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SUMMARY 

 

The purpose of this study is to determine whether or not adipocytes harvested 

directly from fat pads or induced from bone marrow in lean and obese mice exhibit a sex-

dependent rapid response to vitamin D metabolite 1α,25(OH)2D3 and if so to elucidate if 

it is via an ERp60 receptor mediated signaling pathway.  The role of 1α,25(OH)2D3 and 

specifically the membrane effect will be examined in two genetically distinct mice to see 

if their cells have a differing sensitivity.  The results indicate that there are differing 

responses in adipocytes that are induced from bone marrow versus differentiated fat pad 

adipocytes, and the function of 1α,25(OH)2D3 is sex-specific in some cases.  

Additionally, all the adipocytes tested demonstrated a rapid response to 1α,25(OH)2D3;  

mRNA for nVDR and ERp60 were found in all cells however the only functional protein 

found in the plasma membrane was ERp60 indicating that it may be necessary for the 

rapid response whereas nVDR is not required. 

 



 

1 

CHAPTER 1 

BACKGROUND 

 

 It has been seen that cells isolated from human bone marrow have the ability to 

differentiate into cells from many types of tissues (1).  Osteoblasts and adipocytes are 

thought to derive from the same mesenchymal stem cell precursor (2) . Since patients 

with deteriorating bone quality show increased adipogenesis in the bone marrow there is 

great interest in factors that cause differentiation to shift from fatty tissue cells toward 

cells contributing to bone formation (3) (4). 

 Dietary vitamin D, in combination with UV sun exposure, experiences 25-

hydroxylation in the liver and 1alpha-hydroxylation in the kidney, before it becomes its 

known active form 1α,25-dihydroxy vitamin D3.  1α,25(OH)2D3 is a steroid hormone 

that induces differentiation via a nuclear receptor in osteoblasts (5) as well as through a 

plasma membrane associated receptor, ERp60 (6) (7) (8) (9).  There have been reports 

that male and female osteoblasts respond differently to steroid hormones, but it is not 

known whether this is the case for adipocytes and additionally if sex-specific effects are 

found only in fully differentiated cells. 

 Nuclear vitamin D receptors (VDR) are present in adipocytes nuclei; however it is 

currently unknown whether these receptors are present in the plasma membrane where it 

is possible that they contribute to rapid responses within the cell.  It is also unknown 

whether functional ERp60 is present in adipocytes, whether levels of this receptor are 

different in adipocytes that are induced from bone marrow versus differentiated fat pad 

adipocytes, and whether its function is sex-specific. 
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1.1 Known Effects of 1, 25(OH)2D3 in Osteoblast 

 1α,25-dihydroxy vitamin D3 is a steroid hormone that has been shown to induced 

differentiation in osteoblasts by activating PKC (10), stimulating alkaline phosphatase 

production (11), stimulating phospholipase A2 activity and prostaglandin E2 synthesis 

(12).  Studies indicate that these responses occur via both a nuclear receptor in 

osteoblasts as well as through a membrane associated receptor, ERp60, which has been 

shown to activate rapid phospholipase A2-dependent signaling cascades resulting in 

increases in activity of protein kinase C (PKC) and PKC-dependent ERK1/2 mitogen 

activated protein kinase (13). 

1.2 Known Effects of 1α,25(OH)2D3 in Adipocytes 

 In adipocytes 1α,25-dihydroxy vitamin D3 has been shown to inhibit 

adipogenesis, increase apoptosis and decrease lipid accumulation (14).  One known 

mechanism by which 1α,25(OH)2D3 inhibits adipogenesis is by decreasing expression of 

peroxisome proliferator activated receptor gamma (PPARγ) (15), a transcription factor 

activated by polyunsaturated fats which is essential for adipogenesis and adipocytes 

differentiation  (16) (17).  Additionally, 1α,25(OH)2D3 has been shown to increase 

expression of nuclear vitamin D receptor in adipocytes, while decreasing expression of 

AP2, adipose specific gene 422 (14). What is currently unknown is whether or not 

1α,25(OH)2D3 effects adipocytes via a non-genomic rapid response and  if the membrane 

receptor ERP60 is present and functional. 
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CHAPTER 2 

METHODS 

 

 In collaboration with Dr. Baile’s lab a mouse animal model was used to obtain 

tissue samples for the following experimental design.  Male and female mice of the ob/ob 

strains plus their controls were used; the control mice are referred to throughout this work 

as lean mice, whereas the ob/ob mice are referred to as obese mice.  Methods are also 

detailed in the grant supporting this work: “Investigation of Vitamin D Membrane 

Receptors in Adipocytes from Bone Marrow and Fat Pads”; study number 600-UGA-

MIC-MAD-05-006; AUP number A2006-10047-m2. 

2.1 Experimental Design 

Male and Female, 
Lean and Obese 

Mice

Forelimb & 
Hindlimb Bone 

Marrow

Inguinal Fat Pad 
Tissue

Perimeterial, 
Epididymal, 

Retroperitoneal 
Fat Pad Tissue

Treat with 
adipocyte 

induction media
Treat with 

1,25(OH)2D3 
Vitamin D

RNA Extraction

Plasma Membrane 
Extraction

Pre-Adipocytes

Mature 
Adipocytes

Treat with 
adipocyte 

induction media

Treat with 
1,25(OH)2D3 

Vitamin D

RT PCR

PKC

Western 
Blot

PKC Adipo-
genesis

Cell 
Viability

RNA Extraction RT PCR

Adipo-
genesis

Cell 
Viability

 
Figure 2.1.1 Experimental design summarizing events from the harvest of the cells to the 
results presented herein.  Four mice of each type lean, obese and male, female were to be 
used, except one lean male which was lost prior to harvest. 
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2.2 Primary Harvest and Treatments 

2.2.1 Tissue Harvest 

 On January 12, 2006 fifteen mice were sacrificed to obtain inguinal fat pad tissue, 

perimeterial/epididymal fat pad tissue, retroperitoneal fat pad tissue, left and right 

forelimbs as well as the left and right hindlimbs.  Four 18 week old mice of each type 

(male and female, lean and obese) were to be sacrificed, however one lean male was lost 

prior to harvest.  They were caged by sex, fed standard mouse chow, and given water ad 

libitum.  Mice were euthanized with CO2 and the lower portion of the body shaved using 

NairTM.  After 5 minutes the area was rinsed with water.  The mice were secured onto 

acrilymide boards with rubber bands.  Betadine was applied liberally over the shaved 

areas and the underlying board before rinsing with 50%:50% Methanol:ETOH.  A mid-

line incision was made through the skin, taking care not to cut into the peritoneal cavity.  

The inguinal pads were dissected in situ from each mouse and placed into 50 ml conical 

vials filled DMEM/F12 media (~10 ml).  Samples from mice of the same sex and 

genotype were pooled.  The abdominal cavity was opened and retroperitoneal and 

epididymal or perimetrial fat removed and placed on ice in RNAse free tubes for mRNA 

extraction.  The left and right femur and tibia were removed from the mice; the proximal 

and distal ends of the bones were removed and the bones placed upright in sterile 0.5ml 

RNAse free microcentrifuge tube. The tubes had a punctured hole in the bottom but were 

contained within a larger 2 ml microcentrifuge tube. 

2.2.2 Stromal Vascular Primary Culture of Mouse Preadipocytes 

 Inguinal fat pads were transferred from 50ml conical tubes into sterile 30ml 

beakers.  There they were minced into a homogenous product which was incubated in a 

sterile solution of 0.1M Hepes (4ml) and Type 1 collagenase (1ml) for 45 minutes in a 

shaking water bath (37°C, 115RPM).  The digested fat was then poured into a 10ml 
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syringe and filtered (240μm) into a 50ml centrifuge tube. This solution was then 

centrifuged at 300-500rpm for 5 minutes to sediment debris.  The floating adipocyte layer 

was removed for plasma membrane extraction (see section 2.2.3).  The infranatent was 

put into a second sterile tube and then centrifuged at 1100rpm for 10 minutes at room 

temperature.  After decanting, the cell clumps were disrupted with 5ml of DMEM F-12 

Ham(Sigma-Aldrich, D-8900) containing 10% FBS.  The solution was filtered (20μm) to 

remove endothelial cell aggregates and centrifuged at 1100rpm for 5 minutes.  The cells 

were pooled by gender and genotype, counted in a hemocytometer, diluted in full media 

(DMEM/F12, 10%FBS, antibiotics) and seeded at a density of 25,000 cells/cm2 in 24-

well plates for PKC assay, and in 96-well plates for adipogenesis and viability assay. 

 One day after plating, the media was replaced with DMEM/F12 with 5% FBS.  

Every two days the media was replaced until confluency (5 days).  At confluence, 

differentiation was induced by feeding with adipocyte induction media.  The induction 

media consisted of 250μM methylisobutylxanthine, 0.1μM dexamethasone, 17nM 

insulin, 100μM indomethacin in a DMEM/F12 10% FBS solution.  For adipogenesis and 

cell viability assay 10-9, 10-8 M 1α,25(OH)2D3 is included in the induction media.  After 

48 hours the induction media was replaced with DMEM/F12, 10% FBS and 17nM 

insulin.  After 48 hours the insulin containing media was removed and the cultures fed 

every other day with DMEM/F12 and 10% FBS. 

 Day 0 cells seeded 

 Day 5 cells treated with induction media 

 Day 11 cells harvested for adipogenesis and cell viability assays. 

  PKC activation samples were serum starved for 24 hours. 

 Day 12 cells were treated with 10-10, 10-9, 10-8 M 1α,25(OH)2D3 for 9, 90, or 

  270 minutes for PKC activation assay in ob/ob male, lean male, ob/ob 
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  female, lean female.  After treatment, samples were washed twice with  

  PBS and incubated with 100μl RIPA (Sigma, R-0278) for 30 minutes on  

  ice then stored at -20°C. 

2.2.3 Plasma Membrane Preparation from Adipocytes 

 Plasma membranes were isolated from inguinal fat pads adipocytes.  All steps 

were carried out at 4°C. The isolated adipocytes were washed with 1ml homogenizing 

buffer and centrifuged briefly at 5,000 rpm.  Homogenizing buffer consists of 10mM 

Tris-HCl, 1mM EDTA and 0.25M sucrose at an overall pH of 7.4.  After decanting the 

supernatant, 600μl of homogenizing buffer was added to each tube and the cells were 

manually disrupted by moving a Teflon pestle up and down five times, turning 360 

degrees between each stroke.  Homogenized samples were then centrifuged for 15 

minutes at 12,000 rpm; the pellet was re-suspend with 500μl of 2M sucrose. Samples 

were centrifuged again at 11,750 rpm for 10 minutes. The supernatant was poured into a 

disposable Sorvall centrifuge tube and diluted 7-fold with ice cold ultra pure water; 

samples were centrifuged at 16,500 rpm for 15 minutes using rotor SA600.  About 2ml of 

the supernatant was discarded with the remaining infranatant being transferred into an EP 

tube; samples were centrifuged at 13,000rpm for 20 minutes on a table top centrifuge.  A 

strong pellet was obtained, washed once with 1ml of PBS, centrifuged and ultimately re-

suspend in 50μl of PBS and stored at -70°C.  Samples were used for Western Blot (see 

section 2.3.6). 

2.2.4 Primary Culture of Mouse Bone Marrow Stromal (BMS) Cells 

 The harvested limbs, in microcentrifuge tubes, were centrifuged for one minute at 

13,500rpm. The bones were removed and the cells were re-suspended in 200μl of media 

with FBS and antibiotics, pooled, and transferred into a 15ml conical tube with 3ml of 

warm media. Bone marrow cells from the two femur and two tibia per animal were 
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pooled.  The stromal cells were disrupted by aspirating through 18 and 20 gauge needles.  

Cells were centrifuged at 1200rpm for 5 minutes, supernatant discarded, re-suspended in 

2ml of media and counted in a hemocytometer.  The cells were plated at an initial seeding 

density of 5 million cells per 100mm plate.  Approximately 8 million cells were obtained 

from each lean mouse and around 5 million cells were obtained from each obese mouse 

After two hours of incubation at 37°C and 5% CO2, the media was changed to remove 

any non-adherent cells; culture media was changed every 3 to 4 days.  After two weeks 

cells were washed with 1X PBS and released from plate by treatment with trypsin (.25% 

in 1mM EDTA) for 10minutes at 37°C.  Reaction was stopped by adding 2.5ml calf 

serum, centrifuging for 5 minutes at 12,000rpm, discarding the supernatant and re-

suspending in fresh media.  Cells were seeded at a density of 20,000 cells/cm2 in 6-well 

plates for RNA extraction, 24-well plates for PKC assay, and 96-well plates for 

adipogenesis and cell viability assay.  After 2 weeks, cells reached confluence and were 

treated with adipogenic induction media for 3 days.  Adipogenic media contains 1% 

antibiotic-antimycotic, 0.25mM methylisobutylxantheine, 0.1μM dexamethasone, 

10μg/ml insulin, 60μM indomethacin, 5μM Ciglitizone (PPARg agonist), and 4.5mg/ml 

glucose all in DMEM 10% FBS. Following the three days, the cells were treated with 

maintenance media for 1 day.  Adipogenic maintenance media contains 10μg/ml insulin, 

1% antibiotic-antimycotic, and 4.5mg/ml glucose all in DMEM 10% FBS.  For 

adipogenesis assays cells were treated with 10-10, 10-9, 10-8 1α,25(OH)2D3 throughout 

differentiation in the adipogenic media.  The feeding cycle, 3 days induction media, 1 day 

maintenance media, was repeated three times culminating in 7 days of incubation with 

maintenance media.  At this point cells were (1) harvested for RNA extraction; (2) treated 

with 10-10, 10-9, 10-8 M 1α,25(OH)2D3 for 9, 90, 270 minutes, washed twice with PBS, 

then harvested with RIPA buffer and stored at -80°C for PKC activation assay; (3) 

assayed for adipogenesis. 
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2.2.5 RNA Extraction 

 RNA is isolated from perimeterial, epididymal, and retroperitoneal fat pad tissue 

via a modified protocol using zirconia beads and a TRIZOL reagent (Invitrogen, Cat. No. 

15596-026), followed by homogenization, extraction with chloroform and isopropanol, 

washed with ethanol and finally eluted into 15μl of DEPC water. 

 RNA was isolated from adipocyte induced bone marrow stromal cells by using 

RNeasy Mini kit (QiagenTM) following manufacturer’s instructions. 

2.3 Assays 

2.3.1 Adipogenesis Using AdipoRedTM 

 Postconfluent preadipocytes were incubated with control or 1α,25(OH)2D3 during 

the induction period.  When the cells filled the plate (day 6-8), the plate was removed 

from the cell culture incubator and allowed to cool to room temperature.  The supernatant 

was removed and each well carefully rinsed with 200μl of PBS.  Each well was then 

filled with 200μl PBS.  AdipoRed reagent (5μl) was added with a multi-channel pipette.  

The plates were mixed by tapping the edge of the plate against the lab bench several 

times.  After 10 minutes, the fluorescence was read (excitation 485nm, emission 572nm). 

2.3.2 Cell Viability Using ApoStrandTM ELISA Apoptosis Detection Kit AK-120 

 Adipocytes were incubated with control or 1α,25(OH)2D3 for 24 and 48h.  

Apoptosis was measured by ssDNA ELISA kit which in principle is based on the ability 

of a monoclonal antibody to detect denatured DNA and the fact that apoptotic cells are 

specifically prone to denaturing when exposed to formamide. 

2.3.3 Protein Kinase C Activity 

 Cells were plated on 24-well plates, treated with 10-10, 10-9, 10-8 M 1α,25(OH)2D3 

for 9, 90, or 270 minutes, aspirated and washed twice with 0.5ml cold PBS.  RIPA 
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(100µl) was added to each well and stored on ice for 30 minutes before storing at -20°C.  

Using “Protein Kinase C Biotrak Enzyme Assay” from Amersham Biosciences (PC 

RPN77) PKC activity was measured. In brief, peptides are combined with the cell lysate 

and adenosine-5’-[γ-32P]ATP (Perkin Elmer, BLU002A500UC).  If there is active PKC 

in the sample, the radioactive phosphate isotope will be transferred onto the peptide 

which is then transferred to binding papers where all of the peptides are captured.  The 

un-bound 32P is washed away.  The binding papers are put into vials and the radioactive 
32P is counted in a scintillation counter. 

2.3.4 Real Time Reverse Transcription Polymerase Chain Reaction (RTPCR) 

 The following primers were used within the RT-PCR method. 

ERP60 primers: 

Sense (forward): 5’GATGGCAACTTGAAGAGATACC3’ 

Antisense (reverse): 5’CTCTGCTACCACCACCTT3’. 

It is important to note that another set of ERP60 primers was investigated, however did 

not result in any visible or measurable data for the samples nor the controls: 

5’GTGCTAGAACTCACGGAC3’ and 5’AGCCTCACTGAATGAATC3’. 

The nVDR primer  (18): 

Sense (forward): 5’GAGGTGTCTGAAGCCTGGAG3’ 

Antisense (reverse): 5’ACCTGCTTTCCTGGGTAGGT3’. 

It is important to note that another set of nVDR primers was investigated, however did 

not result in any visible or measurable data for the samples: 

5’TCAAGGGAGGCAGGCAGAAG3’ and 5’TAGGCTTTGGGCAGGTAGGG3’. 

The GapDH primers: 
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Sense (forward): 5’TGCACCACCAACTGCTTAG3’ 

Antisense (reverse): 5’GATGCAGGGATGATGTTC3’. 

 The first step in RT-PCR was reverse transcription.  The RNA samples were 

diluted and placed into a .2mL thin walled eppendorf tube; 1µgRNA with DEPC water 

added to achieve a total volume of 13µL.  PCR machine was used to control the 

temperature of the samples; 65˚C for 10 minutes, 4˚C for 5 minutes.  To each tube the 

following was added: 2µL 10X buffer RT, 2µL 5mM dNTP, 1µL Omniscript RT, 2µL 

antisense primer. PCR machine was again used to control the temperature of the samples; 

37˚C for 60 minutes.  At this point the stock cDNA samples were completed.  Any 

unused portion was frozen at -80˚C. 

 The second step was the polymerase chain reaction which amplified the cDNA.  

In new tubes the following was combined: 2.5µL 10X PCR buffer, 17.375µL DEPC 

water, 1µL 5mM dNTP, 1µL sense primer, 1µL antisense primer, 1µL MgCl2, 1µL 

cDNA sample.  PCR machine was used to control the temperature of the samples: hot 

start was selected to begin at 94˚C at which point the program paused.  Once the plate 

reached this temperature for 30 seconds 0.125µL Taq polymerase (Fisher Brand – 250u) 

was added to each tube.  The PCR machine was set to resume, for the remainder of the 

program the temperature returned to 54.0˚C for ERP60 and GapDH samples and 60.4˚C 

for nVDR samples.  At this point the cDNA samples were amplified and were ready to be 

run on the gel for imaging.  Ready Gel (5% TBE, 10 wells, 30µL) was placed into the 

chamber with 500mL 1x TBE. For each sample, 2µL of loading dye and 10µL of the 

amplified cDNA sample was combined and loaded into the gel.  The ladder was loaded 

into the gel as well.  The samples were run at 100 Volts for 55mminutes.  The gel was 
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removed from the chamber and placed into a flat container with 35mL dH2O and 5µL 

ethidium bromide where it was rocked gently for 10 minutes.  The ethidium bromide 

solution was removed and replace with dH2O which was rocked gently for 25 minutes.  

Using the Versadoc an image of the gel was taken. 

 In order to run the analytical portion of real time PCR the following was done 

using ERP60 primers, nVDR primers and GapDH primers.  GapDH was used to 

normalize the quantitative data.  The cDNA samples resulting from the reverse 

transcription PCR were diluted 1.5µ of sample into 43.5µL of DEPC water.  RC library 

cDNA was used as the standard.  The standard was purified using a Qiagen Miniprep Kit, 

following the manufacturer’s instructions.  Six 1:3 serial dilutions were made from the 

standard.  The standards (6µL each) and the samples (3µL each) were loaded into the 96-

well plates.  A master mixture was created containing the following per reaction: 12.5µL 

SYBR green, 0.5µL 10µM reverse primer, 0.5µL 10µM forward primer, .011µL 25mM 

MgCl2, 8.489µL DEPC water.  Into each sample well, 22µL of the master mix was 

added; into each standard well, 19µL of the master mix was added.  The RT-PCR 

program had the following cycles: 
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Table 2.3.4.1 Description of the real time PCR program protocol. Note that cycle 2 step 2 
has two set points listed.  54.0˚C was used for ERP60 and GapDH samples; 60.4˚C was 
used for nVDR samples. 

Cycle Number Repeats Step Dwell Time (minutes) Set Point (˚C) 

1 1 1 03:00 95,0 

2 40 
1 00:10 95.0 

2 00:45 54.0 / 60.4 

3 1 1 01:00 95.0 

4 1 1 01:00 55.0 

5 80 1 00:10 55.0 

 

2.3.5 Western Blot 

 The following antibodies were used within this western blot method: 

ERP60 antibodies: 1˚ Ab101 ERP60 antibody Rabbit, 2˚ Jackson IR, AffiniPure Donkey 

Anti-Rabbit, HRP conjugated. 

nVDR antibody: 1˚ VDR (C-20):sc-1008,  2˚ Jackson IR, AffiniPure Donkey Anti-

Rabbit, HRP conjugated. 

 Protein samples were diluted one part sample to four parts Laemmli sample 

buffer.  Samples were boiled for 3 minutes at 85˚C, then frozen at -80˚C.  Ready-Made 

gel was set up in a container filled with running buffer: 6.06g tris, 28.82g glycene, 

400mL methanol, and add DI water for a total of 2L.   Samples (7.5µg protein each) and 

ladder (5µL) were loaded into the gel.  The gel was run at 80Volts for 15 minutes, then at 

120Volts for 50 minutes. The protein was transferred onto a nitrocellulose membrane 

using a transfer case covered in transfer buffer.  The layering within the case was as 

follows:  sponge, filter paper (BioRad Mini Trans-Blot), gel, transfer membrane 

(nitrocellulose), filter paper, sponge.  The transfer was run at 100Volts for 2 hours.  The 
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transfer membrane was removed from the case and submerged for 2 hours in blocking 

solution: 20mL PBS/Tween and 1g powdered Carnation instant non-fat milk.  The 

transfer membrane was removed from the blocking solution an incubated with the 

1˚antibody overnight t 4˚C.  Note that the ERP60 1˚ was diluted 1:5000 with blocking 

solution; nVDR 1˚ was diluted 1:500 with blocking solution.  The transfer membrane was 

washed three times for five minutes with PBS/Tween buffer, totaling in 15 minutes, and 

then incubated with 2˚ antibody for 1 hour at room temperature.  The 2˚ antibody was 

diluted 1:5000 with blocking solution.  The transfer membrane was washed three times 

for five minutes with PBS/Tween buffer, totaling in 15 minutes, and then placed on a 

transparency sheet with 750µL of Super Signal West Pico kit developing solution for 15 

minutes.  The transfer membrane was dried for 10 minutes and imaged on a Versadoc 

system. 
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CHAPTER 3 

RESULTS AND DISCUSSION 

 

3.1 Adipogenesis 

 
Figure 3.1.1 Effects of 1α,25(OH)2D3 on adipogenesis in male and female adipocytes. 
 

 
Figure 3.1.2 Effects of 1α,25(OH)2D3 on adipogenesis in male and female bone marrow  
induced adipocytes in lean and obese mice, percent of control. 
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Figure 3.1.3 Control adipogenesis values for male and female bone marrow induced 
adipocytes in lean and obese mice. 
 

3.2 Cell Viability 

 
Figure 3.2.1 Effects of 1α,25(OH)2D3 on cell viability in male and female adipocytes. 
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Figure 3.2.2 Effects of 1α,25(OH)2D3 on cell viability male and female bone marrow  
induced adipocytes in lean and obese mice, percent of control. 
 

 
Figure 3.2.3 Control cell viability values for male and female bone marrow induced 
adipocytes in lean and obese mice. 
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3.3 Effect of 1α,25(OH)2D3 on PKC Signaling 

 Due to the large sample quantity, each group was treated with vitamin D 

metabolite 1α,25(OH)2D3 at different times; comparing between groups is possible by 

using the control as a baseline to which the data is normalized all.  All statistical 

significance is compared to control and was calculated by 2 sample t-test (p ≤ 0.05) 

performed on raw data.  Raw data is included on Appendix A. 

3.3.1 PKC Assay in Bone Marrow Induced Adipocytes 

 
Figure 3.3.1.1 PKC activity after 1α,25(OH)2D3 treatment for 9, 90, and 270 minutes on 
bone marrow induced adipocytes from lean female mice. 
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Figure 3.3.1.2 PKC assay after 1α,25(OH)2D3 treatment for 9, 90, and 270 minutes on 
bone marrow induced adipocytes from lean male mice. 
 

 
Figure 3.3.1.3 PKC assay after 1α,25(OH)2D3 treatment for 9, 90, and 270 minutes on 
bone marrow induced adipocytes from obese female mice. 
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Figure 3.3.1.4 PKC assay after 1α,25(OH)2D3 treatment for 9, 90, and 270 minutes on 
bone marrow induced adipocytes from obese male mice. 
 

3.3.2 PKC Assay in Fat Pad Adipocytes 

 
Figure 3.3.2.1 PKC assay after 1α,25(OH)2D3 treatment for 9, 90, and 270 minutes on fat 
pad adipocytes from lean female mice. 
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Figure 3.3.2.2 PKC assay after 1α,25(OH)2D3 treatment for 9, 90, and 270 minutes on fat 
pad adipocytes from lean male mice. 
 

 
Figure 3.3.2.3 PKC assay after 1α,25(OH)2D3 treatment for 9, 90, and 270 minutes on fat 
pad adipocytes from obese female mice. 
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Figure 3.3.2.4 PKC assay after 1α,25(OH)2D3 treatment for 9, 90, and 270 minutes on fat 
pad adipocytes from obese male mice. 
 

3.4 Vitamin D Receptor Expression  

 
Figure 3.4.1 RT-PCR and qPCR for ERp60 in BM adipocytes; control, C, and induced, I. 
Positive control used in the gel is a whole tissue mRNA extraction from rat chondrocytes. 
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Figure 3.4.2 qPCR for VDR in BM adipocytes: control, C, and induced, I. (Gel image not 
shown). 
 

 

 
Figure 3.4.3 RT-PCR and qPCR for ERp60 in adipocyte fat pad cells. Positive control 
used in the gel is a whole tissue mRNA extraction from rat chondrocytes. 
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Figure 3.4.4 RT-PCR and qPCR for VDR in adipocyte fat pad cells. Positive controls 
used in the gel image are whole tissue mRNA extractions from: I=Mouse Intestine, 
K=Mouse Kidney, RC= Rat Chondrocytes. 
 

3.5 Vitamin D Receptor Protein in Plasma Membrane 

 

 
Figure 3.5.1 Western blot for ERp60 in fat pad adipocyte plasma membrane fractions 
harvested from lean and obese male and female mice. 
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Figure 3.5.2 Western blot for nVDR in fat pad adipocyte plasma membrane fractions 
harvested from lean and obese male and female mice. Positive control used is a whole 
cell lysate from rat chondrocytes. 
 

50 kDa

75 kDa

LM       LM LF       LF OM      OM RC  

50 kDa

75 kDa

50 kDa

75 kDa

LM       LM LF       LF OM      OM RC  

50 kDa

75 kDa

OM       OM OF       OF OF OF RC  

50 kDa

75 kDa

OM       OM OF       OF OF OF RC  OM       OM OF       OF OF OF RC  



 25 

CHAPTER 4 

CONCLUSIONS 

 

 General findings show that all of the adipocytes tested exhibit a PKC response to 

1α,25(OH)2D3 treatment, although fat pad adipocytes behave differently from bone 

marrow induced adipocytes.  Nuclear and Membrane Vitamin D Receptors are present in 

adipocytes; primary and induced from bone marrow. Lean adipocytes have increased 

sensitivity to Vitamin D when compared to obese adipocytes. 

 The most notable finding when investigating the fat pad adipocytes was that 

nVDR protein was not found in the plasma membrane fractions whereas ERP60 protein 

was found in the plasma membrane fractions of all the samples tested.  This leads to the 

conclusion that the rapid response seen in the fat pad adipocytes could not have been  

mediated by nVDR protein and also points to ERP60 as a player in rapid PKC activation 

for these primary cells.  Consistent with current literature, the data shows that 

1α,25(OH)2D3 decreased adipogenesis in fat pad adipocytes independent of gender.  The 

effect of 1α,25(OH)2D3 on PKC activity in fat pad adipocytes seems to differ for lean 

mice, showing decreased activity, versus obese mice, showing increased activity. 

 The bone marrow induced adipocytes had various conflicting responses to 

1α,25(OH)2D3 exposure.  Adipogenesis increased in males cells after exposure, while 

decreasing in female cells.  Cell viability increased in the obese cells after exposure, 

while 1α,25(OH)2D3 had no effect or slightly lowered cell viability in lean cells.  PKC 

activity decreased in obese female cells after exposure, while in all other bone marrow 

induced adipocytes there was an initial increase followed by a decrease. 
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APPENDIX A – RAW DATA 

Bone Marrow Induced Adipocytes, PKC Assay 

 Data sets are grouped based on experimental set-up.  Data generated from cell 

cultures that were treated, harvested, and assayed at the same time are grouped together. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Graph A.1 – PKC assay after 1α,25(OH)2D3 treatment for 9 minutes on bone marrow 
induced adipocytes from lean female, lean male, obese female and obese male mice.   
Statistical significance is compared to control, determined by 2 sample t-test (p ≤ 0.05) 
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Graph A.2 – PKC assay after 1α,25(OH)2D3 treatment for 90 minutes on bone marrow 
induced adipocytes from lean female, lean male, obese female and obese male mice.  A 
single outlier was omitted (value = -0.0139) from the Obese Male group treated with 10-

10M 1α,25(OH)2D3 due to an error when reading the protein level of the sample.  
Statistical significance is compared to control, determined by 2 sample t-test (p ≤ 0.05) 
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Graph A.3 – PKC assay after 1α,25(OH)2D3 treatment for 270 minutes on bone marrow 
induced adipocytes from lean female, lean male, obese female and obese male mice.   
Statistical significance is compared to control, determined by 2 sample t-tests (p ≤ 0.05) 
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Graph A.4 – PKC assay after 1α,25(OH)2D3 treatment for 9 minutes on fat pad 
adipocytes from lean female, lean male, obese female, and obese male mice.   Statistical 
significance is compared to control, determined by 2 sample t-tests (p ≤ 0.05) 
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Graph A.5 – PKC assay after 1α,25(OH)2D3 treatment for 90 minutes on fat pad 
adipocytes from lean female and lean male mice.   Statistical significance is compared to 
control, determined by 2 sample t-tests (p ≤ 0.05) 
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Graph A.6 – PKC assay after 1α,25(OH)2D3 treatment for 270 minutes on fat pad 
adipocytes from lean female and lean male mice.   Statistical significance is compared to 
control, determined by 2 sample t-tests (p ≤ 0.05) 
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