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SUMMARY 

 

 

 

Diffusion-weighted magnetic resonance imaging (MRI) has allowed 

unprecedented non-invasive mapping of brain neural connectivity in vivo by means of 

fiber tractography applications. Fiber tractography has emerged as a useful tool for 

mapping brain white matter connectivity prior to surgery or in an intraoperative setting. 

The advent of high angular resolution diffusion-weighted imaging (HARDI) techniques 

in MRI for fiber tractography has allowed mapping of fiber tracts in areas of complex 

white matter fiber crossings. Raw HARDI images, as a result of elevated diffusion-

weighting, suffer from depressed signal-to-noise ratio (SNR) levels.  The accuracy of 

fiber tractography is dependent on the performance of the various methods extracting 

dominant fiber orientations from the HARDI-measured noisy diffusivity profiles. These 

methods will be sensitive to and directly affected by the noise.  In the first part of the 

thesis this issue is addressed by applying an objective and adaptive smoothing to the 

noisy HARDI data via generalized cross-validation (GCV) by means of the smoothing 

splines on the sphere method for estimating the smooth diffusivity profiles in three 

dimensional diffusion space. Subsequently, fiber orientation distribution functions 

(ODFs) that reveal dominant fiber orientations in fiber crossings are then reconstructed 

from the smoothed diffusivity profiles using the Funk-Radon transform. Previous ODF 

smoothing techniques have been subjective and non-adaptive to data SNR. The GCV-

 xvii



smoothed ODFs from our method are accurate and are smoothed without external 

intervention facilitating more precise fiber tractography.  

 

Diffusion-weighted MRI studies in amyotrophic lateral sclerosis (ALS) have 

revealed significant changes in diffusion parameters in ALS patient brains. With the need 

for early detection of possibly discrete upper motor neuron (UMN) degeneration signs in 

patients with early ALS, a HARDI study is applied in order to investigate diffusion-

sensitive changes reflected in the diffusion tensor imaging (DTI) measures axial and 

radial diffusivity as well as the more commonly used measures fractional anisotropy (FA) 

and mean diffusivity (MD). The hypothesis is that there would be added utility in 

considering axial and radial diffusivities which directly reflect changes in the diffusion 

tensors in addition to FA and MD to aid in revealing neurodegenerative changes in ALS. 

In addition, applying adaptive smoothing via GCV to the HARDI data further facilitates 

the application of fiber tractography by automatically eliminating spurious noisy peaks in 

reconstructed ODFs that would mislead fiber tracking.  
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 General Introduction 

 Fiber tractography has emerged as a useful tool for mapping brain white matter 

prior to surgery or in an intraoperative setting. The advent of high angular resolution 

diffusion-weighted imaging (HARDI) techniques in MRI for fiber tractography have 

allowed mapping of fiber tracts in areas of complex architecture. HARDI data are 

customarily noisy with low signal-to-noise (SNR) ratios prompting some smoothing or 

regularization in fiber orientation distribution function (ODF) reconstruction techniques. 

Past regularization or smoothing techniques of ODFs have been subjective and non-

adaptive to data SNR. The first part of this thesis addresses this issue by applying an 

objective and adaptive smoothing to inherently noisy HARDI data via generalized cross-

validation (GCV) by means of the smoothing splines on the sphere method prior to ODF 

reconstruction. The resulting ODFs are smoothed out without subjective intervention. 

 

 Past diffusion tensor imaging (DTI) MRI studies in amyotrophic lateral sclerosis 

(ALS) have demonstrated significant changes in diffusion parameters in ALS patient 

brains. In early stages of the disease, upper motor neuron (UMN) signs may be very 

discrete and difficult to detect with currently used DTI measures, fractional anisotropy 

(FA) and mean diffusivity (MD). It is hypothesized that there may be an added utility in 

considering directional diffusivities from the diffusion tensor, axial diffusivity and radial 

 1



diffusivity, in addition to the more commonly used measures FA and MD to aid in 

revealing neurodegenerative changes in early ALS. In the second part of this thesis, this 

hypothesis is tested using voxel-based and region-of-interest analysis techniques. 

 

 

1.2 Statement of Thesis 

Revealing complex white matter fiber crossings in the brain in connection with 

fiber tractography applications requires that high angular resolution diffusion-weighted 

imaging (HARDI) scans be acquired with high diffusion-weighting. As a result raw 

HARDI images have lower signal-to-noise ratios (SNR) than typical diffusion-weighted 

images. HARDI data are diffusion-weighted samples on the sphere of an originally 

smooth diffusion profile in each imaging voxel with an added nuisance noise term.  The 

accuracy of fiber tractography is dependent on the performance of the various methods 

extracting orientational structure information from the diffusion profile. These methods 

will be sensitive to and directly affected by the noise. This thesis first aims to assess the 

applicability of the smoothing splines on the sphere estimation problem to HARDI. An 

objective and adaptive means of smoothing HARDI data via generalized cross-validation 

(GCV) is applied and analyzed in estimating the smooth diffusivity profiles in three 

dimensional diffusion space.  

 

1.2.1 Chapter 2: Adaptive Smoothing of High Angular Resolution Diffusion-

weighted Imaging Data by Generalized Cross-validation for Q-Ball Orientation 

Distribution Function Reconstruction 
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 Noisy diffusivity profiles will lead to noisy reconstructed orientation distribution 

functions (ODFs) with spurious peaks that would ultimately mislead fiber tractography. 

In this chapter, an objective and adaptive means of smoothing HARDI data is applied.  A 

GCV criterion is minimized to determine the amount of smoothing to be applied in the 

smoothing splines on the sphere method. Subsequently, a fiber ODF technique based on 

the Funk-Radon transform (FRT) is applied to reconstruct smooth ODFs with no need for 

subjective intervention. 

 

1.2.2 Chapter 3: Towards an Objective Marker for Upper Motor Neuron 

Involvement in Amyotrophic Lateral Sclerosis: A High Angular Resolution 

Diffusion-weighted Imaging Study 

 With the need for early detection of possibility discrete upper motor neuron 

(UMN) degeneration signs in patients with early amyotrophic lateral sclerosis (ALS), a 

HARDI study is applied in this chapter in order to investigate diffusion-sensitive changes 

reflected in the DTI measures axial and radial diffusivities as well as the more commonly 

used FA and MD. The hypothesis is that there may be an added utility in considering 

axial diffusivity and radial diffusivity in addition to the more commonly used measures 

FA and MD to aid in revealing neurodegenerative changes in early ALS.  

 

 

1.3 Background 

Molecular diffusion referring to the random motion of particles suspended in a 

fluid is termed ‘Brownian motion’ after the Scottish botanist, Robert Brown. In 1827, 
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Brown while studying Clarckia pulchella pollen particles suspended in water under a 

microscope observed ‘many of them very evidently in motion’(1) . He went on to 

attribute such motion to the particles themselves and not resulting from currents in the 

fluid or from the fluids’ evaporation. It was not until Albert Einstein in 1905 who in his 

investigations on the theory of Brownian motion attributed it formally to the molecular 

theory of heat stating that microscopic bodies suspended in a liquid will undergo 

movement with magnitudes easily observed under a microscope due to molecular 

motions of heat (2,3). It is this microscopic phenomenon, Brownian motion, which is 

responsible for the macroscopical effect of diffusion. This encompasses the diffusion of a 

certain substance in another substance or the diffusion of that substance in its own 

medium as the diffusion of water in water. This latter case is termed self-diffusion. In the 

following we review, briefly, the history of diffusion measurements with nuclear 

magnetic resonance (NMR) to the developments leading to in vivo imaging of diffusion 

with MRI. 

  

1.3.1 Diffusion and Nuclear Magnetic Resonance 

In the case of the self-diffusion of water in a glass container, the water molecules 

undergo Brownian motion in which their motion is completely random. The water 

molecules are also described as undergoing a random walk. The movement of the 

molecules is only constrained by the walls of the container.  In statistical terms, this 

random motion is best described by a displacement distribution (4) depicting the 

proportion of molecules undergoing displacement in a specific direction and to a specific 

 4



extent. The displacement distribution for self-diffusion water molecules undergoing free 

unrestricted diffusion is a three-dimensional Gaussian function. 

 

Of the early mentions of diffusion and its effects in the nuclear magnetic 

resonance setting comes from Hahn in his ground breaking paper introducing the spin 

echo concept (5). He notes that the self-diffusing liquid molecules contribute to an added 

attenuation in the signal over the decay due to just T1 and T2 relaxation effects that he 

attributes to the inhomogeneities in the main static magnetic field. He further adds that 

the relative values of the self-diffusion coefficient D could be measured. Shortly after, 

Carr and Purcell (6) derived equations estimating the diffusion constant in NMR and 

reported as an application measuring the self-diffusion constant of water at 25°C using a 

variation of Hahn’s spin echo method. 

 

Torrey was the early pioneer who added diffusion terms in the original Bloch 

equations governing the magnetic resonance (MR) signal dynamics that represent the 

effects of self-diffusion (7). These additional terms would formally lead to an added 

attenuation of the MR signal. He derived equations for estimating the attenuated signal 

amplitude due to self-diffusion. In 1965, Stejskal and Tanner provided a derivation to the 

effect of applying a time-dependent magnetic field on the spin-echo experiment in the 

presence of spin (proton) diffusion (8). In their seminal paper, they introduced the theory, 

developed the methodology, describe an apparatus, and essentially laid the groundwork 

for special sequences known now as the ‘pulsed-gradient spin echo’ (PGSE) sequences 

used in imaging diffusion today. They measured, using their new technique, the self-
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diffusion coefficients for both water at 25.5°± 0.5°C and glycerol at 26°± 1°C. The study 

of restricted diffusion and flow using pulsed-magnetic field gradients in spin echoes 

immediately followed (9). 

 

1.3.1.1 The pulsed-gradient spin echo (PGSE) sequence 

Stejskal and Tanner (8) offer an eloquent description of the main physical 

processes occurring while the PGSE sequence is applied. Assuming there are stationary 

and moving proton spins in the volume to be imaged. Applying a gradient radio 

frequency (RF) pulse for a specified duration after the 90° RF excitation pulse will give 

all spins, stationary and mobile, an equal amount of phase, i.e., all spins will have the 

same phase difference, as all spins started off having the same phase. After a certain time 

passes, the mobile spins will have moved, i.e., protons have diffused in a random-walk to 

different locations in the volume. Since the phase added to proton spins in an MR 

experiment depends on the locations of those spins, applying a gradient RF pulse after the 

180° pulse will cause the stationary spins to forfeit all the phase they gained when the 

first gradient pulse was applied whereas the mobile spins will not. In the absence of 

diffusion, a second gradient pulse, aided by the 180° pulse, would undo the effect of the 

first exactly. The diffusion of some nuclei causes the refocusing to be incomplete. 

Stejskal and Tanner explain the PGSE sequence as it would apply to one-dimensional 

NMR but the physical processes occurring would still apply in 2D MRI. Further details 

regarding use of the PGSE sequence in 2D imaging will be presented in a following 

section. 
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1.3.2 Diffusion and Magnetic Resonance Imaging 

 With Peter Lauterbur’s insight of using magnetic field gradients to achieve spin 

spatial localization, magnetic resonance imaging (MRI) was born in the 1970s (10). It 

was not until 1985, however, when diffusion MR imaging was introduced by LeBihan 

and Breton (11). This development allowed NMR imaging to be used to measure the 

diffusivity of not just water but of other metabolites in vivo noninvasively at microscopic 

scales. Diffusion-weighted imaging (DWI), as it is sometimes called, measures an 

apparent diffusion coefficient or constant (ADC) in each voxel from a series of diffusion-

weighted images. The effect of diffusion on the MRI signal, as was previously 

mentioned, is an attenuation which was found to depend exponentially on the ADC in a 

voxel and on a scalar b-factor characterizing the gradient pulses (timing, amplitude, 

shape) used in the imaging sequence. The ADC is estimated for each voxel from that 

relation. Essentially in DWI, in each voxel, it is assumed that the water three-dimensional 

displacement is spherical. The presumed and widely accepted assumption is that the 

water molecules in their diffusion throughout the body encounter microscopic structures. 

It was observed that in highly structured tissues such as brain white matter, the ADC 

varied as the angle between the fiber-tract axis and the applied magnetic field gradient 

was changed (12). The ADC was observed the largest when the diffusion-sensitizing 

gradient was parallel to the fiber direction and smallest when it was applied perpendicular 

to it (13). Anisotropic diffusion was first shown to exist in the muscle by Cleveland et al. 

(14). In highly oriented structures like white matter, it is assumed that there would be 

greater hindrance to diffusion across rather than along the fiber tract axis. As a result, the 

direction of fastest diffusion is assumed to coincide with the orientation of the underlying 
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fibers. This was shown to be the case, using manganese-enhanced MRI, in the optic tract 

of the rat (15). It was clear that a simple scalar, such as, the ADC could not accurately 

characterize diffusion in an anisotropic tissue and that lead to the introduction of 

diffusion tensor imaging (13).  

 

1.3.3 Diffusion Tensor Imaging (DTI) 

Diffusion Tensor Imaging (DTI) was introduced by Basser et al. (13) to address the 

inadequacy of estimating a single scalar to characterize anisotropic diffusion. Diffusion-

weighted MRI analysis has seen ever increasing attention and focus ever since the 

introduction of DTI. The ADC estimate was replaced by an effective diffusion tensor (16) 

that attempts to characterize the diffusion in both anisotropic and isotropic media by a 

rank-2 tensor. DTI attempts to noninvasively reveal tissue microstructure and 

organization at scales unattainable from ordinary structural magnetic resonance images. 

DTI has become a very commonly used approach in modeling diffusion. Estimating a 

rank-2 tensor provides a simple and powerful model that is appropriate for the majority of 

brain voxels. Tensor-derived anisotropy indices such as Fractional Anisotropy (FA) and 

Relative Anisotropy (RA) (17) have also become a staple in characterizing diffusion 

anisotropy in the research and clinical communities.  

 

 The main underlying assumption of the DTI model is that the diffusion process 

follows a multivariate Gaussian distribution, with the diffusion tensor as the covariance 

matrix to be estimated. Contours of the multivariate normal density function form 

ellipsoids (18). The shape and orientation of the ellipsoid is directly determined by the 
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covariance matrix (the diffusion tensor) through its principle directions (eigenvectors) 

and variances (eigenvalues) along those principle directions. This multivariate 

Gaussianity assumption, however, is not always satisfied. One particular case is where 

voxels in regions of high tissue complexity contain multiple fiber orientations and 

intersections (19). The multivariate normal, and thus the diffusion tensor, can have only 

one directional maximum thus one orientation maximum pointing in the direction where 

maximum diffusion occurs. Multiple fiber orientations are expected. These multiple 

orientations are due to fibers crossing or diverging within the millimeter scale voxels. 

Since DTI can only fit a single Gaussian to the underlying measurements, multiple 

orientations are problematic. It will incorrectly estimate a single fiber orientation as the 

mean of the underlying fiber directions. This average direction will obviously not be 

representative of the true fiber directions (20). Accordingly in these situations, the tensor 

model is inadequate.  

 

1.3.4 High Angular Resolution Diffusion-weighted Imaging (HARDI) 

 High angular resolution diffusion-weighted imaging (HARDI) was proposed as a 

method that can reveal non-Gaussian diffusion (21). Capturing complex fiber crossings 

with HARDI often requires higher diffusion-weightings than typically used in DTI. The 

diffusion time allotted for the spins movement is extended to allow them further time to 

diffuse and prod the underlying microstructure. With higher diffusion-weightings, raw 

HARDI data have even lower SNR levels than typical DTI data. Tuch et al. (22) early on 

proposed modeling the diffusion signal as a finite mixture of Gaussian diffusion 

processes in slow exchange so as to reveal intravoxel white matter fiber heterogeneity. 
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The underlying mixture of tensors was solved for using a gradient descent scheme and 

the results for a mixture of two rank-2 tensors were only reported as the results for 3 

tensors were unstable (22). This mixture modeling approach entailed a number of 

assumptions. The first assumption was that diffusion in each fiber population followed a 

single, independent Gaussian distribution. This may be the case if the fibers only cross in 

the voxel but that is not necessarily the case when the fibers actually merge. The second 

assumption was that there was no water exchange between fiber populations (19, 22).  

 

 Frank (23) presented the first model free approach to characterize anisotropy in 

HARDI images. He presented a simple algorithm based on the variance of the estimated 

ADC as a function of the diffusion measurement direction, which indicates where 

diffusion deviates from being isotropic. The measure estimated was termed the spherical 

diffusion variance. This method’s inherent disadvantage is that it fails to characterize the 

diffusion structure and that it is sensitive to artifacts contributing to the variance. Another 

major disadvantage is that the diffusion anisotropy is not quantified in a very meaningful 

way; this method does not allow the quantitation of the magnitude or the direction of 

diffusion.  Spherical diffusion variance does, on the other hand, have the advantage of 

identifying anisotropy regions that are not well characterized by the single tensor model. 

 

 Frank (24) later recognized that the HARDI measurements were made along 

directions covering the range of the spherical coordinates (θ, Φ). This influenced him to 

parameterize the ADC by the spherical coordinates. Tensors represented this way are 

called spherical tensors. The complex spherical harmonics form a complete orthonormal 
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basis. This allows an expansion of the ADC with a Laplace series. The coefficients of this 

expansion are determined in a way that is analogous to a Fourier decomposition of 

sinusoidal functions, but on the unit sphere. That was called the spherical harmonic 

transform (SHT) of the measured ADC. Isotropic diffusion falls in the zero’th harmonic, 

single-fiber diffusion in the zero’th and second harmonics, and multiple-fiber diffusion 

approximately in the zero’th, second, and fourth harmonics. The odd harmonics represent 

anti-symmetric properties in the diffusion profile – attributed to eddy currents and other 

artifacts – and thus were discarded.  The coefficients of the Laplace series, representing 

the diffusivity profile, are truncated to include only the most significant terms. The main 

drawbacks of this approach are that the computation of the SHT is difficult, rotationally 

variant, and a need to select the truncation point. 

 

 Alexander et al. (19) presented a systematic procedure for using spherical 

harmonics to model the ADC profiles. The main drawback of a spherical harmonic based 

modeling methods is the need to truncate the harmonic series above a certain harmonic, 

typically the sixth or in some studies the eight. Inclusion of higher harmonics will lead to 

an over fitting of the data and can introduce the undesirable high frequency noise 

components.  

 

 In an attempt to remedy DTI’s rank-2 tensor shortfall with non-Gaussian 

diffusion, generalized diffusion tensor imaging was introduced (25) by which Cartesian 

tensors of arbitrary ranks, not limited to just the rank-2 tensor, are estimated from the 

HARDI measurements. The generalized tensor approach made it unnecessary to calculate 
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the spherical harmonic coefficients of the Laplace series and the results were equivalent 

to those from the SHT. In a recent study, Minati et al. (26) showed using simulations and 

real HARDI data that elevating tensor rank in regions of intra-voxel orientational 

heterogeneity as in subcortical regions of the corona radiata, along the superior 

longitudinal fasiculus, and in the radiations of the genu of the corpus callosum, and in 

other regions, apparently increased the estimated anisotropy. They also reported that that 

was even true for regions of mono-modal diffusion patterns as the corpus callosum and 

the anterior limb of the internal capsule.  

 

 More recently a model-independent method for reconstructing the HARDI 

measurements by means of a spherical tomographic inversion using the spherical Radon 

transform was presented (27). The new imaging method was called q-ball imaging (QBI) 

(28) and was capable of resolving multiple intravoxel fiber orientations and makes no 

assumptions on the underlying diffusion process. The principles upon which QBI is based 

are presented in the following. 

 

1.3.5 q-Space Imaging 

 In q-space imaging, using a PGSE sequence, nuclei are given a spatial label at one 

instant of time, and then that labeling is checked to see if the nuclei have moved. By 

measuring the label shift, the nuclei’s motion can be deduced (29). It is that label shift 

that is the basic principle upon which q-space imaging methods work. Unlike imaging in 

the k-space where the stationary proton spins are imaged, q-space imaging methods 

depend on moving protons to create images. With q-space imaging methods, the 
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microscopic three-dimensional probability density function (diffusion function) can be 

directly measured in each voxel. The probability density function (PDF) (or diffusion 

function) is given by 

 

( ) ( ) ( )( tP Tt 4exp 12/12
3

4 rDrDr −−−
−= π )      [1.1] 

 

where D is the diffusion tensor (covariance matrix), | | denotes determinant., t is the 

diffusion time, and r=r1-r0, where r1 is the final position of the nuclei after time t, and r0 

is the initial nuclei position. The multivariate three-dimensional normal, P(r), is the net 

displacement that is measured from the PGSE sequence. P(r) depends on the net 

displacement, r, and not the initial position, r0, and also depends on the direction of the 

displacement. Q-space imaging methods are based on the Fourier relationship between 

the diffusion function and the diffusion MR signal E(q), first mentioned by Stejskal. This 

relationship is the following, 

 

( ) ( )[ qr EFP = ]           [1.2] 

 

where F is the Fourier transform (FT) with respect to the experimental diffusion vector 

gq γδ= , γ  is the nuclear gyromagnetic ratio for water protons, g is the diffusion-

encoding magnetic field gradient, and δ is the duration of the gradient. Based on this 

Fourier relationship, the diffusion function can be directly reconstructed by the Fourier 

transform of the diffusion signal. 
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 Q-space imaging methods have been applied in the past to characterize the 

microstructure of complex inanimate materials (30), biological tissue in vitro (31, 32), 

and small animals in vivo (33). One dimensional q-space imaging has also been applied 

in humans in vivo (34). In this study, the diffusion function is measured along only one 

spatial dimension. 

 

1.3.5.1 Diffusion Spectrum Imaging (DSI) 

 Diffusion Spectrum Imaging (DSI) is based on q-space imaging and was proposed 

as a means to reveal the three dimensional diffusion function within each voxel through 

direct measurements (35). Diffusion-weighted images are acquired for several hundred 

values of diffusion-encoding spatial modulation q at points contained within an isotropic 

3D grid within a spherical volume of radius r (35). In each voxel, the diffusion signals are 

a sampling, in 3D Fourier transform space, of the PDF. The main drawbacks to routine 

clinical use of DSI still remain in long acquisition times and the need for strong magnetic 

field gradients.  

 

1.3.6 Orientation Distribution Function (ODF) 

 The orientation distribution function (ODF) is a 3D spherical function constructed 

to extract the dominant fiber orientations in the underlying voxel. Formally, the ODF is 

the radial projection of the 3D PDF onto the unit sphere. The term ODF was first coined 

by Wedeen et al. (35). It was introduced in order to by pass the need to estimate the entire 

PDF which requires excessive scan times and extensive computing requirements. One of 

the most basic ODFs is the ellipsoid formed by the eigenvalues and eigenvectors of the 
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diffusion tensor. The ODF only portraits the areas where the PDF has the most mass by 

forming peaks in those directions. These peaks are assumed to coincide with the 

underlying fiber directions (36). The peaks coinciding with the underlying fiber 

directions is of importance because standard methods such as DTI break down in areas of 

the brain where there is partial voluming or multiple fiber directions in a given voxel. As 

mentioned previously, DTI’s underlying assumption is that the underlying diffusion 

occurring is Gaussian in nature and dictates that the tensor has only one single peak thus 

providing only a single fiber orientation estimate in every voxel. In regions of multiple 

fiber crossings within a voxel, the diffusion PDF will exhibit multiple peaks which the 

tensor in DTI will fail to capture. The ODF formed by the tensor would, in these cases, be 

an incomplete representation of the complexity of the white matter. 

 

 Tournier et al. (37) presented a simple method for fiber orientation distribution 

extraction. It assumes that the diffusion characteristics of all fiber populations found in 

the brain are identical and that variations in white matter FA attributable to a change in 

the diffusion profile are entirely due to partial volume effects. They assume that the 

diffusion-weighted signal attenuations that would be measured if a single coherently 

oriented fiber population was present in a voxel are represented by an axially symmetric 

response function R(θ) . The different diffusion profiles found in the brain are merely a 

convolution of this response function with the fiber ODF. Through a series of spherical 

harmonic decompositions, the fiber ODF can be extracted by a spherical deconvolution 

with the assumed response function R(θ).  
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1.3.7 Q-Ball Imaging (QBI) 

 QBI attempts to capture an approximate picture of the diffusion PDF in each 

voxel without incurring the many drawbacks that initial q-space imaging methods 

presented (e.g., long scan times) and without any a priori assumptions. As mentioned 

previously, with the diffusion PDF being related to the diffusion signal by a Fourier 

relationship, a direct reconstruction of that diffusion function can be obtained by a 

Fourier transformation of a three dimensional lattice sampling of q-space (28). The three 

dimensional PDF does provide a complete picture of the tissue microstructure but for 

purposes of orientation structure mapping of the tissue, an approximation of that PDF 

showing just the orientation structure inherent in the diffusion function would be 

sufficient. This is described through the diffusion ODF. Deriving the ODF from a three 

dimensional lattice sampling of q-space has a number of limitations however. ODF 

extraction requires explicit calculation of the radial projections which would introduce 

artifacts in the mapping from Cartesian to spherical coordinates (28). It would be 

substantially more efficient to measure the diffusion ODF by directly sampling the 

diffusion signal on a spherical shell in diffusion reciprocal space. This forms the basis of 

QBI. Of the main characteristics that lead to the immediate appeal of the QBI method are 

model independence and linear estimation. 

 

 QBI reconstruction is based on the Funk Radon transform (FRT). The FRT is 

defined as a transform from the sphere to the sphere. Given a function on the sphere f(w), 

where w is a unit vector, the FRT is defined as the integration over the corresponding 
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equator, i.e., the set of equatorial points in a plane perpendicular to w. Thus the FRT for a 

direction u is written as  

 

( )[ ]( ) ( )∫ ⊥∈
=

uw
wwuw dffFRT         [1.3] 

 

Tuch et al. (20) showed that the FRT of the diffusion signal gives a very close 

approximation to the ODF, i.e.,  

( ) ( )[ qu EFRT
Z rq
1

≈ψ ]         [1.4] 

 

where qr is the radius of the sampling shell and Z is a normalization constant (28). This 

means that the sum of the diffusion signals over an equator approximately gives the 

diffusion probability in the direction normal to the plane of the equator. 

 

 There have been a number of studies (38, 39) validating that the ODFs 

reconstructed using QBI truly reflect the underlying tissue microstructure most notably 

the work done by Perrin et al. (38) using a diffusion fiber crossing phantom in a clinical 

scanner. 

 

 One of the drawbacks to QBI is in the interpolation and smoothing kernel 

parameter selections. Tuch (28) addressed the issue of spherical Gaussian interpolation 

kernel degree selection by setting the interpolation degree to the one that gives a 

minimum condition number to the reconstruction interpolation matrix. However, the 

smoothing kernel width has been predominantly selected by the investigator (27, 28, 40). 
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The basis of selection is purely subjective and is based on which smoothing kernel width 

gives the best-reconstructed ODFs visually. 

 

1.3.7.1 Q-Ball imaging (QBI) using the spherical harmonic basis 

 HARDI data are customarily acquired on single spherical shell in diffusion 

reciprocal space. Taking advantage of that spherical geometry in the data, Hess et al. 

presented an implementation of QBI using the spherical harmonic basis leading to an 

analytical solution for the ODF reconstruction (41). With their proposed approach, the 

ODF is represented as a linear combination of spherical harmonics. It is important to note 

that, a harmonic model order number needs to be selected for the expansion up to a 

maximum determined by the number of measured data points. Larger series orders are 

used in order to achieve the highest possible angular resolution however higher frequency 

harmonics are less reliably estimated from the measured data and could lead to the 

emergence of spurious peaks in the ODFs reconstructed (41). In the authors attempt to 

decrease sensitivity to noise, they used matrix regularization based on the Tikhonov 

method while solving for the spherical harmonic coefficients when a large harmonic 

order approximation was desired. However, the choice of the regularization parameter 

value was left at the discretion the investigator. Subsequently, Descoteaux et al. (42) 

presented a regularized analytical solution for QBI in the spherical harmonic basis based 

on the Laplace-Beltrami operator. This operator is defined on the unit sphere and is a 

measure of smoothness for functions on the unit sphere which was more appropriate. 

They showed that the Laplace-Beltrami regularization performs better than the Tikhonov 

regularization. Again, the smoothing parameter value they used was set a priori to 
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provide a good separation of 1-fiber from 2-fiber distributions over a large range of SNR 

and b-values in the experimental simulations (43).   

 

1.3.8 Diffusion-weighted MRI Clinical Applications 

 One of the main reasons behind the appeal of using diffusion imaging in clinical 

applications is that it is truly quantitative (44). DWI has been used very successfully in 

the clinical diagnosis and characterization of acute ischemic lesions. With the advent of 

DTI, measures derived from the tensor garnered even more attention. The reason is 

rotationally invariant measures. These measures have values that are independent of the 

direction of the applied diffusion gradient, independent of the orientation of the tissue 

structure in each voxel, and independent of the laboratory frame of reference, and are 

estimated from the diffusion tensor (17). Specifically, the eigenvalues from the eigen 

decomposition of the tensor are the elements used in constructing such rotationally 

invariant scalars. In anisotropic tissue, such as white matter, the largest eigenvalue 

represents the diffusivity of water in the direction parallel to the fiber bundles. This 

eigenvalue has been called synonymously the axial diffusivity (λ||). The average of the 

two smallest eigenvalues was called the radial diffusivity (λ⊥). Radial diffusivity or λ⊥, 

measures water diffusion perpendicular to the axonal wall. Other measures include the 

mean diffusivity (MD), which is the average diffusion in a given voxel, and fractional 

anisotropy (FA), which measures the eccentricity, or degree of anisotropy (45, 46).  FA 

and MD have become very popular in studying a wide variety of brain white matter 

pathologies. These include but are not limited to acute stroke (47), multiple sclerosis (48), 

primary lateral sclerosis and amyotrophic lateral sclerosis (ALS) (49).  
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1.3.8.1 Amyotrophic lateral sclerosis (ALS) 

 ALS, also known as Lou Gehrig’s disease, is a progressive and ultimately fatal 

neurological disease. Neuropathological features in ALS include degeneration and 

eventual loss of the large motor neurons in the cortex, brainstem, and spinal cord as well 

as the degeneration of the corticospinal tract (CST) (49). Upper motor neurons (UMN) 

transmit messages from the brain to the motor neurons in the spinal cord; lower motor 

neurons (LMN) that in turn relay them to muscles. In ALS, both UMN and LMN 

degenerate. With no specific test for ALS, it remains a clinical diagnosis. 

Electromyography and motor unit number estimation are useful biomarkers of LMN 

dysfunction but there are currently no biological markers of UMN dysfunction. 

Particularly in the early stages of the disease, UMN degeneration signs may be very 

discrete. Although, FA and MD have been the widely used measures of choice in the past 

for DTI studies in ALS, they may not be the most appropriate in detecting subtle 

diffusion changes especially in early stages of UMN involvement in ALS. The utility of 

λ|| and λ⊥ in early ALS needs to be investigated. 

 

1.3.8.2 Axial (λ||) and radial diffusivity (λ⊥) in studying white matter neuropathology 

 There has been a recent interest in using λ|| and λ⊥ to provide more insight into 

specific diffusion changes occurring in the diffusion tensor (50, 51). In a mouse model of 

dysmyelination, Song et al. studied λ|| and λ⊥ and found that the absence of myelin 

appeared to increase λ⊥ but did not significantly affect λ|| (50). Several other studies with 
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the mouse model have suggested that λ|| and λ⊥ may communicate diffusivity changes in 

white matter pathology (52-55). Of these changes specifically, demyelination seems to 

increase λ⊥ while axonal damage is associated with decreased λ||. And even though the 

underlying mechanisms are still unclear, the speculation has been that with demyelination 

a loss in the myelin membrane integrity may permit increased water movement across the 

myelin layers (perpendicular to the long axis of the fiber) and with axonal loss and 

degeneration and loss of coherence in axonal organization, λ|| would decrease. In human 

studies, increased λ⊥ was reported in the corpus callosum of subjects with Autism (51), in 

frontal white matter of patients with early Alzheimer’s disease (56), in the genu of the 

corpus callosum of cocaine dependent subjects (57) and in the remaining white matter 

tracts of the corpus callosum after corpus callosotomy in epilepsy patients (58). In the last 

study by Concha et al., their results seem to suggest a dynamism in the λ|| and λ⊥ seen 

changes with an initial decrease in λ|| one week after surgery and little increase in λ⊥ 

followed by larger increases in λ⊥ and a normalizing or even increase in λ|| at 2-4 months 

post-surgery.  

 

 

1.4 General Summary 

 This chapter first provided a brief historical overview of past efforts in measuring 

the molecular diffusion phenomenon using NMR and MRI. Furthermore, it summarized 

the current state of HARDI techniques utilized in fiber ODF reconstruction and 

associated challenges due to low SNR levels in HARDI for accurate ODF reconstruction. 

With continued developments in scanner hardware capabilities and the increased interest 
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in acquiring HARDI data routinely as the diffusion-weighted scan in subject protocols, 

the issue of HARDI data’s inherently depressed levels of SNR and the detrimental effects 

that that has on ODF reconstruction for tractography applications needed appropriate 

addressing. The application of HARDI in a clinical setting on ALS patients is 

investigated with the goal of finding an objective marker for UMN involvement in early 

stages of the disease.  

 

Chapters 2 and 3 are the main contributions of this thesis and are individually 

self-contained. Chapter 2 introduces an application of the smoothing splines on the 

sphere algorithm with objective and adaptive smoothing of the HARDI measured 

diffusivity profiles in three dimensional diffusion space. The resulting smoothed 

diffusivity profiles are subsequently used for fiber ODF reconstruction based on the FRT 

in QBI and are compared with ODFs reconstructed using existing QBI methods. Chapter 

3 applies HARDI in subjects clinically diagnosed with ALS at the early stages of the 

disease to investigate diffusion-sensitive changes in UMN white matter towards 

identifying objective markers for UMN involvement in early ALS.   
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CHAPTER 2 

ADAPTIVE SMOOTHING OF HIGH ANGULAR RESOLUTION 

DIFFUSION-WEIGHTED IMAGING DATA BY GENERALIZED 

CROSS-VALIDATION FOR Q-BALL ORIENTATION 

DISTRIBUTION FUNCTION RECONSTRUCTION1

 

 

This chapter presents an application of the smoothing splines on the sphere 

algorithm with GCV smoothing to noisy HARDI data in order to objectively and 

adaptively smooth the measured diffusivity profiles in three dimensional diffusion space. 

The resulting smoothed diffusivity profiles are subsequently used to reconstruct fiber 

ODFs by applying the Funk-Radon transform (FRT). Using GCV leads to a minimization 

in the ODF radii mean squared error (MSE) estimates but does not always lead to the 

estimate with the least MSE. ODFs reconstructed from the GCV smoothing splines 

outperform their analytical QBI counterparts in terms of lower MSE estimates in the 

ODF radii in all simulations studied. In situations when SNR of the acquired data is very 

poor, diffusion-weighting low to mid-range with HARDI angular sampling densities 

typically used today in the clinical setting (diffusion sampling directions around 60 

                                                 

 
 
1 Partial work in this chapter has been accepted for publication as “Metwalli NS, Hu XP, Carew JD. 
Adaptive Smoothing of High Angular Resolution Diffusion-weighted Imaging Data by Generalized Cross-
validation Improves Q-Ball Orientation Distribution Function Reconstruction” Magnetic Resonance 
Imaging, 2010, In Press. 
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directions), smoothing splines ODFs are more accurate than ODFs from all existing QBI 

methods. 

 

 

2.1 Introduction 

 Diffusion-weighted images are inherently characterized by low signal-to-noise 

ratios (SNR) as a result of the signal attenuation due to diffusion during image 

acquisition. With high diffusion-weightings being utilized in HARDI in order to capture 

complex fiber crossings, raw HARDI data have even lower SNR levels than typically 

acquired diffusion-weighted data. This issue of noise has been addressed in DTI by a 

number of investigators with varying approaches. These denoising methods can be 

categorized as either being frequency domain based or image domain based. Frequency 

domain based approaches mainly deal with filtering in the wavelet domain (1-3). The 

image domain based methods included the application of partial differential equation 

(PDE) based anisotropic diffusion filters to the scalar-valued image (4-6), vector-based 

PDE anisotropic diffusion filtering applied to the eigenvector fields (7, 8) and applying 

chains of nonlinear three dimensional Gaussian filters (9). In relation to HARDI data, 

Papadakis and Smponias (10) proposed using bicubic spherical splines from a piecewise 

spherical harmonic transform to generate a continuous smooth function from the sampled 

diffusion-weighted data. The choice of the degree of smoothing was ad hoc. None of the 

aforementioned methods employs objective and adaptive means of smoothing raw 

diffusion-weighted data. 
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 HARDI data are samples of an originally smooth diffusion profile in each 

imaging voxel with an added nuisance noise term. Noise in HARDI data is of concern 

because it is the raw data that are used to extract the angular structure from the diffusion 

PDF. Methods used to construct any of the orientational structure functions will be 

sensitive to and directly affected by this noise. As a result, noisy diffusion data will result 

in noisy reconstructed ODFs. A usual practice to increase SNR in HARDI acquisitions is 

to average multiple acquired data sets that may introduce other biasing factors such as 

bulk motion. A diffusivity profile that is more faithful to the true underlying smooth 

profile will ultimately result in more accurate ODF reconstruction. Better estimates of the 

diffusion ODF will be beneficial in fiber-tracking algorithms for extracting more accurate 

fiber orientations. 

 

 Pertaining to Q-Ball Imaging (QBI) (11), low SNR levels of the HARDI data 

have prompted recent efforts in introducing different forms of regularization to improve 

ODF reconstruction and reliability of fiber orientation estimation in the spherical 

harmonic basis approaches to QBI. Specifically, a matrix regularization based on the 

Tikhonov method was used while solving for the spherical harmonic coefficients when a 

large harmonic order approximation is desired (12). The regularization parameter is 

chosen subjectively on the basis of the data SNR. Later, Descoteaux et al. (13) used a 

regularization term based on the Laplace-Beltrami operator defined on the unit sphere 

which is more appropriate because it is a measure of smoothness for functions on the unit 

sphere. The smoothing parameter value was chosen as the one that provided good 

separation of 1-fiber from 2-fiber distributions over a large range of SNR and b-values in 
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the experimental simulations (14). Even though they state that an optimal regularization 

parameter could be obtained form the L-curve numerical method, they avoid computing it 

for each HARDI profile at every iteration (13). They show that the Laplace-Beltrami 

regularization performs better than the Tikhonov regularization. Regularization of the 

ODF in spherical deconvolution to attenuate spurious noisy peaks in the ODF has also 

been addressed using a modification on the Tikhonov method (15). No automatic 

updating of the regularization or smoothing to the data based on underlying data SNR 

occurs in any of the previously mentioned methods.  

 

 In this chapter, an objective and adaptive means of smoothing HARDI data in the 

three-dimensional diffusion space of each imaging voxel is applied. The smoothing 

splines on the sphere estimator (16) was used in modeling the noisy HARDI data that 

naturally reside on the surface of the sphere. This estimator smoothes the measured noisy 

samples of the diffusion profile directly in three-dimensional diffusion space. This differs 

from the image domain based denoising methods used previously in denoising DTI data 

in that the smoothing is done in the diffusion space and not in the two-dimensional image 

space. The smoothing parameter was chosen objectively by generalized cross-validation 

(GCV) (17) that, in most situations, minimized the mean squared error (MSE). The MSE 

is the sum of the square of the bias and the variance of the estimate. 

 

 Objectively smoothing the diffusivity profiles is important since noise in the 

HARDI measurements will propagate through any reconstructed ODF obscuring the 

orientational structure information extracted from the diffusion PDF. ODF reconstruction 
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from noisy HARDI data by means of the Funk-Radon transform (FRT) used in the 

analytical QBI technique (11), in particular, is addressed in this chapter. The ODFs 

reconstructed after applying the smoothing splines on the sphere method with GCV 

smoothing were contrasted in terms of performance with the existing QBI methods. The 

comparisons were carried out for both low-density and high-density HARDI sampling 

schemes, at different SNR levels and for different fiber crossing angle scenarios.  

 

 

2.2 Theory 

2.2.1 The Smoothing Splines on the Sphere Method 

 The smoothing splines on the sphere method attempts to model a smooth function 

residing on a sphere in the presence of random noise. It was proposed to solve a 

meteorological problem. Atmospheric pressure was measured (with error) at a large 

number of weather stations distributed around the world. The objective was to estimate a 

smooth function ( )φθ ,uu =  defined on the surface of earth (θ  = latitude, φ = longitude). 

The function specified atmospheric pressure at position ( )φθ , . The situation is very 

similar for HARDI data acquisition. The three-dimensional diffusivity profile in each 

voxel is sampled in three-dimensional diffusion space in a number of specified positions 

),( φθ  on the sphere in a typical HARDI acquisition. The diffusion-weighted signal 

intensities at high b-value HARDI sampling are marred by noise and therefore can be 

modeled as follows 

iii Puz ε+= )( ,         [2.1] 
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where zi is the sampled noisy diffusion-weighted data at positions Pi= ),( ii φθ  and εi is 

assumed to have a zero mean and constant variance, σ2. 

 

 The smoothing splines on the sphere method estimates a smooth function, u, on 

the sphere that minimizes:  

),())((1
2

1

uJzPu
n

n

i
ii λ+−∑

=

        [2.2] 

where J is the squared norm of a Laplace-Beltrami operation on the function u (16), n is 

the number of sampling directions and λ is a smoothing parameter. The first term in Eq. 

[2.2] is a goodness-of-fit term while the second penalizes the roughness of u. The 

smoothing parameter controls the tradeoff between the two conflicting goals (16, 17). As 

the smoothing parameter approaches zero, u approaches the minimum norm interpolant 

whereas when it approaches infinity, u approaches a constant function. The smoothing 

splines solution is given by 

u(P ) = ciR(P ,Pi )+d
i=1

n
∑ ,        [2.3] 

where P is the point where one wishes to evaluate the function, Pi are the diffusion 

encoding directions and R(P,Pi), is a function called the reproducing kernel defined as 

R(P,Pi) =
1

2π
1
2

q2(x) −
1
6

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ,        [2.4] 

where ),(cos iPPx ζ= , ζ  is the angle between points P and Pi, 

and 

q2(x) = 2(1− h)
−1/2

1− 2hz + h2( ) dh
0

1
∫ ,  [2.5] 
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where the subscript 2 denotes a second order penalty J in Eq. [2.2]. A closed form 

solution for Eq. [2.5] was derived elsewhere (16). 

 

 The c and d coefficients in Eq. [2.3] are determined by solving the following 

linear system 

R + nλI( )c + dt = z ,         [2.6] 

with the constraint tTc = 0, i.e., the coefficients sum to zero, where n is the number of 

diffusion sampling directions, R is the n x n symmetric matrix with j, k th entry R(Pj,Pk), 

t = (1…1)T, and z is the n x 1 column vector of sampled diffusion-weighted data. The R 

matrix is formed by evaluating the reproducing kernel for all possible pairs of the 

diffusion encoding directions. 

First, performing a QR decomposition on t and some manipulation leads to (18) 

  
t = QK = Q1 MQ2( ) K*

0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = Q1K

*.       [2.7] 

Premultiplying Eq. [2.6] by Q2
T we get 

Q2
T R + nλI( )c[ ]+ dQ2

Tt = Q2
T z  . 

From tTc = 0, we have Q1
Tc = 0 and c = Q2Q2

Tc and noting that Q2
Tt = 0, leads to the 

equation for c 

Q2
TRQ2 + nλI( )Q2

Tc = Q2
T z , 

Q2
Tc = Q2

TRQ2 + nλI( )−1
Q2

T z , 

c = Q2

−1
Q2

TR Q2 + nλI( ) Q2
T z        [2.8] 

Then premultiplying Eq. [2.6] by Q1
T we get 
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Q1
TRc + nλIQ1

Tc + Q1
T dQ1K

* = Q1
T z . 

With Q1
Tc = 0 and some derivation we get an expression for d 

dQ1
TQ1K

* = Q1
T z − Q1

TRc ,  

d = (K*)−1 Q1
T z − Q1

TR c( )        [2.9] 

By evaluating c and d from Eqs. [2.8] and [2.9], the value of the smoothing splines on the 

sphere function, , can be estimated using Eq. [2.3] anywhere in three-dimensional 

space using the coordinates of P to evaluate the reproducing kernel n times for all the 

pairs of points (P,P

u P( )

i).  

 

 For subsequent ODF reconstruction, the new sets of points are the coordinates of 

the equator points for each of the ODF reconstruction directions. The diffusion-weighted 

signals are estimated at the equator points for each ODF reconstruction direction, and as 

per the FRT, are summed to calculate the ODF radius along each reconstruction 

direction. The entire algorithm is outlined further in Table 2-1.  

 

2.2.2 Choice of the Smoothing Parameter 

 GCV is an objective method for automatically setting the amount of smoothing, λ. 

The GCV estimate of λ, , minimizes the GCV criterion 
∧
λ

 

1
n

2

zi − u Pi( )( )i=1

n∑
2

1− n−1trA λ( )( )
         [2.10] 

where A λ( ) is the n x n matrix satisfying , that maps the data 

to their fitted values (17-19). The numerator of the GCV function measures the closeness 

u P1( ),...,u Pn( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

T

= A λ( )z
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of the function to the data, while the denominator is related to the complexity of the 

model. Minimizing the GCV function can be seen as a tradeoff between fitting the 

observed data well and model complexity. 

 

 The smoothing splines on the sphere method has been applied recently (20) in 

order to smooth out spikes in the noisy MR measurements with application to the 

spherical deconvolution method for ODF extraction. However, the investigators did not 

evaluate the choice of the smoothing parameter. Kaden et al. (21) then later used 

smoothing spline modeling differently for fiber orientation density estimation with a non-

objective means of choosing the smoothing parameter on a per voxel basis. 

 

 GCV has been used recently in selecting the regularization parameter in 

calculating the regularized FOD using damped singular value decomposition (DSVD) in 

a modification on the spherical deconvolution method termed DSVD-GCV (22) and in 

the estimation of QBI ODFs reconstructed in the spherical harmonic basis on 3T and 7T 

human brain data (23). It is important to note that this differs from our work in that 

DSVD-GCV is applied in reconstructing the QBI ODFs in the spherical harmonic basis 

with GCV used in selecting the regularization parameter. We estimate a smoothing 

splines on the sphere function for the diffusivity profile with the degree of smoothing 

chosen by GCV. This diffusivity profile estimate is subsequently used in reconstructing 

the ODF. 
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Table 2-1: Smoothing splines on the sphere estimation and orientation distribution function 
(ODF) reconstruction algorithms 
n : Number of diffusion encoding sampling directions 

m : Number of desired ODF reconstruction directions 

k : Number of equator points around each ODF reconstruction direction 

Input 

S  n x 3 matrix of diffusion gradient sampling orientations 

U m x 3 matrix of desired ODF reconstruction points on the unit sphere 

z n x 1 column vector of sampled diffusion-weighted data 

Output 

u n x 1 column vector of smoothed diffusion-weighted data (smoothing spline on the 

sphere estimate) 

o m x 1 column vector of estimated ODF radii at reconstruction locations in U 

Intermediaries 

R n x n estimation reproducing kernel 

t n x 1 unity column vector 

A(λ) n x n ‘hat’ matrix that maps the data to their fitted values 

λ Smoothing parameter 

c, d  Smoothing spline on the sphere function coefficients 

I (m x k) x n interpolation reproducing kernel 

w (m x k) x 1 column vector of diffusion-weighted signals at the equator points 

P m x (m x k) Kronecker tensor product matrix 
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Algorithm 

To get u: 

Construct the n x n estimation reproducing kernel matrix R using Eqs. (5-6). 

Form the linear system R + nλI( )c + dt = z , with constraint t Tc = 0 and I an n x n identity matrix. 

Perform a QR decomposition on t to get 
 
t = QK = Q1 MQ2( ) K*

0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = Q1K

*. 

Construct the A λ( ) matrix in Eq. (11) as A λ( )= Inxn − nλQ2 Q2
TRQ2 + nλI( )−1

Q2
T .  

Estimate λ that minimizes the generalized cross-validation (GCV) criterion (Eq. (11)). 

Estimate c and d from Eqs. (9-10). 

Estimate the smoothing spline on the sphere with GCV smoothing, u, from u = Rc + d, Eq. (4). 

To get o: 

Construct the (m x k) x n interpolation reproducing kernel matrix I using Eqs. (5-6).  

Estimate the (m x k) x 1 column vector of diffusion-weighted signals at the equator points, w, for 

every ODF reconstruction direction mi using w = Ic + d. 

Compute the sum of the diffusion-weighted signals at the equator points for each ODF 

reconstruction direction mi by pre-multiplying w with an m x (m x k) Kronecker tensor product 

matrix, P, of an m x m identity matrix and a 1 x k unity row vector to get the m x 1 column vector 

of estimated ODF radii, o.  

o = Pw , where  P = 

  

1...1[ ]1xk
0

1...1[ ]1xk

O

0 1...1[ ]1xk

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

m x (mxk)

.  
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2.3 Methods 

 Monte Carlo noise simulations were performed to quantify the benefit gained 

from using smoothing splines on the sphere with GCV smoothing on noisy HARDI data. 

Ground truth ODFs were calculated from the noise-free data and diffusion-weightings 

simulated by the two tensor mixture model. The MSE estimates of the ODFs from the 

new method were compared to existing QBI methods including the standard analytical 

QBI algorithm in addition to the spherical harmonic expansion QBI methods as they 

relate to the ground truth ODFs. As previously mentioned, the MSE is computed by the 

summation of the square of the averaged bias in the reconstructed ODF radius in each 

sampling direction and the averaged variance estimated in each direction over all noise 

trials. All methods were contrasted in terms of fiber crossing angle extraction accuracy at 

different SNR levels.  

 

 In vivo human brain data were acquired to validate our approach for ODF 

reconstruction and contrast their ODFs to the ODFs reconstructed using the standard 

analytical QBI algorithm. 

 

2.3.1 Simulated Data 

 Two fiber populations in slow Gaussian exchange were simulated (24, 25) over a 

range of crossing angles from 60° to 90° in 5° increments. The tensors were assigned 

fractional anisotropy (FA) (26) and trace values of 0.7 and 2.1 x 10-3 mm2/s, respectively. 

The tensor components were estimated from these parameters and the noise-free 

diffusion-weighted signals were calculated. Both tensors were simulated as occupying 
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equal partial volume fractions (12, 27). The diffusion-weighted data were sampled along 

60 directions and along 252 directions from a three-fold tessellation of the icosahedron. 

The sampling direction sets were normalized to the unit sphere.  The HARDI data were 

simulated at two b-weightings, b = 2000 s/mm2 and b = 4000 s/mm2. Rician noise 

(Gaussian noise in quadrature) was added to the noise-free data (28) to achieve SNR 

values of 10, 20, 35 and 50 in the signal with no diffusion weighting. SNR was defined as 

the ratio of the signal intensity in the signal with no diffusion weighting to the standard 

deviation σ of the complex Gaussian noise added. The noise simulations were conducted 

over 250 noise trials. The choice of the simulation parameters was based on a number of 

prior studies (11, 25, 27, 29, 12, 30, 31). 

 

2.3.2 Orientation Distribution Function (ODF) Reconstruction 

 First, ODFs were reconstructed from the noisy data using spherical radial basis 

functions (sRBFs) as in the standard analytical QBI algorithm (11). The interpolation 

kernel width, σi, used was the minimizer of the log condition number of the sRBF 

interpolation matrix (11). The smoothing kernel width was set to 2° for the simulated data 

sampled at 60 directions with the lowest SNR, SNR = 10, whereas for higher SNR levels 

no smoothing kernel was applied. A smoothing kernel width of 3° was needed for the 

data sampled with 252 directions at all SNR levels. These widths were chosen to be the 

degree that achieved the least MSE estimates in the ODFs. 

 

 Secondly, ODFs were reconstructed following the spherical harmonic basis QBI 

techniques (12, 13). Specifically, for the spherical harmonic QBI technique with 
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Tikhonov regularization, a regularization parameter λ = 2 was used as per the 

investigators (12).  For the spherical harmonic QBI approach with Laplace-Beltrami 

regularization, the authors recommended using a regularization parameter λ = 0.006 as at 

this value a good separation of single and two fiber distributions over a large range of 

SNR and diffusion-weightings is achieved (13). Spherical harmonic expansions up to 

order l = 8 were estimated in the two aforementioned techniques.  

 

In attempts to eliminate subjective intervention in the spherical harmonic QBI 

approach with Laplace-Beltrami regularization whether in the choice of the regularization 

parameter value or the order of the harmonic expansion, two separate simulation studies 

were performed incorporating GCV. First, the regularization parameter value was chosen 

as the minimizer of a GCV criterion and in the second simulation study GCV was used to 

determine the harmonic order of the QBI spherical harmonic expansion. 

 

 Lastly, prior to ODF reconstruction, the smoothing splines on the sphere function 

with GCV smoothing parameter was estimated from the data in each noise trial. The 

original gradient sampling directions used to calculate the diffusion-weighted signals 

were used in the estimation of the smoothing splines on the sphere function. The order of 

the penalty in the estimation of the smoothing splines on the sphere function was varied 

from 2 through 10 to determine which degree gave the best reconstructed ODF in terms 

of MSE. The choice was with a second order penalty that in turn resulted in a cubic 

smoothing splines on the sphere function. The searching grid for the smoothing 

parameter spanned, λ ∈ 10−8,102⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  on a log scale with step size of 0.1 to identify the 
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lambda that gave the minimum GCV criterion score over that range. This range was 

determined empirically according to the set simulation parameters as being the range 

where a minimum in the GCV score was typically found.  

 

 Subsequently, the FRT was applied to reconstruct the ODFs. Basically it is the 

integral of the diffusion-weighted signal intensities specified on the equatorial line in the 

plane perpendicular to each reconstruction direction. Diffusion-weighted data were 

estimated at 48 evenly spaced points across each equator plane (11). For the smoothing 

splines on the sphere method, the smooth function estimate is defined everywhere on the 

sphere. One needs to only specify the spherical coordinates of the equator points to 

estimate the diffusion signals there. The same number of equator points, 48, was used and 

the signals were summed along each equator to estimate the ODF radii in the 

reconstruction directions. ODFs from QBI and splines on the sphere modeling were 

reconstructed at 252 and 642 icosahedral directions for the 60 and 252 simulated 

sampling schemes, respectively. 

 

 MSE estimates of the ODF radii from all methods were compared with the 

calculated ground truth ODFs. Ground truth ODFs were reconstructed along the 252 and 

642 sampling directions used to reconstruct the ODFs in the noise trials. Using the FRT, 

the ground truth ODF radii were reconstructed by summing the diffusion-weighted data 

along the equator perpendicular to each reconstruction direction. However, 480 equator 

points were used to obtain a more accurate calculation of the ODF radius along each 

reconstruction direction. Following the general assumption that the fiber directions are 
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determined by the local maxima of the ODFs, the fiber crossing angle estimates were 

extracted from all noise trials and estimated averages for all crossing angle cases studied 

were obtained. 

 

2.3.3 In Vivo Human Brain Data 

 Two normal healthy volunteers (29 and 31 years of age) were recruited and 

informed consent was obtained prior to the experiment according to the guidelines set by 

Emory University’s Institutional Review Board (IRB). HARDI data were acquired on a 

Siemens 3T Tim® whole body scanner (Siemens Medical Solutions, Erlangen, Germany) 

using a diffusion-weighted single-shot echo planar imaging (EPI) sequence. The imaging 

pulse sequence was a standard sequence used regularly for clinical studies and was 

approved by the IRB.  

 

 For the first volunteer, HARDI data were acquired using a 12 channel volume coil 

along 256 directions uniformly distributed on the northern hemisphere of the sphere. The 

diffusion-weighting used was b-value = 4000 s/mm2 and imaging parameters: repetition 

time / echo time (TR/TE) = 3000/129ms, number of acquisitions = 1, field-of-view 

(FOV) = 200 mm x 200 mm, matrix size of 96 x 96, resolution of 2.1 x 2.1 mm2, 5 mm 

slice thickness with parallel imaging (GRAPPA) acceleration factor of 2. The second 

volunteer was subsequently scanned with the same sequence using 60 directions. The 

diffusion-weighting used was b-value = 2000 s/mm2 and imaging parameters: TR/TE = 

9000/102ms, number of acquisitions = 1, FOV = 256 mm x 184 mm, matrix size of 128 x 

92, resolution of 2 x 2 mm2, 2 mm slice thickness with parallel imaging (GRAPPA) 
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acceleration factor of 2. T1-weighted MPRAGE scans of the entire head were also 

obtained at 1 x 1 x 1 mm3 resolution for anatomical referencing of both volunteers. 

Acquisition time for the 60 direction diffusion scan was around 15 minutes while the 256 

direction scan took 45 minutes. The T1-weighted scans took 6 minutes. For both QBI and 

for smoothing splines on the sphere, the ODFs were reconstructed at 252 and 642 

directions from the tessellated icosahedron for the 60 and 256 sampling direction 

datasets, respectively. The 256 sampling directions were mirrored into the southern 

hemisphere to obtain uniform coverage across the entire sphere. 

 ODFs reconstructed using the standard QBI algorithm utilized widths for the 

interpolation and smoothing kernels of 10° and 20°, respectively, for the 60 direction 

dataset and 12° and 3° for the 256 direction dataset. The widths for the interpolation 

kernels were the minimizers of the log condition number of the interpolation matrices in 

each case. The smoothing kernel widths were varied to the value that gave the best-

looking ODFs visually. The regularization parameters in the spherical harmonic QBI 

approaches were set at λ = 2 and λ = 0.006 for spherical harmonic QBI with Tikhonov 

regulariazation and spherical harmonic QBI with Laplace-Beltrami regularization, 

respectively. For visualization purposes, all ODFs were minmax normalized as in (11). 

 

 A flowchart depicting the processing pipelines done in this work on both the 

simulated and in vivo data is shown in Figure 2.1. All the simulations were performed in 

MATLAB® (The Mathworks Inc., Natick, MA) along with all the QBI and smoothing 

splines on the sphere estimation with GCV selected smoothing analysis and visualization 

for both the simulated and in vivo data. The smoothing splines estimates were verified 
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using Xianhong Xie’s splines on the sphere package and library, ‘sspline’, in R (R  

Foundation for Statistical Computing, Vienna, Austria). 

 

 

Figure 2.1 Flowchart showing the processing pipelines for the smoothing splines on the 
sphere method with generalized cross-validation (GCV) smoothing and existing QBI 
algorithms for reconstructing ODFs from simulated and in vivo human brain data. 
 

 

2.4 Results 

2.4.1 Simulated Data 

2.4.1.1 Degree of smoothing adapts to the data signal-to-noise ratio (SNR) 

 The use of GCV in choosing the smoothing parameter in the smoothing splines on 

the sphere estimation problem offers an objective means of smoothing the noisy 

diffusivity profiles measured with high b-value HARDI scans. Figure 2.2 shows 

smoothing splines on the sphere reconstructed ODFs with three different smoothing 

parameter values utilized for a noisy 90° fiber crossing case at SNR = 20 and diffusion-
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weighting of 4000 s/mm2. With the smoothing parameter value that minimizes the GCV 

score, the reconstructed ODF is smoothed out to resemble to a great extent the ground 

truth ODF. Whereas when the smoothing is less than that selected by minimization of 

GCV, it leads to an under-smoothed ODF with residual noise. And at higher smoothing 

levels, the ODF is over-smoothed leading to an increased fusing of the ODF peaks. 

 

 

Figure 2.2 Generalized cross-validation (GCV) is an objective means of choosing the 
smoothing parameter. The displayed ODFs with their respective smoothing parameter 
values set as shown on the mean GCV score curve represent, from left to right, under-
smoothed, GCV-selected smoothing, and over-smoothed ODFs. Note how the under-
smoothed ODF still shows evidence of noise persisting in the data while the over-
smoothed ODF shows a slight fusion between the ODF’s dominant peaks. 
 

 Figure 2.3 displays plots of the mean GCV scores, blue lines, versus the logarithm 

of the smoothing parameter with the red lines being ± one standard deviation of the GCV 

scores at various SNR levels. Figure 2.3(a) shows the mean GCV score plots for a 90° 

crossing scenario sampled with 60 diffusion-gradient directions and b-value = 2000 

s/mm2 at SNR levels 10 and 20. Figure 2.3(b) displays the GCV scores for a 60° crossing 

case at the higher diffusion-weighting of b = 4000 s/mm2 at SNR levels 20, 35, and 50. 
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The latter case was sampled with 252 sampling directions. As can be seen in Figures 

2.3(a) and 2.3(b), the degree of smoothing increases as the SNR decreases and this is 

automatic via GCV without external intervention. In Figures 2.3(a) and 2.3(b) at the 

highest SNR levels tested, SNR = 20 and SNR = 50, respectively, the GCV chosen 

smoothing values are smaller, i.e. more negative logarithm of smoothing, than the values 

at lower SNR levels, highlighted by the dashed gray lines extending from the plots with 

lower SNR levels. An attribute worthy of mentioning is that the variability in the GCV 

scores decreases as the SNR increases. 

 

2.4.1.2 Smoothing parameter chosen via generalized cross-validation (GCV) minimizes 

the mean squared error (MSE) of the estimated spline 

 The choice of the smoothing parameter value that minimizes the GCV scores in 

the smoothing splines on the sphere estimation problem minimizes the MSE of the 

estimate. This smoothing parameter value that minimizes the GCV score coincides with 

the value that when used in the smoothing splines on the sphere estimation problem 

would lead to a spline estimate with the minimum MSE. In a few cases when the SNR is 

too low (SNR ≤ 10) or is very high (SNR ≥ 50), the smoothing parameter that minimizes 

the GCV score does not lead to the estimate with the least MSE but does still lead to a 

minimization in the MSE overall. These cases are exemplified in Figure 2.4 for a 90° 

crossing sampled with 60 directions at b = 2000 s/mm2 and SNR = 10. In this case the 

smoothing parameter chosen by GCV would lead to a slightly under-smoothed estimate 

than is required. GCV is an objective way of choosing the smoothing parameter but 

Figure 2.4 seems to suggest it may not be the optimal means for all sampling and SNR 
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combinations. GCV leads to a minimization of the MSE of the estimate but in some cases 

does not lead to the estimate with the least MSE. 

 

Figure 2.3 Use of generalized cross-validation (GCV) leads to adaptive smoothing of the 
noisy diffusion data concurrent with the data’s signal-to-noise ratio (SNR). As the SNR 
decreases, more smoothing of the raw data is required and vice versa and GCV 
accomplishes that without external intervention. Figure 2.3(a) displays the mean GCV 
score plots for a 90° crossing sampled with 60 diffusion-gradient directions and b-value 
= 2000 s/mm2 for SNR = 10 and SNR = 20. Figure 2.3(b) shows the GCV scores for a 
60° crossing sampled with 252 sampling directions at b = 4000 s/mm2 and SNR levels 20, 
35 and 50. 
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Figure 2.4 Generalized cross-validation (GCV) leads to a minimization of the mean 
squared error (MSE) of the smoothing spline estimate but in some cases does not lead to 
the estimate with the least MSE. Among the cases where GCV does not lead to the 
estimate with the least MSE is a 90° fiber crossing scenario sampled with 60 directions, 
SNR = 10 and b = 2000 s/mm2. The left panel shows the smoothing parameter value at 
which the MSE is minimized is slightly higher than the value determined by minimizing 
the GCV score. The data in this case would be slightly under-smoothed. 
 

2.4.1.3 Orientation distribution function (ODF) reconstruction comparisons 

 The ODFs reconstructed from the smoothing splines on the sphere outperform 

their counterparts reconstructed using the standard analytical QBI algorithm in terms of 

exhibiting an overall decreased MSE estimate in the ODF radii. This is evident across all 

tested SNR levels in the 60 and 252 sampling direction schemes and all crossing angle 

scenarios studied. Figure 2.5(a) shows plots of averaged MSE estimates in the ODF radii, 

averaged over all reconstruction directions, with ± one standard deviation for a 90° fiber 

crossing situation at b = 2000 s/mm2 and at SNR levels 10, 20 and 35 for smoothing 

splines on the sphere ODFs, blue bars, and the analytical QBI ODFs, red bars. Figure 

2.5(b) show plots of the averaged MSE estimates in ODF radii for 60° and 90° fiber 

crossing angles at SNR levels 20, 35, and 50 and b = 4000 s/mm2.  Again the MSE 

estimates for the smoothing splines on the sphere ODFs are the blue bars and the 
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analytical QBI ODFs are in red. There is marked improvement in ODF estimation and 

reconstruction as the SNR levels increase and as the crossing fiber angle separation 

increases. Variability in the MSE estimates of the smoothing splines ODFs decreases as 

the SNR level increases. This is most marked in Figure 2.5(a) for a 90° fiber crossing 

angle case sampled at 60 directions with b = 2000 s/mm2 with SNR increased from 10 to 

35. There is increasing variability in the MSE estimates of the ODF radii for both 

smoothing splines ODFs and analytical QBI ODFs as the diffusion-weighting increases, 

Figure 2.5(b), although the variability is higher for the smoothing splines ODFs. 

 

 In any smoothing procedure, bias is introduced in the estimate in order to reduce 

the variance in hopes of reducing the overall MSE. And despite increases in bias 

variability in the smoothing splines estimate, the substantial reduction in the variance 

seen when using smoothing splines for ODF reconstruction leads to the overall decrease 

in the MSE estimates of the ODF radii compared to the analytical QBI ODF MSE 

estimates, Figure 2.6. The increase in variability seen in the smoothing splines ODF MSE 

estimates is attributable to the increase in bias variability of the smoothing spline 

estimates. 
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Figure 2.5 Orientation distribution functions (ODFs) reconstructed from the smoothing 
splines on the sphere exhibit an overall decreased mean squared error (MSE) estimate in 
the ODF radii compared to their counterparts reconstructed using the standard 
analytical QBI algorithm. Figure 2.5(a) displays plots of averaged MSE estimates in the 
ODF radii with ± one standard deviation for a 90° fiber crossing situation at b = 2000 
s/mm2 and at SNR levels 10, 20 and 35 for smoothing splines on the sphere ODFs, blue 
bars, and the analytical QBI ODFs, red bars. Figure 2.5(b) show plots of the averaged 
MSE estimates in ODF radii for 60° and 90° fiber crossing angles at SNR levels 20, 35, 
and 50 and b = 4000 s/mm2. 
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Figure 2.6 Any smoothing procedure introduces bias in order to reduce the variance in 
hopes of reducing the mean squared error (MSE) in the estimate. The increase in bias 
variability is the main contributor to the increase in variability seen in the smoothing 
spline orientation distribution function (ODF) MSE estimates. MSE, the square of the 
bias, and variance estimates in the ODFs from QBI and from smoothing splines on the 
sphere are shown for 90° crossing cases sampled with 60 directions, at SNR = 10 and b 
= 2000 s/mm2, Figure 2.6(a), and sampled with 252 directions, at SNR = 20 and b = 
4000 s/mm2, Figure 2.6(b). The variance in the smoothing spline ODFs is substantially 
decreased leading to the overall decrease in the MSE estimates in the ODF radii. 
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 In comparison with the spherical harmonic approaches to QBI, the smoothing 

splines on the sphere ODFs performance varies according to the HARDI data angular 

sampling density, diffusion-weighting applied, and data SNR. In the case of spherical 

harmonic QBI with Tikhonov regularization (regularization parameter λ = 2), the 

smoothing splines ODFs perform better, in terms of MSE, than the spherical harmonic 

ODFs of order 4, 6, and 8 at the low density sampling scheme of 60 directions with 

diffusion-weighting 2000 s/mm2 and at the low SNR levels of SNR = 10 and SNR = 20, 

Figure 2.7(a). At higher SNR; SNR = 35, the smoothing splines ODF MSE estimates are 

only lower than the spherical harmonic ODFs of order 6 and 8. However, all spherical 

harmonic QBI ODFs with Tikhonov regularization outperform the smoothing splines on 

the sphere ODFs, in terms of MSE, in the high density sampling scheme (252 sampling 

directions) across all simulated crossing angle scenarios and SNR levels tested. This is 

exemplified in Figure 2.7(b) and 2.7(c) with a 60° fiber crossing case with b = 4000 

s/mm2 at SNR = 20 and SNR = 35 and a 90° crossing case at the same b-weighting and 

SNR levels, respectively. 

 

 In relation to the spherical harmonic approach with Laplace-Beltrami 

regularization (regularization parameter λ = 0.006), smoothing splines on the sphere 

ODFs only slightly outperform their spherical harmonic QBI counterparts of order 6 and 

8, in terms of MSE, at the low density sampling scheme of 60 directions with diffusion-

weighting 2000 s/mm2 and SNR level of SNR = 10, Figure 2.8(a). In all other simulated 

cases, at low and high density HARDI sampling and at all SNR levels simulated, the 
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spherical harmonic QBI ODFs with Laplace-Beltrami regularization outperform the 

smoothing splines ODFs in terms of lower MSE, Figure 2.8(b) and 2.8(c). 

 

 

Figure 2.7 Orientation distribution functions (ODFs) reconstructed using smoothing 
splines on the sphere generally exhibit an overall decreased mean squared error (MSE) 
estimate in the ODF radii compared to their counterparts reconstructed from spherical 
harmonic QBI with Tikhonov regularization in the low density sampling scheme of 60 
diffusion sampling directions with b = 2000 s/mm2. The smoothing splines ODFs (in 
blue) outperform, in terms of MSE, the spherical harmonic ODFs (in red) of order 4, 6, 
and 8 at 60 directions with diffusion-weighting 2000 s/mm2 and at the low SNR levels of 
SNR = 10 and SNR = 20, Figure 2.7(a). However at higher SNR; SNR = 35, the 
smoothing splines ODF MSE estimates are only lower than the spherical harmonic ODFs 
of order 6 and 8. All spherical harmonic QBI ODFs with Tikhonov regularization 
outperform their smoothing splines on the sphere ODFs, in terms of MSE, in the high 
density sampling scheme (252 sampling directions) across all simulated crossing angle 
scenarios and SNR levels tested, Figure 2.7(b) and 2.7(c). 
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Figure 2.8 Orientation distribution functions (ODFs) reconstructed using smoothing 
splines on the sphere only slightly outperform their spherical harmonic QBI with 
Laplace-Beltrami regularization counterparts of order 6 and 8, in terms of mean squared 
error (MSE), at the low density sampling scheme of 60 directions with diffusion-
weighting 2000 s/mm2 and SNR level of SNR = 10, Figure 2.8(a). The spherical harmonic 
QBI ODFs with Laplace-Beltrami regularization outperform the smoothing splines ODFs 
in terms of lower MSE, in all other simulated cases, at low and high density HARDI 
sampling and at all SNR levels simulated, Figure 2.8(b) and 2.8(c). 
 

2.4.1.4 Applying adaptive smoothing to spherical harmonic Q-ball imaging (QBI) with 

Laplace-Beltrami regularization using generalized cross-validation (GCV) 

There are two parameters in the spherical harmonic QBI with Laplace-Beltrami 

regularization approach which need to be determined or set a priori to any processing. 
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The first is the value of the regularization parameter, λ, and the second is the order to 

which the spherical harmonic expansion extends. In an attempt to further automate this 

approach to spherical harmonic QBI, GCV was used to automatically determine a 

regularization value guided by the data SNR and was also used, in a separate simulation, 

to determine the spherical harmonic expansion order.  

When choosing the regularization parameter value from a minimization of a GCV 

criterion, it was only at the low density HARDI sampling scheme (60 directions) and the 

very low SNR of 10 at which there was an improvement in terms of ODF radii MSE 

estimates over the original spherical harmonic QBI with Laplace-Beltrami regularization 

technique, Figure 2.9(a). In all other simulated cases, at low and high density HARDI 

sampling and at all SNR levels simulated, setting the regularization parameter value at  λ 

= 0.006 lead to ODF radii with lower MSE estimates than when the regularization 

parameter value was chosen by GCV, Figure 2.9(b) and 2.9(c). 

 

 57



 

Figure 2.9 Using a generalized cross-validation (GCV) criterion in choosing the 
regularization parameter value in the spherical harmonic QBI approach with Laplace-
Beltrami regularization does not - in general - lead to an improvement in the ODF radii 
mean squared error (MSE) estimates compared to the original approach in which the 
regularization parameter was set a priori to λ = 0.006.  
 

 Using GCV in choosing the spherical harmonic expansion order lead to ODFs 

with MSE estimates that were very comparable to those obtained using the original 

algorithm – for the simulated SNR levels and spherical harmonic expansion orders – in 

the low-density HARDI sampling scheme with diffusion-weighting 2000 s/mm2, Figure 

2.10 (a). However, performance deteriorates in the high-density HARDI sampling with 

elevated diffusion-weighting as is evident in Figure 2.10(b) and 2.10(c)  
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Figure 2.10 Using a generalized cross-validation (GCV) criterion in choosing the 
spherical harmonic order offers mixed results in the low-density sampling and low 
diffusion-weighting, Figure 2.10(a), and high-density sampling with high diffusion-
weighting settings, Figure 2.10(b) and 2.10(c) . 
 

In summary, using GCV whether in choosing the regularization parameter value 

or the spherical harmonic expansion order merely adds further computational burden with 

no improvement, in general, in the MSE. In these studies, bias in the estimates was 

slightly increased using GCV over the original algorithms and that, most likely, was the 

main contributor to the poor MSE performance.     
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2.4.1.5 Angular resolution comparisons 

Angular resolution in QBI depends on the b-weighting, data SNR, amount of 

smoothing applied i.e. smoothing kernel width, spherical sampling density, and the ODF 

reconstruction directions density. It is expected that any smoothing done on the 

diffusivity profiles in diffusion space prior to ODF reconstruction would introduce some 

angular error in the crossing angles simulated. Applying smoothing splines on the sphere 

lead to an underestimation of the fiber crossing angles estimated below 75° compared to 

all QBI approaches. However for fiber crossing angles above 75°, the angles extracted 

from the smoothing splines on the sphere ODFs were closer to the ground truth ODF 

crossing angles compared to the angles from their analytical QBI ODF counterparts, 

Table 2-2. The smoothing splines ODFs exhibited comparable performance at 90° 

crossing with the spherical harmonic QBI ODFs with Tikhonov regularization and 

Laplace Beltrami regularization, Table 2-2. The smoothing splines ODFs and spherical 

harmonic QBI ODFs also exhibited less variability in the estimated fiber crossing angles 

compared to the analytical QBI ODFs. 
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b = 4000 s/mm2

SNR 20 SNR 35 SNR 50 
 QBI ShQBI 

(T) 
ShQBI 
(LB) 

Smoothing 
Splines  QBI ShQBI 

(T) 
ShQBI 
(LB) 

Smoothing 
Splines 

 QBI ShQBI 
(T ) 

ShQBI 
(LB) 

Smoothing 
Splines  

                
75° 69° (13°) 69° (7°) 68° (9°) 66° (13°)  72° (8°) 71° (3°) 71° (3°) 71° (3°)  72° (5°) 72° (2°) 71° (2°) 71° (2°)  
                
90° 80° (7°) 85° (3°) 86° (3°) 86° (3°)  85° (4°) 89° (1°) 90° (0°) 89° (1°)  88° (2°) 90° (0°) 90° (0°) 90° (0°)  
                

 

 

 

The angles in the leftmost column are the true simulated fiber crossing angles. The values in the rest of the table are the average 
crossing angle estimates from all noise trials with the standard deviation in parentheses. ‘ShQBI (T)’ is spherical harmonic QBI 
with Tikhonov regularization and ‘ShQBI (LB) is spherical harmonic QBI with Laplace-Beltrami regularization. All spherical 
harmonic QBI ODFs presented here were of the 6th order harmonic with λ = 2 as the regularization parameter value for 
Tikhonov regularization and λ = 0.006 for the Laplace-Beltrami regularization approach. The diffusion-weighted data in this 
table was sampled with 252 sampling directions and the ODFs were reconstructed at 642 directions. 

Table 2-2: Average fiber crossing angles estimated using existing QBI methods and smoothing splines on the sphere for two 
crossing angle scenarios: 75° and 90°. 

 

 



2.4.2 In Vivo Human Brain Data 

 The human data show an overall good agreement between the ODFs 

reconstructed directly from the raw data using existing QBI methods and those 

reconstructed after applying smoothing splines on the sphere with GCV smoothing as can 

be seen in Figures 2.11 and 2.12. The reconstructed ODFs from all methods compare 

nicely to previous works and investigations of the chosen regions-of-interest (ROIs) (21, 

11). Figure 2.11 shows in vivo diffusion-weighted data sampled with 60 diffusion 

directions at b = 2000 s/mm2 with an ROI in the parietal lobe where projections from the 

corpus callosum (CC) meet fiber projections from the internal capsule (IC) in the 

inferior-superior direction and posterior-anterior fibers of the superior longitudinal 

fasciculus (SLF). All methods perform comparably well depicting the underlying 

directionality in the data in the CC, showing fibers oriented in the left-right directions 

(encoded in red) and for the IC depicting fibers oriented in the inferior-superior directions 

(encoded in blue). However, spherical harmonic QBI ODFs with Laplace-Beltrami 

regularization and smoothing splines ODFs in the SLF region show more prominent 

ODFs indicating potential fiber crossings, in the upper right corner of their respective 

panels. This potential crossing is a little less obvious in the SLF QBI ODFs of analytical 

QBI. For analytical QBI, while the interpolation kernel width was determined by the 

minimizer of the log condition number of the sRBF interpolation matrix (11), the 

smoothing kernel width had to be changed and tested through trial-and-error to set the 

width that gave the best looking ODFs visually resembling ODFs in the remaining 

methods. For the spherical harmonic QBI approaches, the regularization parameter values 

λ = 2 and λ = 0.006 were used in the reconstruction of the spherical harmonic QBI ODFs 
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with Tikhonov regularization and Laplace-Beltrami regularization, respectively. A 4th 

order harmonic expansion was used in ODF reconstruction for the spherical harmonic 

QBI with Tikhonov regularization while an 8th order harmonic expansion was used for 

the spherical harmonic QBI with Laplace-Beltrami regularization. The regularization 

parameter value settings were the recommendations of their authors (12, 13). The 

smoothing parameter values estimated via GCV in the ROI in Figure 2.9 ranged from a 

minimum value of 10-5 to a maximum of 1.259 x 10-1. The average smoothing parameter 

value over the entire ROI was 1.80426 x 10-3. 

 

 Figure 2.12 shows data from the volunteer sampled with 256 diffusion directions 

at b = 4000 s/mm2 with an ROI in the three-way fiber crossing area of the CC projections 

and corona radiata (CR) with the SLF. The QBI ODFs (upper left panel) are not as 

smooth as their counterparts from the spherical harmonic QBI approaches and smoothing 

splines on the sphere, especially in the CR and SLF regions. Three-way crossings 

between the CC, CR and SLF are more visible with the spherical harmonic QBI ODFs of 

both regularization approaches and smoothing splines ODFs in the SLF region (lower 

right panel) than with the analytical QBI ODFs. The GCV smoothing parameter values in 

the smoothing splines ODFs in the ROI in Figure 2.10 ranged from a minimum value of 

6.3096 x 10-4 to a maximum of 10-1. The average GCV smoothing parameter value over 

the entire ROI was 9.35704 x 10-3. Again, the regularization parameter values λ = 2 and λ 

= 0.006 were used in the reconstruction of the spherical harmonic QBI ODFs with 

Tikhonov regularization and Laplace-Beltrami regularization, respectively, and with a 6th 

order harmonic expansion. All ODFs were normalized as in (11) for visualization  
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Figure 2.11 In vivo diffusion-weighted data sampled with 60 directions at b = 2000 
s/mm2 with a region-of-interest (ROI) outlined in black in the parietal lobe where 
projections from the corpus callosum (CC) meet fiber projections from the internal 
capsule (IC) in the inferior-superior direction and posterior-anterior fibers of the 
superior longitudinal fasciculus (SLF) on the T1-weighted MPRAGE image of the 
volunteer, upper left image. All methods are comparable depicting the underlying 
directionality in the data in the CC, showing fibers oriented in the left-right directions 
(encoded in red) and for the IC oriented in the inferior-superior directions (encoded in 
blue). The regularization parameter values λ = 2 and λ = 0.006 were used in the 
reconstruction of the spherical harmonic QBI ODFs with Tikhonov regularization and 
Laplace-Beltrami regularization, respectively. Spherical harmonic QBI ODFs with 
Laplace-Beltrami regularization and smoothing splines ODFs in the SLF region show 
more prominent ODFs indicating potential fiber crossings, in the upper right corner of 
the respective panesl. This potential crossing is a little less obvious in the SLF QBI ODFs 
of analytical QBI. 
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Figure 2.12 In vivo data sampled with 256 diffusion directions at b = 4000 s/mm2 with a 
region-of-interest (ROI) outlined in black in the parietal lobe in the three-way fiber 
crossing area of the corpus callosum (CC) projections and corona radiata (CR) with the 
superior longitudinal fasciculus (SLF). Three-way crossings between the CC, CR and 
SLF are more visible with the spherical harmonic QBI ODFs of both approaches and 
with the smoothing splines ODFs in the SLF region (lower right panel) than with the 
analytical QBI ODFs (upper left panel). The regularization parameter values λ = 2 and 
λ = 0.006 were used in the reconstruction of the spherical harmonic QBI ODFs with 
Tikhonov regularization and Laplace-Beltrami regularization, respectively. 
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purposes and were displayed overlaying the generalized fractional anisotropy (GFA) 

metric also calculated as in (11). The GFA metric varies as its DTI counterpart, the 

fractional anisotropy (FA) (26), from zero for isotropic tissue to one for highly 

anisotropic tissue. 

 

 

2.5 Discussion 

 Applying smoothing splines on the sphere with GCV smoothing to noisy 

simulated raw HARDI data prior to ODF reconstruction using the FRT minimizes the 

MSE in the ODF radii. The smoothing splines ODFs exhibit lower MSE estimates than 

their counterparts from the standard QBI algorithm across the different crossing angle 

scenarios and levels of SNR simulated. The smoothing splines ODFs had lower MSE 

estimates than their counterparts of the spherical harmonic QBI with Tickhonov 

regularization of all harmonic orders for the 90° crossing case at the low density HARDI 

sampling scheme (60 directions) at b = 2000 s/mm2 for all SNR levels tested with the 

exception of the spherical harmonic ODFs with the 4th harmonic expansion at SNR = 35 

that actually had lower MSE estimates than the smoothing splines ODFs. At higher 

HARDI sampling density (252 directions) and higher diffusion-weightings (b = 4000 

s/mm2) and for the SNR levels tested, the spherical harmonic QBI ODFs with Tikhonov 

regularization outperform their counterparts from the smoothing splines on the sphere 

approach even though adaptive smoothing is applied in the latter and not the former. In 

relation to the spherical harmonic QBI approach with Laplace-Beltrami regularization, 

the cases in which the smoothing splines ODFs slightly outperformed their spherical 
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harmonic counterparts were fewer. At low HARDI sampling density (60 directions), low 

SNR (SNR = 10) and low diffusion-weighting (b = 2000 s/mm2), the smoothing splines  

ODF MSE estimates were the same or slightly lower than their spherical harmonic QBI 

ODF MSE estimates for all spherical harmonic order expansions. In all other simulation 

cases of higher sampling density and SNR, the spherical harmonic ODFs exhibited lower 

MSE estimates than their smoothing splines counterparts in the vast majority of simulated 

cases studied.  

 

These results seem to suggest that when the SNR is poor, and low HARDI 

angular sampling densities and low diffusion weighting are used, the smoothing splines 

on the sphere reconstructed ODFs are, for the most part, more accurate in terms of MSE 

estimates than the ODFs from either spherical harmonic QBI approaches. This is possibly 

due to the fact that the regularization parameters for the spherical harmonic QBI 

approaches have been set a priori by the developers of each approach to work well within 

a range of SNR levels and diffusion-weightings. This essentially means that these setting 

will work very well in some situations and not as well in others as the results here 

suggest. When an objective method such as GCV is used in choosing the smoothing 

parameter, the selection is guided exclusively by the underlying data SNR. Surprisingly 

however, when a GCV criterion was used in choosing an objective value for the 

regularization parameter in this spherical harmonic QBI approach, it did not lead – in 

general - to ODFs with lower MSE estimates than the original spherical harmonic QBI 

with Laplace-Beltrami regularization with regularization parameter set a priori at λ = 

0.006.  GCV lead to a decrease in the MSE in this case and in the case of the smoothing 
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spline estimate but did not always lead to an estimate with the lowest MSE. GCV maybe 

an objective means of choosing the smoothing parameter but may not be the most optimal 

in terms of getting an estimate with the lowest MSE.  

 

 The spherical harmonic QBI approaches exhibited slightly better angular 

resolution power than the smoothing splines on the sphere approach at SNR = 20 as is 

evident from the noisy data in Table 2-2. However, the smoothing splines approach’s 

performance improves at higher SNR and was comparable to the spherical harmonic QBI 

approaches. Both spherical harmonic QBI approaches and the smoothing splines 

approach reconstruct better 90° crossing angle ODFs across the simulated SNR levels 

compared to analytical QBI.  

 

 An additional limitation to the smoothing splines on the sphere approach with 

GCV smoothing is the added computational burden of locating the smoothing parameter 

value that minimizes the GCV criterion. This is largely due to the brute force nature of 

the search. Applying optimization in the GCV criterion minimization step would 

dramatically improve efficiency in the smoothing splines estimation problem. 

Furthermore, it is assumed when modeling the noisy diffusion-weighted data in Eq. [2.2] 

that the noise is zero mean with constant variance. The zero mean assumption is not 

accurate at all SNR levels. At high SNR, a Gaussian distribution assumption of the noise 

is a good approximation to the true Rician distribution however the approximation is 

inaccurate at low SNR levels that are typical of high diffusion-weighted HARDI data. 

This is likely leading to the increase in bias variability in the smoothing splines on the 
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sphere estimate. At high diffusion-weightings, the noise variance may not be constant 

along all sampling directions and will most likely be directly affected by the local 

diffusivity profile structure projected along the particular sampling directions. In the 

linear system solution, Eq. [2.6], the GCV smoothing parameter is applied with equal 

weighting over the entire function. Directions with more noise would require more 

smoothing which would not be achieved with the current method. Directionally 

heterogeneous variance could be addressed with a weighted estimation of the smoothing 

spline with the weights determined through optimization techniques. 

 

 As pertains to the in vivo brain datasets used, smoothing splines ODFs were 

comparable to all existing QBI methods in revealing the underlying directionality of the 

fibers in the 60 diffusion direction dataset. Like the spherical harmonic QBI ODFs with 

Tikhonov and Laplace-Beltrami regularizations, the smoothing splines on the sphere 

ODFs were devoid of small perturbations and spurious spikes due to noise that still 

persisted in the QBI ODFs in the 256 direction dataset. It is important to note that with 

the analytical QBI and spherical harmonic QBI approaches, a selection of the smoothing 

kernel width in the former and spherical harmonic expansion order selection in the latter 

need to be made. This represents an added burden in these approaches which essentially 

entails reconstructing the ODFs in any ROI several times with different smoothing kernel 

width settings and spherical harmonic expansion order numbers to choose, again 

subjectively, the most appropriate values, visually. Using an objective criterion, as with 

GCV, in selecting the amount of smoothing the data must undergo eliminates this 

exercise. 
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2.6 Conclusions 

 In this chapter, smoothing splines on the sphere modeling with GCV smoothing 

was applied to noisy HARDI data in order to estimate the underlying smooth diffusivity 

profiles. Using GCV in choosing the smoothing parameter value leads to adaptability of 

the smoothing applied concurrent with the data SNR. The smoothing splines on the 

sphere method with GCV smoothing when applied to the noisy raw HARDI data lead to 

better reconstructed ODFs, in terms of MSE, using the FRT as compared with ODFs 

reconstructed by the standard QBI algorithm in all simulated scenarios. GCV leads to a 

decrease in the MSE of the estimated spline however does not always lead to the 

smoothing spline estimate with the lowest MSE in the ODF radii. GCV maybe an 

objective means of choosing the smoothing parameter but clearly is not the optimal 

choice. In situations when SNR of the acquired data is very poor, diffusion-weighting 

low to mid-range with HARDI scans of low angular sampling densities (60 diffusion 

sampling directions), smoothing splines ODFs are more accurate than ODFs from 

existing QBI methods. 
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CHAPTER 3 

TOWARDS AN OBJECTIVE MARKER FOR UPPER MOTOR 

NEURON INVOLVEMENT IN AMYOTROPHIC LATERAL 

SCLEROSIS: A HIGH ANGULAR RESOLUTION DIFFUSION-

WEIGHTED IMAGING STUDY2

 

 

 This chapter applies high angular resolution diffusion-weighted imaging 

(HARDI) in subjects clinically diagnosed with amyotrophic lateral sclerosis (ALS) and at 

the early stages of the disease to investigate diffusion-sensitive changes in upper motor 

neuron (UMN) white matter as well as brain white matter in general. Currently, there are 

no widely accepted objective markers for upper motor neuron involvement in ALS. The 

diffusion tensor imaging (DTI) measures axial diffusivity (λ||), radial diffusivity (λ⊥), in 

addition to the more commonly used fractional anisotropy (FA) and mean diffusivity 

(MD) were studied using the voxel-based statistical analysis tool, tract-based spatial 

statistics (TBSS). This study represents the first report of changes in MD, λ||, and λ⊥ in 

ALS patients using TBSS and finds that MD, λ||, and λ⊥ were significantly increased 

along the corticospinal tract (CST) of the UMN in ALS patients while significant changes 

in FA were more restricted. In ALS, λ|| and λ⊥ may be useful DTI-derived indices to 

                                                 

 
 
2 Partial work in this chapter has been accepted for publication as “Metwalli NS, Benatar M, Nair G, Usher 
S, Hu X, Carew JD. Utility of axial and radial diffusivity from diffusion tensor MRI as markers of 
neurodegeneration in amyotrophic lateral sclerosis. Brain Research 2010, In Press.  
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consider in addition to FA and MD to aid in demonstrating neurodegenerative changes 

associated with the disease. Applying generalized cross-validated (GCV) smoothing via 

smoothing splines on the spheres lead to objectively smoothed orientation distribution 

functions (ODFs) with suppressed spurious peaks that mislead fiber tractography. 

 

 

3.1 Introduction 

 Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative disease 

characterized by the death of both the upper motor neurons (UMN) and lower motor 

neurons (LMN) in the brain, brainstem, and spinal cord. The disease results in weakness 

and wasting of muscles, impaired swallowing and ultimately death from respiratory 

failure (1). Currently, there is no specific test for ALS, which remains a clinical 

diagnosis. The clinical LMN signs can be demonstrated though electromyography and 

motor unit number estimation. Electromyography is an invasive test that evaluates the 

health of muscles and the nerves controlling them while motor unit number estimation is 

a non-invasive electrophysiological method to estimate the number of motor neurons 

innervating a muscle or group of muscles (2). Signs of UMN degeneration are more 

difficult to asses, especially when the disease is at its early stages and the UMN signs are 

very discrete. There is no widely accepted objective marker for UMN involvement in 

ALS (3). 

 

 Axonal degeneration in ALS alters tissue microstructure and hence diffusion of 

water molecules both perpendicular and parallel to the axonal wall. These changes, which 
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are not evident on conventional MRI, are measurable with diffusion tensor imaging 

(DTI). Sensitivity to microstructure and tissue organization makes DTI an important tool 

for studying neurodegenerative disease (4). Several measures derived from the diffusion 

tensor, D, have been shown valuable in characterizing microstructural diffusion occurring 

in the underlying tissue. These measures include trace, fractional anisotropy (FA), mean 

diffusivity (MD) (5), radial diffusivity (λ⊥) and axial diffusivity (λ||) (6). The trace of D is 

the sum of the three eigenvalues while MD is the average of the three eigenvalues (MD = 

trace/3) and provides a measure of the degree of restriction to the diffusion of water 

molecules irrespective of direction (7). Conceptually, FA measures the eccentricity, or 

degree of anisotropy of diffusion (5, 8). FA values range from 0 (isotropic diffusion) to 1 

(completely anisotropic diffusion). In anisotropic tissue, such as white matter, the largest 

eigenvalue represents the diffusivity of water in the direction parallel to the fiber bundles 

(λ||). Radial diffusivity, λ⊥, which is the average of the two smallest eigenvalues, 

measures water diffusion perpendicular to the axonal wall. FA and MD have been used in 

the study of a variety of brain white matter pathologies (9-11) including primary lateral 

sclerosis (PLS) and ALS. However, there has been little study of the utility of λ|| and λ⊥ 

in ALS. 

 

 Methods of quantitative DTI analysis include region-of-interest (ROI) and voxel-

based approaches. Tract-based spatial statistics (TBSS) (12), the voxel-based approach 

used in this chapter, utilizes extracted and skeletonized white matter tracts in the FA 

images of all subjects. TBSS is used in an effort to overcome the problems associated 

with the use of standard registration algorithms in other voxel-based approaches. 
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 Several investigators have reported reduced FA in the corticospinal tracts (CSTs) 

of ALS patients although the extent and distribution of these changes have been variable 

(3, 12-23). Reduced FA along the entire length of the CST from the corona radiata (CR) 

through the internal capsule (IC) and into the brainstem has been reported using both ROI 

(13, 17, 21) and voxel-based approaches (14, 18, 20, 23). Other reports have described 

more regionally restricted reductions in FA affecting only the posterior limb of the 

internal capsule (15), the brainstem (3, 19) or a gradient of FA reduction that was most 

marked in the pons, less prominent in the IC, and normal in the CR (16). Inconsistent 

results were reported in one of the studies that utilized TBSS (22). Furthermore, in a 

more recent TBSS analysis of subjects included in their first voxel-based study, Sage et 

al. reported finding reductions in FA in the splenium and body of the corpus callosum 

(CC) in addition to the previously reported reductions in the CST (23) (Table 3-1). 
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Reference 
Corona 

radiata 

Posterior limb of the 

internal capsule 

Cerebral 

peduncles 
Pons Medulla 

Corpus 

callosum 

Ellis et al. (13)     - - - 

Sach et al. (14)      -  

Graham et al. (15)  NS  - - - NS 

Karlsborg et al. (16) NS NS -  - - 

Hong et al. (3) - -  NS NS - 

Cosottini et al. (17)  -     - 

- Thivard et al. (18)    - - - 

- Wong et al. (19) NS NS  - - 

NS Sage et al. (20)    NS NS 

Iwata et al. (21)       NS 

Ciccarelli et al. (22)     - -  

 Sage et al. (23)    NS NS 

Table 3-1: Previously reported fractional anisotropy (FA) findings in the corticospinal tract (CST) and corpus 
callosum of patients with ALS.  

‘ ’: Significant decrease. ‘NS’: Not significant. ‘−’: Not considered or reported. 



Reported changes in MD in ALS patients have been less consistent.  Several 

studies have reported increased MD in selected regions of the CST of ALS patients – the 

IC more so than the pons, but not the CR (16), and the cerebral peduncles, but not the 

pons and medulla (3). Others found no significant differences in MD between patients 

and controls (15, 19). Cosottini et al. reported normal λ|| but increased λ⊥ in ALS patients, 

indicating normal diffusion along the CST but increased diffusion perpendicular to the 

CST (17). However, Wong et al. found normal λ⊥ but increased λ|| only in the CR of ALS 

patients (19). Using TBSS, Sage et al. reported finding significant increases in MD within 

the CST (23) in the same patients they had previously described (20) initially not finding 

those MD increases in the CST. 

 

 In this chapter, we apply high angular resolution diffusion-weighted imaging 

(HARDI) in subjects clinically diagnosed with ALS and at the early stages of the disease 

to investigate diffusion-sensitive changes in UMN white matter. We report DTI and 

TBSS analysis of FA, MD, λ||, and λ⊥ maps of ALS patients and age-matched controls. 

We hypothesized that there would be utility in considering λ|| and λ⊥ in addition to the 

more commonly considered FA and MD to aid in revealing neurodegenerative changes in 

ALS. This chapter presents the first report of changes in MD, λ|| and λ⊥ in ALS patients 

using TBSS.  

 

 The diffusion tensor in DTI can have only one orientation maximum pointing in 

the direction where maximum diffusion occurs as was explained in Chapter 1. The 

resolution with which the data is acquired would lead to the existence of multiple 
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orientations due to fibers crossing or diverging within the millimeter scale voxels in 

numerous areas in the brain. These multiple orientations are problematic with DTI. A 

single fiber orientation estimate would be incorrectly identified as the mean of the 

underlying fiber directions that would mislead any fiber tractography applied to the data. 

HARDI data acquired at higher angular resolution facilitates the reconstruction of fiber 

orientation distribution functions (ODFs) that reveal multiple fiber orientations that 

would not be visible with DTI. QBI ODFs and generalized cross-validated (GCV) 

smoothing splines on the spheres ODFs are reconstructed to compare their respective 

performances with fiber crossing extraction and spurious peak suppression. 

 

 

3.2 Methods 

3.2.1 Study Participants 

 ALS patients were recruited from the neuromuscular clinic and electromyography 

laboratory at Emory University and via advertisements to ALS patients registered with 

the Georgia Chapter of the Muscular Dystrophy Association. Patients were examined 

clinically; the revised ALS functional rating scale (ALSFRS-R) (24) was administered 

and forced vital capacity (FVC) was measured. Age-matched healthy controls were 

recruited from several sources including spouses and other relatives of ALS patients and 

a registry of healthy subjects maintained by Dr. Michael Benatar, an associate professor 

of Neurology at Emory University’s School of Medicine, and an investigator on this 

study. The study was approved by the Emory Institutional Review Board (IRB) and all 

participants provided written informed consent. Target enrollment was twelve ALS 
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patients and at least twelve controls. A total of twenty-one control subjects were recruited 

to achieve approximate age matching with the ALS group. 

 

3.2.2 Study Protocol 

 HARDI data were acquired on a Siemens 3T Tim whole body system using a 

standard single-shot echo planar imaging (EPI) sequence in the coronal orientation with a 

twelve channel volume head coil. The imaging parameters were as follows: repetition 

time / echo time (TR/TE) = 3000/135 ms, field-of-view (FOV) = 135 mm x 135 mm, 

matrix size of 128 x 128, resolution of 1.1 x 1.1 mm2, 16 coronal slices of 5 mm slice 

thickness were acquired with a 2.5 mm gap. Parallel imaging (GRAPPA) was employed 

with acceleration factor of 2 to reduce image distortions and scan time. Diffusion-

weighting gradients were applied along 64 directions at b-value = 1000 s/mm2 along with 

one whole brain volume with negligible diffusion weighting (b-value ≈ 0 s/mm2, b0 

image). Two consecutive acquisitions were made for subsequent averaging to increase 

the signal-to-noise ratio (SNR). Total acquisition time was 7 minutes and 30 seconds. 

 

3.2.3 Diffusion Tensor Imaging (DTI) and Tract-based Spatial Statistics (TBSS) 

Analysis 

 The two acquisitions were corrected for eddy-current distortions and for simple 

head motion using an affine registration to the b0 image (25). All subject registrations 

had rotations less than 5° and translations less than 2 mm. Diffusion data with SNR 

below 10 in the b0 image were also excluded. FA and MD maps as well as the eigenvalue 
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maps were estimated for each subject using the FDT toolbox in FSL (26). Maps of λ|| and 

λ⊥ were constructed. 

 

 The voxelwise statistical analysis of the FA maps using TBSS took the following 

steps: 

1. All FA maps from all subjects were collected in a single folder and each subject’s 

FA image was aligned into 1 x 1 x 1 mm3 Montreal Neurological Institute 

(MNI152) standard space. The FSL standard space image template FMRIB58_FA 

was used as the target image for the alignment of each FA map. A single 

nonlinear registration step is involved per subject (27). 

 

2. TBSS combined and averaged all transformed FA images to create a mean FA 

image of all subjects. This mean FA image was visually inspected to determine if 

the registration step was performed correctly by examining the areas of the major 

white matter tracts in the brain e.g. CC, IC, external capsule, etc.  

 

3. The mean FA was then thinned and skeletonized within TBSS to create a mean 

FA skeleton that represents the centers of all tracts common to all subjects.  

 

4. The mean FA skeleton image was visually inspected for the choice of an 

appropriate threshold that would exclude areas that were, on average, grey matter 

(low mean FA from all subjects) and/or had high inter-subject variability. The 

voxel-wise cross subject statistics were performed on the remaining mean FA 
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skeleton voxels surviving after application of the threshold. Obviously, this 

threshold is dependent on the quality of the diffusion data and as such is study 

specific. The threshold used in this study was set at 0.2 and a threshold value 

between 0.2 and 0.3 had been deemed appropriate (12). 

 

5. TBSS then projected each subject’s aligned FA image onto the mean FA skeleton. 

The goal being to assign each subjects FA skeleton map with the appropriate FA 

values from within the white matter tracts for that subject. The maximum FA 

value that was to be assigned for each voxel in each subject’s FA skeleton image 

was found by performing a local search. The search direction taken was 

perpendicular to the local skeleton and was determined by the local gradient and 

second derivative of each subject’s FA. This is significant in that all statistical 

analysis is ultimately performed on the raw unaltered and unwarped FA values in 

each subject. 

 

6. The result was a 4D image of skeletonized FA maps with the fourth dimension 

being the individual subjects. Voxel-based statistics across subjects is performed 

on this 4D image.  

 

7. A permutation test was performed in order to test for significant differences in the 

skeletonized FA maps between ALS patients and controls (28). Correction for 

multiple comparisons was also performed. For a more detailed overview of the 

performed permutation test the reader is referred to Nichols et al. (28). The 
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number of permutations to be performed was set at 10000. The resulting test 

statistic maps were thresholded using threshold-free cluster enhancement (29) 

with TBSS built-in 2D optimizations for white matter skeletons. A p-value <0.05 

was considered to be statistically significant.  

 

The MD, λ|| and λ⊥ maps generated for all subjects were also aligned using the 

previous FA alignment transformation matrices. The MD, λ|| and λ⊥ maps from all 

subjects were merged and subsequently projected onto the original mean FA skeleton, 

thinned and skeletonized. Permutation tests were used to test for significant differences in 

the skeletonized MD, λ|| and λ⊥ maps between ALS patients and controls with the same 

parameters as previously specified. 

 

 The resulting TBSS statistic maps were thresholded at significance level p<0.05 

(corrected for multiple comparisons by controlling the family-wise error rate). All TBSS 

results were displayed on the mean FA image of all studied subjects in standard space as 

the background. 

 

 In a separate analysis on the skeletonized measures, ROI volumes were outlined 

on the skeletons in standard space in the different regions along the CST as well as extra 

motor areas in all subjects guided by an anatomical atlas (30). The ROI volumes are 

shown in Figure 3.1 displayed on the mean FA image of all subjects. Mean skeletonized 

FA, MD, λ||, and λ⊥ values in patients and controls were recorded and percentage changes 
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in these measures in ALS patients were calculated to compare with the findings from 

TBSS.  

 

 3.2.4 Correlation Analysis between Diffusion Tensor Imaging (DTI) and 

Clinical Measures of Disease Severity 

 Two separate correlation analyses were carried out. Initially a voxel-based 

correlation analysis was performed between the skeletonized FA, MD, λ|| and λ⊥ of ALS 

patients and various clinical measures – the ALSFRS-R, FVC, and disease duration. A 

non-parametric permutation test was used to test the correlations. A significance level of 

p<0.05 (corrected for multiple comparisons by controlling the family-wise error rate) was 

the threshold used. Subsequently, a more focused ROI-based correlation analysis was 

attempted. The ROI volumes used in the analysis primarily included areas outlined in the 

CST such as the cerebral peduncles, posterior limb of the IC and the CR in addition to 

extra motor areas guided by an anatomical atlas (30). First, a simple linear regression was 

performed between the mean DTI measures in the ROIs of the ALS patients and their 

ages to control for the effect of age. The residuals from the fits were then used for the 

correlation analysis again by means of a simple linear regression. A p-value of p<0.05 

was considered significant. The ROI-based correlation analysis was carried out in R (R 

Foundation for Statistical Computing, Vienna, Austria). 

 

 

 

 85



 

 

 86

⎥⎦
⎤

⎢⎣
⎡ −∈ 210610 ,λ

 First, ODFs reconstructed using the standard QBI algorithm utilized widths for 

the interpolation and smoothing kernels of 10° and 15°, respectively. The widths for the 

interpolation kernels were the minimizers of the log condition number of the QBI 

interpolation matrix. The smoothing kernel widths were varied to the value that gave the 

best-looking ODFs visually. Second, prior to ODF reconstruction, the smoothing splines 

on the sphere functions with GCV smoothing parameters were estimated in each voxel. 

The searching grid for the smoothing parameter spanned,  on a log scale 

with step size of 0.1 to identify the lambda that gave the minimum GCV criterion score. 

The Funk Radon transform (FRT), which is the basis of QBI, was applied to reconstruct 

the ODFs. For the smoothing splines on the sphere method, the smooth function estimate 

is defined everywhere on the sphere. Diffusion-weighted data were estimated at 48 

evenly spaced points across each reconstruction direction equator plane and the signals 

were summed along each equator to estimate the ODF radii in the reconstruction 

directions. ODFs from QBI and splines on the sphere modeling were reconstructed at 252 

icosahedral directions. ODF peaks coinciding with underlying dominant fiber orientations 

were identified and demarcated by drawing yellow lines passing through each peak and 

the center of the ODF. Only ODF peaks with radii passing a threshold of 0.75 of the 

maximum radius in each ODF were marked.  

 3.2.5 Adaptive Smoothing using Generalized Cross-validated (GCV) 

Smoothing Splines on the Sphere for Fiber Tractography 



 

Figure 3.1 Region-of-interest (ROI) volumes outlined in standard space in regions along the corticospinal tract (CST) as well as other 
extra motor areas used for the ROI analysis. The ROI volumes were used in conjunction with the extracted mean fractional anisotropy 
(FA), mean diffusivity (MD), axial diffusivity (λ|| ), and radial diffusivity (λ⊥ ) maps to isolate the skeleton voxels upon which the ROI 
analysis was performed. The background image is the mean FA map for all subjects in MNI standard space. 
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3.3 Results 

 Of the twelve ALS patients (10 males, 2 females, mean age 56.2 ± 10.5 years), 

five patients were diagnosed with definite ALS according to the El Escorial criteria (24); 

two with probable ALS, four with possible ALS, and one with familial ALS. Mean 

ALSFRS-R score (±SD) was 41.3 ± 5.5 with mean disease duration of 26 ± 15 months, 

Table 3-2. The relatively high ALSFRS-R scores suggest that the study population 

included patients with relatively mild disease notwithstanding the relatively long duration 

of the disease and the high proportion of patients with El Escorial definite ALS. Twenty-

one age-matched healthy controls were also scanned, two of whom were excluded 

because of an SNR < 10 in the b0 images. The analysis included the remaining nineteen 

healthy controls (11 males, 8 females, mean age 50.2 ± 12.7 years).  

 

3.3.1 Fractional Anisotropy 

 FA was significantly reduced in the body and genu of the CC (16.2% decrease) 

and CR (14.8% decrease) in ALS patients compared to controls (p<0.05) (Figure 3.2(a), 

Table 3-3). No significant differences in FA were found along the CST tract in its course 

through the IC and cerebral peduncles (Figure 3.2(a), Table 3-3). There was, however, a 

trend towards a decrease in FA values in the white matter adjacent to the right precentral 

gyrus, anterior limb of the IC and the splenium of the CC in ALS patients (p<0.1). 

 

 



Values in the last row for Age, Disease Duration and ALSFRS-R represent mean ± standard deviation. 
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Patient Sex 
Age  

(years) 

Disease Duration 

(months) 

El-Escorial 

category 
ALSFRS-R 

FVC  

(% predicted) 
Site of onset 

PAT1 M 49 18.4 Definite 45 126% Limb 

PAT2 F 61 33.8 Definite 32 98% Limb 

PAT3 M 38 35.7 Definite 44 83% Limb 

PAT4 M 75 27.2 Probable 45 68% Limb 

PAT5 M 51 54.3 Definite 33 48% Limb 

PAT6 M 50 36.5 Possible 43 88% Limb 

PAT7 M 67 39.9 Possible 48 93% Limb 

PAT8 M 66 13.2 Possible 36 84% Limb 

PAT9 M 56 4.3 Familial 43 105% Limb 

PAT10 F 63 7.2 Possible 37 88% Limb 

PAT11 M 45 27.6 Definite 48 93% Limb 

PAT12 M 53 13.5 Probable 42 85% Bulbar 

  10M, 2F 56.2 ± 10.5 26 ± 15  41.3 ± 5.5  

Table 3-2: Detailed patient characteristics.  

 

 



 

3.3.2 Mean Diffusivity 

 MD was significantly increased along the CST, asymmetrically in the cerebral 

peduncles, bilaterally in the posterior limb of the IC (17.0% increase) and the CR (14.5% 

increase) as well as in the anterior limb of the IC, external capsule and the body, genu and 

splenium of the CC in ALS patients (p<0.05) (Figure 3.2(b), Table 3-3). The asymmetry of 

MD changes in the cerebral peduncles is likely due to image distortions in the mid-brain and 

brainstem regions. Significant increases in MD were also observed in several other white 

matter structures in ALS patients (p<0.05) (Figure 3.2(b), Table 3-3). 

 

3.3.3 Axial Diffusivity 

 Among ALS patients, λ|| was significantly increased bilaterally in the posterior limb 

of the IC (14.0% increase), and the CR (12.1% increase), the anterior limb of the IC, external 

capsule as well as in the body, splenium and genu of the CC (p<0.05) (Figure 3.2(c)). λ|| was 

also significantly higher asymmetrically in the cerebral peduncle (p<0.05) (Figure 3.2(c), 

Table 3-3). Significant increases in λ|| were also observed in several other white matter 

structures in ALS patients (p<0.05) (Figure 3.2(c), Table 3-3). 

 

3.3.4 Radial Diffusivity 

 Radial diffusivity, λ⊥, was significantly increased in ALS patients over a more 

extensive region of the CST than the changes in FA, MD or λ||. Changes in λ⊥ were most 

prominent bilaterally in the cerebral peduncles (39.3% increase), less so in the posterior limb 

of the IC (28.6% increase) and least so in the CR (16.3% increase) (p<0.05) (Figure 3.2(d), 
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Table 3-3). Significant increases in λ⊥ in ALS patients were also found in other white matter 

structures (p<0.05) (Figures 3.2(d), Table 3-3). 

 

3.3.5 Added Utility of Axial and Radial Diffusivity Measures 

 At higher levels of statistical significance (p<0.005), increases in λ⊥ were still evident 

in the CST corona radiata, in white matter adjacent to the right precental gyrus, the anterior 

limb of the IC, right postcentral gyrus, right inferior frontal gyrus, and the body, splenium 

and genu of the CC in ALS patients (data not shown). There were no differences in FA, MD 

and λ|| between ALS patients and controls at these significance levels (p<0.005). 

 

3.3.6 Lack of Correlation between Diffusion Tensor Imaging (DTI) and Measures of 

Disease Severity 

 Using both voxel and ROI-based approaches, there were no significant correlations 

between any of the DTI parameters and the various clinical measures of disease severity – 

ALSFRS-R, FVC, and disease duration – among patients with ALS. 

 

3.3.7 Generalized Cross-validated (GCV) Smoothing Splines on the Sphere Orientation 

Distribution Function (ODF) and Q-Ball Imaging (QBI) ODF Comparisons 

The GCV smoothing splines on the sphere ODFs show more consistency in extracting 

dominant fiber orientations in areas of fiber crossings over their QBI counterparts. In a fiber 

crossing area between the fiber projections of the body of the CC and projections from the 

posterior limb of the internal capsule, the GCV ODFs show more regularity and consistency 
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over the ROI area, even though the smoothing is done independently on a per-voxel basis 

(Figures 3.3 and 3.4). A number of QBI ODFs show persistent spurious peaks that have not 

been smoothed out effectively. The fear from spurious ODF peaks is that it would ultimately 

mislead and misguide fiber tracking. 

 

 

3.4 Discussion and Conclusions 

 This is the first report of changes in MD, λ|| and λ⊥ in ALS patients using TBSS. MD, 

λ|| and λ⊥ were significantly increased along the CST in ALS patients. The changes in λ⊥ 

were most marked in the ROI analyses and more widespread in the TBSS results than 

changes in FA, MD or λ|| (Table 3-3) suggesting that λ⊥ may be the DTI-derived index that is 

more sensitive to the neurodegenerative process in ALS. Intuitively, parallel changes in λ|| 

and λ⊥, the subcomponents of MD and FA, may not be apparent in the latter DTI measures. 

FA characterizes the eccentricity of the diffusion tensor, D; an increase (or decrease) in the 

primary eigenvalue of D (i.e., λ||) accompanied by an increase (or decrease) in the other two 

eigenvalues (which are measured by λ⊥) may not lead to a change in the eccentricity of D so 

FA would remain unchanged. Similarly, since MD represents the average of diffusion in all 

directions, it provides no information about the direction in which diffusion is increasing or 

decreasing; λ|| and λ⊥ by contrast provide just such information.  
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Figure 3.2 Widespread increases in radial diffusivity (λ⊥) are seen in ALS patients. Voxels that show 
significant changes in (a) fractional anisotropy (FA), (b) mean diffusivity (MD), (c) axial diffusivity 
(λ||) and (d) radial diffusivity (λ⊥) in ALS patients are overlaid in color on coronal (upper row) and 
axial (lower row) slices of the mean FA image in Montreal Neurological Institute (MNI) standard 
space. The decrease in FA was confined to the corona radiata and the body and genu of the corpus 
callosum (p<0.05). MD and λ|| increased more extensively along the entire corticospinal tract (CST), 
as well as in the corpus callosum of ALS patients (p<0.05). Increased λ⊥ in ALS patients was more 
widespread and more prominent in the CST than the increases in MD or λ|| . 
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Table 3-3: Mean diffusion tensor imaging (DTI) measures in brain regions with significant differences between 
ALS patients and controls  
Region Measurement* Controls ALS Change in ALS  

FA 0.54 ± 0.067 0.46 ± 0.070 14.8 %  

MD 0.62 ±0.060 0.71 ± 0.073 14.5 %  

λll 0.99 ± 0.12 1.11 ± 0.13 12.1 %  
Corona radiata 

λ⊥ 0.43 ± 0.062 0.50 ± 0.076 16.3 %  

FA NS NS - 

MD 0.53 ± 0.076 0.62 ± 0.064 17.0 %  

λll 1.00 ± 0.11 1.14 ± 0.10 14.0 %  

Posterior limb of internal 

capsule 

λ⊥ 0.28 ± 0.074 0.36 ± 0.066 28.6 %  

FA NS NS - 

MD (right) 0.50 ± 0.13 0.65 ± 0.15 30.0 %  

λll (right) 1.03 ± 0.14 1.28 ± 0.12 24.3 %  
Cerebral peduncles 

λ⊥ 0.28 ± 0.081 0.39 ± 0.097 39.3 %  

FA (genu) 0.68 ± 0.074 0.57 ± 0.098 16.2 %  

MD 0.63 ± 0.070 0.77 ±0.12 22.2 %  

λll 1.23 ± 0.092 1.44 ± 0.11 17.1 %  

Corpus callosum body, 

splenium and genu 

λ⊥ 0.32 ± 0.088 0.45 ± 0.14 40.6 %  

FA NS NS - 

MD 0.52 ±0.076 0.63 ± 0.075 21.2 %  

λll 0.88 ± 0.12 1.04 ± 0.11 18.2 %  

Anterior limb of internal 

capsule 

λ⊥ 0.34 ± 0.082 0.43 ± 0.089 26.5 %  

FA NS NS - 

MD 0.61 ±0.057 0.72 ± 0.060 18.0 %  

λll 0.88 ± 0.077 1.03 ± 0.078 17.0 %  
External capsule 

λ⊥ 0.48 ± 0.065 0.57 ± 0.069 18.8 %  

FA NS NS - 

MD 0.64 ± 0.059 0.74 ± 0.080 15.6 %  

λll 0.93 ±0.074 1.06 ± 0.085 14.0 %  

WM adjacent to bilateral 

precentral gyri 

λ⊥ 0.48 ± 0.068 0.57 ± 0.091 18.8 %  

WM adjacent to bilateral FA NS NS - 
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MD 0.58 ±0.029 0.65 ± 0.035 12.1 %  

λll NS NS - 

premotor cortex 

λ⊥ 0.37 ± 0.051 0.43 ± 0.056 16.2 %  

FA NS NS - 

MD (right) 0.72 ± 0.10 0.85 ± 0.16 18.1 %  

λll 1.02 ± 0.079 1.16 ± 0.12 13.7 %  

WM adjacent to bilateral 

postcentral gyri 

λ⊥ (right) 0.59 ± 0.12 0.72 ± 0.17 22.0 %  

FA NS NS - 

MD 0.55 ± 0.050 0.64 ± 0.057 16.4 %  

λll 0.79 ± 0.029 0.90 ± 0.025 13.9 %  

WM adjacent to bilateral 

inferior frontal gyri 

λ⊥ 0.41 ± 0.056 0.49 ± 0.067 19.5 %  

FA NS NS - 

MD 0.63 ± 0.043 0.73 ± 0.058  15.9 %  

λll 0.91 ± 0.049 1.04 ± 0.055 14.3 %  

WM adjacent to bilateral 

superior temporal gyri 

λ⊥ 0.50 ± 0.05 0.59 ± 0.064 18.0 %  

FA NS NS - 

MD (right) 0.60 ± 0.035 0.68 ± 0.041 13.3 %  

λll NS NS - 

WM adjacent to bilateral 

middle temporal gyri 

λ⊥ 0.43 ± 0.053 0.50 ± 0.060 16.3 %  

FA NS NS - 

MD 0.67 ± 0.050 0.75 ± 0.063 11.9 %  

λll 0.98 ± 0.09 1.10 ± 0.10 12.2 %  
WM in parietal regions 

λ⊥ 0.51 ± 0.061 0.58 ±0.080 13.7 %  

FA NS NS - 

MD 0.61 ± 0.058 0.71 ± 0.057 16.4 %  

λll 1.02 ± 0.11 1.16 ± 0.11 13.7 %  

WM belonging to bilateral 

hippocampal formations 

λ⊥ 0.41 ± 0.046 0.49 ± 0.049 19.5 %  

 

 

 

* Differences are bilateral unless otherwise indicated. 
A ROI is considered significant if one or more skeleton voxels are significant 
Mean and standard deviation values for fractional anisotropy (FA) are dimensionless. 
NS: Not significant. 
All mean and standard deviation values for mean diffusivity (MD), axial diffusivity (λll), and radial 
diffusivity (λ⊥) are measured in 10-3 mm2/sec. 

Table 3-3 (contd.)



 

 

Figure 3.3 Generalized cross-validated (GCV) smoothing splines on the sphere orientation distribution functions (ODFs) show more consistency 
in dominant fiber orientation determination (yellow lines) (right panel). The QBI ODFs (left panel) still exhibit spurious ODF peaks in the corpus 
callosum (CC) projections and internal capsule (IC) projections. These spurious peaks often mislead fiber tractography. The upper panel shows a 
color-coded fractional anisotropy (FA) map with color correspondence of red for left-right oriented fibers, green for posterior-anterior oriented 
fibers and blue for inferior-superior oriented fibers. The white box in the upper panel outlines the region-of-interest (ROI) for which the QBI 
ODFs (left panel) and GCV Smoothing splines ODFs (right panel)from an amyotrophic lateral sclerosis (ALS) control are reconstructed. 
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Figure 3.4 Generalized cross-validated (GCV) smoothing splines on the sphere orientation distribution functions (ODFs) (right panel) show more 
consistency in dominant fiber orientation determination (yellow lines) in this amyotrophic lateral sclerosis (ALS) patient. The region-of-interest 
(ROI) is the same as in Figure 3.3. The color correspondence is red for left-right oriented fibers, green for posterior-anterior oriented fibers and 
blue for inferior-superior oriented fibers. 
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 The results of this study illustrate that DTI is sensitive to the neurodegenerative 

process that occurs in ALS, but the specific neuropathological substrate that underlies these 

DTI changes remains speculative. Unraveling the neurobiological basis for the observed DTI 

changes is difficult because of the complexity and dynamism of the underlying 

neuropathology in which various neuronal elements may be affected by different stages of 

the disease process at any point in time. An increase in λ⊥ as seen in our results could 

potentially reflect either loss of integrity of the axonal wall or an increase in axonal diameter 

(31). In addition to the characteristic eventual atrophy and loss of motor neuron cell bodies 

and axons associated with ALS, common pathological changes of interest include the 

presence of ubiquitin-immunoreactive cytoplasmic inclusions in degenerating neurons, 

followed by a strong inflammatory reaction (32-35). Neuroinflammation is observed in 

pathologically affected areas of the brain and spinal cord from both ALS patients and mouse 

models of the disease (36). It is typically characterized by gliosis and the accumulation of 

large numbers of activated microglia and astroctyes. Astrocytes are relatively large glial cells 

and the phenomenon termed astrogliosis is an abnormal increase in the number of those 

astrocytes due to the destruction of nearby neurons. It has been suggested that inflammation 

could be occurring in the early presymptomatic phase of the disease (37). In a recent study 

attempting to define the effect of an inflammatory insult in developing rat pup brains after an 

inflammatory injury, increases in apparent diffusivity with associated increases in radial 

diffusivity in the corpus callosum corresponded, histologically, with widespread astrogliosis 

(38). And even though radial diffusivity increases have been typically attributed to myelin 

loss (39), the increases in this study occurred despite the absence of myelin at that 
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developmental stage in the rat pups’ life indicating that radial diffusivity increases do not 

only occur as a result of loss of myelin. In our study, it could be speculated that the increases 

we see in diffusivity could be attributed to, at these early stages of disease, to a 

neuroinflammatory response accompanied by astrogliosis. 

 

Other neurodegenerative processes may also contribute to the ALS associated 

changes found in our study. Neuropathological findings from almost all human ALS autopsy 

cases are of the terminal stages of the disease and provide limited insight on pathological 

changes during the course of the disease from onset. ALS animal models have been helpful 

in painting a general picture of changes associated with disease progression but fall short of 

replicating human ALS. Both longitudinal DTI human studies and DTI rodent studies with 

pathology would shed light on the relationship between changes in the DTI metrics and the 

neuropathology of ALS. Several other results are particularly noteworthy. We found a 

gradient in the changes in λ⊥; these were most marked in the cerebral peduncles, less so in 

the IC and least so in the CR, consistent with the proposed dying-back hypothesis of axonal 

degeneration in ALS (40). 

 

 We also found that MD, λ|| and λ⊥ were significantly increased in ALS patients in 

regions other than along the CST - the body, splenium and genu of the CC, as well as several 

other white matter structures. Our finding of abnormalities outside strictly motor areas is 

consistent with prior observations that ALS may be a multi-system degenerative disease (14, 

20, 22, 41). Sach et al. reported finding significant decreases in FA in the entire CST, CC and 

thalamus in ALS patients (14) whereas other investigators in a more recent study found the 
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changes in the diffusion parameters to be diffuse throughout the brain, in the frontal, 

temporal and parietal lobes (20). In previous TBSS studies of FA changes in ALS, significant 

decreases were also found to be pervasive along the CST as well as in the frontal, temporal 

and parietal lobes (22, 23). Thus our findings of widespread changes in the diffusion 

parameters λ|| and λ⊥ are not entirely surprising. Similarly unsurprising is the finding of such 

widespread evidence of the neurodegenerative process despite the relatively mild/early 

disease of patients included in this study; previous studies have found evidence for 

neurodegeneration even prior to symptom onset in people at risk for familial ALS (42). 

Degeneration of pyramidal tract bundles that connect the primary motor cortices across the 

CC may be partially responsible for the observed changes in DTI in the CC (43). In fact 

atrophy of the CC has been observed in advanced ALS using conventional MRI (44). 

 

 We were unable to show any correlation between the observed DTI changes and a 

variety of clinical measures of disease severity and duration. The evidence from prior studies 

in inconsistent in this regard (3, 13, 15, 17, 20). Possible explanations include heterogeneity 

of the disease and variability in the spectrum of disease duration and severity between 

different studies. The number of ALS patients in this study – twelve in number – may not be 

sufficient to show correlations. In addition, the ALSFRS-R scores of most of the twelve 

patients in the study was relatively high and the FVC percentage predicted values for a 

majority of those patients were in the normal ranges, Table 3-2, indicating that the patient 

pool is only mildly diseased. More importantly, the ALSFRS-R and FVC, as clinical 

measures, may not be entirely sensitive to the initial diffusivity changes occurring in the 

early stages of the disease.  
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Applying adaptive smoothing of the HARDI data via GCV smoothing splines on the 

sphere allows the reconstruction of ODFs for fiber tractography through areas of complex 

fiber crossings. GCV offers an adaptive and automatic means of smoothing the data guided 

by the SNR without the need for constant subjective trial and error in determining the amount 

of smoothing that is to be applied. The GCV smoothing spline ODFs are effectively 

smoothed showing less spurious ODF peaks compared to their QBI counterparts. 

Consistency or coherence metrics have been developed and applied in studies in the past with 

single tensor DTI (5, 45). A recent metric was defined as the mean dot-product of the 

eigenvector in a test voxel and the eigenvectors in its neighboring voxels. It measured the 

mean cosine for the angle between the principle directions in the test voxel and its neighbors. 

When considering a coherence metric for HARDI studies in which multiple fiber orientations 

could be estimated in a single voxel, a number of issues need to be taken into consideration. 

Of these include the correct identification of fiber pairs amongst multiple fiber orientations 

between neighboring voxels, the normalization constant in the coherence metric will most 

likely vary between each voxel and the next in a single ROI and finally the lack of an atlas 

gold standard for HARDI data displaying multiple fiber orientations.         

 

 Notwithstanding the many strengths of our study, it is also characterized by several 

weaknesses. Our image slices were relatively thick (5mm) with 2.5mm gaps between slides. 

The imaging parameters were selected to balance the trade-off between high quality images 

and limiting scan time for ALS patients. Increased slice thicknesses leads to partial voluming 

and a reduction in diffusion anisotropy. Although large slice thickness could potentially 
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hinder the skeletonizing step in TBSS, we did not encounter this problem. The FA skeletons 

for all subjects were individually examined and found to pass through the major white matter 

structures such as the CC, anterior and posterior limbs of the IC and external capsules. The 

mean FA skeleton overlaid on the mean FA image from all subjects was found to be 

relatively continuous through the averaged major white matter tracts within the imaging 

slices with few discontinuities (Figure 3.5).  Additionally, the mean FA skeleton threshold 

value used in our analysis fell within the recommended range of values. 

 

 In summary, we report finding significant increases in MD, λ||, and λ⊥ in ALS 

patients in regions along the CST and other white matter structures. Significant decreases in 

FA were only found in the CR of the CST.  Changes in λ⊥ were more widespread and more 

prominent than changes in the other DTI-derived measures we considered.  Concurrent 

increases in λ|| and λ⊥ may reduce the sensitivity of FA to detect neurodegenerative changes.  

MD is sensitive to changes in ALS, but lacks specificity to the components of change that are 

revealed with λ|| and λ⊥.  Furthermore, FA and MD may not adequately describe patterns of 

DTI changes that may vary with disease progression.  These results suggest that λ⊥ and λ|| are 

DTI–derived indices that have added utility as markers of neurodegeneration in ALS beyond 

the typical measures of diffusion anisotropy: FA and MD. 
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Figure 3.5 Mean fractional anisotropy (FA) skeleton is continuous in the major white matter 
tracts. The skeleton is fairly robust with few discontinuities in the major white matter tracts 
of all subjects such as the corpus callosum, anterior and posterior limbs of the internal 
capsule, external capsule and corona radiata among other white matter structures. 
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CHAPTER 4 

CONCLUSIONS 

 

 

 With the current advances in MRI scanner hardware, acquiring diffusion-weighted 

data with high angular resolution is now more feasible in a clinical setting. HARDI 

techniques have allowed the mapping of fiber tracts in areas of complex white matter fiber 

crossings via fiber tractography. Of the main drawbacks with HARDI is the depressed SNR 

levels of the data and images. This issue has prompted current research in ODF 

reconstruction from HARDI data to apply smoothing or regularization techniques  to 

reconstruct smooth ODFs. The accuracy of fiber tractography is dependent on the 

performance of the varoius ODF reconstruction techniques in extracting dominant fiber 

orientations from the noisy HARDI data. This dissertation work attempts to address this issue 

by applying an objective and adaptive smoothing to the HARDI data via GCV with the 

smoothing splines on the sphere method (Chapter 2). The resulting ODFs sunsequently 

reconstructed from the smoothed diffusivity profiles required no subjective intervention of 

smoothing or regularization as existing QBI ODF reconstruction techniques do (Chapter 2). 

 

 In an application of HARDI to patients clinically diagnosed with ALS and in the early 

stages of the disease, changes in the radial diffusivity, λ⊥, were more widespread and more 

prominent than changes in the other DTI-derived measures we considered (Chapter 3). The 

work in Chapter 3 represents the first reporting of significant changes in MD, axial and radial 

diffusivity in ALS using TBSS.  The results suggest that λ  and λ , which directly reflect ||⊥

 109



changes in the diffusion tensors, would be useful to consider in addition to the more 

commonly considered FA and MD to aid in revealing neurodegenerative changes in ALS. 

Applying adaptive smoothing of the HARDI data via GCV smoothing splines on the sphere 

allows the reconstruction of ODFs for fiber tractography through areas of complex fiber 

crossings. GCV offers an adaptive and automatic means of smoothing the data guided by the 

SNR without the need for constant subjective trial and error in determining the amount of 

smoothing that is to be applied. The GCV smoothing spline ODFs are effectively smoothed 

showing less spurious ODF peaks compared to their QBI counterparts. 
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