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SUMMARY 

 

Acute liver failure (ALF) is a major cause of death in the world, and effective 

treatments are greatly needed.  Reactive oxidative species (ROS) secreted by Kupffer 

cells, the resident macrophage cells in the liver, plays a major role in the pathology of 

acute liver failure.  Therefore, reducing the excessive oxidative stress in the liver caused 

by ROS production during an acute liver injury event provides a treatment aimed at 

removing an important mediator for ALF.  Drug delivery vehicles that can target anti-

oxidative agents such as superoxide dismutase (SOD) to Kupffer cells have great 

therapeutic potential for treating ALF.  Microparticles, formulated from biodegradable 

polymers, are advantageous for treating ALF because they can passively target 

therapeutics to Kupffer cells.  However, existing biomaterials are not suitable for the 

treatment of ALF because of their slow hydrolysis and acidic degradation products.  The 

objectives my thesis research were (1) to develop biodegradable, biocompatible aliphatic 

polyketals that have suitable properties for drug delivery applications treating ALF, (2) to 

formulate microparticles based on polyketals that have the suitable physical and chemical 

characteristics for delivering SOD to the liver, and (3) to characterize and validate the 

efficacy of polyketal microparticles for delivery of SOD to the liver to treat ALF in vivo.   

The first two Specific Aims of this thesis were centered around the development 

of a new class of biodegradable materials, termed aliphatic polyketals, which have 

considerable potential as drug delivery vehicles for the treatment of inflammatory 

diseases because of their neutral degradation products and tunable hydrolysis kinetics.  

The first Specific Aim demonstrates the development of an aliphatic polyketal, 

 xvii



 xviii

poly(cyclohexane-1,4-diyl acetone dimethylene ketal) (PCADK), which degrades into 

biocompatible byproducts and can be used to formulate microparticle for enhanced 

delivery of the anti-inflammatory enzyme, SOD, to macrophages.  In the second Specific 

Aim, we developed a family of polyketal copolymers that have tunable/rapid hydrolysis 

kinetics and biocompatible degradation products.  In particular, a fast-hydrolyzing 

polyketal copolymer, termed PK3, is suitable for drug delivery to treat ALF.  An anti-

inflammatory drug, imatinib, was encapsulated in PK3 microparticles, which 

significantly enhanced the efficacy of imatinib for treating ALF.  The third Specific Aim 

demonstrates PK3 microparticles were used to deliver SOD to the liver for treating an 

animal model of acute liver injury induced by the endotoxin lipopolysaccharide (LPS).  

Our results demonstrated that PK3 microparticles significantly improved the efficacy of 

SOD in treating LPS-induced acute liver damage in vivo, as evidenced by decreased 

levels of serum alanine transaminase (ALT), which corresponds to the extent of damage 

in the liver, and serum level of tumor necrosis factor-alpha (TNF-α), which corresponds 

to the secretion of pro-inflammatory cytokines.  The completion of this thesis research 

demonstrates the ability of polyketal-based drug delivery systems for treating acute 

inflammatory diseases and creates a potential therapy for enhancing the treatment of 

ALF. 

 

 

 



 

CHAPTER 1 

INTRODUCTION 

 

1.1 Background and Motivation 

 Acute liver failure (ALF), characterized by the total loss of hepatic metabolic 

function, is a complex multisystem illness caused by several pathologic conditions, 

including bacterial infection-induced sepsis, hemorrhagic viral infections, alcohol-

induced liver toxicity, hepatic ischemia/reperfusion injury, and Tylenol overdose.  ALF is 

a devastating disease and responsible for thousands of deaths each year (Polson and Lee 

2005).  For instance, in the United States, septic shock accounts for 10% of hospital 

intensive care unit (ICU) admissions and carries a 70% mortality rate (Angus, Linde-

Zwirble et al. 2001).  In patients diagnosed with ALF, the level of gram negative bacteria 

in the blood is elevated, leading to increased levels of pro-inflammatory molecules such 

as reactive oxidative species (ROS) and  tumor necrosis factor-alpha (TNF-α) secreted by 

Kupffer cells, the resident macrophage cells in the liver (Figure 1.1) (Su 2002).  These 

pro-inflammatory molecules subsequently induce massive hepatocyte necrosis, resulting 

in catastrophic liver injury (Decker, Lohmann-Matthes et al. 1989; Wheeler, Kono et al. 

2001).  Therefore, Kupffer cells play a central role in mediating inflammatory events 

during liver injury. 
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Figure 1.1  Mechanism of acute liver injury.  Elevated serum gram negative 
bacteria  activates CD14/toll-like receptor-4 (TLR4) complex to produce 
superoxide via NADPH oxidase.  Oxidants activate NFκB, causing an increase in 
TNF-α production, which together with extracellular superoxide, cause hepatocyte 
death and liver injury.   

 

 Due to the excessive oxidative stress caused by ROS production during a liver 

injury event, reducing the oxidative stress provides a treatment aimed at removing an 

important mediator for ALF.  For example, N-acetyl-L-cysteine (NAC), which acts to 

augment the reducing agent glutathione reserves in the body, is currently the most 

employed procedure for treating acute liver injury caused by acetaminophen overdose.  

However, there is a major limitation associated with using NAC for treating ALF.  
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Because there are no targeting mechanisms for NAC to accumulate in the liver, the level 

of NAC in the blood could be substantially high when NAC is systemically administered, 

which potentially causes damages to the heart and lungs by increasing the blood pressure 

within these organs (Palmer, Doctor et al. 2007).   Another option for treating ALF is 

orthotopic liver transplantation (OLT), the replacement of a diseased liver with a healthy 

liver allograft.  Even though OLT has excellent survival rate, the recipients will have to 

undergo immunosuppressive treatment in order to prevent organ rejection by the host.  

Therefore, the recipients can not effectively fight infections due to the use of 

immunosuppressant after a liver transplantation procedure.  Another major issue 

associated with liver transplantation is the shortage in availability of donor organs; the 

majority of ALF patients die waiting for a liver transplantation (Bilir, Guinette et al. 

2000).  Furthermore, many patients that undergo rapid clinical deteriorations such as 

brain edema and multisystem organ failure are precluded from OLT.  These limitations 

prevent OLT in becoming an effective and widespread treatment practice for ALF.   

 Given the limitations of current treatment options available for ALF, there is a 

great need for designing a new therapeutic strategy to treat ALF.  Due to the critical 

involvement of Kupffer cells in ALF, drug delivery vehicles that can target therapeutics 

to Kupffer cells have great clinical potential (Fujiwara and Kobayashi 2005).  A key drug 

delivery requirement for the treatment of acute liver failure is rapid delivery.  This is 

because at the time of patient diagnosis, significant liver damage has already occurred, 

and the metabolic function of the liver is deteriorating rapidly; therefore, timely 

interventions that can minimize further tissue damage will greatly improve treatment 

(O'Grady and Schalm 1993).  It has been challenging to develop clinically acceptable 
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drug delivery vehicles that can target therapeutics to Kupffer cells and release them 

rapidly.  For example, liposomes are a potential delivery vehicle for treating ALF, due to 

their ability to target Kupffer cells (Higuchi, Kawakami et al. 2007).  However, 

liposomes can not be freeze-dried and therefore can not be easily stored over a long 

period of time.  In addition, most forms of liposomes are not stable in serum.  These 

properties limit the use of liposomes for treating ALF in clinical applications.  

Microparticle-based drug delivery vehicles have excellent serum stability and storage 

properties.  However, despite their promising features, microparticles have not been used 

extensively for the treatment of inflammatory diseases such as ALF.  This is primarily 

because currently used biomaterials for microparticle-based drug delivery are not suitable 

for drug delivery applications treating acute inflammatory diseases.  There are three 

major types of biodegradable polymers: poly(lactic-co-glycolic acid) (PLGA), 

polyorthoesters (POE), and polyanhydrides (Figure 1.2).  These materials have been used 

for the development of implantable depot delivery vehicles and are being intensely 

investigated for many biomedical and drug delivery applications.   However, PLGA, 

polyanhydrides, and POE have been suboptimal for the development of delivery vehicles 

designed to treat acute inflammatory diseases.  This is partially because of their acidic 

degradation products, which cause inflammation and may damage fragile biotherapeutics 

to be delivered (Anderson and Shive 1997; Fu, Pack et al. 2000; van de Weert, Hennink 

et al. 2000).  
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Figure 1.2.  Molecular structures of PLGA, polyanhydrides, and POE, which degrade 
into acidic byproducts. 

 Microparticles formulated from the polyketal, poly(1,4-phenylene-

acetonedimethylene ketal) (PPADK),  represent a new drug delivery approach that has 

great potential for the treatment of ALF, due to their ability to be passively phagocytosed, 

their acid sensitivity, and their neutral degradation products (Heffernan and Murthy 

2005).  PPADK has ketal linkages in its backbone, which hydrolyze in proportion to the 

hydronium ion concentration.  This acid sensitivity should enable polyketal-based 

microparticles to release therapeutics rapidly within the acidic environment of 

phagosomes (Cordes and Bull 1974; Gopferich 1996).  PPADK also degrades into neutral 

compounds, diols and acetone, and should therefore avoid the inflammatory response 

associated with the acidic degradation products of polyester and polyanhydride-based 

biomaterials (Fu, Pack et al. 2000; Gopferich and Tessmar 2002; Kumar, Langer et al. 

2002).  Even though PPADK has many advantageous features for drug delivery 

applications, PPADK degrades into benzene dimethanol, a compound with potential 

toxicity, due to its aromatic ring.   Therefore, there is a need to design new polyketals that 

degrade into biocompatible products. 
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1.2 Research Objectives and Specific Aims 

 Superoxide dismutase (SOD), an enzyme that scavenges superoxide, has great 

potential to treat ALF.  SOD reduces the production of ROS from Kupffer cells, reducing 

inflammatory responses during an acute liver injury (Nakae, Yamamoto et al. 1990; 

Michael, Pumford et al. 1999; Yabe, Kobayashi et al. 2001; Jian Wu 2004).   Reduced 

production of superoxide by Kupffer cells can also decrease the activation of the nuclear 

factor-kappa B (NF-κB), a transcription factor responsible for secretion of inflammatory 

cytokines, such as interleukin 12 (IL12), IL18, interferon gamma (IFN-γ), and TNF-α, 

from Kupffer cells, thus addressing the underlining causes of liver inflammatory 

responses induced by endotoxins such as lipopolysaccharide (LPS) (Ogushi, Iimuro et al. 

2003; Zhou, Wang et al. 2004; Liu and Malik 2006; Higuchi, Kawakami et al. 2007).  

Therefore, targeting SOD to Kupffer cells could significantly improve the treatment of 

ALF.  The objectives my thesis research were (1) to develop biodegradable, 

biocompatible aliphatic polyketals that have the suitable properties for drug delivery 

applications treating ALF, (2) to formulate microparticles based on polyketals that have 

the suitable physical and chemical characteristics for delivering SOD, and (3) to 

characterize and validate the efficacy of polyketal microparticles for delivery of SOD to 

the liver to treat ALF in vivo.  The research was based on the central hypothesis that: 

Microparticles formulated from aliphatic polyketals will improve the treatment of acute 

liver failure by targeting and rapidly releasing anti-inflammatory agents such as SOD to 

the liver and particularly, to Kupffer cells.  The central hypothesis of this thesis research 

was tested by completing the following aims.  
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 Specific Aim 1:  Develop aliphatic polyketals, including poly(cyclohexane-1,4-

diyl acetone dimethylene ketal) (PCADK), which degrade into biocompatible byproducts 

and can be used to formulate microparticle for enhanced delivery of SOD to 

macrophages.  

Hypothesis 1:  Aliphatic polyketals can be synthesized using monomers with low 

and known toxicity, which will degrade into byproducts with low and known toxicity.  

 In this Specific Aim, three aliphatic polyketals were synthesized using a step-

growth polymerization, following the procedures previously developed for synthesizing 

PPACK (Heffernan and Murthy 2005).  One of the aliphatic polyketals, PCADK, 

degrades into 1,4-cyclohexanedimethanol (CDM) and acetone, both of which have low 

and known toxicity in biological systems.  The chemical structure of the aliphatic 

polyketals was characterized by gel permeation chromatography (GPC) and nuclear 

magnetic resonance (NMR) spectroscopy, and its pH-sensitive degradation was 

demonstrated by NMR.  Using PCADK, a SOD-loaded PCADK microparticle delivery 

system was formulated with a water-in-oil-in-water (W/O/W) double emulsion 

procedure.  The physical characteristics such as size and surface properties of SOD-

loaded PCADK microparticles were determined by scanning electron microscopy.  SOD-

loaded PCADK microparticles were designed to undergo accelerated degradation and 

release encapsulated drugs in acidic environment of phagolysosomes upon taken up by 

phagocytic cells such as macrophages (Figure 1.3).  The ability of PCADK microparticles 

to enhance the delivery of SOD to macrophages and  inhibit production of ROS from 

these macrophages was tested in cell culture.  
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Figure 1.3.  Formulation of SOD-PCADK microparticles by w/o/w double emulsion. 
Microparticles degrade after phagocytosis, in the acidic environment of the 
phagolysosome.   

Specific Aim 2:  Develop a family of polyketal copolymers that have chemical 

properties such as pH sensitivity, tunable/rapid hydrolysis kinetics, and biocompatible 

degradation products, which are suitable for drug delivery to treat acute liver failure.   

Hypothesis 2:  The hydrolysis kinetics of polyketals is governed by their 

hydrophilicity; therefore, a family of aliphatic polyketal copolymers with tunable 

hydrolysis kinetics can be synthesized by copolymerizing monomers of varying 

hydrophobicity.  

 In this Specific Aim, a family of polyketal copolymers were synthesized from two 

of the diols: 1,4-cyclohexanedimethanol (CDM), 1,4-butanediol, 1,5-pentanediol, 1,6-

hexanediol, and 1,8-octanediol.  These diols have different hydrophobicity, and therefore 

the resulting polyketals have varying hydrolysis kinetics.   The chemical characteristics 

of these polyketals were characterized by GPC and NMR spectroscopy, and pH-sensitive 

degradation was determined by NMR.  Microparticles were formulated using PK3, which 

was synthesized by copolymerizing 80% CDM with 20% 1,5-pentanediol.  The release 

kinetics of PK3 microparticles were assessed by loading a fluorescent dye, rhodamine B, 

and measuring the accumulation of rhodamine B released into pH 4.5 and pH 7.4 buffers.   
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An anti-inflammatory drug, imatinib, was encapsulated in PK3 microparticles, which 

significantly enhanced the efficacy of imatinib for treating ALF (Figure 1.4).  
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PK3

Kupffer cell

O O O O *

86.7% 13.3%

*

 

Figure 1.4. PK3, a polyketal copolymer, was developed to have suitable properties for 
drug delivery to treat ALF.  The anti-inflammatory drug, imatinib, was encapsulated PK3 
microparticles, which significantly enhance the efficacy of imatinib for treating ALF.  
 

 

 Specific Aim 3:  Deliver SOD to liver, particularly Kupffer cells, using SOD-

loaded PK3 microparticles to treat acute liver injury induced by the endotoxin 

Lipopolysaccharide (LPS) in mice.   

 Hypothesis 3:  We hypothesized that SOD-loaded PK3 microparticles (1-5 

microns in diameter) can deliver therapeutic levels of SOD to the liver to reduce LPS-

induced liver injury by scavenging ROS secreted by Kupffer cells.  

 In this Specific Aim, the traditional water-in-oil-in-water (W/O/W) double 

emulsion method and a new technique, termed solid-in-water-in-oil (S/O/W) method, 

were employed to formulate SOD-loaded PK3 microparticles, which were used to deliver 

SOD to microphages and release it rapidly inside the phagolysosomes.  The 

microparticles were characterized by SEM for size and assayed for enzymatic activity of 
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SOD.  These SOD-loaded PK3 microparticles were also tested in cell culture for their 

ability to be phagocytosed by macrophages.  We then used these microparticles to target 

SOD to the liver for preventing LPS-induced liver damage in vivo.  Damage to the liver 

due to LPS was characterized by three approaches (Figure 1.5).  First, the morphology of 

the liver tissue was examined using histological techniques. Second, the degree of liver 

damage in mice was assessed by measuring their serum levels of alanine transaminase 

(ALT), which corresponds to the extent of damage in the liver.  ALT is an enzyme 

normally present in hepatocytes.  During an acute liver damage event, hepatocytes are 

damaged and leak ALT into the blood, dramatically rising the serum ALT level.  Third, 

the level of inflammatory responses in the liver was assessed by measuring the serum 

TNF-α level, which corresponds to the secretion of pro-inflammatory cytokines due to 

activation of the transcription factor, NFκB.   

 

IV injection of 100 μL of SOD PK3 
microparticles (1 mg particles/ mL) 

IP injection of 100 μL of 2.5  μg/kg 
LPS + 700 mg/kg GalN 

24 hours 

Serum ALT and 
 TNF-α level 

Histology analysis on 
liver tissue (H&E for 
morphology)  

Figure 1.5.  SOD-loaded PK3 microparticles were characterized in vivo using 
histology analysis with hematoxylin and eosin (H&E) stain, serum ALT measurement, 
and serum TNF-α measurement.  
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1.3 Review of Relevant Literature 

 

Role of Kupffer cells in LPS-induced liver injury 

 Kupffer cells, the resident macrophage cells in the liver, reside primarily near the 

capillary bed within the liver sinusoidal spaces (Wake 1980; Decker 1990; Wheeler, 

Kono et al. 2001).  Kupffer cells are capable of ingesting other cells and foreign particles 

and constitute 80% to 90% of all tissue macrophages in the body (Bilzer, Roggel et al. 

2006).  Therefore, Kupffer cells represent the first line of defense against foreign 

materials entering the liver through the portal veins (Crofton, Diesselhoff-den Dulk et al. 

1978; Diesselhoff-den Dulk, Crofton et al. 1979).  Kupffer cells can be activated by a 

variety of substances including viruses and bacteria.  Phagocytosis of foreign substances 

by Kupffer cells leads to secretion of pro-inflammatory cytokines including TNF-α, 

interleukins, and ROS, which act as paracrine signals on hepatocytes and induce 

recruitment of neutrophiles (Decker, Lohmann-Matthes et al. 1989; Decker 1990; 

Thurman 1998; Schumann, Wolf et al. 2000; Jaeschke, Gores et al. 2002; Pagliara, Carla 

et al. 2003; Uchikura, Wada et al. 2004; Tilg, Kaser et al. 2006).  Several studies have 

been published demonstrating that Kupffer cells are critically involved in the 

inflammatory responses in the liver.   For example, Adachi et al showed that inactivation 

of Kupffer cells with gadolinium chloride significantly reduced the inflammatory 

response and serum enzyme levels in mice undergoing alcohol-induced liver injury 

(Adachi, Bradford et al. 1994).   In a separate study, liver toxicity due to a viral infection 

was significantly reduced when Kupffer cells were inactivated by gadolinium chloride 

treatment, as evidenced by decreased activation of NFκB and decreased serum level of 
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TNF-α and IL-6 (Lieber, He et al. 1997).   These findings suggest that Kupffer cells play 

a crucial role in mediating liver injury. 

 

Role of superoxide in the mechanism of liver injury 

 Acute liver injury is mediated by various mediators including ROS, TNF-α, 

interleukins, and prostaglandins that are secreted by activated Kupffer cells.  Of the 

secreted cytokines, ROS has been found to play a major role in mediating liver injury 

(Michael, Pumford et al. 1999; Ferret, Hammoud et al. 2001; Yabe, Kobayashi et al. 

2001; Droge 2002; Hitchon and El-Gabalawy 2004; Jian Wu 2004; Kamata, Honda et al. 

2005; Victor, Rocha et al. 2005).  Specifically, superoxide mediates inflammatory 

responses in the liver in two ways.  First, superoxide acts as a key signaling molecule to 

activate the transcription factor NFκB.  The activation of NF-κB in Kupffer cells plays a 

central role in the development of ALF by inducing the production and secretion of 

inflammatory molecules such as TNF-α, IL-1, IFN-γ, and IL-12, which cause extensive 

tissue damage in the liver and significantly contribute to necrosis of hepatocytes, 

eventually leading to massive liver injury (Li and Karin 1999; Pahl 1999; Hoek and 

Pastorino 2002; Zhou, Wang et al. 2003; Zima and Kalousova 2005; Higuchi, Kawakami 

et al. 2006).  These cytokines regulate the phenotype of Kupffer cells themselves as well 

as the neighboring cells, such as hepatocytes and endothelial cells (Bilzer, Roggel et al. 

2006).  Second, superoxide is responsible for initiating liver damage during acute liver 

failure by damaging liver tissue  through direct reaction of cellular lipids, proteins, and 

DNA, or through the generation of other ROS such as peroxynitrate (Frein, Schildknecht 

et al. 2005).  The exact pathways for superoxide formation is not clear; however, results 
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from numerous studies suggest that the nicotinamide adenine dinucleotide phosphate-

oxidase (NADPH oxidase) system in the Kupffer cells is a likely candidate responsible 

for production of superoxide from Kupffer cells.  For example, Kono et al demonstrated 

that rats were protected against alcohol-induced liver injury when treated with 

Diphenyleneiodonium sulfate (DPI), an inhibitor of NADPH oxidase.  The rats treated 

with DPI had lower serum ALT levels, free radical production, NFκB activation, and pro-

inflammatory cytokine production as well as showed minimal pathological changes than 

rats that were only treated with alcohol (Kono, Rusyn et al. 2001).  In another study, 

genetic knock-out mice deficient in a regulatory subunit of NADPH oxidase also showed 

a significantly reduced level of alcohol-induced acute liver injury, evidenced by 

decreased levels of free radical formation and inflammatory parameters such as TNF-α 

and NFκB (Kono, Rusyn et al. 2000).  The results from these studies suggest that 

superoxide production from NADPH oxidase system in Kupffer cells indeed plays an 

important role in mediating acute liver injury.  This is consistent with several in vitro 

studies which showed that LPS induced superoxide production by NAPDH oxidase in 

cell culture via the CD14/TLR4 pathway (Sasada, Pabst et al. 1983; Landmann, Scherer 

et al. 1995).   

 

Antioxidants are used for treating acute liver failure 

 ROS plays an important role in mediating ALF; therefore, approaches that can 

reduce oxidative stress in the liver have great potential in treating this devastating 

disease.  Several studies have been carried out using various anti-oxidative agents for 

treating liver injury.  Liu et al demonstrated that the actions of salviainolic acid A, an 
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antipreoxidative component of Saliva miltiorrhiza, were able to reduce oxidative stress in 

the liver and reduce hepatocytes injury after the rat liver was insulted by CCl4 (Liu, Hu et 

al. 2001).  Mangafodipir, a MRI contrast agent with antioxidant properties, inhibited ROS 

production and protected hepatocytes from oxidative stresses induced by xanthine 

oxidase, H2O2, and UV light in cell culture.  Additionally, mangafodipir could also 

significantly increase the survival rates and reduce ALT levels in mice (Bedda, Laurent et 

al. 2003).   Manganese III tetrakis (5,10,15,20 benzoic acid) (MnTBAP) is a nonpeptidyul 

mimic of SOD and has been shown to preventively and curatively improve survival times 

and reduce ALF levels in APAP-intoxicated mice, whereas NAC only prevented ALF in 

a dose-dependent manner but was ineffective in curing ALF in mice (Ferret, Hammoud et 

al. 2001; Malassagne, Ferret et al. 2001).  Taking together, these results suggest that  anti-

oxidants hold great promise in treating ALF by efficiently reducing ROS level in the 

liver.    

 

SOD is effective for treating acute liver failure 

 SOD is an enzyme that catalyzes the conversion of superoxide to hydrogen 

peroxide and has great potential for treating inflammatory diseases, such as ALF, 

arthritis, and sepsis, by suppressing ROS production by macrophages (Luisa Corvo, Jorge 

et al. 2002; Kinnula and Crapo 2003; Cuzzocrea, Thiemermann et al. 2004; Landis and 

Tower 2005).  Cu,Zn-SOD is the major type of SOD is the liver and is subcellularly 

distributed in primarily lysosomes and cytosol (Okado-Matsumoto and Fridovich 2001).  

The normal level of Cu,Zn-SOD in the liver has been reported to be 0.58 units per 

milligram of protein (Ozden, Uzun et al. 2004).  Numerous studies have demonstrated 
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that increasing SOD level in the liver has potential therapeutic effects in suppressing 

production of superoxide during acute liver failure.  For example, studies using 

adenovirus containing genes for various SOD isoforms have demonstrated that SOD gene 

delivery protected liver from oxidative stress and resulted in reduction in free radical and 

pro-inflammatory cytokine levels in the liver during acute liver injury (Zwacka, Zhou et 

al. 1998; Wheeler, Katuna et al. 2001; Wheeler, Kono et al. 2001).  Wu et al also 

demonstrated that polycationic liposome based SOD gene delivery protects mice against 

ROS toxicity in vitro and against LPS-mediated liver injury in D-galactosamine-

sensitized mice (Wu, Liu et al. 2004).  In another example, a study showed that genes for 

the cytosolic isoform of SOD delivered to the liver with an adenovirus significantly 

decreased transaminase release, reduced necrosis, and increased survival rates in a rat 

model of liver transplantation (Lehmann, Wheeler et al. 2003).  Moreover, Targeted 

delivery of SOD to the liver has also showed promises in treating ALF.  Yabe et al 

showed that mannosylated SOD targeted to non-parenchymal liver cells including 

Kupffer cells prevented hepatic ischemia/reperfusion injury in mice models (Yabe, 

Kobayashi et al. 2001).   

 

Delivery systems for SOD have promises for treating inflammatory diseases 

   Even though SOD has shown great promises as a therapeutic approach for 

treating ALF, current treatment of ALF with SOD has been ineffective, primarily due to 

lack of an efficient delivery system for SOD.  SOD by itself is not stable in serum, having 

a serum half-life of only 5 minutes; therefore, the clinical application of SOD has been 

limited by its rapid clearance through the kidney (Valdivia, Perez et al. 2005).  Covalent 
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modification of SOD with water-soluble and biocompatible polymers has been used as a 

tool for increasing the circulation time of SOD.  For example, the SOD modification with 

poly(ethylene glycol) (PEG) was effective in decreasing the elimination rate of SOD 

from the blood, having a clearance half-life of 30 hours when SOD had a PEG 

modification extent of 54%; however, this modification does not change the organ 

distribution of SOD; only 1% of SOD-PEG complex was found in the liver 3 hours after 

intravenous injection of SOD (Nakaoka, Tabata et al. 1997).  Liposome-based SOD 

delivery vehicles have shown promise for enhancing the delivery of SOD in animal 

models.  Several studies have demonstrated that liposomes protected the enzymatic 

activities of SOD, which were then used to treat oxidative stress related diseases such as 

hypertension, arthritis, respiratory insufficiency, and atherosclerosis (White, Brock et al. 

1994; Briscoe, Caniggia et al. 1995; Laursen, Rajagopalan et al. 1997; Luisa Corvo, Jorge 

et al. 2002).   The use of liposome-encapsulated SOD for treating ALF has also been 

reported.  Nakae et al showed that liposome-encapsulated SOD protected rats from 

acetaminophen-induced liver necrosis, whereas free SOD and empty liposomes had no 

protective effect (Nakae, Yamamoto et al. 1990).  These studies demonstrated that 

liposomes are effective in delivering SOD to the liver; however, one major limitation of 

liposomes is that they suffer from problem of instability (Feng, Ruan et al. 2004).  

Biodegradable microspheres also have great promise for sustained and targeted delivery 

of proteins such as SOD (Kumar, Soppimath et al. 2006).  Biodegradable materials like 

PLGA, alginate, and chitosan were used for preparing microspheres that can release the 

encapsulate SOD in a sustained fashion (Liu, Ge et al. 2003; Giovagnoli, Blasi et al. 

2004; Wang, Gao et al. 2006; Celik and Akbuga 2007).  However, PLGA is hydrolyzed 
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slowly at acidic and physiological pH condition; therefore, PLGA based delivery system 

for SOD is not suitable for treating ALF, which requires SOD to be released rapidly.  

Moreover, although PLGA-based microparticles have an excellent shelf life, well 

characterized degradation products, and a long history for their use in medical devices, 

their application for the treatment of inflammatory diseases is potentially problematic 

because their acidic degradation products can cause inflammation (Dailey, Jekel et al. 

2006).  Acid-degradable polymers, such as POE and polyacetals, hydrolyze in the acidic 

environment of phagolysosomes and have previously been used for intracellular drug 

delivery (Papisov 2001; Heller and Barr 2004; Wang, Ge et al. 2004).  However, the use 

of POE and polyacetals for delivering SOD has not yet been reported.  Polyketals are a 

new family of acid degradable polymers that have ketal linkages in their backbone and 

have several properties that make them an attractive delivery vehicle for SOD (Heffernan 

and Murthy 2005).  Polyketals degrade into neutral compounds that may avoid the 

inflammatory problems associated with the acidic degradation products of polyesters, 

polyanhydrides, and polyorthoesters.   
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CHAPTER 2 

DEVELOPMENT OF ALIPHATIC POLYKETALS THAT DEGRADE 

INTO BIOCOMPATIBLE DIOLS 

 

2.1 Abstract 

There is currently great interest in developing biodegradable materials that can be 

used to deliver drugs to macrophages for treating inflammation.  In this Chapter, I present 

three biodegradable aliphatic polyketals, which were designed to have the properties 

needed to treat inflammatory diseases.  One particular aliphatic polyketal, 

poly(cyclohexane-1,4-diyl acetone dimethylene ketal) (PCADK), was designed to 

hydrolyze, after phagocytosis by macrophages, in the acidic environment of the 

phagosome and enhance the intracellular delivery of phagocytosed therapeutics.  Other 

key attributes of PCADK for drug delivery are its well characterized degradation 

products and straightforward synthesis.  PCADK hydrolyzes into 1,4-

cyclohexanedimethanol, a compound used in food packaging, and acetone, a compound 

on the FDA GRAS list.  PCADK was synthesized using the acetal exchange reaction 

between 1,4-cyclohexanedimethanol and 2,2-dimethoxypropane, and could be obtained 

on a multi-gram scale in one step.  The hydrolysis kinetics of the ketal linkages in 

PCADK were measured by 1H-NMR and were determined to be pH-sensitive, having a 

half-life of 24.1 days at pH 4.5 and over 4 years at pH 7.4.  The therapeutic enzyme 

superoxide dismutase (SOD), which scavenges reactive oxygen species, was 

encapsulated into PCADK-based microparticles using a double emulsion procedure.  Cell 

culture experiments demonstrated that PCADK-based microparticles dramatically 
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improved the ability of SOD to scavenge reactive oxygen species produced by 

macrophages.  We anticipate numerous applications of PCADK in drug delivery, based 

on its acid sensitivity, well characterized degradation products, and straightforward 

synthesis.  
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2.2 Introduction 

In this chapter, I will discuss Specific Aim 1, which is to develop aliphatic 

polyketals, which degrades into biocompatible byproducts.  Biodegradable polymers that 

degrade into biocompatible products have attracted much attention in the field of drug 

delivery and biomaterials (Tamada and Langer 1993; Freed, Vunjak-Novakovic et al. 

1994; Gref, Minamitake et al. 1994; Middleton and Tipton 2000; Tansey, Ke et al. 2004).  

Drug delivery systems based on biodegradable polymers offer numerous advantages such 

as controlled rates of release, cell or tissue specific targeting, and assisting cell up-take of 

drugs (Heller 1984; Langer 1998; Soppimath, Aminabhavi et al. 2001; Itoh, Matsusaki et 

al. 2006; Kohane, Tse et al. 2006; Yih and Al-Fandi 2006).  There are three major types 

of biodegradable polymers that have been extensively investigated for biomedical 

applications: PLGA, polyanhydrides, and POE.   PLGA is a copolymer of glycolic acid 

and lactic acid and has been used in medical devices and delivery of drugs and genetic 

materials, due to its biocompatibility and biodegradability (Spenlehauer, Vert et al. 1989; 

Ignatius and Claes 1996; Anderson and Shive 1997; Coombes, Tasker et al. 1997; Ando, 

Putnam et al. 1999; Cadee, Brouwer et al. 2001; Tamber, Johansen et al. 2005).  PLGA 

undergoes base-catalyzed hydrolysis in the body to produce the original monomers, lactic 

acid and glycolic acid.  By changing the ratio of lactic acid to glycolic acid, one can 

engineer the degradation kinetics of PLGA; however, the degradation profiles of PLGA 

are too slow for drug delivery applications treating acute inflammatory diseases which 

require fast drug release kinetics.  For example, microparticles based on the fastest 

formulation of PLGA, had a degradation half-life of 15 days at physiological pH (Dunne, 

Corrigan et al. 2000).  Another major disadvantage of using PLGA-based delivery system 
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for treating inflammatory diseases is that PLGA degrades into acid, which can cause 

inflammatory response itself and potentially destroy the drug loaded in the particles, due 

to the very acidic environment within the PLGA particles (Fu, Pack et al. 2000; van de 

Weert, Hennink et al. 2000).  Polyanhydrides represent another major type of 

biodegradable polymer, which is composed of anhydride bonds, one of the most reactive 

functional groups available for degradation on the basis of passive hydrolysis.  Therefore, 

the degradation of polyanhydrides is fast, usually on the order of hours to days (Rosen, 

Chang et al. 1983; Gopferich and Tessmar 2002).  Polyanhydrides have been used for 

rapid delivery of drugs to the brain, bone, blood vessels, and eyes (Tamada and Langer 

1992; Tabata, Gutta et al. 1993; Dang, Daviau et al. 1996; Kumar, Langer et al. 2002).  

Even though polyanhydrides have suitable degradation kinetics for drug delivery 

applications treating acute inflammatory diseases, it also degrades into diacid.  Because 

of the fast degradation profiles of polyanhydrides, it can generate large quantity of acid in 

a short amount of time, which is not desirable for treating inflammation.  POE has also 

been investigated for controlled and sustained drug delivery applications due to its 

biocompatible and biodegradable properties (Heller, Barr et al. 2002; van Dijkhuizen-

Radersma, Hesseling et al. 2002; Heller and Barr 2004; Wang, Ge et al. 2004).  However, 

like PLGA and polyanhydrides, POE also is not ideal for treating inflammatory diseases 

due to its acidic degradation products (Capancioni, Schwach-Abdellaoui et al. 2003).    

Acetal and ketal based biomaterials have generated great interest in the field of 

drug delivery because of their neutral degradation products and pH-sensitive hydrolysis 

(Tomlinson, Klee et al. 2002; Jain, Standley et al. 2007).  Acetals and ketals are 

particularly well suited for the development of acid sensitive drug delivery vehicles 
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because their hydrolysis is proportional to the hydronium ion concentration, making them 

more sensitive to pH gradients than orthoesters, esters and amides.  Polyacetals hydrolyze 

in the acidic environment of lysosomes and phagosomes and have previously been used 

for intracellular drug delivery (Papisov 2001; Tomlinson, Heller et al. 2003; Sheff 2004).  

For example, microparticles, based on acetal linkages, have been synthesized, via free 

radical polymerization.  These microparticles were successful in delivering proteins and 

antisense in vitro and in vivo to dendritic cells (Kwon, James et al. 2005).  Similarly, 

soluble polymeric carries containing acetal linkages, have been developed, via free 

radical polymerization, which can deliver peptides and antisense oligonucleotides to 

hepatocytes and macrophages in vitro (Kwon, Standley et al. 2005).  However, despite 

their promise, the clinical impact of acetal/ketal based drug delivery vehicles has been 

minimal.  This is partially due to synthetic problems and biocompatibility issues.  

Acetal/ketal based delivery vehicles are generally synthesized through free radical 

polymerization.  Polymers synthesized via free radical polymerization have backbones 

composed of non-hydrolysable carbon-carbon bonds, making them difficult to excrete.  

Therefore synthetic strategies that can incorporate acetal/ketal linkages within the 

backbone of polymeric delivery vehicles are greatly needed.  The polyketals are a new 

family of acid degradable polymers that have ketal linkages in their backbones (Hirai, 

Hattori et al. 1999; Heffernan and Murthy 2005).  Recently, Heffernan et al demonstrated 

that the acetal exchange reaction between 2,2-dimethoxypropane and benzene-

dimethanol could be used to synthesize the polymer, poly(1,4-phenylene-acetone 

dimethylene ketal) (PPADK).  PPADK contains ketal linkages in its backbone and 

degrades by acid catalyzed hydrolysis in aqueous solutions into neutral compounds, 
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acetone and benzene dimethanol, hydrolyzing with half-lives of 35 hours at pH 5.0 and 

102 hours at pH 7.4 (Heffernan and Murthy 2005).  PPADK represents a new class of 

biodegradable polymers that are also being investigated for drug delivery, and have 

several unique properties that make them suitable as drug delivery vehicles for treating 

inflammatory diseases.  First, polyketals degrade into alcohols and ketones and may 

avoid the inflammatory problems associated with the acidic degradation products of 

polyesters and polyanhydrides.   This property makes polyketals particularly attractive for 

drug delivery applications treating inflammatory diseases.  Second, polyketals undergo 

acid-catalyzed hydrolysis.  For drug delivery systems to phagocytic cells such as 

macrophages, acid-sensitive polymers offer one major advantage over biodegradable 

polymers that are not acid-sensitive.  Drug delivery systems based on acid-sensitive 

polymers can take advantage of the lower pH environment inside phagosomes and 

selectively release drugs to cells upon phagocytosis (Roux, Francis et al. 2002; Murthy, 

Campbell et al. 2003; Kwon, James et al. 2005; Watson, Jones et al. 2005).  As discussed 

in Chapter 1, macrophages have the ability to take up micron-sized materials through a 

process known as phagocytosis and have been implicated in the generation and 

propagation of many types of inflammatory diseases (Thiele, Rothen-Rutishauser et al. 

2001).  Therefore drug delivery vehicles that can target therapeutics to macrophages have 

great promise.  Although PPADK has several properties that make it desirable for drug 

delivery applications, very little is known about the toxicity of benzene dimethanol, in 

animals and in humans, and this will slow the clinical development of drug delivery 

systems based on PPADK.  Therefore new polymers, which have ketal linkages in their 

backbone and degrade into compounds with low toxicity, would be preferable.     
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  In this Chapter, I present three biodegradable aliphatic polyketals, PCADK, 

POADK, and PPeADK, which were designed to have the properties needed to treat 

inflammatory diseases (Figure 2.1).  These aliphatic polyketals have ketal linkages in 

their backbone and hydrolyze in a pH sensitive manner into neutral compounds: acetone 

and aliphatic diols.  For example, PCADK degrades into biocompatible compounds, 1,4-

cyclohexanedimethanol and acetone.  These polyketals also hydrolyze on the timescale of 

days to weeks, depending on the choice of the diols used to make the polyketals.  Finally, 

several diols, such as 1,4-cyclohexanedimethanol, have FDA approval for human use.  

Acetone is also on the list of substances generally recognized as safe (GRAS).  Thus 

these polyketals also have the potential for human use.  The polyketals have several 

properties that make them an attractive delivery vehicle for SOD to macrophages for 

treating inflammatory diseases.  First, polyketals degrade into neutral compounds and 

may avoid the inflammatory problems associated with the acidic degradation products of 

polyesters and polyorthoesters.  Second, polyketals also have the potential to disrupt 

phagosomes, by degrading in the phagosome and osmotically destabilizing it.  Third, the 

ketal linkage has excellent hydrolysis kinetics for intracellular drug delivery, hydrolyzing 

significantly faster at the phagosomal pH of 4.5 versus the pH 7.4 environment of the 

blood.    
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Figure 2.1.  Stepwise polymerization based on the acetal exchange reaction between 
1,4-cyclohexane dimethanol and 2,2-dimethoxypropane to produce PCADK. (B) 
Stepwise polymerization to produce poly(1,8-octane-acetone dimethylene ketal) 
(POADK). (C) Stepwise polymerization to produce poly(1,5-pentane-acetone 
dimethylene ketal) (PPeADK).  
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2.3 Experimental Methods 

Materials.   

 All chemicals were purchased from Sigma-Aldrich (St. Louis, MO) and were 

used as received unless otherwise specified.  TIB-186 macrophage was obtained from the 

American Type Culture Collection (ATCC) (Manassas, VA). 

 

Synthesis of PCADK 

The polyketal PCADK was synthesized in a 25 mL two-necked flask, connected 

to a short-path distilling head.  The diol, either 1,4-cyclohexanedimethanol (1.04 g, 7.25 

mmol) was dissolved in 10 mL of distilled benzene and kept at 100°C.  Re-crystallized p-

toluenesulfonic acid (5.5 mg, 0.029 mmol, Aldrich) dissolved in 550 μL of ethyl acetate 

was then be added to the benzene solution.  The ethyl acetate was allowed to distill off, 

and distilled 2,2-dimethoxypropane (900 μL, 7.4 mmol) was added to initiate the 

reaction.  Additional doses of 2,2-dimethoxypropane (500 μL) and benzene (2 mL) were 

subsequently added to reaction every hour for 6 hours via a metering funnel to 

compensate for 2,2-dimethoxypropane  and benzene that has been distilled off.  After 8 

hours, the reaction was stopped by lowering the reaction temperature to room 

temperature.  100 μL triethylamine was immediately added to the reaction mixture to 

prevent degradation of polymer formed.  Subsequently, the reaction mixture was poured 

in cold hexanes and stored in -20oC.  After 12 hours, a white solid precipitation was 

collected by vacuum filter and dried under vacuum for 24 hours. Yield: 58%; 1H NMR 

(δ, ppm, CDCl3):  3.26 – 3.18 (m, 4H, C4H8CH2O), 1.83, 1.63, 0.93 (m, 8H, CH2 from 
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cyclohexane, axial and equatorial), 1.32  (s, 6H, CH2OC(CH3)2 OCH2); GPC: Mn = 4080, 

PDI = 1.54.     

 

Synthesis of POADK 

The polyketal POCDK was synthesized following the Procedures for synthesizing 

PCADK using 1,8-octanediol (1.06 g, 7.25 mmol) and 2,2-dimethoxypropane (900 μL, 

7.4 mmol, and subsequent additions).  When reaction was stopped, 50 mL of CH2Cl2 was 

added to the reaction mixture and extracted against H2O three times. The organic phase 

was collected and dried with MgSO4.  MgSO4 solid was subsequently removed from the 

product mixture via a vacuum filter, and solvent was evaporated to give a viscous oil 

product which was then dried under vacuum for 24 hours.  Yield: 83%; 1H NMR (δ, ppm, 

CDCl3): 3.37 (t, 4H, COCH2(CH2)6CH2OC), 1.51 (t, 4H, COCH2CH2(CH2)4CH2CH2OC), 

1.33 (s, 6H, CH2OC(CH3)2OCH2), 1.31 (m, 8H, COCH2CH2(CH2)4CH2CH2OC); GPC: 

Mn = 1780, PDI = 2.24.     

 

Synthesis of PPeADK 

The polyketal PPeCDK was synthesized following the procedure for PCADK 

using 1,8-pentanediol (754 mg, 7.25 mmol) and 2,2-dimethoxypropane (900 μL, 7.4 

mmol, and subsequent additions). A viscous oil product was recovered following the 

procedures for POCDK. Yield: 78%; 1H NMR (δ, ppm, CDCl3): 3.38 (t, 4H, 

COCH2(CH2)3CH2OC), 1.55 (t, 4H, COCH2CH2CH2CH2CH2OC), 1.33 (s, 6H, 

CH2OC(CH3)2OCH2), 1.32 (m, 2H, COCH2CH2CH2CH2CH2OC); GPC: Mn = 1892, PDI 

= 2.13  
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Hydrolysis studies of PCADK, POADK, and PPeADK 

The hydrolysis of PCADK was measured by 1H NMR in buffered water at the pH 

values of 1.0 (100 mM HCl), 4.5 (100 mM AcOH) and 7.4 (100 mM NaH2PO4) at 37°C.  

For each time point and pH, three samples were analyzed.  For each sample, 20 mg of 

polymer (ground powder) was suspended in 1 mL of aqueous solution, at the appropriate 

pH, and shaken at 120 RPM and 37°C, using a Labline incubated shaker (Barnstead 

International, Dubuque, Iowa).  At specific time points, the polymer samples were 

extracted with 1 mL of CDCl3, and analyzed by 1H NMR, to determine the percent of 

ketal linkages that were hydrolyzed.  Figure 2.2 describes the changes in the NMR 

spectrum of the polyketals, after hydrolysis of the ketal linkage.  Upon hydrolysis of 

polyketals, the methylene group peaks were shifted from 3.2 ppm to 3.5 ppm due to 

conversion of acetal to hydroxyl groups as evidenced in Figure 2.2.  In addition, as the 

polymers were hydrolyzed, the relative size of the dimethyl group (6b in Figure 1B) was 

progressively becoming smaller, and the peak was not present in the 1H-NMR spectrum 

of 1.4-cyclohexanedimethanol.  The percentage of ketals hydrolyzed was defined as the 

ratio of peak integrals at 3.5 ppm to the total integrals of methylene peaks.  
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Figure 2.2.  . 1H NMR spectrum demonstrating hydrolysis of PCADK.  The peaks for 
the methylene group; protons are shifted from 3.2 ppm to 3.5 ppm after hydrolysis of 
the ketal to a hydroxyl group. 
 
 

Formulation of microparticles with PCADK using emulsion methods 

Microparticles were formulated with PCADK using an oil-in-water emulsion 

method.  Briefly 50 mg of PCADK dissolved in 2 mL of CHCl3 (with 0.1% 

triethylamine) was added to 10 mL of pH 9 buffer solution (10 mM NaHCO3) containing 

various amounts of poly(vinyl alcohol) (PVA, 31–50 kDa) as the emulsifier.  The 

particles were fabricated via two methods. (1) Sonication method: the oil-water mixture 

was shaken briefly and then sonicated for 2 to 3 min at 40 Watts (Branson Sonifier 250) 

to form a fine oil/water emulsion.  (2) Homogenization method: the oil-water mixture 

was shaken briefly and then homogenized with a homogenizer (Fisher Scientific 

Powergen 500 with flat-bottom generator).  For both methods, after a uniform suspension 

was obtained, the emulsion was stirred under for at least 3 hours to evaporate the solvent 

and produce a microparticle suspension.  The particles were washed 3 times by removing 
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the supernatant following centrifugation. The particles were re-suspended and freeze-

dried to give a solid powder.   

 

Determination of particle size 

The size of PCADK microparticle was determined by dynamic light scattering 

setup (Brookhaven 90Plus particle sizer). DLS samples were prepared by taking 20 μL of 

particle suspension (4mg/mL in pH 9 buffer) in 3 mL DI H2O and mixing thoroughly to 

obtain homogenous suspension.  Each time the particle size was measured in triplicate at 

25oC.  

 

Scanning Electron Microscopy (SEM) 

SEM images were taken to confirm the morphology of lyophilized microparticle 

samples. Briefly, SEM samples were prepared by attaching lyophilized microparticles 

onto 12.7 mm diameter aluminum sample mounting stubs (Electron Microscopy 

Sciences, Hatifield, PA) using conductive double sided carbon discs (SPI Supplies, West 

Chester, PA). The samples were coated with a gold sputter coater (International Scientific 

Instruments, Prahran, Australia) for 2 minutes under argon atmosphere. The SEM 

samples were subsequently analyzed using a Hitachi S-800 scanning electro microscopy 

(Tokyo, Japan).    

 

Determination of drug release profile from PCADK microparticles.  

Microparticles loaded with rhodamine B were fabricated using the same method 

outlined in formulation of PCADK microparticles.  Briefly 50 mg of PCADK and 10 mg 
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of rhodamine B were dissolved in 2 mL of CHCl3. The oil phase was then added to 10 

mL of pH 9 buffer solution (10 mM NaHCO3) containing 10 mg of PVA. The mixture 

was either sonicated or homogenized, washed to remove all un-encapsulated rhodamine 

B, and freeze-dried to produce a solid powder.  The dried particles were subsequently re-

suspended in buffer with pH values of 1, 4.5, and 7.4.  The suspensions were incubated 

under room temperature, and samples were taken out at various time points.  Each sample 

was centrifuged down to collect the supernatant, which was analyzed using a Shimadzu 

RV-1700 UV-Visible spectrometer (Kyoto, Japan) or a Shimadzu RF-5301PC 

spectrofluorophotometer (Kyoto, Japan) with excitation wavelength of 550nm and 

emission wavelengths of 570 nm to 700 nm. 

 

Formulation of PCAK microparticles encapsulating SOD 

An experimental protocol was developed based on procedures used to formulate 

SOD into PLGA-based microparticles. (Giovagnoli, Blasi et al. 2004)  Briefly, a 100 μL 

aqueous solution of SOD (40 mg/mL) was dispersed by homogenization (21,500 rpm, 30 

sec) into 1.0 mL of methylene chloride, containing 125 mg of PCADK, generating a 

water-in-oil (w/o) emulsion.  This w/o emulsion was then dripped into 5 mL of an 8% 

(w/v) aqueous polyvinyl alcohol (PVA) solution and was stirred with a homogenizer at 

6,000 RPM for 5 minutes.  The resulting w/o/w emulsion was then poured into 25 mL of 

pH 7.4 buffer, and was stirred for several hours, evaporating the methylene chloride.  The 

resulting particles were isolated by centrifugation and freeze-dried, generating a white 

solid powder.   
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MTT reduction assay   

An MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) 

reduction assay was performed to measure the toxicity of PCADK microparticles.  TIB-

186 cells were seeded at a density of 1x105 cells/well and incubated in 96-well plates for 

24 hours.  Cells were treated with PCADK microparticles at various particle 

concentrations (100 ng/mL – 1 mg/mL) and incubated for various durations (0.5 – 24 

hours).  Next, 20 μL of MTT solution (5 mg/mL in PBS) was added to each well, and the 

cells were incubated for 2 hours.  Then, 200 μL of dimethyl sulfoxide (DMSO) was 

added to dissolve the resulting formazan crystals.  After 10 minutes of incubation, the 

absorbance at 585 nm was measured using an Emax Microplate reader (Molecular 

Devices, Sunnyvale, CA).  Percentage cell viability was calculated by comparing the 

absorbance of the control cells to that of PCADK microparticle-treated cells.  

 

SOD activity assay 

The ability of SOD-PCADK microparticles to scavenge superoxide from 

macrophages was investigated in cell culture.  TIB-186 macrophages (1x105 cells/well, 

96 well plate) were incubated with either 0.1 mg/mL SOD-PCADK microparticles (1.14 

μg SOD in 0.1 mg microparticles), free SOD (1.14 μg/mL SOD), or empty PCADK 

microparticles for 2 hours.  The cells were washed 3 times and then stimulated with 0.2 

μg/mL phorbol myristate acetate (PMA) for 30 minutes.  The superoxide production from 

these macrophages was then measured using a cytochrome c based assay, following the 

procedure of Voter et al. (Voter, Whitin et al. 2001).   
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2.4 Results 

Synthesis and characterization of PCADK 

PCADK was synthesized using the acetal exchange reaction, on a multi-gram 

scale, generating polymers with a number-average molecular weight (Mn) of 

approximately 4,080 Da.   The acetal exchange reaction has been widely used in the field 

of organic synthesis for protecting primary and secondary alcohols, and therefore we 

hypothesized that this reaction should be capable of generating a wide variety of 

polymers with different properties by reacting different diols with 2,2-dimethoxypropane.  

An 1H-NMR spectrum and GPC spectrum are shown in Figure 2.3, confirming the 

chemical structure and molecular weight of PCADK.  
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Figure 2.3. 1H NMR and GPC spectrum of PCADK.  (A) 1H NMR spectrum of 
PCADK in CDCl3.  (B) GPC trace of PCADK in THF, Y-axis indicates relative UV 
absorbance at 262 nm, Mn = 4,080, polydispersity index (PDI) = 1.54. 
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Synthesis of POADK 

PCADK was synthesized on a multi-gram scale, generating polymers with an Mn 

of approximately 1,780.   An 1H-NMR spectrum and GPC spectrum are shown in Figure 

2.2, confirming its chemical structure and molecular weight (Figure 2.4).  

 

A 

 

B 

Figure 2.4.  1H NMR and GPC spectrum of POADK.  (A) 1H NMR spectrum of 
POADK in CDCl3.  (B) GPC trace of PCADK in THF, Y-axis indicates relative UV 
absorbance at 262 nm, Mw = 1,780, polydispersity index (PDI) = 2.24. 
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Synthesis of PPeADK 

PCADK was synthesized on a multi-gram scale, generating polymers with an Mn 

of approximately 1,892.   An 1H-NMR spectrum and GPC spectrum are shown in Figure 

2.2, confirming its chemical structure and molecular weight (Figure 2.5).  

 

A 

B 

Figure 2.5.  1H NMR and GPC spectrum of PPeADK.  (A) 1H NMR spectrum of 
POADK in CDCl3.  (B) GPC trace of PCADK in THF, Y-axis indicates relative UV 
absorbance at 262 nm, Mn = 1,892, polydispersity index (PDI) = 2.13. 
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Characterization of PCADK hydrolysis of PCADK  

 The hydrolysis kinetics of biomaterials is key issue which determined their 

potential applications and toxicity.  The hydrolysis kinetics of PCADK, POADK, and 

PPeADK were measured.  Figure 2.6 demonstrates that the hydrolysis of the ketal 

linkages in these aliphatic polyketals is indeed pH-sensitive.  For example, PCADK has a 

half-life of 24.1 days at pH 4.5, and an estimated half-life of over 4 years at pH 7.4.   

PPeADK was completely hydrolyzed in pH 4.5 and pH 7.4 within 3 hours.   
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Release of Rhodamine B from PCADK microparticles 

 Since the hydrolysis rate of PCADK follows a pH-dependent manner, it is 

reasonable to hypothesize that degradation of particles would also be pH-sensitive.  

Therefore the release of compounds encapsulated in the particles should also depend on 
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Figure 2.6.  Hydrolysis kinetics of PCADK and POADK.  (A) Hydrolysis of 
PCADK at 37oC. (B) Hydrolysis of POADK at 37oC.  Data are presented as 
means ± standard deviation, n = 3. 
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the pH of the surrounding environment.  The pH-dependent drug release characteristic 

has many practical implications in biological systems.  To further investigate the release 

profile of particles based on PCADK, a series of samples were prepared by re-suspending 

particles loaded with rhodamine B in buffers with pH values 1, 4.5, and 7.4.   

The release kinetics of rhodamine B from PCADK microparticles at room 

temperature is shown in Figure 2.7.  The particles were made by single emulsion and 

their diameter was approximately 5 μm as measured by SEM.  The amount of rhodamine 

B released was determined by measuring the fluorescence of the supernatant following 

centrifugation.  The calculated half-lives were 1 day at pH 1.0, 5 days at pH 4.5, and 

greater than 15 days at pH 7.4. 
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Figure 2.7.  Release of rhodamine B from PCADK microparticles at room 
temperature. 
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Encapsulation of SOD in PCADK microparticles 

SOD was encapsulated into PCADK microparticles using a water/oil/water 

double emulsion procedure.  An experimental protocol was developed based on 

procedures used to formulate SOD into PLGA-based microparticles. (Diesselhoff-den 

Dulk, Crofton et al. 1979; Giovagnoli, Blasi et al. 2004).  The protein encapsulation 

efficiency of the SOD-PCADK microparticles was 36.7%, as determined by U.V. 

absorbance at 280 nm.  An SEM image of the SOD-PCADK microparticles, shown in 

Figure 2.8, demonstrates that they are 3 to 15 µm in diameter, which is suitable for both 

intracellular and extracellular delivery.  This may be beneficial in the case of SOD 

delivery, because superoxide causes both intracellular toxicity and extracellular tissue 

damage during inflammation  

 

 

Figure 2.8. SEM images of SOD-PCADK microparticles. (A) 6,000x magnification, (B) 
1,000x magnification. SEM images were taken on a Hitachi S-800. 

 
Delivery of SOD-PCADK microparticles to macrophages in cell culture 

The ability of SOD-PCADK microparticles to scavenge superoxide from 

macrophages was investigated in cell culture.  TIB-186 macrophages (1x105 cells/well, 

96 well plate) were incubated with either 0.1 mg/mL SOD-PCADK microparticles (1.14 

µg SOD in 0.1 mg microparticles), free SOD (1.14 µg/mL SOD), or empty PCADK 
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microparticles for 2 hours.  The cells were washed 3 times and then stimulated with 0.2 

μg/mL phorbol myristate acetate (PMA) for 30 minutes.  The superoxide production from 

these macrophages was then measured using a cytochrome c based assay, following the 

procedure of Voter et al. (Voter, Whitin et al. 2001).  Figure 2.9 demonstrates that free 

SOD by itself caused very little inhibition of superoxide production, whereas SOD-

PCADK microparticles caused a 60% reduction in superoxide production.  Empty 

microparticles also reduced superoxide production by macrophages by approximately 

20%.  This is most likely due to the toxicity of the particles, which caused approximately 

20% toxicity under these experimental conditions (0.1 mg/mL for 2 hrs) as determined by 

an MTT assay (Figure 2.10).  These data demonstrate that PCADK microparticles 

significantly improved the ability of SOD to scavenge superoxide generated by 

macrophages. 
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Figure 2.9. PCADK microparticles enhance the delivery of SOD to macrophages.  
Macrophages were incubated with either SOD-PCADK microparticles (black bar), empty 
PCADK microparticles (horizontal stripe), free SOD (dotted bar), and media only (white 
bar).  n =3, p<0.05.  
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Figure 2.10. Cell viability of TIB-186 macrophages after incubation with PCADK 
microparticles; 0.5 h (white bar), 2 h (horizontal stripe), 6 h (gray bar), 24 h (black bar) 
for statistical analysis, 3 independent cell viabilities were measured for each sample. 
 
 
 
Biocompatibility of polyketal 

PCADK degrades into neutral, biocompatible compounds, whereas PLGA 

degrades into acidic byproducts; therefore the inflammatory responses caused by PCADK 

microparticles should be less than PLGA microparticles. In collaboration with Dr. 

Michael Davis’s laboratory at Emory University, the inflammatory responses caused by 

injection of PCADK microparticles were tested in mice.  PLGA microparticles were also 

injected into the same mice for comparison to polyketals.  We injected 200 µL of 

PCADK microparticles (25 mg/mL) or PLGA of the same quantity to the leg muscle of 

C57BL/6J mice.  The leg muscle tissues were isolated and fixed in 4% paraformaldehyde 

three days after the injection.  Sections were stained with a fluorescently tagged anti-

mouse CD 45 antibody, which is a maker for inflammatory responses.  DAPI was also 

used to mark the presence of cells.  Figure 2.11 demonstrates that PLGA elicited a 
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significant amount of inflammation, where as PCADK did not cause the same level of 

inflammatory responses as PLGA.    

 
PCADK PLGA

Blue = DAPI; Green = α-CD45; scale= 20μm
 

 
 
 
 

 

Figure 2.11.  Inflammatory response to injected PCADK or PLGA 
microparticles. Blue = DAPI, green = α-CD45, scale bar = 20 µm.   

 

Stability of SOD in PCADK microparticles  

The activity of SOD in PCADK microparticles was determined using an SOD 

assay kit (Fluka, SOD determination kit 19160, St Louis, MO), using the protocol 

provided in the kit.  These results are presented in Figure 2.12 and demonstrate that SOD 

retains its activity after encapsulation within the particles (compare dark versus white 
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bars).   
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Figure 2.12.  Stability of SOD in PCADK microparticles.  Free SOD (white bar), SOD in 
PCADK microparticles (dark bar)  
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2.5 Discussions 

Synthesis of aliphatic polyketals 

The synthesis of polymers, which degrade under physiologic conditions into low 

molecular weight compounds, has been intensely under investigation in recent years.  The 

majority of degradable polymers are generated by ring opening polymerization, which 

generates ester or amide linkages.  However these chemistries are not ideal for the 

development of drug delivery vehicles designed to target therapeutics to macrophages 

and treat inflammatory diseases, due to their toxic and acidic degradation products and 

relatively slow degradation times.  In this Chapter, I demonstrate that the acetal exchange 

reaction can be used to synthesize a variety of aliphatic polyketals, which degrade into 

neutral, membrane permeable, and biocompatible compounds. A variety of primary 

dialcohols were used to generate polyketals with the acetal exchange reaction.  For 

example, 1,4-cyclohexanedimethanol, 1,8-octanediol, and 1,5-pentane diol all generated 

polymers whose number-average molecular weight ranges from 2,000-4,000 Da. The 

relatively low molecular weights generated by this polymerization are attributed to the 

nature of step-growth polymerization employed in making these polyketals.  In step 

growth polymerization, the stoichiometry of the reaction is a critical issue; slight 

deviation from the exact stoichiometry ratio of the two reactants will result in significant 

molecular weight decrease in the polymer synthesized.  Although an equal molar ratio of 

diol to 2,2-dimethoxy propane was initially added in the reaction feeds, a 1:1 ratio was 

not possible to maintain during the polymerization process. The reason is that the 

polymerization was performed at 100oC, which is needed to remove methanol byproduct 

to drive the reaction to favor the polymer; however, this would also cause 2,2-
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dimethoxypropane to distill off, which has a boiling point at 80oC.  To compensate for 

the loss of 2,2-dimethoxypropane, additional doses of 2,2-dimethoxypropane were 

continuously added to the reaction throughout the polymerization.  Other polymerization 

techniques were attempted, in which excess 2,2 dimethoxy propane was not added, at 

either 80oC or 100oC; in both cases no polymerization was observed, presumably due to 

the removal of the 2,2-dimethoxypropane.  Importantly, the acetal exchange reaction 

could also be scaled up to a multi-gram synthesis, a 6 gram batch PCADK was 

synthesized with a 65% yield. 

      

Hydrolysis of aliphatic polyketals 

The hydrolysis kinetics of biomaterials is key issue which determined their 

potential applications and toxicity.  Obtaining the optimal hydrolysis kinetics for 

polyester based biomaterials, to suppress a phagocytosis induced inflammatory response 

has been challenging.  Phagocytosis of PLGA causes the secretion of inflammatory 

cytokines due to two phenomena, (1) accumulation of PLGA within macrophages, as do 

all other types of non-degradable particles, because PLGA undergoes slow base-

catalyzed hydrolysis, and (2) their acidic degradation products also cause macrophage 

toxicity and an inflammatory response. Importantly, PLGA particles which degrade 

rapidly could avoid the inflammatory effects of particle accumulation but may also 

generate a more severe inflammatory response because they are producing large 

quantities of acid at a rapid rate.   

The polyketals have the potential to avoid the inflammatory problems of PLGA, 

their degradation products are acetone and diols, which are neutral and membrane 
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permeable, and therefore rapidly hydrolyzing polyketals should not generate the same 

acidity problems that polyester based materials do.  The hydrolysis kinetics of PCADK, 

POADK, and PPADK were investigated by 1H-NMR.  The hydrolysis of the ketal 

linkages in PCADK is indeed pH-sensitive, having a half-life of 24.1 days at pH 4.5, and 

an estimated half-life of over 4 years at pH 7.4.  The hydrolysis of the ketal linkage in 

PCADK is considerably slower than that of a water soluble ketal, which has a half-life of 

approximately 1.6 min at pH 5.0 (Kwon, Standley et al. 2005).  This observation leads us 

to speculate that the rate-limiting step in the hydrolysis of polyketals is the diffusion of 

hydronium ions into the polymer matrix, rather than the cleavage of ketal bonds.  This 

hypothesis is further supported by the faster hydrolysis rate of the more hydrophilic 

polyketal, PPeADK, which was completely hydrolyzed within 3 hours.  On the other 

hand, the more hydrophobic polyketal, POADK, was the slowest hydrolyzing polyketal 

tested.  This trend suggests that the hydrolysis of polyketal microparticles can be tailored 

by manipulating their hydrophobicity (Figure 2.13). 

Fastest hydrolysis 

(half-life at pH 4.5 < 1 day)
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Figure 2.13.  The hydrolysis of polyketals corresponds to their hydrophobicity. 
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Biocompatibility of aliphatic polyketals 

PPADK was the first reported synthesis of polyketal, through the reaction of 2,2-

dimethoxypropane and 1,4-benzenedimethanol (Heffernan and Murthy 2005).  While 

PPADK has many of the characteristics needed for drug delivery, its degradation 

products have potential toxicity.  PCADK, in contrast, degrades into 1,4-

cyclohexanedimethanol and acetone, both of which  have excellent toxicity profiles.  In 

contrast to PPADK, PCADK degrades into acetone, a compound on the FDA GRAS 

(Generally Recognized As Safe) list, and 1,4-cyclohexanedimethanol, a compound with 

an excellent toxicity profile.  According to the Material Safety Data Sheets (MSDS) for 

the degradation products of PCADK, the LD50 of 1,4-cyclohexanedimethanol is 3,200 

mg/kg for an oral dosage in rats.  In addition, 1,4-cyclohexanedimethanol is a commonly 

used food packaging material and has approval for human consumption as an indirect 

food additive (Food Contact Notification (FCN) No. 000087).  1.4-

cyclohexanedimethanol is rapidly excreted from the blood, can diffuse through biological 

membranes, and is generally not metabolized by biological enzymes.  For example, 

DiVencenzo et al.  fed mice 400 mg/kg 1,4-cyclohexanedimethanol and observed that 

over 95% of the ingested dose was excreted unaltered after 2 days , 0.03% was respired 

as CO2, and 0.4% remained in the carcass after 48 hours (DiVincenzo and Ziegler 1980).  

They also observed that the half life of 1,4-cyclohexanedimethanol was 13 minutes.  The 

major metabolic product of this compound is 4-hydroxymethyl-cyclohexanecarboxylic 

acid.  The excellent toxicity profile of 1,4-cyclohexanedimethanol makes it an ideal 

candidate to be used in synthesizing biodegradable polymers. 
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Microparticle Formation with PCADK 

The polymer PCADK was chosen for further investigation for its ability to form 

microparticles and its biocompatible degradation products 1,4-cyclohexanedimethanol, 

which has been used extensively in the food packing industry.  Microparticles based on 

PCADK were fabricated using a single emulsion method.  The size of these 

microparticles was 300-500 nm in diameter via sonication emulsification and 4-6 μm in 

diameter via homogenization emulsification.  Particles with 300-500 nm size range are 

suitable for phagocytosis by macrophages and antigen presenting cells.  On the other 

hand, when homogenization was used to form the emulision, the size of the particles were 

significantly larger as compared to particles formed from sonication procesures.  This 

indicates that an important factor controlling the size of the particles is the method of 

emulsification.  Hence we speciculate that by controlling the type and intensity of the 

emulificaton procesure, the size of particles can be manipulated to obtain particles with 

sizes suitable for various biological applications. 

 

SOD delivery with PCADK microparticles 

As discussed in Chapter 1, ROS produced by macrophages plays a central role in 

mediating inflammatory diseases, such as acute liver failure, arthritis, and sepsis (Droge 

2002; Hitchon and El-Gabalawy 2004; Kamata, Honda et al. 2005; Victor, Rocha et al. 

2005).  SOD is an enzyme that scavenges reactive oxygen species and has the potential to 

treat inflammatory diseases by suppressing ROS production by macrophages.   

Unfortunately, clinical trials with free SOD have been ineffective, due to its membrane 

impermeability, and SOD delivery vehicles are therefore being investigated.  Polymeric 
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microparticles, based on PLGA and polycaprolactone, are also being investigated for the 

delivery of SOD (Liu, Ge et al. 2003; Giovagnoli, Blasi et al. 2004; Giovagnoli, Luca et 

al. 2005).  Although polyester-based microparticles have an excellent shelf-life and well 

characterized degradation products, their application for the treatment of inflammatory 

diseases is potentially problematic because their acidic degradation products can cause 

inflammation (Dailey, Jekel et al. 2006).   Polymeric microparticles based on acid 

degradable polymers also have the potential to enhance the delivery of SOD to 

macrophages.  In our studies, SOD was encapsulated into PCADK-based microparticles 

via a double emulsion procedure.  Cell culture experiments with macrophages 

demonstrated that these microparticles dramatically improved the ability of SOD to 

scavenge superoxide produced by macrophages.  Based on our results, we anticipate 

widespread interest in PCADK for drug delivery, based on its acid sensitivity, well 

characterized degradation products, and ease of synthesis. 
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CHAPTER 3 

DEVELOPMENT OF POLYKETAL COPOLYMERS WITH 

SUITABLE PROPERTIES FOR TREATING ACUTE 

INFLAMMATORY DISEASES 

 
3.1 Abstract 

Acute inflammatory diseases are a major cause of death in the world, and 

effective treatments are greatly needed.  Macrophages play a central role in mediating 

acute inflammatory diseases; therefore, there is currently great interest in developing drug 

delivery vehicles that can target therapeutics to macrophages.  Microparticles formulated 

from aliphatic polyketals have great potential to enhance the treatment of acute 

inflammatory diseases, due to their ability to passively target therapeutics to 

macrophages, their acid sensitivity, and their biocompatible degradation products.  

However, existing aliphatic polyketals are unsuitable for treating acute inflammatory 

diseases because they require weeks to hydrolyze, and strategies for accelerating their 

hydrolysis kinetics are greatly needed.  In this Chapter, I demonstrate that the hydrolysis 

kinetics of aliphatic polyketals can be accelerated by increasing their 

hydrophilic/hydrophobic balance.  Aliphatic polyketals of varying hydrophobicity were 

synthesized, via the acetal exchange reaction, and their hydrolysis kinetics were 

investigated at the pH values of 4.5 and 7.4.  A polyketal termed PK3 was developed, 

which had the hydrolysis kinetics suitable for treating acute inflammatory diseases.  PK3 

has a hydrolysis half-life of 2 days at pH 4.5, but requires several weeks to hydrolyze at 

pH 7.4.  Microparticles were formulated with PK3, which encapsulated the anti-
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inflammatory drug, imatinib.  In vivo experiments demonstrated that PK3 microparticles 

were able to significantly improve the efficacy of imatinib in treating acute liver failure.  

We anticipate that aliphatic polyketals will have numerous applications for the treatment 

of acute inflammatory diseases, given their pH sensitivity, tunable hydrolysis kinetics, 

and biocompatible degradation products.   
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3.2 Introduction 

Acute inflammatory diseases such as acute lung injury and acute liver failure 

cause millions of death each year, and effective treatments are greatly needed (Hudson 

and Steinberg 1999; Angus, Linde-Zwirble et al. 2001).  Pro-inflammatory cytokines 

secreted by macrophages play a central role in mediating acute inflammatory diseases, 

and drug delivery vehicles that can target therapeutics to macrophages have great clinical 

potential (Goodman, Pugin et al. 2003).  A key drug delivery requirement for the 

treatment of many acute inflammatory diseases is fast release of drugs to diseased organs, 

within several hours.  This is because at the time of patient diagnosis, significant tissue 

damage has already occurred, and organ function is rapidly deteriorating (O'Grady and 

Schalm 1993).  It has been challenging to develop clinically acceptable drug delivery 

vehicles that can target therapeutics to macrophages and release them rapidly.  

Liposomes are a potential delivery vehicle for treating acute inflammatory diseases, due 

to their ability to target macrophages (Higuchi, Kawakami et al. 2007).  However, their 

serum instability and poor storage properties have slowed their progress in clinical trials.  

Microparticles, based on biodegradable polymers, also have potential to enhance the 

treatment of acute inflammatory diseases.  Microparticles can be freeze-dried, have an 

excellent shelf-life, and can also passively target therapeutics to macrophages (Zender, 

Hutker et al. 2003; Wullaert, van Loo et al. 2007).  However, currently used biomaterials 

for drug delivery are predominantly based on polyesters, which are potentially 

problematic for treating acute inflammatory diseases because of their slow hydrolysis 

kinetics and acidic degradation products, which themselves frequently cause 

inflammation (Anderson and Shive 1997; Fu, Pack et al. 2000).  

 53



Microparticles formulated from polyketals are a new drug delivery vehicle, which 

degrade into neutral compounds comprised of acetone and diols, and should therefore 

avoid the inflammatory problems associated with polyester-based materials (Fu, Pack et 

al. 2000; Gopferich and Tessmar 2002; Kumar, Langer et al. 2002; Heffernan and Murthy 

2005; Lee, Yang et al. 2007).  At present, only two polyketals have been synthesized for 

drug delivery, poly-(1,4-phenyleneacetone dimethylene ketal) (PPADK) and 

poly(cyclohexane-1,4-diyl acetone dimethylene ketal) (PCADK) (Heffernan and Murthy 

2005; Lee, Yang et al. 2007).  PPADK has excellent hydrolysis kinetics for treating acute 

inflammatory diseases, having a half-life of 35 hours at pH 5.0, but degrades into 

benzene dimethanol, a compound with potential toxicity, due to its aromatic ring.  

PCADK is an aliphatic polyketal, which degrades into acetone and 1,4-

cyclohexanedimethanol, both of which have excellent biocompatibility.  However, 

PCADK has a hydrolysis half-life of 24 days at pH 4.5, which is too slow for applications 

involving the treatment of acute inflammatory diseases, and therefore strategies that can 

accelerate its hydrolysis kinetics are greatly needed. 

In this Chapter, I demonstrate that the hydrolysis kinetics of PCADK derived 

aliphatic polyketals could be accelerated by increasing their hydrophilic/hydrophobic 

balance.  Using this principle, we were able to generate a family of polyketal copolymer 

with tunable hydrolysis kinetics (Figure 3.1).   
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Figure 3.1. Synthesis of polyketal copolymers from 1,4-cyclohexanedimethanol, a second 
diol, and 2,2-dimethoxypropane.  Hydrolysis kinetics of polyketals can be controlled by 
manipulating the hydrophilicity of the polyketals through copolymerizing 1,4-
cyclohexandimethanol with a more hydrophilic diol. 

 

One particular polyketal copolymer, PK3, had a hydrolysis half-life of 2 days at 

pH 4.5 but several weeks at pH 7.4.  Microparticles formulated from PK3 should 

therefore be suitable for treating acute inflammatory diseases because they should 

hydrolyze and release therapeutics rapidly in the phagolysosomes of macrophages, but 

remain stable at physiological pH.  PK3 was used to generate microparticles 1-5 microns 

in size, which encapsulated the NFκB inhibitor imatinib, using a solvent evaporation 

procedure.  The therapeutic efficacy of these PK3-imatinib microparticles was 

investigated in mice, using a Concavalin A (Con A) model of acute liver failure (Figure 

3.2).  The results from these experiments demonstrate that imatinib-loaded PK3 

microparticles significantly enhanced the therapeutic efficacy of imatinib, presumably 

due to their accumulation in Kupffer cells.   
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Figure 3.2.  PK3, a new biomaterial for treating acute inflammatory diseases.  PK3 is a 
new polyketal copolymer, which hydrolyzes rapidly at the acidic pH of the macrophage 
phagosome.  PK3 is designed to deliver therapeutics to liver macrophages and enhance 
the treatment of acute liver failure.  PK3 microparticles were capable of enhancing the 
delivery of imatinib in mice suffering from acute liver failure.   
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3.3 Experimental Methods 

Materials.   

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO) and were 

used as received unless otherwise specified.  Benzene and 2,2-dimethoxypropane were 

purified by distillation.  Imatinib was a gift from Novartis.   

 

Animals.   

Male C57/BL6 mice were purchased from Jackson Laboratory (Bar Harbor, ME).  

All animal experiments were approved by the Institutional Animal Care and Use 

Committee (IACUC) of the University of Rochester Medical Center. 

 

Synthesis of polyketal copolymers.   

Polyketal copolymers were synthesized in a 25 mL two-necked flask, connected 

to a short-path distilling head.  The diols, 1,4-cyclohexanedimethanol (1.04 g, 7.25 

mmol) and, either 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, or 1,8-octanediol were 

dissolved in 20 mL of distilled benzene and kept at 100 °C.  Re-crystallized p-

toluenesulfonic acid (5.5 mg, 0.029 mmol) was dissolved in ethyl acetate (500 μL) and 

added to the benzene solution.  The ethyl acetate was distilled off, and the polymerization 

reaction was initiated by the addition of 2,2-dimethoxypropane (equal molar to the two 

diols combined).  Additional doses of 2,2-dimethoxypropane (500 μL) and benzene (2 

mL) were subsequently added to the reaction, every hour for six hours, via a metering 

funnel, to compensate for 2,2-dimethoxypropane and benzene that had distilled off.  After 

24 hours, the reaction was stopped with triethylamine (100 μL).  The copolymers were 
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isolated by precipitation into cold hexanes and analyzed by 1H-NMR and GPC.  In 

general the resulting polymers had number average molecular weights between 2000 to 

3000 Da.  Table 1 lists the compositions and molecular weights of the polyketal 

copolymers synthesized.  1H NMR spectra were obtained from a Varian Mercury VX 400 

MHz NMR spectrometer (Palo Alto, CA) using CDCl3 as the solvent.  PK1 1H NMR 

(400 MHz, CDCl3, δ): 3.4 – 3.18 (m, 4H, CH2),  1.66 (s, 1.9H, CH), 1.85 – 0.93 (m, 8H, 

CH2), and 1.32 (s, 6H, CH3); PK2 1H NMR (400 MHz, CDCl3, δ): 3.4 – 3.18 (m, 4H, 

CH2),  1.66 (s, 1.8H, CH), 1.85 – 0.93 (m. 8H, CH2), and 1.32 (s, 6H, CH3); PK3 

1H NMR (400 MHz, CDCl3, δ): 3.4 – 3.18 (m, 4H, CH2),  1.64 (s, 1.7H, CH), 1.85 – 0.93 

(m, 8.2H, CH2), and 1.32 (s, 6H, CH3); PK4 1H NMR (400 MHz, CDCl3, δ): 3.4 – 3.18 

(m, 4H, CH2),  1.68 (s, 2H, CH), 1.85 – 0.93 (m, 8H, CH2), and 1.32 (s, 6H, CH3); PK5 

1H NMR (400 MHz, CDCl3, δ): 3.4 – 3.18 (m, 4H, CH2),  1.67 (s, 1.8H, CH), 1.85 – 0.93 

(m, 8H, CH2), and 1.32 (s, 6H, CH3); PK6 1H NMR (400 MHz, CDCl3, δ): 3.4 – 3.18 (m, 

4H, CH2),  1.68 (s, 1.8H, CH), 1.85 – 0.93 (m, 8H, CH2), and 1.32 (s, 6H, CH3).   

 

Gel permeation chromatography.   

The molecular weights of the polyketal copolymers were determined by gel 

permeation chromatography (GPC) using a Shimadzu system (Kyoto, Japan) equipped 

with a UV detector.  Tetrahydrofuran was used as the mobile phase at a flow rate of 1 

mL/min.  Polystyrene standards (Peak Mw = 1060, 2970, and 10680) from Polymer 

Laboratories (Amherst, MA) were used to establish a molecular weight calibration curve.  
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Hydrolysis of polyketal copolymers.   

The hydrolysis of the polyketal copolymers was measured according to the 

procedures of Lee et al (Lee, Yang et al. 2007).  Briefly polymer samples (20 mg) were 

placed in buffered water (1 mL) at the pH values of 4.5 (100 mM AcOH) and 7.4 (100 

mM Na2HPO4) at 37 oC.  The polymer samples were mixed by gentle shaking, and at 

specific time points, were extracted into CDCl3 (1 mL).  The CDCl3 phase was isolated 

and analyzed by 1H NMR, to determine the percent hydrolysis. 

 

Release kinetics of rhodamine B from PK3 microparticles.   

Rhodamine B was encapsulated in PK3 microparticles using single emulsion 

procedures.  Rhodamine B-loaded PK3 microparticles (10 mg) were suspended in pH 4.5 

and pH 7.4 buffer solutions (10 mL).  The suspensions were kept at 37oC under gentle 

shaking.  At specific time points, the suspensions (100 μL) were centrifuged at 10,000 x 

g for 2 minutes to remove unhydrolyzed particles.  The supernatant (3 μL) was then 

diluted in pH 7.4 buffer (3 mL), which was then analyzed by a Shimadzu 

spectrofluorophotometer (Kyoto, Japan) to quantify the relative concentration of 

rhodamine B released form the PK3 microparticles (excitation wavelength = 556 nm, 

emission wavelength = 573 nm). 

 

Formulation of imatinib-loaded PK3 microparticles.   

Imatinib-loaded microparticles were formulated from PK3 using a modified 

water/oil/water emulsion method.  Briefly, PK3 (100mg) was dissolved in 

dichloromethane (1 mL), and in a separate vial imatinib (40 mg) was dissolved in 
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deionized (DI) water (400 µL).  The aqueous solution of imatinib was mixed with the 

PK3 solution, and sonicated for 60 seconds (Misonix Incorporated, Farmigdale, NY).  

The sonicated mixture was then immersed in liquid nitrogen for 15 seconds, and a 5% 

w/w PVA solution (pH 7.45, 12 mL) was added to it.  This mixture was homogenized for 

120 seconds with a Powergen 500 homogenizer (Fisher Scientific, Waltham, MA), and 

then transferred to a beaker containing 1% w/w PVA (pH 7.4, 40 mL).  This solution was 

stirred for 3 hours with a magnetic stir bar to evaporate the organic solvent.  The particles 

were isolated by centrifuging at 10,000 x g for 15 min, washed twice with PBS buffer (15 

mL) and freeze-dried. 

 

Scanning Electron Microscopy (SEM).   

SEM images were taken to analyze the morphology of the polyketal 

microparticles.  Briefly, SEM samples were prepared by attaching lyophilized particles 

onto 12.7 mm diameter aluminum sample mounting stubs (Electron Microscopy 

Sciences, Hatifield, PA), using conductive double sided carbon discs (SPI Supplies, West 

Chester, PA).  The samples were coated with a gold sputter coater (International 

Scientific Instruments, Prahran, Australia) for 2 minutes under an argon atmosphere.  The 

SEM samples were subsequently analyzed using a Hitachi S-800 scanning electron 

microscope (Tokyo, Japan).   

  

Determination of imatinib loading in PK3 microparticles.   

The loading of imatinib in PK3 microparticles was determined by Ultraviolet-

visible (UV-Vis). spectrometry.  A calibration curve for imatinib was established at 268 
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nm, with a Shimadzu UV-1700 spectrometer (Kyoto, Japan) in pH 7.4 buffer.  Imatinib-

loaded PK3 particles were dissolved in a small amount of methylene chloride, and the 

imatinib was extracted into pH 7.4 buffer (100 mM Na2HPO4).  The absorbance of both 

the aqueous and organic phase was measured to verify that all the imatinib was 

partitioned into the aqueous phase.  The concentration of imatinib loaded into the PK3 

microparticles was determined against the established calibration curve as mentioned 

above.  

 

Treatment of acute liver failure in mice with imatinib-loaded PK3 microparticles  

Male C57/BL6 mice, 6-8 weeks old, were used in these studies.  Appropriate 

doses of imatinib-PK3 particles (containing between 5 µg/kg to 500 µg/kg of imatinib), 

or an equal quantity of free imatinib, was suspended/dissolved in PBS (200 µL) and was 

injected intravenously using a 26 G5/8 sterilized needle.  One hour later Con A (15 

mg/kg), dissolved in PBS (200 µL), was injected into the intraperitoneal cavity using a 26 

G5/8 sterilized needle.  Between 4 and 8 mice were used per experimental group.  The 

mice were euthanized 8 hours after the Con A injection, by cervical dislocation.  Blood 

was then withdrawn from the heart using a 26 G5/8 sterilized needle, and kept at 4°C 

overnight.  The serum was isolated by centrifuging at 600 x g for 10 minutes and sent to 

the core facility at the University of Rochester for measurement of ALT levels. 
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3.4 Results 

Characterizations of polyketal copolymers. 
 

Six polyketal copolymers were synthesized (PK1 – PK6, Table 3.1) by 

copolymerizing 1,4-cyclohexanedimethanol with either 1,4-butanediol, 1,5-pentanediol, 

1,6-hexanediol, or 1,8-octanediol.  The hydrophilicity of these diols is different from that 

of 1,4-cyclohexanedimethanol (log P = 1.46), as evidenced by their respective log P 

values.  The synthesis of all the polyketal copolymers reported in this Chapter was 

accomplished using the acetal exchange reaction, and could be performed on a multi-

gram scale with yields of 50 – 60%.  In general, the introduction of diols other than 1,4-

cyclohexanedimethanol did not cause any complications in the synthesis, and procedures 

developed for the synthesis of PCADK were suitable for the synthesis of all the 

copolymers.  Importantly, all the polyketal copolymers synthesized were solid, and 

therefore have the potential for formulation into microparticles.  
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Table 3.1. Compositions and molecular weight of polyketal copolymers synthesized.  
 n = 2:  PK4 

n = 3:  PK1, PK2, and PK3 
n = 4:  PK5  
n = 6:  PK6 

O OO O
x

∗

∗
y

n

 
 
 
 

Polymer composition   Polymer 
ID Monomer diol A (x) Monomer diol 2 (y) Mn PDI* 

PK1 1,4-cyclohexanedimethanol 
(98.03%) 

1,5-pentanediol 
(1.93%) 2149 1.742 

PK2 1,4-cyclohexanedimethanol 
(92.46%) 

1,5-pentanediol 
(7.56%) 2530 1.629 

PK3 1,4-cyclohexanedimethanol 
(86.70%) 

1,5-pentanediol 
(13.30%) 2596 1.432 

PK4 1,4-cyclohexanedimethanol 
(96.75%) 

1,4-butanediol 
(3.25%) 2637 1.553 

PK5 1,4-cyclohexanedimethanol 
(85.32%) 

1,6-hexanediol 
(14.68%) 2122 1.538 

PK6 1,4-cyclohexanedimethanol 
(87.31%) 

1,8-octanediol 
(12.69%) 2181 1.786 

* PDI: polydispersity index.  
 

Polyketal copolymers were characterized by 1H-NMR and GPC.  As a 

representative example, the 1H-NMR and GPC of PK3 are shown in Figure 3.5.  The ratio 

of 1,5-pentanediol to 1,4-cyclohexanedimethanol was obtained by taking the ratio of 

areas under the peaks a and b, respectively.   
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Figure 3.3.  1H NMR and GPC spectrum of PK1.  (A) 1H NMR spectrum of PK1 in 
CDCl3.  (B) GPC trace of PK1 in THF, Y-axis indicates relative UV absorbance at 262 
nm, Mn = 2,149, polydispersity index (PDI) = 1.74. 
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Figure 3.4.  (A) 1H NMR spectrum of PK2 in CDCl3.  (B) GPC trace of PK2 in THF, 
Y-axis indicates relative UV absorbance at 262 nm, Mn = 2,530, PDI = 1.63. 
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Figure 3.5.  (A) 1H NMR spectrum of PK3 in CDCl3.  (B) GPC trace of PK3 in THF, 
Y-axis indicates relative UV absorbance at 262 nm, Mn = 2,596, PDI = 1.43. 
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Figure 3.6.  (A) 1H NMR spectrum of PK4 in CDCl3.  (B) GPC trace of PK4 in THF, 
Y-axis indicates relative UV absorbance at 262 nm, Mn = 2,637, PDI = 1.55. 
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Figure 3.7.  (A) 1H NMR spectrum of PK5 in CDCl3.  (B) GPC trace of PK5 in THF, 
Y-axis indicates relative UV absorbance at 262 nm, Mn = 2,122, PDI = 1.54. 
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Figure 3.8.  (A) 1H NMR spectrum of PK6 in CDCl3.  (B) GPC trace of PK6 in THF, 
Y-axis indicates relative UV absorbance at 262 nm, Mn = 2,181, PDI = 1.79. 
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Acid-sensitive degradation of copolymers PK1 – PK6 

The hydrolysis kinetics of PK1 to PK6 was measured at the pH values of 4.5 and 

7.4 to determine their behavior in the acidic environment of phagolysosomes and in the 

blood.  Figure 3.9 – 3.14 demonstrate that all the polyketal copolymers (PK1 – PK6) 

undergo acid-catalyzed hydrolysis.  
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Figure 3.9.  Hydrolysis of PK1 at 37oC.  Data are presented as means ± standard 
deviation, n = 3. 
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Figure 3.10.  Hydrolysis of PK2 at 37oC.  Data are presented as means ± standard 
deviation, n = 3. 
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Figure 3.11.  Hydrolysis of PK3 at 37oC.  Data are presented as means ± standard 
deviation, n = 3. 
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Figure 3.12.  Hydrolysis of PK4 at 37oC.  Data are presented as means ± standard 
deviation, n = 3. 
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 Figure 3.13.  Hydrolysis of PK5 at 37oC.  Data are presented as means ± standard 

deviation, n = 3. 

 72



0%

20%

40%

60%

80%

100%

0 10 20 30 4

Time (days)

Pe
rc

en
t H

yd
ro

ly
ze

d

0

pH 1

pH 4.5

pH 7.4

 
 

 

 

Figure 3.14.  Hydrolysis of PK6 at 37oC.  Data are presented as means ± standard 
deviation, n = 3. 

Drug release kinetics from PK3 microparticles 

In order to determine whether or not PK3 microparticles would have suitable 

drug-release kinetics for treating acute inflammatory diseases, a release study was 

conducted on PK3 microparticles which encapsulated the fluorescent dye, rhodamine B.  

Figure 3.15 demonstrates that the release half-lives of rhodamine B from PK3 

microparticles are approximately 6 hours at pH 4.5 and 40 hours at pH 7.4, which are 

suitable for treating acute liver failure.   The drug-release kinetics of PK3 microparticles 

is 20 times faster than that of PCADK microparticles, which had a release half-lives of 5 

days at pH 4.5 and over 15 days at pH 7.4. 
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Figure 3.15.  Release kinetics of rhodamine B encapsulated in PK3 microparticles. 
 
 
 
Formulation of PK3 microparticles encapsulating imatinib 

Microparticles were formulated from PK3, using a solvent evaporation procedure.  

Figure 3.16 demonstrates that the size range of PK3 microparticles is between 1 to 5 

microns, which is suitable for phagocytosis by macrophages.  Imatinib, an anti-

inflammatory drug that inhibits the activation of NFκB, was encapsulated into PK3 

microparticles through double emulsion procedures.  These microparticles were 

approximately 1.5 microns in size on average, as determined by SEM and DLS, which is 

suitable for delivering drugs to phagocytic cells such as Kupffer cells.  The loading of 

imatinib in PK3 microparticles was determined to be 0.90 ± 0.10 µg imatinib per 1 mg of 

particles (n = 3), suggesting that the encapsulation efficiency of imatinib in PK3 

microparticles was approximately 0.32%.  
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Figure 3.16. SEM images of particles formulated with PK3. (A) SEM image of empty 
particles formulated via double emulsion. (B) SEM images of imatinib-loaded PK3 
microparticles formulated via double emulsion. (C) Size Distribution of imatinib-loaded 
PK3 microparticles as determined by dynamic light scattering (DLS).  

 

  

      The ability of PK3 microparticles to enhance the delivery of imatinib was 

investigated in mice suffering from Con A-induced acute liver failure.  Mice were 

injected with either imatinib in solution (0.1 μg to 10 μg of imatinib dissolved in 200 μL 
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of saline) or an equivalent amount of imatinib loaded in PK3 microparticles (0.11 mg to 

11 mg of imatinib-loaded PK3 microparticles suspended in 200 μL of saline).  Acute 

liver failure was subsequently induced by an intraperitoneal injection of Con A.  The 

severity of liver injury in these mice was determined by measuring the alanine 

aminotransaminase (ALT) level in their blood, which is a clinical surrogate marker for 

hepatocyte injury.  Figure 3.17 demonstrates that PK3 microparticles enhanced the 

treatment efficacy of imatinib in preventing Con A-induced liver damage.   
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Figure 3.17.  PK3 microparticles improve the efficacy of imatinib in treating acute liver 
failure in mice.  Mice were injected intravenously with either imatinib or imatinib in PK3 
microparticles, acute liver failure was then induced by intraperitoneal injection of Con A 
(15 mg/kg).  8 hours later, ALT levels in the blood were analyzed.  * indicates statistical 
significance (Student’s t test, P < 0.05, n = 4 to 8). 
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3.5 Discussion 

Tunable hydrolysis of polyketal copolymers 

There is currently great interest in developing microparticle-based delivery 

vehicles that have the biocompatibility and hydrolysis kinetics needed to treat acute 

inflammatory diseases.  Microparticles formulated from the aliphatic polyketal PCADK 

have excellent biocompatibility and degrade under the acidic conditions of the 

phagolysosome.  However, the slow hydrolysis kinetics of PCADK makes it unsuitable 

for treating acute inflammatory diseases, and therefore strategies for accelerating its 

hydrolysis kinetics are greatly needed.  We previously hypothesized that the slow 

hydrolysis kinetics of PCADK were due to its hydrophobicity, making the diffusion of 

water into the polymer matrix the rate-limiting step in ketal hydrolysis (Lee, Yang et al. 

2007).  This hypothesis was based on the fact that the hydrolysis half-life of a water-

soluble dimethylacetone-based ketal is only 2 minutes at pH 5.0, which is 3 to 4 orders of 

magnitude faster than the hydrolysis of the ketal linkages in PCADK (Kwon, Standley et 

al. 2005).  Additionally, the hydrolysis kinetics of other water insoluble polymers, such 

as polyanhydrides, also scale with their hydrophobicity (Gopferich and Tessmar 2002).  

In this Chapter, the role of hydrophobicity in governing the hydrolysis kinetics of 

polyketals was investigated.  This was accomplished by synthesizing polyketal 

copolymers of varying hydrophobicity, and measuring their hydrolysis kinetics.   

Six polyketal copolymers were synthesized in this Chapter (PK1 – PK6, Table 

3.1), by copolymerizing 1,4-cyclohexanedimethanol with either 1,4-butanediol, 1,5-

pentanediol, 1,6-hexanediol, or 1,8-octanediol.  The hydrophobicity of these diols is 

different from that of 1,4-cyclohexanedimethanol (log P = 1.46, where P = water/octanol 
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partition coefficient), as evidenced by their respective log P values (Table 3.3).  The 

synthesis of all the polyketal copolymers reported in this study was accomplished using 

the acetal exchange reaction, and was performed on a multi-gram scale with yields of 50 

– 60% (Figure 3.1).  In general, the introduction of additional diols other than 1,4-

cyclohexanedimethanol did not cause any synthetic complications, and procedures 

developed for the synthesis of PCADK were suitable for the synthesis of all the 

copolymers.  Importantly, all the polyketal copolymers reported in Table 3.1 were solid, 

and therefore have the potential for formulation into microparticles. 

The influence of hydrophobicity on the hydrolysis kinetics of polyketal 

copolymers was investigated.  Two sets of copolymers were synthesized and their 

hydrolysis rates were investigated.  First, a series of copolymers, using varying ratios of 

the monomers 1,4-cyclohexanedimethanol and 1,5-pentanediol, were synthesized (Table 

3.2).   PK1, PK2, and PK3 are copolymers synthesized from 1,4-cyclohexanedimethanol 

and 1,5-pentanediol; their hydrophilicity scales with the amount of 1,5-pentanediol 

incorporated into the copolymer.  This is due to the large difference in hydrophilicity 

between 1,5-pentanediol and 1,4-cyclohexanedimethanol, as evidenced by their 

respective log P values of 0.27 and 1.46.  Figure 3.18 demonstrates that 1,5-pentanediol 

dramatically accelerates the pH 4.5 hydrolysis kinetics of 1,4-cyclohexanedimethanol-

based polyketals.  For example, the hydrolysis half-life of PCADK, a homo-polyketal 

synthesized from 1,4-cyclohexanedimethanol, is 24 days at pH 4.5 (Lee, Yang et al. 

2007).  In contrast, PK3, a copolymer that incorporated  13% 1,5-pentanediol and 87% 

1,4-cyclohexanedimethanol, had a hydrolysis half-life of 2 days at pH 4.5 and was 100% 

hydrolyzed after 5 days.  PK2, a PCADK derived copolymer with 7.5% of 1,5-
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pentanediol incorporated, had a hydrolysis half-life of 3 days, which is faster than 

PCADK but slower than PK3.  For all three polyketals, less than 15% of the polymers 

were hydrolyzed in pH 7.4 within the duration of the experiments of 10 days.   

Collectively, these results demonstrate that the hydrolysis kinetics of PK1 to PK3 scale 

with the amount of 1,5-pentanediol incorporated in their backbone, suggesting that the 

hydrolysis of polyketals is governed by their hydrophilicity.  Similar copolymers with 

higher incorporation of 1,5-pentanediol were also generated; however those copolymers 

were viscous liquids, which are not suitable for formulation into microparticles for drug 

delivery.  Therefore we only focused our hydrolysis analysis on the solid polyketal 

copolymers, PK1, PK2, and PK3. 

 

Table 3.2.  Polyketal copolymers composed of 1,4-cyclohexanedimethanol and 1,5-
pentanediol. 
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Polymer ID X Y 
PCADK 100% 0 

PK 1 98% 2% 
PK 2 92% 8% 
PK 3 87% 13%  

Chemical Structures of PK1, PK2, and PK3. 
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Figure 3.18. Hydrolysis half-lives of polyketal copolymers PK1, PK2, and PK3 at pH 4.5. 

 79



 

To determine if diols other than 1,5-pentanediol could similarly influence the 

hydrolysis kinetics of PCADK-derived copolymers, the hydrolysis kinetics of PK4, PK5, 

and PK6 were also investigated.  These polyketals are PCADK-derived copolymers 

synthesized from 1,4-cyclohexanedimethanol and either 1,4-butanediol, 1,6-hexanediol, 

or 1,8-octanediol.  Table 3.3 demonstrates that this set of copolymers also has an inverse 

relationship between hydrophobicity and hydrolysis kinetics.  For example, PK4, a 

copolymer synthesized from 1,4-cyclohexanedimethanol and 1,4-butanediol, has the 

fastest hydrolysis kinetics of all the polyketal copolymers, with a hydrolysis half-life of 1 

day at pH 4.5.  This is predicted based on the more hydrophilic nature of 1,4-butanediol 

in comparison to the other diols.  On the other hand, PK6, a copolymer composed of 1,4-

cyclohexanedimethanol and 1,8-octanediol, had a pH 4.5 hydrolysis half-life of 18.6 

days.  In summary, these data demonstrate that the hydrolysis kinetics of polyketals can 

be tuned by varying their hydrophilicity and further support the hypothesis that diffusion 

of water into the polyketals is the rate-determining step governing their hydrolysis.  

Importantly, the hydrolysis kinetics of all the polyketal copolymers, PK 1-6, was pH-

sensitive; in general they hydrolyzed at least one order of magnitude faster at pH 4.5 than 

at pH 7.4. 
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Table 3.3. Hydrolysis half-lives of polyketal copolymers at pH 4.5 and pH 7.4 at 37 oC. 
 Polymer composition  

Diol A Percent 
diol A Diol B Percent 

diol B 

Half life 
at pH 4.5  

Log P 
of 

diol B

97% 
1,4-butanediol

HO
OH

 
3% 1.0 day -0.83 

87% 
HO OH

1,5-pentanediol  
13% 1.8 days 0.27 

85% 
1,6-hexanediol

OH
HO

 
15% 4.4 days 0.76 

 
 
 
 
 
 
 
 
 
 
 
 

87% 
HO

OH

1,8-octanediol
13% 18.6 days 1.75 

 

1,4-cy ohexane
dimeth nol

HO 
OH

cl
a

* log P is the logarithm of the water/octanol partition coefficient; the log P data were 
obtained from the Syracuse Research Corporation’s PhysProp Database. 
 

 

 

Delivery of an NFκB inhibitor for treating ALF 

We chose PK3 for further investigation as a drug carrier for the treatment of acute 

inflammatory diseases because of its suitable hydrolysis kinetics and biocompatible 

degradation products.  The copolymer PK4 has faster hydrolysis kinetics than PK3; 

however it degrades into 1,4-butanediol, which is converted into γ-hydroxybutyrate in 

vivo, and subsequently causes toxicity to the central nervous system (Zvosec, Smith et al. 

2001).   

PK3 microparticles were used to enhance the delivery of imatinib in treating acute 

liver failure. Imatinib is a kinase inhibitor that inhibits NF-κB activation and has great 

potential for treating acute inflammatory diseases (Deininger and Druker 2003; Wolf, 

Wolf et al. 2005).  The activation of NF-κB in Kupffer cells plays a central role in 
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causing acute liver failure by mediating the production and secretion of inflammatory 

molecules such as TNF-α, IL-1, IFN-γ, and IL-12, which cause extensive tissue damage 

in the liver and significantly contribute to the pathology of acute liver failure (Pahl 1999; 

Higuchi, Kawakami et al. 2006).  These cytokines regulate the phenotype of Kupffer cells 

themselves as well as the neighboring cells, such as hepatocytes and endothelial cells 

(Bilzer, Roggel et al. 2006).  Several studies have demonstrated that inhibition of NF-κB 

activation in Kupffer cells offers great therapeutic potential for treating liver injuries 

(Zhou, Wang et al. 2004; Liu and Malik 2006; Higuchi, Kawakami et al. 2007).   

Although imatinib has shown promise for treating acute inflammatory diseases in 

mouse models, there are also numerous side effects associated with imatinib, including 

heart failure and hepatic toxicity (Kerkela, Grazette et al. 2006; Yeon Hee, Hae Jeong et 

al. 2006).  Our experiments demonstrated that imatinib-loaded PK3 microparticles 

significantly enhanced the therapeutic efficacy of imatinib by targeting it to macrophages, 

thereby increasing its concentration at the target site, and also by reducing the toxic side 

effects of imatinib on the heart and liver.  For example, a dose of 500 µg/kg of free 

imatinib resulted in an ALT value of approximately 2,000 U, whereas 500 µg/kg of 

imatinib encapsulated in PK3 microparticles reduced the ALT values to baseline levels of 

only 50 U.  The therapeutic efficacy of 15 µg/kg of imatinib loaded in PK3 

microparticles was similar to that of 500 µg/kg of free imatinib.  No noticeable toxicity 

was observed by injection of empty PK3 microparticles (11 mg suspended in 200 μL of 

saline).  
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CHAPTER 4 

DEVELOPMENT OF AN SOD DELIVERY SYSTEM FOR 

TREATING ACUTE LIVER FAILURE 

 

4.1 Abstract 

Acute liver failure (ALF) can be characterized by destruction of metabolic 

capacity of the liver and is responsible for thousands of deaths each year.  Oxidative 

stress produced by Kupffer cells, the resident macrophages in the liver, plays a critical 

role on mediating liver injury by inducing production of inflammatory cytokines such as 

tumor necrosis factor-α (TNF-α).  In this Chapter, the anti-oxidant protein, superoxide 

dismutase (SOD), was encapsulated in PK3 microparticles, which have suitable chemical 

and physical properties for drug delivery applications treating ALF.  PK3 microparticles 

can passively accumulate in the liver, target Kupffer cells through phagocytosis, and 

release the encapsulated drug rapidly.  Cell culture experiments demonstrated that PK3 

microparticles can be taken up by macrophages.  In vivo studies confirmed that PK3 

microparticles target and preferentially accumulate the liver.  SOD-loaded in PK3 

microparticles was effective in reducing liver damage and systemic inflammation in mice 

that suffered from LPS-induced acute liver injury, as evidenced by decreased serum level 

of alanine aminotransferase and TNF-α.  Based on our results, we anticipate numerous 

applications of polyketals microparticles for treating acute inflammatory diseases given 

their biocompatible degradation products, ability to target macrophages, and rapid release 

of encapsulated drugs. 
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4.2 Introduction 

Acute liver failure (ALF) can be characterized by destruction of metabolic 

capacity of the liver and is responsible for thousands of deaths each year.  Several 

pathologic conditions, including bacterial infection-induced sepsis, hemorrhagic viral 

infections, alcohol-induced liver toxicity, hepatic ischemia and reperfusion injury, and 

drug overdose, contribute to the pathology of ALF.  Oxidative stress produced by 

Kupffer cells, the resident macrophages in the liver, plays a critical role on mediating 

liver injury by inducing production of inflammatory cytokines such as tumor necrosis 

factor-α (TNF-α) (Decker, Lohmann-Matthes et al. 1989; Wheeler, Kono et al. 2001; 

Droge 2002; Kamata, Honda et al. 2005).  Therefore inhibition of oxidative stress in the 

liver has great potential in treating ALF.    Superoxide dismutase (SOD) is an enzyme 

that scavenges reactive oxygen species and has great potential to treat inflammatory 

diseases by suppressing ROS production by macrophages (Kinnula and Crapo 2003; 

Cuzzocrea, Thiemermann et al. 2004; Landis and Tower 2005).  Numerous SOD delivery 

approaches for medical applications have been proposed; however, strategies for 

delivering SOD to the liver for treating ALF have been unsuccessful, primary because 

none of the existing SOD delivery strategies have the properties needed to treat ALF, 

which requires targeting SOD to the liver, releasing SOD within 1 – 2 days, serum 

stability, and good storage properties.  Liposomes have potential for SOD delivery to 

treat ALF because of their ability to target and rapidly release SOD to the liver (Nakae, 

Yamamoto et al. 1990; Higuchi, Kawakami et al. 2006; Higuchi, Kawakami et al. 2007).  

However, liposomes are not sufficiently stable in serum and also have poor storage 

properties, which hinder their use for clinical applications treating ALF.  
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Microparticles based on biodegradable polymers have considerable potential for 

improving the efficacy of SOD, due to their excellent biocompatibility, long shelf life, 

and ability to efficiently target macrophages (Giovagnoli, Luca et al. 2005; Kohane, Tse 

et al. 2006).  However, polymeric microparticles are predominantly formulated from 

polyesters, which can be problematic for the treatment of inflammatory diseases due to 

their acidic degradation products and slow hydrolysis kinetics.(Dailey, Jekel et al. 2006).  

Polyketals are a new class of polymers that are also being investigated for the delivery of 

SOD, and have several unique properties that make them suitable delivery vehicles for 

treating ALF (Lee, Yang et al. 2007; Yang, Bhide et al. 2008).  First, polyketals degrade 

into alcohols and ketones and may avoid the inflammatory problems associated with the 

acidic degradation products of polyesters (Fu, Pack et al. 2000).  Second, polyketals can 

be used to formulate microparticles, which can encapsulate and target SOD to phagocytic 

cells.  For example, microparticles formulated from the aliphatic PCADK, encapsulating 

SOD, demonstrated improved efficacy of SOD in reducing the production of ROS by 

macrophages in vitro (Lee, Yang et al. 2007).  We have also previously demonstrated that 

a polyketal obtained by copolymerizing 1,4-cyclohexanedimethanol and 1,5-pantenediol, 

termed PK3, has the desired properties for drug delivery applications treating ALF, due 

to its ability to target the liver and rapid hydrolysis at phagolysosomal pH.  PK3 was used 

to encapsulate the anti-inflammatory drug, imatinib, an inhibitor of the transcription 

factor, NFκB, which is responsible for production of pro-inflammatory cytokines such as 

TNF-α.  Our studies showed that PK3 microparticles significantly enhanced the 

therapeutic efficacy of imatinib in treating Con A-induced ALF in mice (Yang, Bhide et 

al. 2008).   Even though polyketals have great promise for delivering SOD to treat ALF, 
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low encapsulation efficiency and loss of enzymatic activities of SOD in polyketal 

microparticle still remain a major challenge.  In this Chapter, I demonstrate that improved 

encapsulation of SOD and retaining of enzymatic activities were achieved by using an 

improved strategy, solid-in-oil-in-water double emulsion method, to formulate PK3 

microparticles.  Cell culture experiments demonstrated that PK3 microparticles 

significantly enhanced the delivery of SOD to macrophages.  In vivo studies 

demonstrated that PK3 microparticles significantly reduced liver necrosis and systemic 

inflammation in mice after ALF was induced by the endotoxin LPS, as evidenced by 

significantly reduce levels of ALT and TNF-α in their serum.  Based on our findings, we 

anticipate numerous applications of polyketals for protein delivery treating acute 

inflammatory diseases given their biocompatible degradation products, ability to target 

macrophages, and rapid release of encapsulated drugs. 
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4.3 Experimental Methods 

Materials. 

 All chemicals were purchased from Sigma-Aldrich (St. Louis, MO) and were 

used as received unless otherwise specified.  TNF-α ELISA kit was purchased from 

eBioscience (San Diego, CA).  ALT assay kit was purchased from Point Scientific 

(Canton, MI). 

 

Animals.   

Female Balb/C mice were purchased from Jackson Laboratory (Bar Harbor, ME).  

All animal experiments were approved by the Institutional Animal Care and Use 

Committee (IACUC) of the Georgia Institute of Technology. 

 

Formulation of SOD-loaded microparticles with water/oil/water emulsion   

SOD-loaded microparticles were formulated from polyketal copolymers using a 

water/oil/water emulsion method.  Briefly, 50 μL of an aqueous SOD solution (10 

mg/mL) was added to 500 μL of methylene chloride, which contained 50 mg of PK3 

dissolved in it.  The resulting mixture was sonicated briefly at 40 Watts (Branson Sonifier 

250) and transferred to a 5 mL pH 7.4 buffer solution (100 mM sodium phosphate) 

containing 8% w/v poly(vinyl alcohol) (PVA, 31–50 kDa).  The new mixture was 

emulsified using a homogenizer (Fisher Scientific Powergen 500 with a flat-bottom 

generator) and subsequently added to 30 mL of a 1% w/v PVA solution and stirred for at 

least 3 hours to evaporate the solvent.  The resulting particles were washed 3 times by 

centrifugation, then re-suspended and freeze-dried.   
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Protein lyophilization 

SOD was dissolved in ultra pure de-ionized water (10 mg/mL).  PEG (Mw 5000) 

was co-dissolved in a four-to-one mass ratio to SOD. The solution was quickly frozen in 

liquid nitrogen, which was then lyophilized for 24-48 hours to obtain an SOD-PEG 

mixture. 

 

Formulation of SOD-loaded microparticles with solid/oil/water emulsion   

The SOW method used was based on the techniques of Castellanos, et al. 

(Castellanos, Carrasquillo et al. 2001).  Briefly, 5 mg of lyophilized protein and 50 mg of 

PCADK (Mn = 2277) were mixed in 500 µL of DCM through short vortexing (3000 

RPM), bath sonication (approximately 15 minutes), and finally sonicated with a Branson 

Sonifier 250 (VWR Scientific, Wester Chester, PA) until a smooth dispersion was 

visible. This suspension was added to a 5% (w/v) PVA solution (25 mL) and was either 

homogenized at 6500 RPM for 2 minutes. The final emulsion was placed under vacuum 

in a rotary evaporator for quick removal of the DCM. The particles were washed and 

lyophilized using the same method as the W/O/W method. 

 

Scanning Electron Microscopy.   

SEM images were taken to analyze the morphology of the polyketal 

microparticles.  Briefly, SEM samples were prepared by attaching lyophilized particles 

onto 12.7 mm diameter aluminum sample mounting stubs (Electron Microscopy 

Sciences, Hatifield, PA), using conductive double sided carbon discs (SPI Supplies, West 

Chester, PA).  The samples were coated with a gold sputter coater (International 
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Scientific Instruments, Prahran, Australia) for 2 minutes under an argon atmosphere.  The 

SEM samples were subsequently analyzed using a Hitachi S-800 scanning electron 

microscope (Tokyo, Japan).   

 

Determination of SOD encapsulation efficiency 

A Micro-BCA protein assay kit (Pierce 23235) was used to determine protein 

loading.  Briefly, protein was isolated from the particles by dissolving a few milligrams 

of microparticles in 1 mL of SDS/HCl (0.25% w/v, 0.02 M) solution.  BCA reagent (150 

µL) was mixed into microplate wells with 30 µL of dissolved protein SDS/HCl solution 

and 120 µL of PBS (100 mM) solution.  The microplate was placed in a shaker (100 

RPM) for approximately 30 seconds and then incubated for 2 hours at 37°C.  The 

microplate was cooled to room temperature, and the absorbance at 562 nm was read by a 

plate reader. A protein calibration curve was made by preparing known concentrations of 

SOD solutions. 

 

Determination of SOD activity 

A SOD assay activity kit (Fluka 19160) was used to determine the percent activity 

of SOD encapsulated in S/O/W and W/O/W microparticles.  Briefly, approximately 2 mg 

of microparticles were dissolved in 500 µL of DCM in a small vial.  The vial was then 

placed in a 60°C oil bath, allowing the DCM to slowly evaporate, leaving solid polymer 

and SOD, which was then mixed in 1 mL of dilution buffer provided by the SOD assay 

kit.   The dissolved SOD and suspended polymer were placed in a small centrifugation 

tube and centrifuged at 5000 G for 1 minute to separate the insoluble polymer from the 
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SOD solution.  A kinetic study was then performed on the SOD solution and a set of 

prepared standards by measuring the absorbance (450 nm) as the SOD reacted with the 

SOD assay kit reagents over the course of ten minutes. 

 

Cell Culture 

RAW 264.7 macrophage (ATCC number: TIB-71) from the American Type 

Culture Collection (ATCC) (Manassas, VA) were maintained at 37 °C under a humidified 

atmosphere of 5 % CO2 in Dulbecco's modified eagle's medium (DMEM) containing 10% 

(v/v) fetal bovine serum (FBS), supplemented with penicillin (100 units/ml) and 

streptomycin (100 µg/ml).  IC-21 macrophages (TIB-186) from ATCC were also 

maintained under the same conditions as TIB-71 with RPMI-1640 cell culture medium 

containing 10% FBS. 

 

Efficacy of SOD-loaded PK3 microparticles in vivo and liver histology.   

Six to eight-week-old female BALB/c mice were obtained from the Jackson 

Laboratory (Bar Harbor, Maine).  They were maintained under controlled conditions and 

had free access to standard chow and water.  The efficacy of the PK3 microparticles 

encapsulating SOD was evaluated in an in vivo mouse model of acute liver injury.  All 

reagents were injected in a total volume of 100 μL per BALB/c mouse for either 

intravenous (IV) or intraperitoneal (IP) injections.  For statistical analysis, all 

experiments were performed using 6 mice per group unless otherwise specified.  SOD-

loaded PK3 microparticles (60 U/mg, 1 mg/mL) were injected into the blood stream of 

mice through a jugular vein, immediately followed by an IP injection of LPS (2.50 
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μg/kg) from E.coli 0111:B4 with 700 mg/kg of Galactosamine (GalN).  After 24 h, blood 

was collected from the mice by cardiac puncture and centrifuged at 4,000 RPM for 15 

minutes.  Plasma alanine aminotransferase (ALT) level was measured for liver function 

analysis using an ALT assay kit (Pointe Scientific Inc., Canton, MI).  Plasma TNF-α 

level was also measured by using an enzyme-linked immunosorbent assay (ELISA) kit.  

Significance of results was determined via the paired t test with p<0.05.   

 

Histological analysis of liver  

For liver histology, livers were collected and frozen in optimal cutting 

temperature (OCT).  OCT embedded livers were sliced with 10μm sections using 

Microm Cryo-Star HM 560MV Cryostat and liver sections were stained with 

haematoxylin and eosin. 

 

Bio-distribution of fluorescein-loaded PK3 microparticles in vivo.   

Fluorescein-loaded PK3 microparticles were used for a bio-distribution study of 

PK3 microparticles.  Fluorescein-loaded PK3 microparticles were injected to 3 mice 

through their jugular vein. The mice were sacrificed 2 hours after the IV injection, and 

perfusion was performed using PBS (150 mM, pH 7.4).  All organs were collected and 

placed in 5 mL of 20% (v/v) triton x-100 and 80% (v/v) PBS (150 mM, pH 7.4).  The 

organs were homogenized at 12,000 RPM for 2 minutes and centrifuged at 5,000 RPM 

for 5 minutes.  Fluorescence of fluorescein in clear supernatant was measured with 494 

nm excitation and 510 nm emission. 
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Bio-distribution of pentacene-loaded PK3 microparticles in vivo.   

Pentacene-loaded PK3 microparticles were used for a bio-distribution study of 

PK3 microparticles.  Pentacene-loaded PK3 microparticles were injected to 3 mice 

through their jugular vein.  The mice were anesthetized 2 hours after the injection and 

observed with a Xenogen IVIS Lumina in vivo imaging machine (Caliper Life Sciences, 

Hopkinton, MA).  
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4.4 Results 

Formulation of SOD-loaded PK3 microparticles 

A water/oil/water double emulsion procedure and a solid/oil/water procedure 

were developed to encapsulate FITC-SOD, based on procedures developed for 

encapsulating SOD in PLGA microparticles (Perez, Castellanos et al. 2002; Castellanos, 

Crespo et al. 2003; Giovagnoli, Blasi et al. 2004).  Figure 4.1A shows an SEM image of 

FITC-SOD-loaded microparticles, formulated from PK3, and demonstrates that their size 

ranges from 1 micron to 5 microns, which is suitable for intracellular delivery to 

phagocytic cells.  The FITC-SOD-loaded microparticles could also be easily dispersed 

into an aqueous solution, after freeze drying, as demonstrated by the fluorescence 

microscope image in Figure 4.1B.   

   

A B 

 
Figure 4.1.  SEM image and fluorescence microscopy image of SOD-loaded PK3 
microparticles.  (A) SEM image of FITC-SOD-loaded microparticles formulated from 
PK3. (B) 10 X fluorescence microscopy image of the FITC-SOD-loaded particles in 
aqueous buffer. 
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Loading and enzymatic activity of SOD in PK3 microparticles 

The biological activity of SOD was determined through a kinetics study 

comparing encapsulated SOD to SOD solutions of known concentrations.  The rate of 

reaction was determined by calculating the initial linear slopes of the absorbance versus 

time data of the standards and microparticles. A calibration curve was created by 

graphing these slopes of the standards versus the concentration of units of activity of each 

standard (Figure 4.2).  From this calibration curve, the concentration of units of activity 

of the S/O/W and W/O/W microparticles was calculated. The activity of encapsulated 

SOD was determined by multiplying the amount of SOD encapsulated with the activity 

of SOD encapsulated.  Dividing the concentration of units of activity of the S/O/W and 

W/O/W microparticles by their theoretical activity gives the amount of biological activity 

preserved (Table 4.1).  Loading of SOD from S/O/W was calculated to be 60 units of 

active SOD/ mg of PK3 microparticles. 

 

 

Table 4.1.   SOD loading, encapsulation efficiency, and enzymatic activity in PK3 
microparticles from S/O/W and W/O/W emulsion methods. 
Double Emulsion 

Method 
SOD Loading 

by weight 
Encapsulation 

Efficiency 
SOD Enzymatic 

Activity 

S/O/W 4.0% 42.4% 29.9% 

W/O/W 1.2% 11.8% 2.7% 
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Figure 4.2.  Enzymatic activities of SOD were determined by establishing a calibration 
curve. The activity of SOD was determined using an SOD assay kit (Fluka, SOD 
determination kit 19160, St Louis, MO).  Superoxide causes the substrate used in the kit 
to have absorbance at 450 nm, which can be inhibited by active SOD; therefore declining 
slopes corresponds to increasing SOD activity. 
 

 

Uptake of SOD loaded PK3 microparticles to macrophage cells 

We incubated the FITC-SOD loaded PK3 microparticles with TIB186 

macrophage cells for 1 hour.  Cells were subsequently washed extensively and observed 

under phase contrast and fluorescence microscope.  Figure 4.3 shows phase contrast and 

fluorescence images of the same population and their overlay composite.  The composite 

image clearly shows that the fluorescence activity was occurring inside the macrophage 
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cells, indicating that FITC-SOD particles were effectively taken up by macrophage cells 

within 1 hour of co-incubation of the particles with the cells.  

 
Figure 4.3. Macrophage uptake study of SOD-loaded PK3 microparticles.  (A) Image of 
TIB186 macrophage cells incubated with FITC-SOD particles from 10X phase contrast 
microscope. (B) Image of the same population of cells as A from 10X fluorescence 
microscope. (C) Overlay image of A and B. 

CA B

 

An uptake study using flow-cytometry was performed with FITC-SOD loaded 

PK3 microparticles.  Macrophages were incubated with equal amounts of either FITC-

SOD or FITC-SOD encapsulated within PK3 microparticles, for 24 hours, and analyzed 

by flow cytometry.  Figure 4.4 demonstrates that PK3 microparticles dramatically 

increased the uptake of FITC-SOD.  For example, FITC-SOD, dissolved in PBS buffer, is 

not efficiently taken up by macrophages, generating fluorescence levels that are 

comparable to untreated cells.  In contrast, the fluorescence levels of macrophages treated 

with PK3 microparticles, containing FITC-SOD, is substantially higher than control cells, 

presumably due to efficient phagocytosis of the PK3 microparticles. 
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Figure 4.4. PK3 Microparticles enhance the delivery of SOD to macrophages.  TIB-186 
Macrophages were treated with either 1 µg/mL free FITC-SOD or 1 µg/mL FITC-SOD 
encapsulated within PK3 microparticles for 24 hours, extensively washed, and analyzed 
by flow cytometry (BD LSR II Flow Cytometer, San Jose, CA). 
 

In vivo delivery of polyketal microparticles to Kupffer cells 

In collaboration with Dr. Robert Pierce at the University of Rochester, polyketal 

microparticles formulated from PPADK containing 1% fluorescein by weight were 

administered intravenously to mice, and liver was isolated one hour post-injection for 

histological analysis.  Fluorescent microscopy of the liver sections indicates that the 

polyketal microparticles are abundantly present throughout the liver.  Anti-fluorescein 

immunohistochemistry confirms the presence of fluorescein-loaded microparticles within 

the cytoplasm of a Kupffer cell lining a liver sinusoid (Figure 4.5).  Although PK3 was 

not used in this experiment, based on the similarities in physical properties among all 

polyketals, the results presented suggest that microparticles formulated from polyketals 

can target Kupffer cells in vivo. 
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Figure 4.5.  Release of fluorescein from PPADK microparticles.  Dark red = anti-
FITC staining; Blue = DAPI staining (nuclei). 

 

In vivo delivery of PK3 microparticles to the liver 

A biodistribution study was conducted to verify that PK3 microparticles could 

passively target the liver and accumulate in the liver.  Fluorescein was encapsulated in 

PK3 microparticles (1% by weight), which were intravenously administered to mice.  2 

hours after the IV injections, blood was collected from the mice, which were 

subsequently perfused to remove any residual blood.  Five organs (lung, liver, kidney, 

spleen, and heart) were then isolated, homogenized, and centrifuged to give a 

supernatant, which was analyzed for their fluorescein concentrations.  Figure 4.6 

demonstrates that the fluorescein level found in the liver was significantly higher than the 

levels found in other organs, indicating that PK3 microparticles preferentially 

accumulated in the liver.  Empty PK3 microparticles were also injected into mice to 

prove that there is no auto-fluorescence generated by the administration of microparticles 
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due to activation of immune cells (Figure 4.6).   Interestingly, there was a small level of 

fluorescein detected in the blood, possibly because there was a small amount of 

fluorescein released in the blood due to degradation of the PK3 microparticles.   
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Figure 4.6.  Biodistribution study using PK3 microparticles (0.1 mg/mouse) 
encapsulating fluorescein (1% by weight).  Organs were collected 2 hours after 
fluorescein-PK3 microparticles were injected IV.  Data presented as means ± 
standard error of the mean (SEM), n = 3. 

To visually verify that PK3 microparticles can passively target the liver, PK3 

microparticles encapsulating a pentacene dye were also administered into mice via IV 

injections.  Pentacene was chosen for this experiment because it has an emission 

wavelength of 710 nm, which is necessary for real-time in vivo imaging because long 

wavelength signals can penetrate the tissue and skin around those the organs.  2 hour after 

the IV injections,  those mice were observed in a Xenogen in vivo imaging machine for 

the distribution of pentacene.  The results demonstrate that the dye-loaded PK3 

microparticles could only be found in the abdominal region of the mice.  The intensity of 
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emission from pentacene is the strongest around the area where the liver resides in the 

mice (Figure 4.7).  In combination with the quantitative data from the fluorescein-loaded 

PK3 microparticles, these results strongly suggest that PK3 microparticles passively 

target the liver.  

 

 

 

Figure 4.7.  Biodistribution study using PK3 microparticles (0.1 mg/mouse) 
encapsulating pentacene (0.2% by weight).  Images were taken 2 hours after 
pentacene-PK3 microparticles were injected IV.  Data presented as mean ± 
standard error of the mean (SEM), n = 3. Exicition wavelenth = 670 nm, 
Emission wavelength = 710 nm.

SOD-loaded PK3 microparticles for treating LPS-induced acute liver failure 

 BALB/c mice were administered with either SOD-PK3 microparticles (SOD-

PKM) (6 U of SOD/mouse), free SOD (6 U of SOD/mouse), saline, or empty PK3 
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microparticles (PKM) through IV injections.  LPS was immediately administered via IP 

injections to induce acute liver injury.  24 hours later, blood and the liver were collected 

from the mice.  The severity of damage in the liver was assessed by histological analysis 

of the liver and quantified by measuring the serum levels of ALT and TNF-α.  Figure 4.8 

shows the histological analysis of sections from the liver of mice that received various 

treatments.  Liver samples were frozen in OTC, cut into 10 μm slices, mounted on glass 

slides, and stained with hematoxylin and eosin for morphological analysis.  Liver slides 

from the negative group (saline IP + saline IV) show healthy cell structures with defined 

boundaries.  Liver slides from mice that received free SOD, empty PKM, and saline 

through IV injections and LPS via IP injections show significant fusion of hepatocytes 

which no longer have clear boundaries for individual cells, indicating necrosis of 

hepatocytes.  In addition, there is also presence of red blood cells in these liver slides as 

evidenced by red dots on the histology images, indicating that there was bleeding within 

the sinusoidal space of the liver in those mice.  Sinusoidal bleeding is indicative of 

hepatocellular necrosis and extensive liver damage.  On the other hand, liver slides from 

mice that received SOD-PKM and LPS do not have any red blood cells, and the 

boundaries of hepatocytes in these slides are much more defined than liver slides from 

mice that received free SOD, empty PKM, or saline.  However there is still fusion among 

hepatocytes, indicating that there was necrosis in the liver for mice that received SOD-

PKM, although the damage was not as great as the mice that received free SOD, empty 

PKM, or saline.  
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Figure 4.8.  Liver histology study using hematoxylin and eosion (H&E) staining (tissue 
thickness sliced: 10um, magnification: x40) 
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The extent of liver damage in mice that received either SOD-PKM, free SOD, 

empty PKM, or saline was also quantified by measuring their serum ALT levels 24 hours 

after the treatment.  Figure 4.9 demonstrates that mice that received free SOD, empty 

PKM, and saline before they were treated with LPS showed extremely high level of ALT 

in their serum, indicating that their livers were severely compromised, with extensive 

hepatocellular necrosis taking place in their livers.  The mice that received SOD-PKM 

treatment and LPS showed a significantly lower level of ALT in their blood, suggesting 

that the hepatocellular necrosis was substantially less than mice that relieved free SOD, 

empty PKM, and saline.  Interestingly, mice that received free SOD did not show any 

reduction in their serum ALT values.  To verify that empty PKM does not cause 

significant liver damage, empty PKMs were injected IV into mice before they received 

saline through IP injections.  The serum ALT values in those mice were not significantly 

increased.   

0 2000 4000 6000 8000 10000 12000

Saline + Saline

Saline + Empty PKM

LPS + Saline

LPS + Empty PKM 

LPS + Free SOD

LPS + SOD PKM

ALT (U/mL)

* 

 
Figure 4.9.  Alanine aminotransferase (ALT) assay; liver damage was measured by the 
amount of ALT enzyme in the plasma.  Data presented as means ± SEM, n = 6.  
Significance of results was determined via the paired t test with p<0.05 (95% confidence 
interval).  * indicates that the differences are statistically significant.  
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 The levels of systemic inflammatory response was also quantified in mice that 

received either SOD-PKM, free SOD, empty PKM, or saline, by measuring their serum 

TNF-α levels.  Figure 4.10 demonstrates that SOD-PKM was able to return the TNF-α 

levels back to the baseline level after the mice were treated with LPS.  On the other hand, 

mice that received free SOD, empty PKM, or saline had elevated TNF-α levels in their 

blood after LPS treatment, presumably due to activation of NFκB in the Kupffer cells, 

which produce higher level of TNF-α.   
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Figure 4.10.  ELISA assay; the concentration of TNF-α in plasma collected at 24 h after 
the treatment of sample and LPS.  Data presented as means ± SEM, n = 6.  Significance 
of results was determined via the paired t test with p<0.05 (95% confidence interval). * 
indicates that the differences are statistically significant. 
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4.5 Discussion 

Formulation of PK3 microparticles encapsulating SOD 

The polyketal PK3 was investigated for microparticle formulation because of its 

suitable hydrolysis kinetics and biocompatible degradation products, which are 1,5-

pentanediol, 1,4-cyclohexanedimethanol, and acetone.  The most common method for 

encapsulating hydrophilic molecules like oligopeptides and proteins within a 

hydrophobic polymer is the water-in-oil-in-water (W/O/W) double emulsion method.  

This method entails dissolving the polymer in an organic solvent, dissolving the protein 

in a small amount of water, and forming an emulsion of these two phases using high 

intensity mixing.  This forms the first water-in-oil emulsion. This first emulsion is 

thermodynamically unstable, resulting in separation between the water and oil phases. 

Therefore, a second oil-in-water emulsification, with an stabilizer dissolved in the outer 

water phase, is necessary to disperse the first emulsion (Patrick J. Ginty 2006).  

The W/O/W method has a few limitations.  First, some of the hydrophilic protein 

may not remain encapsulated in the first W/O emulsion and can diffuse into the outer 

water phase.  This results in low encapsulation efficiency, which is problematic when the 

protein loading is too low to effectively produce the desired therapeutic benefits.  Second, 

this W/O/W method can destabilize proteins.  Proteins can adsorb to the water-oil 

interface causing the protein to unfold due to simultaneous interactions between a 

thermodynamically favorable water phase and unfavorable organic phase (Sah 1999).  

One potential solution to these problems is using a different double emulsion method 

known as the solid-in-oil-in-water (S/O/W) double emulsion method. 
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The S/O/W method replaces the first emulsion of the W/O/W method with solid 

protein suspended in an organic solvent.  Although organic solvents are 

thermodynamically unfavorable to proteins, the protein experiences a kinetic trap, which 

prevents unfolding and strongly reduces reactivity (Schwendeman 2002).  This kinetic 

trap inhibits some of the primary causes of protein degradation including deamidation, 

oxidation, aggregation, hydrolysis, and shear stress caused by the emulsion process 

(Wright 2000).  Furthermore, since the protein is not in solution throughout the entire 

process, less protein is lost through solvation into the aqueous phase, resulting in a 

greater encapsulation efficiency (Putney and Burke 1998). 

The S/O/W method works most efficiently when the protein can be dispersed into 

particles are at least ten times smaller than the polymeric particle (Maa and Hsu 1997).  

Costantino developed a method of nebulizing protein particles using a spray freeze drying 

method (Costantino, Firouzabadian et al. 2000).  However, this method is complicated 

and can be potentially damaging to proteins due to physical stresses.  A simpler method 

of freeze drying the protein in a solution of polyethylene glycol (PEG) was developed, 

which results in PEG forming a matrix around the protein particles (Morita, Sakamura et 

al. 2000). This is hypothesized to take place through the aqueous phase-separation 

phenomena, where two different macromolecules in an aqueous solution spontaneously 

separate into a continuous phase and micro-sized droplets.  This process is advantageous 

because it can control protein particle size, creates spherical protein particles, and results 

in a high yield of protein particles.  Furthermore, since PEG is amphophilic, it can readily 

be removed in an organic solvent without disturbing the protein particles (Morita, 

Sakamura et al. 2000).  It was found that bovine serum albumin (BSA) co-lyophilized 
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with PEG forms far less aggregates when released from PLGA particles than when not 

lyophilized with a stabilizing excipient (Carrasquillo, Stanley et al. 2001; Al-Azzam, 

Pastrana et al. 2002). 

Our previous attempts at encapsulating protein inside polyketal microparticles 

using the W/O/W method resulted in 1.2% protein loading of SOD in particles that were 

10 – 20 microns in diameter (Lee, Yang et al. 2007).  This value is relatively low and 

indicates a 65% loss of protein during the encapsulation process. Moreover, it is much 

more challenging to encapsulate SOD in microparticles with small diameters (1-5 

microns), which are suitable for phagocytosis by macrophages. In this Chapter, I 

demonstrate that the S/O/W method was used to formulate polyketal microparticles (1-5 

microns in diameter) which encapsulate SOD with higher loading efficiencies and greater 

preservation of SOD enzymatic activities than W/O/W method.   Specifically, the S/O/W 

method results in 37 times greater loading of active SOD than the W/O/W method.  This 

confirms that the S/O/W is not only superior to the W/O/W method for protein loading 

but also for preserving biological activity. 

 

Biodistribution of PK3 microparticles 

 One essential requirement for delivering SOD to treat acute liver failure is the 

ability to target SOD to the liver, particularly Kupffer cells, which are the primary 

sources of oxidative stress during liver injury.  SOD by itself does not have affinity 

towards the liver.  The distribution of SOD in the blood is 13 times higher than that in the 

liver 3 hours after SOD is administered to mice via IV injections (Nakaoka, Tabata et al. 

1997).  Our studies of fluorescein and pentacene-loaded PK3 microparticles 
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quantitatively and qualitatively demonstrated that PK3 microparticles 1- 5 microns in size 

can passively target and accumulate in the liver.  Pentacene-loaded PK3 microparticles 

were preferentially accumulated in the abdominal region of mice where the liver resides 

only 2 hours after the particles were intravenously injected into the mice.  There were no 

detectable levels of pentacene in other organs such as the heart, lung or blood.  Since 

kidneys are located in the back of the liver, Figure 4.7 can not differentiate PK3 

microparticle distribution between the liver and the kidneys.  Therefore fluorescein was 

also encapsulated in PK3 microparticles to enable quantification of PK3 microparticle 

distribution in vivo.  The distribution of fluorescein-loaded PK3 microparticles was 3 

times higher in the liver than in the lung and kidneys.  Importantly, the distribution of 

PK3 microparticles was 6 times higher in the liver than in the blood.  This organ 

distribution of polyketal microparticles is consistent with that of PLGA microparticles of 

similar size where the liver distribution of PLGA microparticles is 10 times higher than in 

the blood  3 hours post IV injection (Dunn, Coombes et al. 1997).  Based on these results, 

one can speculate that when SOD is loaded in PK3 microparticles, SOD will also 

preferentially accumulate in the liver.  Therefore, PK3 microparticles can effectively 

target SOD to the liver to achieve a therapeutic effect, whereas the distribution of free 

SOD in the blood was much higher than in the liver.  In combination with our previous 

study which showed that polyketal microparticles were only observed in the Kupffer 

cells, we can speculate that PK3 microparticles have great potential for delivering SOD to 

the liver, particularly Kupffer cells, to reduce oxidative stress in the liver during acute 

liver injury.  
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In vivo efficacy of SOD-loaded PK3 microparticles for treating ALF 

The in vivo efficacy of SOD-loaded PK3 microparticles was tested in a mice 

model of LPS-induce acute liver injury.  The severity of damage in the liver was assessed 

by histological analysis of the liver and quantified by measuring the serum levels of ALT 

and TNF-α.  ALT is an enzyme normally present within hepatocytes.  During an acute 

liver injury event, hepatocytes are damaged and leak ALT into the blood, dramatically 

raising the serum ALT levels.  The level of inflammatory responses in the liver was also 

assessed by measuring the serum TNF-α level, which corresponds to the secretion of pro-

inflammatory cytokines due to activation of the transcription factor, NFκB, in the Kupffer 

cells.   

For mice that received SOD-loaded PK3 microparticles, their liver histology 

slides do not show presence of red blood cells, suggesting that there was no significant 

sinusoidal bleeding.  However, there was hepatocyte damage as evidence by cell 

boundaries fusing among hepatocytes.  The histological analysis of liver tissue from this 

group indicates that the hepatocytes were damaged to a certain extent, but not severely 

enough to cause sinusoidal bleeding as observed in the group of mice that did not receive 

any treatment.  Serum ALT level from this group was also significantly lower than the 

positive control group but higher than the negative control group, indicating that the 

damage to hepatocytes was substantially less than mice that did not receive any treatment 

but significantly more than mice that did not have liver injury.  Serum TNF-α level from 

this group was also returned back to the baseline level, indicating that the inflammatory 

response was diminished due to the target delivery of SOD to the liver.  Interestingly, for 

the SOD-PKM treated group, serum ALT level was reduced but still significantly higher 
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than the baseline level, whereas TNF-α level was reduced to the baseline level.  This 

could be attributed to targeting of PK3-microparticles to Kupffer cells, where 

intracellular superoxide was reduced to baseline level, resulting in normal expression of 

TNF-α because NFκB was not significantly activated.  However, there was still 

extracellular superoxide that could cause hepatocyte necrosis and liver injury.  

Importantly, the same dosage of SOD injected intravenously did not show any reduction 

in liver injury or systemic inflammation as compared to the positive control.  This is most 

likely due to lack of targeting SOD to the liver.  Take together, these results prove that 

PK3 microparticles significantly improved the efficacy of SOD in treating LPS-induced 

acute liver injury.   
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CHAPTER 5 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

5.1 Conclusions 

By completing the research described in this thesis, I have demonstrated the 

development of a new family of aliphatic polyketals for the delivery of SOD to treat 

acute liver failure.  An aliphatic polyketal, PCADK, was designed to hydrolyze in the 

acidic environment of the phagolysosomes and enhance the delivery of therapeutics to 

phagocytic cells such as macrophages.  Key attributes of PCADK are its well-

characterized, neutral degradation products, and straightforward synthesis.  PCADK was 

synthesized on a multi-gram scale in one step, and hydrolyzes into acetone and 1,4-

cyclohexanedimethanol, both of which are non-acidic and have low toxicity.  The 

hydrolysis of PCADK is pH-sensitive, having a hydrolysis half-life of 24.1 days at pH 

4.5 and an estimated half-life of over 4 years at pH 7.4.  We also demonstrated that the 

hydrolysis rate of PCADK could be accelerated by varying its hydrophilicity.  Using this 

strategy, an aliphatic polyketal copolymer, PK3, was synthesized, which is suitable for 

drug delivery application treating acute liver failure, having a hydrolysis half-life of 2 

days at pH 4.5, but was stable for several weeks at pH 7.4.  Microparticles were 

formulated from PK3, which can passively target the liver and preferentially accumulate 

in the liver.  PK3 microparticles, encapsulated the anti-inflammatory enzyme SOD, 

significantly improved the efficacy of SOD in treating LPS-induced acute liver damage in 

vivo, as evidenced by decreased serum levels of ALT and TNF-α.  In summary, this 

thesis research demonstrated the ability of polyketal-based drug delivery systems for 
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treating acute inflammatory diseases and created a potential therapy for enhancing the 

treatment of acute liver failure.  Based on our findings, we anticipate numerous 

applications of drug delivery systems based on aliphatic polyketals for treating 

inflammatory diseases, given their ability to target macrophages, rapid and tunable 

release kinetics, and biocompatible degradation products. 

 

5.2 Future Directions 

Synthesis of high molecular weight polyketals with new synthetic approaches 

The molecular weights of polyketals currently synthesized are relatively low, with 

a typical Mn being between 2000 and 4000 Da.  We speculate that this is due to the step-

growth nature of the polymerization, which makes the molecular weight very sensitive to 

the stoichoimetry of the reactants.  Although the diols and ketal were initially mixed at a 

1 to 1 ratio, this reaction has to be performed at 100 oC, because of the need to remove 

the reaction byproduct methanol.  However, 2,2-dimethoxypropane  has a boiling point of 

83 oC and was also removed at this temperature, thereby altering the 1 to 1  ratio of the 

reactants.   The use of an alternative ketal, 2,2-diethoxypropane, for this acetal-exchange 

reaction will alleviate the removal of the reactants.  2,2-diethyoxypane has a boiling point 

of 132.2 oC, as opposed to the boiling point of 83 oC for 2,2-dimethoxypropane.  

Therefore the reactants in this alternative synthesis approach will not be removed under 

the reaction temperature, allowing the stoichoimetry ratio of the reaction to be kept at 1:1.  

The precise control of the stoichoimetry ratio of a step-growth polymerization will result 

in high conversion of the monomers and high molecular weight of polymers (Figure 5.1).   
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Figure 5.1.  Synthesis of polyketals with diols and 2,2-diethyoxypropane to yield high 
molecular weight polymers.  
 

Load SOD mimetic in PK3 microparticles to treat ALF  

PK3 microparticles enhanced the delivery of SOD to the liver and reduced liver 

damage and inflammation in mice that suffered from LPS-induced acute liver injury.  The 

level of serum TNF-α in those mice were similar to the baseline level of TNF-α.  These 

results suggest that activation of NFκB in Kupffer cells in mice that received SOD-loaded 

PK3 microparticles was at baseline level due to delivery of SOD intracellularly to 

Kupffer cells.  On the other hand, the ALT level in those mice (~1000 U/mL) was still 

significantly higher than the baseline level (<50 U/mL).  This can be attributed to two 

reasons.  First, the dosage of SOD delivered to the liver is only enough to reduce 

oxidative stress in the Kupffer cells but not in the hepatocytes and extracellular space of 

the liver.  Second, SOD is not membrane permeable, and therefore can not diffuse out of 

the cell membrane.  Once SOD-loaded PK3 microparticles are phagocytosed into Kupffer 

cells, the released SOD can not diffuse out of those Kupffer cells and scavenge 

extracellular SOD.   
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A potential solution is the use of hydrophobic mimetic of SOD, which has been 

extensively investigated for reducing oxidative stress in inflammatory diseases such as 

splanchinc artery occlusion and reperfusion, lung injury, ischemia/reperfusion injury, 

doxorubicin-induced cardiotoxicity, and acute liver failure (Kilgore, Friedrichs et al. 

1994; Konorev, Kennedy et al. 1999; Cuzzocrea, Mazzon et al. 2001; Malassagne, Ferret 

et al. 2001; Vujaskovic, Batinic-Haberle et al. 2002).  There are two major advantages in 

using SOD mimetic in combination with SOD for treating ALF.  First, most SOD 

mimetic is hydrophobic and can therefore be encapsulated in PK3 microparticles with 

significantly higher loading efficiency than SOD.  Second, SOD mimetic is membrane-

permeable and therefore can diffuse out from Kupffer cells and into hepatocytes.  This 

allows the SOD mimetic to scavenge superoxide residing in the extracellular space and in 

hepatocytes.  Therefore, encapsulating both SOD and a SOD mimetic in PK3 

microparticles has the potential to reduce oxidative stress in Kupffer cells, hepatocytes, 

and extracellular space in the liver, better protecting liver from oxidative stress during 

ALF than SOD-loaded PK3 microparticles alone.  

 

Further characterize SOD-loaded PK3 microparticles in vivo  

 We have shown that SOD-loaded PK3 microparticles can reduce inflammatory 

response and tissue damage in the liver.  However, it remains unclear whether or not this 

reduction in ALT and TNF-α level is sufficient to increase the survival time of mice 

during ALF.  Therefore, a survival study is recommended for assessing the ability of 

SOD-loaded PK3 microparticles in increasing the survival rate of mice suffering from 

ALF.  During our preliminary studies in developing a mice model of ALF, it was 
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observed that in general, death occurred between 24 hours and 48 hours following an IP 

injection of LPS (2.50 μg/kg) with GalN (700 mg/kg).  If a decrease in ALT and TNF-α 

levels leads to increased survival time, then mice treated with SOD-loaded PK3 

microparticles will likely survive for a longer time than 48 hours after the initial LPS 

injection.  

Furthermore, LPS/GalN model is one of the most commonly used models of 

lethal and nonlethal liver injury in mice (Lehmann, Freudenberg et al. 1987; Barton and 

Jackson 1993; Liu, Zhang et al. 2008).  Rodents are constitutively resistant to LPS-

induced liver toxicity; therefore, GalN is used to sensitize the liver by depleting hepatic 

urideine level, which leads to inhibition of protein synthesis in the liver (Mignon, 

Rouquet et al. 1999; Coen, Hong et al. 2007).   However, this LPS/GalN model may not 

represent the pathology of acute liver injury in human.  Therefore, a different model of 

acute liver injury in mice is also recommended for assessing the efficacy of SOD-loaded 

PK3 microparticles.  For example, rodent model of acetaminophen (APAP)-induced 

acute liver injury has been extensively used as model for studying acute liver failure 

(Ferret, Hammoud et al. 2001; Reilly, Brady et al. 2001; Limaye, Apte et al. 2003).  

APAP induces acute liver injury by depleting glutathione in the liver and is not specific 

to rodents (Jones 1998).  Therefore, APAP-induced ALF is potentially a better model for 

studying SOD delivery than LPS/GalN model of ALF.   

 

Delivery of NF-κB inhibitors using PK3 microparticles for treating ALF 

The activation of NF-κB in Kupffer cells also plays a central role in mediating 

acute liver failure.  Therefore, therapeutic strategies that can inhibit NF-κB activation in 

 115



Kupffer cells also have great clinical potential.  For example, Wolf et al showed that 

systemic injection of imatinib, which inhibits NF-κB activation, lowered the plasma 

TNF-α level (Wolf, Wolf et al. 2005).   Our preliminary studies described in Chapter 3 

also demonstrated that PK3 microparticles significantly enhanced efficacy of imatinib in 

treating Con A-induced acute liver failure, due to its inhibition of NF-κB activation in 

Kupffer cells and subsequent reduction in inflammatory response generated in the liver 

(Yang, Bhide et al. 2008).  Therefore, drug delivery systems that can target NF-κB 

inhibitors to Kupffer cells have great potential in treating ALF.  There have been close to 

800 inhibitors of NF-κB identified, including antioxidants, peptides, small RNA/DNA, 

oligodeoxynucliotides, microbial/viral proteins, and small synthetic molecules (Pande 

and Ramos 2005; Gilmore and Herscovitch 2006).  Among the potential targets for 

inhibiting NF-κB, IkappaB kinase (IKK) has been an important target for the 

development of clinically relevant NF-κB inhibitors.  This is because IKK plays a critical 

role in the NF-κB signaling pathways from upstream signals.  In particular, 6-Amino-4-

(4-phenoxyphenylethylamino) quinazoline (APPEAQ) has been shown to be a highly 

potent inhibitor of NF-κB transcriptional activation (IC50 = 11 nM in Jurkat cells) and 

LPS-induced TNF-α production (IC50 = 7 nM in murine splenocytes) (Tobe, Isobe et al. 

2003).  APPEAQ is a hydrophobic molecule and can be easily encapsulated in polyketal 

microparticles via single emulsion procedures with high loading efficiency.  Our 

preliminary studies show that APPEAQ was effective in inhibiting NF-κB activations in 

cultures of macrophages.  Therefore, delivery of APPEAQ with PK3 microparticles 

offers another therapeutic approach for treating ALF.  
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APPENDIX A 

EXPERIMENTAL PROTOCOLS 

 
A.1. Synthesis of PCADK as an example of aliphatic polyketal 

 

Materials 

CDM 
 

DMP 
 
 PTSA 

CAS # 105-08-8 77-76-9  
Mol. Wt 144.21 104.15 190.22 
Formula C8H16O2 (CH3)2C(OCH3)2 CH3C6H4SO3·H2O 

Moles 0.03467 0.03467  

Amount 5 g 4.26 mL 2 mL of 1 mg/mL in 
ethyl acetate 

b.p. 283oC 83 oC 221 oC 
Density 1.02 g/mL 0.847 g/mL 1.07 g/mL 

HO

OH
O O

 
 
1. Distill DMP and benzene; make 1 mg/mL PTSA solution in ethyl acetate. 

2. Set up apparatus with distillation glassware and three-neck flask in oil bath. 

3. Add 20 mL of distilled benzene to flask and heat the oil bath to 100oC. 

4. Add CDM (5 g) to flask. 

5. Add PTSA (2 mL) and DMP (4.26 mL) to flask to start reaction 

6. Use meter funnel to add additional benzene (5 mL) and DMP (2 mL) to reaction 

every hour for 5 hours. 

7. Let reaction run overnight. 

8. Put triethylamine (1 mL) to stop reaction and pour mixture to cold hexane. 

9. Put mixture in the freezer and vacuum filter after 2 hours. 
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A.2. Synthesis of PK3 as an example of polyketal copolymer 

 

Materials 
CDM 

80 mol% 
 

Pentanediol 
20 mol% 

 

DMP 
 
 

PTSA 

CAS # 105-08-8 111-29-5 77-76-9  
Mol. Wt 144.21 104.15 104.15 190.22 
Formula C8H16O2 HO(CH2)5OH (CH3)2C(OCH3)2 CH3C6H4SO3·H2O

Mol Ratio 80% 20% 100%  
Moles 0.03467 0.00867 0.04334  

Amount 5 g 0.908 mL 5.33 mL 2 mL of 1 mg/mL 
in ethyl acetate 

b.p. 283oC 242 °C 83 oC 221 oC 
Density 1.02 g/mL 0.994 g/mL 0.847 g/mL 1.07 g/mL 

 
 

1. Distill DMP and benzene, make 1 mg/mL PTSA solution in ethyl acetate. 

2. Set up apparatus with a distillation glassware and three-neck flask in oil bath. 

3. Add 30 mL of distilled benzene to flask and heat the oil bath to 100oC. 

4. Add CDM (5 g) and pentanediol (0.908 mL) to flask. 

5. Add PTSA (3.5 mL) and DMP (5.33 mL) to flask to start reaction. 

6. Use meter funnel to add additional benzene (5 mL) and DMP (2.5 mL) to reaction 

every hour for 6 hours. 

7. Let reaction run overnight. 

8. Put triethylamine (2 mL) to stop reaction and pour mixture to cold hexane. 

9. Put in the freezer and filter after 2 hours. 

 
 
A.3. Formulation of polyketal microparticles encapsulating a hydrophobic drug 

1. Make 5% PVA solution. 

2. Dissolve 50 mg of polyketal in 0.5 mL of CH2Cl2. 
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3. Add 10 mg of the drug to DCM containing PCADK. 

4. Add DCM solution to 5 mL of 5% PVA solution. 

5. Homogenize with Powergen 500 for 1 minute at speed level 4. 

6. Add the mixture to 15 mL of 1% PVA. 

7. Stir for 4 hours at room temperature for solvent evaporation. 

8. Transfer to a 50 mL centrifuge tube. 

9. Centrifuge at 6000 g for 12 minutes. 

10. Repeat washing two times.  

11. Resuspend in 5 mL of DI water and freeze dry. 

12. Freeze dry for 24 hours to give solid particles. 

 

A.4. Formulate SOD PK3 microparticles using water-in-oil-in-water method 

1. Make 5%, 2%, and 1% PVA solution. 

2. Prepare 25 ml of 1% PVA solution in a flash with a stir bar placed in the flask. 

3. Dissolve 100 mg of PK3 in 1 mL of CH2Cl2. 

4. Dissolve 10 mg of SOD in 100 μL of 2% PVA solution 

5. Add 50 μL of SOD solution (100mg/mL) to 500 μL of  CH2Cl2 polyketal 

solution.  

6. Homogenize at level 6 with Powergen 500 homogenizer for 30 seconds. 

7. Add first emulsion to 5 mL of 5% PVA solution. 

8. Homogenize at level 4 for 1 minute. 

9. Add mixture to 25 mL 1% PVA solution and stir for 4 hours to evaporate organic 

solvent.  
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10. Transfer to 50 mL centrifuge tube and centrifuge at 5000 g for 15 minutes. 

11. Discard supernatant and resuspend in 10 mL of DI water. 

12. Centrifuge at 5000 g for 10 minutes. 

13. Repeat washing once more. 

14. Resuspend in 5 ml of DI water and freeze. 

15. Freeze dry for 24 hours to give solid particles. 

 

A.5. Formulate SOD PK3 microparticles using solid-in-oil-in-water method 

1. Mix SOD with PEG in the weight ratio of 1:4. 

2. Add as little DI water as possible to dissolve the mixture. 

3. Quickly freeze the SOD/PEG solution in liquid nitrogen. 

4. Put frozen mixture in a freezer dryer and freeze dry for 24 hours or until all water 

is removed. 

5. Dissolve freeze-dried SOD/PEG in DI water.  

6. Add 50 μL of SOD/PEG solution (250 mg/mL) to 500 mg of polyketal dissolved 

in 500 μL of  CH2Cl2 solution.  

7. Homogenize at level 6 or sonicate at low power for 30 seconds to make a 

suspension of SOD/PEG particles in the organic solvent. 

8. Add first solid-in-oil emulsion to 5 mL of 5% PVA solution. 

9. Homogenize at level 4 for 1 minute. 

10. Add mixture to 25 mL 1% PVA solution and stir for 4 hours to evaporate organic 

solvent.  

11. Transfer to 50 mL centrifuge tube and centrifuge at 5000 g for 15 minutes. 
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12. Discard supernatant and resuspend in 10 mL of DI water. 

13. Centrifuge at 5000 g for 10 minutes. 

14. Repeat washing once more. 

15. Resuspend in 5 ml of DI water and freeze. 

16. Freeze dry for 24 hours to give solid particles. 

 

A.6. SOD loading and activities assays for SOD-loaded PK3 microparticles 

1. Make SOD standards using SOD stock and dilution buffer. 

200 U/mL 50 U/mL 5 U/mL 1 U/mL 0.1 U/mL Blank SOD PKM 
(2mg/mL) 

 

2. Weight 2 mg of SOD-loaded PK3 microparticles and dissolve in 500 μL of DCM 

in a small vial. 

3. Place the vial in 60oC oil bath and allow DCM to evaporate 

4. Add mixture to 1 mL of dilution buffer provided in the SOD kit 

5. Place content in a centrifugation tube and centrifuge at 5000 g for 1 minute to 

separate the polymer from SOD. 

6. Preparation of BCA working reagent (WR) 

a. (10 unknowns) * (150 μL of WR per sample) = 1.5 mL, so make 2 mL of 

WR 

7. Prepare fresh WR by mixing 25 parts of Micro BCA reagent MA and 24 parts 

reagent MB with 1 part of reagent MC, so combine 1 mL of MA and 0.96 mL of 

MB and 0.04 mL of MC.  

8. Pipette 150 μL of unknown sample in to a 96-well cell culture plate. 
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9. Add 150 μL of the WR to each well and mix plate thoroughly on a plate shaker 

for 30 seconds. 

10. Cover plate and incubate at 37 oC for 2 hours. 

11. Cool plate to room temperature. 

12. Measure the absorbance at or near 562 nm on a plate reader. 

13. Subtract the average 562 nm absorbance reading of the blank standard replicates 

from the 562 nm reading of all other individual standard and unknown samples. 

14. For measuring activities of SOD in the standards and unknown samples, add 20 

μL of sample solutions to a well in a 96-well cell culture plate. 

15. Add 200 μL of WST and 20 μL of enzyme working solution to each well. 

16. Read absorbance at 450 nm using a micro-plate reader for 10 minutes (60 

readings) on kinetic mode.  

A.7. In vivo studies with SOD-loaded PK3 microparticles 

1. Place order for mice. 

2. Label each cage (3 mice/cage) and tag the mice. 

3. Set up anesthesia and surgical equipment. 

4. Anesthetize mice one at a time. 

5. Prepare the mice one at a time for jugular vein injection by removing hair in the 

chest area and cleaning the area with ethanol. 

6. Inject 100 μL of SOD-loaded PK3 microparticles (1mg/mL), free SOD, empty 

particles, or saline, into the jugular vein. 

7. Inject 100 μL LPS/GalN  

8. Put mice back to cage and let them recover 
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9. Put cages back to the mice room and observe the mice regularly. 

10. After 24 hours, check the mice and prepare for blood collection. 

11. Prepare the needle by washing it in histamine solution. 

12. Anesthetize mice one at a time. 

13. Insert a needle from underneath the rib cage. 

14. Thrust the needle towards the chest in a swift motion. 

15. Try drawing blood while slowly withdrawing the needle. 

16. Once the needle is in the heart, blood will come out and fill the syringe. 

17. Once enough blood is collected (>400 μL), put the blood in a heparin/gel treated 

blood collection tube. 

18. Shake the tube to prevent coagulation.  

19. After 5-10 minutes, centrifuge the tube at 4,000 RPM for 15 minutes. 

20. Store the sample in fridge for ALT analysis.  

21. Analyze ALT level using a ALT reagent set (Pointe Scientific). 

22. Isolate the liver and put in OCT for histological analysis. 

A.8. Procedures for ALT measurements using ALT kit from Point Scientific. 

1. Prepare working reagent.  For each sample to be measured, prepare a separate 

tube of working reagent.  The total volume of the reagent should be 1mL and the 

composition of the working reagent should be as follows: 

a. 5 parts reagent 1 => 833μL 

b. 1 part reagent 2 => 166μL 

2. Incubate working reagent solution and serum in 37°C bath for 10-15 minutes. 

3. Turn on spectrophotometer.  Zero the meter with water at 340nm. 
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4. Transfer 50μL of serum into the first tube of reagent.   

5. Vortex mixture of serum and reagent for 5-10 seconds. 

6. Transfer mixture into cuvette and measure absorbance at 340 nm over 90 seconds. 

7. Select the most linear portion of the curve should be towards the beginning) and 

perform the following calculations with that data to determine ALT. 

8. Repeat steps 4-7 for the rest of the samples. 

9. Calculate ALT value using the following equation 

ALT (U/L) = ΔABS/Minute x 3536 
 

A.9. Procedure for TNF-α measurement using ELISA kit from eBiosciences 

1. Using Assay diluent, dilute standards. 

2. Add 25 μL/well of serum and 75μL of Assay Diluent to the wells. 

3. Cover and seal the plate and incubate at room temp for 2 hours or overnight at 

4oC.  

4. Aspirate wells and wash 5 times with >250 μL/well of Wash Buffer that are 

diluted to 1X.  Allow at least 1 min for soaking during each wash step.  Blot plate 

on absorbent pad to remove any residual buffer. 

5. Add 100μL/well of detection antibody diluted in 1X assay Diluent (as noted on 

Certificate of Analysis).  Seal the plate and incubate at room temperature for 1 

hour 

6. Aspirate and wash for 5 times as in step 5. 

7. Add 100 μL/well of Avidin-HRP diluted in 1X Assay Diluent (noted in C of A).  

Seal the plate and incubate at room temp for 30 min. 
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8. Aspirate and wash as in step 5.  In this wash step, soak wells in Wash Buffer for 

1 to 2 minutes prior to aspiration.  Repeat for 7 times. 

9. Add 100 μL/well of substrate solution to each well.  Incubate for 15 min at room 

temp. 

10. Add 50 μL/well of Stop Solution to each well. 

11. Read plate at 450 nm, subtract 570 nm reading from 450 nm reading and analyze 

data.  

 

A.10. Biodistribution studies of PK3 microparticles in mice. 

1. Place order for mice. 

2. Re-suspend the PK3 microparticles in saline at concentration of 1 mg/mL 

3. Set up anesthesia and surgical equipment. 

4. Anesthetize mice one at a time 

5. Prepare the mice one at a time for jugular vein injection by removing hair in the 

chest area and cleaning the area with ethanol. 

6. Inject 100 μL of fluorescein-loaded PK3 microparticles (1mg/mL), pentacene-

loaded PK3 microparticles, empty particles, or saline, into the jugular vein. 

7. Put mice back to cage and let them recover 

8. Put cages back to the mice room and observe the mice regularly. 

9. After 2 hours, anesthetize the mice injected with pentacene-loaded PK3 

microparticles and image with Xenogen imaging machine.  

10. For mice injected with fluorescein-loaded PK3 microparticles, empty 

microparticles, or saline, check the mice and prepare for blood collection 
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11. Prepare the needle by washing it in histamine solution. 

12. Anesthetize mice one at a time 

13. Insert a needle from underneath the rib cage 

14. Thrust the needle towards the chest in a swift motion 

15. Try draw blood while slowly withdrawing the needle 

16. Once the needle is in the heart, blood will come out and fill the syringe 

17. Once enough blood is collected (>400 μL), put the blood in a heparin/gel treated 

blood collection tube. 

18. Shake the tube to prevent coagulation.  

19. After 5-10 minutes, centrifuge the tube at 4,000 rpm for 15 minutes. 

20. Perfuse with PBS and isolate the heart, liver, spleen, kidney, and lung for 

analysis. 

21. Weigh the organs, and place them in 1 mL of Triton X100 + 4 mL of PBS. 

22. Homogenize at level 3 with Powergen 500 homogenizer. 

23. Centrifuge at 10000 X g for 10 minutes. 

24. Add 1 mL of homogenate to 2 mL of PBS and measure emission from 505 – 550 

nm (excitation = 495 nm). 

25. Record data and use 518 nm emission to determine FITC concentration. 
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