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 SUMMARY 

 

 Humans perform complex sensorimotor tasks, such as walking on uneven terrain, 

in a seemingly effortless manner. However, even simple voluntary tasks, like lifting the 

arm to shake hands, require intricate adjustments to maintain balance. With experience, 

humans learn to produce the appropriate patterns of muscle activity necessary to maintain 

balance during everyday activities, as well as highly specialized motor tasks. Here, I 

investigated the neural feedback mechanisms controlling the formation of the muscle 

activity used during balance tasks.  

 I hypothesized that humans use feedback from on-going balance perturbations to 

establish their muscular responses. Specifically, I investigated center-of-mass (CoM) 

kinematics as a control signal for the formation of these muscle activation patterns. Using 

an inverted pendulum model under delayed feedback control, I both reconstructed the 

temporal EMG patterns measured during experimental perturbations and predicted the 

optimal EMG patterns for responding to the same perturbations. By modulating four 

feedback parameters, this feedback law accounted for 91% of the variability in all 

experimentally-recorded EMG patterns – regardless of the mechanical action of the 

muscle or the response strategy chosen by the subject.  

 To investigate the changes in postural control during motor learning, I used this 

feedback model to characterize responses while naïve subjects adapted to repetitive 

unidirectional and reversing perturbations. By adjusting feedback gains related to CoM 

velocity and displacement, subjects adapted their muscle activity to improve control over 

the CoM for both perturbation types. Though subjects were unable to use anticipatory 

 xv



strategies to reduce muscle onset latency or to mute inappropriate responses to reversing 

perturbations, more subtle feedforward adjustments to feedback-mediated postural 

responses were evident. With experience, subjects adapted their postural responses 

toward the optimal solution.  

 The results of this work, when combined with on-going studies of muscle 

synergies, will provide a powerful tool for investigating the consequences that result from 

the changes in spatiotemporal muscle activity associated with aging, neurological 

dysfunction, musculoskeletal injury, and specialized training programs. This quantitative 

knowledge is critical to the development of diagnostic tools for balance and movement 

disorders, as well as for the design of effective interventional therapies, bipedal robots, 

and neural prostheses. 
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CHAPTER 1 

INTRODUCTION 

 

 The execution of most motor tasks requires the intricate control of muscles 

throughout the body to maintain the proper balance and postural configuration. During 

postural tasks, the spatial and temporal patterns of muscle activation change 

instantaneously when the biomechanical constraints are altered, for instance when the 

size of the base of support is reduced (Horak and Nashner 1986) or when the use of hands 

is allowed (Jeka and Lackner 1994). However, when adapting to a novel environment, 

such as standing on a moving platform, a slower change over time of these muscle 

activation patterns is observed (Horak 1996). How does the nervous system orchestrate 

this exquisite muscular coordination? What signals are used to detect the ongoing 

changes in the postural environment? How does the nervous system fine-tune its strategy 

to maintain postural stability with experience or training? 

 When a balance perturbation is incurred, as in a support-surface translation where 

the floor is moved beneath the feet, an automatic postural response (APR) is evoked to 

maintain the center-of-mass (CoM) within the limits of the base of support. During this 

response, the body sways in the opposite direction of the perturbation. This postural sway 

can be confined to occur about the ankle joint alone (the ‘ankle’ strategy), as in mild 

perturbations, or about the hip (the ‘hip’ strategy) in response to more challenging 

perturbations (Horak and Nashner 1986). These two extreme patterns of postural sway 

form the boundaries of a continuum of ‘mixed’ strategies used to recover balance 

following perturbation (Alexandrov et al. 2001a; Runge et al. 1999). These strategies are 
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also associated with characteristic patterns of muscle activity, where mechanically-

relevant muscles throughout the body are activated in a distal-to-proximal fashion to 

return the body to an upright and stable configuration.  

 While muscle activity associated with the APR has been characterized extensively 

in cats and humans, the neuromechanical basis of its temporal formation remains largely 

unclear. The muscle activation pattern typical of the APR has been described as 

consisting of an initial burst of activity followed by an extended plateau region of tonic 

activity (Diener et al. 1988). In humans, ankle muscle activity associated with the APR 

occurs at a latency of approximately 100 ms. This timing suggests that, rather than being 

the result of a spinal reflex, higher-level processing may be involved in the formation of 

the muscle activation pattern (Diener et al. 1984). However, the onset of initial muscle 

activity occurs before voluntary control over the response can be feasibly exerted. 

 Several studies indicate that these reactive muscle activation patterns are related 

to the characteristics of the applied perturbation, suggesting that task-related feedback 

may be used to form this muscle activity. For example, the amplitude of the initial burst 

of muscle activity correlates with perturbation velocity, while the tonic plateau region 

activity scaled with the total displacement of the perturbation (Diener et al. 1988). 

Further, antagonist muscles produce consistent muscle activity in response to the 

decelerating impulse that is similar in timing to that invoked in the agonist by the initial 

impulse of a postural perturbation (Bothner and Jensen 2001; Carpenter et al. 2005; 

McIlroy and Maki 1994; Runge et al. 1999); muscle activity between these two impulses 

is highly variable (Bothner and Jensen 2001). The kinematics of the CoM follow those of 

platform motion during experimental perturbations, suggesting that the body may track 
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CoM motion as a feedback signal for adjusting muscle responses to perturbations. 

However, the individual effects of the perturbation dynamics have often been obscured 

by the covariation of acceleration and velocity in perturbation paradigms (Maki and 

Ostrovski 1993a; Szturm and Fallang 1998), possibly resulting from the use of controllers 

in which only the displacement waveform is specified (Brown et al. 2001). Therefore, in 

order to test specific hypotheses regarding the use of feedback during postural control, 

precise control over perturbation dynamics is required to allow the independent 

specification and modulation of the perturbation characteristics.  

 Human subjects use both feedback and feedforward mechanisms to help mitigate 

balance disturbances. Previous studies in cats suggest that delayed feedback of CoM 

kinematics can robustly reproduce temporal patterns of muscle activation in response to a 

variety of balance disturbances (Lockhart and Ting 2007). Consistent with this idea, 

interactions between CoM position, velocity, and acceleration appear to influence 

temporal patterns of muscle activity in humans through feedback. Both initial leaning 

about the ankles and natural postural sway prior to perturbation affect the onset and level 

of muscle activation in ways not predicted by the modification of stretch reflexes by 

peripheral conditions (Horak and Moore 1993; Park et al. 2005; Tokuno et al. 2006). The 

resulting effect is a feedforward stiffening of the ankle joint that allows elastic properties 

of the muscles and gravitational torques to better contribute to resisting disturbances 

(Shinha and Maki 1996).  

 Studies of voluntary arm reaching movements also illustrate the interplay between 

feedback and feedforward mechanisms in the adaptation of voluntary movements. The 

central nervous system uses internal models of the body’s interaction with the external 
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environment to plan movement trajectories and predict the forces that it will encounter 

during these movements (Flanagan and Wing 1997; Gandolfo et al. 1996; Lackner and 

Dizio 1994; Miall et al. 1993; Shadmehr and Mussa-Ivaldi 1994). However, when a novel 

environment is encountered, this internal model must be updated to account for changes 

necessary to perform consistent and accurate movements. Subjects use feedback to 

reduce errors in ongoing movements, however feedback alone is insufficient to eliminate 

these errors altogether (Hwang and Shadmehr 2005). In addition to these online feedback 

strategies, subjects use an estimate of errors from previous trials to modify the initial 

trajectory of the next movement attempt in a feedforward manner (Thoroughman and 

Shadmehr 1999). These feedforward strategies are thereby included within the internal 

model, updating subsequent movement plans and the expected sensory information 

during task performance. This short term learning is more complete when changes in 

environmental feedback are gradual as opposed to a large, sudden change (Kagerer et al. 

1997), and the updates in the mapping between visual and motor representations of space 

are not easily overridden by conscious effort (Cunningham and Welch 1994).  

 However, the adaptation of muscle activation during involuntary and reactionary 

responses, such as the automatic postural response, has not been explored extensively. 

Initial studies in postural response adaptation have looked at changes to muscle activity 

in response to repetitive perturbations (Chong et al. 1999; Hansen et al. 1988; Horak et al. 

1989; Keshner et al. 1987; Timmann and Horak 1997). These studies indicate a decrease 

in response magnitude with successive trials, which has been attributed to changes in 

central set (Horak 1996), consistent with the adjustment of feedback parameters that 

relate to muscle activity formation. Several feedforward strategies have also been 
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observed in the response to repetitive perturbations, where subjects make attempts to 

mitigate the destabilizing effects of expected perturbations by using bracing strategies to 

prepare for perturbations (Blouin et al. 2003) or making anticipatory adjustments to 

muscle activity (Carpenter et al. 2005; Horak et al. 1989). A quantitative understanding 

of the interactions between these feedback and feedforward strategies during the 

adaptation of the automatic postural response will provide valuable insight into the 

mechanisms used for postural control and motor control in general. 

 Through the integration of computer simulations and experimental data analysis, I 

investigated the neuromechanical control framework used to create the temporal patterns 

of muscle activation for postural control and how these mechanisms adapt to changing 

task conditions. In Chapters 2 and 3, I identify a feedback loop for human postural 

control based on delayed feedback of CoM kinematics and demonstrate its robustness to 

a variety of perturbation dynamics. In Chapter 4, I quantify the time course of the 

adaptation of CoM kinematics and temporal muscle activation patterns during repetitive 

perturbations. I then use a feedback model of human postural control to describe the 

changes to the postural control mechanism that are responsible for the adaptive changes 

to muscle activity. 

 5



CHAPTER 2 

A FEEDBACK MODEL FOR HUMAN POSTURAL CONTROL 

 

 
This chapter was originally published as a Report in the Journal of Neurophysiology:  

 
Welch TDJ and Ting LH. A feedback model predicts muscle activity during human 

postural responses to support surface translations. J Neurophysiol 99: 1032-1038, 2008. 

 
Used with permission by American Physiological Society. 

 

Abstract  

 Although feedback models have been used to simulate body motions in human 

postural control, it is not known whether muscle activation patterns during postural 

responses can also be explained by a feedback control process. We investigated whether a 

simple feedback law could explain temporal patterns of muscle activation in response to 

support-surface translations in human subjects. Previously, we used a single-link 

inverted-pendulum model with a delayed feedback controller to reproduce temporal 

patterns of muscle activity during postural responses in cats (Lockhart and Ting 2007). 

We scaled this model to human dimensions and determined whether it could reproduce 

human muscle activity during forward and backward support-surface perturbations. 

Through optimization, we found three feedback gains (on pendulum acceleration, 

velocity, and displacement) and a common time delay that allowed the model to best 

match measured electromyographic (EMG) signals. For each muscle and each subject, 

the entire time courses of EMG signals during postural responses were well-reconstructed 
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in muscles throughout the lower body and resembled an optimal solution. In ankle 

muscles, >75% of the EMG variability was accounted for by model reconstructions. 

Surprisingly, >67% of the EMG variability was also accounted for in knee, hip, and 

pelvis muscles, even though motion at these joints was minimal. Although not explicitly 

required by our optimization, pendulum kinematics were well-matched to subject center-

of-mass (CoM) kinematics. Together, these results suggest that a common set of feedback 

signals related to task-level control of CoM motion is used in the temporal formation of 

muscle activity during postural control.  

Introduction  

 We recently demonstrated that the entire time course of muscle activity following 

postural perturbations to standing balance in cats could be reproduced using simple 

feedback model of postural control (Lockhart and Ting 2007). A single-link inverted 

pendulum model with a delayed-feedback controller reproduced the characteristic 

temporal patterns of muscle activation throughout the cat hindlimb. Temporal patterns of 

muscle activation were generated through a combination of center of mass (CoM) 

acceleration, velocity, and displacement waveforms. These results suggest that a common 

set of variables related to the task goal of controlling body CoM motion are used to 

coordinate the activation of proximal and distal muscles during balance control. The goal 

of this study was to determine whether the same sensorimotor transformation could also 

be used to describe the temporal patterns of muscle activation observed in human 

postural responses.  

 Typically, feedback models of human postural control have reproduced joint 

torques and segmental motions of the body, but not muscle activity. Using single- or 
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multi-link inverted pendulum models, they demonstrate that a set of time-invariant 

feedback gains can explain joint kinematics during either quiet standing or postural 

responses to perturbations (Alexandrov et al. 2001a; Bortolami et al. 2003; Kiemel et al. 

2002; Kuo 1995; Park et al. 2004; Peterka 2000; Runge et al. 1995; van der Kooij et al. 

1999). Because feedback loops at each joint are used to generate stabilizing joint torques, 

these models cannot uniquely specify temporal patterns of muscle activation. Muscles 

must be explicitly included because the low-pass dynamics of the body introduce 

redundancy in the temporal domain, whereby different temporal patterns of muscle 

activation can produce similar kinematic outputs (Gottlieb et al. 1995; Lockhart and Ting 

2007).  

 Evidence suggests that muscle activity during human postural responses is 

dependent upon acceleration, velocity, and displacement signals, as previously 

demonstrated in cats. In response to support-surface translations, temporal patterns of 

muscle activity in humans and cats have a similar rapid initial rise followed by a longer, 

sustained plateau region (Macpherson et al. 1989). In cats, this waveform is due to CoM 

acceleration, velocity, and displacement feedback (Lockhart and Ting 2007). Consistent 

with this feedback model, muscle activity in human postural responses have been shown 

to be modified by perturbation velocity and total excursion (Diener et al. 1988), 

smoothness of the initial perturbation trajectory or acceleration, (Brown et al. 2001; 

Siegmund et al. 2002; Szturm and Fallang 1998), and the deceleration impulse at the end 

of the perturbation (Bothner and Jensen 2001; Carpenter et al. 2005; McIlroy and Maki 

1994).  
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 We hypothesized that the activity of multiple muscles during human postural 

responses to perturbation is generated by a common delayed-feedback law based on CoM 

motion. As a first step, we scaled the single inverted-pendulum feedback model used in 

Lockhart and Ting (2007) to human dimensions (similar to Peterka 2000) and examined 

whether this model was capable of reconstructing temporal patterns of muscle activation 

in proximal and distal muscles. We examined forward and backward support-surface 

perturbations to standing balance that elicited “ankle strategy” responses (Horak and 

Nashner 1986). We demonstrate that a delayed feedback law on CoM acceleration, 

velocity, and displacement can reconstruct temporal patterns of both muscle activity and 

CoM kinematics during postural responses to support surface translations. 

Methods  

 Seven healthy subjects (5 male, 2 female) from the Georgia Institute of 

Technology student population, aged 19.4±1.4 years (mean±s.d.), participated in the 

study. The experimental protocol was approved by both the Georgia Institute of 

Technology and Emory University Internal Review Boards. Subjects stood on two force 

plates installed on a moveable platform that translated in the horizontal plane. Subjects 

were instructed to cross their arms at chest-level, look straight ahead, and react naturally 

to the support-surface perturbations. A set of 20 acclimatization perturbations were 

followed by a set of 170 randomized forward and backward perturbations of varying peak 

velocity and acceleration. To test the feasibility of our model in this study, we analyzed 

responses to forward and backward perturbations of 12 cm total excursion, 25 cm/s peak 

velocity, and 0.3g peak acceleration. For each subject, five trials from each direction 
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were collected and averaged. A minimum of 5 minutes seated rest was enforced between 

each set of 60 perturbations to reduce muscle fatigue. 

 Platform acceleration and position, and surface EMG from eleven muscles in the 

legs and trunk were collected at 1080 Hz, synchronized with body segment kinematics 

collected at 120 Hz (Figure 2.1A). Platform signals were low-pass filtered at 30 Hz (3rd 

order zero-lag Butterworth filter). EMGs were collected from the following muscles on 

the right side of the body: TA, tibialis anterior; MG, medial gastrocnemius; SOL, soleus; 

VLAT, vastus lateralis; RFEM, rectus femoris; SEMB, semimembranosus; SEMT, 

semitendinosus; BFLH, long head of biceps femoris; BFSH, short head of biceps femoris; 

ES, erector spinae; RA, rectus abdominis. Raw EMG signals were high-pass filtered at 35 

Hz (3rd order zero-lag Butterworth filter), demeaned, half-wave rectified, and low-pass 

filtered at 40 Hz (1st order zero-lag Butterworth filter). EMG signals were then 

normalized to the maximum EMG observed in each muscle over all conditions for each 

subject. Body segment kinematics were derived from a custom bilateral Helen Hayes 25-

marker set that included head-arms-trunk (HAT), thigh, and shank-foot segments. Center 

of mass motion was calculated from kinematic data as a weighted sum of segmental 

masses (Winter 2005). 

Reconstruction of EMG Using a Feedback Control Model 

 We determined whether our feedback model could reproduce the time course of 

EMG signals in each subject. The model consisted of a single-link inverted pendulum, 

with a point mass m (equivalent to each subject’s mass) and length h, (equal to the height 

of each subject’s CoM during quiet standing) (Figure 2.1B). Disturbance torques 

calculated from experimentally-recorded platform accelerations were applied at the ankle 
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Figure 2.1 Example postural response, modeled as an inverted pendulum under delayed-feedback 
control. A) In response to a forward support-surface perturbation, the primary joint motion occurred at the 
ankle joint. Muscles throughout the body were activated in a coordinated fashion to counteract the 
disturbance (left). The original postural configuration was typically restored within one second of 
perturbation onset (right). B) The standing human was modeled as an inverted pendulum that was perturbed 
with a torque based on recorded platform acceleration [ ]. To generate the reconstructed EMG activity, 
pendulum displacement, velocity, and acceleration (p, v, a) were subject to a common time delay (λ) and 
feedback gains on each channel (k

)(td&&

p, kv, ka). The reconstructed EMG signal was then passed through a first-
order muscle model to generate the response torque to counteract the perturbation. 
 

 

to model the effect of support-surface perturbations (Lockhart and Ting 2007; Peterka 

2000). Delayed feedback of horizontal CoM trajectories [displacement, p(t); velocity, 

v(t); and acceleration, a(t)] were used to stabilize the inverted pendulum (Figure 2.1B). 

EMG reconstructions (EMGp) were taken as the output of the feedback controller, which 

was a linear combination of the weighted horizontal CoM kinematic trajectories at a 

common neural transmission delay (λ):  

 ( ) ( ) ( )λλλ −+−+−= taktvktpkEMG avpp . (1) 

Each EMG reconstruction was half-wave rectified and converted to a muscle torque using 

a first-order muscle model with a 40 ms time constant (He et al. 1991; Lockhart and Ting 

2007).  
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 For each muscle in each subject, the feedback gains (kp, kv, ka) and delay (λ) that 

best matched the EMG reconstruction to the measured EMG signal were found. We used 

an optimization (MATLAB, fmincon.m) to find the values of ki and λ using the following 

cost function: 

 ( )[ ] ( )
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end

0

  max  min μμ . (2) 

The first term penalized the error between the reconstructed and measured EMG signal 

over time as represented by the vector em with weight μs. The second term penalized the 

maximum deviation between the reconstructed and measured EMG signals at any single 

point in time with weight μm. The final term penalized the final state of the inverted 

pendulum if it differed from that of the experimental subject (i.e., upright configuration) 

with weight W. Note that this differs from the formulation of Lockhart and Ting (2007) in 

that only the EMG pattern, and not the CoM kinematics, was matched. Feedback gains 

were restricted to have values between 0 and 100, and the delay was restricted to between 

60 and 250 ms. We assessed the goodness of fit between reconstructed and measured 

EMG signals using both the coefficient of determination (r2) and the uncentered 

Pearson’s coefficient of determination (variability accounted for; VAF).  

 Recorded and reconstructed EMG patterns were compared to those predicted by 

an optimal control model (Lockhart and Ting 2007). Using a controller design similar to 

that of the linear quadratic regulator (He et al. 1991), this delayed quadratic regulator 

(DQR) model determined gains for CoM kinematic feedback channels, without a priori 

knowledge of recorded EMG, through the use of a quadratic cost function and time-
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delayed feedback. Feedback gains on delayed CoM kinematics (ki) were optimized using 

the following cost function: 

 . (3) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Ω++= ∫∈ end

t
T

GK
txdtuQxxEJ

end

0
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The first term penalized deviations from zero of the pendulum position, velocity, and 

acceleration (where ) with weights [ Tavpx = ] [ ]15005.0=Q . The second term 

penalized EMG activation level (u) with weight ρ = 20, requiring the minimum possible 

level of muscle activation to achieve the postural task. The final term penalized final 

pendulum configurations that were not upright with weight Ω. Because the optimization 

process consistently selected the minimum allowable feedback delay, this delay was set 

to 100 ms for all subjects to allow the calculation of an intersubject average of the 

optimal postural control solution and to facilitate qualitative comparisons with recorded 

and reconstructed EMG patterns.  

Results  

 Temporal patterns of muscle activity throughout the leg in both forward and 

backward perturbations were reconstructed by our feedback model in all subjects. 

Reconstructed EMG activity in ankle muscles TA and MG were well-matched to 

measured EMG activity in forward and backward perturbations, respectively (VAF > 

0.75; Figures 2.2A-B). Notable variations in the temporal patterns of muscle activity 

were observed across subjects; these variations were accounted for by differences in 

feedback gains (Figure 2.3D). Still, ankle muscle activity in all subjects resembled the 

optimal control solution although an exact match was not achieved by any subject (cf. 

Figures 2A-B, DQR Prediction; TA: r2 = 0.53 ± 0.16, VAF = 0.73 ± 0.09; MG: r2 = 0.45 
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± 0.13, VAF = 0.68 ± 0.08). Although the ankle strategy responses evoked produced little 

knee or hip motion (Figure 2.1A), muscle activity in biomechanically-relevant proximal 

muscles was also well-described by the feedback model (VAF > 0.67 across all muscles 

and subjects; Figure 2.2C). The time course of experimentally-recorded CoM kinematic 

trajectories were similar to the motion of the inverted pendulum model controlled by the 

reconstructed EMG pattern (Figure 2.3C). This was surprising because we only explicitly 

required the temporal EMG patterns, and not kinematics, to match the experimentally- 

recorded data, suggesting that the kinematics of the body are indeed encoded in the 

pattern of muscle activation used by the nervous system for postural control. 

 A decomposition of the reconstructed EMG into contributions from each feedback 

component demonstrates that the initial burst region was predominated by acceleration 

feedback, while velocity and displacement feedback contribute to the plateau region of 

muscle activity (Figure 2.3B). Acceleration feedback from the deceleration of the 

platform also contributed to the termination of muscle activity (solid gray, Figure 2.3B). 

The mechanical dynamics of the pendulum defined the temporal separation of the various 

feedback contributions; addition of independent delays for each channel had no 

significant effect on the model reconstructions [TA: Δr2 = 0.00 (p = 0.80), ΔVAF = 0.01 

(p = 0.31); MG: Δr2 = 0.05 (p = 0.11), ΔVAF = 0.02 (p = 0.10)]. 

 Acceleration feedback was required to reconstruct EMG activity using 

physiological delays. When acceleration feedback was removed, delays shorter than the 

55-ms latency of the stretch response during postural perturbations (Diener et al. 1984) 

were required (intersubject range=10−60 ms; Figure 2.3D). Without acceleration 

feedback, the early EMG activity in the initial burst and plateau regions, including the 
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Figure 2.2 Averaged time courses of recorded (solid gray) and reconstructed (solid black) EMGs 
during postural responses. Gray shaded regions indicate one standard deviation from the mean recorded 
EMG for each muscle across five trials. A) TA EMG signals in response to forward perturbations across all 
subjects are presented with the average optimal control solution (DQR Prediction). Significant variations in 
the temporal patterns of TA EMGs were observed across subjects; however, each response resembled the 
optimal DQR prediction. The feedback model was able to reproduce these variations with >75% VAF by 
choosing a slightly different set of feedback gains and delay for each subject. B) Similarly, MG EMG 
signals in response to backward perturbations were reconstructed with >77% VAF across all subjects and 
resembled the DQR prediction. C) Additionally, EMG signals from knee, hip, and pelvis muscle that were 
active during either forward or backward perturbations were also reproduced with >67% VAF across all 
subjects. 
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Figure 2.3 Contributions of each feedback component to the time course of EMG depend upon 
muscle- and subject-specific feedback gains. A) Recorded (gray) and reconstructed (black) TA EMG 
signals for Subject A. B) Decomposition of the reconstructed EMG signal (black) into individual feedback 
components from acceleration feedback (gray line), velocity feedback (gray dashed line), and displacement 
feedback (gray dotted line). Acceleration feedback contributes to the rapid initial rise in EMG activity. 
Velocity and displacement feedback contribute to later activity during the plateau region. C) Recorded 
(solid line) and predicted (dashed line) CoM acceleration, velocity, and displacement trajectories are also 
similar. This was surprising, because our optimization only explicitly required temporal patterns of EMG 
signals to be matched between the model and experiment. These results suggest that CoM kinematics are 
indeed used by the nervous system in generating EMG signals. The time course of each feedback 
component’s contribution to the reconstructed EMG is determined by these CoM kinematic trajectories 
after a delay (λ). The mechanical dynamics of the pendulum thus define the temporal separation of the 
contributions from each feedback channel, illustrated in B. The amplitude of the contributions from each 
feedback channel depends upon the magnitude of the feedback gains, which varies across muscles and 
subjects. D) Variations in feedback gains for TA and MG muscles across subjects (white boxes) when 
acceleration feedback was included. Boxes delimit the middle 50% of the data, with the center indicating 
the median value (thick black line). Whiskers delimit the full range of the data, excluding outliers 
(indicated with a +). When acceleration feedback was removed from the model (gray boxes), the remaining 
model parameters changed (* represents significant difference at p<0.05), resulting in modest or 
insignificant changes in goodness-of-fit. However, the range of the delays required to reproduce the EMG 
signals without acceleration feedback was reduced to durations shorter than the 55-ms short-latency stretch 
response during postural perturbations, and were therefore not physiological. 
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initial slope of the response, were under-predicted (data not shown). Further, the 

goodness-of-fit between reconstructed and recorded EMGs was reduced in TA [Δr2 = 

−0.14 (p = 7×10–4); ΔVAF = −0.07 (p = 0.006)], but not MG [Δr2 = −0.05 (p = 0.42); 

ΔVAF = −0.03 (p = 0.13)]. In both cases, however, the reconstructed EMGs without 

acceleration feedback were often insufficient to maintain the pendulum in an upright 

configuration (data not shown).  

Discussion  

 Our results demonstrate that the neural mechanisms generating temporal patterns 

of muscle activity for postural control in humans can be described by a feedback 

transformation from body kinematics to EMG. For ankle-strategy responses, an inverted 

pendulum model of human posture reproduced muscle- and subject-specific muscle 

activation patterns throughout the lower body using delayed feedback of acceleration, 

velocity, and displacement of the pendulum. The pendulum motion also matched 

recorded CoM kinematics, although not explicitly required by the optimization. Our 

simulation therefore provides a mechanistic model that functionally validated the 

sensorimotor transformation between CoM motion and muscle activity. These results 

suggest that a common set of feedback signals related to the task-level control of CoM 

motion are indeed used in the temporal formation of muscle activity during postural 

control.  

 The nervous system may take advantage of the naturally-occurring physical 

relationships between acceleration, velocity, and displacement to provide feedback 

control of the CoM without need for feedforward control mechanisms. Previous studies 

have observed a positive, phase-leading correlation between muscle activity during quiet 
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stance and CoM motion, suggesting the use of predictive, feedforward control 

(Fitzpatrick et al. 1996; Fitzpatrick et al. 1992; Gatev et al. 1999). The phase-lead 

characteristics of acceleration feedback may serve to explain this observation in the 

context of feedback control. In our model, the contribution of acceleration feedback is 

fully reflected in the muscular response before significant displacement-related 

information becomes available. Moreover, the acceleration component of the 

reconstructed muscular response leads CoM displacement, but occurs after the CoM 

acceleration induced by the perturbation. The phase lead of acceleration feedback with 

respect to CoM displacement in our simulations was approximately 135 ms, consistent 

with the 100–250 ms phase lead observed experimentally for high frequency postural 

sway (Fitzpatrick et al. 1992). The early burst of muscle activity during postural 

responses to perturbation, here shown to arise from acceleration feedback, has previously 

been attributed to a feedforward component (Diener et al. 1988). Consistent with our 

model, however, the middle portion of the response varies with changes in perturbation 

velocity, while the late response is affected by changes in perturbation displacement 

(Diener et al. 1988).  

 Several other studies provide support for acceleration feedback in postural 

control. Postural responses have been shown to scale with perturbation acceleration in the 

neck muscles of seated subjects (Siegmund 2004; Siegmund et al. 2002) and in 

perturbations to arm movements (Soechting and Lacquaniti 1988). In standing posture, 

muscle onset latency and total ankle moment are also affected by perturbation 

acceleration (Brown et al. 2001; Siegmund et al. 2002; Szturm and Fallang 1998). 

Further, the rate of muscle activity onset during perturbations to treadmill walking has 
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also been related to perturbation acceleration (Dietz et al. 1987). Several studies during 

standing postural responses suggest that the termination of the postural response results 

from feedback on the deceleration impulse (Bothner and Jensen 2001; Carpenter et al. 

2005; McIlroy and Maki 1994). Consistent with this finding, in our model, termination of 

the postural response can also be attributed to the delayed effects of the deceleration 

impulse (Figure 2.3A). 

 Our study supports the idea that a small set of variables related to task-level goals 

are used to coordinate multiple muscles throughout the body during postural control and 

other movements. Activity in muscles crossing the hip, knee, and ankle joints all 

exhibited temporal patterns that were explained by combinations of the CoM motion as 

modeled by an inverted pendulum. Although the hip and knee joints did not undergo 

appreciable joint angle changes (Figure 2.1A), proximal muscle activity may be 

necessary to minimize joint motions from interaction torques generated by ankle muscle 

activity (van Antwerp et al. 2007; Zajac and Gordon 1989). Therefore, whenever the 

ankle muscles are activated, the proximal muscles must also be activated to maintain the 

postural configuration. We propose that a muscle synergy defining consistent spatial 

patterns of multiple muscle activity for ankle-strategy responses (Torres-Oviedo and Ting 

2007) may be temporally regulated by feedback signals. The spatiotemporal patterns of 

muscle activation for postural control could thus be specified by defining a constant set of 

gains on CoM acceleration, velocity, and displacement for each muscle. 

 While we have demonstrated the feasibility of task-level feedback in explaining 

ankle strategy responses to support surface translations, more complex biomechanical 

models may be necessary to represent the full range of responses—ankle, hip, and mixed 
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strategies—in the postural control suite (Alexandrov et al. 2001b; Horak and Nashner 

1986; Runge et al. 1999). This is especially pertinent for modeling muscular responses to 

backward translations, as well as to support surface rotations and upper-body 

perturbations, where hip-strategy responses produce significant joint motions and muscle 

activation about the proximal joints (Jo and Massaquoi 2004; Runge et al. 1999). Because 

the hip-strategy response has a distinct muscle synergy pattern that can be decomposed 

from a mixed response (Torres-Oviedo and Ting 2007), it is possible that the hip-strategy 

response is also regulated by a task-level feedback controller that is independent of the 

ankle-strategy controller. 

 Comparisons of experimentally-recorded EMG with an optimal control solution 

suggest that the postural responses of our human subjects, while similar to the optimal 

solution, may not have completely achieved the optimal feedback pattern for responding 

to support-surface translations during the course of our experiment. In contrast, cats 

subjected to a similar perturbation protocol exhibited EMG patterns that matched the 

optimal solution as predicted by the DQR model (Lockhart and Ting 2007). The cats 

underwent a rigorous training regimen in which they learned to stand on the perturbation 

platform over the course of several weeks or months (cf. Macpherson et al. 1987). Our 

human subjects, however, were completely naïve to postural perturbation studies and 

each completed the experimental protocol in less than one hour. We hypothesize that, 

during their training regimen, the cats may have slowly adapted their muscular responses 

toward the optimal control solution for the task. We therefore predict that, with training, 

human muscle activity during postural responses may more closely match the optimal 

feedback pattern predicted by our DQR model. Alternately, it may be possible that each 
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human subject used a different set of optimality criteria, which could be modeled by 

varying the weights in the cost function (Qu et al. 2007), or changing the components of 

the cost function altogether. 

 Our feedback model may provide a low-dimensional framework for 

understanding variability in muscle activation patterns during postural control (Ting 

2007). Extensive intersubject variability in temporal patterns of muscle activity may be 

accounted for by varying only three feedback gains (Figure 2.2 A-B). Rather than 

performing a point-by-point adjustment of neural activity over time, the CNS may adjust 

gains to each feedback channel. This differential weighting of feedback channels may 

explain changes in muscle responses due to habituation and changes in central set (Horak 

et al. 1989). For example, when the interval between acceleration and deceleration of 

translation perturbations is short and predictable, subjects anticipate the deceleration 

timing (Carpenter et al. 2005; McIlroy and Maki 1994). The advance in the timing of 

response termination might occur due to changes in CoM velocity and displacement 

feedback gains, which alter the time at which the acceleration feedback triggers the offset 

of EMG activity.  
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CHAPTER 3 

A FEEDBACK MODEL EXPLAINS THE SCALING OF HUMAN 

POSTURAL RESPONSES  

 

 
This chapter is in preparation for submission to the Journal of Neurophysiology:  

 
Welch TDJ and Ting LH. A feedback model explains the differential scaling of human 

postural responses to perturbation acceleration and velocity (in prep). 

 

Abstract 

 While the neural basis of balance control remains unknown, previous studies 

suggest that a feedback law on center-of-mass (CoM) kinematics is used in the temporal 

patterning of muscle activity during human postural responses. We hypothesized that this 

feedback law can robustly describe the changes to muscle activity that occur with 

changing perturbation characteristics. The CoM motion of subjects was experimentally 

modulated using anterior-posterior support-surface translations of varying peak 

acceleration and velocity. EMG was examined for several muscles of the trunk and lower 

limbs to identify the effects of perturbation characteristics on the time course of muscle 

activity. Using an inverted pendulum model under optimal feedback control, we 

predicted the effects of perturbation characteristics on optimal EMG response patterns. 

Consistent with optimal model predictions, the initial burst of muscle activity scaled 

linearly with peak acceleration, while the tonic ‘plateau’ region scaled with peak velocity. 

Because EMG for all subjects/conditions did not exactly match the optimal solution, two 
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data-matching models were used to further evaluate the robustness of the feedback law. 

The first model used the predicted kinematics of an inverted pendulum model to 

reconstruct recorded EMG. The second model directly reconstructed EMG using 

recorded CoM kinematics. By adjusting four parameters related to CoM kinematics, these 

models successfully reconstructed experimentally-recorded EMG, accounting for 91% 

variability in all EMG patterns across subjects, muscles, and conditions. These results 

suggest that the CNS uses an invariant feedback law to develop the entire time course of 

muscle activity for a variety of postural disturbances. 

Introduction 

 The mechanisms responsible for the formation of muscle activity for postural 

control and the modification of these muscular patterns with changing task conditions are 

not well understood. Few studies have examined the entire time course of temporal 

patterns of muscle activation. Previous work has primarily focused on descriptive 

measures, such as mean electromyogram (EMG) level over fixed time windows and 

EMG onset/offset latencies, to quantify the changes in muscular responses due to 

perturbation. A theoretical framework for investigating the temporal generation of muscle 

activity patterns during postural responses and the variability in these patterns across 

subjects and trials would facilitate an understanding of the neural mechanisms mediating 

the observed variations in postural responses and provide clues regarding the 

transformation from sensory information to motor output during postural tasks. Such a 

framework would also allow the development of testable hypotheses regarding how EMG 

patterns should change under different experimental conditions (e.g., variations in 

perturbation characteristics, adaptation/learning, and neuromuscular impairment). 
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 We recently demonstrated that a feedback law could quantitatively describe the 

sensorimotor transformation between perturbation characteristics and muscle activation 

patterns in normal and sensory-loss cats (Lockhart and Ting 2007), as well as in healthy 

human adults (Welch and Ting 2008). When applied to a single-link inverted pendulum 

model, the temporal patterns of EMG during ankle strategy responses were reconstructed 

as the weighted sum of center of mass (CoM) acceleration, velocity, and displacement 

waveforms with a common time delay. By modulating four feedback parameters, we 

successfully reconstructed a wide variety of muscle activation patterns, both between 

subjects and muscles. Further, without explicit specification, the model accurately 

predicted the temporal characteristics of CoM acceleration, velocity, and displacement, 

which arise due to the combined effects of the perturbation itself and the neural feedback 

mechanism.  

 This feedback law predicts that changes in CoM kinematics during perturbation 

would modulate specific, localized changes in muscle activity during the time course of 

the postural response. Model simulations suggested that the initial burst of EMG and the 

termination of the muscular response were predominated by feedback of CoM 

acceleration, while velocity and displacement feedback acted upon the extended activity 

of the plateau region. Therefore, the model predicts that altering the perturbation 

acceleration waveform should directly modulate the shape of the initial burst and the 

duration of the postural response. Similarly, altering perturbation velocity should affect 

the magnitude of later activity during the plateau region of the response. 

 The perturbation-dependent changes in the temporal features of muscle activation 

patterns previously described during postural disturbances are consistent with these 
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model predictions. For example, the initial EMG burst amplitude scales with perturbation 

velocity, while the tonic “plateau” region scales with perturbation displacement (Diener 

et al. 1988); these authors did not control or explore the effects of perturbation 

acceleration on muscle responses. However, EMG amplitudes also depend on the 

smoothness of the initial perturbation trajectory (Brown et al. 2001; Siegmund et al. 

2002; Szturm and Fallang 1998) and the deceleration impulse at the end of the 

perturbation (Bothner and Jensen 2001), which determines the timing of the termination 

of the postural response (Carpenter et al. 2005; McIlroy and Maki 1994). This evidence 

suggests that ongoing feedback regarding the perturbation may be used to shape the 

temporal formation of muscle activity during responses to postural perturbations.  

 Do humans optimally use the available feedback regarding on-going perturbations 

to shape the muscle activity used to recover their balance? While muscle activity in 

highly-trained feline subjects matched an optimal feedback solution for postural control 

(Lockhart and Ting 2007), we recently showed that EMG in naïve human subjects merely 

resembled the optimal muscle activation pattern for ankle strategy postural responses 

(Welch and Ting 2008). The cats underwent a rigorous, reward-based training regimen 

over the course of several weeks that involved withstanding perturbations with varying 

characteristics in several directions; however, our human subjects were only subjected to 

an hour of perturbations of varying characteristics in two directions. We suspect that this 

intensive training period may have allowed sufficient time for cats to optimize the 

feedback mechanisms used during postural control, while the time of exposure was too 

short for humans to adopt a similar optimal feedback control strategy. Alternatively, 

humans may use a different set of optimal criteria for postural control or may weigh these 
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criteria differently based on their level of balance ability and personal experiences. 

Nevertheless, a more comprehensive investigation of human postural responses is 

warranted to determine whether these muscular response patterns reflect optimal 

feedback control.  

 Several omissions from previously-published works confound the ability to draw 

specific conclusions regarding the use of acceleration and velocity feedback for the 

temporal formation of muscle activity during postural control. Many authors did not 

report information regarding platform or CoM accelerations during their experimental 

sessions. In addition, many studies were performed using perturbation paradigms that 

exhibit significant correlation between the acceleration and velocity waveforms of the 

platform motion. Because our feedback model predicts that acceleration and velocity 

information have temporally separate effects on muscle activity, the independent 

manipulation of the acceleration and velocity characteristics used within the perturbation 

paradigm is necessary to thoroughly examine these feedback pathways and their 

contributions to muscle activity during postural control. 

 The goal of this paper was to test whether our CoM feedback law for the 

generation of temporal patterns of muscle activity during human postural control could 

account for changes in perturbation characteristics using an invariant feedback structure 

with constant feedback gains. We explicitly tested the effects of altering the temporal 

patterns of CoM kinematic trajectories (sensory input) on the evoked temporal patterns of 

muscle activity (motor output) and compared them to model predictions. To that end, we 

designed a custom perturbation platform in which the displacement, velocity, and 

acceleration of support surface translations can be specified and varied independently. 
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This careful decoupling of velocity and acceleration allowed the examination of the 

individual effects of these perturbation characteristics on the temporal patterns of muscle 

activity during the entire postural response. By comparing the recorded EMG to patterns 

of muscle activity predicted by an optimal feedback control model, we confirmed that the 

postural control of our naïve human subjects resembles but does not exactly follow an 

optimal feedback strategy. We therefore used two additional delayed feedback control 

models that match model predictions to recorded EMG data to demonstrate that the 

experimentally-measured effects of altering perturbation acceleration and velocity are 

consistent with those predicted by an invariant feedback law on CoM kinematics with 

constant feedback gains. These results suggest that feedback related to task-level 

variables may be encoded within the muscle activity patterns elicited in response to 

support surface translations.  

Methods 

 Seven healthy subjects (5 male, 2 female), ages 19.4 ± 1.4 years (mean ± SD), 

were recruited from the Georgia Institute of Technology student population to participate 

in an experimental protocol that was approved by both the Georgia Institute of 

Technology and Emory University Internal Review Boards. All subjects signed an 

informed consent form before participating. Subjects stood with weight evenly 

distributed upon two force plates installed on a moveable platform that could translate in 

the horizontal plane. Subjects focused vision to a scenic view 4.6 meters away and were 

instructed to cross their arms at chest-level and react naturally to the support surface 

perturbations.  
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Experimental Protocol 

 In order to vary the acceleration and velocity characteristics of subject motion 

independently, we designed two types of 12-cm anterior-posterior support surface 

translations (Figures 3.1B-C). The first type (constant acceleration) maintained constant 

peak acceleration, while peak velocity was varied between perturbations. In the second 

type (constant velocity), peak acceleration was varied, keeping peak velocity constant. 

The independence of acceleration and velocity was achieved through careful controller 

design; using a standard industrial controller to specify acceleration changes resulted in 

coupled variations in peak acceleration and velocity, as well as positional overshoot 

(Figure 3.1A). Perturbation characteristics spanned a range of velocities (5 cm/s steps 

between 25 and 40 cm/s) and accelerations (0.1g steps between 0.1 and 0.6g) that were 

varied independently in both forward and backward directions for a total of 34 

perturbation types. After a set of 20 acclimatization trials at an intermediate perturbation 

level (35 cm/s at 0.4g) in both directions, five replicates of each perturbation condition 

were administered in random order for a total of 170 perturbations per subject. Intertrial 

time varied randomly between 5 and 15 seconds. A minimum of 5 minutes seated rest 

was enforced between each set of 60 perturbations to reduce muscle fatigue. Only those 

trials in which subjects were able to maintain balance without stepping were included in 

further analyses. Results from one experimental condition (25 cm/s at 0.3g) have been 

previously published (Welch and Ting 2008). 

Data Collection 

 Platform acceleration and position, and surface EMG from fifteen muscles in the 

legs and trunk were collected at 1080 Hz, synchronized with body segment kinematics 
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collected at 120 Hz (Figure 3.2). Platform signals were low-pass filtered at 30 Hz (3rd 

order zero-lag Butterworth filter). Platform velocity was calculated by numerical 

differentiation of the filtered platform position. EMGs were collected from the following 

muscles: TA, tibialis anterior (bilateral); MG, medial gastrocnemius (bilateral); SOL, 

soleus; VLAT, vastus lateralis; RFEM, rectus femoris; SEMB, semimembranosus; 

SEMT, semitendinosus; BFLH, long head of biceps femoris; BFSH, short head of biceps 

femoris; ES, erector spinae (bilateral); RA, rectus abdominis (bilateral). Muscles 

collected bilaterally are reported herein using the suffixes ‘–R’ and ‘–L’ to indicate right 

and left legs, respectively. All other EMG signals were collected from the right leg only. 

Raw EMG signals were high-pass filtered at 35 Hz (3rd order zero-lag Butterworth filter), 

demeaned, half-wave rectified, and low-pass filtered at 40 Hz (1st order zero-lag 

Butterworth filter). EMG signals were then normalized to the maximum EMG observed 

in each muscle over all conditions for each subject. Body segment kinematics were 

derived from a custom bilateral Helen Hayes 25-marker set that included head-arms- 

trunk (HAT), thigh, and shank-foot segments. Center of mass motion was calculated from 

kinematic data as a weighted sum of segmental masses (Winter 2005).  

 Data Analysis 

Empirical Identification of Perturbation Effects on Muscle Activity 

 Changes in muscle activity due to the manipulation of perturbation characteristics 

were determined by examining mean muscle activity during specific time bins (Brown et 

al. 2001; Diener et al. 1988; Maki and Ostrovski 1993b). Recorded EMG following 

postural disturbance was examined during two consecutive 150-ms time periods 

following muscle onset –– the initial burst (IB) and plateau region (PR) (Figure 3.2). To 
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Figure 3.1 Optimized platform paradigm performance. A) While many traditional platform paradigms 
have been characterized by the covariation of peak velocity and acceleration as well as underdamped 
performance, our custom platform allowed the individual specification and variation of displacement, 
velocity, and acceleration under a strict control scheme. B) Our platform allowed the variation of velocity 
while maintaining peak acceleration and C) the variation of acceleration while maintaining peak velocity. 
Total platform displacement was not affected by either mode of dynamic variation and no positional 
overshoot was observed in this optimized paradigm. 
 

 

Figure 3.2 Representative response to a forward support surface translation. To a 
postural disturbance, muscles were activated in a coordinated fashion to produce forces to 
counteract the perturbation (left). This coordinated muscle activity served to rectify 
posture to an upright position, usually within one second of the perturbation onset (right). 
The shaded areas on EMG traces represent the initial burst (IB) and plateau region (PR) 
periods of muscle activity. 
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increase temporal resolution, each period was further subdivided to create a total of four 

75-ms periods following muscle onset (APR1 – 4), where IB is formed by APR1 and 

APR2, while PR is formed by APR3 and APR4. Mean EMG levels during each time 

period were calculated for each muscle and normalized to the maximum EMG observed 

in that muscle over all conditions for each subject. To examine the scaling of muscle 

responses with perturbation characteristics, we performed three-way ANOVA (velocity × 

acceleration × subject) on the mean EMG data during each period. For those muscles 

significantly affected by perturbation characteristics, we computed the slopes of the 

scaling relationships by performing linear regression analysis of mean EMG to peak 

platform acceleration and velocity. ANOVA results were evaluated at a significance level 

of α = 0.05, adjusted with a Bonferroni correction for multiple comparisons (α = 0.0125; 

n = 4). All averaged data are presented herein as mean ± SD. 

Prediction and Reconstruction of Muscle Activity Using CoM Feedback Law 

The DQR Optimal Feedback Control Model 

 We compared localized changes in EMG during perturbations of varying motion 

characteristics to optimal control solutions to these same perturbations derived from a 

previously-described delayed quadratic regulator, or DQR model (Lockhart and Ting 

2007; Welch and Ting 2008). Experimental subjects were modeled individually as single-

link inverted pendulums that were perturbed with disturbance torque trajectories 

calculated from experimentally-recorded platform accelerations (Figure 3.3A). A 

feedback controller was used to stabilize each inverted pendulum using delayed feedback 

of CoM displacement (p), velocity (v), and acceleration (a). From these feedback 
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channels, an EMG prediction (EMGp) was calculated as the linear combination of the 

weighted horizontal CoM kinematic trajectories at a common neural transmission delay:  

 ( ) ( ) ( )λλλ −+−+−= taktvktpkEMG avpp . (1) 

 Each EMG prediction was half-wave rectified and converted to a muscle torque, 

using a first-order muscle model, to counteract the disturbance torque. For each recorded 

muscle and perturbation condition, a feedback delay (λ) and three feedback gains (ki) 

were optimized in MATLAB (fmincon.m) based on optimal criteria aimed to minimize 

total muscle activation and kinematic deviation of the pendulum from the initial upright 

configuration, without regard to experimentally-recorded data:  
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The first term penalized deviations of the state variable [ ]Tavpx =  from zero with 

weights Q. The second term required the minimum possible level of muscle activation to 

achieve the postural task by penalizing EMG activation level (u) with weight ρ. The final 

term penalized non-zero final pendulum states with weight Ω. Feedback parameters (K) 

were restricted such that 0 < ki < 100 and 60 < λ < 250. 

The TSyID Feedback Control Model 

 We used a previously-described delayed feedback control model (temporal 

systems identification, or TSyID model) to reconstruct the entire time course of EMG 

recorded during experimental manipulations (Welch and Ting 2008). The TSyID model 

used the same inverted pendulum model as described for the DQR model (Figure 3.3A), 

with a different cost function, based on matching experimental data, to determine 

feedback parameters. For each recorded muscle and perturbation condition, a feedback  
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Figure 3.3 Feedback models for postural control. A) For both the delayed quadratic regulator (DQR) and 
temporal systems identification (TSyID) models, the standing human was modeled as an inverted 
pendulum that was perturbed using recorded perturbation acceleration trajectories. The model predicted 
pendulum kinematics and optimized feedback gains and a common time delay on horizontal pendulum 
acceleration, velocity, and displacement trajectories. The delayed, weighted kinematic feedback signals 
were summed to predict EMG patterns and a first-order muscle model predicted the resulting muscle torque 
to counteract the perturbation. The time constant of the muscle model was defined τ = 40 ms and the 
muscle model gain was A = 4mh [=] kg·m2/s, where m is the mass (in kg) of the subject and h is the height 
of the subjects CoM (in m). The DQR optimization was designed to choose feedback gains that minimized 
kinematic variation and muscle activity. The TSyID optimization chose feedback gains that minimized the 
square and maximum error between model reconstructions and recorded EMG. B) In the jigsaw model, 
recorded CoM kinematics from experimental subjects were used directly to reconstruct EMG patterns. 
EMG was reconstructed as the linear combination of the recorded kinematic signals (CoM acceleration, 
velocity, and displacement) at a common time delay. The jigsaw optimization chose the feedback gains and 
time delay that minimized square and maximum error between model reconstructions and recorded EMG.  
 

 

 33



delay (λ) and three feedback gains (ki) were optimized in MATLAB (fmincon.m) using a 

cost function that minimized the error between the model reconstructions and normalized 

experimentally-recorded EMG, while ensuring the stability of the inverted pendulum: 

 ( )[ ] ( )endx

t
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mGK
tWedteeeEJ

end
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The first term penalized the error between the reconstructed and measured EMG signal 

over time as represented by the vector em with weight μs. The second term penalized the 

maximum deviation between the reconstructed and measured EMG signals at any single 

point in time with weight μm. The final term penalized non-zero final states of the 

inverted pendulum  with weight W, promoting a final pendulum 

configuration resembling quiet upright stance.  

[ Tvpx = ]

The Jigsaw Feedback Control Model 

 In the jigsaw model, we used the CoM kinematics recorded during experimental 

sessions to directly reconstruct the entire time course of recorded EMG patterns. This 

model does not use an inverted pendulum to predict kinematics, but rather uses the exact 

motion of the CoM that corresponded to the recorded EMG activity in experimental 

subjects (Figure 3.3B). For each recorded muscle and perturbation condition, a feedback 

delay (λ) and three feedback gains (ki) were optimized in MATLAB (fmincon.m) using a 

cost function that minimized the error between reconstructed and recorded EMG patterns:  
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Note that the cost function for the jigsaw model is identical to that used during TSyID 

simulations (see Eq. 3), but excludes the final term related to upright pendulum 

configuration at the end of the simulation.  

Evaluation of the Feedback Parameters Selected by Feedback Models 

 To examine the consistency of this feedback law across perturbation conditions, 

we compared the feedback parameters that were chosen by each model across 

acceleration and velocity levels. Each model optimization resulted in a unique set of three 

feedback gains and one time delay for each subject, condition, and muscle. For each 

model and subject, we assessed the goodness of fit between predicted and recorded EMG 

signals using both the coefficient of determination (r2) and the uncentered coefficient of 

determination (variability accounted for; VAF). Next, we performed three-way ANOVA 

(velocity × acceleration × subject) on each feedback parameter, at a significance level of 

α = 0.05, to determine whether these feedback parameters remained constant or changed 

with the velocity and acceleration of perturbation. We finally performed regression 

analysis of mean feedback parameters with respect to peak velocity and acceleration to 

reveal any significant scaling relationships. 

 To investigate the temporal effects of varying perturbation characteristics on 

muscle activity, we generated a set of EMG predictions using the inverted-pendulum 

model with constant feedback gains. The subject-specific feedback gains and delay 

derived from the TSyID-reconstructed EMG of an intermediate perturbation condition 

(35 cm/s at 0.4g) were used to generate EMG predictions to all experimentally-recorded 

perturbations. These simulation results were compared across acceleration and velocity 

levels to determine how each individual feedback channel affected muscle activity. In 
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addition, goodness of fit between recorded EMG and constant-gain EMG predictions was 

evaluated for each muscle to determine whether a feedback law with constant gains was 

sufficient to account for the observed variations in muscle activity with perturbation 

characteristics.  

Results 

 Using a delayed feedback model, we identified a feedback law for human postural 

control that predicts the effects of perturbation characteristics on the time course of the 

muscular response to support surface translations. In response to a variety of 

perturbations, muscle activity during the initial burst of EMG scaled linearly with peak 

platform acceleration, while activity during the plateau region scaled linearly with peak 

platform velocity. The predictions of an optimal feedback model (DQR) of human 

postural control were consistent with these experimental observations, predicting that 

feedback parameters should be adjusted according to perturbation strength. However, 

muscle activity did not match the optimal solution in all conditions and a pendulum 

model using constant feedback gains predicted EMG across conditions with equal 

success. Further investigation using two data-matching models (TSyID and jigsaw) 

resulted in the successful reconstruction of recorded EMG across all conditions. 

Comparisons of feedback gains derived from these models across conditions suggested 

that the feedback parameters should remain constant with respect to perturbation 

characteristics. Together, these results suggest that the human postural control 

mechanism uses a feedback law with invariant feedback parameters to develop the entire 

time course of muscle activity following postural perturbation, though the selected 

feedback formulation may not be consistent with the optimal strategy.  
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Scaling of Muscle Activity with Perturbation Characteristics 

 In response to support surface translations in the sagittal plane, subjects activated 

muscles throughout the lower limbs and trunk to counteract perturbation-induced postural 

sway. Subjects exhibited postural sway in the opposite direction of platform motion, 

characterized by coordinated joint motions about the ankle, knee, and hip (Figure 3.2). 

Here, we will discuss results for the right-leg ankle dorsiflexor tibialis anterior (TA-R) 

during forward perturbations and for the right-leg ankle plantar flexor medial 

gastrocnemius (MG-R) during backward perturbations, though results were generally 

shared among all muscles evaluated. In response to forward perturbations of varying 

motion characteristics, the postural response of TA-R was characterized by an initial 

burst of EMG, after a latency of 119 ± 22 ms, followed by a sustained plateau region of 

tonic activity (Figure 3.2). Similarly, in response to backward perturbations, MG-R 

showed the characteristic initial burst and plateau regions at a latency of 136 ± 49 ms. 

The muscular response varied over the range of perturbation conditions, while 

maintaining this same temporal muscle activation profile (Figures 3.4A and C). Subjects 

typically returned to an upright position within one second, resulting in the offset of 

muscle activity.  

 The effects of acceleration and velocity on EMG activity were temporally 

separated within the time course of the postural response. Mean EMG during IB was 

correlated significantly with platform acceleration, but not with platform velocity (Figure 

3.4B). Peak platform acceleration had a significant effect during IB (TA-R: p = 1.11×10–

16; MG-R: p = 7.94×10–7), while the effect of peak platform velocity was insignificant  
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Figure 3.4 Scaling of human postural response with perturbation characteristics. Our custom 
perturbation platform allowed A) the variation of acceleration independent of peak velocity or C) the 
variation of velocity independent of peak acceleration. The muscle activity during the initial burst (IB) and 
plateau region (PR) of the automatic postural response scaled with platform acceleration and velocity, 
respectively. Depicted right-leg tibialis anterior (TA-R) EMG waveforms were collected during 
experimental sessions with Subject G for (A) a constant peak velocity of 30 cm/s with varying acceleration 
from 0.2 – 0.4g and (C) for a constant peak acceleration of 0.4g with varying velocity from 25 – 40 cm/s. 
B) At a constant peak velocity, muscle activity during the initial burst scaled linearly with platform 
acceleration, while no significant scaling is observed in the plateau region. D) Conversely, when peak 
acceleration was constant, muscle activity during the plateau region scaled linearly with platform velocity, 
while no significant scaling was observed in the initial burst. Results from the linear regression analysis are 
indicated by slope (β) and p-values. Significant regression results are indicated by * (p < 0.01) and ** (p < 
10–5), with regression data in red and p-values in bold font. 
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(TA-R: p = 0.03; MG-R: p = 0.77; see Tables 3.1 and 3.2). During IB, mean muscle 

activity scaled linearly with peak platform acceleration (TA-R: p < 10–16; MG-R: p < 

0.016) with an average TA-R slope between subjects of 0.56 ± 0.16 g–1 and average MG-

R slope of 0.41 ± 0.27 g–1. Conversely, during PR, mean EMG was correlated 

significantly with platform velocity (TA-R: p < 10–16; MG-R: p = 8.86×10–10), but not 

with platform acceleration for TA-R (p = 0.26; Figure 3.4D); MG-R showed a significant 

correlation of PR activity with platform acceleration (p = 2.65×10–5). Mean muscle 

activity during PR scaled significantly with peak platform velocity (TA-R: p < 10–16; 

MG-R: p < 0.008) with an average TA slope between subjects of 2.25 ± 0.72 s/m and 

average MG-R slope of 1.35 ± 0.80 s/m. For both IB and PR, regression slopes were 

similar between both sides of the body when muscles were collected bilaterally (data not 

shown). 

 Throughout the temporal pattern of activation, mean EMG gradually evolved 

from scaling with acceleration to velocity. Over the time course of each individual 

postural response, linear regression slopes decreased for acceleration scaling while 

gradually increasing for velocity scaling (Table 3.3). Mean TA-R EMG during APR1 

scaled linearly with peak platform acceleration (p < 10–16), but not with peak platform 

velocity (p > 0.362). Similarly, significant scaling with peak platform acceleration was 

found for APR2 (p < 0.004), with velocity scaling only observed at higher acceleration 

levels (0.3g and 0.4g; p < 0.004). Scaling with peak platform acceleration was not 

significant for APR3 (p > 0.069) and only at velocities of 40 cm/s (p < 10–16) for APR4. 

Velocity scaling was significant at all acceleration levels for both APR3 and APR4 (p < 

10–16). Similar results were obtained for all other muscles (data not shown). These 
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observations suggest that EMG during postural control may be formed by feedback from 

channels relaying temporally-separated information regarding CoM kinematics. 

 

Table 3.1 ANOVA p-values for EMG response to peak acceleration 
and velocity following forward perturbations 

 Forward Perturbations 

Initial Burst Plateau Region 
Muscle 

Peak Accel Peak Velo Peak Accel Peak Velo 

TA-L < 10–16 0.0086 0.089 < 10–16

MG-L 2.36×10–4 0.76 0.42 7.26×10–4

TA-R 1.11×10–16 0.03 0.26 < 10–16

MG-R 5.27×10–6 0.092 0.0011 1.92×10–10

SOL 5.91×10–6 5.18×10–6 0.11 0.0054 

VLAT 6.75×10–7 0.64 0.0091 2.82×10–10

RFEM < 10–16 0.40 0.010 0.0019 

SEMB 2.22×10–16 7.03×10–4 0.092 5.61×10–11

SEMT 1.55×10–15 0.0014 0.040 4.20×10–10

BFLH 7.07×10–11 0.0039 0.26 1.42×10–11

BFSH 2.39×10–11 0.018 0.41 1.47×10–10

ES-L 1.83×10–8 0.0055 0.23 0.20 

ES-R 6.93×10–7 0.0072 0.058 0.0039 

RA-L 3.79×10–7 0.42 0.0050 3.17×10–9

RA-R 9.05×10–4 0.47 0.71 2.26×10–6

p-values indicated in bold are significant at p < 0.0125 for n = 4 
comparisons. For all muscles during all periods, the subject factor was 
significant (p < 10–5) and the interaction between velocity and 
acceleration was not significant (p > 0.045). 
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Table 3.2 ANOVA p-values for EMG response to peak acceleration 
and velocity following backward perturbations 

 Backward Perturbations 

Initial Burst Plateau Region 
Muscle 

Peak Accel Peak Velo Peak Accel Peak Velo 

TA-L 6.66×10–16 0.54 6.14×10–7 3.71×10–9

MG-L 4.48×10–5 0.016 4.55×10–5 8.61×10–13

TA-R 5.02×10–9 0.39 0.0019 3.51×10–10

MG-R 7.94×10–7 0.77 2.65×10–5 8.86×10–10

SOL 1.39×10–9 0.0020 0.0021 < 10–16

VLAT 1.68×10–5 0.092 9.66×10–5 1.61×10–9

RFEM 1.11×10–7 0.0015 0.0011 2.62×10–9

SEMB 1.11×10–16 0.039 1.39×10–11 < 10–16

SEMT < 10–16 0.22 9.12×10–7 < 10–16

BFLH 1.70×10–7 0.54 0.031 0.0031 

BFSH 1.30×10–16 0.18 0.017 1.62×10–4

ES-L 0.0022 0.10 1.29×10–5 < 10–16

ES-R 3.74×10–5 0.89 1.56×10–4 5.92×10–11

RA-L 4.70×10–8 0.10 0.13 2.34×10–6

RA-R 1.86×10–7 0.35 0.0078 0.0024 

p-values indicated in bold are significant at p < 0.0125 for n = 4 
comparisons. For all muscles during all periods, the subject factor was 
significant (p < 10–5) and the interaction between velocity and 
acceleration was not significant (p > 0.045). 
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Feedback Law on CoM Kinematics for Postural Control 

 A feedback law transforming CoM kinematics to muscle output was capable of 

reconstructing EMG waveforms from several muscles throughout the lower limb and 

trunk in response to perturbations with a variety of velocity and acceleration 

characteristics. In general, model-derived muscle activation patterns contained an initial 

burst of muscle activity, followed by an extended plateau region of tonic muscle activity. 

Optimal feedback predictions derived from the DQR model resemble muscle activity in 

ankle muscles, but over-predicted low-level proximal muscle activity, resulting in low 

variability accounted for (VAF) in many muscles (Figure 3.5A), suggesting that the 

individual activity in these muscles is insufficient to stabilize the body using an optimal 

feedback control scheme. The goodness of fit between model and experimentally-

observed EMG was improved with the use of data-matching optimizations. EMG 

reconstructions from the TSyID model showed significant improvements in VAF; 

however, model kinematics deviated greatly from the pattern of CoM kinematics 

exhibited by experimental subjects. By using recorded CoM motion to reconstruct EMG 

patterns and modeling the acceleration-dependent response of the muscle spindle, VAF 

was increased to >61% across all subjects, muscles, and conditions (VAF = 0.91 ± 0.05). 

A comparison of recorded EMG in the right-leg tibialis anterior (TA-R) and model-

derived muscle activation patterns across all feedback models is illustrated in Figure 

3.5B. 
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Table 3.3 Postural response scaling evolves temporally from acceleration to 
velocity scaling 

 Postural Response Period 

 APR1 APR2 APR3 APR4 

Velocity Level Acceleration Scaling Slope 

25 cm/s 0.739 * 0.673 * 0.312 0.066 

30 cm/s 0.852 * 0.606 * 0.042 –0.076 

35 cm/s 0.446 * 0.305 † 0.257 0.275 

40 cm/s 0.388 * 0.295 * 0.129 0.408 *

 
Acceleration Level Velocity Scaling Slope 

0.2g 0.067 0.403 1.367 * 2.214 *

0.3g –0.074 0.749 † 1.835 * 2.393 *

0.4g –0.235 0.810 † 1.393 * 2.314 *

Significant regression slopes are in bold with the significance level denoted * 
(p < 10–5) and † (p < 0.05). 
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Figure 3.5 Summary of modeling results for all feedback models. A) Mean variability accounted for 
(VAF) across all subjects and conditions for each of the feedback models (DQR, TSyID, jigsaw, and jigsaw 
w/ stiction response) in antagonistic pairs of muscles on each segment of the lower limb and trunk. Large 
variability in the goodness of fit between optimal feedback (DQR) solutions and experimental EMG 
responses was observed across conditions and muscles, suggesting that the activity in individual proximal 
muscles is not sufficient to stabilize the body to postural perturbations under an optimal feedback control 
scheme. The use of data-matching models increased the VAF for all muscles, while reducing the variability 
of the VAF measure across subjects and conditions. Including the stiction response within the jigsaw model 
resulted in the best model fits, resulting in VAF = 0.91 ± 0.05 across all subjects, muscles, and conditions. 
B) The comparison of recorded EMG signals to model predictions/reconstructions for four conditions of 
extreme perturbation characteristics in right-leg tibialis anterior (TA-R) collected from Subject A. Optimal 
solutions derived from the DQR model resemble recorded EMG patterns, but are missing many features of 
the experimental data. The data-matching inverted-pendulum model (TSyID) significantly improved the 
matching of these features, but drastically altered the pendulum kinematics to arrive at these solutions. 
Using the recorded CoM kinematic data to make EMG reconstructions, the jigsaw model matched most 
features of the recorded EMG data, but was most successful in conditions with high accelerations (larger 
than 0.2g). By modeling the acceleration-dependent muscle spindle stiction response, jigsaw model 
matches were significantly improved across all subjects and conditions. 
 
 

Prediction of Muscle Activity using DQR Model 

 An optimal feedback control law predicted the changes in optimal response 

patterns that occur with the experimental manipulation of perturbation characteristics. 

Optimal muscle activation patterns for human postural control were computed, using the 

DQR model, to minimize both kinematic deviation of an inverted pendulum and total 
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muscle activation. Similar to the EMG patterns observed experimentally, optimal control 

predictions typically consisted of an initial burst of activity, followed by a period of tonic 

muscle activity, described as the plateau region (Figure 3.6). These features of the EMG 

predictions arose from separate feedback channels – the initial burst was predicted to be 

formed by feedback of CoM acceleration, while the plateau region was formed by a 

combination of CoM velocity and displacement feedback. Due to the simplicity of the  

 

 

Figure 3.6 Optimal EMG patterns derived from DQR model. The time course of 
recorded (solid gray) and optimal (solid black) EMGs for low- and high-
velocity/acceleration experimental conditions in muscles collected from Subject A. Gray 
shaded regions indicate one standard deviation of the mean recorded EMG. Recorded 
muscle activation patterns for the right-leg tibialis anterior (TA-R) in Subject A resemble 
the optimal control solution in all conditions with >64% VAF; however, the EMG 
patterns do not exactly match the optimal solution. EMG patterns from proximal leg and 
trunk muscles (e.g., SEMT and RA-R) are typically over-predicted by the model, 
suggesting that the activity in these muscles alone is not sufficient for stabilization, 
requiring that they rely more heavily on the concerted activity of several muscles to 
stabilize the body. 
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inverted pendulum model, the use of identical optimal criteria between subjects and 

muscles, and the high repeatability of platform motion in each experimental condition, 

DQR optimal EMG predictions for each condition were identical between muscles and 

very similar among all subjects.  

 Experimentally-recorded EMG exhibited a large amount of inter-subject and 

inter-muscle variability, preventing an exact match of this optimal solution by any subject 

or muscle for all conditions. EMG of TA in both legs most closely resembled the optimal 

pattern in all subjects across conditions, with >41% VAF (VAF = 0.78 ± 0.07), with 

EMG from the triceps surae and proximal leg and trunk muscles exhibiting weaker 

matches to the optimal DQR solution, with only >25% and >3% VAF across conditions, 

respectively (triceps surae: VAF = 0.68 ± 0.09; proximal: VAF = 0.61 ± 0.12) (Figure 

3.6). While many muscles, especially those located proximally at the hip joint, rely 

heavily on the concerted activity of several muscles to stabilize the body, the DQR model 

required that each muscle stabilize the inverted pendulum alone during simulations. 

Therefore, the low-level activation exhibited by proximal muscles was not sufficient to 

maintain the pendulum in the upright configuration, resulting in the over-prediction of 

optimal muscle patterns and weak matches to the optimal solution for these muscles. 

Feedback gains derived using the optimal DQR model were highly variable between 

conditions (for all gains, p < 10–16 with respect to velocity and p < 1×10–3 with respect to 

acceleration) (Figure 3.7), suggesting that the optimal postural control solution may 

involve the adjustment of feedback gains with changes in perturbation characteristics. 

 To determine whether a feedback law with constant feedback gains could also 

predict muscle activity for postural control, we used subject-specific feedback gains from 
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Figure 3.7 Variations in feedback gains between experimental conditions. The variability of 
acceleration, velocity, and displacement gains for right-leg tibialis anterior (TA-R) are illustrated across (A) 
peak acceleration and (B) velocity levels for the DQR model and the jigsaw model with stiction response. 
Data points represent the mean feedback gain across all subjects for the indicated acceleration and velocity 
level. The optimal DQR model predictions suggest that feedback gains should change significantly with 
respect to acceleration and velocity. The jigsaw model indicates similar feedback gains that vary less with 
respect to perturbation characteristics, suggesting that subjects may be approaching an optimal strategy for 
feedback-mediated postural control. 
 

a perturbation of intermediate magnitude (Table 3.4) to predict the muscle activity in all 

perturbation conditions. With constant feedback gains, the feedback law implemented 

within the inverted pendulum model showed equivalent performance to the optimal DQR 

model across all experimental conditions. Predictions of muscle activity using constant 

gains were similar to those with gains chosen for each condition separately (Figure 3.8), 

consisting of an initial burst dominated by acceleration feedback and a plateau region 

comprised from velocity and displacement feedback. Constant-gain EMG predictions 

closely resembled bilateral TA EMG in all subjects across conditions with >46% VAF 

(VAF = 0.75 ± 0.10), while the predictions of triceps surae and proximal leg and trunk 

 47



muscles resulted in less successful matches to experimental data with >27% and >6% 

VAF, respectively (triceps surae: VAF = 0.67 ± 0.11; proximal: VAF = 0.58 ± 0.17). In 

general, constant-gain simulations better matched recorded EMG in conditions with peak 

accelerations greater than 0.2g. 

 

Table 3.4 Subject-specific gains from model predictions of TA-R activity for an intermediate 
forward perturbation (35 cm/s at 0.4g) 

Optimal Feedback Gains Subject Mass (kg) CoM Height (m) 

kp kv ka λ 

A 73.08 1.04 3.8385 1.3879 0.1495 78.6209 

B 57.65 1.06 6.4977 0.5681 0.1081 60.0833 

C 76.40 1.15 2.2893 1.6221 0.1266 98.4857 

D 70.22 1.08 5.3632 0.7808 0.0862 105.0212 

E 65.18 1.05 12.8104 0.7027 0.1698 82.1591 

F 73.31 1.17 7.5426 0.6675 0.1151 77.0736 

G 81.45 1.23 6.9351 0.9289 0.1261 115.9319 

 

 

 Optimal feedback model simulations in both the standard and constant-gain 

formulations predicted a temporal scaling phenomenon of EMG magnitude with 

perturbation characteristics that was similar to the observed trend in experimentally-

observed EMG. With constant velocity, changes in acceleration feedback were predicted 

to affect muscle onset slope and early muscle activity during the initial burst period (IB) 

(p < 10–16; Figures 3.9A-B). In contrast, when acceleration was maintained at a constant 

level, variations of velocity feedback were predicted to affect later muscle activity during 

the plateau region (PR) (p < 10–16; Figures 3.9C-D). Significant effects of velocity 
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feedback on IB activity were also noted for higher acceleration levels. These observations 

confirm that the scaling of muscle activity with perturbation acceleration during IB and 

with perturbation velocity during PR may arise from a postural mechanism that uses a 

feedback law on CoM kinematics.  

 

 

 

Figure 3.8 Constant-gain EMG predictions derived from pendulum model. The time 
course of recorded EMG (solid gray) and constant-gain EMG predictions (solid black) for 
low- and high-velocity/acceleration experimental conditions in muscles collected from 
Subject A. Gray shaded regions indicate one standard deviation of the mean recorded 
EMG. Predictions of EMG to all experimental conditions were made using feedback 
gains determined for an intermediate condition (35 cm/s at 0.4g). Similar to optimal 
feedback control solutions, model predictions obtained using constant feedback gains 
matched experimentally-recorded right-leg tibialis anterior (TA-R) EMG signals in 
Subject A across all conditions with >65% VAF. The constant-gain predictions of 
proximal leg and trunk EMG (e.g., SEMT and RA-R) were less successful, resulting in 
over-prediction in many conditions. This suggests that the feedback gains used during 
postural control may be robust to changes in perturbation characteristics, despite the 
range of gains selected during optimal feedback model simulations. 
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Figure 3.9 Inverted pendulum model predicts changes in muscle activity associated with perturbation 
characteristics. A) With constant feedback gains, changes in acceleration are predicted to affect the onset 
slope and magnitude of the initial burst of muscle activity. Depicted right-leg tibialis anterior (TA-R) EMG 
predictions are for a constant peak velocity of 30 cm/s with varying acceleration from 0.2 – 0.4g in Subject 
G. B) For constant feedback gains, the feedback model predicts a linear increase in muscle activity during 
the initial burst (IB) period, but no effects during the plateau region (PR) due to changes in peak 
perturbation acceleration. C) Changes in muscle activity due to velocity feedback are predicted to occur in 
the plateau region. Depicted TA-R EMG predictions are for a constant peak acceleration of 0.4g with 
varying velocity from 25 – 40 cm/s in Subject G. D) The model predicts an increase in muscle activity 
during the IB period for high acceleration levels and a similar increase in activity during the PR due to 
changes in peak perturbation velocity. Results from the linear regression analysis are indicated by slope (β) 
and p-values. Significant regression results are indicated by * (p < 0.01) and ** (p < 10–5), with regression 
data in red and p-values in bold font. 
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Reconstruction of Muscle Activity using TSyID Model 

 Because subjects did not match optimal control model predictions in all 

conditions, a data-matching version of the inverted pendulum model (TSyID) was used to 

determine the sub-optimal feedback parameters used to create muscle activity during 

postural control. Reconstructed muscle activity derived from the TSyID model matched 

experimentally-recorded EMG for several muscles throughout the lower limb in all 

conditions (Figure 3.10). The waveforms of EMG reconstructions typically consisted of 

an initial burst of activity followed by an extended plateau region of muscle activation, 

which was similar to the time course of recorded EMG waveforms. We previously 

demonstrated that the feedback decomposition of reconstructed EMG indicates that the 

initial burst regions of muscle activity was predominated by CoM acceleration feedback, 

while CoM velocity and displacement feedback contributed to muscle activity during the 

plateau region (Welch and Ting 2008). Here, we demonstrate that, by modulating 4 

feedback parameters, this feedback law is capable of predicting the large variety of 

temporal muscle activation patterns evoked when perturbation characteristics are altered. 

TSyID optimizations resulted in a variable set of feedback gains between conditions and 

subjects (Table 3.3); however, the resulting predictions of muscle activity accounted for 

>61% of the variability in ankle muscle activity (right-leg SOL and bilateral TA and MG) 

across all subjects and conditions (VAF = 0.86 ± 0.05). Activity in proximal leg and 

trunk muscles was also well-reconstructed by the TSyID model, accounting for >27% of 

variability (VAF = 0.82 ± 0.11).  
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Figure 3.10 TSyID model reconstructions of experimental EMG. The time course of recorded (solid 
gray) and model-derived (solid black) EMGs and kinematics for low- and high-velocity/acceleration 
experimental conditions from TSyID simulations of muscles collected from Subject A. Gray shaded 
regions indicate one standard deviation of the mean recorded signal. A) The feedback law on pendulum 
motion reconstructed experimentally-recorded right-leg tibialis anterior (TA-R) EMG patterns in all 
conditions with >78% VAF. Proximal muscle activity was reconstructed with varying degrees of success, 
as indicated by reconstructions of VLAT and RA-R. B) Each muscle activation pattern resulted in a unique 
pattern of pendulum motion because of the interaction between muscle and perturbation torques. Though 
EMG reconstructions were successful in many conditions, the pendulum kinematics used to make EMG 
reconstructions for conditions with low peak acceleration and velocity did not match recorded CoM 
kinematic motion. 
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 Simulations for proximal muscles often resulted in the over-prediction of muscle 

activity, especially during the plateau region of the response, yielding low VAF in several 

muscles/conditions. This may have resulted because the low level of activity in these 

muscles was insufficient to maintain the pendulum in the upright configuration, requiring 

additional muscle activity to satisfy this terminal constraint. In general, better matches of 

model reconstructions to experimental data were obtained for accelerations larger than 

0.2g, where pendulum kinematics were well-matched to recorded CoM kinematics 

(kinematic VAF > 66%; kinematic VAF = 0.87 ± 0.08), despite the fact that kinematic 

matching was not specified in the cost function. Still, the reconstruction of muscle 

activity from those conditions with accelerations at or below 0.2g resulted in good 

matches to recorded EMG, however the kinematics of the pendulum often differed 

substantially from the recorded CoM kinematics (kinematic VAF > 38%; kinematic VAF 

= 0.68 ± 0.15). This dependence upon kinematic matching for model success, paired with 

the emergent matching of kinematics without specification within the model, provides 

strong support for the idea that task-level feedback is encoded within the muscle activity 

patterns for postural control. 

Reconstruction of Muscle Activity using Jigsaw Model 

 To further investigate the role of kinematic feedback within the formation of 

muscle activity for postural control, we reconstructed temporal muscle activation patterns 

using the jigsaw model, which directly transformed recorded CoM kinematics into an 

EMG reconstruction. Like the reconstructions derived from the pendulum model, jigsaw 

model EMG reconstructions consisted of an initial burst of activity followed by a plateau 

region, with a similar time course to recorded EMG data. The jigsaw EMG 
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reconstructions reproduced recorded EMG with >55% VAF in all muscles and subjects 

for all conditions (VAF = 0.90 ± 0.06) (Figure 3.11). The model predicted that feedback 

gains were constant with respect to peak acceleration, but found variable gains with 

respect to peak velocity. Similar to TSyID model results, jigsaw reconstructions of 

muscle activity were best in conditions with peak accelerations larger than 0.2g, where 

>66% of variability was accounted for (VAF = 0.90 ± 0.05); the reconstruction of EMG 

from conditions with accelerations at or below 0.2g resulted in short, wide initial burst 

regions in comparison to experimentally-recorded data, accounting for >55% of 

variability (VAF = 0.90 ± 0.07). This discrepancy was more pronounced in subjects and 

muscles with EMG patterns that contain strong, well-defined initial burst regions (e.g., all 

muscles for Subjects A and G; ankle muscles for all subjects).  

 The reconstruction of muscle activity during low-acceleration conditions was 

improved by including the transient initial response of the muscle spindle within the 

jigsaw model formulation. The muscle spindle exhibits an acceleration-dependent burst 

in firing frequency near the beginning of stretch (Schafer 1967) that is ended abruptly as 

force and strain accumulate within the fiber, causing cross-bridges to either break or 

rapidly detach (Henatsch 1971). These cross-bridges then reattach to allow the continued 

accumulation of fiber force with length changes (Getz et al. 1998). We empirically 

modeled this ‘stiction’ response by eliminating acceleration feedback within the jigsaw 

model from 175 – 300 ms following platform motion onset. This jigsaw model 

formulation, denoted ‘jigsaw model w/ stiction’, resulted in the selection of feedback 

gains that approached constancy for MG, but increased the variability of feedback gains 
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Figure 3.11 Jigsaw model reconstructions of experimental EMG. The time course of 
recorded (solid gray) and reconstructed (solid black) EMGs for low-velocity/acceleration 
and high-velocity/acceleration experimental conditions in muscles collected from Subject 
A. Gray shaded regions indicate one standard deviation of the mean recorded EMG. The 
feedback law on CoM motion reconstructed experimentally-recorded right-leg tibialis 
anterior (TA-R) EMG patterns in all conditions with >84% VAF. The reconstruction of 
EMG in conditions with low acceleration and velocity was less successful, especially 
during the initial burst region of EMG patterns. Nevertheless, the jigsaw model was 
capable of reconstructing EMG from all muscles and conditions with >55% VAF across 
all subjects, suggesting that information related to the control of the CoM is encoded 
within the EMG used for postural control. 
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for TA with respect to perturbation condition, though remaining relatively constant 

(Figure 3.7). Reconstructions of EMG patterns using the jigsaw model w/ stiction were 

significantly improved for all muscles in conditions with accelerations at or below 0.2g 

(ΔVAF = -0.05 – 0.22; p = 1.73 × 10–17) and those with accelerations greater than 0.2g 

(ΔVAF = -0.09 – 0.18; p = 6.83 × 10–30). The observed improvements to model 

reconstructions were most pronounced in subjects and muscles with strong, well-defined 

initial burst regions, resulting in well-matched model reconstructions accounting for 

>61% variability in all subjects, muscles, and conditions (VAF = 0.91 ± 0.05) (Figure 

3.12). By showing the direct relationship between CoM kinematics and EMG patterns 

observed during postural control, these results demonstrate that a feedback law 

transforming task-related variables to muscle activation patterns may be used to maintain 

balance during postural disturbances across a range of perturbation characteristics. 

Discussion 

 Our results suggest that the neural mechanisms responsible for postural control 

reflect feedback control, even at the level of muscle activity. By perturbing a feedback 

model of postural control with experimentally-recorded acceleration waveforms, we 

directly assessed the effects of perturbation characteristics on the resulting muscle 

activation pattern. Through the manipulation of four feedback parameters related to CoM 

kinematics, three feedback models successfully accounted for the experimentally-

observed changes in muscle activity that occur with changes to task conditions, 

reinforcing the robustness of this feedback law for postural control. While the scaling of 

muscle activity during specific time periods was accomplished through the independent 

modulation of four feedback parameters, each subject used a unique and constant set of  
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Figure 3.12 EMG reconstructions from modified jigsaw model including spindle stiction response. 
The time course of recorded (solid gray) and reconstructed (solid black) EMGs for four experimental 
conditions in several muscles collected from Subject A. Gray shaded regions indicate one standard 
deviation of the mean recorded EMG. By including the acceleration-dependent stiction response in muscle 
spindles, the reconstruction of EMG during low acceleration and velocity conditions in all subjects and 
muscles was improved (p < 10–16), without adversely affecting reconstructions at higher acceleration and 
velocity levels (VAF = 0.91 ± 0.05). 
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feedback gains, accounting for a wide range of inter-subject and inter-trial variability.  

 The identification of the scaling relationship between the muscle activity for 

postural control and peak acceleration and velocity was only possible due to precise 

control over perturbation dynamics. In previous studies, the attribution of observed 

scaling phenomena to particular perturbation characteristics was often precluded by the 

covariation of acceleration and velocity that is typical with many perturbation paradigms 

(Maki and Ostrovski 1993b; Szturm and Fallang 1998), possibly resulting from the use of 

controllers in which only the displacement waveform is specified (Brown et al. 2001). In 

addition, perturbation platforms may have exhibited positional overshoot and an 

underdamped ‘ringing’ in the acceleration characteristics of platform motion, similar to 

our findings with a standard industrial controller (Figure 3.1A). If the postural 

mechanism shapes its response using feedback of the encountered perturbation, then it 

can be expected that any intertrial differences in platform motion will alter the resulting 

response. Therefore, in order to test specific hypotheses regarding the effects of 

perturbation dynamics on the postural response, strict but flexible control over those 

dynamics is of critical importance. 

The Importance of Feedback in Postural Control 

 Because of the high redundancy in the muscular patterns that can be used to 

produce a given kinematic output, previous models that focused on kinematics alone 

were unable to suggest the consequences of altered feedback on muscle activation 

patterns for postural control. In order to gain such insight from a feedback model of 

human posture, a muscle model must be included to translate functional feedback signals 

into muscle torques. With the addition of a muscle model, the use of higher-order 
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acceleration feedback signals is required to mitigate time-delayed, low-pass effects in the 

muscles. Such phase-leading acceleration feedback is also beneficial to offset neural 

processing and transmission delays, along with delays associated with muscle activation 

dynamics, leading to more stable system dynamics. By using acceleration information in 

addition to lower-order feedback, the current model not only successfully reconstructed 

experimentally-recorded EMG patterns, but also predicted the scaling with perturbation 

characteristics derived from EMG data collected over a variety of experimental 

conditions. Without the use of acceleration feedback, realistic EMG patterns do not 

emerge from model simulations (Welch and Ting 2008).  

 This feedback structure provides a mechanism to explain the experimentally-

observed temporal scaling of muscle activity with perturbation characteristics. The 

influences of perturbation characteristics highlighted by Diener and colleagues (1988) are 

demonstrated by the feedback components of our model reconstructions. Consistent with 

their findings, reconstructed EMG exhibited velocity dependence during the late portions 

of the initial burst of muscle activity, as well as throughout the plateau region, with the 

effects of displacement predominant only in the plateau region. Our experimental data 

may also serve to better clarify the scaling phenomenon reported in their important study. 

While the current study identified scaling of muscle activity during the initial burst with 

peak acceleration, which seems to contradict their suggestion that muscle activity during 

this time period scales with perturbation velocity, when data are evaluated over all 

conditions rather than at each individual velocity or acceleration level, the results of the 

two studies are in agreement (Figure 3.13). Velocity scaling is present in the initial burst 

only if all data are pooled across all conditions; if segregated by acceleration level, when 
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the peak acceleration is increased, the muscle activation increases to a larger but constant 

level with respect to velocity (Figure 3.4D). A similar scaling result can be observed with 

acceleration during plateau region if data are pooled together, but not when separated by 

velocity level. These results suggest that the velocity scaling previously observed during 

the initial burst of muscle activity may have resulted from the interaction between 

acceleration and velocity feedback due to their temporal overlap. 

 The scaling of postural responses to perturbation acceleration suggests that 

acceleration information is available to the CNS, although the specific sensory modalities 

are not known. Cutaneous receptors, such as plantar mechanoreceptors in the foot, may 

transmit shear force information when stimulated by the onset of platform motion that is 

proportional to horizontal accelerations (Maki and Ostrovski 1993b; Morasso et al. 

1999). Acceleration information may also be derived from Golgi tendon organs, which 

are very sensitive to muscle tension (Gregory et al. 2002; Houk and Simon 1967). Golgi 

tendon organs also play a role in the formation of muscle activity for weight support 

(Dietz 1998; Dietz et al. 1992) further suggesting their role in providing feedback for 

postural control.  

 The muscle spindle stretch response exhibits a burst in firing frequency at the 

onset of stretch, which has been shown to scale with stretch acceleration (Schafer 1967), 

and may represent the local acceleration of the part of the muscle in which the spindle is 

embedded (Schafer and Kijewski 1974). This acceleration response likely results from 

stiction within the intrafusal fiber (Jansen and Matthews 1962; Lennerstrand and Thoden 

1968). As the fiber is stretched, force accumulates due to the resistance to stretch of  
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Figure 3.13 The interaction between acceleration and velocity masks results when data from all 
conditions are pooled. A) When pooled together, data suggest significant scaling of the initial burst (IB) 
with both peak acceleration and velocity (p < 10–16). B) A similar trend of both acceleration and velocity 
scaling appears in the plateau region (p < 10–16). These universal scaling trends may occur due to the 
interactions between acceleration and velocity feedback during postural control. Significant regression 
results are indicated by ** (p < 10–5), with p-values in bold font. 
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temporarily-attached actin-myosin complexes. The end of this acceleration response was 

initially thought to result from the breaking of these actin-myosin complexes as force 

within the fiber increases (Henatsch 1971), however modeling efforts demonstrated that 

the forces within the muscle spindle are consistent with the detaching of cross-bridges in 

prepowerstroke phase at a critical strain level (Getz et al. 1998). We hypothesize that this 

process may end the encoding of acceleration feedback by the spindle. After detaching, 

these cross-bridges rapidly reattach, allowing for further increases in force with length 

changes (Getz et al. 1998), and thereby allowing for the renewed encoding of 

acceleration feedback.  

 The duration of the initial burst in spindle firing frequency also varies with 

respect to the acceleration and velocity characteristics of the stretch. In fast stretches to 

the muscle spindle at ~12% resting length per second, the initial burst was characterized 

by a sharp elevation in firing frequency of a few spikes, lasting only tens of milliseconds 

(Haftel et al. 2004). However, in slow 2°/s wrist movements, eliciting slower stretches to 

the muscle spindle of ~0.2% resting length per second, the initial burst was broader, 

lasting up to 500 ms (Cordo et al. 2002). In our modified jigsaw model, we empirically 

selected the time period during which acceleration feedback was removed to begin 175 

ms following perturbation. Using published human muscle morphometric data for TA 

(Maganaris et al. 1999) and the measured angular movement of the ankle during our 

postural perturbations, we estimate that the stretches experienced by muscles spindles in 

the present study to be ~1–2% resting length per second, which lies within the range 

established by these previous studies. Together, this may serve to explain the observed 
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short-duration initial burst periods for recorded EMG during low-acceleration conditions, 

where the broad initial CoM acceleration lasts in excess of 175 ms.  

Feedback of Task-Level Variables for Postural Control 

 Are local variables, such as joint angles, sufficient to provide feedback for 

postural control? An examination of joint angular kinematics reveals that these local 

signals reflect neither the motion of the CoM nor that of the platform itself (Figure 3.14). 

In fact, the initial direction of changes in joint kinematics upon perturbation were not 

consistent between conditions, even within the same subject. These changes also 

occurred in close timing with the onset of EMG, especially in slower perturbations, 

lending them inappropriate as feedback signals for muscle activity formation (Figure 

3.14, right panel). Further, joint kinematic changes did not scale with platform motion 

characteristics, suggesting that the local joint changes may be an inappropriate signal for 

feedback control for balance. Instead, our experimental data corroborated by modeling 

simulations demonstrate that feedback related to CoM kinematics, a global task-related 

variable, is likely used to create appropriately-scaled responses in the face of postural 

perturbations. 

 The nervous system may derive a global estimate of the destabilizing effects of a 

postural perturbation through the integration of multiple sensory channels. Spatial 

patterns of muscle activation in the legs, trunk, and neck during the automatic postural 

response cannot be attributed to any single somatosensory or vestibular signal, but 

require multisensory integration, whether subjects are standing (Carpenter et al. 1999; 

Inglis and Macpherson 1995; Keshner et al. 1988; Ting and Macpherson 2004) or seated 
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Figure 3.14 A comparison of platform, CoM, and joint angular kinematics. The acceleration, velocity, 
and displacement signals, each as related to platform, CoM, and joint motion, are illustrated for Subject G 
in response to a forward perturbation of 35 cm/s at 0.4g (left panel) and for Subject E in response to a 
backward perturbation of 25 cm/s at 0.1g (right panel). Positive joint angular kinematics indicate ankle 
plantar flexion, knee extension, and hip extension. While platform and CoM motion seem to have similar 
kinematic characteristics which are reflected in the magnitude of EMG patterns elicited following the 
perturbations, joint angular kinematics show significant deviation from these patterns of motion, 
characterized by high frequency variations of angular acceleration and velocity. In slower perturbations, the 
timing of joint angle changes occurs in close proximity to the onset of EMG – too late to be used as a 
feedback signal for the formation of muscle activation patterns. In addition, the timing of joint angular 
deflections does not correspond to the timing of muscle activity at the respective joints. Further, the initial 
direction of joint motion varied between conditions and peak joint excursion did not scale with respect to 
perturbation characteristics. Together, these observations suggest that local variables, such as joint motion, 
are not an appropriate signal for feedback-mediated postural control. 
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(Forssberg and Hirschfeld 1994; Keshner 2003). Moreover, when similar postural 

response patterns are observed across a variety of conditions, the only variable that 

correlates with the spatial pattern of the response is total body CoM excursion (Gollhofer 

et al. 1989; Nashner 1977), which cannot be estimated from any single sensory channel. 

For example, rotations and translations of the support surface that elicit similar patterns 

of muscle activation induce opposite changes in joint angles, but similar changes in CoM 

displacement in both humans and cats (Carpenter et al. 1999; Diener et al. 1983; Nardone 

et al. 1990; Ting and Macpherson 2004).  

 An estimate of CoM motion may be used for postural control, as similar task-level 

global variables are represented at many levels in the nervous system. CoM kinematics 

are more tightly regulated in postural control than are individual joint angles (Allum and 

Carpenter 2005; Brown et al. 2001; Gollhofer et al. 1989; Krishnamoorthy et al. 2003; 

Szturm and Fallang 1998). Similarly, it has been shown that the hand trajectory is well-

controlled in reaching tasks (Adamovich et al. 2001; Tseng et al. 2002), and global 

variables such as hand direction, velocity, and end-point force are encoded in the primate 

motor cortex (Georgopoulos et al. 1992; Georgopoulos et al. 1986; Scott and Kalaska 

1997). Even at the level of the spinal cord, global variables such as leg length, 

orientation, velocity, and end-point force are computed from the ensemble of sensory 

receptor information (Bosco and Poppele 2001; 1997; Bosco et al. 1996; Lemay and Grill 

2004; Poppele et al. 2002). 

 A feedback rule based on CoM kinematics might be used by the nervous system 

to control muscle activity for postural control. Theoretical studies suggest that the 

nervous system controls movements using a low-dimensional, hierarchal feedback 
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control law (Todorov 2004). Under such a control scheme, a small set of descending 

neural commands is distributed among the multiple muscles. Here, our results suggest 

that a consistent feedback relationship based on CoM kinematics exists across a number 

of muscles throughout the body (also in cats by Lockhart and Ting 2007) and that the 

number of descending signals to modulate these muscles is limited. Muscle synergies 

have been suggested as a neural strategy to simplify the coordination of multiple muscles 

during postural tasks using only a few neural commands. Previously, muscle synergy 

activation has been correlated to anteroposterior CoM motion during anticipatory postural 

adjustments (Krishnamoorthy et al. 2003). Further, postural perturbation studies indicate 

that muscle synergy activation level is modulated by the direction of the postural 

disturbance (Torres-Oviedo et al. 2006; Torres-Oviedo and Ting 2007), suggesting the 

involvement of task-related feedback in the simultaneous coordination of multiple 

muscles. While a feedback relationship describing responses to mediolateral 

perturbations has yet to be established, it is possible that the limited set of muscles 

synergies previously identified in multi-directional postural perturbations in cats (Ting 

and Macpherson 2005; Torres-Oviedo et al. 2006) and humans (Torres-Oviedo and Ting 

2007) is modulated by temporal command signals arising from neural feedback 

mechanisms related to global variables such as CoM kinematics. 

Optimal Feedback Patterns for Postural Control 

 Our modeling efforts were intended to demonstrate principles underlying the 

development of muscle activation patterns following perturbation, not to make 

predictions of the exact postural responses that should be evoked. In order to make such 

predictions, a more complex model containing additional pendulum links might be 
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necessary to better match subject kinematics during postural responses, which often 

contain a mixture of ankle and hip motions (Alexandrov et al. 2001a; Horak and Nashner 

1986; Runge et al. 1999). The addition of pendulum links would require the simultaneous 

prediction or reconstruction of multiple muscles, each controlling a separate pendulum 

joint, which is computationally expensive. Also, because a wide range of muscle 

activation patterns result in similar CoM kinematics, including those muscle responses 

without acceleration feedback (Lockhart and Ting 2007; Welch and Ting 2008), the 

quadratic cost function used for the selection of feedback gains may not be sensitive 

enough to represent small changes in perturbation dynamics. This idea is supported by 

our observations that both simulations with constant feedback gains and those in which 

the controller selects gains for each perturbation condition result in similar matches to 

recorded EMG patterns. A feedback scheme that schedules response-strategy-specific 

gains may improve the optimization of feedback gains for postural control (Jo and 

Massaquoi 2004), resulting in different sets of feedback gains for ankle and hip 

strategies. In addition, the use of time-varying gains near the beginning and end of 

trajectories may improve the accuracy of model predictions during those periods in time 

when initial conditions and terminal objectives may take precedence (Kuo 1995). This 

may be the source of mismatched predictions for muscles with moderate level activity, 

where objectives to maintain an upright configuration may cause an over-prediction of 

muscle activity near the end of simulation. However, by using all three feedback signals 

simultaneously to develop a prediction of muscle activity, the model is successful at 

demonstrating the interactions between acceleration, velocity, and displacement 

feedback. The model suggests that the CNS takes advantage of the naturally-occurring 
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physical relationships between acceleration, velocity, and displacement to provide 

feedback control of the CoM during perturbations to quiet stance.  

 Our human subjects responded to postural perturbations with muscle activity that 

merely resembled but did not reflect optimal feedback control. Optimal feedback 

predictions suggested that feedback gains for postural control should be adjusted with 

respect to perturbation characteristics, while the data-matching jigsaw model suggested 

that the feedback parameters used by the subjects were, in actuality, invariant. The 

scaling relationships of optimal velocity and position gains with perturbation 

characteristics were relatively constant and closely matched the relationships identified 

by the jigsaw model. However, of particular interest are the optimal predictions of 

acceleration gain – a parameter that produces the initial muscle response to perturbation. 

Optimal acceleration gains were predicted to dramatically decrease with peak 

acceleration and increase with respect to peak velocity; this change was five-fold at the 

highest velocity and lowest acceleration levels, respectively. This optimal control strategy 

reflects the optimality criteria specified for the DQR model. Acceleration gains increase 

with respect to velocity, allowing for a strong initial reaction to help prevent significant 

deviation from an upright configuration. Similarly, acceleration gain is highest during 

low acceleration perturbations, promoting a robust initial response to prevent large 

destabilization. Concurrently, to minimize total muscle activation, acceleration gain is 

decreased at high acceleration levels, where large gains would result in very strong 

muscle activation.  

 Human subjects may achieve an optimal strategy for postural control with 

additional training. Our previous studies suggest that postural responses in cats reflect 
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optimal feedback control (Lockhart and Ting 2007). These cats underwent an extensive 

training regimen over the course of several months before they were included within the 

postural studies. On the other hand, human subjects that participated in the current study 

were naïve to postural control experiments and were only exposed to the platform 

paradigm for one hour total during the experimental session. With additional exposure to 

postural perturbations, human subjects may eventually learn to adjust their feedback 

gains with respect to perturbation strength to allow for a reduction in neural effort and 

kinematic deviation. Alternatively, as suggested by the results of the current study, 

humans may simplify postural control by using an invariant feedback scheme for the 

formation of reactive muscle activity.  
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CHAPTER 4 

A FEEDBACK MODEL EXPLAINS ADAPTATION OF MUSCLE 

ACTIVITY FOR HUMAN POSTURAL CONTROL 

 

 
This chapter is in preparation for submission to Nature:  

 
Welch TDJ and Ting LH. Searching for optimal motor patterns in balance. (in prep) 

 

Abstract  

 Our goal is to understand the mechanisms used during the adaptation of balance 

control to repetitive or changing task conditions. We hypothesized that, similar to the 

adaptation of voluntary movements, the nervous system uses both feedback and 

feedforward mechanisms to adapt the automatic postural response to repetitive and 

unexpected perturbations. We perturbed the balance of naïve human subjects with 

repetitive unidirectional and reversing support-surface translations and characterized the 

time course of changes in CoM motion, as well as tibialis anterior (TA) and medial 

gastrocnemius (MG) activity. We then compared the experimental EMG patterns to the 

pattern predicted by an optimal feedback control model. We predicted that the feedback 

model could account for the adaptive changes to EMG through the adjustment of four 

feedback parameters. Further, if feedforward mechanisms were involved, we predicted 

that inappropriate TA responses to reversing perturbations would be gradually 

eliminated, while the MG response would advance in time, anticipating the change of 

perturbation direction. We found that, in response to reversing perturbations, subjects did 
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not use the predicted feedforward mechanisms to anticipate platform reversal. However, 

several other anticipatory strategies were observed, suggesting the use of more subtle, 

biomechanically-related feedforward changes to the response strategy. By modifying four 

feedback parameters, the feedback model accounted for 80% of the variability in all 

observed EMG patterns as subjects adapted their responses. An optimal feedback model 

demonstrated that subjects were navigating toward the optimal solution for postural 

control based on the minimizing motion of the CoM and total muscle activation. 

Introduction  

 From infancy to adulthood, humans show the capacity for motor learning in a 

variety of contexts. During early development, the task of motor learning as related to 

postural control, such as learning to sit upright, stand, and walk, is quite difficult and 

takes several years to master. For example, human infants can produce direction-specific 

postural adjustments from the age of one month (Hedberg et al. 2004). However, until 

aged three months, these postural responses show large variability and are not well-

adapted to environmental constraints (Hedberg et al. 2005). Over the next six months, 

infants begin to develop more expert control over postural muscle activity and adapt their 

responses to be appropriate for specific situational balance challenges (Hadders-Algra et 

al. 1996; van der Fits et al. 1999). Still, the adult patterns of postural adaptation are not 

well-developed until adolescence (van der Heide et al. 2003). With age and experience, 

humans become skilled learners that can adapt quickly to new postural situations, such as 

standing on a boat or walking across unknown terrains, within minutes of first exposure. 

In addition, humans can adapt their balance mechanisms when the postural system is 

compromised, whether by neuromuscular deficit (Alessandrini et al. 2003; Horak and 
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Hlavacka 2001; Visser and Bloem 2005), musculoskeletal injury (Demeritt et al. 2002; 

Myer et al. 2006), or amputation (Geurts et al. 1991; Mouchnino et al. 1998). What are 

the signals and mechanisms used to train the postural system during motor adaptation?  

 Much of what is known regarding motor adaptation has been learned from studies 

of voluntary arm reaching movements (e.g., Shadmehr and Mussa-Ivaldi 1994; Takahashi 

et al. 2001). Typically, subjects perform several center-out arm movements with a robotic 

manipulandum that can apply a viscous force field to alter the arm trajectory. The 

subjects first perform movements in a null force field to become acclimated to the use of 

the robotic manipulandum. Next, reaches are made in a velocity-dependent force field 

that immediately changes reach paths from straight to curved trajectories; as subjects 

adjust their reaching strategy, these errors in trajectory are eventually eliminated. Finally, 

the subjects repeat reaches in the null field; this changed reaching environment causes 

large errors, in the opposite direction of those observed in the viscous force field, which 

are gradually eliminated as the reaching strategy readapts.  

 Results from these arm reaching studies suggest that both feedback and 

feedforward mechanisms are used to adapt volitional movements. Online feedback is 

used to correct the trajectory of arm movements, yet feedback alone will only reduce 

errors – not eliminate them – for ongoing movements (Hwang and Shadmehr 2005). 

Further, the learning of the novel reaching task is not accomplished simply by 

memorizing the performance of previous trials, as learning generalizes to other types of 

movements, including movements to other directions (Sainburg et al. 1999), using 

different arm configurations (Morton et al. 2001; Shadmehr and Moussavi 2000), with 

different trajectories (Conditt et al. 1997; Goodbody and Wolpert 1998), and those of the 
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other arm (Criscimagna-Hemminger et al. 2003; Morton et al. 2001). To eliminate 

movement error, the initial trajectory of the next trial is modified in a feedforward 

manner using the error-driven motor response of previous erroneous trials (Thoroughman 

and Shadmehr 1999). These feedforward adaptations are incorporated into the internal 

model for planning the movement, changing both the motor command executed and the 

expected sensory feedback resulting from that movement (Flanagan and Wing 1997; 

Gandolfo et al. 1996; Lackner and Dizio 1994; Miall et al. 1993; Shadmehr and Mussa-

Ivaldi 1994; Takahashi et al. 2001). Many studies have characterized the adaptation of 

reaching movements by observing task-related variables, such as end-point trajectory. 

However, by examining the corresponding changes in electromyographic activity (which 

is the output of the nervous system that represents the internal model prediction), 

Thoroughman and Shadmehr (1999) revealed the feedback-mediated modification of the 

internal model with training. Their results indicated that force-field-appropriate EMG 

began as a delayed feedback response to the perturbing force and was progressively 

initiated earlier within the movement, until appropriate muscles were activated in a 

feedforward manner, before sensory information regarding the perturbation was 

available. Do these same principles apply to the adaptation of postural tasks? 

 The adaptation of involuntary motor tasks, such as the automatic postural 

response, has not been explored extensively. Unlike volitional arm movements, the 

automatic postural response is a reactionary task, typically observed in response to a 

postural perturbation such as support surface translation or rotation, and its related 

muscle activity is formed using feedback of ongoing center-of-mass (CoM) motion 

(Lockhart and Ting 2007; Welch and Ting in prep), presumably derived through the 
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integration of information from a variety of sensory receptors. Adaptation of leg and 

trunk muscle activity during the postural response is considered to be formed by central 

set, defined as the changes that occur over many trials with the same sensory conditions 

due to CNS plasticity (Horak 1996; Keshner et al. 1987). However, postural adaptation is 

difficult to study because adaptation of the APR occurs over much fewer trials than that 

for other motor responses (Lisberger 1988) and is often masked by differences associated 

with subtle changes in biomechanical configuration and sensory signals (Horak 1996). In 

addition, monotonous or repetitive sensory input is known to cause habituation, which is 

characterized by a decrease in attention to repetitive sensory signals resulting in the 

waning of response amplitude. Changes in muscle activity due to habituation can 

therefore be easily mistaken with adaptive changes. The automatic postural response is 

thought to exhibit habituation, as muscle activation level decreases when the same 

perturbation is given in succession (Chong et al. 1999; Hansen et al. 1988; Horak et al. 

1989; Timmann and Horak 1997). A few studies have investigated the differences that 

arise when perturbations are presented at random as opposed to serial blocks. 

Specifically, these authors highlight bracing strategies to reduce muscle stress (Blouin et 

al. 2003), anticipatory changes in muscle activity in response to previous experience with 

velocity and displacement (Horak et al. 1989), and the anticipation of the timing of 

platform deceleration (Carpenter et al. 2005). However, none have performed 

quantitative analysis on individual muscle activation patterns, in conjunction with task 

kinematics, to illustrate the trial-by-trial adaptation of the automatic responses that are 

evoked following postural perturbation and their effects on task performance (i.e., 

maintaining upright stance).   
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 In the current study, our goal was to characterize the trial-by-trial adaptive 

changes in muscle activity and CoM motion during human postural responses to 

repetitive perturbations. We hypothesized that, similar to the adaptation of voluntary 

motor tasks, the human postural mechanism uses both feedback and feedforward 

strategies to adapt to both repetitive and changing task conditions. We assessed CoM 

motion and EMG patterns during responses to both unidirectional and reversing support 

surface translations. Our experimental design is inspired by that of previous arm reaching 

studies; however, repetitive movements in a force field were replaced with a 

countermanding task, similar to those used in the study of saccadic eye movements (e.g., 

Hanes and Carpenter 1999; Lappin and Eriksen 1966). Here, we tested the mutability of 

the automatic postural response by reversing the direction of platform motion at or before 

the expected timing of the initial EMG response, yielding this response inappropriate and 

destabilizing. To determine whether feedforward mechanisms can be exploited during the 

adaptation of postural responses, we examined the trial-by-trial changes in EMG activity 

to answer two questions: 1) can the inappropriate initial EMG response be eliminated 

from the response strategy; and 2) can the EMG response to the reversed platform motion 

be advanced in time to anticipate and minimize the disturbance caused by the secondary 

perturbation. Next, we investigated the changes to the postural mechanism in the context 

of a feedback model of postural control (Welch and Ting in prep), by examining the 

adjustment of four feedback parameters during repetitive perturbations.  

 Our results demonstrate that feedforward mechanisms may not be used to 

completely mute or advance the timing of feedback-mediated postural responses in 

anticipation of postural perturbations. However, initial lean and up-regulation of leg 
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stiffness through co-contraction can be used to mitigate the effects of expected 

perturbations in a feedforward manner. These changes in muscle activity were 

represented as smooth, unidirectional changes to feedback gains in the context of a model 

of postural control. As subjects adapted their postural response strategy, they moved 

toward an optimal solution for postural control based on the minimization of kinematic 

deviation and total muscle activation, suggesting that motor learning processes involve 

the directed optimization of both task performance and energy expenditure.  

Methods  

Data Collection 

 Fifteen healthy subjects (7 male, 8 female), ages 22.5 ± 3.2 years (mean ± SD), 

were recruited from the Georgia Institute of Technology student population to participate 

in an experimental protocol that was approved by both the Georgia Institute of 

Technology and Emory University Internal Review Boards. All subjects signed an 

informed consent form before participating and indicated that they were naïve to postural 

control studies and had never experienced a perturbation on a moveable platform. 

Subjects stood with weight evenly distributed upon two force plates installed on a 

moveable platform that could translate in the horizontal plane. Subjects focused vision to 

a scenic view 4.6 meters away and were instructed to cross their arms at chest-level and 

react naturally to the support surface perturbations.  

 During postural perturbations, platform acceleration and position, and surface 

EMG from fifteen muscles in the legs and trunk were collected at 1080 Hz, synchronized 

with body segment kinematics collected at 120 Hz. Data collection for each trial lasted 

for 3 seconds, including a 500-ms quiet period before platform motion onset. Platform 
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signals were low-pass filtered at 30 Hz (3rd order zero-lag Butterworth filter). Platform 

velocity was calculated by numerical differentiation of the filtered platform position. The 

current study focused on EMGs collected from right-leg tibialis anterior (TA) and medial 

gastrocnemius (MG). Raw EMG signals were high-pass filtered at 35 Hz (3rd order zero-

lag Butterworth filter), demeaned, half-wave rectified, and low-pass filtered at 40 Hz (1st 

order zero-lag Butterworth filter). Center of mass motion was calculated from kinematic 

data as a weighted sum of segmental masses. Body segment kinematics were recorded 

with a 6-camera motion analysis system (Vicon; Centennial, CO) using a custom bilateral 

Helen Hayes 25-marker set that included head-arms-trunk (HAT), thigh, and shank-foot 

segments.  

Experimental Protocol 

 Without acclimatization to platform motion, subjects participated in a paradigm 

consisting of 150 anterior-posterior support surface translations designed to examine the 

changes in feedback and feedforward elements associated with the adaptation of the 

automatic postural response (Figure 4.1). As their first experience of a postural 

perturbation, subjects were subjected to a series of 30 unidirectional forward 

perturbations (peak acceleration = 0.4g; peak velocity = 35 cm/s; total excursion = 12 

cm), herein denoted as the Training session. Without notice, the perturbation was 

changed to a series of 60 reversing perturbations (Reversal). These perturbations began in 

the forward direction, with the same motion characteristics as the Training session, but 

reversed directions after 100 ms, traveling 12 cm in the backward direction. The timing 

of platform reversal was selected to coincide with the approximate timing of the TA 

response to the initial platform motion. After the Reversal session, the perturbation was 
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unexpectedly changed to another series of 30 unidirectional forward perturbations 

(Washout), matching the motion characteristics of the Training session. A minimum of 

five minutes mandatory seated rest was enforced after every 60 perturbations to reduce 

the effects of muscular fatigue. This requirement split the Reversal session into two sets 

of 30 perturbations. 

 

 

Figure 4.1 Experimental protocol and example EMG data. Representative data from Subject M 
describing the platform displacement and the resulting EMG for the administered experimental protocol. 
Completely naïve subjects encountered 30 unidirectional forward perturbations (Training), which elicited 
TA muscle activity. Then, the platform motion was unexpectedly changed to forward perturbations that 
reversed directions after 100 ms (Reversal), chosen to approximately coincide with the timing of TA onset. 
After 60 reversing perturbations, the platform motion was again unexpectedly changed to a set of 30 
unidirectional forward perturbations (Washout), allowing the observation of any feedforward adaptations to 
the response strategy. Mean EMG was evaluated during a 300-ms background period before platform 
motion (Back) and two consecutive 150-ms time periods following muscle onset – the initial burst (IB) and 
the plateau region (PR). 
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Data Analysis 

 The trial-by-trial adaptive changes in postural performance and control were 

quantified by examining the motion characteristics of the CoM and the magnitude and 

onset latency of the EMG response. Peak CoM excursion and velocity in the forward and 

backward directions were calculated during each trial and averaged across subjects. 

Those trials that elicited a stepping response were not included in these data averages, but 

were preserved for the examination of the transition from stepping to non-stepping 

postural responses. Recorded EMG was examined during a 300-ms background time 

period (Back) before platform motion and two consecutive 150-ms time periods 

following muscle onset –– the initial burst (IB) and plateau region (PR) (Figure 4.1). 

Mean EMG during each time period, as well as muscle onset latency, was calculated for 

each trial, normalized to the average value across the first three trials of the Training 

session, and averaged across subjects. Exponential fit analysis with respect to trial 

number was used to quantify the time course of the adaptation of all measured 

parameters, as indicated by the time constant, τ. The goodness-of-fit of each exponential 

fit was evaluated using Pearson’s correlation coefficient, r2
. Additionally, paired t-test 

analysis (α = 0.05) was used to determine statistically significant changes between the 

first and last trials of each session for each measured parameter. 

Feedback Models 

 We used three previously-described models to investigate whether the adaptive 

changes to the postural response strategy during repetitive perturbations could be 

explained by adjusting gains in a feedback law for postural control (Welch and Ting in 

prep). Briefly, the models derived muscle activation patterns (EMGp) through the linear 
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combination of delayed feedback regarding CoM kinematics (acceleration, velocity, and 

displacement), either recorded during experimental manipulation or predicted by an 

inverted pendulum model of standing balance:  

 ( ) ( ) ( )λλλ −+−+−= taktvktpkEMG avpp . (1) 

In the ‘jigsaw’ model, recorded CoM kinematics were used to directly reconstruct 

experimentally-observed EMG patterns (Figure 4.2A). A single feedback delay (λ) and 

feedback gains on each kinematic channel (kp, kv, ka) were chosen to develop model 

reconstructions that match recorded EMG data. The temporal systems identification 

(TSyID) model also chose feedback parameters to match model reconstructions to 

recorded EMG data, but derived CoM kinematics from an inverted pendulum model that 

was perturbed by experimentally-recorded acceleration waveforms (Figure 4.2B). In 

addition, this model penalized solutions that did not result in an upright pendulum 

configuration. The inverted pendulum model was scaled to each subject by adjusting the 

mass (m) and height (h) of the pendulum. The final model, termed the delayed quadratic 

regulator (DQR) model, used the model formulation of the TSyID model to create an 

optimal prediction of muscle activation patterns. The DQR model does not use recorded 

data, but rather develops an optimal solution by minimizing both the total muscle 

activation level and the kinematic deviation of the pendulum from the upright 

configuration. While the feedback parameters derived from the jigsaw and TSyID models 

may change with each recorded EMG waveform, those derived from the DQR model 

represent the optimal feedback parameters for responding to a given perturbation and 

therefore do not change with respect to the muscle activation pattern or with repetition of 

the perturbation. 
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Figure 4.2 Feedback models for responding to unidirectional perturbations. A) To examine the 
changes in the feedback parameters responsible for the formation of muscular responses during repetitive 
unidirectional perturbations, the jigsaw model was used to reconstruct muscle activity directly from CoM 
kinematic motions. Recorded CoM kinematic signals (acceleration, velocity, and displacement) were 
delayed, weighted by feedback gains on each channel, and summed to provide a reconstruction of recorded 
EMG responses. The feedback delay and gains were chosen to minimize the error between the model 
reconstruction and recorded EMG signals. B) An inverted pendulum model of human balance was used to 
further examine the extent to which feedback parameters were adapted to respond to repetitive 
unidirectional perturbations. The height (h) and mass (m) of the inverted pendulum model was adjusted to 
fit the measurements of each individual subject. The inverted pendulum model was perturbed using torques 
calculated from experimentally recorded platform motion. The horizontal kinematics (acceleration, 
velocity, and displacement) of the pendulum model were delayed, weighted by feedback gains on each 
channel, and summed to provide a reconstruction (in the case of the TSyID model) or prediction (in the 
case of the DQR model) of EMG responses. A first-order muscle model was then used to convert this 
model-derived muscle activity into a muscular torque to counteract the perturbation. For the TSyID model, 
feedback parameters were chosen to provide the best match between reconstructed muscle activity and 
recorded EMG data. For the DQR model, the optimal feedback solution was determined by optimizing 
feedback parameters that resulted in minimal deviation from the upright configuration and minimal muscle 
activation levels. 
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 The recorded platform and CoM (or pendulum) motion for each subject and trial 

were used to develop model reconstructions of recorded EMG waveforms or optimal 

feedback solutions. However, because the antagonistic action of two muscles was 

required to respond to reversing perturbations, a two-muscle variation of each model was 

created that simultaneously reconstructed muscle activity from antagonistic pairs during 

the Reversal session (Figure 4.3); muscle activity from the Training and Washout 

sessions was reconstructed using the one-muscle models illustrated in Figure 4.2. DQR 

predictions for all sessions were also made using the two-muscle model to better estimate 

the optimal roles of antagonistic muscles. This model optimized a separate set of 

feedback parameters for each muscle by using a direct copy of CoM kinematics for the 

prediction of the EMG from one muscle (e.g., TA) and the additive inverse of CoM 

kinematics for the prediction of the antagonist EMG (e.g., MG). In the pendulum-based 

models, the torques generated by each muscle were then summed to determine the total 

reactive torque for counteracting the perturbation.  

For all modeling results, the goodness-of-fit between model-derived muscle 

activation patterns and recorded EMG were determined by calculating the coefficient of 

determination (r2) and the uncentered coefficient of determination (variability accounted 

for; VAF). Next, we performed exponential fit analysis of mean feedback parameters 

with respect to trial number to reveal the time course of changes in the feedback 

mechanism for postural control. We also performed a paired t-test on each feedback 

parameter (α = 0.05) to determine whether these feedback parameters changed 

significantly due to repetitive perturbation conditions. Finally, to track the optimization 

of human responses, the error between recorded EMG and the optimal feedback solution 
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was calculated for each trial as the sample-by-sample difference between EMG patterns 

and the optimal solution normalized by the number of data samples. 

 

 

Figure 4.3 Feedback models for responding to reversing perturbations. Feedback models that 
simultaneously reconstructed or predicted muscle activity in antagonistic muscles were used to evaluate 
changes in feedback parameters during repetitive reversing perturbations. The general model configuration 
was similar between the one-muscle models (see Figure 4.2) and the two-muscle models. However, the 
two-muscle models allowed an agonist muscle to respond to forward-directed kinematic signals and an 
antagonist muscle to respond to the opposite kinematic signals, corresponding to backward-directed 
kinematic feedback (calculated as the additive inverse of the CoM or pendulum kinematics). A) The jigsaw 
model simulations chose separate feedback delays and gains for each antagonistic pair to match recorded 
EMG data. B) Similarly, the pendulum models chose separate feedback delays and gains for each 
antagonistic pair, either to match recorded EMG data (TSyID model) or to determine the optimal solution 
that minimized both muscle activation and pendulum deviation from the upright configuration. 
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Results  

 Here, we characterized the trial-by-trial changes to CoM motion (task 

performance) and muscle activity (motor control) during adaptation to repetitive and 

changing postural perturbations. We observed gradual changes to CoM motion with 

repetitive trials of each perturbation type, identifying a continuum between stepping and 

non-stepping postural responses. Associated with these kinematic changes, changes in 

muscle activity were represented as gradual changes in magnitude of EMG during 

distinct periods of the postural response, without changes in the general shape of the 

activation pattern. Through the smooth, directed adjustment of four feedback parameters, 

a feedback model reconstructed the adaptive changes to muscle activity, accounting for 

80% of the variability in EMG responses to both unidirectional and reversing 

perturbation across subjects. Contrary to our predictions, subjects were unable to mute 

inappropriate TA responses or to advance the onset of MG responses in anticipation of 

reversing perturbations. Nevertheless, feedforward biomechanical changes, including 

changes to initial lean and increased leg stiffness through co-contraction, were using to 

mitigate the effects of expected perturbations. Together, these adaptive changes in 

response strategy moved subjects closer to the optimal solution for postural control, as 

predicted by an optimal feedback control model.  

Adaptive Changes to Repetitive Perturbations 

 The adaptation of the postural control mechanism to repetitive perturbations was 

observed as changes in CoM motion (Figure 4.4 and 4.5) and the timing and magnitude 

of antagonistic muscle activity during the automatic postural response (Figures 4.6 and 

4.7). During the Training session, in response to unidirectional perturbations in the 
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forward direction, large backward CoM sway was observed in all subjects, often resulting 

in stepping postural responses for several trials before non-stepping responses were 

adopted. Peak CoM excursion in the backward direction decreased over the course of the 

Training session (p = 0.004) equilibrating to a peak CoM excursion near 10 cm, with an 

insignificant decrease in peak CoM velocity (p = 0.13) (Figure 4.8). Initial lean of CoM 

moved from backward to forward lean within the first 3 trials (Figure 4.5). Throughout 

the Training session, TA background activity remained constant (p = 0.99) (Figure 4.9), 

while background MG activity increased; these changes in MG muscle tone did not reach 

significance (p = 0.15) (Figure 4.10). The magnitude of TA activity decreased 

insignificantly during both IB and PR periods (IB: p = 0.056; PR: p = 0.22) and no 

changes in TA onset latency were observed (p = 0.83). While co-contraction responses 

were common during the first few exposures to these perturbations, the inappropriate MG 

activity to the forward platform motion was quickly eliminated within four trials (p = 

0.0005). 

Adaptive Changes to Reversing Perturbations 

 In response to repetitive reversing perturbations, we observed adaptive changes in 

both postural task performance and control. When subjects encountered the abrupt switch 

to the reversing perturbations, an immediate response with appropriate timing was 

observed in both muscles, however all subjects required a forward stepping response on 

the first trial. With each successive repetition, the steps became shorter until a non- 

stepping response was sufficient. Within five trials, all subjects were able to withstand 

reversing perturbations without stepping, but continued to reduce the overall motion of 

the CoM (Figure 4.4). While changes in peak CoM excursion in the backward direction 
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Figure 4.4 Time course of changes in CoM motion with repetitive perturbations. The changes in mean 
peak CoM excursion and velocity during each experimental session are illustrated with respect to trial 
number. Open circles and error bars represent the intersubject mean and standard deviation of CoM motion 
during each trial. On trials in which a subject took a step to recover their balance, the peak CoM excursion 
and velocity during the step is indicated with a filled circle. An exponential fit of peak CoM excursion and 
velocity with respect to trial number was calculated for each session, represented by the time constant τ, 
and the goodness-of-fit is indicated by Pearson’s correlation coefficient, r2. Peak CoM motion in response 
to both directions of perturbation is color-coded, where red represents CoM motion in response to forward 
platform motion and blue represents CoM motion in response to backward platform motion. Positive 
excursions and velocities correspond to forward motion of the CoM. Over the course of each session, 
subjects show adaptive changes in the control of CoM motion, as exhibited by a progressive decrease in 
peak CoM excursion and velocity in both directions across trials. Interestingly, stepping responses also 
follow this trend, with steps progressively shortening in length and slowing in velocity until the subject is 
able to respond to the perturbation without stepping. 
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Figure 4.5 Time course of changes to initial lean of CoM with repetitive perturbations. The changes in 
mean initial CoM lean during each experimental session are illustrated with respect to trial number. Open 
circles and error bars represent the intersubject mean and standard deviation of initial lean during each trial. 
An exponential fit of initial CoM lean with respect to trial number was calculated for each session, 
represented by the time constant τ, and the goodness-of-fit is indicated by Pearson’s correlation coefficient, 
r2. Positive values correspond to forward lean of the CoM. Over the course of each session, the direction of 
initial lean changes within the first few trials, with forward lean during unidirectional perturbations and 
backward lean for reversing perturbations.  
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Figure 4.6 Time course of adaptive changes to TA activity with repetitive perturbations. The changes 
in mean TA-R EMG magnitude and onset latency during each experimental session are illustrated with 
respect to trial number. Mean EMG data represent all subject responses, both stepping and non-stepping, 
and are normalized to the mean activity across the first three trials of the Training session. An exponential 
fit of muscle activity was calculated for each session, represented by the time constant τ, and the goodness-
of-fit is indicated by Pearson’s correlation coefficient, r2. EMG in response to both directions of 
perturbation is color-coded, where red represents muscle activity appropriate for responses to forward 
platform motion. Large increases in background TA activity were observed after each rest break and this 
background tone progressively decreased to its level at the beginning of the experimental protocol. The 
magnitude of TA responses to reversing perturbations significantly decreased throughout the Reversal 
session; however, this inappropriate activity was not eliminated from the response. TA activity was slowly 
increased during the Washout session, when the activity was again appropriate and stabilizing.  
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Figure 4.7 Time course of adaptive changes to MG activity with repetitive perturbations. The changes 
in mean MG-R EMG magnitude and onset latency during each experimental session are illustrated with 
respect to trial number. Mean EMG data represent all subject responses, both stepping and non-stepping, 
and are normalized to the mean activity across the first three trials of the Training session. An exponential 
fit of muscle activity was calculated for each session, represented by the time constant τ, and the goodness-
of-fit is indicated by Pearson’s correlation coefficient, r2. EMG in response to both directions of 
perturbation is color-coded, where blue represents muscle activity appropriate for responses to backward 
platform motion. In response to unidirectional perturbations, background MG activity increased throughout 
the Training and Washout sessions. Then, over the course of the Reversal session, this activity 
progressively decreased to its level at the beginning of the experimental protocol. An increase in 
background MG activity was also observed after the rest break during the Reversal session. The magnitude 
of inappropriate MG activity following unidirectional perturbations was quickly eliminated from the 
response strategy within five trials. MG responses to reversing perturbations appeared immediately and 
progressively decreased throughout the Reversal session. Surprisingly, MG onset latency increased 
throughout this session. During the Washout session, MG activity showed an immediate decrease in 
magnitude and was eventually eliminated from the postural response.  
 

 89



 

did not change significantly (p = 0.29), we observed decreases in CoM excursion in the 

forward direction (p < 10–16), as well as peak CoM velocity in both directions (p < 10–16) 

(Figure 4.8). Additionally, initial lean of CoM moved from forward to backward lean by 

the second trial (Figure 4.5). No change in background muscle tone was observed for TA 

(p = 0.12), however MG showed a significant reduction in background tone (p = 0.0035) 

over the course of the session. The magnitude of the initial EMG response in TA 

continued from its level at the end of the Training session and decreased over the course 

of the Reversal session (p < 10–16), though this inappropriate activity was never fully 

eliminated from the response and the response latency remained unchanged (p = 0.54) 

(Figure 4.10). Late activity in TA was eliminated from the response immediately upon 

experiencing reversing perturbations. Initial burst activity in MG, which appeared 

immediately upon exposure to reversing perturbations, quickly decreased to an 

equilibrium over the course of the Reversal session (τ = 1.13 trials; p = 0.0013), while PR 

activity more slowly decreased throughout the session (τ = 8.55 trials; p = 0.037). Rather 

than anticipating the timing of platform reversal with earlier MG activation, the onset 

latency of MG responses was significantly increased over the course of the Reversal 

session (p = 0.0066) (Figure 4.9). Peak CoM excursion in the forward direction was 

slightly increased by the rest break administered during the Reversal session and quickly 

equilibrated to a peak CoM excursion near 8 cm within one trial. This rest break also 

caused an increase in TA and MG background activity, as well as TA activity during the 

IB period; this elevated activity was removed within six trials. 
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Figure 4.8 Absolute changes in CoM motion with repetitive perturbations. The 
intersubject mean and standard deviation of peak CoM excursion and velocity are shown 
for the first and last trial of each session. Paired t-tests were performed to determine 
during which sessions significant changes in CoM motion were observed. In general, 
peak CoM excursion in the backward direction was reduced during unidirectional 
perturbations. During Reversal perturbations, peak CoM excursion in the forward 
direction was significantly reduced. Peak CoM velocity in both directions was 
significantly reduced.  
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Figure 4.9 Absolute changes to TA activity with repetitive perturbations. The 
intersubject mean and standard deviation of TA muscle activity are shown for the first 
and last trial of each session. Paired t-tests were performed to determine during which 
sessions significant changes in muscle onset and activity during the background, initial 
burst, and plateau region were observed. Changes in TA initial burst activity were 
observed during Reversal and Washout sessions. These changes are consistent with the 
adaptation of response strategy, as reduced TA activity from the Reversal session was 
maintained during the first trials of the Washout session before de-adapting.  
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Figure 4.10 Absolute changes to MG activity with repetitive perturbations. The 
intersubject mean and standard deviation of MG muscle activity are shown for the first 
and last trial of each session. Paired t-tests were performed to determine during which 
sessions significant changes in muscle onset and activity during the background, initial 
burst, and plateau region were observed. Inappropriate MG activity during unidirectional 
perturbations was eliminated over the course of the Training and Washout sessions. 
Significant changes in all parameters were observed during the Reversal session – MG 
activity was reduced in all periods and its onset latency was extended. 
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After-Effects and the Washout of Adaptive Changes 

 During the Washout session, after-effects in the form of large steps in the 

backward direction were evoked in many subjects. In general, a stepping strategy was 

more prevalent during unidirectional perturbations, as these forward perturbations were 

quite challenging and the subjects could not benefit from the assistive torques generated 

by the reversal of the platform motion. These steps became smaller with each successive 

repetition and eventually non-stepping responses were sufficient to maintain balance, 

often within four trials. Peak CoM excursion continued to decrease (p < 10–16) until 

equilibrating near 10 cm (Figure 4.4). An insignificant decrease in peak CoM velocity 

was observed during the Washout session (p = 0.21). Initial lean of CoM returned to a 

forward lean within one trial (Figure 4.5), though the direction of this lean was less 

consistent than during the Training and Reversal sessions. Background muscle tone in 

MG increased throughout the Washout session, while TA tone decreased; neither change 

reached significance (MG: p = 0.15; TA: p = 0.52). In response to the unidirectional 

perturbations, TA activity during the IB period increased gradually from the level at the 

end of the Reversal session to the level at the end of the Training session (p < 10–16) 

(Figure 4.10). TA activity during the PR period increased immediately to the level at the 

end of the Training session and decreased insignificantly over the course of the Washout 

session (p = 0.25). An insignificant reduction in TA onset latency was also observed (p = 

0.061). A marked reduction in MG activity was immediately observed during the IB and 

PR periods and the remaining inappropriate MG activity was eliminated from the 

response within four trials (Figure 4.9). Due to large intersubject variability in the extent 

of the immediate reduction of this destabilizing EMG response, the overall reduction in 
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MG activity over the course of the Washout session was near but not significant (IB: p = 

0.098; PR: p = 0.055). 

Adaptive Changes to Feedback Parameters toward an Optimal Feedback Solution 

 Using feedback of recorded CoM kinematics during experimental perturbations, 

the jigsaw model accurately reconstructed the changes to muscle activation patterns 

during adaptation to both unidirectional and reversing perturbations. Jigsaw model 

reconstructions accounted for >57% of the variability in TA and MG patterns recorded 

across all subjects and sessions (VAF = 0.80 ± 0.06). During the Training session, jigsaw 

model reconstructions matched >88% variability in experimental EMG (VAF = 0.89 ± 

0.01) in TA and >76% VAF for MG response patterns (VAF = 0.77 ± 0.01) (Figure 

4.11). During the Reversal session, jigsaw model reconstructions matched >57% VAF of 

experimental TA EMG (VAF = 0.76 ± 0.05) and >74% VAF for MG responses (VAF = 

0.79 ± 0.02) (Figure 4.12). During the Washout session, jigsaw model reconstructions 

matched experimental TA EMG with >86% VAF (VAF = 0.88 ± 0.02) and MG EMG 

with >67% VAF (VAF = 0.73 ± 0.03) (Figure 4.13).  

 The adaptive changes in muscle activity pattern were matched by smooth changes 

in feedback gains with experience. Feedback parameters chosen by jigsaw optimizations 

displayed gradual, unidirectional changes over the course of each session for both TA 

(Figure 4.14) and MG (Figure 4.15). Surprisingly, ka remained constant across all 

sessions and muscles (p > 0.36), with the exception of an increase in TA ka during the 

Washout session (p = 0.0022). The value of λ chosen by the jigsaw optimization also 

remained constant for TA across all sessions (p > 0.75), save an increase during the 

Washout session (p = 0.0011). The value of λ for MG was constant over all sessions (p >  
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Figure 4.11 Feedback decomposition of EMG from early and late Training session. A) Recorded 
(black/gray) and reconstructed (red/blue) TA and MG EMG signals for Subject P. B) Decomposition of the 
reconstructed EMG signal (red/blue) into individual feedback components from acceleration feedback 
(orange line), velocity feedback (blue dashed line), and displacement feedback (green dotted line). In early 
adaptation, acceleration feedback contributes to the rapid initial rise in EMG activity; velocity and 
displacement feedback contribute to later activity during the plateau region. Later in the session, 
inappropriate MG EMG is eliminated and the acceleration-dependent initial burst of TA EMG has been 
reduced. 
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Figure 4.12 Feedback decomposition of EMG from early, middle, and late Reversal session. A) 
Recorded (black/gray) and reconstructed (red/blue) TA and MG EMG signals for Subject K. B) 
Decomposition of the reconstructed EMG signal (red/blue) into individual feedback components from 
acceleration feedback (orange line), velocity feedback (blue dashed line), and displacement feedback (green 
dotted line). Throughout adaptation, contributions from acceleration feedback predominate TA EMG; MG 
EMG is comprised of feedback from all three kinematic channels. As adaptation continues, EMG in both 
muscles is reduced throughout the time course, while maintaining the same pattern of activation. 
 

 

Figure 4.13 Feedback decomposition of EMG from early and late Washout session. A) Recorded 
(black/gray) and reconstructed (red/blue) TA and MG EMG signals for Subject W. B) Decomposition of 
the reconstructed EMG signal (red/blue) into individual feedback components from acceleration feedback 
(orange line), velocity feedback (blue dashed line), and displacement feedback (green dotted line). In early 
adaptation, acceleration feedback is nearly absent from both EMG patterns; velocity feedback 
predominates. As adaptation continues, acceleration feedback returns to the feedback response. 
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Figure 4.14 The adaptation of TA feedback gains across each session. The average 
acceleration (ka), velocity (kv), and displacement (kd) gains, along with the time delay (λ) across all 
subjects. The adaptation of the response was confined to changes in velocity and displacement 
gain, while acceleration gain and time delay remained constant across all sessions.  

 

 98



 

 

 

 

Figure 4.15 The adaptation of MG feedback gains across each session. The average 
acceleration (ka), velocity (kv), and displacement (kd) gains, along with the time delay (λ) 
across all subjects. Similar to TA, the adaptation of the response was confined to changes 
in velocity and displacement gain, while acceleration gain and time delay remained 
relatively constant across all sessions. 
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0.067), except a decrease during the Training session (p = 0.012). Reductions in TA 

activity during the Training session were reconstructed as modest reductions in kv (p = 

0.15) and significant reductions in kp (p = 2.35 × 10–4). The elimination of inappropriate 

MG activity during the Training session was represented by a reduction of all feedback 

gains to zero. During the Reversal session, a reduction in TA kv (p = 0.0022) was 

matched by an increase in kp (p = 0.013). Changes to MG activation during the Reversal 

session were realized by a decrease in both kv (p = 0.0042) and kp (p = 0.059). During the 

Washout session, inappropriate MG activity was eliminated by the reduction of all 

feedback gains. A reduction similar to that observed during the Training session was 

identified for TA kv and kp during the Washout session. 

 DQR optimal feedback simulations suggested that, as subjects adapted their 

postural responses to repetitive exposure to both unidirectional and reversing 

perturbations, they moved closer to the optimal solution for postural control. While the 

time course of EMG exhibited by subjects during all trials, subjects, and sessions were 

well-constructed by the feedback law (Figures 4.11 – 4.13), with experience these EMG 

patterns migrated toward the optimal solution (Figures 4.16 – 4.18). Because the time 

delay for optimal solutions was set a priori to be 100 ms, often subjects matched the 

shape but not the timing of optimal solutions during Reversing perturbations (Figure 

4.17). In general, the level of muscle activation observed in response to Washout 

perturbations was more elevated than the responses to the same perturbation in the 

Training session (compare Figures 4.16 and 4.18), but still migrated toward the optimal 

solution. Normalized error between experimentally-recorded EMG and the DQR optimal 

solution reduced from 19.3 to 10.5% during the Training session (p = 1.70 × 10–6);  
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Figure 4.16 Adaptation toward optimal solution: Training session. Recorded (black/gray) and optimal 
(red/blue) TA and MG EMG signals for Subject K. With repeated exposure to unidirectional Training 
perturbations, subject responses navigated toward the optimal solution for both muscles. 

 

 

Figure 4.17 Adaptation toward optimal solution: Reversal session. Recorded (black/gray) and optimal 
(red/blue) TA and MG EMG signals for Subject J. With repeated exposure to bidirectional Reversal 
perturbations, subject responses navigated toward the optimal solution for both muscles. Because the 
optimal DQR model chooses a solution based on a time delay of 100 ms, specified a priori, the illustrated 
subject gradually begins to respond earlier than the onset timing of the optimal solution. 

 

 

Figure 4.18 Adaptation toward optimal solution: Washout session. Recorded (black/gray) and optimal 
(red/blue) TA and MG EMG signals for Subject M. With repeated exposure to unidirectional Washout 
perturbations, subject responses navigated toward the optimal solution for both muscles. In general, EMGs 
in response to Washout perturbations were more elevated than for the same perturbations during the 
Training session. 
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Figure 4.19 Reduction of error between recorded and optimal EMG patterns. The 
average total error between recorded TA and MG EMG patterns and the optimal 
feedback solution from the DQR model is illustrated with respect to trial number. As 
subjects adapt their postural response to repetitive exposure to both unidirectional and 
reversing perturbations, they navigate toward the optimal solution. This is indicated by a 
reduction in total error over the course of each session. Sharp increases in total error 
between sessions indicate the initial effects of the reversing perturbations and the after-
effects when returning to unidirectional perturbations. 

 

 

similar reductions in total error were observed during the Reversal (15.9 to 7.1%; p = 

2.74 × 10–9) and Washout (18.6 to 10.3%; p = 4.48 × 10–7) sessions (Figure 4.19).  

Discussion  

 Our results suggest that both feedback and feedforward mechanisms are used to 

adapt the postural responses to repetitive support-surface translations. Feedback strategies 

were used to adjust the magnitude of muscle activity throughout the time course of the 
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postural response through the adjustment of feedback gains related to CoM motion. 

While feedforward strategies were not able to completely mute or advance the evoked 

postural responses to reversing perturbations, biomechanical changes before the onset of 

disturbance were used to mitigate both unidirectional and reversing perturbations. This 

interplay between feedback and feedforward strategies served to improve control of the 

CoM, reducing the sway magnitude and velocity of the kinematic response to 

perturbations. These adaptive changes to the postural response strategy are consistent 

with the feedforward adjustment of feedback control through central set toward an 

optimal solution of postural control. 

 The current study represents the first effort to quantitatively characterize the time 

course of changes to both performance and muscle activation during a balance task. 

Previous reports have quantified the absolute changes in the magnitude of muscle activity 

evoked during postural responses. Here, we extended this previous analysis by assessing 

both the time course to the final postural control solution, in terms of muscle activity, and 

the resulting changes in task performance, as evidenced by CoM excursion and velocity. 

By determining the time constant of adaptation for postural responses, we corroborated 

previous observations that the time course of adaptation during postural tasks occurs on a 

much faster timescale than voluntary movements (Lisberger 1988). We also observed, for 

the first time, a smooth transition in the control of the CoM from stepping to non-

stepping postural responses. This suggests that the continuum between ankle and hip 

strategies within the postural control mechanism extends to include stepping responses, 

where hip strategies mix with increasingly longer steps as disturbances become more 

challenging.  
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 Each of the observed changes in task performance, as measured by CoM peak 

excursion and velocity, were matched by changes in muscle activity. We observed a 

smooth, unimodal progression from stepping to non-stepping postural responses in both 

excursion and velocity characteristics of CoM motion, rather than a bifurcated behavior. 

This was matched by smooth, unidirectional changes to muscle activity and feedback 

controller gains throughout each session. As peak CoM motion continued to diminish 

after the change in response strategy, muscle activity and related gains also continued to 

reduce in magnitude throughout the time course of activity. In addition, feedforward 

changes in kinematics, such as initial lean, were matched by co-contraction strategies, 

marked by increases in background EMG levels. This connection between kinematic and 

muscular changes reinforces the feedback relationship between task-related variables and 

muscle activity for postural control. 

 While the expected manifestations of feedforward strategies were not observed, 

adaptation of postural control may involve more subtle feedforward mechanisms. While 

the expected elimination of the TA response was not observed throughout the reversing 

perturbations in the current study, a complete suppression of feedback-mediated 

responses may be difficult to achieve, regardless of feedforward adaptive effort. Further, 

the lengthening of onset latency to the reversed motion of the platform may indicate a 

feedforward incorporation of platform-generated torques into the response strategy. This 

idea is further supported by the reduction in EMG magnitude in both TA and MG over 

the course of reversing perturbations. By clamping the error signal that drives these 

adaptive changes, it may be possible to observe directly the feedforward adaptations to 

the response strategy (Ethier et al. 2008; Scheidt et al. 2000). In the context of standing 
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balance, this may be accomplished using sway referencing, where the support surface 

rotates with the sway angle of the body, altering the proprioceptive cues that result from 

the motion (Nashner and Berthoz 1978; Peterka 2002). Nevertheless, the observed 

changes in muscle activation may result from the feedforward adjustment of feedback 

gains for postural control. 

 As humans adjust their muscle activity to improve CoM control, they may be 

searching for an optimal solution for performing the balance task at hand. In the 

traditional postural control experiments performed with cats (Macpherson et al. 1987), 

animals were trained over the course of several months to stand with forces distributed 

between four force plates and to respond to postural perturbations much like the ones 

described in the current work. Using an inverted pendulum model under optimal 

feedback control, the patterns of muscle activity elicited in cats was shown to match the 

optimal control solution, aimed to reduce kinematic deviation and total muscle activity 

(Lockhart and Ting 2007). However, naïve human subjects did not match this optimal 

pattern, only resembling the shape of the muscle activity predicted by the inverted 

pendulum model (see Chapters 2 and 3; Welch and Ting in prep; Welch and Ting 2008).  

 Here, by parameterizing EMG signals into feedback gains for postural control, we 

demonstrated that the changes in muscle activity during adaptation may be caused by a 

directed optimization of the response strategy. The smooth trajectory of the adaptation of 

muscle activity with experience suggests a directed optimization of muscle activity to 

control the CoM in the face of postural perturbations rather than a random search for 

effective solutions. This observation was supported by the smooth, unidirectional changes 

in the feedback parameters used to reconstruct muscle activity throughout the adaptation 
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process. When compared to the optimal solution for balance control, experimentally-

recorded EMG moved closer to the optimal pattern for all perturbation types, reducing 

the error between these two response patterns while improving task performance. These 

observations suggest that humans may optimize balance performance to maximize 

control of the CoM while minimizing energy expenditure. The optimization of motor 

control for minimum-energy task performance may be broadly applicable to other motor 

learning tasks, including both voluntary movements and involuntary reactions. 
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CHAPTER 5 

CONCLUSIONS 

 

 Despite recent advances in rehabilitation and postural research, falls remain the 

leading cause of injury-related death in seniors over age 75 (Anderson et al. 2004). While 

healthy adults fall primarily when pushing the limits of their postural control system or 

when there is a mismatch between expected and actual support surface properties (e.g., 

unknowingly stepping onto a wet or slippery surface), seniors often fall during activities 

of daily living, costing nearly $19 billion in direct medical costs each year (Stevens et al. 

2006). Therefore, improving postural control and balance is a clinically important goal 

for our aging population and is a prerequisite for the rehabilitation of voluntary 

movement in individuals with neurological dysfunction. The specific motor 

improvements resulting from targeted training are also of great interest to the fields of 

rehabilitation science and sports medicine alike.  

 Here, I described the adaptive neuromuscular transformations from sensory 

information to reactive muscle activity that may be responsible for postural control in 

healthy adults –– a necessary first step in the investigation of postural control in 

neuromuscular disease or deficit. I identified a scaling relationship between muscle 

activity for postural control and the characteristics of the experienced perturbation, which 

led to a feedback law for the formation of muscle activity during postural control. By 

modulating four feedback parameters related to CoM kinematics, humans can produce 

the wide range of temporal muscle activation patterns necessary to maintain balance in 

the face of perturbations of varying perturbation dynamics. This feedback law may be the 
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basis of the intricate changes to muscle activity during postural adaptation to both 

repetitive and changing postural demands. During adaptation, humans may continually 

update these four feedback parameters until they reach an optimal postural control 

solution, presumably seeking to minimize both the total postural disturbance and the 

energy expenditure in response to that disturbance. Also, by using mechanically-related 

feedforward mechanisms, such as postural lean and the up-regulation of leg stiffness 

through co-contraction, humans may seek to mitigate the initial effects of expected 

perturbations. 

 My approach provided an integrated investigation of the neuromuscular and 

biomechanical behaviors associated with postural control, an essential step towards 

understanding how muscles are coordinated to achieve the wide variety of postural tasks 

demanded by everyday life. This work may provide a quantitative framework for 

evaluating the temporal changes in muscle activity during postural control that occur with 

age, under neuromuscular impairments, and following musculoskeletal injury and 

interventional therapy. In addition, this approach allowed for the quantification of the 

time course and feedback-driven changes that occur during adaptation to new postural 

demands, which represents a large advance to the analytical methods offered by previous, 

more observational studies of postural adaptation. My work thereby provides an avenue 

for further investigating the mechanisms of adaptation through central set, which has 

previously been associated with anticipation, fear, or divided attention (Horak et al. 1989; 

Shumway-Cook et al. 1997; Shumway-Cook and Woollacott 2000; Woollacott and 

Shumway-Cook 2002). By identifying the feedback mechanisms responsible for the 

maintenance of balance under changing conditions, the road is also paved for the 
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investigation of more complex tasks, such as locomotion. We also gain knowledge useful 

for the effective design of athletic training and rehabilitation programs, neural prostheses, 

bipedal robots, and other interventional therapies. 

Central Neural Control of Posture and Adaptation 

 While conclusive information regarding the central structures responsible for 

forming the automatic postural response is sparse, current evidence suggests that spinal 

circuits alone are not capable of producing the coordinated muscle activity following 

postural perturbations (Pratt et al. 1994). The circuitry responsible for automatic postural 

control is likely located in the higher centers of the nervous system. Integration of 

vestibular, somatosensory, and visual information has been shown to take place in the 

vestibular nuclear complex of the medulla and pons (Wilson and Melvill Jones 1979). 

Studies of patients with Parkinson’s disease have implicated the basal ganglia in the 

control of tonic postural tone, centrally initiated postural adjustments, and externally 

triggered reactions (Horak and Macpherson 1996), though these patients retain the ability 

to habituate the APR to repeated perturbations (Bloem et al. 1998). Lesion studies show 

that the cerebellum plays several different roles in postural control. The most profound 

postural effects are observed following lesions to the anterior lobe of the cerebellum 

(Dichgans and Diener 1985), resulting in severe ataxia with high-frequency trunk tremor, 

likely due to difficulty controlling the magnitude rather than the timing of postural 

coordination (Horak and Macpherson 1996). 

 The neuroanatomical substrates responsible for motor adaptation are also as of yet 

unclear. Changes in the patterns of cortical motor activation have been regarded as the 

underlying mechanism of motor learning (Hund-Georgiadis and von Cramon 1999). The 
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cerebellum has been suggested as a possible location for internal model formation and 

storage, acting as a Smith Predictor updating both feedforward and feedback models to 

adapt to new environmental constraints (Miall et al. 1993). More recent evidence 

suggests that cerebellar patients are unable to scale postural responses appropriately 

based on prior experience (Horak and Diener 1994; Horak and Macpherson 1996), but 

show no impairment in the ability to habituate their automatic postural response to 

repeated perturbations (Nashner 1976; Schwabe et al. 2004).  

Future Studies 

 Several interesting experimental observations not reported within this thesis 

deserve further attention due to the interesting perspectives on postural control they may 

provide. One such observation is that muscle onset timing changes with the peak jerk of 

the administered perturbation. During the study described in Chapter 3, perturbation jerk 

was not individually controlled, and therefore varied with perturbation acceleration. 

Nevertheless, the hastening of muscle onset with increased perturbation jerk can be 

observed in Figure 3.4A, where at each acceleration (and therefore jerk) level, muscle 

onset occurs at different timing. In Figure 3.4C, where acceleration and jerk levels are 

held constant, muscle onset occurs with similar timing in each condition. A more 

comprehensive study that includes the individual control and variation of peak 

perturbation jerk is necessary to fully understand the role of jerk feedback in shaping 

muscle activity for postural control. 

 While examining the bilateral ankle muscle EMG patterns in response to a variety 

of perturbation characteristics, I observed substantial interlimb differences in the evoked 

postural response. Previous observations suggest that, like with the hands (Sainburg and 
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Kalakanis 2000), the use of human legs is typically lateralized, where one leg is used for 

actions of mobilization and the other for postural stabilization (Hart and Gabbard 1997). 

To further investigate the roles of each leg during postural control, we asked right-legged 

subjects to stand quietly in both bipedal stance and one-legged stance on each leg. Our 

preliminary data indicate that right-legged subjects have smaller lateral center of pressure 

displacement and higher velocities during left-legged quiet stance, suggesting a 

lateralization of postural stability to the left leg (Surendran et al. 2007). While only 

preliminary, these results may have strong implications in the field of prosthetic design. 

To assure the correct control strategies are being used for the lateralized role appropriate 

for the amputated limb, the stability mechanisms for prosthetic limbs may require 

individualized modification. Future work can also examine the postural control of leg 

amputees and how it adapts as amputees gain experience with the prosthetic limb. 

 The experimental and analytical techniques discussed within this thesis can also 

be used to explore postural responses to perturbations containing mediolateral directional 

components and those incurred during locomotion. Here, I established that anterior-

posterior postural control scales with perturbation characteristics and is consistent with a 

feedback law on CoM kinematics. While it is not clear whether these feedback 

mechanisms extend to perturbations with significant mediolateral components, similar 

temporal patterns of muscle activity have been observed for multidirectional 

perturbations (Macpherson 1988). Studies of spatial patterns of muscle activity in 

response to multidirectional perturbations in cats and humans have demonstrated that a 

small number of muscle synergies can describe the coordinated activity of muscle 

throughout the body that make up the postural response (Torres-Oviedo et al. 2006; 
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Torres-Oviedo and Ting 2007). We hypothesize that these muscle synergies are activated 

by neural commands related to CoM kinematic feedback. We further hypothesize that 

postural responses to perturbations incurred during locomotion will use the same muscle 

synergies and CoM feedback law as are used to respond to perturbations of quiet stance. 

 In addition to empirical investigation, the inverted pendulum models presented 

here may also be expanded to study mediolateral perturbations and stepping postural 

responses. By adding an additional limb (pendulum) to the model with the CoM 

suspended on a bar linkage between the two, the feedback law described here may be 

able to characterize postural responses to mediolateral perturbations. This new 

mediolateral model can also be used to study the effect of biomechanical configuration 

on postural response, allowing further investigation of the interplay between feedforward 

and feedback mechanisms in postural control (cf. Scrivens et al. 2008). By the inclusion 

of gain and/or response scheduling, our inverted pendulum model of postural control may 

also be extended to the inclusion of stepping postural responses. This inclusion may 

require a pre-programmed threshold response that allows one pendulum limb to be raised 

and moved in the appropriate direction to mimic a stepping response when the CoM 

moves beyond the base of support. The validity of the muscle spindle stiction response 

that was added to the jigsaw model should be verified by performing controlled muscle 

spindle stretches at a variety of accelerations and velocities to determine the modularity 

of the duration of its acceleration-dependent response. 

 A few additions and modifications to the feedback model for postural control are 

warranted to improve the insights that can be gained from this useful tool. First, 

additional links should be added to the current inverted pendulum model to allow better 
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matching between model and subject kinematics during postural control. As suggested in 

Chapter 3, by mimicking ankle and hip responses (and the continuum of mixed 

strategies in between), the individual roles of muscles in coordinating body segments 

during postural control can be elucidated, improving the results from out modeling 

efforts. This will require the simultaneous prediction of activity from multiple muscles, 

including antagonistic pairs of muscles at each joint. At the cost of additional 

computational expense, the addition of links and muscles to the current model may result 

in a more accurate reconstruction of low-level muscle activity in proximal muscles, 

providing better agreement between data-matching results from the jigsaw and TSyID 

models. This effort may also result in a set of optimal response patterns from the DQR 

model – rather than one solution for each perturbation – better representing the 

biomechanical roles of muscles at each joint.  

 This work has established a quantitative framework for the interpretation of 

complex muscle activation patterns for balance control. When combined with ongoing 

studies on muscle synergies and the spatial organization of muscle activation patterns, 

this work may provide a tool for the spatiotemporal prediction of muscle activation 

patterns in a number of experimental conditions and biomechanical constraints. Future 

studies can use this spatiotemporal framework to gain insight into the pathological 

changes that result from central and peripheral neural deficits, as well as the normal 

changes in postural responses due to sensory perturbations, cognition, emotional state, 

and anticipation.  
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APPENDIX A 

USING WAVELET FANOVA AS A TOOL FOR EXAMINING THE 

TEMPORAL PATTERNS OF MUSCLE ACTIVITY 

 

 Previous investigators have noted several difficulties in showing significant 

changes in muscle activity with perturbation dynamics using conventional statistical 

analyses. We previously described a feedback law for transforming CoM kinematics into 

an EMG pattern in response to support-surface translations (see Chapter 3; Welch and 

Ting in prep). We demonstrated that CoM acceleration and velocity affect the postural 

response in different, but sometimes overlapping time windows. This confounds a 

traditional statistical analysis in which a priori time bins or features, such as the 

magnitude and timing of peak muscle activation, must be quantified. Such descriptive 

parameters do not fully encompass the differences between two EMG profiles. In 

addition, further complications arise due to the high inter-trial variability of muscle 

activation patterns, resulting from the difficulty in controlling subject kinematics at the 

time of perturbation (Horak and Moore 1993; Park et al. 2005; Siegmund et al. 2002; 

Szturm and Fallang 1998; Tokuno et al. 2006). Because we are interested in comparing 

the shapes of curves that are functions of time or space, there are few traditional 

statistical methods that can be used to effectively test our hypotheses without losing 

power due to multiple comparisons.   

 The wavelet transform is a versatile tool for the analysis of biomedical signals 

that contain high variability because it reveals not only the different frequency 

components of a signal, as with the Fourier transform, but also the temporal structure of 
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those components. Because of its power to handle signals containing events throughout 

the range of time-frequency localization, the wavelet transform has been used in many 

biomedical applications, from electroencephalogram (EEG) and electrocardiogram 

(ECG) analysis to positron emission tomography (PET) and magnetic resonance imaging 

(MRI) (see Unser and Aldroubi 1996 for a review). More recently, wavelet transforms 

have been used to evaluate electromyographic signals in several applications, including 

the extraction and classification of motor unit action potentials from EMG records (Fang 

et al. 1999; Ostlund et al. 2006; Ren et al. 2006), as well as to assess muscle fatigue 

(Kumar et al. 2003; Sparto et al. 2000) and the tuning of leg muscle activity in response 

to impact forces (Wakeling et al. 2001). 

 The analysis in the current study represents a novel extension of wavelet EMG 

analysis by using the wavelet transform to examine the spatiotemporal features of the 

EMG signal and compare multiple EMG waveforms. Previous studies often use wavelet 

decomposition as a means of filtering their signals and comparing the performance of 

several mother wavelets at feature detection within the signal, without evaluating the 

temporal characteristics of the EMG waveform itself. The discriminating attribute of our 

wavelet analysis is the reconstruction of the wavelets into the time domain after 

performing functional analyses, to reveal the temporal manifestation of the effects of 

experimental variables. This type of analysis also removes any biases due to the 

predetermined time windows specified in the traditional regression of means analysis. 

 Functional ANOVA (FANOVA) was performed in wavelet space to identify the 

temporal regions of the EMG waveforms that were significantly affected by changes in 

perturbation characteristics. The entire 3-second duration of the collected EMG signals 
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for each muscle (experimental protocol and data collection procedures explained in 

Chapter 3) were resampled to 360 Hz and pooled over all subjects. Only EMG data from 

perturbations with accelerations between 0.2 – 0.4g were included in the analysis to 

achieve a balanced statistical design, since only at these acceleration levels were all 

velocity levels achieved. Using the MATLAB wavelet toolbox, these data were padded 

using periodization and transformed to wavelet space using the third-order coiflets (coif3; 

see Cohen and Kovacevic 1996 for mathematical background). Three-way FANOVA 

(velocity × acceleration × subject) was performed on each wavelet coefficient with a 

significance level of α = 0.05. The wavelet coefficients that varied significantly with 

perturbation characteristics were compared using a Scheffe pairwise comparison subject 

to a Bonferroni correction. Contrasts of significant wavelet coefficients were calculated 

with respect to the lowest velocity and acceleration conditions (25 cm/s and 0.2g, 

respectively). The statistically-significant wavelets were then transformed back into the 

time domain to reveal the temporal regions of the EMG waveform that are sensitive to 

perturbation velocity and acceleration. As an additional testbed for this novel technique, 

as well as to provide additional validation of the modeling results from Chapter 3, the 

wavelet FANOVA analysis was repeated on DQR optimal predictions of muscle activity 

in response to the experimental perturbations and the results from the experimental and 

modeling results were qualitatively compared. 

 Wavelet analysis provided an unbiased description of the temporal regions of the 

muscle response that were significantly affected by acceleration and velocity. Post hoc 

Scheffe contrasts for the effects of acceleration and velocity on TA activity are illustrated 

in Figures A.1A-B. The effects of acceleration predominate in the early periods of EMG 
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that correspond to the initial burst (IB) region defined during regression analysis (p < 

0.001; n = 47 significant wavelets). Velocity effects dominate in the later periods of EMG 

that correspond to the plateau region (PR) (p < 7×10–4; n = 72 significant wavelets). 

Temporal scaling patterns were robust across all muscles examined, particularly in the 

triceps surae, quadriceps, and hamstrings (Figure A.2). While these scaling trends are in 

agreement with those identified using the traditional linear regression analysis (Figure 

3.4), wavelet FANOVA results indicate that the scaling with both perturbation 

acceleration and velocity extends well beyond the predetermined time windows of the 

linear regression analysis. 

 While model EMG predictions during the variation of velocity better matched 

experimentally-recorded EMG traces at higher acceleration levels (Figure 3.8), wavelet 

FANOVA contrasts from pooled model predictions matched the results obtained from the 

same analysis on experimental data for both acceleration and velocity (Figures A.1C-D). 

Specifically, the main effects of perturbation peak acceleration on model predictions 

occurred during the initial burst period defined for linear regression analysis (p < 2×10–4; 

n = 288 significant wavelets), while the effects of peak velocity predominated during the 

plateau region (p < 2×10–4; n = 290 significant wavelets).  
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Figure A.1 Wavelet analysis reveals effects of perturbation characteristics. A and C) 
Contrasts between each acceleration level and the 0.2g condition indicated that the 
significant temporal effects of acceleration on experimental EMG (p < 0.0011; n = 47) 
and model predictions (p < 2×10–4; n = 288) lie within the initial burst period from 
regression analyses. B and D) Contrasts between each velocity level and the 25 cm/s 
condition indicated that the significant temporal effects of velocity on experimental EMG 
(p < 7×10–4; n = 72) and model predictions (p < 2×10–4; n = 290) lie within the plateau 
region. Significance levels for contrasts were adjusted from p < 0.05 using a Bonferroni 
correction based on the number of significant wavelet coefficients after wavelet 
FANOVA. 
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Figure A.2 Robustness of temporal scaling patterns across muscles. The scaling of muscle activity with 
perturbation characteristics is robust across muscles spanning the entire leg. Shown here are muscles from 
the triceps surae, quadriceps, and hamstrings. Contrasts between each acceleration level and the 0.2g 
condition indicate that activity during the initial burst period from regression analyses is sensitive to peak 
acceleration. Velocity contrasts to the 25 cm/s condition indicate that activity during the plateau region is 
sensitive to peak velocity. This velocity dependence often extends temporally beyond the window used for 
regression analysis. 
 

 

 Here, we performed functional ANOVA in the wavelet domain to identify the 

scaling relationship between muscle activity during the automatic postural response and 

the acceleration and velocity of the perturbation. By removing the biases of pre-

determined time windows, the temporally-overlapping effects of perturbation dynamics 

were revealed in both experimental data and model predictions. The results of the wavelet 

FANOVA analysis were consistent with conclusions drawn for traditional statistical tests. 

More importantly, this analysis demonstrated that the effects of acceleration and velocity 

often extend well beyond the a priori time bins that have been traditionally chosen for 
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evaluating the scaling of muscle activity with perturbation characteristics. Wavelet 

FANOVA thereby represents a valuable statistical tool for evaluating temporal patterns 

of muscle activity, providing a quantitative means to assess the differences between two 

EMG signals despite large intertrial and intersubject variability.  
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