, and the second order phase response F2(φ)=(P2-P0)/P0 where P1 is the length of 

the cycle containing the stimulus and P2 is the length of the subsequent cycle. In each 

trial, the stimulus was delivered at one value of ts, and the first and second perturbed 

periods P1,bio and P2,bio were measured.  The recovery interval tr is the interval between 

stimulus onset and the next burst onset.    Fig. 3 gives examples of stimuli delivered 

during the burst (Fig. 3A1 and square in subsequent panels), or immediately after the 

burst has ended (Fig. 3A2 and triangle in subsequent panels). The lower traces show the 

perturbation in conductance (snippet as in Fig 2A) driven by the model neuron.  Burst 

onset as determined by burst threshold crossing was defined as phase zero φ=0.  Effects 

on the cycle containing the start of the perturbation were tabulated as first order resetting 

F1 (Fig. 3B1), and effects on the next cycle were tabulated as second order resetting F2 

(Fig. 3B2).  First and second order phase responses F1 and F2 were defined as the 

amount by which the respective cycle lengths P1,bio and P2,bio were extended relative to 

P0,bio, and they were normalized by P0,bio (equations above).  By this definition, a positive 

phase response value indicated a delay of the subsequent burst, while a negative value 

indicated an advance.  To ensure that the biological neuron had returned to its 

unperturbed dynamical activity between stimuli, individual stimuli were delivered 4 
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cycles apart.  To control for slow adaptation, stimuli were delivered in random order of 

stimulus phase. Fig. 3D shows how F1 and F2 are used to calculate equilibrium intervals 

ts and tr, denoted throughout this paper as ts* and tr*.  These are intervals that can be 

observed in the presence of the repetitive stimulation that occurs in a closed loop 

network.  As seen in the equations in Fig. 3D, the difference between ts in the open loop 

and ts* in the closed loop is the F2 term (see next section). 



 

Figure 3. Example of PRC generation and equivalence of information in phase response curves vs. ts*-tr* 
plot.  A: Membrane voltage traces (top) and injected current (bottom) showing the qualitative difference in 
response for a stimulus delivered during a burst (A1) vs. one delivered in the quiescent interval between 
bursts (A2).  Dashed horizontal lines in A and B indicate burst thresholds. B: First and second order PRCs.  
Black dots denote phase responses measured from individual stimuli.  Solid lines are piecewise polynomial 
fits.  For first and second order PRCs, the order of polynomial fits ranged from 1 to 7 and 1 to 3, 
respectively.  The locations of discontinuities were determined by inspection.  Square and triangle marks 
the data point measured in panels A1 and A2, respectively.  C: Schematic showing network connectivity 
used to measure these PRCs.  D: Ts*-tr* curve calculated from F1 and F2 in panel B according to the given 
equations.  This curve represents possible modes of 1:1 phase-locked activity for the biological neuron.  
The ts*-tr* curve is a parametric function of φ, as described in Theoretical method.  Square and triangle 
marks the phase-locked mode calculated from the data marked in panels B1 and B2.   

PRCs for the model neurons were generated post-hoc in an analogous manner.  A 

snippet of the free running biological voltage trace was used to calculate a snippet of the 
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synaptic activation variable s, which was saved and played into the artificial synapse to 

stimulate the model neuron.  Again, to generate the PRCs F1 and F2, this stimulus was 

applied at 100 equally-spaced intervals of the intrinsic period of the model neuron P0,mdl.   

Mean PRCs used in our analysis were estimated by piecewise polynomial fits to 

PRC data.  The number of polynomial pieces used per PRC ranged from 1 to 3, and the 

order of these polynomials ranged from 1 to 7.  The order of polynomial was chosen to be 

minimal while maintaining goodness of fit and correct end behavior.  To estimate 

biological variability in the PRCs, envelopes marking the boundary of ± 2 standard 

deviations σ were constructed around each mean PRC.  This was done by binning each 

PRC (N=5) and measuring σ at the center of each bin.  Upper and lower envelopes were 

constructed using piecewise polynomial fits to the mean PRC±2σ.  The number of 

polynomial pieces used to fit the envelopes was equal to that used for the mean PRC, and 

the order of polynomials used for the envelopes ranged from 1 to 3.  The orders of 

polynomials used to fit envelopes were smaller than those used to fit mean PRCs because 

the binned data contained fewer data points. 

Theoretical method 

We used the theoretical methods of Oprisan, Prinz, and Canavier (Oprisan et al. 

2004) to predict 1:1 phase-locking in hybrid networks from the PRCs of component 

neurons.  This method first checks for the existence of 1:1 phase-locking using a 

periodicity criterion then checks that solutions are locally stable by analyzing a linearized 

version the system. Figure 4 shows the pulse coupled approximation upon which the 

theoretical method is based (periodicity criterion shown in 4A).  Conduction delays are 



ignored here, although they can be included in the approximation as shown previously 

(Oprisan et al. 2004; Woodman and Canavier 2008).  Equilibrium stimulus phase φ* and 

stimulus (recovery) interval ts* (tr*) are defined as φ and ts (tr) above, but in the context 

of an ongoing 1:1 phase-locked mode rather than a single input.  Considering only first 

order resetting F1j of neuron j, ts*
j  and tr*

j can be calculated as follows: 
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In this case, where second order resetting is assumed to be zero, ts*
j is the time 

elapsed between the start of the burst and the onset of input, and tr*
j is the fraction of the 

cycle remaining before the next burst, calculated as 1-φ*
j plus first order resetting.  The 

quantities φ*
j and F1j are unitless.  We assume that each neuron returns to its unperturbed 

limit cycle before it receives a new input (see Introduction, third assumption).  This is 

valid because the effects of each input are concluded during the perturbed cycle, before 

the next input is received, and there is no effect on the subsequent cycle (F2j is assumed 

to be zero).  In Fig. 4B, neuron 1 receives input during P1[n] after interval ts1[n].  The 

first order effects of that input are incorporated during the interval tr1[n], and neuron 1 is 

allowed to return to its limit cycle by the end of tr1[n].  The effects of the input received 

during P1[n] are concluded by the time neuron 1 receives the next input at the end of the 

interval ts1[n+1].  When considering both F1j and F2j, the calculation of tr*
j is the same, 

however, F2j affects the subsequent cycle, so ts*
j must be adjusted as follows: 
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In this case, ts*
j is adjusted to include second order resetting due to input in the 

previous cycle.  Our third assumption is still valid because the next input is not received 

until ts*
j is complete.  The second order response of an input to a neuron causes the next 

cycle length to be lengthened or shortened.  This effect is localized to the ts interval so 

that when that neuron receives its next input, it has returned to its limit cycle.  Thus, the 

effect of F1 is localized to the tr interval of the current cycle, and the effect of F2 is 

localized to the ts interval of the next cycle. 
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Figure 4. Pulse coupled approximation of a reciprocally coupled bursting network.  Gray rectangles 
represent bursts.  Equilibrium intervals ts* and tr* are defined in the text.  Conduction delays are ignored.  
A: Definition of intervals during phase-locking between 2 neurons in closed loop configuration.  For phase 
locking to occur, ts* in the biological neuron (top) must be equal to tr* in the model neuron (bottom) and 
vice versa.  B: Convergence to 1:1 phase-locked mode.  For a network to satisfy the stability criterion, this 
cycle-to-cycle mapping of ts[n] and tr[n] must converge to ts1[∞]=tr2[∞] and tr1[∞]=ts2[∞].  This 
framework was used to derive a discrete map for the time-evolution of the system on a cycle-to-cycle basis.  
Figure adapted from (Oprisan et al. 2004). 

We can solve for the existence of a 1:1 phase-locked mode using a periodicity 

criterion, which  states that in a 1:1 locking the stimulus interval in one neuron is exactly 

equal to the recovery interval in the other:  ts*
mdl=tr*

bio and tr*
mdl=ts*

bio (Fig. 4A).  For a 

neuron j, any ordered pair (ts*
j, tr*

j) is uniquely determined by the phase φ*
j when that 

neuron receives input, so these intervals can be considered functions of each other, i.e., 

functions f and g, ts*
j=f(tr*

j) and tr*
j=g(tr*

j), are both valid because ts*
j and tr*

j are 

themselves parametric functions of φ*
j (Fig. 3D, equations).  Thus, satisfaction of the 
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periodicity constraint can be evaluated graphically by plotting ts*
bio vs. tr*

bio and tr*
mdl vs. 

ts*
mdl (see Example prediction of a 1:1 phase-locked mode in a hybrid network).  

Considering the choice of axes, it follows that any intersection of the 2 curves gives 

ts*
mdl=tr*

bio and tr*
mdl=ts*

bio.  In other words, a phase-locked mode exists at any 

intersection.   

Existence of a mode does not guarantee that it will be observed; it must also be 

stable, that is, robust to small perturbations.  An intersection on a network’s ts*-tr* plot 

uniquely defines a stimulus phase for each neuron, φ*
bio and φ*

mdl (as seen above).  If the 

phase-locking defined by this point is also stable, then as cycle number n →∞, 

φj[n]→ φ*
j.  To test for stability, PRCs for each neuron are linearized around φj[∞]=φ*

j, 

and a return map is constructed that defines the evolution of a small perturbation (Δφ) on 

a cycle-to-cycle basis.  This map (Oprisan and Canavier 2001) is shown below, where n 

is the cycle number and mi,j is the linearized slope of the ith order PRC for neuron j at 

phase φj[∞].  Following this definition, m2,j is the slope of F2(φj[∞]). 
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When F2(φj[∞])≠0, two preceding cycles must be taken into account (n-1 and n-

2), as shown above.  Eigenvalues for this 2-D map are calculated as follows:  

0))1()1(( ,2,2,2,2,1,1
2 =⋅+⋅−−−⋅−− biomdlbiomdlbiomdl mmmmmm λλ  

When both eigenvalues λ1 and λ2 are between -1 and 1, the system is stable. 
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Inclusion of noise in iterated firing time maps based on the PRC 

We modeled a subset of our hybrid networks using the experimentally obtained 

PRCs of component neurons as well as their noise envelopes.  For each component 

neuron j, interburst intervals (IBI) were calculated iteratively according to a modified 

Winfree model (Canavier et al. 1999). 
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where P0 is the intrinsic period, φj,k[n] is the phase at which neuron j receives the 

kth input in the current cycle, φj,l[n-1] is the phase at which the lth input was received by 

neuron j in the previous cycle, and F1 and F2 are polynomial fits of experimental PRCs 

modulated by Gaussian noise matching the distribution of experimental variability 

described by the envelopes of the appropriate PRCs. This map represents an ideal pulse 

coupled system.  It differs from the map given in Equation 1 in that it does not assume a 

particular firing order.  To construct each PRC, a Gaussian noise generator had output 

scaled to match the magnitude of the noise envelope and this noise was added to the PRC 

to within causal limits.  Each iteration, a new amount of noise was added to the mean fit 

of the PRC, simulating the experimentally observed variability.  To simulate a reduction 

in the overall amount of noise in the system, we scaled the noise envelope by a factor less 

than 1.  The inclusion of noise in the PRC-based iterative map is similar to those of 

Netoff et al. 2005a; the major difference is the use of F2 in addition to F1 in our method. 
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Hybrid networks 

We constructed 86 hybrid networks, each comprised of one biological and one 

model neuron coupled by artificial excitatory synapses via dynamic clamp (Fig. 1B).  

Each biological neuron was obtained from a different animal.  Synapse strengths ranged 

from 1 to 10,000nS, a range that includes conditions of weak and strong coupling as can 

be verified by whether the PRCs scale linearly with respect to conductance (weak) or not 

(strong) (Preyer and Butera 2005). For each network, we verified the stable behavior of 

the biological neuron, then turned on the artificial synapses and recorded the membrane 

voltages of the biological and model neurons for at least 2 minutes.  Most networks 

reached steady state within a few seconds.  Only steady state data are reported here.    

These closed loop recordings were used to extract experimental values of phase-locked 

network period and relative phase.   Synaptic coupling forced some networks into a tonic 

firing regime.  In these cases, we cut short the recording in order to avoid injecting a 

large amount of charge into the neuron. 

Circular statistics 

Circular statistics (Drew and Doucet 1991; Mancilla et al. 2007) were used to 

summarize observed hybrid network activity.  This method allows the presentation of 

mean and variability of network phase as a single vector.  The angle of the vector 

represents mean network phase [Φnet on the interval (0, 1)], and is given by 
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N is the number of bursts recorded in the experiment for neuron j, tsj,k is the stimulus 

interval for the kth cycle of neuron j, and Pnet is the average network period.  The strength 

of phase-locking is represented by the length of the vector, R, where R2=X2+Y2.  The 

threshold criterion R2>0.7 was sufficient to separate networks in which phase locking was 

visually obvious from those in which it was not.  Instantaneous network phase is 

represented by the ordered pairs (Xk ,Yk) so that in all circular plots shown, the angle 

Φnet=0 is rightward, Φnet=¼ is upward, Φnet=½ is leftward, and Φnet=¾ is downward. 

Results 

PRC morphology 

Many first order PRCs (F1s) measured from biological and model neurons had a 

characteristic shape that matched previous computational results for strong stimuli 

(Figure 3-D, Figure 5-A1-model, Figure 7-A1-biological, (Prinz et al. 2003; Maran and 

Canavier 2008).  These PRCs had 2 branches separated by a discontinuity, where the 

phase response switched abruptly from large delay at early stimulus phases to large 

advance at late stimulus phases.  Delay is defined as F1>0, and advance is defined as 

F1<0.  The discontinuity falls at the point in phase where the neuron of interest ceases to 

burst and enters the quiescent interval.  Stimuli delivered near this point in phase are 

either delivered during the burst, extending the burst and causing a delay (Figure 3-A), or 

immediately after the burst has ended, initiating a new burst and causing an advance 
 28
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(Figure 3-B).  The second order PRCs (F2s) corresponding to these F1s typically showed 

no effect for stimuli delivered during the burst and showed moderate delays for stimuli 

delivered during the quiescent interval.  The direction of the effect of F2 (delay) was 

counter to the direction of the effect of F1 (advance), however, the magnitude of F2 was 

always smaller than the magnitude of F1 so that the total effect of resetting, taken as the 

sum of F1(φ) and F2(φ) for a given stimulus phase, φ, would always tend towards 

advance. 

Figures 5-7 contain examples of the PRCs used in a typical accurate prediction 

(Fig 5) and in the two special cases that violated our assumptions: runaway excitation 

(Fig. 6) and noise-induced mode transitions (Fig. 7). Some F1s were “U” shaped and 

always advancing (Figure 5-A1-biological).  This occurred when the stimuli delivered 

during the burst were too weak to extend the burst.  Because the stimuli were long, some 

stimuli with onsets during the burst did not offset until significantly after the burst had 

ended, and these “tail” intervals caused the neuron to speed up or advance in phase.  As 

the stimulus onset was incrementally shifted later within the duration of the burst, there 

was an incrementally longer tail interval after the end of the burst where the stimulus 

remained on, causing incrementally larger advances in phase.  This is seen in the PRC in 

Fig. 5A1 as a region where F1<0 and where the slope of F1 is negative.  The boundary of 

this effect was where stimulus onset was at the end of the burst.  Beyond this boundary, 

stimuli were sufficiently strong to initiate a new burst, causing an advance in phase along 

the causal limit of the PRC.  This causal limit corresponds to tr=0, and is seen in the PRC 

as the line F1(φ)=φ-1.  The “U” shape was less evident in the model neuron shown in 

Fig. 7A1 due to saturation of the tail region’s phase-resetting effect.  For this PRC, the 
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burst length (0.3s) was much shorter than the stimulus duration (0.8s), which caused the 

tail region to be large for all stimuli with onsets during the burst so that the magnitude of 

the advance was essentially independent of phase during the burst.  This was not the case 

for the biological neuron in 5A1, because the duration of the stimulus was similar to that 

of the burst, such that the duration of the interval between burst offset and stimulus offset 

increased from essentially zero at zero phase to essentially the stimulus duration near the 

end of the burst, resulting in a significant dependence of the magnitude of the phase 

advance on phase during the burst.  These results are consistent with the results of Prinz 

et al. (Prinz et al. 2003). 

Some F1s exhibited a flat region at very early phase, as seen in Figure 6A1-

biological.  This corresponded to stimuli that were delivered entirely during an 

endogenous burst, beginning during a burst and ending before that burst would have 

terminated on its own. On the other hand, stimuli whose onset occurred during the burst 

but whose offset occurred after the burst would have terminated normally extended the 

burst, causing a delay. 

F1s obtained from model neuron 4 using strong stimuli showed advances at early 

phase (data not shown).  In these cases, stimuli delivered during the burst increased spike 

frequency, and the burst was truncated at the offset of the stimulus.  The interburst 

interval remained constant, resulting in an overall advance in phase.  Stimuli delivered at 

late phases initiated a burst immediately, causing an advance in F1.  These stimulus-

derived bursts also exhibited increased spike frequency and had a shortened burst length.  

Because the subsequent quiescent interval was of typical length, the net effect was an 

advance in F2.  The mechanism underlying these PRCs has been described as “complete 
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reset” (Benson 1980; Maran and Canavier 2008) because no matter at what phase the 

stimulus is applied (old phase), the phase after the stimulus (new phase) appears to be 

constant. 

In Figure 6A2-model and Figure 7A2-model, F2 was advancing late in phase 

because the duration of stimulus was longer than the burst length.  For stimuli delivered 

late in phase, the stimulus was delivered during the quiescent interval, remained on 

during the subsequent burst, and remained on for a short interval after the burst had 

ended.  During the last interval, the neuron was sped up, causing an advance in F2.  This 

phenomenon is consistent with the emergence of a distinct limit cycle during the stimulus 

(Glass and Winfree 1984; Maran and Canavier 2008). 

Many of the PRCs we obtained appear to have multiple discontinuous branches.  

The first and second order phase resetting curves can be discontinuous because of 

threshold effects (Glass and Winfree 1984) or shifting frames of reference. The apparent 

discontinuity at zero and one stems from a shifting frame of reference. In other words, the 

points 0 and 1 are identical in the phase space except for their frame of reference- the 

exact same resetting occurs, but at a nominal phase of 0 the reset is attributed to the first 

cycle whereas at a phase of 1 it is attributed to the second cycle. This is not a true 

discontinuity, so the sum of all resetting should be continuous at zero and one. Third 

order resetting (F3) was negligible for all neurons.  For a more detailed review and 

phase-plane analysis of the types of PRCs shown here, see (Maran and Canavier 2008). 
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Example prediction of a 1:1 phase-locked mode in a hybrid network 

A typical successful prediction of phase-locking is shown in Fig. 5.  Data points 

from the first and second order PRCs for the biological neuron (red dots) were fitted with 

polynomials (Fig. 5A) and those for the model neuron (blue lines) were generated 

numerically.  These PRCs were used to calculate the ts*-tr* curve for each component 

neuron (Fig. 5B).  The existence of any 1:1 phase-locked modes was determined 

graphically as the intersections of these curves (Fig. 5B).  Noise in the biological neuron 

was caused primarily by variability in the intrinsic period.  The effects of this noise were 

incorporated in our prediction method by creating an envelope (dashed lines) around the 

biological PRC and mapping it to the ts*-tr* plot, as was done for the mean PRCs.  In this 

example, there are two intersections on the ts*-tr* plot (blue indicates model tr* as a 

function of ts*, red indicates biological ts* as a function of tr*), indicating the existence of 

two modes of phase-locking (Fig 5B).  Our calculations predicted that phase-locking 

would be stable only at one intersection (arrow).  This predicted stable mode of phase-

locking was mapped back to phase in the component neurons and indicated using 

appropriately colored arrowheads (Fig. 5A, arrows).   



 

Figure 5. Example of a good prediction.  A: Phase response curves (PRCs) obtained in open loop 
configuration from the model (blue) and biological (red) neurons.  Raw data points from the biological 
neuron’s PRC are shown, along with a polynomial fit and upper and lower envelopes at ±2σ (dashed lines).  
Colored arrows indicate stimulus phases for each neuron where the stable mode of synchrony is predicted 
(see arrow in Panel B).  B: Graphical method for determining existence of a 1:1 phase-locked mode (ts*-tr* 
plot).  Parametric curves of ts* vs. tr* for model (blue) and biological (red) neurons are shown.  Dashed 
lines indicate an envelope around the biological curve of ±2σ.  Intersections reveal points where 1:1 phase-
locked modes exist; out of two such points, one was calculated to be stable (arrow).  C: Schematic 
specifying the hybrid network.  Model neuron 3 was coupled to biological neuron 1 using artificial 
synapses with maximal conductances (gsyn) as shown.  PRCs were measured in open loop configuration 
using stimuli scaled by gsyn as described in Methods.  D: Uncoupled (D1) and coupled (D2) network 
activity.  E: Circular statistics.  Dots along the perimeter of the circle represent instantaneous network 
phase, defined post-hoc as tsbio/Pnetwork (see Circular statistics).  We predicted a mode of phase-locking at 
Φnetwork=0.77 (dotted arrow), and we observed a mode of phase-locking in this hybrid network at 
Φnetwork=0.71 (solid arrow). 

In Fig. 5D, we show uncoupled (D1) voltage traces, then turn on the coupling as 

in Fig. 5C and show the stabilized locked mode after the transients dissipate (Fig. 5D2).  

Although the coupled neurons have a phase difference of nearly a quarter cycle 
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considering only burst initiation as a reference point, the overlap between the spiking and 

nonspiking phases is nearly maximal considering that the duty cycles, or fraction of the 

cycle comprised by the burst, is different. Thus the phase lag alone is not a complete 

measure of the degree of synchronization. The burst lengths of both neurons changed 

when they were coupled.  Although this violated our second assumption, that the shape of 

synaptic inputs received in the closed loop network are equal to those used in open loop 

configuration to measure the PRC, our methods appear robust to the amount of variation 

in burst length shown.   

In Fig. 5E, we describe coupled activity using circular statistics.  Data points 

along the perimeter of the circle represent network phase on each cycle, defined as 

tsbio/Pnetwork.  Phase-locking was tight in this example, so these data points blur into a 

thickening of the circle.  We predicted a mode of phase-locking at Φnetwork=0.77 (dotted 

arrow), and we observed a mode of phase-locking in this hybrid network at Φnetwork=0.71 

(solid arrow).  In this case, the envelope of the biological ts*-tr* curve is sufficiently 

narrow and the intersecting branch of the model ts*-tr* curve is sufficiently wide that the 

mean and both envelopes of the biological neuron’s ts*-tr* curve each have one stable and 

one unstable intersection with the model ts*-tr* curve on the intersecting branch.  For this 

reason, we expect the phase-locked mode to be robust to biological noise. 

Summary of qualitative predictions 

Our goal was twofold – first, to accurately predict 1:1 phase-locking in hybrid 

networks of bursting neurons coupled by excitatory synapses, and second, for those 

networks exhibiting phase-locking, to predict the phase-locked period and network phase.  
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A summary of results relating to our first goal is shown in Table 2.  We constructed 86 

hybrid networks using 5 biological neurons and 4 model neurons.  Excluding 17 networks 

that violated our assumptions (special cases), our method correctly predicted whether a 

stable one to one locking would be established in 66 networks, a success rate of 96%.  In 

three cases only, either a stable 1:1 locking was predicted but not observed, or observed 

but not predicted. When our method was simplified to utilize only F1, as opposed to F1 

and F2, the success rate was reduced to 82%. 



Table 2. Summary of qualitative predictions. Qualitative summary of predictions of 1:1 phase-locking using first and second order phase response 
curves (F1 and F2).  Each cell represents one hybrid network.  Each network is defined by one model neuron (column 1), one biological neuron (column 
2), and the maximal conductances of their artificial synapses (columns 3 and 4-12).  Classifications of observed and predicted network activity are 
coded and displayed as “observed”/“predicted,” where a network may be observed to exhibit one of 3 types of behavior: 1:1 phase-locking (“a”), no 
phase-locking (“-“), or higher modes of phase-locking, which we call complex modes (“c”).  Networks of interest are marked by a symbol following a 
comma; they are runaway excitation (RE), noise-induced mode transitions (N), and depolarization block (DB).  These are discussed in the text.  
Individual networks are also color coded according to the accuracy of our method in predicting the observation of phase-locking.  Cells are colored 
green to indicate that our method was successful, red to indicate failure, and yellow to indicate failure under special circumstances (see Special Cases 
for further explanation). 

Model 
Neuron

Biological 
Neuron

gmodel>bio 

(nS) 1 10 20 30 60 80 100 300 10000
1 3 30 -/- -/- -/a a/a, DB
1 3 100 -/- -/-
1 4 10 -/- -/- c/- a/a
1 4 30 -/- -/- c/- a/a
1 5 10 c/- -/- -/- -/- -/-
1 5 30 c/- -/- -/- c/-
2 1 20 -/- c/- a/- a/a a/a a/a
2 1 60 c/- -/- -/- -/-
2 2 30 a/a a/-, N a/a
2 2 60 -/a, N a/a a/a, DB
2 2 150 a/a
2 5 10 c/- c/- c/- c/- c/- -/-
2 5 30 c/- c/- c/a a/a
2 5 100 c/a, N -/- -/a, RE -/a, RE
3 1 20 a/a a/a a/a a/a
3 2 30 a/a
3 4 10 a/a a/a a/a
3 4 30 a/a a/a a/a a/a
3 4 100 -/- -/a, RE, N -/a, RE -/a, RE, N
3 5 10 c/- c/a, N c/a, N c/a, N
4 3 30 -/- -/a, RE, N a/a
4 5 10 -/a, RE, N -/a, RE a/a
4 5 30 a/-, N -/- -/a, RE
4 5 100 a/a -/a, RE, N -/-

gbio>model (nS)
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Summary of quantitative predictions 

In addition to predicting the mode of activity in hybrid networks, we predicted 

phase-locked period and network phase.  For the 26 networks that were both predicted to 

phase-lock and exhibited phase-locking, we show a circular phase plot and a bar plot for 

each network (Fig. 6A).  For all networks, predicted values of phase-locked network 

phase (Fig 6B1) and period (Fig 6B2) are accurate to within the experimental variability 

observed in the biological neuron’s intrinsic period.  Most observed modes of activity 

show the model neuron leading the biological neuron (black arrows in the bottom half of 

the circle).  The two hatched boxes indicate networks that exhibited phase-locking due to 

depolarization block (see Phase-locking mediated by depolarization block in the model 

neuron). 



 

 

Figure 6. Quantitative summary of observed and predicted 1:1 phase-locking in hybrid networks.  A: Each 
pair consisting of one circular plot and one bar plot represents one hybrid network where 1:1 phase-locking 
was both predicted and observed.  Circles show the observed (black) and predicted (gray) network phase, 
which is defined between 0 and 1.  A network phase of zero, Φnet=0=1, is shown as a rightward arrow, and 
phase is increasing in the counter-clockwise direction.  Observed network phase is calculated as the mean 
of tsbio/Pnet.  Predicted network phase is calculated from the ts*-tr* plot as ts*

bio/(ts*
bio+ts*

mdl).   Bars show 
the observed (black) and predicted (gray) network period Pnet.  All bars are on the same scale, with the scale 
bar equal to 3s.  The hybrid network shown as an example in Fig. 5 is boxed in gray, the network showing 
depolarization block (DB) in Fig. 10 is cross hatched and another network that exhibited DB is vertically 
hatched.  These plots are on a grid ordered from left to right, top to bottom by ascending absolute 
difference between the predicted and observed network period.  B: Summary plots of predicted vs. 
observed values of network period (B1) and network phase (B2).  Dotted lines give an envelope of +/- 10% 
of the network period. 
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Runaway excitation 

Special case #1- runaway excitation (denoted by “RE” in Table 2) - coupling was 

effectively continuous.  This occurred when either synapse was continuously active 

during coupled activity.  This was often caused by reciprocal excitation in combination 

with large synapse strengths and a tonic firing mode in at least one neuron. The tonic 

firing mode in this case represents oscillator death with respect to the bursting limit cycle 

(Ermentrout and Kopell 1990). Our method assumes pulsatile coupling, specifically that 

the stimulus received in closed loop approximates that used in open loop to construct the 

PRCs.  For networks that have continuously active synapses, our methods are not valid.  

These networks were marked with the letters “RE” in Table 2.  An example is shown in 

Fig. 7.  We applied our methods as seen above (Example prediction…).  Although our 

methods predicted a 1:1 phase-locked mode, reciprocal excitation in the coupled network 

caused the model neuron to fire tonically and depolarized the biological neuron to above 

its threshold of synaptic activation (D).  Both synapses were continuously active. When 

the neurons were coupled, the model neuron was not able to return to its unperturbed 

limit cycle between perturbations (Introduction, third assumption), which explains why 

our methods made an incorrect prediction. 



 

Figure 7. Example of runaway excitation- A: PRCs.  B: Ts*-tr* plot.  For clarity, line segments connecting 
discontinuous branches of the PRCs are shown as semi-transparent lines.  C: Network schematic.  D: 
Network activity.  Dotted lines are at the half-activation thresholds for artificial synapses with respect to 
their pre-synaptic neurons.  The prediction procedure illustrated in this fig. is the same as the one described 
in the legend for Fig. 5. 

Noise induced transitions 

Special case #2- noise-induced mode transitions (denoted by “N” in Table 2) - 

complex behavior resulted from a discontinuous PRC. This criterion was satisfied when 

biological noise, as visualized by an envelope around the biological ts*-tr* curve, was 

large enough to cause the existence of a phase-locked mode to appear or disappear.  An 

example is shown in Fig. 8.  Measured PRCs and envelopes (A) were again used to 

calculate values of ts* and tr* (B) for each component neuron used to construct the 

network (C).  The periodicity constraint was solved graphically (B), and a stable phase-
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locked mode was predicted to exist (arrows, A, B); however, observed coupled activity 

was complex.  This network was active in what could have been a 2:1 mode, seen in raw 

traces (D) and in circular statistics (E) as one loose and one tight cluster of points around 

the circle.  In this case we defined network phase relative to the model neuron so that no 

bursts would be ignored, Φnetwork=tsmdl/Pnetwork.  Note the large noise envelope around the 

biological curve in the ts*-tr* plot (B, dashed lines). In contrast to the intersection of the 

ts*-tr* curves in Fig 5B, the intersection on Fig 8B is not structurally stable, because the 

upper and lower envelopes of the bio ts*-tr* curve do not intersect with the model ts*-tr* 

curve as does the mean fitted curve.  Often, this is equivalent to saying that the 

intersection is close to the discontinuity, meaning that they are both within the noise 

envelope.  In this case, a small deviation of the mean biological PRC (solid line) within 

this envelope would be sufficient to cause the intersection of the two ts*-tr* curves to 

disappear.  Intersections represent fixed points in phase space.  When they are created or 

annihilated, a bifurcation has occurred in the system.  If the presence of noise, as 

quantified by the upper and lower envelopes of the measured PRC, can create or 

annihilate a fixed point, then the prediction is a complex phase walk through mode 

(Ermentrout and Rinzel 1984) rather than a one to one locking.  



 

Figure 8. Example of noise-induced mode transitions.  A: PRCs.    B: Ts*-tr* plot.  C: Network schematic.  
D: Coupled activity.  E: Circular statistics showing complex behavior.  The prediction procedure illustrated 
in this fig. is the same as the one described in the legend for Fig. 5. 

The iterated map described in the methods determines the timing of future spikes 

based on the PRCs and the timing of previous spikes. The sensitivity of the bifurcations 

described above to a noise was explored using the iterated map (Fig. 9).  Fig. 9A shows 

the circular statistics for a robust example taken from Fig. 5 (A1) and a sensitive one 

taken from Fig. 8 (A2). The major difference in the observations (thick black arrows) is 

that the one for the robust case has unit length (touches the unit circle) indicating a robust 

locking with an R2 near one whereas the one for the sensitive case falls far short of the 

length (R2) of 0.7 that was designated in the methods as the cutoff for a robust locking.   

At low  noise levels (1% of the measured noise levels), the firing intervals produced by 

the iterated map produced robust 1:1 locking as indicated by the thin gray arrows that 
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nearly touch the unit circle and that match the predictions of graphical method based on 

the PRC (stars).  On the other hand, when the noise is increased to 100% of the measured 

levels, there is a clear distinction in the output of the iterated map for the robust and 

sensitive cases. The circular statistics of the iterated map with the higher noise level  (thin 

black arrows) are similar to the lower noise level case in A1 (thin gray arrow), but  in A2 

the thin black arrow has length near zero, indicated the absence of 1:1 locking, and is not 

visible.  For clarity, the output of the iterated map is only shown at two noise levels in 

Panel A, but in Panel B, bar plots of R2 values are summarized for several simulations. 

The magnitude of R2 is nearly flat in B1, reflecting the insensitivity to noise of the robust 

prediction. On the other hand, the magnitude of R2 falls off sharply in B2 when the noise 

becomes large enough to elicit bifurcations.   For nominal noise levels, the simulations 

matched experimental observations, predicting phase-locking to occur (B1, asterisk) or 

not (B2, asterisk). This is a clear demonstration of the power of PRCs to predict the 

behavior of the networks in the presence of noise.  In this example, noise induces 

transitions between 1:1 locking and phase walk through (Ermentrout and Rinzel 1984), 

which can be predicted from  ts*-tr* plots by considering the noise envelope.  We can 

only predict a 1:1 phase-locked mode with certainty (as seen in Fig. 5B), when the model 

ts*-tr* curve crosses the entire biological ts*-tr* envelope, dividing it into 2 distinct areas.  

Those networks in which the model ts*-tr* curve intersects with only a portion of the 

biological ts*-tr* envelope are sensitive to noise and were designated as special cases of 

the bifurcation type, noted in Table 2 with the letter “N.”  These cases required an 

extension of the original methods, which assumed that the presence of noise did not 



qualitatively alter the dynamics,  but are within the scope of the methods as extended 

here. 

 

Figure 9. Effects of noise parameter in iterated map based on PRCs.  A: Circular statistics.  Thick arrows 
show experimental observations; stars, predicted network phase; thin arrows, iterated map results.  B: R2 
vs. simulated fraction of experimentally observed noise.  Noise envelopes from biological PRCs were 
scaled by the values shown and used in the iterated map.  Values of R2 summarizing the strength of 1:1 
phase-locking seen in the iterated map are shown.  A1, B1 based on data shown in Fig. 5.  A2, B2 based on 
data shown in Fig. 8. 

Phase-locking mediated by depolarization block (DB) 

Phase-locking mediated by depolarization block (DB) in the model neuron 

(denoted by “DB” in Table 2). In a subset of hybrid networks, we observed 1:1 phase-

locking that was mediated by depolarization block (DB) in the model neuron. 

Quantitative predictions for an example network  (Fig. 10C) were obtained using the 

PRCS in Fig 10A and the tr*-ts* plots in Fig. 10B. Surprisingly, these predictions are 
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reasonably accurate, as summarized in Fig 10 E. and the cross hatched panel  in Fig. 6. 

This is despite the fact that the model neuron (blue in Fig. 10D2) never drops below the 

activation threshold (horizontal dashed line) in the coupled network, and has a different 

waveform than in the uncoupled case (D1). An explanation of how the locking occurs is 

as follows. When coupled, the biological neuron drives the model neuron into DB during 

the biological burst.  At the end of the biological burst, the model neuron is released and 

begins a burst after a short delay.  This model burst excites the biological neuron, which 

initiates a burst and re-starts the network cycle by causing DB in the model neuron once 

again. 



 

Figure 10. Prediction of phase-locking via depolarization block.  A: PRCs.  B: Ts*-tr* plot.  C: Network 
schematic.  D: Network activity.  Dotted lines are at the half-activation thresholds for artificial synapses 
with respect to their pre-synaptic neurons.  E: Circular statistics showing strong phase-locking.  The 
prediction procedure illustrated in this fig. is the same as the one described in the legend for Fig. 5. 

Discussion 

Generality of our method 

In order to predict the activity of two coupled oscillators, we require no 

knowledge of their intrinsic dynamics and no limitations on coupling strength, but only 

need to be able to measure PRCs from each oscillator. The assumptions we made were:  

1) Each neuron is a limit cycle oscillator; 2) The shapes of synaptic inputs received in the 

 46



 47

closed loop network are equal to those used in open loop configuration to measure the 

PRC; 3) In the closed loop network, each neuron returns to steady state (its unperturbed 

limit cycle) before it receives a new synaptic input; and 4) The AB/PD complex can be 

treated as a single oscillator, or neuron. 

1) Each neuron is a limit cycle oscillator, meaning here that it has oscillatory 

bursting and exactly reproducible steady state behavior.  Jitter in the dynamic clamp 

hardware caused the update interval of the model neurons to vary around 50μs (Dorval et 

al. 2001), however, we did not observe variations in the intrinsic period or duty cycle of 

the model neuron.  A constant intrinsic period was assumed for both neurons, but the 

biological neuron’s intrinsic period varied by ~10%. This variability was manifested as 

noise in the biological PRCs and was the main source of error in our results.  Because 

these experiments were done using biological neurons whose function may benefit from 

variability (Hooper 2004; Horn et al. 2004), we hypothesize that the same methodology 

would produce fewer special cases if applied in a system that would not benefit from 

variability.  2) The shapes of synaptic inputs received in the closed loop network are 

equal to those used in open loop configuration to measure the PRC.  We observed that 

burst durations in closed loop differed from those in open loop (Figs. 5, 7, 8, 10).  This 

introduced some error, but it did not correlate with observed prediction errors.  3) In the 

closed loop network, each neuron returns to steady state (its unperturbed limit cycle) 

before it receives a new synaptic input.  Slow drift of the biological intrinsic period 

between the time when PRCs were measured and the time when hybrid networks were 

connected introduced error into the phase predictions of hybrid networks.  We measured 

third order resetting F3=0 in all neurons, nonetheless it is possible that adaptation of slow 
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variables in the biological neuron could introduce error into the predictions of phase-

locked period and network phase. Our PRC measurement did not account for adaptation, 

but a variant of this methodology (Cui et al. 2008) can account for adaptation where 

necessary.  4) The AB/PD complex can be treated as a single oscillator, or neuron.   We 

impaled PD cell bodies in four preparations and the AB cell body in one preparation, 

whereas the oscillator kernel is presumed to be in the neurites of the AB neuron.   

Although the location of our electrode was some physical distance from the presumed 

location of the kernel, we found no evidence that space clamp was an issue in any of the 

preparations.   

The observation of phase-locking was correctly predicted in 96% of 70 networks, 

excluding seventeen networks that fell into two special categories described in the next 

section.  Further, in the cases where phase locking was both predicted and observed, our 

quantitative predictions of network phase and phase-locked period were accurate within 

experimental variability. The overall success of our method despite the large amount of 

variability inherent in biological systems indicates that it is likely that this method can be 

applied to gain insight into a variety of biological circuits in which the appropriate PRCs 

can be measured. 

Successful prediction of networks exhibiting phase-locking via depolarization block 

DB has been previously reported as a mechanism of phase-locking, specifically 

for switching between 1:1 and 1:2 entrainment in the lobster stomatogastric nervous 

system (Robertson and Moulins 1981).  DB has been also been observed as a mechanism 

patterning neural activity in rat hippocampal slices.  Ziburkus et al. observed DB in 
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oriens interneurons due to excitatory input from pyramidal neurons during seizure like 

events, describing it as a novel pattern of interleaving activity (Ziburkus et al. 2006).  In 

our results, the two networks exhibiting DB were accurately predicted in Table 2 (marked 

as DB) and Fig. 6 (shown by vertical and cross hatches) despite the unusual nature of this 

phase-locked mode.  This is possible because, using our PRC protocol, inputs applied to 

the neuron cause phase delays that can be used for prediction regardless of whether the 

neuron is hyperpolarized or in DB during the delay. 

Systematic prediction failures observed for excitation but not inhibition 

The analysis of circuits coupled by excitation provides an interesting contrast to 

that of the analysis of circuits coupled by inhibition. Previously, we showed that our 

theoretical methods predict 1:1 modes of phase-locking robustly, where 161 out of 164 

networks were predicted correctly (Oprisan et al. 2004).  In contrast to the uniform 

success we experienced with inhibitory circuits, a significant fraction of the hybrid 

circuits constructed with excitation suffered from prediction failures. Most of these 

failures fell into two broad categories: runaway excitation and noise-induced transitions. 

In the runaway excitation case, synaptic coupling was strong and positive feedback in the 

network caused at least one neuron, usually the model neuron, to be tonically active. 

Tracking changes in burst length as well as cycle length due to coupling may allow 

prediction of tonic spiking in the coupled circuit (Oprisan and Canavier 2005)(and 

below).  

One strong synapse doesn’t support runaway excitation. Both synapses have to be 

strong. Since our model neurons were easily sent to tonic spiking, it was the model-to-bio 



synapse strength that appeared to be most important in our data, however, it was 

necessary for both synapse strengths to be “sufficiently strong.” Fig. 11 shows an 

example of a sufficiently strong model-to-bio synapse. During input Isyn (gray trace), Vbio 

(black trace) remains above threshold (dashed line). Fig. 11B shows a synapse that is too 

weak to support runaway excitation. These traces from PRC measurement protocols are 

representative of the super- or sub-threshold activity of the bio neuron while receiving 

strong or weak input, respectively. It was necessary for both the model PRC and the biol. 

PRC to exhibit this behavior in order for runaway excitation to occur. This is one way we 

could determine a priori which networks would succumb to runaway excitation. 

 

Figure 11. Critical strength of synapse for runaway excitation. Each panel shows the effect of one open 
loop stimulus from a partner model neuron (gray traces) on a free-running biological neuron (black traces). 
A: The model-to-bio synapse (100nS) extends the bio burst significantly (thick black bar), as determined by 
the burst threshold (dashed line). B: The model-to-bio synapse (30nS) does not extend the bio burst (thick 
black bar).  
 

An implicit assumption in our previous work was that the presence of noise would 

not qualitatively change the mode expressed. In this study, we improve the prediction 
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methods by identifying cases in which the presence of noise will make a qualitative 

difference. This is a significant extension of the method to real noisy systems. 

Essentially, noise in a biological PRC can cause an intersection on the ts*-tr* plot to 

transiently appear or disappear.  The structural instability appears to be correlated to the 

presence of two or more branches in the first order PRC for excitation, and consequently 

in the ts*-tr* curves.  The presence of multiple branches was not generally observed for 

inhibition. 

Validation of the PRC map method in reproducing structural instability 

In a strong validation of our methodology, a map of the firing times in the 

network including noise verifies that variability in a PRC does modulate the strength of 

phase-locking. When noise was added to the map in a biologically plausible way, the 

differential effects of noise on structurally stable and unstable systems was captured 

qualitatively and quantitatively using circular statistics.  This simple idea is a powerful 

tool for understanding the predictive utility of PRCs because it simulates the measured 

variability of the biological neuron and gives outputs that are readily compared to 

experimental data.  The structural stability depends upon the ratio of noise, or variability, 

to the strength of the phase resetting in the system. Modulating this ratio could switch 

periodic activity in a network on or off, and it is plausible that biological networks may 

avail themselves of this switching mechanism. 

Implications for CPG design 

Previously, in the same pyloric neurons, responses to excitatory inputs have been 

shown to be noisier than their responses to inhibitory inputs for both model and 
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biological neurons (Elson et al. 1999; Selverston et al. 2000). Although we have not 

taken the excitatory and inhibitory measurements in the same biological neuron, these 

differences likely exist and are due to the intrinsic properties of the neurons in question, 

rather than to experimental error. The lowered reliability in the production of predictable 

phase locked activity may explain why most CPGs rely predominantly on inhibition. 

Excitatory synapses are not entirely absent from all CPGs, but they do not 

dominate. For example, although it has been shown that patterned activity in the lamprey 

hemicord is supported by a population of excitatory neurons without any inhibition, the 

full system appears to be dominated by inhibition, because coordination of left-right 

activity in the segmental half center oscillators is lost when inhibition is blocked 

(Cangiano and Grillner 2005).  In salamander (Cheng et al. 1998) and mammalian spinal 

cord (McCrea and Rybak 2008), synchronized activity of flexor and extensor motor 

neurons has been observed in reciprocally coupled excitatory networks when inhibitory 

synaptic transmission was blocked.  However, biologically relevant CPG coordination 

was again found to rely on one or several levels of half center oscillators that organize 

alternating flexor-extensor motor neuron activation. 

The large number of special cases we found (20% of all networks) imply that 

excitatory synapses are not well suited to implement 1:1 phase-locking.  This may help 

explain why we see few excitatory synapses utilized in biological CPGs.  Well-studied 

CPGs such as those in the pyloric and gastric networks of the STG, leech heartbeat, and 

mollusk feeding are coupled with exclusively inhibitory synapses.  Our results provide 

two reasons why networks coupled by excitation are less suitable to carry on rhythmic, 

phase-locked firing than those coupled by inhibition.  First, networks with excitatory, but 
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not inhibitory, connections can be unstable due to positive feedback as in the case of 

runaway excitation.  To maintain stability in an excitatory network, synapse strengths 

must be carefully constrained with respect to the noise level, resulting in increased 

regulatory load on the biological system.  Second, discontinuities in the PRCs of 

component neurons of excitatory-coupled networks illustrate a mechanism whereby noise 

can cause modes of phase-locking to appear or disappear.  In sum, the examination of 

phase resetting and its contribution to phase locking in excitatory compared to inhibitory 

networks provides an explanation of why inhibition generally predominates in central 

pattern generators, but also suggests that excitatory networks could be advantageous in 

contexts in which only brief, transient synchronization is required, as in the 

communication-through-coherence hypothesis (Fries 2005). 
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CHAPTER 3: INCLUSION OF NOISE IN ITERATED FIRING TIME 

MAPS BASED ON THE PHASE RESPONSE CURVE 

At the time of writing, this chapter is in press (Sieling et al. 2010). 

Introduction 

The infinitesimal phase response curve (PRC) of a neural oscillator to a weak input is 

a powerful predictor of network dynamics; however, many networks have strong 

coupling and require direct measurement of the PRC for strong inputs under the 

assumption of pulsatile coupling. We incorporate measured noise levels in firing time 

maps constructed from PRCs to predict phase-locked modes of activity, phase difference, 

and locking strength in 78 heterogeneous hybrid networks of 2 neurons constructed using 

the dynamic clamp. We show that noise may either destroy or stabilize a phase-locked 

mode of activity. 

The problem of synchronization and patterning of synchronization of oscillators is 

a problem that is of general interest in physics (Hansel et al. 1993; Golomb and Rinzel 

1994; Izhikevich 1998; Dhamala et al. 2004; Fischer et al. 2006; Velazquez et al. 2007). 

More specifically, the study of pulse-coupled oscillators has commanded substantial 

interest (Goldsztein and Strogatz 1995; Foss et al. 1996; Gerstner 1996; Ernst et al. 1998; 

Goel and Ermentrout 2002; Timme et al. 2002; Earl and Strogatz 2003; Talathi et al. 

2009). Networks of pulse-coupled oscillators are used to study many things (Winfree 

2001)- e.g., plate tectonics (Olami et al. 1992), heart rhythms (Jalife 1984), and neural 

networks (Gerstner 1995). Synchrony is a dynamical feature of such networks (Mirollo 

and Strogatz 1990; Ernst et al. 1995; Bressloff et al. 1997). These systems consist of 
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oscillators coupled by discrete pulses. Phase response theory is often used to study 

network synchrony. The phase response curve (PRC) is tabulated as the shift in phase of 

an oscillator in response to a stereotyped input pulse (Glass and Mackey 1988). When the 

pulse is sufficiently weak, interactions can be added linearly so the infinitesimal PRC 

(iPRC), or response to weak perturbations, which is the foundation for a powerful 

technique—the theory of weakly coupled oscillators—can be used to predict network 

activity (Ermentrout and Chow 2002), however, many real systems are coupled too 

strongly for  weak coupling approaches (Oprisan and Canavier 2001; Oprisan et al. 

2004).  

Phase response theory has a rich history in biological oscillators- especially in 

cardiac electrophysiology and neurophysiology. In the latter field, phenomena emerging 

from networks of two neurons are often used to help understand behaviors of networks 

containing large populations of neurons (Gerstner 1995), however, this paradigm is 

limiting - the complexity seen in biology is far beyond that explained by existing models, 

which are largely limited to networks of identical neurons coupled identically and weakly 

with no noise included. Conversely, real neural systems often contain heterogeneous 

neural types coupled heterogeneously, strongly, and with noise. Several recent studies 

have pushed one or more these boundaries, e.g. showing noise-stabilized antiphase 

oscillations (Ermentrout and Saunders 2006), synchronization in a network despite noise 

(Bendels and Leibold 2007), optimal PRC shape for noise-driven synchrony (stochastic 

synchrony) (Abouzeid and Ermentrout 2009), and bistability induced by shared noise (Ly 

and Ermentrout 2009). Although noise has been included in maps of pulse-coupled 

neurons (Netoff et al. 2005) , no study has yet formalized the effects of noise in non-
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weakly coupled pulse-coupled networks. In (Sieling et al. 2009) we briefly proposed a 

method to address these issues simultaneously, and we applied it in one example as a 

proof of concept.  

Here, we present our method formally and apply it generally to describe 78 

experimental networks from (Sieling et al. 2009). We explicitly incorporate noise 

measured during experimental determination of the PRC into the prediction method.  In a 

hybrid network of two bursting neural oscillators coupled via synaptic excitation 

(τsyn≈10ms with a network period of about a second), we found that this method could 

accurately predict phase locking in the presence of 10% variability in the intrinsic period. 

We have shown that networks including a biological oscillator may undergo noise-

induced transitions, and that including measured noise in the firing time map may capture 

the effect of noise, giving results that are qualitatively and quantitatively similar to 

experiment (Sieling et al. 2009).   

Methods 

Adding noise directly into the PRC 

Following the biological tradition (Glass and Winfree 1984; Reyes and Fetz 

1993), in a two neuron network our phase response curves (PRCs, Fqi below) describe the 

effect of a stereotyped input from the partner neuron j on neuron i as a function of the 

timing of input, or phase φi. The qth order PRC is tabulated experimentally 



 Fqi(φi)=(P0i–Pqi)/P0i

by measuring the qth cycle lengths Pqi and P0i, where first order resetting q=1 measures 

response in the perturbed cycle, and second order resetting q=2 measures response in the 

next subsequent cycle. As such, F1i measures the change of the cycle containing the start 

of input from neuron j  

 F1i(φi)=(P0i –P1i)/P0i. 

If the input is an infinitesimal voltage deflection, then our F1i is equivalent to 

PRCs used in weak coupling theory (Ermentrout and Kopell 1991; Hansel et al. 1995). 

Second order resetting F2i has been previously shown to be important in bursting neurons 

(Oprisan and Canavier 2001; Oprisan et al. 2004; Sieling et al. 2009) and was recently 

modeled as leftover charge in dendrites resulting in partial reset (Kirst et al. 2009). 

We use these PRCs to construct a general model of pulse-coupled phase 

oscillators with no delays  
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i ttF
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0

δφφ& , (2) 

where φi ∈ [0,1) is the phase of neuron i modulo 1. A threshold event such as a spike or 

burst occurs when the phase reaches one, and the phase is immediately reset to zero 

afterwards. The coupling function is given by F1i, δ is the Dirac delta function, and tj
* is 

the time of a spike or burst initiation in neuron j. Because we use ideas from phase 

resetting theory, we constrain the behavior of our uncoupled oscillators to autonomous 

periodic activity, i.e., spiking or bursting, where for each neuron i there is an intrinsic 
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period P0i such that φi(t+P0i)=φi(t). Note that the oscillators may be heterogeneous, each 

having its own intrinsic period P0i≠P0j. 

The major drawback to using PRCs as coupling functions in our model is that we 

must assume the system returns to its limit cycle between pulses. In the phase space this 

means that when a relatively strong input moves the coupled oscillator far from its 

uncoupled trajectory, it must return before the next input arrives. In general, this is not a 

problem for weakly coupled oscillators.  Returning to the limit cycle between inputs also 

implies that in the case of a neuron receiving multiple inputs in between two firing 

events, the second order effects F2i must be zero for all inputs except the last one received 

before the 2nd event. For two neurons, this is rarely a problem. 

To expand (2) for non-weak inputs, we include F2i by adding a second term, 

where φi
last is the value of φi at the last tj

* if an input was received by neuron i in the 

previous cycle. 
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 (3) 

The switch Ai is one if an input was received in the previous cycle and zero 

otherwise. Additionally, each φi must now be defined for small negative values because if 

F2i is a delay, φi will be reset to a negative value. A geometrical interpretation of the 

negative branch in φi is given in (Oh and Matveev 2009) − it “corresponds to an isochron 

that curls around the limit cycle, intersecting it at a position that is retrograde to the peak 

of the action potential.” For φi<0, Fqi are undefined, however, this is not a problem in our 
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analysis, where we assume that for φi<0, Fqi(φi)=Fqi(0) because few inputs (if any) were 

received on this branch.  

To account for noise in our experimentally measured PRC data, we simply 

include it directly in the PRCs, 

 , )()()( 1111 iiii
fit
iii FF φσξ+φ=φ

 , (4) )()()( 2222 iiii
fit
iii FF φσξ+φ=φ

where Fqi 
fit is a piecewise polynomial fit to the experimental data, ξqi represents unitary 

Gaussian noise, and σqi is the standard deviation of the measured noise as a function of φi, 

found by binning the data and measuring in each bin. All PRCs used in this study are the 

same as in (Sieling et al. 2009).  

Consider a network of two heterogeneous coupled neural oscillators as in (3).  To 

find modes of rhythmic network activity, we modify the iterative pulse coupled map with 

no predetermined firing order from (Achuthan and Canavier 2009) to include noise in the 

PRCs as in (4). We iterate the map as follows, where ϕi[m] is the phase of neuron i after 

all effects of the previous pulse event m are added, S[m] is the set of neurons that emit a 

pulse m, and R[m] is the set that receives a pulse.  

We initialize each neuron with a phase ϕi[0] and a memory of second order 

resetting F2i(ϕi
last[0]). Then, we poll for which neuron(s) will fire next: if P0i (1 - ϕi[m]) = 

min { P0i (1 - ϕi[m]) } over all i, then i ∈ S[m], else i ∉ S[m]. If i sends a pulse then j 

receives one: for i ∈ S[m], j ∈ R[m] else j ∉ R[m], where i ≠ j. Now update each neuron 

according to whether it fires a pulse and whether it receives a pulse: If i ∈ S[m], i ∉ 

R[m], then reset ϕi to zero plus F2i from previous cycle: ϕi[m+1]= 0 – AiF2i (ϕi
last[m]), 
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and reset the switch Ai to zero. If i ∈ S[m], i ∈ R[m], then set ϕi[m+1] = 0 – 

AiF2i(ϕi
last[m])  -  F1i(ϕi[m] + (t[m+1] - t[m])/ P0i), and reset the switch Ai to zero. . If i ∉ 

S[m], i ∈ R[m], then advance phase by elapsed time plus 1st order resetting from current 

cycle: ϕi[m+1] = ϕi[m] + (t[m+1]-t[m])/P0i – F1i(ϕi[m]+(t[m+1]-t[m])/P0i). Update the 

memory of 2nd order resetting: for i ∈ R[m], ϕi
last[m+1]=ϕi[m] + (t[m+1] - t[m])/ P0i,  

and set the switch Ai to one. Now start again - poll for which neuron(s) will fire next, etc. 

To summarize: 

 For i ∈ S[m], i ∉ R[m],  ϕi[m+1]= 0 – Ai F2i (ϕi
last[m]), Ai =0 

For i ∈ S[m], i ∈ R[m],  ϕi[m+1] = 0 – Ai F2i(ϕi
last[m])  -  F1i(ϕi[m] + (t[m+1] - 

t[m])/ P0i), Ai =0 

For i ∉ S[m], i ∈ R[m], ϕi[m+1] = ϕi[m] + (t[m+1]-t[m])/P0i – F1i(ϕi[m]+(t[m+1]-

t[m])/P0i), ϕi
last[m+1]=ϕi[m] + (t[m+1] - t[m])/ P0i , Ai =1 

This map is difficult to analyze because of the discontinuities introduced by the 

min function. First, there is no assumption of firing order. It is even possible that the 

neurons will fire synchronously or that one neuron will not fire at all. Next, a neuron’s 

phase is updated differently depending on whether it fires a pulse, receives a pulse, or 

does both simultaneously. Note that the phase is updated each time that an input is 

received, in contrast to the weak coupling assumption where phase is not updated when 

each pulse is received based on resetting that occurs earlier in the cycle. 

We have ignored conduction delays here, although they may be added to the map 

(Woodman and Canavier 2009). In our experimental system consisting of bursting 

neurons, we defined an event as the start of a burst in the presynaptic neuron.  Using the 



map, we can iterate a number of cycles Nmap roughly matching the number of observed 

cycles Nobs and compare results using circular statistics as in (Sieling et al. 2009). The 

inclusion of noise in the firing time map is similar to (Netoff et al. 2005); the major 

difference is the use of F2 in addition to F1 in our method. Further, we explicitly restrict 

the tails of ξi according to their causal limits. In (Sieling et al. 2009), these limits translate 

to recovery interval tr≥0 and stimulus interval ts≥0 as defined below. 

Results 

Comparison of map to experimental data and noise-free method 

 

Figure 12. Definition of terms, A: stimulus time (ts) and response time (tr) during 1:1 phase locking are 
shown for bursting neurons 1 and 2.  The shaded regions correspond to the burst duration, which can be a 
substantial fraction of the cycle period. 

To evaluate our methods on experimental networks, we applied them to an 

existing dataset of 78 coupled networks (Sieling et al. 2009). These networks are 

constructed from one biological neuron and one model neuron by using the dynamic 

clamp (Sharp et al. 1993; Prinz et al. 2004) to implement artificial synapses. The 

biological neuron used (N=5) was the AB/PD complex from the pyloric network in the 

Stomatogastric ganglion of Homarus Americanus, which is a regularly bursting group of 

3 electrically coupled neurons that act as a single oscillator. This group was isolated 

pharmacologically using standard methods (Sieling et al. 2009). The model neurons used 
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were from a heterogeneous set of four regularly bursting pyloric model neurons from a 

database (Prinz et al. 2003). 

We compared experimental observations to predictions made using a noise-free 

method of pulsatile coupling (Oprisan et al. 2004; Sieling et al. 2009) and to the 

predictions of our iterated map using steady state stimulus intervals ts for each neuron in 

the network, where ts is the interval between the time of an event in one neuron and the 

time of the next input it receives from its partner neuron (Figure 12). For the case of 1:1 

locking this is equivalent to t[M] above, where M is the set of odd or even whole 

numbers. Using both methods, we predicted qualitative behavior — whether a mode of 

1:1 phase-locking would be observed — and quantitative behavior — the stable phase 

difference and strength of phase-locking.  We quantify the strength of phase-locking 

using the circular statistic R2. When each n of N phase differences Φ[n]=2π∗ts1[n]/Pnet ∈ 

[0, 1), Pnet= ∑
=

+
N

nN 1
21 [n])ts[n](ts1  is plotted on the unit circle, then R2∈[0,1] is the length 

of the vector from the origin to the average position of the plotted points (Drew and 

Doucet 1991; Gutkin et al. 2005). We used a threshold R2>0.7 to define phase-locking as 

in (Sieling et al. 2009). 
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In the 78 networks tested, the noise-free method was qualitatively incorrect 16 

times and the iterative map was able to make the correct prediction for 8 of those 

networks (see (Sieling et al. 2009) for full analysis of the noise-free method in these 

networks) as well as 61 that were correctly predicted by the noise-free methods, for a 

total success rate of 69 out of 78, an improvement of 10%. We excluded eight networks 

that exhibited continuous spiking due to positive excitatory feedback as a result of the 

coupling, breaking the assumption of a limit cycle burster under which the PRCs were 
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generated (Sieling et al. 2009). Five failures of the map were due to overestimation of 

noise. Over the course of hours, noise levels in the biological neuron varied. In all cases, 

removing noise from the firing time map by setting σ=0 in (4) produced a match to the 

predictions of the noise-free method.  



 

Figure 13. Map with noise. Comparison of observed behavior from (Sieling et al. 2009) to analytical and 
firing time map predictions including F2 in the firing time map. Empirical observation (o and error bars), 
analytical prediction (x), and prediction using the firing time map (square and error bars) are shown for mdl 
(model neuron, blue) and bio (biological neuron, green) neurons in each hybrid network, separated by 
dotted lines and sorted by qualitative match for clarity. Modes that were not observed or predicted to exist 
are marked by a red symbol (o, x, or square) in the row labeled DNE.  For clarity, error bars are shown only 
in one direction. Analytical predictions are noise-free so they do not have error bars. The x axis is the 
arbitrary experimental network number. A. For networks observed to phase-lock, the noisy map produced 
results that were generally in agreement with observations. In one case (red x) the noisy map succeeded 
where the noise free method failed, but in five cases (red squares) the noisy map failed presumably due to 
overestimation of noise.  (B) In cases where noise was previously shown to cause the analytical prediction 
to fail, the noisy map correctly predicted the failure to lock in seven cases, and the noise-induced ability to 
lock, albeit with some error, in one case.  

To best compare predictions made using our firing time map to those made using 

the noise-free methods, we focus on networks that were experimentally observed to 

phase-lock. In Figure 13, we compare methods for 28 such networks by showing steady 

state ts intervals for each neuron in the network. Each network is represented by an 

ordered group of symbols separated by vertical dotted lines, showing ts values obtained 

for each of the methods used.  Where a phase-locked mode was not observed or predicted 

by a method, the appropriate symbol is plotted in red below.  
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When F2 was removed from the firing time map (not shown), F2i=0 in (3), 

prediction accuracy dropped from 85% to 45%, as we would expect from (Oprisan and 

Canavier 2001; Oprisan et al. 2004; Sieling et al. 2009). In B, we compare prediction 

methods in 8 networks previously shown to exhibit noise-induced transitions (Sieling et 

al. 2009). The analytical method, which is noise-free, was qualitatively incorrect in each 

of these cases, and the map was correct in each case. Out of the 8 networks with such 

behavior, only 1 was observed to phase-lock and the map method was qualitatively 

accurate (network 8, shaded). Note that in this network, the analytical methods did not 

predict a phase-locked mode, so adding noise to the PRCs caused a new stable fixed point 

to appear, showing that in the firing time map, noise can both generate and destroy 

modes of phase-locking. 

Discussion 

We have verified that variability in a PRC does modulate the strength of phase-

locking in a network of 2 neurons. When noise was added to the map, the differential 

effects of noise on structurally stable and unstable systems was captured qualitatively and 

quantitatively using circular statistics. This simple idea is a powerful tool for 

understanding the predictive utility of PRCs because it simulates the measured variability 

of the biological neuron and gives outputs that are readily compared to experimental data.  

Noise threshold and phase-dependency of noise 

Bendels and Leibold (Bendels and Leibold 2007) note a threshold in noise level 

above which “low-synchrony” phase-locking occurs but is not predicted by their mean-

field approximation method due to occasional slipping. This threshold can be explained 
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by the noise level at which the envelope of phase-dependent noise around the PRC 

disrupts the basin of attraction of the noise-free fixed point. We do not analyze this 

threshold here, but our data give examples where a stable fixed point in the noise-free 

system transitions to a quasi-stable fixed point when noise is added, seen as stable phase-

locking with occasional slipping. 

Accurate measurement of variability near a non-linear event 

An input can never advance the event time to a time before the input was applied: 

this is the causal limit. If no input is given at phase φ, then the next event is expected to 

follow at a time interval of P0(1-φ), the remaining interval.  Therefore the observed phase 

resetting can never drop below the line (F1i(φ)=φ-1), which biases the noise observed in 

first order PRCs. For example, in Tsubo et al. (Tsubo et al. 2007) the authors note that 

they could fit the distributions of the fluctuations in the phase responses at phases less 

than 0.5 with Gaussian distributions with a variance that was nearly constant. However, 

at phases greater than 0.5, the variance decreased. Fig. 2E of that paper makes it clear that 

the causal limit is responsible, but the role of the causal limit was not addressed. Phoka et 

al. show that noise in Purkinje cells introduces a bias in the mean measured PRC due to 

the causal limit (Phoka et al. 2008). To correct for the bias, they use all spikes in a train 

as reference, one at a time, rather than using only the spike before and after. Polhamus et 

al. proposed a different solution, which was to average only ISIs longer than the stimulus 

interval to determine the average period to use to calculate the phase.  Our method 

accounts for the missing variance in the first order resetting by treating second order 

resetting separately. 
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Netoff et al. (Netoff et al. 2005) also observed PRCs in which the noise was 

limited by causality.  In their studies of excitatory inputs, the scatter decreased inversely 

proportional to the square root of the phase, but for inhibitory inputs causality is not an 

issue and variance was independent of phase. Netoff et al. (Netoff et al. 2005) also 

incorporated noise into a PRC-based map. They chose firing times for each cell by 

adding the spike time response curve (STRC) value (mean + normally distributed random 

component scaled by the time-dependent SD, each measured from the STRC) to the 

unperturbed firing period of the cell in question (Netoff et al. 2005). 

Since our map is different from that of Netoff et al. (Netoff et al. 2005) only in 

that that we used second order resetting, it is interesting that our maps perform more 

poorly if F2 is ignored. This is likely because the neurons in (Netoff et al. 2005) are 

spiking, rather than the bursting neurons that we used, and spiking neurons tend to have 

small F2 amplitudes. The new method incorporates the true variance rather than 

underestimating it at late phases. To our knowledge, this point has not been made 

previously. For example,  after commenting on the phase dependence of the variance 

observed by Netoff et al., Ermentrout and Sanders state that "An adequate theory of this 

dependence remains to be resolved" (Ermentrout and Saunders 2006). In our method, the 

variance in F2 in the subsequent cycle compensates for reduction in variance at late 

phases in F1 . 
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CHAPTER 4: ARTIFICIAL RECONFIGURATION OF A REWARD-

LEARNING NETWORK REVEALS CELLULAR MECHANISMS 

CAUSING TRANSITIONS IN A MOTIVATED BEHAVIOR 

Introduction 

Operant conditioning, which was introduced by (Thorndike 1911), is an example 

of associative learning in which an association is established between a specific behavior 

(the operant) and a stimulus (the reinforcement). A key feature of operant conditioning is 

the contingency of the reinforcement (i.e., the correlation between the expression of a 

designated operant behavior and the delivery of a reinforcement; (Skinner 1938; 

Konorski 1948)). As a result of this contingency the frequency of the reinforced behavior 

is modified. This phenomenon, known as the “law of effect” (Thorndike 1933), provided 

evidence that the nervous system has mechanisms by which a particular motor output can 

be selected from among many different behaviors that may be expressed. 

Operant conditioning in the mollusk Aplysia’s food-seeking behavior produces a 

long-lasting switch from irregular, impulsive-like radula biting movements into 

stereotyped, compulsive-like recurrences of this cyclic act (Susswein et al. 1986). 

Experimentally, this change is induced by giving the reward, a splash of seaweed juice 

pipetted into the Aplysia’s mouth, after each occurance of the operant, a bite. After 1 hour 

of such treatment, the animal bites more frequently and more rhythmically. 

An in vitro analog of this behavioral switch exists, where fictive motor activity is 

monitored in peripheral nerves while intracellular electrophysiology is done (Nargeot et 

al. 1997). Three bilateral pairs of initiating neurons (INs; B63, B65, and B30) in the 
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feeding central pattern generator (CPG) circuit found in the buccal ganglia (B.g.) are 

initiators of each radula bite motor pattern (BMP). In Figure 14, see that the INs reside 

bilaterally in the B.g. and are just one component of the feeding CPG.  

Nargeot et al. (Nargeot et al. 2007; Nargeot et al. 2009), measured correlates of 

behavioral plasticity found in INs of the B.g. Naïve animals were trained as described 

above, then immediately dissected and tested in vitro. In this way, Nargeot et al. 

discovered changes in cellular properties that helped to clarify a possible mechanism 

underlying the behavioral changes induced during training. Among other things, they 

measured changes in the bursting properties of pattern-initiating neurons and increases in 

electrical coupling between individual neurons. Their dataset provided plausible 

correlates that might describe mechanisms of control, however, there was no way to 

follow the chain of causality in that data. Under the behavioral training paradigm, many 

aspects of the CPG could be changed, and there is no way to insure that the essential 

changes were measured. Using dynamic clamp methods, we were able to control specific 

cellular parameters to cause changes in fictive activity and thus tease apart the 

mechanism. 

The dynamic clamp method (Sharp et al. 1993) allows the addition or subtraction 

of any voltage dependent conductance in the vicinity of the intracellular electrode. Given 

an electrotonically compact neuron and 4 IC electrodes, we were able to reconfigure the 

connectivity of 4 impaled neurons using a computer and detailed models. In this fashion, 

we discovered that the changes in electrical coupling and excitability measured by 

Nargeot et al. (2009) are sufficient to cause all changes in fictive behavior seen in the 

study. In naïve arrhythmic networks we show that increasing the electrical coupling 
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between pattern-initiating neurons caused burst length and rhythm regularization, correct 

(ingestive) motor pattern selection, and correct firing order (B63 leading) as compared to 

the behaviorally trained animals from Nargeot et al. (2009). Interestingly, we did not see 

any change in bite frequency. 

Since our results on rhythm modulation were so convincing, we hypothesized that 

there may be a separate mechanism controlling rate. One such mechanism could be a leak 

conductance. Upon further testing, we found that leak did control rate and had no effect 

on rhythm. Here, we present the results that show for the first time that rhythm and rate 

are controlled independently and that adjustment of these basic network parameters in 3 

or 4 out of the 6 relevant cells leads to a transition in fictive behavioral output. Further, 

these transformations are immediate, formally causal, and reversible. 



 

Figure 14. Introduction to the buccal ganglion (B.g.) of Aplysia. (A) Photograph of the head and mouth of 
Aplysia during a bite. (http://www.scholarpedia.org/article/Image:Mouth.jpg) (B) Schematic of isolated 
bilateral B.g. showing placements of extracellular recording electrodes (filled circles) on the intrinsic 
muscle 2 motor nerve (I2 n.; radula protractor motoneurons), radula nerve (R n.; closure motoneurons), and 
nerve 2,1 (n.2,1; retractor motoneurons) and intracellular electrodes (arrowheads) for intrasomatic 
recordings. Bipolar stimulating electrodes (twin arrows) placed on the left and right 2,3 sensory nerves 
(n.2,3) were used to activate buccal feeding circuitry. (C) Schematic of the Feeding CPG in the B.g. Each 
ganglion may act as an independent CPG, so we show detail for only one side. Electrical couplings of 
interest to us are shown in red. (D) Simultaneous extracellular recordings of a single radula motor pattern 
(fictive bite) consisting of protractor (I2 n.), retractor (n.2,1), and closure (R n.) motoneuron bursts and 
intracellular recordings of the bilaterally paired B63, B30, and B65 pattern-initiating neurons during low-
frequency inciting stimulation (2 Hz, 8.5V) of nerve n.2,3 (n.2,3 Stim.; horizontal dotted line). Note that 
the onsets of bursting activity in B63, B30, and B65 preceded the initial protraction phase (indicated by the 
vertical dashed line) of the fictive bite. Vertical scales represent 20 mV. 

Methods 

Animals 

Adult A. fasciata, which are found locally from August to November in the 

Bassin d'Arcachon (France), were supplied by the Lycée de la Mer (Gujan Mestras) and 

the Laboratoire de Biologie Marine (Arcachon). A. californica were purchased from the 

University of Miami (Fl, USA) and were used in the seasonal period when local A. 

fasciata are unavailable. Animals were maintained at 15°C in filtered artificial sea water 

 71

http://www.scholarpedia.org/article/Image:Mouth.jpg


 72

(ASW) until used, and were fed daily with fresh seaweed (Ulva lactuca) obtained from 

the Lycée de la Mer and the Station de Biologie Marine at Roscoff (France). The animals 

remained unfed for 2 days before experiments to stimulate food-seeking during food-

reward training.  

Electrophysiology 

Adult Aplysia fasciata and Aplysia californica were used in experiments, which in 

agreement with a previous study (Katzoff et al. 2002) revealed no interspecies differences 

in behavioral or electrophysiological characteristics. The appetitive operant training 

protocols used were as described in detail previously (Nargeot et al. 2007). 

Animals were anesthetized by the injection of 50-100 ml of MgCl2 into their 

hemolymph. After isolation, the bilaterally-paired buccal ganglia (B.g.) were pinned out 

in a Sylgard-lined Petri dish containing ASW (mM): NaCl, 450; KCl, 10; MgCl2(6H2O), 

30; MgSO4, 20; CaCl2(2H2O), 10; Hepes, 10 (pH adjusted to 7.4 with HCl). The 

preparations were maintained at 15°C by means of a Peltier cooling device and were not 

superfused during the actual experiment.  

Extracellular recordings and stimulations were made using wire electrodes placed 

against selected peripheral nerves (Figure 14B). Monopolar (recording) and bipolar 

(stimulation) electrodes were insulated from the bath with Vaseline petroleum jelly. 

Radula motor patterns, each consisting of motor nerve bursts that would normally drive 

protraction, retraction and closure phases of a radula bite cycle, were elicited by 

monotonic stimulation (8.5 V, 0.3 ms at 2 Hz) of the two bilateral 2,3 nerves (n.2,3) 

generated by a single Grass S88 stimulator and delivered through a photo-isolation unit. 
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Intracellular recordings and stimulations were made from de-sheathed ganglia with glass 

microelectrodes (tip resistance ~10-20 MΩ) filled with 2 M KCH3CO2. All recorded 

signals were amplified by Axoclamp-2B amplifiers (Molecular Devices, Palo Alto, CA), 

visualized on a Tektronix 5113 oscilloscope, digitized by an analog to digital converter 

(CED 1401, Cambridge Electronic Design, UK) and analyzed with Spike2 software 

(Cambridge Electronic Design, UK).  

Intrasomatically-recorded B30, B63 and B65 neurons were identified 

electrophysiologically according to the following criteria: Firstly, they produce 

spontaneous bursting activity that occurs during the protraction phase of each radula 

motor pattern. Second, they have no axonal projections in peripheral buccal nerves, and 

third, they all produce mixed chemical excitatory and electrotonic synaptic potentials in 

the contralateral B31/32 motoneurons. Moreover, B30 has no axonal projection in the 

cerebro-buccal connectives (CBC), it produces IPSPs and a long-lasting activation of the 

bilateral B8 motoneurons and it does not make conventional synaptic connections with 

the B61/62 motoneurons. B63 was identified on the basis of its axonal projection in the 

contralateral CBC, a unique excitatory synapse with the contralateral B61/62 

motoneurons and its lack of a conventional synapse with B8. B65 was identified by its 

absence of axonal projections in the CBCs and its production of facilitating EPSPs in the 

bilateral B61/62 motoneurons. 

The strength of electrical coupling between selected pairs of neurons was 

calculated as the ratio of the maximum postsynaptic voltage response to the 

corresponding maximum presynaptic voltage deflection elicited by a 2 s negative current 

pulse. In these experiments, two presynaptic electrodes were again used, one to maintain 
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the cell’s resting membrane potential at - 70 mV and for additional negative current pulse 

injection, while the other electrode was used for voltage recording. The resting membrane 

potential of the postsynaptic neuron, which was simultaneously impaled with a third 

electrode, was not altered experimentally during the recording of the electrical synaptic 

potential.  

Dynamic clamp methods 

We used dynamic clamp methods (Sharp et al. 1993; Prinz et al. 2004) to add 

artificial membrane conductances to real neurons. We used 3 different types of artificial 

conductances. Each was a voltage dependent conductance. To calculate the current that 

would flow through such a conductance if it were present, the membrane potential Vm 

was recorded and routed to either a dedicated microprocessor (CED 1401 below) or a 

standard desktop computer (RTXI below). At an update timestep between 100 and 1000 

μs (1 to 10 kHz, noted below), Vm was used to calculate the momentary current, and a 

command signal was routed to the current clamp amplifier, which delivered current until 

the next timestep. 

Electrical coupling between neurons 

To deliver artificial electrical coupling between 2 neurons, we wrote a dynamic 

clamp protocol to continuously measure Vm for each neuron and calculate the current 

using Ohm’s Law Iec=Gec*(Vm1-Vm2), where current i1=-Iec is the current injected into cell 

1 and i2=Iec. For networks with more than 2 neurons, the current injected into each neuron 

was calculated as the sum of currents at each cell according to Kirchoff’s Current Law. 



Leak conductance 

Leak conductance Gleak was added by assuming a leak reversal potential Eleak near 

the cell’s resting membrane potential Vrest, where Ileak=Gleak*(Vm-Eleak). Our choice of 

Eleak was tailored to each individual cell so that Gleak would not affect Vrest. To do this, we 

set Eleak as close to Vrest as possible without going above. In INs of the B.g., Vrest varies 

by cell type and by animal, so we allowed Eleak to also vary appropriately. This choice of 

Eleak follows previous work (Zhao et al. 2010). 

H-type conductance 

H-type conductance Gh are not well studied in B.g. neurons, so in this study we 

adapted a well-know Gh from another invertebrate system, the Pyloric network of the 

Stomatogastric Nervous System (originally from guinea pig), where  
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Eh=-50 mV, and Vth=-75 mV (Huguenard and McCormick 1992; Prinz et al. 2003). The 

differences we note between the Pyloric network and the feeding network of the B.g. are 

in frequency (1 s vs. 30 s, respectively) and plateau potentials (these vary by cell type in 
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both systems). To adjust for these differences, we chose Eh=-25 mV and Vth=-25 mV, 

and we scaled τm by a factor of 30 to slow it down. 

Positive and negative conductances 

For each conductance we added using the dynamic clamp, we were also able to 

subtract that conductance by setting the relevant G value to a negative number. This 

negative conductance should be interpreted as canceling out the effect of an existing 

membrane process, such as a population of ion channels, on Vm. While adding a 

conductance is straight-forward, subtracting is less so because there is no biological 

analog to a negative ion channel. For this reason, we took precautions when subtracting 

conductances not to subtract a larger G value that we expected to exist.  

CED1401 

Some of our experiments were done using custom software written in a 

proprietary Assembly-like language controlling a microprocessor on the CED1401plus 

(Cambridge Electronic Design, UK; (Sieling 2009)) that can store and run a limited 

number of user-defined instructions at precise timesteps. We used this system to run 

preliminary experiments for electrical coupling of 3 and 4 cells. Update timestep was 

limited to 1 ms, however, this was sufficient to observe spikes coupled across Gec.  

About the CED1401 microprocessor 

The CED1401 series DAQ boards are built to interface with CED’s Spike2 

software suite, which contains a proprietary scripting language and is popular among 

electrophysiologists. Beyond A/D and D/A conversion, the CED1401 has an onboard 
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microprocessor—called the “sequencer”—that supports up to 1023 Assembly-like 

instructions, which can be uploaded to its memory. The microprocessor can generate 

precisely timed digital pulses and analogue voltages and respond to input data in real 

time. The microprocessor clock runs at a constant, user-defined rate of up to 100 

instructions per millisecond. It controls the 1401 DACs (Digital to Analogue Converters), 

can read the latest value from a waveform channel, supports loops, and has 64 variables 

that can be read and set by on-line scripts. Using this information, real-time (fractions of 

a millisecond) responses to input data changes are possible (CED manual). 

RTXI 

Some of our experiments were done using custom software written in C++ to 

interact with the Real-Time eXperiment Interface (www.rtxi.org) and a NI PCI-6259 data 

acquisition card (National Instruments). All experiments using Gleak and Gh were done 

using this system. While we were able to use update frequencies up to 20 kHz (50 μs) 

using RTXI, we had better results with a slower rate. Extracellular stimulation artifacts 

(stimulation parameters were 8.5 V, 0.3 ms at 2 Hz; see Electrophysiology) were 

consistently observed as high frequency ringing on one or several microelectrodes. At 

high update frequencies, these artifacts were also observed by the dynamic clamp 

program, causing inappropriate currents to be injected. To prevent this, we chose a slower 

update frequency 3 kHz which removed most stimulation artifacts from our Vm signals by 

virtue of the Nyquist sampling theorem. At this rate, we were still able to observe spikes 

injected due to Gec. Aliasing of the stimulation artifacts was not a problem. 
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About RTXI 

RTXI is an open source real-time Linux based software system for hard real-time 

data acquisition and control applications. RTXI is a modified linux kernel that maintains 

hard real time performance by protecting the microprocessor from user interrupts. 

Because RTXI uses the microprocessor of a modern personal computer rather than a 

small dedicated microprocessor, it allows for shorter update intervals and greater 

flexibility compared to the CED1401 system described above. 

In our use, RTXI interfaces with the Axon amplifiers via a DAQ board connected 

to a PCI slot of the computer. To input (output) a signal, RTXI must tell the DAQ to 

perform ADC (DAC), and then the analog input (output) signals are sent to system 

memory (the amplifiers). RTXI must control ADC and DAC function, so open source 

drivers are needed for any DAQ to be used with RTXI. There are were no open source 

CED DAQ drivers available at the time of our experimental setup, so we could not use 

the CED1401 DAQ device with RTXI. Once we had obtained interesting data using the 

CED1401 system, we purchased an M-series NI DAQ board with 4 analog inputs and 

outputs and set it up with an RTXI system.  

Data Analysis 

The regularity of radula motor patterns or neuronal impulse burst occurrences was 

assessed by autocorrelation analysis as described previously (Nargeot et al. 2007). 

Nonparametric statistical procedures were used for both paired and independent data 

group comparisons, which were subjected where appropriate to post hoc significance 

testing. Differences were considered significant when p < 0.05. 



To assess the temporal organization of fictive radula bite cycles or of spike bursts 

in individual neurons, autocorrelations were computed by Spike2 software over a fixed 

number of successive events: either 100 radula motor patterns recorded extracellularly 

from motor nerves, 800 action potentials in intracellular recordings of B30 and B65 

neurons, or 2000 action potentials in intracellular recordings from B63 neurons. The 

differences in numbers of analyzed events in the different cell types reflected their typical 

spontaneous firing frequencies. Autocorrelations were then expressed as histograms of 

2.5 s bin widths over ranges of 150 s or 300 s for the analysis of extracellularly-recorded 

motor patterns and intracellularly-recorded action potentials, respectively. The choice of 

these time scales reflected the slower burst frequencies of individual neurons in response 

to depolarizing current injection as compared to the shorter cycle periods of motor 

patterns generated by the buccal network under tonic stimulation of the peripheral 2,3 

nerve.  

Buccal ganglion activity was considered as rhythmically recurrent when the 

corresponding autocorrelation histogram could be fitted (correlation coefficient r_0 at a 

significant level of p_0.05) by a damped sinusoidal Gabor function (Engel et al. 1990; 

Young et al. 1992) according to  
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with parameters of amplitude (a), period (b), initial phase lag (c) and time 

constant (d)≠0 at p ≤ 0.05, an amplitude of at least 10% above offset (a/y0 > 0.1), and a 

minimum of three peaks 8.0/ >bd  (Young et al. 1992). In some cases, we were unable 

to obtain 100 radula motor patterns, but the Gabor fit was still significant. In these cases, 
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we used the data only when the Gabor significance had changed between experimental 

conditions. Computations of these parameters, fitting data by nonlinear regression, and 

testing of statistical significance of the parameters and of the correlation coefficient (r) 

were performed with Sigma Plot software (Systat, Richmond, CA). 

Results 

To test whether cellular changes correlated to contingent-reward training are 

necessary and sufficient for observed changes in behavior—increased rhythmicity and 

rate—we used the dynamic clamp to control one or several membrane conductances in 

the in vitro analog of operant conditioning (Nargeot et al. 1997). We tested the effects of 

electrical coupling Gec between INs and changes in Gleak and Gh in individual INs. We 

were able to test both criteria using naïve starved preparations, which may exhibit either 

type of behavior, e.g. we could add Gec to a non-rhythmic preparation to test if it is 

sufficient to change the behavior, then in a contingent preparation we could subtract Gec 

to test if that property is necessary for the changed behavior. Naïve preparations behave 

differently—80% display non-contingent (non-rhythmic) and 20% display contingent 

(rhythmic) fictive behavior—so we were able to test both populations without using the 

laborious behavioral training protocols described in Nargeot et al. (Nargeot et al. 1997), 

however, the preponderance of our data come from preparations of the non-contingent 

type. This work was done entirely in the lab of John Simmers in Bordeaux, France during 

3 summer-time trips. At the time of writing, we are not able to present statistical group 

comparisons in every figure. These comparisons are forthcoming, but they are not 

presented here. 
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Electrical coupling affects rhythm but not rate 

In naïve nonrhythmic networks, BMPs occurred irregularly under free-running 

conditions. When electrical coupling was turned on, bursts in INs and BMPs showed a 

stable rhythm. We show a representative example in Figure 15, where many features of 

the in vitro analog of operant conditioning are evident. When coupling is turned on: 1) 

the fictive behavior seen in the extracellular recordings show rhythmic ingestion patterns, 

2) neuron 63 leads all BMPs, 3) burst lengths in intracellular recordings are regularized. 

Gabor function fits show rhythm regularization (Figure 15B). Electrical coupling had no 

measurable effect on BMP frequency (Figure 15C). In rhythmic preps, we set Gec = -15 

nS to remove the effect of existing electrical coupling on the network. This operation was 

the opposite of that shown in Figure 15, and we observed the opposite effect- an 

immediate change from rhythmic to arrhythmic activity (not shown). We measured 

changes in burst length variability in naïve nonrythmic preps. Using the same bursts used 

for Gabor fits, we measured coefficient of variation (σ/μ, where σ is standard deviation 

and μ is mean) for the 2 groups—with and without electrical coupling— and found that 

burst lengths were less variable with the coupling turned on (Figure 15D). Likewise, we 

measured a decrease in burst dispersion or an increase in the regularity of phase 

differences between INs (not shown).  



 

Figure 15. Effects of Gec on naïve arrhythmic network. (A) Fictive motor activity immediately changes 
when Gec is applied. From top to bottom, traces are: extracellular recordings from peripheral nerves I2 n. 
(protr.), n.2.1 (Retr.), R n. (Clos.), intrasomatic recordings from B30, B63, B65 (scale bars at right are 50 
mV). (B) Histograms of BMP activity (grey boxes) with Gabor function fits (thick black lines) showing 
change in rhythmicity. (C) Group comparison showing no significant (n.s.) change in BMP rate due to Gec 
(N=6). (D) Group comparison showing reduced burst length variability due to Gec (N=6, p<0.05). (E) 
Effect of artificial electrical coupling on measured coupling coefficient. From left to right: (E1) current 
injected into B63 has no effect on B65 or B30 until Gec is turned on (+20 nS), (E2) in a simplified circuit 
model of electrical coupling we show the effect of Gec on coupling coefficient (V2/V1), given the natural 
electrical coupling Gnat and the input impedances Rin, (E3) comparison of model and experimental data 
(Rin1=Rin2=8MΩ). Red circles indicate where Gec caused the measured coupling coefficient to equal the 
control (ctrl) or contingent values measured in Nargeot et al. (2009). 

  

To check that we used an appropriate strength of electrical coupling, we measured 

a dose-response curve for Gec vs. Coupling Coefficient (CC) (Figure 15E3). For the cells 

shown, we found that Gec=10 nS was sufficient to increase CC to contingent levels. This 

value varies from cell to cell and given that we inject current at the soma while gap 
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junctions are located in the neuropil, it is reasonable to use 20 nS as recently described in 

another invertebrate system (Zhao et al. 2010). 

From a simple electrical model, we can see that this curve is non-linear, but in the 

range that we measured experimentally, it should appear linear (Figure 15E2). By hand, 

we fit values for Gnat and Rin2 to match the y-intercept (Gec=0) and slope of experimental 

data (E3). We see the critical value (CC=0) where we should limit our use of negative Gec 

values (E2; near −20 nS, given Gnat=20 nS). For the given model, this is where Gec<0 has 

completely counteracted the native electrical coupling Gnat and stronger Gec has no 

biological significance. This value is not sensitive to changes in Rin2 on the scale of 

changes previously reported, between 4 and 7 MΩ (Nargeot et al. 2009).  

Isolated configurations 

To test whether the effect of Gec was CPG-dependent or only IN-dependent, we 

conducted the same experiment while functionally isolating the INs from the CPG  

(Figure 16). By hyperpolarizing one B63 neuron, the CPG is silenced. Using the 

amplifier’s voltage offset control, the hyperpolarized B63 neuron (63r) was adjusted back 

to its resting potential and coupled to 63l. At this time, we depolarized 63l, initiating 

bursting activity. We also depolarized 65r and coupled it to the bursting 63l. We found 

that in this configuration, the effect of Gec was the same as when the CPG was 

functional—that is—the effect is that Gec causes a marked and immediate increase in 

rhythmicity. 



 

Figure 16. Effect of Gec when CPG is deactivated. Scale bars are 50 mV. 

B64 is not necessary for increased rhythmicity 

B64 is a member of the feeding CPG, but it is not an IN. B64 is a retraction 

neuron with strong ipsilateral inhibitory projections onto all INs (Figure 14). Due to this 

type of connectivity, B64 could act to synchronize the INs, however, we show that B64 is 

not necessary for increased rhythmicity. In Figure 16, B63l was hyperpolarized, thus the 

CPG was not active and B64 was never activated. This is confirmed extracellularly by the 

absence of retraction motor activity, yet electrical coupling still induced regular bursting. 

Leak conductance affects rate but not rhythm 

In arrhythmic preps, artificial leak conductances Gleak subtracted from INs 

immediately caused increased BMP frequency with no effect on rhythm (Figure 17). In 

rhythmic preps, we found the inverse was true—leak added to the INs immediately 

caused decreased BMP frequency with no effect on rhythm (not shown). 
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Figure 17. Effect of Gleak on network. (A, B1) As in Figure 15. (A) Scale bars are 50 mV. (B1) Rate vs. 
Gleak as Gleak is varied (N=10 BMPs per measurement). (C1) Excitability protocol. (C2) Spike frequency. 
(D) Rin as a function of Gleak. Red circles indicate where Gleak caused measured Rin to equal the control 
(ctrl) or contingent values measured in Nargeot et al. (2009). 

To check that Gleak was affecting IN excitability, we tested this directly (Figure 

17D). To control for resting membrane potential (Vrest) variation, we injected current to 

bias the cell to a fixed Vrest, then measured spike threshold and spike frequency by 

injecting Iinj in (0.0,1.0) nA in steps of 0.1 nA. In all preps, Gleak increased spike threshold 

and decreased spike frequency (and vice versa for negative Gleak). 

Further, we measured changes in input impedance (Rin) due to Ileak (Figure 17E). 

This relationship is non-linear as expected from calculating the equivalent resistance for a 

constant Rin (MΩ) and variable Gleak (nS) added in parallel Req=1/( 1/Rin + Gleak/1000). 

For the preparation shown, Gleak=-100 nS gives the Rin measured in contingent preps (red 

circle; Nargeot et al. 2009), so we take this as a reasonable value to use for our dynamic 

clamp experiments. These measurements were taken in two-electrode current clamp 

mode.  
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Electrical coupling plus leak conductance switches network from non-contingent to 

contingent fictive motor behavior 

To test for the compatibility of Gec and Gleak mechanisms, we applied them 

simultaneously to non-rhythmic preparations (Figure 18). Our results are simply the 

combination of each individual experiment- indicating that the 2 mechanisms may not 

interact, rather they act independently. As seen in the above sections, where either Gec or 

Gleak was applied, we see the same results here- increased rate and rhythm. This effect 

was not sensitive to small changes in Gec or Gleak. Additionally, we applied this method in 

reverse. We trained animals as previously described, by contingently pipetting seaweed 

juice into the intact animal’s mouth cavity, then performed experiments in vitro. In 

Figure 19, we show that adding –Gec and +Gleak recover the fictive behavior of an 

untrained animal, irregular BMPs at a reduced rate. 



 

Figure 18. Gec plus Gleak are manipulated in untrained animals to reproduce fictive behavior seen in trained 
animals. All panels are as described in Figure 15. Scale bars are 50 mV. 

 87



 

Figure 19. Gec plus Gleak are manipulated in trained animals to recover fictive behavior seen in untrained 
animals. All panels are as described in Figure 15. Scale bars are 50 mV. 

Coupling does not affect Vrest or network period 

In all measured groups, Vrest and network period was similar. No significant 

differences were found in the initial resting membrane potentials of recorded postsynaptic 

neurons in the different experimental groups of preparations (Figure 20), indicating that 

changes in the coupling coefficient between cell pairs in the different experimental 

groups were not due to initial differences in postsynaptic membrane potential. The bi-

directionality of coupling between cells was also verified qualitatively by injecting 

current via the single post-junctional recording electrode and recording the voltage 

response in the previously pre-junctional neuron. There was also no change in Vrest when 

Gleak was modified by dynamic clamp (not shown). 
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Figure 20. Group comparisons for each IN type showing no change in Vrest after adding Gec.  

Discussion 

We have built on the work of others to elucidate mechanisms underlying operant 

conditioning in a behaviorally relevant motor pattern generating network. Previous work 

described correlates of operant conditioning that were dependent on Dopamine (Nargeot 

et al. 2007; Nargeot et al. 2008; Nargeot et al. 2009). Neuromodulators like Dopamine 

can have many effects (Harris-Warrick et al. 1998), so it was impossible to know which 

effects were important. In this work, we make quantifiable changes that clearly link cause 

and effect, giving reversible results that explain how the interaction of 2 cellular 

mechanisms underlie operant conditioning. More generally, we describe basic 

mechanisms of interest for future learning and memory research. Regulation of gap 

junctions is currently a major area of interest (Perez Velazquez and Carlen 2000; Perez 

Velazquez et al. 2001; Christie et al. 2005; Migliore et al. 2005; Kokarovtseva et al. 

2009), however, to our knowledge they have never before been so directly implicated in 

learning. 
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How does electrical coupling regularize BMP generation? 

Electrical coupling Gec can have different effects depending on the cellular 

characteristics of the coupled neurons (Perez Velazquez et al. 2001). To our knowledge, 

Gec has been implicated in increasing burst period (Sherman and Rinzel 1992), changing 

spiking to bursting (Komendantov and Canavier 2002), regulation of burst duration 

(Abbott et al. 1991), increasing dynamic range of oscillation (Soto-Trevino et al. 2005), 

synchronization (Galarreta et al. 2004; Migliore et al. 2005), normal motor behavior in 

rats (Moore and Grace 2002), and learning in rats (Kokarovtseva et al. 2009). While it’s 

beyond the scope of this paper to distill the dynamical features of INs that support our 

reported observations, we can speculate that the addition of Gec in naïve arrhythmic 

networks causes a transition in the phase portrait of the network of INs, generating a new 

stable orbit or stabilizing an existing unstable one. Below, we detail the effects of Gec to 

inform any future models. 

Using our dynamic clamp systems, individual spikes generated in one cell caused 

voltage deflections in the partner cell that looked like attenuated spikes. Also, plateau 

potentials in one cell caused steady current to be passed to the partner cell. In Figure 16, 

we saw rhythmic activity in B63r while B63l was silent, so steady currents may be more 

important, but at this point we don’t know if the fast interaction of spikes or slow 

interaction of plateau potentials is more important for the observed regularization of 

activity. 

Because we coupled different cell types, Vrest varied from cell to cell, resulting in 

a small constant current passed between cells. It’s important to note that each interaction 

between two cells causes an equal amount of current to be passed into one cell as is 
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removed from its partner. From the view of charge, these interactions are equal and 

opposite, however, these are real neurons, which are heterogeneous in many aspects 

including input impedence Rin, so it’s possible that one cell could have a net excitatory 

effect on the other without experiencing significant inhibition. We have observed this 

effect in both directions, but have not conducted an analysis.  

Different configurations 

In several network configurations, we saw similar increases in rhythmicity (not 

shown). After surveying several of the 510 possible different configurations of 2 to 4 INs, 

we choose 2 configurations for further study based on theoretical and empirical data. The 

first configuration consists of 4 cells: B63-B63-B65-B30. This configuration includes 

both pacemakers B63 and one each of the other 2 IN cell types, one from each side. The 

second configuration consists of 3 ipsilateral cells: B63-B65-B30. We have not done a 

deep survey, but our experience is that it is of primary importance to couple all different 

IN cell types and secondary to couple both B63 pacemaker cells. We have replicated our 

major findings with most configurations of 2, 3, and 4 cells that we have tried. We 

measured changes in rhythmicity and rate in several conformations. Our experience is 

that the effect of Gec is increased when (a) the B63 neurons are coupled, and (b) when 

more INs are coupled. We tested couplings of 2 INs, including coupling the 2 B63 

neurons, and we found a mild effect. This is why we present Gec data from experiments 

where we coupled 3-4 neurons. As a control, we coupled 4 CPG neurons that were not 

INs: B31/32r and B31/32l. We saw no effect, so we expect that this is not a population 



phenomenon. The effect of Gec on burst regularity was stronger ipsilaterally by coupling 

different cell types 30/63/65 rather than contralateral pairs of the same cells. 

 

Figure 21. Effects of Gec and Gleak in the 4 cell configuration. All traces are as in Figure 15. Scale bars are 
50 mV. 
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How does Gleak increase frequency? 

As described in some detail in Zhou et al. (2010), the effect of a +Gleak is to add or 

strengthen an attracting stable fixed point at Vm=Eleak (+Gleak represents the addition of 

leak, -Gleak subtraction). Likewise, the effect of –Gleak is to add a repelling unstable fixed 

point at Eleak. For a strong magnitude of -Gleak this can cause the cell to be bimodal, where 

it is either hyperpolarized, remaining below Eleak as enforced by the strength of –Gleak, or 

depolarized, remaining above Eleak. Experimentally, we can choose Eleak slightly below 

Vrest to push the cell towards depolarization and increased excitability, however, this is 

likely to also change Vrest. Since our goal with –Gleak was to reduce the effect of the 

endogenous leak channel population, and we expect this leak to be primarily a K+ 

dependent process, we choose Eleak slightly below Vrest, often at Vrest-5 mV. This small 

offset had no measureable effect on Vrest when compared to controls, but did alter the 

dynamics, sometimes significantly, where we could observe large swings in burst 

frequency as Eleak was changed from slightly above Vrest to slightly below or vice versa. 

Such sensitivity is to be expected—it comes from the dynamics of the system as 

described above and in the Zhou paper.  

H-type conductance affects rate—does it effect rhythm? 

Since many membrane mechanisms can affect excitability, we also tried adding a 

model of the H-type conductance (Ih). We saw increased rate but also sensitivity in Vrest. 

We were able to choose the parameters of Ih such that Vrest was not affected in one cell, 

but it was more difficult than for Gleak. We did not observe an effect on rhythm, although 

this is theoretically possible. 
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Control of firing order 

We have observed that it is common to observe the correct firing order (B63, B30, 

B65) in naïve nonrhythmic networks after adding Gec artificially, however, this is not 

always the case. Sometimes we observed rhythmic activity with inappropriate firing 

order. The simplest explanation that our data supports is that natural Gleak modulation is 

cell-type or activity dependent. This type of modulation is consistent with a previous 

description of Dopamine modulation in lobsters (Harris-Warrick et al. 1998). Our 

hypothesis is that Gleak decreases more in B63 than in other INs so that it is the most 

excitable and begins bursting first. 

Dopamine dependency 

The neurotransmitter, dopamine (DA), is commonly thought to play a critical role 

in motivated behaviors and their adaptations by learning. Nargeot et al. (Nargeot et al. 

1999; Nargeot et al. 2008) tested the effects of exogenously-applied DA on the B.g. in 

vitro and found that it produces the same set of correlates to operant conditioning as 

measured previously- increased electrical coupling between INs and a change from 

arrhythmic to rhythmic activity in INs, however, it was unknown what other effects of 

DA might exist. In this work, we show that a limited group of cellular correlates is causal 

to the observed behavioral switch. While DA has been previously implicated in many 

modulatory roles, e.g. (Harris-Warrick et al. 1998), it seems that in the B.g., one 

important role is in the regulation of Gec and Gleak, regardless of what other regulatory 

roles DA may occupy. 
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Biological significance 

Of synchrony/rhythmicity for the animal? 

The brain (or behavior) switches from an erratic trial/error state to a strongly 

motivated (compulsive) state. Our dynamic clamp experiments show that synchrony is 

necessary for rhythmicity- there is a causal relationship between synchrony and 

rhythmicity. 

Of independent mechanisms for rhythm and rate control 

We show that independent cellular mechanisms may control the rhythm and rate 

of the feeding CPG in the B.g. Now we should ask- what advantage does this confer? Is 

there a functional advantage for the animal? Is there a situation where the animal may 

prefer to ingest its food quickly and rhythmically or slowly and rhythmically? This could 

be an interesting direction for future investigation. 

Synapse-mediated effects 

We have not investigated any effects of synapse-mediated network 

reconfiguration. This work was motivated by Nargeot et al. (2009), and they did not 

report any such changes. While we work with identified neurons in the B.g., the full 

feeding network has not been described. The INs we study receive many post-synaptic 

potentials (PSPs) from unidentified neurons, however, these synapses are not of primary 

importance as far as we know. 
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Buccal ganglion modeling 

Single compartment models that include Hodgkin-Huxley ion channels that 

roughly reproduce B.g. neuron activity exist (Baxter et al. 1999; Susswein et al. 2002), 

however, the ion channels present in B63, B65, and B30 have not been studied in depth. 

No model of the feeding CPG exists. To our knowledge, it is not known for each 

neuronal type which channels are present or what are the conductance densities of these 

channels. We think that it will be important in the future to obtain voltage clamp data 

characterizing these channels. Further, there is much to be discovered about intracellular 

processes that may contribute to the intermittent bursting seen in naïve arrhythmic 

preparations, such as Calcium dynamics. 
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CHAPTER 5: CONCLUSIONS 

Neuroscience and ultimately psychology aims to describe the activity of 

frighteningly complex neural networks. To accomplish this requires research input from 

many levels. Rhythmic activity has been found important at many levels, from single 

pancreatic beta cells to spatially disparate ensembles of cortical neurons supporting facial 

recognition. Pathological rhythms such as those found in Parkinson’s and epilepsy have 

put a human face on the importance of understanding how such rhythms work and fail.  

We focused on small networks consisting of identified neurons that have known 

connections. We aimed to understand the rhythmic properties of these networks at the 

cell membrane, where a rich literature of experimental and theoretical work already 

exists. Our ultimate goal is to develop basic theory that can scale up to large 

heterogeneous networks. This will impact not only medicine but also may provide insight 

into biological function of information processing, which could be applied 

algorithmically. 

Our methods include electrophysiology, theory of coupled non-linear oscillators, 

and dynamic clamp. First, we evaluated a theory of pulse-coupled oscillators for 

networks of 2 bursting neurons coupled via excitation. Then, we extended this theory to 

include the effects of natural biological variability. Finally, we described a novel 

mechanism for a network to switch from irregular to rhythmic activity. 

Aim 1- Chapter 2 

In Chapter 2, we validated existing pulsatile coupling methods for networks of 2 

neurons coupled by artificial chemical synaptic excitation in networks consisting of one 
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biological and one model neuron. These networks were heterogeneous in terms of 

synaptic strength, burst length, and intrinsic period. We used a well studied biological 

neuron with several common bursting mechanisms—plateau potentials, frequency 

adaptation, and post-inhibitory rebound—so that our results apply to a wide range of 

neurons. We found that the methods were generally good, accurately predicting our 

observations of phase-locking for most networks, including those that phase-locking via a 

depolarization block mechanism; however, because we studied a large parameter set, we 

found 2 special cases in the data where it was necessary to extend the theory. The first 

special case was a common problem of feedback excitation (runaway excitation). In this 

case, recurrent excitation caused one or both neurons to change from rhythmic bursting to 

tonic spiking. This occurred when at least one synapse was strong. The second special 

case was due to a combination of the natural variability in intrinsic frequency and the 

structure of the excitatory PRC. PRCs in response to excitation are more complex than 

inhibitory ones. These may take several morphological forms, some of which include an 

apparent discontinuity. When the natural variability is large enough to push the system 

over this discontinuity, then we say that the phase-locked mode has been destroyed by 

noise. To investigate the effects of this noise, we created firing time maps that included 

noise in the PRCs, and we showed as a proof of concept that the noise levels we 

measured experimentally are capable of destroying phase-locking. In response to an 

ongoing curiosity—why all CPGs are dominated by inhibitory synapses rather than 

excitatory ones—we applied our new general knowledge of the rhythmic properties of 

excitatory synapses to conclude that they are less suitable for the robust rhythmic activity 
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that is the hallmark of a CPG. Rather excitation seems better suited for brief, transient 

synchronization. 

Aim 2- Chapter 3 

In Chapter 3, we made a formal description and systematic study of the firing 

time maps we created in Chapter 2. A significant motivation of this work was to 

communicate our findings effectively to a more technical audience that has recently 

begun to study problems of noise and heterogeneity in great depth. We verified over a 

large dataset that variability in a PRC does modulate the strength of phase-locking. We 

showed that noise may create or destroy phase-locked modes of activity. Additionally, we 

found that our maps help explain 1) a noise threshold at which phase-locking is broken, 

and 2) the phase-dependency of noise, especially near the causal limit. This work 

essentially added another tool that may be used in the present to explain the effects of 

noise and heterogeneity on experimental data and in the future to evaluate new theoretical 

concepts. 

Aim 3- Chapter 4 

In Chapter 4, we broke away from existing theoretical methods to study new 

mechanisms of rhythm generation in an important biological context. Using the dynamic 

clamp, which we used above to verify theory, we reconfigured part of the feeding CPG 

for the mollusk Aplysia to show exactly what mechanisms support learning in this 

network. Following correlative experimental data showing changes in coupling 

coefficients and excitability, we changed electrical coupling between neurons and leak 

conductance in single neurons. By applying these manipulations separately and together, 
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we showed that they are independent. Electrical coupling controls rhythm and leak 

controls rate. To our knowledge, these results make the feeding CPG the best understood 

reward-learning system to date. 

Overall conclusions 

In modern research, theoretical and experimental work is often executed 

separately. Different people in far-away places half-way around the Earth are working on 

the same problem. In our studies, we have simplified that process. This work includes 

experimental exploration and theoretical development. While it has been a pleasure to 

work in this flexible mode, it has also been a benefit to our work. Experimentally, we 

have been efficient, designing experiments that directly advise theory. Theoretically, we 

have enjoyed knowledge of the limits of experimental data, staying close to the data to 

avoid passing those limits. We have validated and extended a theory and dissected a 

mechanism that relates to rhythmic behavior of neural networks. 
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