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SUMMARY 

The most active form of Vitamin D, 1α,25(OH)2D3, modulates cells via receptor 

mediated mechanisms. While studies have elucidated the pathway via the classical 

nuclear Vitamin D Receptor (VDR), little is known about the membrane-associated 

Vitamin D Receptor (ERp60). Caveolae and its characteristic protein Caveolin-1 have 

been involved in many signaling pathways due to its specific structure and physical 

configuration. Other studies have shown that many components of the Vitamin D 

pathway have been found in caveolae. This study hypothesizes that caveolae and 

Caveolin-1 are important for the effects of 1,25 Vitamin D signaling via ERp60. 

Research up to date have shown that in rat and mouse growth zone chondrocytes, cells 

deprived of intact caveolae either through disruption through β-Cyclodextrin or genetic 

knockout do not exhibit the characteristic responses to Vitamin D through ERp60 when 

compared to chondrocytes with functional caveolae. Studies using immunofluorescence 

co-localization and caveolae fractionation have shown that ERp60 is localized in the 

caveolae domains. Cellular fractionation was also performed to examine the localization 

of the ERp60 receptor in lipid rafts and caveolae. Histology and transmission electron 

microscopy were also used to examine the physiological importance of caveolae and 

Caveolin-1 in growth plate morphology and cellular characteristics. 
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CHAPTER 1.  INTRODUCTION 

1.1  Background 

 Vitamin D metabolites have significant clinical importance in human physiology.  

The most commonly examined metabolites of vitamin D have been 1α,25(OH)2D3 and 

24,25(OH)2D3.  Studies have shown a correlation between 1α,25(OH)2D3 and the 

immune system [1], cancer [2], bone formation [3], and mineral absorption [4].  

Inhibition of vitamin D function through lack of sun exposure or genetic defects has led 

to the clinically manifested condition of rickets.  Endochondral bone formation is 

particularly affected, and is characterized by bowing of the knees due to failure of the 

growth plate to become calcified. 

 Studies of vitamin D function have traditionally focused on the classical nuclear 

vitamin D receptor.  While steroid hormones like vitamin D generally mediate 

transcription-associated events, they also participate in a more rapid, membrane-

associated signaling phenomenon [3, 5, 6].  In the case of 1α,25(OH)2D3, 1,25D3-

MARRS (Membrane associated, rapid response binding), also referred to as ERp60, has 

been identified as a membrane vitamin D receptor [7].  ERp60 is associated with many 

observed effects of 1α,25(OH)2D3 [8].  However, little is known about the location and 

the interaction of ERp60 within the plasma membrane where it initiates its membrane-

associated effects. 

1.2  Growth Plate 

 Cartilage, a relatively avascularized tissue, is produced by chondrocytes.  

Cartilage forms the necessary framework for many other tissues including bone, articular 

cartilage, and growth plate. The extracellular matrix produced by the cartilage consists 
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predominantly of type II collagen and proteoglycan, often in the form of proteoglycan 

aggregate with highly sulfated glycosaminoglycan side chains in mature tissues [9].  

Chondrocytes will eventually undergo hypertrophy leading to mineralization of their 

extracellular matrix. The mineralized tissue is reabsorbed by osteoclasts, resulting in 

increased vascularization.  Osteoprogenitor cells migrate to the mineralized tissue 

scaffold and form metaphyseal bone, characterized by bone trabeculae and bone marrow. 

Newly formed bone will eventually become reabsorbed leaving a marrow cavity. In some 

bones, between articular cartilage and the newly formed bone is the growth plate.  In 

other bones, the growth plate is interposed between a secondary site of ossification and 

the metaphysic.   

 Bone growth occurs through one of two mechanisms: membranous ossification 

and endochondral ossification.  In membranous ossification, bone growth occurs laterally 

in a direction perpendicular to the growth plate centers, and does not require the calcified 

cartilage for a scaffold. In endochondral bone formation, growth occurs longitudinally via 

the growth plate in a direction that results in the lengthening of bone.  Growth plate 

morphology varies depending on its location in the body. There are also significant 

differences in the growth plate between animals of different species. In humans, the 

growth plate undergoes closure shortly after puberty. During the process, depending on 

the location of the growth plate, capillaries migrate through the calcified cartilage using 

osteoprogenitor cells that lay down trabecular bone; supporting marrow elements [4].  

Although that same event occurs in rodents, the rodent growth plate remains permanently 

open. 
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 The growth plate is characterized by a series of linearly aligned chondrocytes 

organized in clearly defined morphologic zones (Fig. 1).  At one end of the growth plate 

is the resting-zone, or the reserve zone, where the chondrocytes exhibit a hyaline 

cartilage-like phenotype [9].  Cells in the resting-zone, also called RC cell, are scattered 

irregularly in the matrix. RC cells will remain in the resting-zone for an unknown amount 

of time until regulatory signals stimulate the cells to undergo proliferation.  During the 

proliferative state, chondrocytes align, and they progress to a prehypertrophic state where 

significant changes occur to the shape and size of the cells. Additionally, chondrocytes 

also begin to modify their extracellular matrix [9].  In the hypertrophic cell zone, 

chondrocytes undergo a remarkable increase in size.  The cytoplasm, endoplasmic 

reticulum, cisternae, golgi, and mitochondria also become greatly enlarged [10].  While 

the extracellular matrix produced by chondrocytes in the proliferation and the 

prehypertrophic zones have low levels of mineral content, there is  increasingly more 

mineral content in the last three to four cell layers in the lower hypertrophic zone [11].  

Hypertrophic cells also exhibit signs of apoptosis [4].  Pre-hypertrophic and hypertrophic 

zones are collectively referred to as growth zones, and the cells contained in them are 

referred to as growth zone chondrocytes, or GC cells.  Beyond the hypertrophic zone, the 

matrix vesicles in the extracellular matrix begin to form apatite crystals leading to 

calcified cartilage that will eventually pave the way for bone deposition. 

1.3 Regulation by Vitamin D3 

 Pre-vitamin D3 is produced from 7-dehydrocholesterol, a derivative of 

cholesterol, via a photochemical process in the skin.  Vitamin D3 is then formed via the 

spontaneous isomerization of pre-vitamin D3.  Another source of vitamin D3 is via  
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Figure 1. Schematic of the growth plate 
 
 

Boyan et al. 



5 

fortified foods such as milk and cereal.  Regardless of the source of vitamin D3, it is 

hydroxylated in the liver to 25-hydroxyvitamin D3 [25(OH)D3].  Further hydroxylation in 

the kidney results in the production of the two main biologically active forms of vitamin 

D: 1α,25(OH)2D3 and 24R,25(OH)2D3.  Vitamin D3 has a significant and important 

association with cartilage. In studies where vitamin D deficient rats are treated with 

radiolabeled 25(OH)2D3, 1α,25(OH)2D3 and 24,25(OH)2D3 accumulated within the tissue 

[9].  Additionally, it was found that even though the circulating levels of these vitamin D 

metabolites are at the picomolar levels, their levels in the growth plate are in the 

nanomolar range [12].  

1α,25(OH)2D3 has a very important role in mineral metabolism.  It is involved in 

the intestinal absorption of calcium and phosphorus, enhancement of renal mineral 

absorption, stimulation of osteoclastic bone resportion, and promotion of mineral 

deposition in newly mineralized bone [4].  Within the growth plate, 1α,25(OH)2D3 has 

two major functions; it modulates calcium transport to the extracellular matrix and crystal 

formation in matrix vesicles [13], and it promotes the differentiation of prehypertrophic 

and hypertrophic chondrocytes.  The biological role of 24,25(OH)2D3 is not as well 

understood, and there have been controversies over its significance [14].  However, 

studies have shown that both of the vitamin D metabolites activate the protein kinase C 

(PKC) signaling pathway in their respective target cells [15, 16].  The classical nuclear 

receptor for 1α,25(OH)2D3 (VDR) has been found in growth plate chondrocytes, though 

the nuclear receptor for 24,25(OH)2D3 has not been elucidated. Studies have shown that 

receptors for both 1α,25(OH)2D3 and 24,25(OH)2D3 have been found in the plasma 

membrane and the matrix vesicles of growth plate chondrocytes [17, 18].  The vitamin D 
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metabolites, however, affect cells differently and through different signaling mechanisms.  

While the activation of the PKC signaling cascade via 1α,25(OH)2D3 has been found in 

prehypertropic and hypertrophic cells, 24,25(OH)2D3 activation of PKC has been found 

in RC cells.  

 Clinically, vitamin D has been very effective in treating rickets.  In rickets, the 

vitamin D deficiency results in the failure of hypertrophic cartilage calcify its matrix.  

Rickets does not cause significant changes in the proliferating cell zone.  Instead, 

prehypertrophic chondrocytes fail to mature, resulting in elongation of the hypertrophic 

zone.  Even though mineralization still occurs despite vitamin D deficiency, studies have 

shown the mineral crystals that are formed in rachitic mice are less mature than those of 

normal rats [19].  The inability of the cartilage to become calcified is primarily due to the 

failure of the cells to transport calcium effectively.   

Raising the Ca2+ ion content of the serum has been shown to heal mineralization 

defects [20].  However, vitamin D is also involved in the regulation of other aspects of 

growth plate physiology that may contribute to the development of rickets.  The lipid 

metabolism of the growth plate is altered in vitamin D deficiency, and treatment of 

rachitic chicks with vitamin D causes an increase in the activity of phospholipase A2 in 

the growth plate [9].  Additionally, changes in the regulation of matrix vesicle enzymes 

such as alkaline phosphatase and matrix metalloproteinases may also play a role in 

rickets.  Alkaline phosphatase activity normally increases through the hypertrophic zone, 

but rachitic animals have a suppressed level of activity that can be rapidly increased with 

1α,25(OH)2D3 [9].  Proteoglycans, a major component of the extracellular matrix, form 

smaller aggregates in vitamin D deficit chicks [21].  Vitamin D deficiency has also been 
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linked to altered rate of cartilage resorption and altered regulation of osteoclast formation 

[9].   

It is still unclear how different metabolites of vitamin D regulate the growth plate.  

While 1α,25(OH)2D3 will heal rachitic lesions by affecting calcium regulation, 

24,25(OH)2D3 has also been found to heal rickets through a different mechanism.  It is 

likely that 24,25(OH)2D3 acts directly on the chondrocytes in the upper growth plate to 

promote differentiation along the endochondral lineage.  The healing effect of 

1α,25(OH)2D3 increases with the addition of 24,25(OH)2D3 [22]. 

1.4 Rapid Actions and Nongenomic Mechanisms of Vitamin D3 

 Both 1α,25(OH)2D3 and 24,25(OH)2D3 exert many of their effects on cartilage via 

VDRs that involve changes in gene transcription and mRNA stabilization [9].  However, 

there is also evidence of membrane-mediated mechanisms with nongenomic actions.  In 

nongenomic actions, the hormone is not involved in the regulation of new gene 

transcription or protein synthesis.  Due to the ability for rapid protein synthesis, it is not 

sufficient to consider nongenomic actions as rapid actions.  Instead, experiments examine 

membrane fluidity, rapid turnover of phospholipids, changes in calcium flux, and rapid 

activation of PKC as proof of nongenomic actions.  The difference in charge density 

between 1α,25(OH)2D3 and 24,25(OH)2D3 results in different interactions with the 

membrane, resulting in different fluid mosaic structures.  Treatment of RC and GC cells 

with 1α,25(OH)2D3 and 24,25(OH)2D3 causes changes in membrane fluidity in a cell 

specific manner [23].  1α,25(OH)2D3 increases the fluidity of GC plasma membranes, but 

does not change the membrane fluidity of RC cell.  On the other hand, 24,25(OH)2D3 

decreases the membrane fluidity of GC cells while increasing the fluidity of RC plasma 
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membranes.  The most compelling evidence for the membrane action of 1α,25(OH)2D3 

and 24,25(OH)2D3 is the capability of growth plate cartilage cells from vitamin D 

receptor knockout mice to preserve their membrane response to 1α,25(OH)2D3 and 

24,25(OH)2D3 [5]. 

1.5  Mechanism of Action 

1.5.1 1,α25(OH)2D3 

 The rapid action of 1α,25(OH)2D3 on GC cells is shown in Fig. 2 [9] and is 

summarized below.  The mechanism involves ERp60, causing a rapid increase in 

phospholipase A2 (PLA2) activity.  The increase in PLA2 is dependent on the activity of 

PLA2 activating protein, also named PLAP and PLAA.  PLAA results in increased fatty 

acid turnover, which in turn leads to increased membrane fluidity [9].  Additionally, the 

fluidity change alters membrane enzyme activity and calcium ion flux [24].  The 

lysophospholipids released by PLAA activate phosphatidylinositol-specific 

phospholipase C (PI-PLC).  PLC then catalyzes the hydrolysis of phasphotidylinositol 

4,5-bisphosphate (PIP2), increasing production of phosphoinositol trisphosphate (IP3), 

and leaving diacylglycerol (DAG) associated with the membrane [25].  IP3 is involved in 

calcium regulation by causing the release of Ca2+ from the endoplasmic reticulum into 

the cytoplasm.  DAG will bind to PKC, causing its translocation to the plasma 

membrane.  DAG, together with Ca2+, will also activate PKC.  PLA2 also leads to the 

stimulation of arachidonic acid (AA) release.  AA release can stimulate PKC activity; it 

is the rate-limiting step in prostaglandin production in response to 1α,25(OH)2D3, and its 

release results in increased prostaglandin E2 (PGE2) production, which is an autocrine  
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Figure 2. Membrane action of 1α,25(OH)2D3 in GC cells 

Boyan et al. 



10 

factor that acts on PKC via its EP1 receptor [9].  PKC activation initiates phosphorylation  

of signaling cascades that lead to the activation of ERK1/2 mitogen-activated protein 

kinase (MAPK), and the phosphorylation of AP-1 sites on the related gene promoters 

[26]. 

1.5.2  24,25(OH)2D3 

The rapid action of 24R,25(OH)2D3 on RC cells is shown in Fig. 3 [27] and is 

summarized below.  While the membrane receptor for 1α,25(OH)2D3 has been identified 

as ERp60, the identity of the membrane receptor for 24,25(OH)2D3 is not known.  

However, studies have shown that 24,25(OH)2D3 signaling in RC cells, contrary to 

1α,25(OH)2D3 binding to GC cells, inhibits PLA2 activity [24].  The altered PLA2 affects 

the cells through mechanisms already described above.  The effects include changes in 

membrane fluidity, changes in fatty acid turnover, release of arachidonic acid, a change 

in Ca2+ flux, an increase in DAG production, and production of PGE2 [9].  DAG can 

subsequently activate PKC, but the activation does not result in the translocation of PKC 

to the plasma membrane.  24,25(OH)2D3 does not lead to changes in PLC activity, and 

inhibiting PLC activity does not result in altered PKC response to 24,25(OH)2D3 [28].  

Contrary to 1α,25(OH)2D3 signaling in GC cells, inhibition of PLA2 leads to increased 

PKC activity, and the introduction of exogenous AA, lysophospholipid, PLA2, and PGE2 

all inhibit PKC [9].  The effect of PGE2 via EP2 is through protein kinase A (PKA).  

While PLC does not play a substantial role in PKC activation in RC cells, phospholipase 

D (PLD) has a much more prominent role.  Activation of PLD results in the increased 

production of DAG and activation of PKC, which leads to phosphorylation of MAPK and 

translocation of MAPK to the nucleus for activation of transcription [27]. 
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Figure 3. Membrane action of 24,25(OH)2D3 in RC cells 
 

Schwartz et al. 
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1.6  Regulation of Matrix Vesicles 

The matrix composition varies greatly between the resting zone and the growth 

zone.  At the upper hypertrophic zone, the chondrocytes begin to modify their 

extracellular matrix to facilitate the eventual increase in the size of the cells.  The sulfated 

proteoglycan aggregates are degraded by matrix metalloproteinases (MMPs) and new 

matrix is produced that contains type X collagen [29].  Calcification occurs at the bottom 

of the hypertrophic zone.  Regulation of the matrix, in addition to the matrix content, 

varies between cells in the resting zone and cells in the growth zone.  They are able to 

regulate events that occur in the matrix through activation of enzymes such as the 

aforementioned MMPs.  Additional differences between RC and GC cell regulation of 

the extracellular matrix include lowered lipid composition in the matrix vesicle 

membrane of cultured RC cells when compared to cultured GC cells [23]. 

1α,25(OH)2D3 and 24,25(OH)2D3 regulate the extracellular matrix of 

chondrocytes via genomic pathways.  1α,25(OH)2D3 and 24,25(OH)2D3 regulate matrix 

synthesis and matrix vesicle composition in GC and RC cells, respectively [30].  The 

matrix vesicles have become excellent models for studying nongenomic actions of 

vitamin D due to their position exterior to the cell and the lack of DNA or RNA.  Using 

the matrix vesicle model, we have shown that 1α,25(OH)2D3 and 24,25(OH)2D3 regulate 

PLA2 activity in a cell-specific manner [30].  While 1α,25(OH)2D3 stimulates PLA2 

activity in matrix vesicles isolated from cultured GC cells, 24,25(OH)2D3 inhibits PLA2 

specific activity in matrix vesicles isolated from cultured RC cells.  The nongenomic 

regulation of the extracellular matrix by vitamin D is hypothesized in Fig 4 and 

summarized below [9].  In addition to regulated matrix production via genomic and  
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Figure 4. Regulation of matrix vesicles by 1α,25(OH)2D3 
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nongenomic pathways, vitamin D metabolites are synthesized by cells and secreted in 

response to regulatory factors like 1α,25(OH)2D3, 24,25(OH)2D3, or TGF-β1.  The 

vitamin D metabolites diffuse freely into the matrix and interact with the plasma 

membrane and the matrix vesicle membrane.  In the matrix vesicles, this interaction 

initiates biochemical pathways that lead to the maturation of matrix vesicles, 

hydroxyapatite crystal formation, degeneration of the integrity of the matrix vesicle 

membranes, and release of active proteases such as metalloproteinases (MMP).  The 

proteases are capable of degrading matrix proteoglycans and facilitating matrix 

calcification.  Lastly, they can also act on latent growth factors such as latent TGF-β1 

(LTGF-β1) to act in autocrine or paracrine manners. 

1.7 Caveolae and Vitamin D 

Caveolae are unique membrane domains that are characterized by a cave-like 

invagination as seen via electron miscroscopy and by proteins caveolin-1, 2, and 3.  The 

exact role and function of caveolae and its characteristic proteins are unclear, but they 

have been implicated in many biological functions.  At least part of caveolae’s functions 

is derived from its unique membrane composition.  While the lipid bilayer of the plasma 

membrane has been viewed as a two-dimensional “fluid mosaic” model with loosely pack 

phospholipid bilayer capable of rapid lateral diffusion, caveolae exist in “liquid-ordered” 

states where the bilayer assembly is more rigid and with confined movement of the lipid 

bilayer.  This characteristic is attributed to a confluence of cholesterol and sphingolipids 

in the caveolae domains.  Caveolae have been classified as a sub-domain of lipid rafts in 

the past due to similar lipid and cholesterol components.  However, studies have begun to 

separate the functions of caveolae from lipid rafts starting with the exclusivity of caveolin 
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proteins in caveolae [31].  The unique lipid compositions of caveolae and lipid rafts have 

allowed the isolation of these membrane domains through their resistance to 

solubilization by mild nonionic detergents such as Triton X-100 [32].  However, studies 

have shown that the detergents can extract certain molecules from caveolae/lipid raft 

domains, and a sucrose-based gradient extraction method that takes advantage of the 

lower density found in the caveolae/lipid raft fractions is more commonly used to obtain 

fractions that are more pure [33]. 

Caveolae and caveolin-1, 2, and 3 are located in many tissues and are implicated 

in many cellular and physiological functions.  However, the presence and the role of 

caveolae and caveolin-1, 2, and 3 are not ubiquitous and vary between different 

biological components.  While caveolae are found in most tissues including human knee 

joint cartilage [34], they are noticeably absent in central nervous system neurons [35].  

The presence of caveolin-1, 2, and 3 also varies significantly with caveolin-3 found 

mostly in musculoskeletal cells and caveolin-2 found exclusively in conjunction with 

caveolin-1 (Cav-1) [36].  Current knowledge has implicated caveolae/caveolins in many 

biological functions [37]: vesicular transport such as transcytosis, endocytosis, and 

protocytosis; cellular cholesterol homeostasis such as transport of synthesized cholesterol 

and cholesterol efflux from cells; oncogenes and tumorigenesis such as caveolins as 

tumor suppressors and as targets of oncogenes; and signaling transduction mechanisms 

such as caveolin as modulators of signaling and compartmentalized signaling.  

Caveolae have already been found to contain nuclear VDR, implicating an 

important role for the plasma membrane in vitamin D signaling [38].  Additionally, Cav-

1 has been identified to play an important role in the function of membrane-associated 
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estrogen receptors [39, 40].  Many of the components of the ERp60-dependent PKC 

signaling pathway have been found in lipid rafts and caveolae, including PLA2 [41], PLC 

[42], DAG, annexin II [43], and PKC [44].  Studies have also linked PLAA, an important 

and early activator/inhibitor of vitamin D signaling, to G proteins [45].  This is 

particularly interesting and can serve as an insight into the role of caveolae in vitamin D 

signaling due to interactions of many G proteins with caveolae [37].   
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CHAPTER 2. MATERIALS AND METHODS 

2.1 Cell Culture 

Resting zone and growth zone chondrocytes were isolated from their respective 

zones in the costochondral cartilages of 125-g male Sprague-Dawley rats [24].  

Chondrocytes were cultured in Dulbecco’s modified Eagle medium (DMEM) containing 

10% fetal bovine serum (FBS), 1% antibiotics, and 50 µg/ml ascorbic acid.  Resting zone 

cells were plated at 10,000 cells/cm2 and growth zone cells were plated at 25,000 

cells/cm2.  Confluent cultures (approximately 7 days after seeding) were sub-passaged at 

the same seeding densities.  Media were changed at 24 hours and then at 72 hour 

intervals.  Confluent fourth passage cells were used for all experiments.  Numerous 

published papers show that these cells retain their chondrocyte phenotype at this passage.  

In addition, fourth passage cells continue to display differential responsiveness to 

1α,25(OH)2D3 as well as to other regulatory agents [3, 24, 26]. 

 To culture growth plate chondrocytes from the wild type and Cav-1-/- mice, we 

adapted techniques originally established for VDR-/- mice [5].  Rib cages were removed 

from eight-week old wild type and Cav-1-/- mice.  Resting zone and growth zone cartilage 

were separated by sharp dissection under a microscope.  Cells were seeded at the same 

densities used for the rat chondrocytes and were cultured in DMEM containing FBS, 

antibiotics and vitamin C, but the amount of FBS was increased to 15%. 

2.2 Animal Models 

To determine the requirement for lipid rafts/caveolae in the response to 

1,25(OH)2D3, we used cartilage cells isolated from costochondral cartilages from 125-g 

male Sprague Dawley rats [23].  Rats of this size are young adults but the growth plate 
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cartilages remain open.  Male 8-week-old Cav-1-/- mice [36, 46] were used to address the 

role of caveolin-1 in the mechanism.  These mice were maintained in the transgenic 

mouse facility at Emory University Medical School (Atlanta, GA).  Cav-1-/- mice lack 

caveolae based on transmission electron microscopy (TEM) of the plasma membranes of 

their endothelial cells.  They exhibit impaired nitric oxide and calcium signaling in the 

cardiovascular system.  In addition, their lungs display thickening of alveolar septa 

caused by uncontrolled endothelial cell proliferation and fibrosis [36, 47].  The 

musculoskeletal phenotype in the Cav-1-/- mice has not been described.  Male 8-week-old 

wild-type C57BL/6 mice (Jackson Labs, Bar Harbor, Maine) were used as controls.  A 

mouse colony was established in the Laboratory Animal Research Center at Georgia 

Institute of Technology using a heterozygous (VDR+/-) breeding pair obtained as a gift 

from Dr. Marie Demay (Harvard Medical School, Massachusetts General Hospital, 

Boston, MA).  The phenotypic characteristics of these mice have been described in detail 

in a series of publications [48-50]. Offspring were genotyped at two weeks after birth. 

VDR+/- mice were allowed to breed.  Homozygous wildtype (VDR+/+) and 1,25-nVDR 

knockout (VDR-/-) mice were euthanized when 8 weeks old.  VDR-/- mice exhibited 

phenotypic markers of vitamin D deficiency, including rachitic growth plates with 

expanded hypertrophic cell zones. 

2.3 Morphometric Study 

  Five Cav-1+/+ and four Cav-1-/- mice at 8 weeks of age were used for 

morphometric study.  Calcein (25 mg/kg body weight; Sigma Chemical Co., St. Louis, 

MO) was injected intraperitoneally at 6 and 2 days before harvest.  After euthanasia, the 

right leg was dissected and the femur was separated from the skin and the muscle.  The 
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femur was then fixed in 70% ethanol and stored in the dark at 4°C.  Following 

dehydration in a graded series of ethanol (70%, 95%, and 100%), the femur was 

infiltrated and embedded without decalcification in methylmethacrylate.  A longitudinal 

mid-section of the femur was cut at a thickness of 5 µm with a 355HM Microtome 

(Micom, UK).  The area measured was defined by the cortical bone on both sides and by 

growth plates at each end of the bone.  Histomorphometric analysis was performed with 

Leica DMLB microscope and images taken with Leica DC300 camera (Chatsworth, 

California).  The following parameters were measured using NIH Image pro Plus 

software.  In the trabecular bone, total tissue area (T.Ar, µm2), total trabecular bone area 

(B.Ar, µm2), total trabecular bone perimeter (B.Pm, µm), single-labeled bone perimeter 

(sL.Pm, µm), double-labeled bone perimeter (dL.Pm, µm), and interlabeled width 

(Ir.L.Wi, µm).  The following parameters were calculated: trabecular bone volume 

(BV/TV, %), trabecular thickness (Tb.Th, µm), trabecular number (Tb.N, number/µm), 

single-labeled surface (sLS/BS, %), double-labeled surface (dLS/BS, %), mineral 

apposition rate (MAR, µm/day), and bone formation rate (BFR/BS, 1022 µm3/µm2/day).  

In the cortical bone, total cortical bone area (B.Ar, µm2), single-labeled bone perimeter 

(sL.Pm, µm), double-labeled bone perimeter (dL.Pm, µm), and interlabeled width 

(Ir.L.Wi, µm) were measured. All nomenclature and calculations of the 

histomorphometric indices are according to Parfitt [51]. 

2.4 Immunohistochemistry 

To better understand the role of caveolin-1 in the growth plate, we characterized 

the Cav-1-/- phenotype in the costochondral cartilage, proximal tibia, and distal femur of 

caveolin-1 deficient mice.  Mid-sagittal sections of paraffin-embedded tissue (3-5µm) 
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from the costochondral cartilage and the proximal tibias of 8-week old Cav-1-/- and wild-

type mice were stained with haematoxylin and eosin or toluidine blue.  Images were 

examined by microscopy at 10X and 20X.  Morphometric measurements were obtained 

from 10 tibias of 5 animals of each type with the use of Image Pro software (Media  

Cybernetics; Silver Spring, MD).  Measurements included determination of growth plate 

vertical height (top of resting zone to bottom of calcified cartilage), growth plate width 

(horizontal plane through the growth plate midsection), and the number of cells in each 

longitudinal column in the hypertrophic cartilage (the region beginning at the bottom of 

the proliferating cell zone to the calcified cartilage).   

2.5 Transmission Electron Microscopy 

Growth zone chondrocytes were cultured in 24-well plates and grown to 

confluence.  The cells were fixed for 1 h at 4°C with 1.6% paraformaldehyde and 3% 

glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.3), washed with 0.1 M sodium 

cacodylate and 3.5% sucrose buffer (pH 7.3), and then postfixed for 1 h with 1% Palade's 

OsO4. Cells were stained en bloc with Kellenberger's uranyl acetate, dehydrated, 

embedded in epoxy resin, and sectioned [52]. Ultra thin sections were examined with the 

use of transmission electron microscopy (TEM), and random fields (each field containing 

part of one or two cells) were photographed.  Only distinctly flask-shaped, noncoated 

vesicles (50–100 nm in diameter) found on the luminal and abluminal plasma membranes 

were scored as caveolae [53]. Total caveolae counts were normalized to the unit length of 

plasma membrane measured with the use of Image Pro software (Media Cybernetics; 

Silver Spring, MD).  Caveolae radius was determined by assuming the measured area as 

circular. 
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2.6 β-Cyclodextrin Treatment 

We used methyl-beta-cyclodextrin (-CD, Sigma Chemical Company, St. Louis, 

MO) to deplete lipid rafts of cholesterol and in so doing, alter the caveolar 

microenvironment.  RC and GC cells were treated with -CD for 30 minutes and then 

examined by TEM as described above.  To assess potential effects of -CD on caveolin 

content, confluent cultures were serum starved and then treated with -CD for 60 min.  

Cell lysates were examined by Western blot for the presence of caveolin-1, 2 and 3.  In 

addition, rat RC abd GC cells were treated with -CD for 30 minutes and lysates of the 

cells were examined for ERp60, VDR and Cav-1 by Western blot.  To assess effects of -

CD on rapid 1,25(OH)2D3-activation of PKC, cells were serum starved for 18 hours in 

media containing 0.5% FBS.  At that time, the cells were treated with medium containing 

0.5% lipoprotein-free FBS and -CD for 30 min.  These media were replaced with FBS-

free fresh media containing vehicle or 10-10 to 10-8 M 1,25(OH)2D3.   

2.7 Proteoglycan Sulfation 

 At confluence, GC cell culture was treated with fresh medium containing vehicle 

alone, 10-8, and 10-9 1α,25(OH)2D3.  Four hours prior to harvest, 50µl DMEM containing 

18µCi/ml [35S]-sulfate and 0.814mM carrier sulfate were added to each culture.  At 

harvest, the conditioned media were removed, the cell layers (cells and matrix) collected, 

and the amount of [35S]-sulfate incorporated determined as a function of cell layer 

protein. 

2.8 Thymidine Incorporation 

DNA synthesis was determined by measuring [3H]-thymidine incorporation into 

trichloroacetic acid (TCA) insoluble cell precipitates as described [54].   Quiescence was 
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induced by incubating confluent cultures for 48 h in DMEM containing 1% lipoprotein-

free FBS.  They were then treated for 30 minutes with medium containing 1% 

lipoprotein-free FBS and -CD.  This medium was replaced with DMEM containing 

vehicle alone (control), or with either 10-10 to 10-8 M 1,25(OH)2D3.  At 20 hours, [3H]-

thymidine was added and the cells were cultured an additional four hours.  Radioactivity 

in TCA-precipitable material was measured by liquid scintillation spectroscopy. 

2.9 Alkaline Phosphatase Activity 

To determine if -CD altered 1,25(OH)2D3-dependent activation of alkaline 

phosphatase [orthophosphoric monoester phosphohydrolase, alkaline (EC 3.1.3.1)], 

following an 18-h incubation in starvation medium containing 0.5% FBS, confluent GC 

cells were treated for 30-minutes with -CD in medium containing 0.5% lipoprotein-free 

FBS.  These media were replaced with media containing vehicle or vitamin D metabolite 

for 24-hours.  Alkaline phosphatase specific activity was measured in cell layer lysates as 

a function of release of para-nitrophenol from para-nitrophenylphosphate at pH 10.2 [6, 

30].   

2.10 Protein Kinase C Activity 

PKC activity was measured in cell layer lysates prepared by washing the cultures 

once with cold PBS followed by lysis in 0.3 ml of RIPA buffer (50 mM Tris-HCl, pH 7.5, 

150 mM NaCl, 5 mM EDTA, 1 mM phenylmethylsulfonylfluoride, and 1% NP-40 

detergent). Aliquots of the cell culture lysates (35 µl) were then incubated for 20 minutes 

with a lipid preparation (5 µl) containing 0.3 mg/ml phosphatidylserine, 10 µM phorbol-

12- Myristate-13-acetate, and Triton X-100 mixed micelles, which provides the necessary 

cofactors and conditions for optimal activity [15, 16, 55]. To this mixture, a high-affinity 
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myelin basic protein peptide (MBP, 8 µM) and [32P]ATP (25 µCi/ml) were added to a 

final assay volume of 50 µl. Following a 10minute incubation in a 30°C waterbath, 

samples were spotted onto phosphocellulose discs, which were then washed twice with 

1% phosphoric acid and once with distilled water to remove unincorporated label prior to 

placement in a scintillation counter. The phosphocellulose disc strongly binds the MBP 

peptide substrate, which becomes 32P-labeled during the PKC reaction, and 

unincorporated [32P]ATP is washed free of the discs during the phosphoric acid wash step 

[55].  

2.11 Western Blot 

 Protein samples were resolved on 4-20% gradient Tris-HCl Ready Gel (161-1159; 

Biorad, Hercules, CA) at 80V for 15 min and 120 V thereafter.  Wet transfer was 

performed for 2 hours at 80V in a transfer case onto nitrocellulose membrane (Biorad).  

The membrane is blocked with 5% nonfat dry milk in PBS-Tween solution.  Blots of the 

gels were probed with mouse monoclonal antibodies to caveolin-1 (Ab2297: anti-RSV-

CEF caveolin) [56], caveolin-2 (m65: anti-human caveolin-2) [57], caveolin-3 (m26: 

anti-rat caveolin-3) [58] (Transduction Laboratories, Lexington; KY), ERp60 (Ab100 

generated to the N-terminal amino acid sequence of rat ERp60), and VDR (C-20: Santa 

Cruz Biotechnology, Santa Cruz, CA).  All antibodies were used at 1:500 dilution in 

nonfat dry milk in PBS-Tween.  The membrane is subsequently washed with PBS-Tween 

three times at 10min each.  Goat anti-mouse or anti-rabbit secondary HRP with a dilution 

of 1:5000 in PBS-Tween is added to the membrane for one hour.  Repeat wash with PBS-

Tween.  West Pico Chemiluminescent ECL substrate (34080; Pierce, Rockford, IL) is 

used for detection of HRP.  VersaDoc (Biorad) is used to image the membrane. 
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2.12 Immunocytochemistry 

Chondrocytes were cultured on multi-well chamber slides (Nunc Lab-Tek II CC2 

Chamber Slide System) for 24 hours, partially permeabilized for 20 min with 3.7% (v/v) 

formaldehyde at room temperature, and permeabilized with ice-cold ethanol for 5 min 

according to conventional protocols [38].  Cells were then incubated with 5% bovine 

serum albumin (BSA) at room temperature for 1 hour to reduce background staining, and 

treated with primary antibodies against VDR (C-20: Santa Cruz Biotechnology, Santa 

Cruz, CA), ERp60 (Ab100 generated to the N-terminal amino acid sequence of rat 

ERp60), and caveolin-1 (Ab2297: Transduction Laboratories, Lexington; KY) at room 

temperature for 2 hours.  Cells were then treated with secondary FITC- and rhodamine-

conjugated anti-rabbit and anti-mouse antibodies, respectively (Santa Cruz 

Biotechnology, CA) in a 1:200 dilution for 2 hours.  Samples were visualized with a laser 

scanning confocal Zeiss LSM 510 microscope (Carl Zeiss, Inc.) using a 63x immersion 

lens with aperture and PBS buffer as the imaging medium.  Zeiss confocal software was 

used for acquisition of the data and merging of the digital images.  Controls were 

performed with no primary antibody.  

Immunofluorescent labeling of lipid rafts was performed using the Vybrant Lipid 

Raft Labeling Kit (V-34403 Vybrant Alexa Fluor 488: Molecular Probes, Carlsbad; CA).  

Slides were washed with chilled DMEM.  Fluorescent choleratoxin subunit-B (CT-B) 

conjugate working solution was added to the cells for 10 minutes at 4oC. After 

incubation, cells were washed several times with chilled 1X PBS. The cells were then 

introduced to chilled anti-CT-B antibody working solution for 15 minutes at 4oC, 
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followed by washing several times with chilled 1X PBS.  Cells were then fixed with 

formaldehyde as described above and probed with the appropriate antibodies. 

2.13 Plasma Membrane and Extracellular Matrix Vesicle Isolation 

 Cells were cultured in T75 flasks until confluent. The cell layers were washed 

twice with 3 mL DMEM.  Trypsin (0.25%; 3mL) was added to each flask until cells 

detached from flask surface.  After sufficient incubation, DMEM containing 10% FBS 

was added to each flask to deactivate the trypsin.  After centrifugation for 10 minutes at 

500 x g, the supernatant was collected and used to obtain matrix vesicles while the pellet 

was used to isolate plasma membranes.  To isolate matrix vesicles, the supernatant was 

spun at 17500 x g for 20min (rotor SA600; Beckman Coulter, Fullerton, CA) to pellet 

large cell fragments and membranes.  The resulting supernatant was re-spun at 85,000 x g 

for 60min at 4oC (rotor 50.2 Ti, Beckman Coulter).  After discarding the supernatant, the 

pellet was suspended with 20 mL 0.9% NaCl and spun again at 85,000 x g for 60min. 

The resultant pellet was resuspended with 0.5 mL 0.9% NaCl and stored at -20oC.  For 

plasma membrane isolation, the cell pellet was resuspended in 5 mL 0.25 M sucrose 

containing 1 mM EDTA and 100 mM Tris in ultrapure water, pH 7.4.  The sample was 

homogenized with a Tenbroek tissue homogenizer.  The homogenate was centrifuged at 

1464 x g for 10 min (rotor SA 600), and the pellet suspended in 5 mL 2M sucrose in 

ultrapure water.  Following centrifugation at 200 x g for 10 minutes, the resulting 

supernatant was brought to 35 mL using ice-cold ultrapure water and centrifuged at 

28000 x g for 15 min.  The final pellet was resuspended in 1 mL 0.9% NaCl and stored at 

-20oC. 

2.14 Lipid Raft/Caveolae Fractionation 
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 Lipid rafts/caveolae fractionation was adapted from Smart et al. [33].  

Chondrocytes were grown to confluence in six T-75 flasks.  The cells were washed twice 

with ice cold PBS and then washed twice with buffer A (0.25M sucrose, 1 mM EDTA, 

20 mM Tricine, pH 7.8).  Each flask is scraped with 3ml of buffer A.  Samples of the 

resulting suspension was taken and sonicated to use as whole cell homogenates.  The rest 

of the suspension was centrifuged for 5 min at 1400 x g to pellet the cells.  The pellet was 

resuspended in 1 ml of buffer A and homogenized with 2 ml Wheaton Tissue Grinder 

(Wheaton Science; Millville, NJ). The suspension was then centrifuged at 1000 x g for 10 

min and the supernatant, containing the post-nuclear sample (PNS), was removed and 

stored on ice.  The remaining pellet was re-suspended in 1 ml buffer A and re-

homogenized and centrifuged at 1000 x g for 10 min.  The resulting supernatant was 

added to the previous PNS.  The remaining pellet was re-suspended in 1 ml buffer A and 

stored as nuclear fraction (NF) after sonication.  The remaining PNS was layered 

carefully using a glass pipette tip on top of 8 ml of 30% v/v Percoll (Sigma; St. Louis, 

MO) in buffer A.  Samples were centrifuged at 84,000 x g for 30 min using a Beckman 

SW 41 Ti rotor.  Plasma membranes form a visible band in the middle of the centrifuge 

tube.  The membrane fraction was collected using a syringe with a bent needle and then 

sonicated (2 × 15-s bursts at power level 4, total of 10 times; Fisher Scientific Sonic 

Dismembrator 60).  The samples were adjusted to 4 ml with 1.84 ml buffer C (50% Opti-

Prep in buffer B) (buffer B: 0.25 M sucrose, 6 mM EDTA, 120 mM Tricine, pH 7.8) for 

an OptiPrep (Greiner-Bio-one, Longwood, FL) concentration of 23%. The samples were 

placed at the bottom of a centrifuge tube (Beckman-Coulter) and overlaid with a linear 

gradient of 20% to 10% OptiPrep in buffer A.  The samples were centrifuged 24 h at 
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52,000 × g and the top 5 ml was collected. The 5-ml samples were mixed with 4 ml of 

buffer C in a fresh centrifuge tube and overlaid with 5% OptiPrep in buffer A then 

centrifuged again for 20 h at 52,000 × g. Fractions were collected (0.73 ml) and 

numbered 1 to 12 from the top.  The fractions were saved and the protein concentration 

determined for analysis by Western blot. 

2.15 Statistical Management of Data 

For each experiment, the values represent mean ± SEM for cell layers in six 

independent cultures. Significance was determined by using ANOVA and post-hoc 

testing performed using Bonferroni’s modification of Student’s t-test. P-values less than 

0.5 were considered significant.  Each experiment was repeated two to three times to 

ensure validity of the results. 
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CHAPTER 3. RESULTS 

3.1 Physiological Importance 

Static and dynamic morphometric histomorphometry of mice injected with 

calcein at 6 and 2 days prior to euthanasia at 8.5 weeks demonstrated physiological 

differences between cav-1+/+ and cav-1-/- mice (Table 1).  While the trabecular bone did 

not show significant changes in trabecular number and trabecular width, the total 

trabecular bone volume (TV) and the trabecular fraction (BV/TV) increased from 

77,408±7,211 m2 to 114,042±9,434 m2 and 21.4±2.0% to 31.5±2.6%, respectively 

(p≤0.05).  Dynamic trabecular bone morphometrics showed that the trabecular mineral 

apposition rate (MAR) decreased by 41% and bone formation rate (BFR) decreased by 

47.7% in cav-1-/- mice.  The MAR of the cortical bone also showed a significant decrease 

of 67.8% (p≤0.05).   

Histologic analysis demonstrated that the physiology of the tissue was altered by 

Cav-1 deficiency.  Tibial (Fig. 5) growth plates of 8-week-old wild type mice exhibited 

normal remodeling of the calcified cartilage.  As shown in Fig 5A and 5B, the tibial 

growth plate in wild type mice was relatively acellular, and epiphyseal and metaphyseal 

bone surrounded well-developed marrow.  The tibial growth plates of the Cav-1-/- mice 

were longer and cartilage extended into the epiphyseal bone and metaphyseal marrow 

(Fig 5C and 5D).  In the metaphysis, these trabeculae were coated with a thin layer of 

bone.  Morphometric analysis of the histologic sections showed that Cav-1-/- tibial growth 

plates were 12.3 % longer than those of wild type mice (Fig. 5).  The number of columns 

of cells in the proliferating cell zone and in the hypertrophic cell zone was greater in Cav-

1-/- growth plates.  In addition, for each column of cells, the number of hypertrophic cells 
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Table 1.  Dynamic Morphometry    
 
 
 
A.  TRABECULAR BONE 
 
i.  Static Morphometrics  

 cav-1(+/+) cav-1(-/-) 
cav-1(-/-) 
/cav-1+/+) 

 Mean SEM Mean SEM  
Total Trabecular Bone 
Volume (TV) m2 77,408 7,211 114,042 * 9,434  
BV/TV % 21.35 1.99 31.45 * 2.6 147.3 
Trabecular # 11 0.84 12.8 0.49  
Trabecular Width (Tb.Th) m 215.14 8.77 200.76 26.83  

     
 
 

ii.  Dynamic Trabecular Bone Morphometrics  

 cav-1(+/+) cav-1(-/-) 
cav-1(-/-) 
/cav-1+/+) 

 Mean SEM Mean SEM  
MAR m/day 2.93 0.41 1.73 * 0.13 59.04 
BFR m%/day 1.49 0.26 0.78 * 0.07 52.35 

 
 

B. CORTICAL BONE: Dynamic Cortical Bone Morphometrics 

 cav-1(+/+) cav-1(-/-) 
cav-1(-/-) 
/cav-1+/+) 

 Mean SEM Mean SEM  
MAR m/day 4.94 0.29 1.59 * 0.4 32.19 

 
* Significant difference compared to cav-1(+/+) 



30 

 

 

 

 

Figure 5. H&E stained histologic sections of the tibial growth plates of wild-type mice 
and Cav-1-/- mice.  Sections were photographed at 10X and 20X magnification: wild-type 
growth plate at 10X magnification (A) and 20X magnification (B); Cav-1-/- growth plate 
at 10X (C) and at 20X (D).  The bars indicate the final magnification.  Sections are 
oriented with epiphysis on the left and metaphysic on the right.   

 
* Significant difference compared to wild type 
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 were greater in Cav-1-/- growth plates than in wild-type growth plates, although the 

number of proliferating cells per column was comparable.  RC cartilage in tibial growth 

plates of Cav-1-/- and wild-type animals was relatively small, although there was evidence 

of a residual resting zone in Cav-1-/- limbs, characterized by chondrocytes that were not 

aligned in columns and had not yet begun the proliferative process.   

3.2 Cellular Importance 

 Transmission electron microscopy demonstrated the presence of intact caveolae 

in RC and GC cells in vitro and in vivo (Fig. 6).  Morphometric analysis were performed 

with the in vitro samples due to difficulties with observing plasma membrane associated 

caveole because of large numbers of cytoplasmic extensions into the extracellular matrix.  

Analysis show cellular specificity in caveolae number and size (Table 2).  GC cells had 

3.7 times more caveolae/100 m plasma membrane than RC cells.  GC caveolae were 

more spherical in shape, with comparable long and short axes.  Caveolae in RC cells 

were more oval in shape; their short axis was comparable to that measured in GC cells, 

but the long axis was approximately 20% longer, resulting in a small but statistically 

significant difference in the average radius and a 24.4% increase in cross-sectional area.   

 Western blot analysis showed that rat RC and GC cells had comparable levels of 

caveolin-1, -2 and -3 (Fig. 7).  Treatment of rat growth zone chondrocytes with -CD 

altered the response of the cells to 1,25(OH)2D3.  The rapid stimulatory effect of 

1,25(OH)2D3 on PKC was reduced in a dose-dependent manner (Fig 8A).  -CD had no 

affect on PKC activity in control cultures, but 1 mM -CD partially reduced the 

stimulatory effect of 10-8 M 1,25(OH)2D3 and 5 mM -CD completely abrogated the 

1,25(OH)2D3-dependent increase in PKC.  This dose-dependent effect of -CD was 
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Figure 6. TEMs of caveolae associated with the plasma membranes of rat costochondral 
resting zone (RC) and growth zone (GC) chondrocytes in vivo (left) and in vitro (right).  
Bar=500nm.  Arrows point to caveolae. 
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Table 2. Morphometric Analysis 
 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

PM: Plasma Membrane 

 Open Caveolae 
/100mm PM 

Closed 
Caveolae 

/100mm PM 

Total Caveolae 
/100mm PM 

Long Diameter 
(mm) 

GC (n=55) 12.8+2.6 2.4+0.6 15.3+2.9 58.45+0.61 

RC (n=39) 3.6+0.8* 0.4+0.2* 4.1+.8* 69.97+3.88* 

GC/RC 3.6 6.0 3.7 0.8 

 
 

Short Diameter 
(mm) 

Caveolar Area 
(mm2) 

Caveolar 
Radius (mm)  

GC (n=55) 58.28+0.93 3545.8+  71.3 33.35+0.37  

RC (n=39) 58.56+2.74 4410.7+392.6* 36.37+1.69*  

GC/RC 1.0 0.8 0.9  
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Figure 7. Caveolin proteins in lysates of rat costochondral resting zone (RC) and 
growth zone (GC) chondrocytes.  Confluent cultures of RC and GC cells were 
treated for 60 minutes with 0, 5 or 10 mM β-CD (CD).  Cultures were lysed and 
Western blots of the lysates were probed with antibodies to Cav-1, Cav-2 and Cav-
3.  Rat arterial smooth muscle cells (RASM) were used as positive controls and 
actin was used as an internal loading control. 
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Figure 8. Effect of β-CD treatment on biological responses of rat costochondral growth 
zone chondrocytes to 1α,25(OH)2D3.  GC cells were pretreated with β-CD for 30 minutes 
followed by treatment with 0 or 10-8 M 1α,25(OH)2D3 for 9 minutes and PKC specific 
activity determined (A).  To assess the effects of β-CD on DNA synthesis, preconfluent 
cultures were treated for 30 minutes with 0, 1 or 5 mM β-CD followed by treatment with 
0, 10-9 or 10-8 M 1α,25(OH)2D3 for 24 hours and [3H]-thymidine incorporation measured 
(B).  Alkaline phosphatase specific activity (C) and [35S]-sulfate incorporation (D) were 
determined in confluent cultures treated with β-CD for 30 minutes followed by treatment 
with 1α,25(OH)2D3 for 24 hours.  Data are from one of two separate sets of experiments, 
both with comparable results.  Values are means + SEM for six independent cultures.  
*p<0.05, with β-CD v. without β-CD at each concentration of 1α,25(OH)2D3.  #p<0.05, 
with 1α,25(OH)2D3 v. without 1α,25(OH)2D3 at each concentration of β-CD.  ●p<0.05, 
with 10-9 M 1α,25(OH)2D3 v. no 1α,25(OH)2D3 in the absence of β-CD. 
 

  

A 

D C 

B 
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observed in five separate experiments based on comparative analysis of treatment/control 

ratios for each experiment (data not shown).  -CD also blocked long term downstream 

effects of 1,25(OH)2D3 on DNA synthesis (Fig. 8B) and alkaline phosphatase specific 

activity (Fig. 8C).  In addition, -CD caused a partial inhibition in the effect of 

1,25(OH)2D3 on [35S]-sulfate incorporation (Fig 8D).  When rat RC and GC cells were 

treated with -CD to deplete lipid rafts/caveolae of cholesterol, the number of caveolae 

was reduced in each cell type (Fig. 9).  This was evident in TEMs of the cells and was 

confirmed by morphometric analysis of the number of caveolae per 100 m of plasma 

membrane.  Although the number of caveolae was reduced, there was no apparent 

reduction in the levels of Cav-1, Cav-2 or Cav-3 (Fig. 7) or in the levels of ERp60 and 

VDR (Fig. 10 and Fig. 11).   

 While -CD is a useful reagent to initially probe whether lipid rafts/caveolae are 

involved in response to humoral and mechanical stimuli, it does not provide sufficient 

direct evidence for their roles.  Therefore, we used Cav-1-/- mice to determine whether 

Cav-1 and caveolae are involved in 1,25(OH)2D3 action in the growth plate.  GC cells 

obtained from Cav-1-/- mice failed to exhibit a response to 1,25(OH)2D3.  There was no 

change in PKC specific activity (Fig. 12A), alkaline phosphatase specific activity (Fig. 

12B) or [35S]-sulfate incorporation (Fig. 12C), when Cav-1-/- mice were treated with 

1,25(OH)2D3.  In contrast, GC cells from wild-type animals exhibited anticipated 

increases in PKC (Fig. 12A), alkaline phosphatase (Fig. 12B) and [35S]-sulfate 

incorporation (Fig. 12C).  Transmission electron microscopy of RC cells confirmed that  
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Figure 9. Morphometric assessment shows that GC cells have more caveolae than RC 
cells and that β-CD treatment significantly decreased the number of caveolae in both cell 
types.  Data are means + SEM for 20 cells of each type.  
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Figure 10. Effects of β-CD treatment on confluent cultures of GC cells.  TEM of GC 
chondrocytes demonstrates the presence of caveolae (arrows) in the treated cells. Western 
blots of GC cell lysates indicate that the amount of Cav-1, ERp60 and VDR in the cells 
were not affected by β-CD treatment.  
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Figure 11. Effects of β-CD treatment on confluent cultures of RC cells.  TEM of RC 
chondrocytes demonstrates the presence of caveolae (arrows) in the treated cells. Western 
blots of RC cell lysates indicate that the amount of Cav-1, ERp60 and VDR in the cells 
were not affected by β-CD treatment.  
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Figure 12. Response of Cav-1-/- and wild-type (Cav-1+/+) mouse GC chondrocytes to 
1α,25(OH)2D3.  Effects on PKC (A), alkaline phosphatase (B), and [35S]-sulfate 
incorporation (C) were determined.  Data are from one of two separate sets of 
experiments, both with comparable results.  Values are means + SEM for six independent 
cultures.  *p<0.05, with β-CD v. without β-CD at each concentration of 1α,25(OH)2D3.  
#p<0.05, with 1α,25(OH)2D3 v. without 1α,25(OH)2D3 at each concentration of β-CD.  
TEM of Cav-1-/- mouse resting zone cells showing absence of caveolae.  Western blot 
showing the absence of Cav-1 in lysates of Cav-1-/- resting zone chondrocytes and the 
presence of Cav-1 in lysates of chondrocytes from wild type C57BL/6 mice. 
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Figure 13. TEM of Cav-1-/- mouse resting zone cells showing absence of caveolae.  
Western blot showing the absence of Cav-1 in lysates of Cav-1-/- resting zone 
chondrocytes and the presence of Cav-1 in lysates of chondrocytes from wild type 
C57BL/6 mice. 
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Cav-1-/- chondrocytes lacked caveolae and Western blots of RC cell lysates demonstrated 

that Cav-1 was absent (Fig. 13). 

3.3 Cellular Localization 

Confocal microscopy of growth zone chondrocytes show that nVDR is localized 

in the nuclear region while ERp60 is localized in the perinuclear regions (Fig. 14).  In 

growth zone chondrocytes, ERp60 co-localized with caveolin-1 in the peri-nuclear region 

and plasma membrane (Fig. 15).  In contrast, VDR was found primarily in the nucleus 

and did not co-localize with caveolin-1 (Fig. 15).  Similarly, only ERp60 co-localized 

with lipid rafts (Fig. 16).  Confocal microscopy of resting zone chondrocytes also show 

localization of caveolin-1 with ERp60 but not VDR (Fig. 17).  Co-localization of ERp60 

with lipid rafts was also confirmed (Fig. 18).  Western blots of GC cell lysates, plasma 

membranes, and matrix vesicles confirmed that Cav-1 and ERp60 were present in cell 

lysates and isolated plasma membranes, whereas VDR was present only in the cell lysates 

of the growth zone cells (Fig. 19).  Similar results were also found in RC cells (Fig. 20).  

Confocal microscopy of VDR-/- GC cells demonstrated that in the absence of VDR, there 

were co-localization of ERp60 with Cav-1 (Fig. 21).  Further western analysis of RC cells 

from wild-type, Cav-1-/-, and VDR-/- mice show the presence of ERp60 despite the 

absence of Cav-1 and VDR (Fig. 22).  Additionally, in growth zone chondrocytes of Cav-

1-/- mice, while there was a noticeable lack of Cav-1 immunofluorescent staining and 

VDR localization with lipid rafts, there was also a lack of co-localization between ERp60 

and lipid rafts (Fig. 23).  Western analysis of caveolae/lipid raft fractions further 

indicated the localization of proteins involved in 1,25(OH)2D3 signaling.  In both GC 



43 

and RC cells, both ERp60 and PLAA were shown to co-fractionate with Cav-1 (Fig. 24 

and 25). 
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Figure 14. Laser scanning confocal microscopy of rat GC chondrocytes demonstrating 
subcellular localization of nuclear VDR and ERp60.  Result was found in over 50% of 
the cells examined. 
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Figure 15. Laser scanning confocal microscopy of rat GC chondrocytes demonstrating 
subcellular localization of caveolin-1 and ERp60 (A) or caveolin-1 and the nuclear VDR 
(B).  Result was found in over 50% of the cells examined. 
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Figure 16 Laser scanning confocal microscopy of rat GC chondrocytes demonstrating 
subcellular localization of lipid rafts and ERp60 or caveolin-1 and nuclear VDR.  Result 
was found in over 50% of the cells examined. 
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Figure 17. Laser scanning confocal microscopy of rat RC chondrocytes demonstrating 
subcellular localization of caveolin-1 and ERp60 or caveolin-1 and  nuclear VDR.  Result 
was found in over 50% of the cells examined. 
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Figure 18. Laser scanning confocal microscopy of rat RC chondrocytes demonstrating 
subcellular localization of caveolin-1 and ERp60.  Result was found in over 50% of the 
cells examined. 
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Figure 19. Western blot showing the localization of caveolin-1, VDR, and ERp60 in GC 
cells using cell lysate, plasma membrane fractions, and matrix vesicles. 
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Figure 20. Western blot showing the localization of caveolin-1, VDR, and ERp60 in 
RC cells using cell lysate, plasma membrane fractions, and matrix vesicles. 
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Figure 21. Laser scanning confocal microscopy of rat RC VDR-/- chondrocytes 
demonstrating subcellular localization of caveolin-1 and ERp60 or caveolin-1 and 
VDR.  Result was found in over 50% of the cells examined. 
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Figure 22. Western Blot showing the presence of ERp60 in RC wild type 
chondrocytes, Cav-1-/- chondrocytes, and VDR-/- chondrocytes. 
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Figure 23. Laser scanning confocal microscopy of rat GC Cav-1-/- chondrocytes 
demonstrating subcellular localization of lipid rafts and cavelon-1, lipid rafts and 
ERp60, or lipid rafts and the nuclear VDR.  Result was found in over 50% of the cells 
examined. 
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Figure 24. Western Blot of caveolin-1-rich caveolae/lipid raft fractions from RC 
cells.  Fraction 3 denotes caveolae/lipid raft fraction.  ERp60 and PLAA were 
found to co-fractionate with caveolin-1 in RC cells. 
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Figure 25. Western Blot of caveolin-1-rich caveolae/lipid raft fractions from rat 
GC cells.  Fraction 3 denotes caveolae/lipid raft fraction.  ERp60 and PLAA were 
found to co-fractionate with caveolin-1 in GC cells. 
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CHAPTER 4. DISCUSSION 

 Caveolin-1-/- mice have systemic changes due to alterations in several caveolae-

dependent cellular mechanisms.  These include the previously shown pulmonary and 

vascular alterations [47].  The experiments performed here show that there is also 

significant dependence of the skeletal system on caveolae and Cav-1.  Our study shows 

that skeletal phenotype and development are significantly dependent on the presence of 

Cav-1.  In addition to the increase in bone volume and MAR in Cav-1-/- mice, additional 

studies (not shown here) show that Cav-1 deletion also leads to stiffer bone.  Studies in 

collaboration with Rubin et al. have shown that the pronounced Cav-1-/- phenotype was 

found in the metaphysis and not in the epiphysis.  This may possibly be due to the 

development of the epiphysis in the earlier stages of development whereas the metaphysis 

undergoes dynamic re-modeling in post-fetal mice.   

Histomorphometric studies of the growth plate also show that there are significant 

differences in Cav-1-/- animals.  While there are similarities between Cav-1-/- and VDR-/- 

mice, such as the expansion of the hypertrophic cartilage [49], the greater increase in cell 

number in the columns is due to a failure in closure as opposed to the failure in 

mineralization seen in rickets.  Even though Cav-1-/- mice do not exhibit the same growth 

plate phenotype as VDR-/- mice, many components integral to vitamin D effects in PKC 

signaling have been found to localize within caveolae.   

The studies show that Cav-1 has a definite and important role in skeletal 

development and formation.  However, it is still not clear if the phenotype observed in 

Cav-1-/- mice is due to a direct change in cellular mechanisms that regulate the phenotype 

or if it is indirectly due to other systematic changes caused through intermediate 



57 

mechanisms.  To clarify the role of caveolae on a cellular level, we focused on the 

vitamin D pathway through caveolae and lipid rafts in chondrocytes.  This is due to the 

localization of important components in vitamin D signaling such as PLA2, DAG, PKC, 

and VDR in caveolae [38, 41-45].  Additionally, vitamin D has been shown to be a very 

important regulator of the growth plate [59], thus indicating a correlation between the 

phenotype observed in Cav-1-/- mouse with an altered vitamin D signaling cascade. 

 RC and GC cells are different in differentiation, cellular phenotype, and response 

to 1α,25(OH)2D3 and 24,25(OH)2D3.  It is then expected that they would have different 

properties in relation to vitamin D signaling and caveolae.  While the protein expression 

of caveolins 1, 2, and 3 did not differ significantly, the amount and size of the caveolae in 

GC and RC cells varied.  These differences may correlate with differences observed 

between the membrane fluidity of the cells [23], since caveolae and their increased levels 

of cholesterol and the difference in lipid composition are involved in the “liquid-ordered” 

characteristic of the caveolae membrane domains as opposed to the traditional “liquid-

disordered” characteristics of the phospholipid membranes.  RC and GC cells also 

respond differently to 1α,25(OH)2D3 and 24,25(OH)2D3, thus contributing to a different 

dependence of caveolae-associated mechanisms.  Caveolae levels have also been 

associated with cellular differentiation, which might explain why Cav-1-/- mice have 

more hypertrophic cells but not more proliferative cells.  However, the association of 

caveolae with differentiation is varied as some cells show increases in proliferation while 

others do not [60-62]. 

 While ERp60 is implicated as a membrane receptor for 1α,25(OH)2D3 in GC 

cells, its role in RC cells is not yet elucidated.  Previous work has shown that the 
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membrane action of 1α,25(OH)2D3 and 24,25(OH)2D3 are retained in growth plate 

cartilage cells from VDR-/- mice [5].  This indicates that a distinctive receptor is 

responsible for 24,25(OH)2D3 membrane effects just as ERp60 is responsible for 

1α,25(OH)2D3 membrane action.  A specific receptor for 24,25(OH)2D3 isolated from 

chick lysosomal membranes has been proposed as the membrane receptor responsible for 

stimulating PKC activity via a mechanism that involves PLD but not PLC or PLA2 [63].  

However, it is not certain that 1α,25(OH)2D3 and 24,25(OH)2D3 function via different 

receptors.  1α,25(OH)2D3 and 24,25(OH)2D3 have physiochemical properties [22, 64] that 

may allow different vitamin D metabolites to interact very differently to the same 

receptor, ERp60.  To identify the potential role of ERp60 in RC cells, we also examined 

the location and the interaction of different components of vitamin D membrane action in 

RC cells. 

 Using β-CD, our study confirms the important role of intact caveolae for rapid 

activation of PKC via vitamin D.  β-CD alters the physical structure of lipid rafts and 

caveolae by displacing cholesterol, and it also inhibits the stimulatory effects of 

1α,25(OH)2D3.  The number of caveolae were reduced significantly when cells were 

treated with β-CD, but some caveolae were still present, as has been noted previously for 

endothelial cells after treatment with β-CD [52].  Western blot analysis show that in both 

RC and GC cells treated with β-CD, the amount of ERp60, VDR, and Cav-1 did not 

decrease significantly.  This supports the mechanism of β-CD, and indicates that the 

amount of functional protein was not reduced by β-CD, supporting the conclusion that 

caveolae are important domains responsible for the membrane action of vitamin D.  In 

the cholesterol depleted environment, it is possible that β-CD replaces the cholesterol-
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derived vitamin D metabolite.  Additionally, our study shows that by itself, β-CD did not 

affect PKC in control cultures, indicating that its action was specific to the requirements 

for 1α,25(OH)2D3-dependent activation of the enzyme.  Studies have shown that 

cytosolic PLA2 and PLC-β are both upstream of the PKC response to 1α,25(OH)2D3, and 

they have been found to localize in caveolae of other systems [41, 42].  This suggests that 

the scaffolding of these enzymes is important for the observed 1α,25(OH)2D3 effect.  Our 

data also show that the lack of a membrane-mediated response also has downstream 

consequences.  Pre-treatment of GC cells with β-CD reduced the stimulatory effects of 

1α,25(OH)2D3 on alkaline phosphatase activity and [35S]sulfate incorporation.  It is 

unlikely that this result is due to the toxic effects of β-CD.  Cells were treated with β-CD 

for 30 min and then followed by fresh media with 1α,25(OH)2D3.  These results confirm 

the substantive role of caveolae as a vital structure in both the rapid action of vitamin D 

as seen in PKC activation but also downstream effects as seen in alkaline phosphatase 

activity and [35S]sulfate incorporation. 

 Using Cav-1-/- cells, we were able to confirm the conclusion from β-CD 

treatments.  Caveolin-1 is a major scaffolding protein for caveolae [65, 66], and growth 

plate cartilage cells from Cav-1-/- mice were found to lack detectable protein via Western 

blot and there were no visible caveolae structures.  We checked to confirm the expression 

of ERp60 in Cav-1-/- cells.  Even though ERp60 is present in the absence of caveolin-1 or 

intact caveolae, the characteristic effects of 1α,25(OH)2D3 via ERp60 were not seen.  The 

rapid membrane action as observed through PKC activity was reduced, similar to pre-

treatment of cells with β-CD.  The observed downstream action of 1α,25(OH)2D3 as seen 
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through alkaline phosphatase activity and [35S]sulfate incorporation was also significantly 

reduced.   

 It is possible that the classical VDR is involved in rapid PKC activation.  While 

VDR knockout mice contain truncated versions of VDR [67], which contains the 

1α,25(OH)2D3 binding site but lacks the DNA recognition site.  Cells isolated from VDR-

/- mice continue to exhibit rapid response to 1α,25(OH)2D3 and 24,25(OH)2D3, despite 

having a non-functional VDR [5].  While we cannot rule out a contradiction from the 

truncated receptor, it is clear that VDR-dependant mRNA is not required for many of the 

1α,25(OH)2D3 and 24,25(OH)2D3 effects in these cells.  Confocal effects microscopy 

shows VDR and ERp60 have distinctive cellular compartmentalization.  While VDR was 

found in the nucleus and the perinuclear regions, ERp60 was noticeably absent from the 

nucleus, which may be indicative of its nongenomic role.  Caveolin-1 and lipid raft 

staining show a similar localization in the membrane and the perinuclear regions 

including the Golgi and the endoplasmic reticulum.  It is possible that endoplasmic 

reticulum, the site for membrane biogenesis, is the initiating site for the eventual co-

localization of ERp60 with Cav-1 and lipid rafts.  The co-localization between ERp60 

and Cav-1 was also found via Western blots.  The distinction between ERp60 and VDR is 

evident through plasma membrane and matrix vesicle fractions.  While ERp60 is found in 

whole cell lysates, plasma membrane, and matrix vesicles, VDR is noticeably absent 

from plasma membrane and matrix vesicles.  ERp60 is located in similar locations and 

fractions in RC and GC cells.  This provides potential evidence that ERp60 is able to bind 

to both 1α,25(OH)2D3 and 24,25(OH)2D3, albeit via different pathways that lead to PKC 
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activation.  We are able to conclusively determine that in our system, rat cartilage cells, 

ERp60 is a component of caveolae while VDR is not.   

Others have shown that VDR is located in caveolae enriched membrane 

preparations in other cell types [38].  It is possible that VDR is able to shuttle in and out 

of caveolae.  It has been shown that VDR is located adjacent to plasma membranes in 

1α,25(OH)2D3-trated cells [69], suggesting that under certain physiological conditions, 

VDR may become associated with lipid rafts or caveolae.  Confocal microscopy of VDR-

/- GC cells shows the co-localization between ERp60 and lipid rafts remains in the 

absence of functional VDR.  Additionally, Cav-1-/- GC cells show the specific 

localization of ERp60 is in caveolae since the localization in lipid rafts is absent without 

intact caveolae. 

  1α,25(OH)2D3 and 24,25(OH)2D3 regulate PKC activity in matrix vesicles during 

matrix vesicle biogenesis through cellular mechanisms.  Additionally, 1α,25(OH)2D3 and 

24,25(OH)2D3 can also regulate matrix vesicles through direct actions [70].  When GC 

cells are treated with 1α,25(OH)2D3 or RC cells are treated with 24,25(OH)2D3, PKC 

activity in the extracellular organelle is increased through specific incorporation of PKCζ.  

PKCζ is an atypical form of PKC that does not require either lipid or Ca2+ as cofactors.  

While PKC increases due to PKCζ, the direct effect of 1α,25(OH)2D3 and 24,25(OH)2D3 

on matrix vesicles by the target cells inhibit PKCζ specifically [70].  This finding 

suggests that vitamin D metabolites influence cells and matrix vesicles through very 

different mechanisms.  Western blot analysis shows that both ERp60 and Cav-1 are 

present in matrix vesicles while VDR is absent.  While the role of ERp60 and Cav-1 in 

matrix vesicles is not clear, it has been found that 1α,25(OH)2D3 can directly increase 
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PLA2 activity in matrix vesicles [30].  The resulting release of lysophospholipids also 

participates in the release and activation of latent TGF-β1 [71].  This is likely due to a 

change in the detergent properties either through a loss of membrane integrity leading to 

release of MMP-3 or by the disruption of the three dimensional structure of the 

extracellular matrix [70].  

 PLA2 has a prominent role in vitamin D signaling.  PLA2 is involved in 

1α,25(OH)2D3 and 24,25(OH)2D3 signaling even though the metabolites activate PKC in 

different pathways.  Additionally, while matrix vesicles and plasma membranes have 

different vitamin D signaling mechanisms, the involvement of PLA2 is vital.  Studies 

have shown localization of PLA2 in caveolae [41].  Further clues into the role of caveolae 

in vitamin D signaling may lie in PLAA, an activator of PLA2.  Caveolae fraction shows 

that PLAA localizes in caveolin-1- and ERp60-rich fractions.  In collaboration with 

studies that show PLAA may be a G protein and studies that show localization of PLA2 in 

caveolae, caveolae may be the location where vitamin D membrane signaling is initiated 

through activation of PLAA. 
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CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 

 Researchers have increasingly studied the potential of vitamin D metabolites in 

many disease states in the human body.  While vitamin D and its metabolites have shown 

an ability to regulate different disease states, changes in vitamin D levels have a direct 

effect on calcium balance in the system.  Analogues that act differently via VDR have 

been studied extensively.  However, very little is known about the membrane receptor for 

1α,25(OH)2D3, ERp60.  In our study, we seek to provide clarification of how ERp60 is 

able to rapidly increase PKC activity.  We were able to distinguish localization and 

function for ERp60 and VDR.  Caveolae and Cav-1 are vital for the normal localization 

and function of ERp60.  The differences between ERp60 and VDR provide a clue into 

future targets in the treatment of diseases.  Lastly, a potential target, PLAA in the 

caveolae domains, has been identified as an early component of the membrane-based 

vitamin D signaling.   

 Further clarification of the differences between ERp60 and VDR is needed.  

While ERp60 and VDR are distinct proteins, ERp60 is also a scaffolding protein involved 

in the formation of disulfide bonds.  It is possible ERp60 functions in collaboration with 

VDR to exert 1α,25(OH)2D3-dependent membrane effects.  Also, the contradiction 

between the location of VDR and caveolae in our studies and other studies may be 

indicative of the ability for VDR to shuttle in and out of membrane domains.  To further 

clarify the role of ERp60, future studies will include studying the effects of conditionally 

knocking out the ERp60 gene in animals. 

 Caveolae and Cav-1 are vital for ERp60 localization and function, and the 

membrane effects of 1α,25(OH)2D3 initiate in the caveolae domains through the 



64 

localization of PLAA.  While the localization of components in ERp60 functional 

pathway is clear, the interactions of these components are not yet clear.  While PLAA is 

localized in the caveolae domains, it is not clear if PLAA directly interacts with Cav-1, 

ERp60, or indirectly through another molecule.  Lastly, it is possible that activation of 

PLAA results in the release of PLAA to activate PLA2 in other areas in the membrane.  

Immunoprecipitation in conjunction with varying levels of serum vitamin D and its 

metabolites can indicate the interaction of ERp60 with caveolae. 

 In summary, we believe that caveolae are vital domains for membrane effects of 

vitamin D.  Without the caveolae domains, ERp60 is unable to elicit the same biological 

response seen in cells with functional caveolae.  It is unclear the mechanism with which 

ERp60 interacts with caveolae and caveolin-1, but the interaction between them leads to 

the biological responses observed.  We further observe that the localization of PLA2 may 

provide a direct link between the interactions between ERp60 and vitamin D in caveolae 

to the down stream effects we observed.  

We have established a cellular target for studying and examining the role of 

ERp60.  Future efforts will focus on these membrane domains and the initiation of 

signaling through PLAA.  With the significant role of vitamin D metabolites in bone 

development, cancer, cardiovascular diseases, and immune system, the potential in using 

ERp60 and its signaling pathway as a therapeutic target is tremendous. 
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