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SUMMARY 

 

The growth plate resting zone consists of hyaline-like chondrocytes disbursed 

in a proteoglycan rich extracellular matrix.  These cells give rise to the columns of the 

growth zone, consisting of progressively hypertrophic cells.  Proliferation of resting 

zone chondrocytes induced by systemic and local stimuli is the driving force of 

longitudinal growth of long bones.  Therefore, homeostasis of this cell population has 

great importance.  Although the regulation of proliferation and differentiation of these 

cells has been well studied, little is known about the regulation of their apoptosis.  We 

have previously shown that chelerythrine and tamoxifen induce apoptosis in resting 

zone chondrocytes in a nitric oxide (NO)-dependent pathway.  In this study we 

explored two physiological apoptogens: inorganic phosphate (Pi) and 17β-estradiol 

(E2).  We found NO production is necessary in Pi-induced apoptosis.  We also found 

that NO donors induced chondrocyte apoptosis by up-regulating p53 expression, 

Bax/Bcl-2 expression ratio and cytochrome C release from mitochondria, as well as 

caspase-3 activity, indicating that NO induces chondrocyte apoptosis in a 

mitochondrial pathway.  Mitogen activated protein kinase (MAPK) activity was 

involved.  A c-Jun N-terminal kinase (JNK) inhibitor, but not inhibitors of p38 or 

extracellular signal-regulated kinase (ERK1/2), was able to block NO-induced 

apoptosis, indicating that JNK is necessary in this pathway.  Taken together, Pi 

elevates NO production, which leads to a mitochondrial apoptotic pathway dependent 

on JNK.  On the other hand, although E2 caused apoptosis in resting zone 
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chondrocytes in a dose-dependent manner, up-regulated p53 and Bax, and induced 

release of cytochrome C from the mitochondria, which indicated a mitochondrial 

apoptotic pathway, the apoptosis did not involve elevated nitric oxide production or 

MAPK as was found in Pi-induced apoptosis.  This study elucidates the signaling 

pathway underlying Pi and E2-induced chondrocyte apoptosis.  It has important 

implications on understanding the development of mammalian growth plate.  It also 

provides further information about the physiological functions of estrogen on 

longitudinal bone growth. 
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Chapter 1  

Introduction 

 

1.1 Significance of the Proposed Research 

Apoptosis or programmed cell death is a well-orchestrated process intrinsic to 

multiple-cellular eukaryotes that removes unwanted cells from the organism.  

Together with differentiation and proliferation, apoptosis contributes to the 

maintenance of homeostasis of the cell population, and its malfunction has grave 

consequences.  In the growth plate, physiological chondrocyte apoptosis is well 

described (Ohyama et al., 1997; Hatori et al., 1995), and is associated with osteogenic 

markers (Roach et al., 1995a).  Disruption of chondrocyte apoptosis in the 

hypertrophic zone of the growth plate results in the pathological elongation of growth 

plate in rickets (Donohue and Demay, 2002).  Most research on growth plate 

chondrocyte apoptosis has been focused on the more mature prehypertrophic and 

hypertrophic cells (growth zone). Whereas little is known about the regulation of 

apoptosis in the less differentiated resting zone (reserve zone), we believe that 

research on this topic also has crucial importance for the following reasons.  First, in 

epiphyseal fusion, the whole growth plate, including not only the growth zone but 

also the resting zone, is eliminated in an estrogen-dependent pathway (Weise et al., 
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2001).  Second, during fracture healing, a cartilaginous callus is formed to carry out 

endochondral ossification mimicking the same process in the growth plate (Bostrom, 

1998; Vortkamp et al., 1998).  Agents regulating resting zone chondrocytes are likely 

to act on early stages of this process for a rapid effect.  Last but not least, cartilage 

tissue engineering is troubled by the low viability of chondrocytes in vitro, and 

inhibition of resting chondrocyte apoptosis will certainly improve this situation. 

In this study we will mainly focus on two apoptogens of resting zone 

chondrocytes: inorganic phosphate (Pi) and 17β-estradiol (E2).  The mechanisms of 

apoptosis caused by these two agents will be examined in a rat costochondral growth 

plate model (Boyan et al., 1988b).  Collectively, outcomes of this study will provide 

us insights into the mechanism by which resting zone chondrocyte apoptosis is 

regulated.  The information gained from this study will provide new knowledge 

about regulation of endochondral bone formation, together with implications on the 

development of new therapies on osteoarthritis, fracture healing and growth plate 

disorders. 
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1.2 Animal Model 

We used a rat costochondral growth plate model for the current study.  This 

model has been used to study the regulation of proliferation, differentiation and 

matrix production of the growth plate chondrocytes by a broad range of stimuli.  

This model also allowed us to precisely separate the resting zone chondrocytes from 

the prehypertrophic and hypertrophic chondrocytes (the growth zone).  Different 

factors regulate the two morphologically and biochemically distinct cell zones (Boyan 

et al., 1988b; Boyan et al., 1988a; Schwartz et al., 1988).  For instance, resting zone 

chondrocytes respond to the vitamin D metabolite 24,25(OH)2D3, whereas the growth 

zone chondrocytes respond to 1,25(OH)2D3.  Both vitamin D metabolites are 

produced actively in the growth plate in a regulated way by transforming growth 

factor β1 (TGFβ1) in a zone-specific manner (Schwartz et al., 1992a).  Both regulate 

the production of prostaglandin E2 (PGE2) (Schwartz et al., 1992b) and the level of 

interleukin-1 (IL-1) (Dean et al., 1997) in these cells.  In addition, they also regulate 

protein kinase C (PKC) activity (Sylvia et al., 1993), but use different pathways: 

1,25(OH)2D3 dependent activation of PKC involves activation of phospholipase A2 

(PLA2) and arachidonic acid production (Boyan et al., 1998), whereas 24,25(OH)2D3 

dependent activation of PKC involves phospholipase D (PLD) activation (Sylvia et al., 

2001a).  Furthermore, the growth plate chondrocyte proliferation, differentiation and 

matrix production are also regulated by bone morphogenetic protein-2 (BMP2) in a 

zone-specific manner (Erickson et al., 1997).  These studies demonstrate the value 

and significance of the rat costochondral growth plate model as a tool to investigate 
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the regulation of endochondral bone formation.   
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1.3 Review of Relevant Literature 

Apoptosis is a process of programmed cell death occurring in metazoa (Kerr et 

al., 1972).  Different from necrosis, another form of cell death, apoptotic cells retain 

its plasma membrane integrity and are later removed by macrophages.  Apoptosis is 

distinguished by such typical morphological traits as shrinkage, blebbing and DNA 

fragmentation (Hengartner, 2000).  A specific family of proteases, namely caspases, 

is responsible for carrying out apoptotic effects in cells (Thornberry and Lazebnik, 

1998).  Apoptosis is physiologically important because it provides the organism a 

mechanism to eliminate unwanted cells (Vaux and Korsmeyer, 1999).  Malfunction 

of apoptosis may lead to cancer (Thompson, 1995).  Conversely, excessive apoptosis 

can also lead to diseases such as Parkinson’s, Alzheimer’s or osteoarthritis (OA) 

(Thompson, 1995).  There are two different apoptotic pathways.  The intrinsic 

pathway involves mitochondria.  Under apoptotic stimuli, change in mitochondrial 

membrane permeability caused by Bcl-2 family proteins induce cytochrome C release 

into the cytosol, which in turn induce caspase activation and apoptosis (Du et al., 

2000).  Alternatively, the extrinsic pathway involves a family of membrane receptors 

called death receptors (DR).  DR, after binding to their ligands, form a complex 

called the death-inducing signaling complex (DISC), which activates caspases to 

carry out apoptosis (Walczak and Sprick, 2001). 

Phosphate (Pi) is an anion required to make hydroxyapatite, the main inorganic 

component of calcified tissues, such as bones.  Pi concentration of the cartilage 
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extracellular matrix is regulated locally by the action of 1,25(OH)2D3-dependent 

alkaline phosphatase, an enzyme that is enriched in extracellular matrix vesicles 

(Anderson, 1995).  Alkaline phosphatase activity increases towards the lower region 

of the growth plate where cells hypertrophy, and when the ion product of Pi and 

calcium concentration exceeds their dissociation constant, mineralization starts with 

the formation of apatite crystals.  Pi concentration of the cartilage extracellular matrix 

is regulated locally by the action of 1,25(OH)2D3-dependent alkaline phosphatase, an 

enzyme that is enriched in extracellular matrix vesicles (Anderson, 1995).  Alkaline 

phosphatase activity increases towards the lower region of the growth plate where cells 

hypertrophy, and when the ion product of Pi and calcium concentration exceeds their 

dissociation constant, mineralization starts with the formation of apatite crystals.   

Nitric oxide (NO) is a small and uncharged compound that serves as a signaling 

molecule in various organs and tissues of animals.  It has significant physiological 

roles in cardiovascular, neural and immune systems (Lowenstein and Snyder, 1992; 

Bredt and Snyder, 1994; Mayer and Hemmens, 1997).  In vivo, NO is mainly 

synthesized by three NO synthases (NOSs): two constitutively expressed NOSs, 

namely neuronal NO synthase (nNOS) and endothelial NO synthase (eNOS), and an 

inducible NO synthase (iNOS), which is activated by stimuli such as cytokines and 

lipopolysaccharides (Stadler et al., 1991).  NO mainly binds a soluble guanylate 

cyclase (sGC), induces cyclic guanosine monophosphate (cGMP) production and 

subsequently activates multiple cGMP-dependent protein kinases to achieve its 

physiological functions (Denninger and Marletta, 1999).  NO can also react with other 



 9

proteins to generate S-nitrosothiols, thereby eliciting a broader range of biological 

reactions, although not all of them are beneficial to the cell (Stamler and Hausladen, 

1998; Stamler, 1994).   

In cartilage tissues, NO has significant roles in regulating many chondrocyte 

functions.  In articular cartilage, NO inhibits integrin outside-in signaling pathways 

(Clancy et al., 1997), and induces breakdown of extracellular matrix (Amin and 

Abramson, 1998) as well as apoptosis (Blanco et al., 1995).  NO-induced chondrocyte 

apoptosis is responsible for the pathological cell loss in osteoarthritis (van den Berg, 

2001).  In chick growth plate chondrocytes, NO is required for physiological 

chondrocyte apoptosis (Teixeira et al., 2001).  Besides regulating chondrocyte 

apoptosis, NO production is also important in maturation of growth plate chondrocytes 

(Teixeira et al., 2005).  Therefore, NO serves as an extremely important regulator in 

both physiological and pathological forms of chondrocyte apoptosis.  

Estrogen is a major female sex hormone, secreted in the ovaries in females or 

converted from testosterone by aromatases in both sexes (MacGillivray et al., 1998).  

It is a key regulator of growth plate development as demonstrated by its ability to 

induce pubertal growth spurts and epiphyseal fusion (Grumbach, 2000; Rodd et al., 

2004).  Humans with mutations in either estrogen receptor alpha (ERα) or aromatase 

have delayed epiphyseal fusion, resulting in taller stature (Smith et al., 1994; 

MacGillivray et al., 1998).  Estrogen has been used to treat young females with 

excessive height (Svan et al., 1991), whereas aromatase inhibitors have been used to 
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improve height in young male (Hero et al., 2005).  Although part of estrogen’s effects 

on bone growth are through stimulation of the growth hormone (GH)-insulin like 

growth factor-1 (IGF-I) axis, estrogen receptors are expressed in both human and 

rodent growth plates (Egerbacher et al., 2002; van der Eerden et al., 2002a) as well as 

several enzymes involved in estrogen metabolism (van der Eerden et al., 2002b), 

implying a direct action of estrogen on the growth plate. This has been confirmed in 

both human and rodent research (Blanchard et al., 1991; Sylvia et al., 1998).   

Estrogen induces epiphyseal fusion by exhausting the proliferation potential of 

growth plate chondrocytes (Weise et al., 2001).  High doses of estrogen also induce 

activation of caspase-3 in the growth plate, indicating involvement of apoptosis 

(Takano et al., 2008).  The effect of estrogen on growth plate fusion is similar in both 

sexes (Rodd et al., 2004), which is directly in contrast to its female-only effects on 

proliferation and differentiation of both rat growth plate chondrocytes and human 

articular chondrocytes (Kinney et al., 2005; Sylvia et al., 1998).   

Estrogen exerts its physiological functions on cells via the classical nuclear 

receptor pathway.  Moreover, estrogen also acts through rapid and nongenomic 

pathways that do not require new protein synthesis in reproductive tissues (Revelli et al., 

1998), brain (Toran-Allerand et al., 1999) and bone (Oursler, 1998), in part through 

membrane-associated estrogen receptors.  The effects of estrogen on proliferation and 

differentiation of rat costochondral resting zone chondrocytes involve a membrane 

receptor-related pathway (Sylvia et al., 1998; Sylvia et al., 2001b), which acts through 

activation of protein kinase C (PKC) (Sylvia et al., 1994) and mitogen activated protein 



 11

kinase (MAPK) (McMillan et al., 2006).  Whether chondrocyte apoptosis is directly 

induced by estrogen and whether this process involves membrane receptors is not clear. 
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1.4 Specific Aims and Experimental Design 

The overall goal of this thesis was to determine the phosphate and estrogen 

apoptotic signaling pathway in resting zone cells and ways to regulate it.  The central 

hypothesis was that apoptosis in the resting zone of mammalian growth plate is induced 

by phosphate and estrogen involving nitric oxide production, MAP kinases and a 

mitochondrial apoptotic pathway.  The problem was addressed by three specific aims. 

 

Aim 1:  To determine the role of nitric oxide production in regulation of 

phosphate-induced apoptosis in resting zone chondrocytes 

 

The objective of this aim was to determine the role of NO production in 

regulating resting zone chondrocyte apoptosis.  The working hypothesis was that 

blocking NO production would be able to block resting zone chondrocyte apoptosis 

induced by Pi.  To address this problem, we first established Pi as an effective 

apoptogen in the rat growth plate chondrocyte model.  The effects of NO on 

chondrocyte viability and apoptosis were subsequently assessed in chondrocytes 

treated with Pi.  Furthermore, the effects of NO synthase inhibitors and NO synthase 

knockout on Pi-induced apoptosis were assessed. 

 

Aim 2:  To determine the pathway that leads to NO-induced chondrocyte apoptosis  
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The objective of this study was to investigate the signaling pathway induced by 

NO to carry out the apoptotic function.  The working hypothesis was that NO would 

induce resting zone chondrocyte apoptosis via a mitochondrial pathway that involves 

MAP kinases.  To test the hypothesis, we first established NO donors as effective 

apoptogens.  Subsequently, the effects of NO donors on mitochondrial apoptosis 

pathway were evaluated.  We also investigated whether blocking MAP kinases were 

able to block NO donor-induced chondrocyte apoptosis. 

 

Aim 3:  To determine whether estrogen induces chondrocyte apoptosis via an NO 

mechanism 

  

The objective of this study was to elucidate the mechanism of estrogen-induced 

apoptosis in growth plate chondrocytes.  The working hypothesis was that estrogen 

would induce chondrocyte apoptosis in a sex-independent manner, involving NO and 

mitochondrial pathway, similar to Pi-induced apoptosis pathway.  To test the 

hypothesis, we first established E2 as an effective apoptogen.  Subsequently, the 

effects of E2 on chondrocyte of both sexes and different maturation states were assessed.  

The involvement of NO, MAP kinases and mitochondrial apoptosis pathway in 

E2-induced apoptosis were also assessed.  We also assessed the roles of different 

estrogen receptors in E2-induced apoptosis. 
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Chapter 2  

Material and Methods 

 

2.1 Material 

Thrombin peptide TP508 was a gift from OrthoLogic (Tempe, AZ).  E2, 

E2-BSA, sodium phosphate monobasic, N -nitro-L-arginine methyl ester (L-NAME), 

NG-monomethyl-L-arginine (L-NMMA),  3,3-bis(aminoethyl)-1-hydroxy-2-oxo-1- 

triazene (NOC-18), S-nitrosoglutathione (SNOG), sodium phosphonoformate tribasic 

(PFA), ICI182780, 2,3-diaminonaphthalene (DAN), SB203580, PD98059, sodium 

citrate, paraformaldehyde and hydrogen peroxide were purchased from Sigma-Aldrich 

(St. Louis, MO).  JNK inhibitor II was purchased from CalBiochem (San Diego, CA).  

Caspase-1 inhibitor Z-YVAD-FMK and caspase-3 inhibitor Z-DEVD-FMK were 

purchased from BioVision (Mountain View, CA).  Anti-ERα36 was purchased from 

Chi Scientific (Maynard, MA).  3,3´-diaminodbenzidine (DAB) substrate was 

purchased from Roche Applied Science (Indianapolis, IN).  Cytochrome C antibodies 

were purchased from BD Biosciences (San Jose, CA) and BioVision (Mountain View, 

CA). 

2.2 Chondrocyte Cultures 
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We used a rat costochondral growth plate model for the current study.  This 

model has been used to study the regulation of proliferation, differentiation and matrix 

production of the growth plate chondrocytes by a broad range of stimulus.  This model 

also allows us to precisely separate the resting zone chondrocytes from the 

prehypertrophic and hypertrophic chondrocytes (the growth zone).  Different factors 

regulate the two morphologically and biochemically distinct cell zones (Boyan et al., 

1988b; Boyan et al., 1988a; Schwartz et al., 1988).  Resting zone chondrocytes 

respond to the vitamin D metabolite 24R,25(OH)2D3, whereas the growth zone 

chondrocytes respond to 1α,25(OH)2D3.  Both metabolites regulate protein kinase C 

(PKC) activity (Sylvia et al., 1993), but through different pathways (Boyan et al., 1998; 

Sylvia et al., 2001a; Schwartz et al., 2003; Schwartz et al., 2005).  These studies 

demonstrate the value and significance of the rat costochondral growth plate model as a 

tool to investigate the regulation of endochondral bone formation.   

Unless otherwise indicated, chondrocytes were isolated from the resting zone 

of the costochondral cartilage of 100-125g Sprague-Dawley rats (Harlan, Indianapolis, 

IN) as described previously (Boyan et al., 1988b).  Initial experiments compared 

cells from male and female donors to rule out any sex-specific differences in 

mechanism.  In some experiments, resting zone chondrocytes were also isolated 

from 12-week old male wild-type (C57BL/6) (Harlan, Indianapolis, IN) or eNOS-/- 

mice (C57BL/6 background) (The Jackson Laboratory, Bay Harbor, ME) (Shesely et 

al., 1996).  At third passage confluence, the chondrocytes were subpassaged into 

plates or flasks with six separate cultures per variable per experiment.   
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2.3 DNA Fragmentation Assays 

DNA fragmentation was measured by two different assays.  The first assay was 

conducted using the Cell Death Detection ELISA+ kit (Roche) following 

manufacturer’s instructions with a few modifications.  Briefly, after treatment with E2 

for 24 hours, cells were harvested by trypsinization and counted using a 

Beckman-Coulter Z1 Cell Counter (Beckman Coulter, Fullerton, CA).  Cells were 

lysed using the provided lysis buffer and 20µl cell lysate were mixed with the provided 

immunoreagent containing two antibodies for the sandwich reaction of ELISA in a 

plate pre-coated with streptavidin and incubated for 2 hours.  ABTS (provided in the 

kit), a substrate of the antibody-linked horseradish peroxidase, was added to the wells 

and color allowed to develop.  Absorbance was measured at 405 nm for each well and 

normalized with cell number to determine the extent of apoptotic cell death. 

The second assay was adapted from Grey et al. (Grey et al., 2002) with 

modifications.  Cells were seeded in 24-well plates and grown to near confluence.  

The cells were labeled with 3H-thymidine (0.5µCi/well) for 4 hours.  The culture 

media, together with unincorporated 3H-thymidine were discarded.  After washing 

with cold DMEM twice, the cells were treated with effectors for 24 hours.  The cells 

were harvested with trypsin-EDTA and collected.  Then the cells were lysed with TE 

buffer (10mM Tris-HCl; 1mM EDTA, pH 7.4; 0.2% Triton X-100).  To ensure the 

lysis of the cells, the samples were frozen and thawed three times.  The lysates were 

subsequently centrifuged at 13,000g for 15 minutes.  The radioactivity of both the 

supernatants and the pellets were measured using a scintillation counter.  The 
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percentage of fragmented DNA was calculated by dividing the radioactivity of the 

supernatants (representing the fragmented DNA) by the sum of the radioactivity of the 

supernatants and the pellets (representing the total DNA). 

2.4 TUNEL 

TUNEL staining was conducted using an In Situ Cell Death Detection Kit 

(Roche Applied Science, Indianapolis, IN) in order to verify that DNA fragmentation 

had occurred (Kasagi et al., 1994).  Briefly, cells were treated with E2 for 24 hours.  

Media were discarded and the cells were air dried and fixed for 1 hour in 4% 

paraformaldehyde in PBS (pH=7.4).  The fixed cells were rinsed with PBS and 

blocked with 3% hydrogen peroxide in methanol for 10 minutes.  Next, cells were 

rinsed with PBS and permeabilized with 0.1% Triton X-100 and 0.1% sodium citrate 

for 30 minutes.  The cells were then rinsed with PBS and incubated with TUNEL 

reaction mixture for 1 hour.  TUNEL reaction mixture was made by mixing label 

solution and enzyme solution from the kit.  Cells were rinsed and incubated with 

converter-POD (provided by the kit) for 30 minutes, and then incubated with POD 

substrate for 10 minutes.  Apoptotic cells were observed using a light microscope.   

2.5 p53 Assay 

The amount of p53 protein was determined by p53 pan ELISA kit (Roche 

Applied Science, Indianapolis, IN).  Briefly, after treatment with E2 for 24 hours, cells 

were lysed.  100µl lysate were mixed with the same amount of anti-p53-peroxidase 

(POD) in each well of a microplate pre-coated with both streptavidin and 
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anti-p53-biotin.  After two hours incubation, the supernatants were discarded and the 

wells were rinsed.  200µl substrate buffer (provided in the kit) was added to the well 

and color developed for 20 minutes.  Absorbance was measured at 450nm.  The p53 

abundance was determined by fitting the absorbance into a standard curve with known 

concentrations of human p53.  All results were normalized to total protein 

concentration. 

2.6 Western Blots 

Effects of E2, SNOG and Pi on Bax/Bcl-2 expression were determined by 

Western blot of cell culture lysates prepared from female rat chondrocytes.  Samples 

(50µg) were resolved on 10% SDS-polyacrylamide gels.  Blots of the gels were 

probed with a mouse monoclonal antibody to Bax (sc-7480, Santa Cruz 

Biotechnology, Santa Cruz, CA) or a rabbit polyclonal antibody to Bcl-2 (#2876, Cell 

Signaling Technology, Danvers, MA).  Immunoreactive bands were detected using a 

1:2000 dilution of horseradish peroxidase-conjugated goat anti-mouse or goat 

anti-rabbit IgG (Santa Cruz Biotechnology, Santa Cruz, CA), and visualized using 

enhanced chemiluminescence (ECL, Amersham Biosciences, Piscataway, NJ).  

Controls were performed with an anti-GAPDH antibody (Mab327, Chemicon 

International, Temecula, CA).  Immunoreactive bands were scanned and their 

relative intensities were determined using a VersaDoc imaging system (Bio-Rad, 

Hercules, CA).   

Effects of Pi on eNOS, iNOS and nNOS expression were determined by 
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Western blot as described above with rabbit polyclonal antibodies to eNOS (ab5589, 

Abcam, Cambridge, MA)  and nNOS (ab63602, Abcam, Cambridge, MA), and a 

mouse monoclonal antibody to iNOS (ab49999, Abcam, Cambridge, MA).  Controls 

were performed with an anti-GAPDH antibody (Mab327, Chemicon International, 

Temecula, CA).   

2.7 Macro Protein Assay 

All samples were normalized to total protein content using the Pierce Macro 

BCA Protein Assay Reagent kit from Pierce Biotechnology (Rockford, IL).  Reagents 

A and B were mixed in a 50:1 ratio to make the working reagent.  5 µl of each sample 

was aliquoted in duplicate to 96-well plates, and 200µl of the working reagent was 

added to the sample plates.  The plate was incubated at 37°C for 30 min and read in the 

Bio-Rad microplate reader at 570 nm.  The protein concentration of each sample was 

determined by fitting the absorbance into a standard curve with known concentrations 

of bovine serum albumin (BSA). 

2.8 Cell Viability Assay 

Cell viability was determined using an MTT assay kit (Promega, Madison, WI).  

Briefly, after treatment with E2 for 24 hours, media were discarded and replaced with 

fresh media with 15% MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) and incubated for 4 hours to allow color development.  Absorbance was 

measured at 570nm with reference wavelength at 655nm.  Results were presented as 
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absorbance of treatment groups divided by the control group. 

2.9 Nitric Oxide Production 

NO production was evaluated by determining the concentration of accumulated 

nitrite in the culture media using a fluorescence assay with 2,3-diaminonaphthalene 

(DAN) as originally described by Misko et al. (Misko et al., 1993) with modifications.  

Briefly, after the cells were treated for 24 hours, media were preserved by freezing 

and the cells were lysed to determine the protein concentration by macro protein assay.  

NO was indirectly measured as nitrite/nitrate (NOx) by incubating the media with 

DAN in a strong acidic environment (2.5mg DAN in 50ml 0.62M HCl).  The 

reaction was terminated with 2.8M NaOH.  Fluorescence was measured with 

excitation at 364nm and emission at 406nm.  NOx was determined by fitting the 

fluorescence with a standard curve with known concentrations of nitrite. 

2.10 Caspase-3 Assays 

Caspase-3 activity was assayed using a Caspase 3 Assay Kit (Sigma-Aldrich, 

St. Louis, MO) following the manufacturer’s instruction.  Briefly, after treatment 

with apoptogens for 24 hours, cells were lysed.  Acetyl Asp-Glu-Val-Asp 

7-amido-4-methylcoumarin, a substrate of caspase-3, was added to the cell lysates.  

After one hour incubation, fluorescence was measured at excitation and emission 

wavelength of 360 and 460nm respectively.  Caspase-3 activity was calibrated using 

a pNA substrate standard curve and normalized to protein concentrations.  
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Alternatively, Caspase-3 activity was assayed using the Caspase-3 Colorimetric Assay 

(R&D Systems, Minneapolis, MN) according to the manufacturer’s instructions.  

Briefly, chondrocytes were grown in 6-well plates with reagents.  After 24 hours, 

media were discarded.  Cells were lysed using lysis buffer provided in the kit in 4oC 

for 10 minutes.  50µl cell lysates were mixed with same amount of reaction buffer and 

5µl DEVD-pNA, and incubated at 37oC for 2 hours.  Absorbance was measured at 

405nm.  Results were normalized to total protein concentration.   

2.11 Cytochrome C Release 

To measure cytochrome C release, we first separated cytosol lysate and 

mitochondrial extract using Cytochrome C Releasing Apoptosis Assay Kit (BioVision, 

Mountain View, CA).  Briefly, after treatment with apoptogens for 24 hours, cells 

were lysed by homogenization in the cytosol extraction solution provided by the kit.  

Cell debris was removed by centrifugation at 700g for 10 minutes.  Cytosolic and 

mitochondrial fractions were separated by centrifugation at 10000g for 30 minutes.  

Cytochrome C abundance in both fractions was measured by Western blot analysis as 

described above using a mouse monoclonal antibody provided by the kit.  Moreover, 

cytosolic controls were performed with an anti-GAPDH antibody (Mab327, 

Chemicon International, Temecula, CA), and mitochondrial controls were performed 

with an anti-cytochrome C Oxidase IV (ab14744, Abcam, Cambridge, MA). 

2.12 Statistical Analysis 
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All cell culture experiments were repeated at least twice.  For each 

experiment, there were six independent cultures for each variable, and the results are 

shown as the mean ± standard error of at least five individual cultures.  Statistical 

significance was determined using Wilcoxon signed-rank tests for all experiments 

whose results were presented as treatment/control or ANOVA and post-hoc testing 

with Bonferroni’s modification of Student’s t-test for all other experiments.  The 

threshold of significance was set as P-value <0.05. 
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Chapter 3  

The Role of NO in Pi-induced Apoptosis 

 

 

3.1 Hypothesis and Rationale 

The working hypothesis of Aim 1 was that blocking NO production would be 

able to block resting zone chondrocyte apoptosis induced by Pi.  The rationale of this 

study was based on the following observations.  Related studies showed that Pi 

induced apoptosis by elevating NO production in avian fetal chondrocytes (Teixeira et 

al., 2001).  We had previously found that chelerythrine and tamoxifen-induced 

resting zone chondrocyte apoptosis was rescued by TP508, which blocked NO 

production (Zhong et al., 2008).  Therefore, it is probable that Pi also induce resting 

zone chondrocyte apoptosis by elevating NO production. 
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3.2 Pi Induced Resting Zone Chondrocyte Apoptosis 

Pi induced apoptosis in a dose-dependent manner.  Chondrocyte cell viability 

was reduced, with 7.5mM Pi causing a 28% drop in MTT activity compared with 

control (Figure 1A).  DNA fragmentation was increased, based on a significant 

increase in TUNEL staining (Figure 1B) in cultures treated with 7.5mM Pi and a 

4.4-fold increase in [3H]-thymidine-labeled DNA fragments compared with control 

(Figure 1C).  The effect of Pi required regulated uptake via the NaPi transporter 

(Figure 1D).  Treatment with PFA also blocked the effect of Pi on apoptosis.  PFA 

treatment restored the effect caused by Pi treatment to control levels.  The effects of 

Pi were not sex-dependent: the response of male cells to Pi was similar to the response 

of female cells (Table 1). 

Pi regulated p53 abundance in the resting zone chondrocytes.  Although 

2.5mM Pi did not significantly increase p53, 5mM and 7.5mM Pi treatment increased 

p53 protein 2.6 and 2.8-fold, respectively (Figure 2A).  Pi also induced a 

dose-dependent increase in levels of Bax and a dose-dependent decrease in levels of 

Bcl-2 (Fig 2B).  The Bax/Bcl-2 ratio peaked at 7.5mM Pi treatment, with a 6-fold 

increase compared with control. 

These results indicated that Pi did increase resting zone chondrocyte apoptosis 

in a sex-independent manner. 
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Figure 1 Pi-induced chondrocyte apoptosis.  A,B,C: Cells were treated 0, 2.5, 5 or 7.5mM Pi (A, C) 
or just 0 and 7.5mM Pi (B) for 24 hours. MTT assay (A), TUNEL staining (B) and DNA fragmentation 
(C) were measured.  D: Cells were treated with 1mM PFA for 24 hours, with half of the cultures also 
receiving 7.5mM Pi as apoptogen.  Cell viability was measured by MTT assay.  Data are presented 
as mean ± SEM (n=6) (A,C,D). *: p<0.05 vs. control; #: p<0.05 vs. Pi group. 



 26

0.81± 0.08*7.5

0.83± 0.03*5

0.87± 0.03*2.5

1.000

MTT (T/C)Phosphate (mM)

Effect of Pi on Apoptosis of Male RC Cell Apoptosis

 

Table 1 Effect of Pi on male RC chondrocyte cell viability.  RC male cells were treated with 0, 2.5, 5 or 
7.5mM Pi for 24 hours.  Cell viability was measured by MTT assay.  *: p<0.05 vs. control. 
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Figure 2 Effect of Pi on expression of p53 (A), Bax and Bcl-2 (B).  Cells were treated with 0, 2.5, 5 or 
7.5mM Pi for 24 hours.  Expression of p53 was measured using the pan p53 ELISA kit.  Expression of 
Bax and Bcl-2 was measured by western blot, with GAPDH as control.  Data presented are means ± 
SEM (n=6) (A) or from one representative experiment (B).  *: p<0.05 vs. control (A). 
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3.3 TP508 Blocked Pi-induced Chondrocyte Apoptosis by Blocking NO 

Production 

Pi induced resting zone chondrocyte NO production in a dose-dependent 

manner.  Although 2.5mM Pi did not significantly increase NO production, 5mM Pi 

and 7.5mM Pi increased NO production 2.9-fold and 3.8-fold, respectively (Figure 

3A).  TP508 was able to block NO production caused by 7.5mM Pi.  7.5mM Pi 

significantly increased NO production, and 7µg/ml TP508 restored NO production to 

the base line level (Figure 3B).  A similar trend was observed in Pi-induced 

apoptosis.  7.5mM Pi increased DNA fragmentation 2.8-fold compared with control, 

and 7µg/ml TP508 restored DNA fragmentation almost to the control level (Figure 

3C).  Both L-NMMA, a universal NO synthase inhibitor, and L-NAME, an iNOS 

and eNOS inhibitor was able to block Pi-induced apoptosis (Figure 4) in a pattern 

comparable to TP508.  These results indicated that blocking Pi-induced NO 

production correlated with the inhibition of Pi-induced apoptosis. 
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Figure 3 Inhibition of Pi-induced chondrocyte apoptosis and NO production by TP508.  A: cells were 
treated with 0, 2.5, 5 or 7.5mM Pi for 24 hours.  NO production was measured by DAN assay; B: cells 
were treated with 0, 0.7 or 7µg/ml TP508 for 24 hours, half of the cultures also receiving 7.5mM Pi.  NO 
production was measured by DAN assay; C: cells were treated with 0 or 7µg/ml TP508 for 24 hours, half 
of the cultures also receiving 7.5mM Pi.  Apoptosis was measured by DNA fragmentation assay.  Data 
are presented as mean ± SEM (n=6).  *: p<0.05 vs. control; #: p<0.05 vs. non-Pi groups (B) or 
non-TP508 groups (C). 
 

 

NO Production

B 

A 

DNA FragmentationC
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Figure 4 Effect of NO synthase inhibitors on Pi-induced chondrocyte apoptosis.  Cells were treated with 
0 or 7.5mM Pi for 24 hours.  Half of the cultures also received NO synthase inhibitor 50µM L-NAME 
(A) or 1mM L-NMMA (B).  Apoptosis was measured by DNA fragmentation assay.  Data are 
presented as mean ± SEM (n=6).  *: p<0.05 vs. control; #: p<0.05 vs. non-L-NAME groups (A) or 
non-L-NMMA groups (B). 
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3.4 Pi-induced Chondrocyte Apoptosis was through eNOS 

Moreover, Pi increased eNOS protein abundance in a dose-dependent manner 

(Figure 5).  7.5mM Pi induced a 2.7-fold increase in eNOS protein abundance 

compared with control, although lower concentrations of Pi did not cause this change 

(Figure 5).  2.5mM Pi actually reduced eNOS expression compared with control.  No 

iNOS or nNOS expression was detected, with or without Pi treatment.    

Although Pi increased apoptosis in wild-type mouse chondrocytes (Figure 

5A,B), Pi had little (Figure 5D) or no (Figure 5E) effect on apoptosis in eNOS-/- 

chondrocytes as judged by both DNA fragmentation assay and MTT assay, respectively.  

Pi also did not cause any change in NO production in eNOS-/- chondrocytes (Figure 

5F), in stark contrast to its stimulatory effect in wild-type chondrocytes (Figure 5C). 

These results indicated that eNOS expression was key to Pi-induced chondrocyte 

apoptosis. 
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Figure 5 Pi-induced eNOS expression.  Cells were treated with 0, 2.5, 5 or 7.5mM Pi for 24 hours.  
eNOS expression was measured by Western Blot and normalized to GAPDH. 
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Figure 6 Comparison of the effects of Pi on wild-type and eNOS-/- mouse chondrocytes.  Resting zone 
chondrocytes isolated from wild-type (A,B,C) and eNOS-/- mice mice (D,E,F) were treated with 0, 2.5,5 
or 7.5mM Pi for 24 hours.  Cell viability (A,D), DNA fragmentation (B,E) and NO production (C,F) 
were measured.  Data are presented as mean ± SEM (n=6).  *: p<0.05 vs. control. 
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3.5 Conclusion 

The results above indicate that Pi dose-dependently increases chondrocyte 

apoptosis.  This process requires NO production.  Blocking NO production by NO 

synthase inhibitors or knocking out eNOS is able to inhibit the apoptotic effect of Pi. 
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Chapter 4  

Signaling Pathway of NO-induced Chondrocyte Apoptosis 

 

4.1 Hypothesis and Rationale 

The working hypothesis of this aim was that NO induces resting zone 

chondrocyte apoptosis via a mitochondrial pathway that involves MAP kinases.  The 

rationale was that elevated NO production is related to both physiological and 

pathological apoptosis of chondrocytes (van den Berg, 2001; Teixeira et al., 2001).  

The NO donor SNOG induces fetal chicken chondrocyte apoptosis in a mitochondrial 

pathway (Teixeira et al., 2001).  MAP kinases JNK and p38 have been associated 

with apoptosis induced by multiple stress factors in a wide range of cells (Strniskova 

et al., 2002).  Therefore, it is probable that NO induces resting zone chondrocyte 

apoptosis through a mitochondrial pathway involving either JNK or p38. 
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4.2 NO Donors Induced Chondrocyte Apoptosis 

To investigate the direct effects of NO on resting zone chondrocytes, we 

employed two NO donors, NOC-18 and SNOG.  Both decompose in media to slowly 

generate free NO molecules.  Experiments using NO donors confirmed that NO 

induced apoptosis in the resting zone chondrocyte cultures.  Treatment with both 

NOC-18 and SNOG resulted in a dose-dependent NO release into the media (Figure 

7A) and both NO donors induced chondrocyte apoptosis in a dose-dependent manner 

as judged by MTT activity (Figure 7B) and DNA fragmentation (Figure 7C).  The 

effects of NO were not sex-specific.  SNOG caused a similar increase in NO release 

and apoptosis in male chondrocytes as was noted in female cells (Table 2,3).  The 

effect of SNOG on chondrocytes was due to released NO.  When SNOG was 

decomposed by UV light before adding to the media, it lost its apoptotic effect (Table 

4). 
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Figure 7 Effect of NO donors on chondrocyte apoptosis.  Cells were treated with 0, 0.01, 0.1 or 1mM 
NOC-18 or 0, 0.01 or 0.05mM SNOG for 24 hours.  NO production was measured by DAN assay (A).  
Cell viability was measured by MTT assay (B).  Apoptosis was measured by DNA fragmentation assay 
(C).  Data are presented as mean ± SEM (n=6).  *: p<0.05 vs. control; #: p<0.05 vs. 0.01mM NOC-18 
or SNOG groups; $: p<0.05 vs. 0.1mM NOC-18 groups. 
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39.6± 0.4*#0.5

8.1± 0.4*0.05

1.5± 0.10

NO Production (μ M)SNOG (mM)

Effect of SNOG on NO Production of Male RC Cells

 

Table 2 Effect of SNOG on NO production of male resting zone chondrocytes.  Cells were treated with 
0, 0.05 or 0.5mM SNOG for 24 hours.  NO production was measured by DAN assay.  Data are 
presented as mean ± SEM (n=6).  *: p<0.05 vs. control; #: p<0.05 vs. 0.05mM SNOG group. 
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0.59± 0.04*24.00± 4.42*0.05

0.68± 0.06*18.09± 0.72*0.01

1.0015.53± 0.640

MTTDNA 
FragmentationSNOG (mM)

Effect of SNOG on Cell viability and Apoptosis of Male RC Cells

 

Table 3 Effect of SNOG on cell viability and apoptosis of male resting zone chondrocytes.  Cells were 
treated with 0, 0.01 or 0.05mM SNOG for 24 hours.  Cell viability was measured by MTT assay, and the 
results were presented as treatment vs. control.  Apoptosis was measured by DNA fragmentation assay, 
and the results were presented as percentage fragmented DNA.  Data are presented as mean ± SEM 
(n=6).  *: p<0.05 vs. control. 
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0.90± 0.03*#0.66± 0.01*0.5

0.97± 0.02#0.75± 0.03*0.05

0.92± 0.030.90± 0.03*0.01

1.000

DecomposedFreshSNOG (mM)

Effect of Fresh and Decomposed SNOG on Cell Viability of Female RC Cells

 

Table 4 Effect of fresh and decomposed SNOG on cell viability of female resting zone chondrocytes.  
Cells were treated with 0, 0.01, 0.05 or 0.5mM SNOG.  Half of the cultures received SNOG decomposed 
before use.  Cell viability was measured by MTT assay and the results were presented as treatment vs. 
control.  Data are presented as mean ± SEM (n=6).  *: p<0.05 vs. control; #: p<0.05 vs. fresh SNOG 
groups. 
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4.3 NO Induced Chondrocyte Apoptosis through a Mitochondrial Pathway 

NO acted via a mitochondrial pathway involving increased p53 abundance and 

caspase activity.  Compared with control culture, 0.05mM SNOG induced a 2.3-fold 

increase in cytosolic/mitochondria cytochrome C ratio (Figure 8A).  SNOG also 

dose-dependently increased caspase-3 activity.  0.05mM SNOG induced a 1.6-fold 

increase in caspase-3 activity (Figure 8B).  Similarly, 0.05mM SNOG increased p53 

protein abundance 1.6 fold compared with control (Figure 8C).  SNOG induced a 

dose-dependent increase in Bax/Bcl-2 ratio.  SNOG caused a small but significant 

increase in Bax expression, but had no effect on Bcl-2 expression, resulting in a 

1.5-fold increase in Bax/Bcl-2 in culture treated with 0.5mM SNOG (Figure 9). 
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Figure 8 Effect of SNOG on cytochrome C release (A), Caspase-3 activity (B) and p53 expression (C).  
Cells were treated with 0, 0.01 or 0.05mM SNOG for 24 hours.  Data are presented from one 
representative experiment (A) or as mean ± SEM (n=6) (B,C).  *: p<0.05 vs. control. 
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Figure 9 The effect of SNOG on expression of Bax and Bcl-2.  Cells were treated with 0, 0.01, 0.05 or 
0.5mM SNOG for 24 hours.  Expression of Bax and Bcl-2 was measured by western blot, with GAPDH 
as control.  Data presented are from one representative experiment (B).   
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4.4 NO-induced Chondrocyte Apoptosis was through JNK 

The effects of SNOG involved JNK MAP kinase activity.  Among the three 

MAP kinase inhibitors tested, only the inhibitor of JNK was able to block 

NO-induced apoptosis.  Neither PD98059, which inhibits ERK1/2 nor SB203580, 

which inhibits p38 had an effect (Figure 10).  The JNK inhibitor II blocked 

SNOG-induced apoptosis as shown by MTT assay (Figure 11A), DNA fragmentation 

(Figure 11B) and TUNEL staining (Figure 11C).  Moreover, inhibition of JNK 

blocked Pi-induced apoptosis in a dose-dependent manner (Figure 11D). 
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Figure 10 Effect of MAP kinase inhibitors on SNOG-induced apoptosis.  Cells were treated with 10µM 
PD98059 (ERK1/2), 0.1µM JNK inhibitor II (JNK) or 0.1µM SB203580 for 24 hours.  Half of the 
cultures also received 0.05mM SNOG as apoptogens.  Cell viability was measured by MTT assay.  
Data are presented as mean ± SEM (n=6) (B,C).  *: p<0.05 vs. control; #: p<0.05 vs. non-SNOG groups. 
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Figure 11 Effect of JNK inhibitor II on chondrocyte apoptosis.  A,B,C: Cells were treated with 0, 0.01 
or 0.05mM SNOG for 24 hours.  Half of the cultures also received 0.1µM JNK inhibitor II.  MTT 
assay (A), DNA fragmentation (B) and TUNEL staining (C) were measured.  Data are presented from 
one experiment (C) or as mean ± SEM (n=6) (A,B).  *: p<0.05 vs. control; #: p<0.05 vs. non-JNK 
inhibitor II groups.  D: Cells were treated with 0.01, 0.1 or 1µM JNK inhibitor II for 24 hours.  Half of 
the cultures also received 7.5mM Pi to induce apoptosis.  Cell viability was measured by MTT assay.  
Data are presented as mean ± SEM.  *: p<0.05 vs. control; #: p<0.05 vs. non-Pi groups.   
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4.5 Conclusion 

The results above indicate that NO donors dose-dependently increase 

chondrocyte apoptosis.  This process involves a mitochondria apoptotic pathway that 

involves elevated p53 and Bax/Bcl-2.  This apoptotic pathway can be blocked by a 

JNK inhibitor, suggesting that it is JNK-dependent. 
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Chapter 5  

E2-induced Chondrocyte Apoptosis 

 

5.1 Hypothesis and Rationale 

The working hypothesis of this aim was that estrogen would induce 

chondrocyte apoptosis in a sex-independent manner, involve nitric oxide and a 

mitochondrial pathway, similar to Pi-induced apoptosis pathway.  The rationale was 

that estrogen induces epiphyseal fusion by exhausting the proliferation potential of 

growth plate chondrocytes (Weise et al., 2001).  The effect of estrogen on growth 

plate fusion is not sex-dependent (Rodd et al., 2004).  High doses of estrogen also 

induce activation of caspase-3 in the growth plate, indicating involvement of 

apoptosis (Takano et al., 2008).  Estrogen also causes apoptosis in spermatogenic 

cells through upregulation of NO synthesis (Mishra and Shaha, 2005).  Therefore, 

estrogen may induce chondrocyte apoptosis through NO, similar to Pi. 
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5.2 E2 Induced Apoptosis in Growth Plate Chondrocytes 

To determine the effect of E2 on growth plate chondrocyte apoptosis, we 

employed three different methods: DNA fragmentation, TUNEL staining, and MTT 

assay.  To study the effect of sex and cell type on the action of E2, we used both male 

and female resting zone chondrocytes and female growth zone chondrocytes.  E2 

caused a dose-dependent increase in apoptosis in both female (Fig. 12A) and male 

growth plate chondrocytes (Fig. 12B).  There was a two-fold increase in DNA 

fragmentation in cultures treated with 10-8M E2 in resting zone cells.  Growth zone 

chondrocytes had a similar response to the hormone (Fig. 12C).  TUNEL staining 

showed similar results (Fig. 13A).  E2 caused a dose-dependent decrease in cell 

viability based on MTT activity (Fig. 13B) and in cell number (Fig. 13C) in both male 

and female resting zone chondrocytes.  The results of these experiments indicate that 

E2 dose-dependently increases apoptosis in growth plate chondrocytes.  This effect is 

not sex-dependent.  E2 also increases apoptosis in both resting zone and growth zone 

chondrocytes. 
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Figure 12 Sex and cell type effect of E2 on chondrocyte apoptosis.  Male (A) and female (B) RC cells 
were treated with 10-8M E2 for 24 hours.  Apoptosis was measured using Cell Death ELISA+.  Data are 
presented as mean ± SEM (n=6).  *: p<0.05 vs. control; (C) Apoptosis of RC and GC female cells by 
10-8M E2 as measured by Cell Death ELISA+.  Data are presented as mean ± SEM from 6 (RC) or 4 (GC) 
separate experiments, each of which has n=6.  *: p<0.05 vs. control. 
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Figure 13 Effect of E2 on chondrocyte apoptosis (A), viability (B) and cell number (C).  A: female RC 
cells were treated with 10-8M E2 for 24 hours.  Apoptosis was measured by TUNEL staining.  B: female 
and male RC cells were treated with 10-10~10-8M E2 for 24 hours.  Cell viability was measured by MTT 
assay.  C: female RC cells treated with 10-10~10-8M E2 for 24 hour.  Cell number was measured by 
counting.  Data are presented as mean ± SEM (n=6).  *: p<0.05 vs. control. 
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5.3 E2-induced Apoptosis was not NO-dependent 

E2 activates alkaline phosphatase in growth plate chondrocytes (Sylvia et al., 

1998).  Since Pi induces resting zone chondrocyte apoptosis (Zhong et al., 2008), E2 

may exert its pro-apoptotic function through increasing local Pi concentration.  

Pi-induced resting zone chondrocyte apoptosis is NO-dependent.  It can be blocked 

by either TP508 (Zhong et al., 2008) or PFA (See Chapter 4).  If E2 does induce 

apoptosis via elevated Pi production, we should anticipate that E2-induced apoptosis is 

also NO-dependent, and can be blocked by TP508 or PFA.  To test this hypothesis, 

we treated female resting zone chondrocytes with 10-10-10-8M E2, and measured NO 

production using the DAN assay.  After 24 hours, E2 did not increase NOx content of 

the conditioned media at any of the concentrations we tested.  At the lowest 

concentration of E2, NOx was reduced compared to control cultures (Fig. 14).  

Moreover, TP508 had no effect (Table 1).  E2 did not induce apoptosis by a phosphate 

dependent mechanism.  PFA was able to block E2’s apoptotic effect (Table 1), further 

indicating that the Pi-induced NO-mediated pathway is not involved.   
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Figure 14 Effect of E2 on NO production of chondrocytes.  Female RC cells were treated with 
10-10~10-8M E2 for 24 hours.  NO production was measured by DAN assay and normalized to protein 
concentration.  Data are presented as mean ± SEM from 9 separate experiments, each of which has n=6.  
*: p<0.05 vs. control.  Inset figure represents a single experiment with control and 10-8M E2. 
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0.81± 0.04*$E2 + PFA

0.96± 0.03#PFA

0.77± 0.03*E2

1.00Control

Treatment/Control

Effect of PFA and TP508 on E2-induced Chondrocyte Apoptosis

0.78± 0.06*$E2 + TP508

1.01± 0.01#TP508

0.82± 0.02*E2

1.00Control

Treatment/Control

*: p<0.05 vs. control
#: p<0.05 vs. E2
$: p<0.05 vs. PFA or TP508

 

Table 5 Effect of PFA and TP508 on E2-induced chondrocyte apoptosis.  Cells were treated with 10-8M 
E2 for 24 hours.  Half of the cultures also received 1mM PFA or 7µg/ml TP508.  Cell viability was 
measured by MTT assay.  *: p<0.05 vs. control; #: p<0.05 vs. E2 group; $: p<0.05 vs. TP508 or PFA 
group. 
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5.4 E2-induced Apoptosis was through Caspase Activation and a Mitochondrial 

Pathway 

In Chapter 4, we have established that Pi-induced apoptotic pathway is 

through caspase-3 activation and a mitochondrial pathway involving cytochrome C 

release and up-regulation of Bax/Bcl-2 protein ratio and p53.  We tested whether 

E2-induced chondrocyte apoptosis used the same pathway.  E2 caused a modest 

1.3-fold increase in caspase-3 activity (Fig. 15A).  However, the caspase-3 inhibitor 

Z-DEVD-FMK almost totally blocked caspase-3 activity in both control and E2 treated 

groups, and blocked the apoptotic effect of E2 (Fig. 15B).  In contrast, blocking 

caspase-1 activity did not (Fig. 15B).  Similarly, the caspase-3 inhibitor 

Z-DEVD-FMK was able to block the E2-dependent reduction in MTT activity (Fig. 

15C).  

E2 induced a dose-dependent increase in cytochrome C release from 

mitochondria, a hallmark of the mitochondrial apoptotic pathway, with 10-8M E2 

causing a 5-fold increase in the ratio of cytosol to mitochondrial cytochrome C (Fig. 

16A,B).  E2 also induced a dose-dependent increase in the expression ratio of 

Bax/Bcl-2, with 10-8M E2 inducing a 8-fold increase compared with control group (Fig. 

16C,D). Expression of p53 increased 2-fold with 10-8M E2 treatment compared with 

control (Fig. 16E). 
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Figure 15 Role of caspase-3 in E2-induced chondrocyte apoptosis.  A: female RC cells were treated 
with caspase-1 or caspase-3 inhibitors for 24 hours, with or without 10-8M E2 as an apoptogen.  
Apoptosis was measured by Cell Death ELISA+; B and C: female RC cells were treated with 10-8M E2 to 
induce apoptosis.  Half of the cultures also received a caspase-3 inhibitor.  Caspase-3 activity (B) was 
measured by Caspase-3 fluorescence kit, whereas cell viability (C) was measured by MTT assay.  Data 
are presented as mean ± SEM (n=6).  *: p<0.05 vs. control; #: p<0.05 vs. no E2 groups (B) or no 
caspase-3 inhibitor groups (A, C). 
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Figure 16 Role of mitochondria in E2-induced chondrocyte apoptosis.  Female RC cells were treated 
with 10-10~10-8M E2 for 24 hours.  A and B: cytosolic and mitochondrial fraction were separated by 
cytochrome c apoptosis kit.  Cytochrome C release from mitochondria was measured by Western blot.  
C and D: expression of Bax and Bcl-2 was measured by western blot, with GAPDH as control.  E, 
expression of p53 was measured using the pan p53 ELISA kit.  Data presented are from one 
representative experiment (B, D) or mean ± SEM (n=6) (E).  *: p<0.05 vs. control (E). 
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5.5 E2-induced Apoptosis Involved Both Membrane and Nuclear Receptors and 

not MAP Kinase-dependent 

E2 exerts its effect on chondrocyte differentiation via a rapid, membrane action 

(Sylvia et al., 1998).  To investigate whether the action of E2 on chondrocyte 

apoptosis is through membrane or nuclear estrogen receptors, we treated female 

resting zone chondrocytes with E2 for 24 hours, with or without co-treatment with 

ICI182780 (nuclear ER antagonist) or pre-treatment with anti-ERα36 (antibody 

against membrane ERs).  We also used E2-BSA, an estrogen analog that cannot 

penetrate the cell membrane, to study the role of membrane receptors.  E2-BSA 

induced a slight decrease in cell viability of chondrocytes, but the decrease was smaller 

than that of E2 alone (Fig. 17A).  Both ICI182780 and anti-ERα36 rescued E2-induced 

apoptosis.  However, ICI182780 was able to exert full recovery (Fig. 17E), whereas 

anti-ERα36 (Fig. 17B) was only able to partially rescue the cells.  Caspase-3 activity 

was regulated in a similar manner (Fig. 18A,B,E), although anti-ERα36 blocked all of 

the effect of E2 on this enzyme.   

The action of E2 on chondrocyte proliferation and differentiation both involve 

activation of ERK1/2 and p38 in a PLC-dependent pathway (McMillan et al., 2006).  

Moreover, from the previous chapter, Pi-induced chondrocyte apoptosis involves JNK.  

To test the effect of MAP kinases on E2-induced apoptosis, we tested the ability of 

ERK1/2 inhibitor PD98059, p38 inhibitor SB203580 and JNK inhibitor II SP600125 

to block E2-induced apoptosis.  We also tested the effect of a PLC inhibitor, U73122, 
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and the PLA2 inhibitor quinacrine.  The ERK1/2 inhibitor PD98059, the p38 

inhibitor SB203580 and JNK inhibitor II did not rescue E2-induced apoptosis (Fig. 17F).  

PD98059 and JNK inhibitor II themselves caused apoptosis indicating that both 

MAPKs modulate cell survival (Fig. 17F).  Neither the PLC inhibitor U73122 nor the 

PLA2 inhibitor quinacrine rescued E2-induced apoptosis, as judged both by MTT assay 

(Fig. 17C,D) and caspase-3 activity (Fig. 18C,D).  However, both compounds caused a 

dose-dependent increase in apoptosis, in a level comparable to E2-induced apoptosis 

(Fig. 17C,D,18C,D).   

In summary, these results show that E2 use both membrane and nuclear 

receptor to cause chondrocyte apoptosis.  This pathway is not MAP 

kinase-dependent. 
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Figure 17 Role of estrogen receptors PLA2, PLC and MAP kinases in E2-induced chondrocyte apoptosis.  
A, cells were treated with 10-10~10-8M E2-BSA for 24 hours.  B, cells were treated with 10-10~10-8M E2 
for 24 hours with or without pre-treatment with antibody vs. ERα36;  C, cells were treated with 2.5 to 
10µM PLC inhibitor U73122, half of the cultures also received 10-8M E2;  D, cells were treated with 10-7 
to 10-5M PLA2 inhibitor quinacrine, half of the cultures also received 10-8M E2;  E, cells were treated 
with 10-10~10-8M E2 for 24 hours, half of the cultures also received estrogen antagonist ICI 182780;  F, 
cells were treated with inhibitors vs. ERK1/2 (PD98059), JNK (JNK inhibitor II) and p38 (SB203580), 
together with 10-8M E2 for 24 hours.  Cell viability was measured by MTT assay;  *: p<0.05 vs. control 
group; #: p<0.05 vs. no no anti-ERα36 groups (B), ICI182780 groups (E), or no E2 groups (C, D, F). 
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Figure 18 Role of estrogen receptors, PLA2, and PLC on E2-induced chondrocyte apoptosis.  A, cells 
were treated with 10-10~10-8M E2-BSA for 24 hours.  B, cells were treated with 10-8M E2 for 24 hours, 
half of the cultures were also pre-treated with antibody vs. ERα36 (Ab);  C, cells were treated with 2.5 to 
10µM PLC inhibitor U73122, half of the cultures also received 10-8M E2;  D, cells were treated with 10-7 
to 10-5M PLA2 inhibitor  quinacrine, half of the cultures also received 10-8M E2;  E, cells were treated 
with 10-8M E2 for 24 hours, half of the cultures also received estrogen antagonist ICI 182780 (ICI);  
apoptosis was measured as caspase-3 activity;  *: p<0.05 vs. control group; #: p<0.05 vs. E2 groups (B, 
E), or no E2 groups (C, D). 
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5.6 Conclusion 

The results above indicate that although E2 also dose-dependently induces 

chondrocyte apoptosis in a mitochondrial pathway, it differs from Pi in that 

E2-induced apoptosis pathway does not involve NO or JNK.  This pathway also 

requires both membrane and nuclear ER. 
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Chapter 6  

Discussion and Conclusion 

 

6.1 Pi-induced Apoptotic Pathway 

Apoptosis in the mammalian growth plate resting zone occurs relatively 

infrequently (Roach, 1997), whereas hypertrophic chondrocytes in the growth zone 

routinely undergo physiological apoptosis during terminal differentiation.  In avians, 

apoptosis in the growth zone is via a mitochondrial pathway (Teixeira et al., 2007), 

involving elevated extracellular inorganic phosphate and NO production (Mansfield et 

al., 1999; Teixeira et al., 2001).  Pi also induces apoptosis in rat growth plate 

chondrocytes (Zhong et al., 2008; Zhong et al., 2009).  In vitro, both growth zone 

and resting zone chondrocytes are affected (Zhong et al., 2008; Zhong et al., 2009).  

The concentrations of Pi that caused significant apoptosis in the present study were 

similar to levels found near the calcified portion of growth plate (Shapiro and Boyde, 

1984), whereas extracellular Pi content of the resting zone cartilage is comparatively 

low.  This suggests that maintaining low extracellular Pi is a survival mechanism for 

cells in the reserve zone. 

Pi induced apoptosis in rat costochondral resting zone cells by a mechanism 

comparable to that reported for the avian growth zone chondrocytes.  Pi caused an 
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increase in NO production and NO acted on the cells via a pathway involving JNK 

MAPK.  Caspase-3 activity was increased as was abundance of p53, the Bax/Bcl-2 

ratio, and release of cytochrome C from the mitochondria.  Blocking the Pi 

transporter with PFA prevented NO production as well as downstream NO-dependent 

actions resulting in apoptosis, confirming that Pi uptake was responsible for inducing 

apoptosis and the mechanism involved required NO.  Morever, we used NO synthase 

inhibitors and an NO synthase knockout animal model to demonstrate that NO 

production is necessary in Pi-induced chondrocyte apoptosis.  We also employed NO 

donors NOC-18 and SNOG to demonstrate that this NO-dependent Pi-induced 

chondrocyte apoptotic pathway signals through JNK, p53, Bax/Bcl-2, cytochrome C 

release and caspase-3 activation.   

Pi-induced NO production occurs via an eNOS-dependant mechanism.  

Previously we reported that the PKC inhibitor chelerythrine induced apoptosis in 

resting zone chondrocytes by an NO-dependent pathway role and that iNOS was 

responsible for NO production we observed (Zhong et al., 2008). The results also 

implicated eNOS but to a lesser extent.  In the present study, we used L-NAME, 

which inhibits both forms of the enzyme.  Most of the apoptotic effect of Pi was 

blocked, confirming the critical role of NO, but still not resolving the synthase 

responsible. Cells from mice lacking eNOS failed to exhibit Pi-induced apoptosis, 

indicating that eNOS was involved.  In addition, we found that Pi increased eNOS 

protein, suggesting that Pi might increase NO production by increasing the amount of 

NO synthases.  We did not find either iNOS or nNOS in control or Pi-treated cells, 
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suggesting that these two NO synthases might not play any role in Pi-induced 

apoptosis.  However, elevated iNOS expression may have happened much earlier 

than the time point (24 hours) we checked.  In addition, eNOS-/- cells exhibited 

basal production of NO, indicating other NO synthases might exist in chondrocytes.   

The participation of eNOS in the apoptotic response to Pi is not consistent 

with the report that eNOS blocks apoptosis in mouse endothelial cells (Hoffmann et 

al., 2001).  This suggests that the same stimulus may have different effects on the 

cell fate in different cell types.  It should be noted that in both endothelial cells and 

chondrocytes, the effect of eNOS on apoptosis is physiological and beneficial to the 

organism. 

Elevated p53 levels correlates with diminished cell survival (Bartek et al., 

1990). p53 is able to induce apoptosis in cancer cells via a mitochondrial apoptotic 

pathway involving Bax expression and cytochrome C release from mitochondria 

(Chipuk et al., 2003).  In this study, we have also found that NO induced an increase 

in p53, Bax and cytochrome C release, indicating NO-induced apoptosis involves 

increasing p53 expression, which induces a mitochondrial apoptotic pathway.  We 

have previously reported that lysophosphatidic acid (LPA) protects resting zone 

chondrocytes from apoptosis by decreasing p53 and Bax expression, suggesting this 

pathway is pivotal in regulating resting zone chondrocyte apoptosis (Hurst-Kennedy 

et al., 2009).   

Our finding that NO induces chondrocyte apoptosis via a mitochondrial 
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apoptotic pathway is in accord with previous reports in fetal chicken growth plate 

(Teixeira et al., 2007), human articular chondrocytes (Cherng et al., 2008) and rabbit 

articular chondrocytes (Wang et al., 2007), indicating that the mitochondrial apoptosis 

pathway induced by NO may be evolutionarily conserved across vertebrates (aves vs. 

mammals) and cartilage tissues (growth plate vs. articular cartilage).  The 

concentration of SNOG (0.05mM) that we used results in a level of NOx in the media 

similar to the level we have previously found to be induced by 7.5mM Pi (Zhong et al., 

2008; Zhong et al., 2009), indicating that it is physiologically relevant. 

MAP kinases JNK and p38 have been associated with apoptosis induced by 

multiple stress factors in a wide range of cells (Strniskova et al., 2002).  In our rat 

growth plate model, we have found that p38 mediates the rapid membrane response to 

estrogen (McMillan et al., 2006).  In our current study, we have found that inhibiting 

JNK, but not p38 blocks NO-induced chondrocyte apoptosis.  This result is in accord 

with a previous report in human articular chondrocytes that sodium nitroprusside 

(SNP), another NO donor, induces JNK phosphorylation (Cherng et al., 2008).  

However, in rabbit articular cartilage, p38 seems to be the key regulator of 

NO-induced apoptosis (Wang et al., 2007).  These results show that in different 

species, different signaling pathways may be employed to conduct NO-induced 

apoptosis.    

The results from this study delineate the signaling pathway that leads to 

Pi-induced apoptosis in resting zone chondrocytes.  This study allows us to further 
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understand the mechanisms that regulate the development of growth plate.  It also 

suggests therapeutic options concerning growth plate defects resulting from 

dysfunctions in this pathway.  Moreover, knowledge obtained from this study can 

also be applied to the treatment of bone fractures and osteoarthritis, given the 

importance of endochondral bone formation in these processes.  For example, 

blocking Pi-induced apoptosis by inhibiting components in this pathway may help 

increase the population of resting zone chondrocytes, resulting in more cartilage 

formation, as previously shown in the case of bone fracture healing ability of TP508 

(Zhong et al., 2008). 

6.2 E2-induced Apoptotic Pathway 

E2 induces a rapid increase in PKC activity via a G protein-coupled PLC 

pathway that is functional only in cells from female rats (Sylvia et al., 2000).  This 

process is membrane-associated (Sylvia et al., 2001b) and mediates the effects of E2 on 

chondrocyte differentiation via signaling pathway that involves ERK1/2 and p38 MAP 

kinase (McMillan et al., 2006).  The failure of inhibitors of this pathway to block 

E2-dependent apoptosis suggests that E2 regulates chondrocyte apoptosis by different 

mechanisms than are used to regulate chondrocyte differentiation.  The results also 

strongly support the hypothesis that the E2-dependent PKC pathway is involved in cell 

survival, based on the observation that inhibition of components of the pathway led to 

increased apoptosis.  Interestingly, the E2-dependent apoptotic pathway is functional 

in male cells further indicating that the mechanism involved is distinct from those that 

mediate chondrocyte differentiation.   
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This study shows that E2 regulates apoptosis in rat costochondral growth plate 

chondrocytes, affecting cells from the resting zone as well as cells in the growth zone.  

E2 caused dose-dependent increases in DNA fragmentation, confirmed by TUNEL 

staining, and decrease in cell viability and, ultimately in cell number.  Although 

hypertrophic chondrocytes in the growth zone routinely undergo physiological 

apoptosis, apoptosis in resting zone chondrocytes occurs less frequently (Roach, 1997).  

Others have reported that a high dose of E2 induced elevated caspase-3 activity in the 

resting zone as well as growth zone of rabbit growth plates (Takano et al., 2008), 

suggesting our observations that apoptosis may be initiated in less terminally 

differentiated cells.  The resting zone is the reservoir of chondrocytes that form growth 

plate cartilage, and regulation of cell kinetics in this zone has important implications in 

physiological functions (Zhong et al., 2008).   

Estrogen causes growth plate senescence in rabbits (Schrier et al., 2006), and is 

responsible for the diminishment and eventual disappearance of mammalian growth 

plate in both sexes (Rodd et al., 2004).  Although rodents do not normally undergo 

epiphyseal fusion at adulthood, supraphysiological levels of estrogen induce epiphyseal 

fusion in mice (Chagin et al., 2004), suggesting that rodents’ failure to fuse their growth 

plates may be due to an evolutionary change in either estrogen level or sensitivity of 

growth plate chondrocytes to estrogen.  In either case our results suggest that mammal 

epiphyseal fusion may be caused by direct regulation of resting zone chondrocytes by 

E2-induced apoptosis. 

 In our current study, we also explored whether E2’s apoptotic effect is through 



 69

nuclear or membrane receptors.  A previous study in mice shows that the growth plates 

of ERα/β knockout mice do not fuse even with supraphysiological estrogen exposure 

(Chagin et al., 2004), suggesting nuclear receptors are involved in estrogen-induced 

apoptosis. However, the study did not examine whether membrane receptors were also 

knocked out, so a membrane receptor pathway cannot be ruled out.  Although 

estrogen’s effects on proliferation and differentiation of resting zone chondrocytes are 

membrane-mediated and not inhibited by the estrogen receptor antagonist ICI 182780 

(Sylvia et al., 2001b), the effect of E2 on apoptosis is fully blocked by ICI 182780, 

indicating that membrane receptors are necessary in mediating E2-induced apoptosis.  

However, E2-BSA, which cannot penetrate cell membrane, also causes apoptosis, 

though in a manner less significant than E2 of comparable concentration.  Moreover, 

pretreatment of cells with anti-ERα36, a specific antibody that blocks the estrogen 

membrane receptor ERα36, was also able to rescue E2-induced apoptosis.  Taken 

together, E2-induced apoptosis requires both membrane and nuclear receptor pathways.  

PKC inhibitors such as chelerythrine and tamoxifen also induce apoptosis in resting 

zone chondrocytes (Zhong et al., 2008), therefore it is difficult to assess PKC’s role in 

E2-induced apoptosis.  However, since E2-induced PKC activation is female-only 

(Sylvia et al., 1998) and, whereas E2-induced apoptosis is not sex-dependent, E2 is 

likely to induce apoptosis in a PKC-independent pathway. 

Having established the ability of E2 to induce chondrocyte apoptosis, we 

wanted to explore its pathway.  E2 is able to induce alkaline phosphatase activation 

(Sylvia et al., 1998).  Increased alkaline phosphatase is associated with chondrocyte 
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hypertrophy and apoptosis (Roach et al., 1995b; Roach and Erenpreisa, 1996).  

Moreover, we have shown that elevated phosphate can directly induce apoptosis in 

resting zone chondrocytes by up-regulating NO production (Zhong et al., 2009).  

These results are in accordance with previous studies showing that increased NO 

production and subsequent changes of mitochondrial activity are normally associated 

with both pathological and physiological chondrocyte apoptosis (Teixeira et al., 2001; 

van den Berg, 2001).  Moreover, estrogen also causes apoptosis in spermatogenic cells 

through upregulation of nitric oxide synthesis (Mishra and Shaha, 2005).  In this study 

we examined whether estrogen-induced apoptosis in resting chondrocytes also follows 

this pathway.  However, estrogen decreases NO production, indicating that this 

apoptotic pathway is independent on NO production.  Estrogen-induced apoptosis is 

also not blocked by TP508 or PFA, which further indicates that estrogen does not 

induce apoptosis via a phosphate-related mechanism.  In NO-dependent chondrocyte 

apoptotic pathways, inhibition of JNK activity blocks apoptosis (manuscripts 

preparation).  In our study, all three MAP kinase inhibitors, including a JNK inhibitor, 

were not able to block estrogen’s effect, further indicating that estrogen acted in an 

NO-independent manner.  Our results also show that estrogen-induced apoptosis in 

chondrocytes is via a mitochondrial mechanism as judged by cytochrome C release 

from mitochondria and caspase-3 activation, indicating that E2 and Pi-induced 

apoptosis pathways converge at this point.  Moreover, we have also examined the 

effect of E2 on p53 expression and Bax/Bcl-2 expression ratio.  E2 induces apoptosis in 

breast cancer cells in p53-mediated pathways (Dunphy et al., 2008; Shcherbakov et al., 
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2006).  E2 also induces p53 activation in osteoblasts (Chandar et al., 2004).  p53 is 

able to induce apoptosis in cancer cells via the mitochondrial apoptotic pathway 

involving Bax expression and cytochrome C release from mitochondria (Chipuk et al., 

2003).  We found that E2 elevated both Bax/Bcl-2 protein ratio and p53 protein 

expression in resting zone chondrocytes in 24 hours, implying E2 induces 

mitochondrial apoptotic pathway via up-regulating p53 which in turn induces Bax 

activation and that leads to cytochrome C release and apoptosis.   

  6.3 Conclusion and Future Study 

The results from this study delineate the signaling pathways that lead to both 

Pi-induced and E2-induced apoptosis in resting zone chondrocytes (Figure 19).  Both 

pathways signal through p53, elevation of which leads to upregulation of Bax.  Bax 

causes cytochrome C release from mitochondria, which subsequently induces 

caspase-3 activation, the executioner caspase which carries out the downstream 

apoptosis events.  However, these two pathways differ upstream of p53.  Pi-induced 

apoptosis involves JNK activation and NO production, whereas E2-induced apoptosis 

does not involve these two.  This study has demonstrated both the versatility of cell 

signaling pathways that induce apoptosis and the conservation of the execution phase 

of apoptosis in our model. 

This study has laid the foundation for potential more valuable future research.  

Although we have shown that both E2 induces chondrocyte apoptosis by increasing 

p53 expression, the signaling pathway leading to p53 is still unclear, and the 
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exploration of this pathway may give us more insights into the crucial role of p53 in 

physiology and pathology of cartilage.  Moreover, do the membrane and nuclear 

receptor of E2 work independently or interacting with each other to carry out the 

apoptotic effect of E2?  As for Pi-induced apoptotis, the question how Pi induces NO 

production by eNOS also begs our answer.  Last but not least, we should also ponder 

how to apply the discoveries of this study to cartilage tissue engineering.  Preferably, 

blocking some components of the described apoptotic pathway has the potential to 

improve the chondrocyte cellularity in tissue engineering constructs.   

This study allows us to further understand the mechanisms that regulate the 

development of growth plate, such as the E2-induced epiphyseal fusion.  It also 

suggests therapeutic options concerning growth plate defects resulting from 

dysfunctions in these pathways.  Moreover, knowledge obtained from this study can 

also be applied to the treatment of bone fractures and osteoarthritis, given the 

importance of endochondral bone formation in these processes.  For example, 

blocking Pi-induced apoptosis by inhibiting components in this pathway may help the 

build-up of the resting zone chondrocyte population, resulting in more cartilage 

formation, as previously shown in the case of bone fracture healing ability of TP508 

(Zhong et al., 2008). 
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Figure 19 Overview of Pi-induced and E2-induced apoptotic pathway in mammalian growth plate 
resting zone chondrocytes.  Both pathways involve a mitochondrial pathway that works through 
upregulation of p53 and Bax expression, cytochrome C release and caspase-3 activation.  However, 
Pi-induced apoptosis goes through both NO and JNK, while E2-induced apoptosis does not involve 
either. 
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