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SUMMARY 

 
High-throughput time series data characterizing magnitudes of gene expression, 

levels of protein activity, and the accumulation of select metabolites in vivo are being 

generated with increased frequency. These time profiles contain valuable information 

about the structure, dynamics and underlying regulatory mechanisms that govern the 

behavior of cellular systems.  However, extraction and integration of this information into 

fully functional, computational and explanatory models has been a daunting task. Three 

types of issues have prevented successful outcomes in this inverse task of system 

identification. The first type pertains to the algorithmic and computational difficulties 

encountered in parameter estimation, be it using a genetic algorithm, nonlinear 

regression, or any other technique. The second type of issues stems from implicit 

assumptions that are made about the system topology and/or the functional model 

representing the biological system. These include the choice of intermediate pathway 

steps to be accounted for in the model, decisions on the irreversibility of a step, and the 

inclusion of ill-characterized regulatory signals. The third type of issue arises from the 

fact that there is often no unique set of parameter values, which when fitted to a model, 

reproduces the observed dynamics under one or several different sets of experimental 

conditions. This latter issue raises intriguing questions about the validity of the parameter 

values and the model itself. The central focus of my research has been to design a 

workflow for parameter estimation and system identification from biological time series 

data that resolves the issues outlined above. In this thesis I present the theory and 

application of a novel framework, called Dynamic Flux Estimation (DFE), for system 

identification from biological time-series data. 

 xii



 

CHAPTER 1

INTRODUCTION 

 

The field of computational systems biology stands to benefit immensely from 

modern techniques in molecular biology that are able to generate comprehensive sets of 

multi-scale time-series data. These data generation capabilities, which once—but not 

anymore—lagged the methods of analysis and interpretation, drive biological systems 

analysis in two ways. Firstly, the quality and scale of data present an opportunity to steer 

biological systems analysis away from a purely descriptive mode to one that is 

complemented with rigorous mathematical modeling. This implies that systems biology 

must develop tools for providing objective and rigorous rationale for biological systems 

designs and modes of operation [1]. Secondly, the speed of data-generating technologies 

necessitates that computational systems biologists be able to incorporate newly available 

information quickly into their models and analysis. When done so, modeling will 

significantly accelerate the development and analysis of experimentally verifiable 

hypotheses leading to rapid scientific progress. 

Concept Map Modeling and enabling software tools 

Concept Map Modeling [2] is proposed here as a framework that facilitates the 

translation of heterogeneous biological information, whether explicit or intuitive, into 

mechanistic mathematical models. This novel conceptual framework bridges the gap 

between semi-quantitative biological knowledge and the construction of detailed 

mathematical models. The framework serves as a means to successful outcomes from the 

collaboration between biologists, who focus primarily on specific biological details and 

mechanisms, and computational systems scientists, who attempt to integrate diverse 

dynamic data into functional models for generating experimentally verifiable hypotheses. 
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Together, they enable the rich field of computational systems biology which promises to 

uncover the design and operational principles of biological systems through interactive 

information discovery. The foremost goal of this approach is the quantitative 

formalization of a biological phenomenon into a coarse mathematical model that 

integrates what biologists perceive to be functional systems surrounding their hypotheses. 

Subsequent steps allow analyzing and refining the rudimentary parametric models and 

connecting them with other coarse or detailed concept map models. Such coarse concept 

models, even when formalized with alleged local dynamic behavior of system 

components, provide significant insights for the biological systems [3]. However, the step 

to derive such models based on high quality time-series data is still beset with long 

computation times and questionable outcomes. In this thesis I present a software tool and 

computational techniques necessary to supplement the Concept Map Modeling 

framework. Collectively, these methodologies will facilitate rapid system identification 

and analysis based on biological time-series data.  

The speed with which this framework can be effectively deployed however 

depends on two key enablers: software tools and computational techniques. For 

biological systems modeling and analysis to become a standard research technique with 

wider appeal, it is necessary not only to develop its theoretical foundation, but also to 

support all major methodologies with readily available, easy-to-use computational tools. 

We are still far from having such tools in a quality and accessibility comparable to 

modern word processors or spreadsheet programs, but the number of software packages 

for specific types of biological systems analyses is rapidly growing. New computational 

techniques become appealing to a wider audience only if they are supported by user-

friendly software with an intuitive graphical user interface (GUI). Of course, many 

mathematical packages contain algorithms for integrating differential equations and for 

various types of optimization. Specific software has even been developed for solving and 

analyzing metabolic models, once they have been formulated in the form of fully 
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parameterized differential equations. Examples include PLAS[4], Gepasi[5], and 

BSTLab[6]. The packages BestKit[7] and Cadlive[8] furthermore allow the translation of 

topological diagrams into symbolic equations. With the motivation to realize a software 

tool, that would specifically support the activities and workflow of biological systems 

analysis within the frameworks of Biochemical Systems Theory and, in particular, of 

Concept Map Modeling, I developed the Biochemical Systems Toolbox (BSTBox) as the 

first specific aim of my research. The framework of Concept Map Modeling and the 

associated software (BSTBox) are presented in chapter 2 of this thesis. 

Biochemical Systems Theory (BST) 

Biochemical Systems Theory (BST; [9, 10]) was originally designed for studying 

the dynamics and other features of biochemical and gene regulatory systems, but is not 

restricted to these application areas in terms of its mathematical foundation.  BST is forty 

years old and its development, expansions, and applications have been documented in 

several books [11-14] and hundreds of journal articles, proceedings, and book chapters. 

The basic tenets of BST are quite simple and translucent.  In a nutshell, each 

variable that changes over time is given a name, typically X with an index, and its 

dynamics is formulated as an ordinary differential equation, which describes the change 

over time as it is governed by processes that affect this variable.  The processes are 

functions of other variables within and outside the considered system and often of the 

variable itself.  In most realistic cases, the modeler has some general information about 

these processes, but does not know their numerical details or even their mathematical 

structure. As an example, a population may grow in some sigmoid fashion, but the 

underlying mathematical function may not necessarily be known.  BST addresses this 

problem by symbolically approximating each process with a product of power-law 

functions.  One may wonder how it is possible to approximate something unknown, but 

this is conceptually no different than executing a linear regression on data points from a 
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system with unknown structure.  The only difference is that the use of power-law 

functions in BST is much more general than linear regression.  In fact, one can—quite 

surprisingly—show with mathematical means that any relevant nonlinearity can be 

faithfully represented in the power-law formulation of BST [15-20], which implies that 

we are not likely to run out of mathematical representations.  On the biological side, 

many successful analyses attest to the validity of this approach (see, e.g., [12]). 

To be specific, suppose that the variables of the system are called Xi and the 

processes Vi.  In BST, each process Vi involving at most n dependent (state) variables 

and m independent variables takes the format 

 
 

∏
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…… Eq. 1 

 
  

Here, the dependent variables are governed by the dynamics of the system and 

change accordingly, whereas the independent variables are usually constant during each 

experiment and may include inputs, control variables and constant enzyme activities.  

Typical examples in a metabolic setting are metabolites (dependent variables) and 

enzymes or a (constant) substrate feed (independent variables). The rate constant γi 

describes the turnover rate of the process, and each exponent fij is a kinetic order that 

quantifies the direct effect of variable Xj on Vi.  A positive kinetic order indicates an 

activating or otherwise augmenting effect, while a negative kinetic order reflects 

inhibition.  The magnitude of each kinetic order reflects the strength of the effect.  If 

there is no direct effect, the corresponding kinetic order is 0, and the variable, raised to 0, 

automatically drops out of the term, because any positive value of X, raised to 0, equals 

1. 
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Equations within BST may be formulated in slightly different ways.  In the 

Generalized Mass Action (GMA) representation, every process is considered 

individually.  Thus, if the change in Xi is governed by p input and q output processes, the 

starting point is the equation 

]...[]...[ 2121 iqiipiiii vvvvvvX ++−+++=  

and each process vjk is represented by a distinct product of power-law functions as shown 

above, so that the resulting equations always have the form 
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As an alternative, the S-system form first aggregates all influxes for a given 

variable with a single power-law term and similarly aggregates all effluxes in a second 

power-law term.  The starting point for this aggregation may thus be formulated 

generically for each variable as 

−+ −=++−+++= iiiqiipiiii VVvvvvvvX ]...[]...[ 2121  

Again, the first group of terms in brackets consists of fluxes entering the 

metabolite pool Xi, the second group in brackets consists of fluxes leaving this pool, and 

and  are these groups of “aggregated” fluxes, which are now approximated as 

before. The corresponding S-system equations in BST therefore consist of at most one 

positive and one negative power-law term and have the format 

+
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βα ……Eq. 3 

Again, the rate constants α and β are non-negative and the kinetic orders g and h 

are real-valued.  Variables that directly contribute to the influx into Xi are included in the 
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“alpha-term” and variables affecting the efflux from Xi populate the “beta-term”. 

Variables that do not directly affect these terms have kinetic orders of 0 and therefore do 

not appear explicitly.  The literature contains numerous descriptions of how to set up and 

analyze these types of models, as well as discussions about the similarities, differences, 

advantages and disadvantages of the two alternative representations (e.g., [11, 12]).   

A key advantage of any representation within BST is that it is straightforward to 

set up equations from a diagram that shows how the components of the system affect 

each other.  In fact, that is one of the key features of BSTBox, where given a list of 

components and their influences, the set of ordinary differential equations, describing the 

system dynamics, are automatically generated at the click of a button.  Again, the 

challenging part is the identification of suitable parameter values. 

Challenges in system identification from biological time-series data 

Multi-scale time series data that are capable of characterizing temporal changes in 

magnitudes of gene expression, levels of protein activity, and accumulation of select 

metabolites in vivo are being generated with increased frequency and quality. These time 

profiles contain valuable information about the structure, dynamics and underlying 

regulatory mechanisms that govern the behavior of cellular systems.  However, extraction 

and integration of this information into fully functional, computational and explanatory 

models has been a daunting task [2]. Three types of issues have prevented successful 

outcomes in this inverse task of system identification. The first type pertains to the 

algorithmic and computational difficulties encountered in parameter estimation, be it 

using a genetic algorithm, nonlinear regression, or any other technique. The second type 

of issues stems from implicit assumptions that are made about the system topology and/or 

the functional model representing the biological system. These include the choice of 

intermediate pathway steps to be accounted for in the model, decisions on the 

irreversibility of a step, and the inclusion of ill-characterized regulatory signals. The third 
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type of issue arises from the fact that there is often no unique set of parameter values, 

which when fitted to a model, reproduces the observed dynamics under one or several 

different sets of experimental conditions. This latter issue raises serious questions about 

the validity of the parameter values and the model itself.  

Given a set of in vivo time-series data and a mathematical model in the form of a 

system of ordinary differential equations (ODE) describing its dynamics, the estimation 

of parameter values constitutes an inverse problem that many groups have attempted to 

solve using standard tools of optimization, system identification and intelligent searches. 

Notable methods include nonlinear regression [21, 22], genetic algorithms [23], 

evolutionary programming [24], and simulated annealing [25]. These methods have been 

the subject of extensive research in the past half-century, but till date there is no single 

method that performs well for all types of estimation tasks in biology. Optimization 

problems, in general, are concerned with locating maxima or minima of functions. When 

applied to the problem of parameter estimation, one usually begins with a hypothesized 

functional model and experimental data. The task at hand then is to estimate parameter 

values such that the model closely matches the experimental data when simulated. This 

involves constructing an objective function such as sum-of-squared-errors, beginning 

with an initial parameter guess, and then applying the optimization scheme of choice, 

which aims to minimize the error or difference between the data generated by the 

simulated model and the observed experimental data. It is now widely acknowledged that 

this seemingly straightforward approach is in fact riddled with many complications. 

Firstly, it is an iterative process requiring very many evaluations of an ODE model that 

usually consumes more than 95% of the computation time and can be extremely slow 

irrespective of the optimization algorithm [26]. Secondly, the numerical solution to the 

ODEs is frequently confounded by a selection of parameter values that may cause the 

solver to estimate negative or unreasonably high values for concentrations. Lastly, the 

performance of the local optimizer is greatly impeded by the dimensionality of the 
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problem, the constraints imposed along each of the dimensions, restrictions on the error 

tolerance during the search and choice of the number of iterations for which the 

optimization is performed.  

My previous research [27] supported the often-mentioned notion that ODE-based 

local optimization guarantees success when initiated with a reasonably “good” parameter 

guess, one that is inside the basin of attraction of a local or global minimum. Over the 

years, I have explored numerous estimation schemes that had the potential to lead to such 

“good” initial guesses while providing guidance on the error landscape given a model 

structure, time series data, an objective function and choice of an optimization scheme. 

These schemes included artificial decoupling of equations without precursor-product 

constraints, multiple shooting for system integration, and slope-based parameter 

estimation, to name a few. These different schemes worked with varying degrees of 

success and the problem of parameter estimation could be solved when I applied these 

schemes collectively in different combinations. Success, however, came only after 

months of heuristic search. The general problem of parameter estimation was clearly not 

solved.  

In other (unpublished) work I tried to approximate the manifold of good solutions 

in parameter space and its basins of attraction. I considered two sets of parameter values 

ΩA and ΩB. These sets could either fit a model to the same experimental data set ‘A’ or to 

different data sets ‘A’ and ‘B’ simultaneously. The hypothesis was that in case of the 

former, the solutions (parameter sets) would lie along a continuum (manifold). In the 

latter case, a common solution to the two experimental data sets would lie at the 

intersection of two such manifolds. Further research revealed that it was extremely 

difficult to make any reliable conclusions about the parameter space, which was 

presumably due to the curse of dimensionality. Any attempts to approximate the 

functional form for a hypothetical manifold were confounded by the scale of the problem 

at hand. Not to mention, this in turn, became more or less like any other system 
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identification problem. A reason for the lack of success might be the observation of 

Greenside et al. [28] who showed that even the simplest Newton line-search algorithm, 

when applied to solving a moderately complex problem (in their case, the polynomial z3 

– 1 = 0 in the complex plane), exhibits an intricate fractal basin of attraction of the roots. 

Kutalik et al. [29] have demonstrated the presence of such basins of attraction in higher 

dimensions whereby the manifold was approximated in two-dimensions at a time. My 

efforts to approximate the manifold as a hyperplane in higher dimensions have borne no 

success to date. 

Aside from these computational complexities, the second type of issues stems 

from the assumptions made about the underlying system topology and/or the 

representative functional model. Voit et al. [30] have discussed such issues at length.  

They include the choice of intermediate pathway steps to be accounted for in the model, 

decisions on the irreversibility of a step, and the inclusion of ill-characterized regulatory 

signals. Oftentimes, the assumed kinetic functions themselves are questionable and there 

have been no means to either establish the appropriateness of a specific functional form 

of choice or to evaluate its efficacy with alternative models. This poses a serious threat to 

the “goodness” of a model because the assumptions pertaining to the underlying 

functional flux severely limit the reliability of its predictions in untested experimental 

conditions. Moreover, if two different models are able to explain the same experimental 

data, then there are no criteria to objectively compare or distinguish these two models. 

Lastly, I have also found that independent of the choices of parameter estimation 

schemes, the system topology, the underlying functional model, and even the modeling 

mode (bottom-up/top-down/partial) there is a more fundamental problem of a different 

nature, to model “fitting”. This third type of issue arises from the fact that there is often 

no unique set of parameter values, which when fitted to a model, reproduces the observed 

dynamics under one or several different sets of experimental conditions. At first this may 

rather seem to be an advantage for parameter estimation since it widens the spectrum of 
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optimal solutions. And that in fact is true in specific situations, e.g., when estimating 

parameters for a reversible step in a pathway. It can be easily shown that different 

numerical combinations of parameter values will be able to reproduce the local dynamics 

of such a step. However, when more than one set of parameter values are able to fit an 

entire pathway model and reproduce the observed dynamics then it lowers the confidence 

in these parameter values. Moreover, when a single set of parameter values is unable to 

yield the appropriate dynamics in different experimental conditions then it raises doubts, 

not only on the parameter values, but also on the underlying functional model, the system 

topology and possibly even the data themselves. In such situations, conventional wisdom 

suggests that one should try to search for an optimal set of parameters that will fit the 

model to all experimental data sets simultaneously. To date, however, there is no 

guidance or diagnostics available to resolve the dilemma of whether the true problem lies 

in the model, the topology, the data, or combinations of the three. 

With the motivation to resolve these issues, I set as my second specific aim of 

research  the task to design a novel approach to parameter estimation and system 

identification. To meet my objectives I have researched the application of a systems 

analysis technique that has become quite popular, namely, “decoupling with slope 

estimation” [31]. Several authors have suggested different variations of decoupling 

systems of differential equations that suited their particular purposes best. Voit and 

Savageau suggested decoupling by estimating slopes of all (n) time courses at many (N) 

time points, which reduced the system of n coupled differential equations to n X N 

algebraic equations [13, 26, 31]. Voit et al. [32] have applied decoupling as a means to 

validate implicit or explicit model assumptions. Chou, Martens and Voit [33] have 

successfully designed a parameter estimation scheme for S-systems (Alternating 

Regression) based on the same principles. 

When trying to apply Alternating Regression for parameter estimation with 

GMA-models, I encountered a major challenge, which may be called “incongruent flux 
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compensation”, that I believe would be a characteristic of any decoupling-based 

estimation scheme. I briefly discuss the issue here. In any metabolic pathway, the efflux 

from one metabolite pool (precursor; Xi) should equal the influx into the next metabolite 

pool (product; Xj), assuming there are no secondary pathways that may divert material 

from the primary pathway and/or add material to it [30]. These relationships are known 

as “precursor-product constraints” and it is imperative that any model, even when 

decoupled, should meet these constraints to maintain mass balance. This, however, poses 

a unique challenge to the parameter estimation scheme that, as per the decoupling 

approach, attempts to solve the system one equation at a time. When estimating for 

parameters for the equation describing the dynamics of the precursor (Xi), parameters are 

fitted to its production and degradation terms simultaneously. In such a scenario, these 

parameters are optimized only to yield the necessary flux compensation between the 

production and degradation functions of Xi such that these accurately capture the net 

dynamics of Xi. However, the efflux of precursor (Xi) so fitted may be suboptimal as an 

influx to the product (Xj). I have argued that this fundamental issue of compensation 

between uncertain fluxes can be circumvented by first deriving time-series profiles of all 

fluxes within the system, intra- and extra-cellular, and then estimating for parameters one 

flux at a time. I have designed a scheme for the successful application of slope-based 

decoupling method to obtain such “model-free dynamic flux estimates”. A complete 

overview of this novel approach to parameter estimation, called Dynamic Flux Estimation 

(DFE), and preliminary results from its application to a proof-of-concept metabolic 

pathway are presented in chapter 3 of this thesis. 

Significance of model-free dynamic flux estimates 

A priori knowledge of dynamic intra- and extra- cellular flux profiles, derived 

from time series data, can have far-reaching implications for parameter estimation and 

system identification at large. Several groups have realized the potential of NMR and 
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mass spectroscopy to examine intracellular fluxes and are combining experimental and 

analytical methods to study flux distributions in metabolic networks [34-38]. At present, 

these analyses are always constrained by steady-state or pseudo-steady-state assumptions. 

The proposed Dynamic Flux Estimation (DFE) approach does not make any such 

assumptions. Furthermore, when applied correctly, this approach yields time-series 

profiles of all intra- and extra-cellular fluxes in a system without any assumptions 

regarding the underlying functional model. 

There appear to be numerous advantages with the successful application of this 

approach. These can be categorized into benefits for parameter estimation, model 

identification and model evaluation. When applied to parameter estimation, the use of the 

decoupling technique based on slope estimation keeps this approach computationally 

inexpensive. Given the time-series data for all substrates, products and co-factors and the 

flux time-series for each reaction step in a pathway, one is able to undertake a rigorous 

investigation of the most appropriate functional form that can accurately capture the 

observed dynamics. The evaluation of flux-substrate plots is a first step in this analysis. 

Furthermore, well researched tools of statistical analysis, such as jack-knifing, 

bootstrapping etc. can be used to further assess the suitability of each alternative 

functional form. Thus, a truly objective and rational assessment renders it possible to 

choose between representative kinetic forms (Mass-action / Michaelis-Menten / Power-

law / Hill equation etc.). Furthermore, inherent complexities of parameter estimation will 

be greatly reduced. For instance, if using the power-law formalism, the ultimate 

estimation of parameters for each flux translates into a simple linear regression problem 

in log space. Finally, this approach to parameter estimation would overcome the earlier 

stated fundamental challenge in decoupling-based estimation schemes: “incongruent flux 

compensation”, which never arises with the proposed approach. 

Besides ameliorating the parameter estimation process, the dynamic flux-based 

approach addresses many issues in model identification. Foremost it clearly separates the 
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sources of error that reside in inconsistent data from those that arise due to invalid 

assumptions about the system topology and specific functional forms. These issues are 

circumvented because, as a first step, this approach enforces consistency checks among 

the experimental data, system stoichiometry and the hypothesized topology. 

Subsequently, the dynamic intra- and extra-cellular fluxes in the system are derived 

without any assumptions regarding the underlying model, i.e. the functional kinetic 

forms. All assumptions of the system topology, such as decisions on irreversibility or 

even the inclusion or exclusion of a step, are validated at this stage itself. Next, as 

explained earlier, it is possible to objectively assess the appropriateness of alternative 

functional forms. Lastly, when fitting the parametric kinetic forms to these fluxes, the 

assumptions of ill-characterized regulatory signals and co-factors will be validated by the 

ability of the model to reproduce the derived flux dynamics. Moreover, the “goodness” of 

a fully parametric model, obtained from such a staged modeling process, is directly 

evident in the outcomes of each stage – the mass and flux based balances, the biological 

plausibility of the derived flux profiles, the fit of the functional forms and the 

corresponding parameter values. 

Ultimately, one will be able to rationalize the predictive power of a model (or the 

lack of it) and consequently establish its “value”, which is typically assessed from its 

ability to reliably extrapolate toward untested conditions, by independently evaluating the 

data, the topology and the representative functional form. Before using a fully parametric 

kinetic model to predict situations that had not been used for model identification or data 

fitting, one will be able to test whether the particular, chosen parametric model is suitable 

for those test conditions or not. Different functional forms may be justified in fitting the 

same data as long as they are consistent with the underlying flux profiles. Likewise, 

different parameter sets that fit the same data may also be acceptable as long as they 

reproduce the same flux dynamics. In the event that model predictions do not match the 

experimental test data, one will be able to assess and justify minimal changes that need to 
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be made to a model (parameters or functional form or system topology) by analyzing the 

new data with the same dynamic-flux based approach. 

To substantiate the above stated claims, I extended the DFE approach from its 

preliminary proof-of-concept form to a set of working methods that would help gain a 

wide-appeal and application. As my third specific aim of research, I have demonstrated 

DFE to be a robust approach when applied to real-life situations of noisy, incomplete 

time-series data with under-determined linear system of fluxes. These results are 

presented in chapters 3 & 4 of this thesis. 

Real-life scenario: Regulation of glucose metabolism in L. lactis 

Lactic acid bacteria have a long tradition in industrial fermentations, where they 

are used as starters in the manufacture of fermented foods and beverages, such as 

buttermilk, cheese, and yogurt, sausages, bread, pickles and olives, and wine. In 

particular, Lactococcus lactis is widely used in the dairy industry for the production of 

cheese and buttermilk, mainly due to its capacity to convert about 95% of the milk sugar 

lactose to lactic acid. The low pH generated by this activity inhibits the spoilage and 

growth of pathogenic bacteria, and consequently extends the shelf-life of the fermented 

products. The relative simplicity of L. lactis metabolism that converts sugars via the 

Embden-Meyerhof-Parnas pathway to pyruvate and generates energy mainly through 

substrate level phosphorylation, together with a small genome with limited redundancy, 

and a multitude of genetic tools, make this organism a very attractive model for systems 

biological approaches. Regulation of glycolysis in L. lactis has been the subject of 

intensive research over the past three decades. Key enzymes in the homofermentative 

pathway, phosphofructokinase, fructose 1,6-bisphosphate aldolase, glyceraldehyde 

3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PK) and lactate dehydrogenase 

(LDH) were characterized, and concentrations of several glycolytic intermediates in cell 

extracts had been obtained already in the eighties. However, despite the wealth of 
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metabolic information collected, a comprehensive understanding of sugar metabolism 

and regulatory pathways in this model organism has not been achieved yet. (For a 

complete review see [39]). As my fourth specific aim of research I used the DFE 

approach to analyze the metabolism of wild-type non-growing cells of L. lactis under 

anaerobic conditions. Using an integrative top-down and bottom-up approach to system 

identification, facilitated by DFE, I deduced the dynamic flux profiles which when 

evaluated for multiple data sets revealed distinct patterns of regulation. Using these 

dynamic flux data, I developed a detailed kinetic model by combining time-series data (of 

metabolites, cofactors and fluxes) with kinetic and regulation information obtained from 

independent in vitro enzymatic studies. The details of model development and analysis 

are presented in chapter 5 of this thesis. 
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CHAPTER 2 

CONCEPT MAP MODELING 1  

 

It is proposed that computational systems biology should be considered a 

biomolecular technique of the 21st Century, because it complements experimental biology 

and bioinformatics in unique ways that will eventually lead to insights and a depth of 

understanding not achievable without systems approaches.  This chapter begins with a 

summary of traditional and novel modeling techniques.  In the second part, it proposes 

Concept Map Modeling as a useful link between experimental biology and biological 

systems modeling and analysis.  Concept Map Modeling requires the collaboration 

between biologist and modeler.  The biologist designs a regulated connectivity diagram 

of processes comprising a biological system and also provides semi-quantitative 

information on stimuli and measured or expected responses of the system.  The modeler 

converts this information through methods of forward and inverse modeling into a 

mathematical construct that can be used for simulations and to generate and test new 

hypotheses.  The biologist and the modeler collaboratively interpret the results and devise 

improved concept maps.  The last section of the chapter describes software, BSTBox, 

supporting the various modeling activities.  

Biological Systems Analysis 

While bioinformatics serves an extremely valuable purpose, it is by itself not 

sufficient a computational tool to yield true understanding of how biological systems 

                                                 

 
 
1 Part of this chapter is published in: G. GOEL, I.-C. CHOU and E. O. VOIT, "Biological systems 
modeling and analysis: A biomolecular technique of the twenty-first century". J. Biomol. Tech. 17(4): p. 
252-269, 2006 
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function.  Experimentation has given us a more complete parts list than was ever 

available before, and bioinformatics has allowed us to sort and manage this list with 

admirable efficiency.  However, what is still missing is a set of tools that explain the 

rationale of a given biological component; that can determine with objective means why 

a particular, observed design in nature is superior to other designs that at first appear to 

be just as reasonable; that can merge diverse data and contextual pieces of information 

into quantitative, conceptual structures that can be analyzed with the rigors of the 

universal language of mathematics.  The field of biological systems modeling and 

analysis, or “computational systems biology”, addresses these tasks. 

Biological systems analysis can be traced back to several roots.  Some of these 

may even be seen in the holistic views of antiquity [40] or found in the early work of 

physiologists (e.g., see [41]), who long ago began to investigate the nervous system, the 

digestive system, the cardiovascular system and many other complex structures in the 

human body as integrated entities, in which diverse components had specific roles yet 

worked together synergistically to achieve much greater tasks than what each component 

could have accomplished on its own.  It has also been suggested to place the origins of 

systems biology by considering it as the evolution of molecular biology into genome-

wide analyses (cf. [42]). 

While such assessments have legitimacy, more refined definitions of biological 

systems analysis and modeling require that purely descriptive approaches to biology be 

accompanied by the ability to make reliable, quantitative predictions of the responses of 

cells or organisms to experimentally untested situations.  Moreover, as stated before, 

biological systems analysis must develop tools for providing objective and rigorous 

rationale for biological system designs and modes of operation [1].  The need to make 

predictions and to discover general design and operating principles necessitates the 

consideration of a different set of roots from which modern biological systems analysis 

draws.  This additional heritage is theoretical in nature and embodies ideas and concepts 
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that reach beyond the possibilities afforded by traditional biological experimentation.  As 

was true for the glorious era of physics in the early 20th century, we are beginning to 

recognize the necessity to support biology with a rigorous mathematical foundation.  

Such a foundation not only permits bookkeeping of the large, functional assemblages of 

heterogeneous molecules that we encounter everywhere in biology, but is a prerequisite 

for the formulation of rules and general laws that will eventually form the rudimentary 

building blocks of a theory of biology.  The roots of this crucial aspect of systems 

biology are evident in the work of seminal thinkers and visionaries like von Bertalanffy, 

who over half a century ago proposed the mathematical characterization of organisms as 

dynamic, open, nonlinear, complex systems [43].  The work of von Bertalanffy, Lotka, 

Wiener, Weaver, Turing, Rosen, and many others who strove toward the quantitative 

description of biological systems and the discovery of general principles governing 

biology shaped the theoretical foundation of today’s computational systems biology and 

will continue to provide guide posts for its future. 

Biological systems analysis will never replace hypothesis-driven and 

reductionistic biological research, but constitutes its conceptual and practical 

complement.  Biological systems analysis may ultimately reach a role as central as it is in 

physics, where experiments are only executed after their theoretical underpinnings have 

been proven beyond doubt, but we are presently far away from such prominence.  In the 

meantime, biological systems analysis will provide additional tools and techniques for 

functionally organizing diverse pieces of information and data that stem from traditional 

biological experimentation.  Therefore, computational systems biologists must 

collaborate closely with experimentalists who focus sharply on select biological details 

and mechanisms. 

Biological systems analysis may be dissected into four components: 

1. Development and application of high-throughput methods of biological data 

generation and quantitative analysis with the objectives of detecting and 
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identifying unknown biological system components and of creating a 

comprehensive catalog of these components, along with their roles and 

interactions; 

2. Integration of biological information from de novo experiments and the 

literature into functional contexts through the creation of conceptual, 

mathematical, computational, and informational models that relate the 

multitude of molecular components to each other both within and among 

different levels in the hierarchy of biological organization, such as the 

genomic, proteomic, metabolic, and physiological levels; 

3. Specific experimental testing of hypotheses generated through mathematical 

and computational modeling; and 

4. Approaches toward a true understanding of the design and operation 

principles of small and large systems in biology through information 

discovery and through the identification of the specific systemic roles that the 

components of these systems play, their connectivity, their influences on each 

other, and their synergisms. 

The remainder of the chapter describes three aspects of computational systems 

biology.  First, some of the traditional methods and techniques of biological systems 

modeling and analysis are reclassified.  In the following section, a variation on these 

methods is introduced, namely the novel technique of Concept Map Modeling.  

Finally, a preliminary software is demonstrated that supports traditional and concept 

map modeling. 

Forward, Inverse and Partial Modeling 

To the uninitiated, mathematical modeling is often seen as one standard set of 

tools, conceptually similar to a specific technique like electron microscopy or microarray 

analysis.  Indeed, experimentalists frequently approach a modeler with the request to 
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“model their data.”  The truth is that mathematical modeling comprises an enormous 

repertoire of techniques, and the only real commonality is that they all lead to some 

mathematical representation of a biological phenomenon (the “model”), which is 

subsequently analyzed and interpreted in biological terms.  To some degree, the type or 

classification of the mathematical representation is a technical issue.  Thus, a model may 

be deterministic or stochastic, continuous or discrete, mechanistic-explanatory or more 

like a black box.  Irrespective, the modeling process may be exactly the same.  First, a 

symbolic model is constructed from first principles like physical laws, as an extension of 

an already existing model, or from intuition.  This model almost always consists of 

equations that contain variables and parameters.  Variables could be plant or animal 

species in an ecological system, metabolites in a pathway model, or the expression levels 

of particular genes in a genome experiment, while the parameters describe more or less 

fixed quantities like the reproductive rate of a species, the KM of an enzyme, or the 

transcription rate between DNA and RNA.  The analysis of the mathematical model 

usually requires knowledge of all parameter values, which therefore need to be identified 

from the body of biological knowledge.  While this may sound like a straightforward 

task, the estimation of parameter values is often very challenging and has been, and will 

continue to be, the most daunting bottleneck of mathematical modeling in biology.  Once 

the parameters are estimated, the analysis of the model is (one could say ‘merely’) a 

matter of mastery of the tricks of the trade of mathematics and computer science. 

Because of the complexity of biological systems, the analysis is typically executed per 

computer, sometimes with elegance, but more often with brute force, grinding out 

approximate solutions that are more than sufficiently accurate for most biological 

purposes.  The interpretation of results is ideally performed in collaboration between the 

subject area biologist and the mathematical modeler or computer scientist. The real 

obstacle to fast progress in biomathematical modeling is thus the determination of 
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unknown parameters from biological information and three classes of methods that are 

available for this task are described here now. 

Forward Modeling.  The standard way of identifying parameters is based on 

“local” information.  Thus, to construct a model of a metabolic pathway, one considers 

one enzymatic or transport step at a time, combs the literature for information about this 

enzyme, its cofactors and modulators, and translates this information into a mathematical 

rate law (such as the vjk above), which could be a Michaelis-Menten or power-law 

function, among a wide variety of possibilities.  The collection of all rate laws governs 

the dynamics of the model.  Comparisons of the model responses with biological 

observations support the validity of the model or suggest adjustments in assumptions or 

parameter values.  If done right, this forward process can ultimately lead to model 

representations of the pathway that exhibit the same features as reality, at least 

qualitatively, if not quantitatively.  Some BST examples are models of the TCA cycle 

[19], purine metabolism [15-17], the citric acid cycle [20, 44], the Maillard-glyoxylase 

network with formation of advanced glycation end products [45], the trehalose cycle [46], 

sphingolipid metabolism [47, 48], the ferredoxin system [49], and the regulation of 

glycolysis [30, 50].  In almost all of these cases, the strategy consisted of setting up a 

symbolic model, estimating local parameters, studying the integration of all individual 

rate laws into a comprehensive model, testing the model and making refinements to some 

of the model structure and the parameter values. 

The main disadvantage of this strategy is that a considerable amount of kinetic 

information is needed, but that this information is often only available from differently 

structured experiments and often only from different species.  Furthermore, the process of 

construction and refinement is very labor-intensive and requires a combination of 

biological and computational expertise that is still rare. 

Inverse Modeling.  Modern molecular biology is offering an alternative in the 

form of high-throughput experimental data.  Particularly useful for modeling and 
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parameter estimation are measurements of biological components (metabolites, proteins, 

gene expression) at a series of time points after a stimulus.  As an example, which will be 

use throughout for illustration, Neves et al. [34, 51, 52] used in vivo NMR techniques to 

measure the concentrations of most glycolytic metabolites in the bacterium Lactococcus 

lactis.  This type of data allows, at least in principle, an entirely different path toward 

suitable parameter values.  Namely, the symbolic BST model (without specified 

parameter values) is fitted to the time series data by means of an optimization algorithm.  

Thus, in contrast to the forward, “bottom-up” approach described before, parameters are 

estimated from the observed data “globally” or “top-down.”  The advantages are 

manifold.  Most important is that the data come from the same organism, are obtained 

under the same well-characterized experimental conditions, sometimes even in vivo, and 

therefore account for all processes within the organisms that could have an effect on the 

variables of the system (cf. [32]).  A significant disadvantage of this strategy is that the 

estimation process itself is very challenging computationally.  Also, many of the 

processes that affect the dynamics of the system in vivo are often either unknown in detail 

or not even considered at all in the model.  As a typical example, most standard models 

of glycolysis show glucose 6-phosphate as a simple intermediate in a linear chain 

between glucose, fructose 6-phosphate and fructose 1,6-bisphosphate.  In reality though, 

glucose 6-phosphate is in equilibrium with glucose 1-phosphate and also serves as the 

initial substrate for the pentose shunt. 

The inverse strategy may also be used for time series data that stem from a 

pathway with a structure that is not fully known or whose regulation is obscure.  At least 

in principle it is possible to estimate parameter values from the data and interpret them as 

structural and regulatory features.  With good data, this is presently possible for relatively 

small pathways [26, 33, 53]. 

Partial Modeling.  A particular problem with any modeling approach arises in the 

form of “ubiquitous” metabolites like ATP and NAD.  Again using the example of 
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glycolysis, ATP and NAD are clearly important players, but they are also involved in 

dozens of other reactions that are not part of the model.  In the past, some mathematical 

models have considered them constant, which really defeats the purpose of glycolysis.  

Others have employed conservation relationships between ATP, ADP and AMP or NAD 

and NADH, thus allowing for some dynamics without having to model a lot of details 

(e.g., [54]). Another alternative, gleaned from biochemical lab experimentation, is the 

construction of mathematical buffers that absorb excess material, while providing 

material in times of high demand. The mathematical features of the buffers can be 

designed to adjust for dynamic variations in concentration at a predetermined rate [55]. 

As yet a different manner for dealing with ubiquitous metabolites, a partial modeling 

approach has been proposed in the past [56], which allows one to mix well-defined 

components with components whose dynamics is only known in the form of time series 

that are experimentally observed but cannot be formulated in terms of other model 

components.  As a case in point, for the analysis of time series data describing pyruvate 

and lactate production in L. lactis [30] measured ATP, Pi, NAD and NADH 

concentrations over time were available, but it is extremely hard to formulate their 

dynamics as functions of the system variables, because each of these factors is involved 

in dozens of reactions, most of which were not modeled.  As a solution, the better-defined 

components were formulated as differential equations in BST, and their dynamics 

included ATP and NAD as variables.  However, ATP and NAD were not modeled as a 

differential equation per se but entered the system as time-dependent input functions.  In 

mathematical jargon, the observed data were considered as raw or smoothed “forcing 

functions” to the differential equation system. 
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Development of Concept Map Models 

While the traditional and newer modeling strategies are very valuable, an 

important step is missing between the wet experiment, biological insight and intuition, 

and the construction of mathematical models.  This step consists of the translation of 

“heterogeneous” biological diagrams into symbolic and subsequently parameterized 

equations.  “Heterogeneous” means that some components in such diagrams refer to 

metabolites, some to genes, and some to a variety of processes, such as apoptosis, 

differentiation, or the initiation of a disease process.  A good example is illustrated in 

Figure 1, which shows how surface features can trigger proliferation and differentiation 

events in overlaying cells. “Concept map modeling” attempts to fill the gap between this 

type of mixed explicit and implicit information and the typical mathematical models 

encountered today in biology. 

Figure 1: Concept map summarizing siRNA knockdown studies demonstrating how effects of the 
physico-mechanical environment are mediated by integrins.  (Barbara Boyan, pers. comm) 
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The goal of concept map modeling is the development of novel methods for 

formalizing qualitative knowledge in diagrams like Figure 1, for creating conceptu

models, and for making these amenable to coarse, and later refined, mathematical 

analysis.  Typical conceptual models involve components and processes at various levels

or biological organization, and the traditional response to this situation by the modeling 

community has often been to set up models within each level, with the implicit or explic

purpose of connecting them at a later time (e.g., [41]).  To reach its ultimate goals, this 

approach requires a lot of time, and it does not even fully exploit the implicit knowledge 

that biologists associate with such concept maps.  It seems therefore beneficial to

models that directly capture the biologist’s intuition and permit the inclusion of 

incomplete and heterogeneous information from one or several levels at once.  Thus, the 

foremost goal of this approach is it “to get started” with a quantitative formalization of a

biological phenomenon, by integrating in a coarse mathematical 
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The initial step of this effort is to establish, in collaboration with biologists, l

of components and processes with relationships and rules that are visualized in the 

concept map.  At this stage, it is necessary to discuss, question, and revisit in detail how

the pieces within each aspect of the diagram conceptually relate to each other and h

they contribute to the overarching functional entity, which at the highest level will 

eventually become a comprehensive model of the topic of investigation.  In very many

cases, these maps already exist in the heads of experienced biologists, and sometimes 

they had already been sketched out and published.  However, the maps themselves do not 

allow further, quantitative analysis, and it is therefore desirable to facilitate the tr
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Figure 2: Flow diagram of the proposed approach to formalizing biological concept 
maps 
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information populating the map.  To mathematically trained scientists, this first 

formalization step might be uncomfortable and appear almost unscientific, but it is a 

crucial (and ultimately very rewarding) process, because biological systems analysis 

cannot wait until all details of a system are known and solidly quantified.  To ensure that

the mathematical representations of concept maps are consistent and unambiguous, it is 

useful to develop consistent diagramming conventions for concept maps that extend upo

ideas for biochemical maps, as well as a controlled vocabulary used to capture the map

and its associated semi-quantitative data.  Choosing BST as modeling framework, the 

structural and regulatory information from traditional maps is already sufficien

symbolic equations.  Indeed, this step is routine text
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ich would permit direct application of inverse 

method

e 

lished with computer software (see below). 

Biologists almost always know much more than what is captured in static maps. 

For instance, they often have at least some knowledge of the types of reactions th

possible in a single enzymatic step or the time it takes between a change in gene 

expression and the corresponding change in enzyme activity.  This knowledge enab

the biologist to convert the static concept map into a collection of Boolean or semi-

quantitative dynamic (SQD) maps for given scenarios.  In the Boolean case, a typic

statement like “if we knock out gene X, then process Y does not occur” aids in the 

refinement of the static map, because it suggests the closer consideration of direct an

indirect influences of components inside or outside the system.  In the SQD case, a 

typical observation may be “if we bathe the cells in a medium containing A, B starts to 

rise within four of five minutes and C decreases to about half its normal level”.  In the 

ideal case, one would be able to determine from this information accurate functions for

each node over a range of scenarios, wh

s [30, 57], as discussed before. 

In realistic cases of concept map modeling we will usually not have detailed tim

series but rather semi-quantitative or only qualitative information on the dynamics of 
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each node.  Still, one can use this minimal information for the construction of a coarse 

initial model.  Substituting for actual time series, one may choose a simple function th

captures the dynamics at each node, according to the biologists’ observation, general 

experience, or intuition.  The particular mathematical choice of these functions is not all 

that critical, because they are only used for the inverse task in lieu of smooth data.  Thus,

the emerging software (see below) permits the biologist to sketch the process dynamics

for instance, in the form of a saturating or sigmoidal curve.  Once drawn, the software 

permits modifications and alterations in this shape by allowing the addition of poin

free dragging of the curve.  These curves capture the biologists’ semi-quantitative 

understand
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Once the alleged dynamics of all variables is entered, the curves are trea

measured time series and methods of inverse modeling can be used to estimate 

parameters.  One must caution that, in contrast to the relatively straightforward symbolic 

model design step, this parameterization is complicated.  While the current software does 

permit parameter estimation, it is still much too slow for an interactive exploration o

concept map, and further research will be necessary to make this step fast enough.  

Several methods have lately been proposed for thi

fficiently reliable, stable and efficacious. 

In summary, the starting point for concept map modeling is a network model 

based on the known or hypothesized connectivity and regulatory information on the sta

concept map (forward step), as well as a set of assumed or manually entered functions 

that mimic the observed or hypothesized dynamic responses under a specific scenario

each node of the network.  These two ingredients are sufficient for inverse modeling 

techniques to estimate parameters of a global BST model for one scenario at a time or fo

a collection of several scenarios that are assessed simultaneously.  The resulting coarse 

models may be used in two ways.  First, it is possible to test stability, sensitivities, gains, 
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and other features that are routinely studied in biological systems analysis [11, 13]. These

features show whether the conceptual model has a chance of being correct, because very

high sensitivities, or lack of stability, are often unrealistic.  Secondly, one can now 

simulations, which are cheap to execute and often quickly lead to the discovery of 

weaknesses in the model or confirm assumptions made.  The results of this set of 

analyses are shared with the subject area biologists for interpretation and revision

their concept maps, thereb
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y initiating the typical iterative cycle of modeling and 

validation (cf. Figure 2). 
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New computational techniques become appealing to a wider audience (only) if 

they are supported by user-friendly software with an intuitive graphical user interfac

(GUI).  Of course, many mathematical packages contain algorithms for integrating 

differential equations and for various types of optimization.  Specific software has 

been developed for solving and analyzing metabolic models, once they have been 

formulated in the form of fully parameterized differential equations. Examples inclu

PLAS [4], Gepasi [5], and BSTLab [6].  The packages BestKit[7]  and Cadlive [8] 

furthermore allow the translation of topological diagrams into symbolic equations. 

Shown here is an interactive MATLAB® module that is under development.  This 

software, Biochemical Systems Toolbox (BSTBox), is presently available as a preliminar

test version that allows the user to conduct traditional and con

scri ed above.  The main features for this toolbox are: 

1. interactive generation of lists of variables, along with their influen

2. interactive preparation of measured or hypothetical time courses; 

3. automated formulation of BST equations, in accordance with 

4. estimation of parameter values from time course data in 

5. generation and visualization of computed ti
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6. testing of inferred and alternative models. 

Besides the basic MATLAB installation, BSTBox also requires the Optimization, 

Genetic Algorithm and Spline Toolboxes; future versions may reduce these requiremen

BSTBox is designed to facilitate forward, inverse, partial, and concept map modeling

Each major step of the modeling approach is supported by appropriate functionality

designed in separate “tabs” in the toolbox, which unlock progressiv

ts. 

. 

 

ely as the user 

progres

e a new 

 

(map) from an earlier saved MATLAB data file. The interface is shown in Figure 3. 

s 

pathwa ): 

1. 

:PTS); 

2. Phosphorylation of isomerized G6P (FBP) to form FBP using ATP; 

ses through the stages of model development and analysis. 

Upon successful installation of the required libraries in MATLAB, BSTBox is 

invoked with the simple command ‘BST’ which allows users either to: 1) creat

model (map) from a list of components and time course data (experimental or 

hypothetical) specified in a Microsoft Excel file; or 2) load an already existing model

Figure 3: Opening GUI of BSTBox as it is 
invoked in MATLAB using the command 
‘BST’; the user may opt to create a new map or 
to retrieve an earlier created and stored map 
from a MATLAB data file. 

 

To illustrate the software, consider the pathway in Figure 4, which describes the 

regulation of glycolysis in the bacterium Lactococcus lactis.  The flow of material in thi

y is governed by the following steps (for abbreviations, see legend of Figure 4

Phosphorylation of glucose into G6P, involving PEP, as governed by the 

phosphoenolpyruvate: carbohydrate phosphotransferase system (PEP
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3. Cleavage of FBP into two molecules of 3-PGA involving the consumption of 

two molecules of inorganic phosphate (Pi) and generation of two molecules of 

ATP (in reality this step consists of several steps which are condensed here); 

4. Reversible conversion between 3-PGA and PEP; 

5. Catalysis of PEP yielding two molecules of ATP; 

6. Unspecified minor consumption of PEP for use in other metabolic pathways. 

 

In addition to the flow of material, the regulation of the pathway is of importance.  

In this case study, one known pair of modulators and one hypothesized inhibition process 

are considered. These are: 

1. Investigations by Prichard [58], Mason [59], and others suggest strong 

activation of pyruvate kinase activity by FBP and inhibition by inorganic 

phosphate, Pi.  These effects are to be included in the model. 

2. Galazzo and Bailey [60] found significant inhibition of glucose uptake by 

G6P in yeast.  So far this regulation has not been reported (or refuted) for L. 

lactis.  BSTBox allows exploring this possible regulation by initially including 

a specific parameter for this process.  If the analysis identifies the value of this 

parameter as zero, the effect is deemed insignificant. 
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Figure 4: Simplified representation of 
glycolysis and lactate production in L. lactis.
Black arrows show flow of material, while 
grey arrows indicate signals; subscripted X’s 
designate dependent variables in the model 
equations. Metabolites without symbolic 
names were used as offline variables (see 
Text); Pyruvate is only shown for 
completeness but is not explicitly modeled.  
Abbreviations:  G6P: glucose 6-phosphate; 
FBP: fructose 1,6-bisphosphate; 3-PGA: 3-
phosphoglycerate; PEP: 
phosphoenolpyruvate; ATP: adenosine 
triphosphate; ADP: adenosine diphosphate; 
Pi: inorganic phosphate 

 

Preparing the Data. The first step of designing a new model consists of deducing 

symbolic equations from a list of components.  For this task, it is assumed that the user 

has an MS-Excel spreadsheet with true experimental or alleged time course data, 

identified in the first row by a title for each column.  BSTBox screens the Excel file and 

presents the user with the GUI shown in Figure 5, displaying five list categories, from 

which the user selects: 1) MS-Excel sheet-name containing raw data; 2) MS-Excel sheet-

name containing smoothed data (if any); 3) column title containing time data; 4) column 

title(s) containing time course data for dependent variables to be modeled; and 5) column 

title(s) containing (constant or varying) time course data for “offline” and/or independent 

variables. 
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Figure 5: Different functionalities of BSTBox are embedded in separate tabs, which unlock 
progressively as the user transitions from one stage of the modeling process to the next. When 
creating a new biochemical map, the first tab, “Select Data Set”, allows the user to specify which 
MS-excel sheet contains the raw and smoothed data, and also which columns contain the time 
data and the experimental measurements of the metabolite levels. At this step, the distinction is 
made between metabolites to be modeled and metabolites to be treated as offline. Upon 
specification, the user clicks ‘Done’ to proceed to the next tab. 

 

Creating a Map.  The model analysis may now proceed in different ways, 

depending on how much is known about the underlying pathway structure.  At one 

extreme, the pathway structure and its regulation may be known in great detail.  This is 

the case for the Lactococcus case study, with the possible, minor exception of G6P 

inhibiting or not inhibiting glucose uptake.  In this situation, BST prescribes directly 

which variable is to be included in which processes, and this information is already 

sufficient to formulate equations [13].  At the other extreme, nothing much specific may 

be known about the pathway.  In such a case, all variables enter all equations, and the 

later parameter estimation step will ideally identify which parameter values are zero in 
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the optimized solution, thereby indicating which affects of variables on processes are real 

and which ones not.  This situation of structure identification has been discussed widely 

in the literature (e.g.,[56]).  Not surprisingly, it is much more complex than inverse 

modeling with a known pathway structure. 

Once all constituents of the map are identified, the user specifies, as well as 

contextual information allows, how these components interact and influence each other.  

As has been discussed many times in the literature (e.g., [13]; also see above), a key 

distinction to be made here is between the flow of material among constituents, such as in 

the phosphorylation of glucose to glucose-6-phosphate, and the modulation of a process, 

such as the feedforward activation of pyruvate kinase by FBP. In many cases, a 

constituent may have several distinct roles. It may be the product of one reaction and the 

substrate for another reaction, and furthermore modulate one of the reactions modeled in 

the system. Often, this information has to be mined from experimental literature or 

characterized in collaboration with a subject area expert. It is often convenient to 

organize this information as a list of processes in the system and to associate with this list 

the components that contribute to or modulate those processes. Table 1 summarizes this 

information for the glycolytic pathway. 

Table 1: Enumeration of features of the biochemical map, exemplified with the Lactococcus case 
study. The table lists, for each metabolite in the first column, the number of influxes and effluxes, 
and also the components affecting each of these fluxes.  For instance, the concentration of 3-PGA 
in the system is determined by the dynamic balance between the sum of two separate influxes, 
one from FBP and the other from PEP, and one efflux toward PEP. 
 
Metabolite Influxes and their Effectors Effluxes and their Effectors 
G6P (1) Glucose, PEP, G6P (1) G6P, ATP 
FBP (1) G6P, ATP (1) FBP, Pi
3-PGA 
 

(1) FBP, Pi
(2) PEP 

(1) 3-PGA 
 

PEP 
 
 
 

(1) 3-PGA 
 
 
 

(1) Glucose, PEP, G6P 
(2) PEP, FBP, Pi
(3) PEP 
(4) PEP 
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As a specific example, the dynamics of PEP is affected by one production 

process, namely through degradation of 3-PGA, and four degradation processes, namely: 

1) the PTS mechanism, which is affected by glucose, PEP and G6P; 2) catalysis by 

pyruvate kinase into pyruvate, modulated by FBP and Pi; 3) degradation back into 3-

PGA; and 4) unspecific channeling into other metabolic pathways. 

BSTBox provides a GUI (Figure 6) that permits the direct specification of all such 

processes of a table. It allows the user to select one metabolite at a time, in the left-most 

list, and then to include in the other lists the components that contribute to or modulate 

the influx or efflux for that particular metabolite. The buttons immediately below these 

lists allow the specification of the number of such fluxes as well as their inspection, one 

at a time. A right-click menu allows the user to add or delete metabolites to or from the 

list. 
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Figure 6: The second tab, ‘Specify Map Configuration’, allows the user to enumerate all processes that 
determine the dynamics of each metabolite. The user specifies the numbers of influxes and effluxes that 
determine the concentrations of each metabolite, and for each of these processes lists the variables that 

directly influence that process.  In effect, the user provides a tabular description of what would otherwise 
be a graphical biochemical map. The user may also add constraints, such as the conservation of mass 

between precursors and products. The corresponding GUI for this task is invoked by clicking the button 
‘Add Constraints’ (see Figure 7). When done, the user proceeds to the next tab to generate and view the 

functional form of the model equations. 



Another feature is the option of accounting for constraints such as precursor-

product relationships. This specific GUI is shown in Figure 7.  Constraints should be 

implemented only after due consideration, as was discussed extensively in [61]. As an 

example for possibly unexpected complications, consider the unbranched, irreversible 

reaction step between G6P and FBP (Figure 4).  According to the map, all material 

leaving the G6P pool immediately enters the FBP pool, suggesting a “hard” precursor-

product constraint.  However, it is known that organisms have secondary routes of 

generating and using G6P, which are not included in the model but are presumably active 

in the organism and affect the observed time courses. Thus, insistence on hard constraints 

might sometimes be too restrictive.  On the other hand, omission of known constraints 

increases the parameter search space, which is often a disadvantage. No general 

guidelines can be given, except that cautious consideration is advised. 

Figure 7: This GUI permits specification of precursor-product relationships between different 
influx and efflux terms. For each metabolite, the user may browse the list of processes (influxes 
and effluxes) that determine the levels of that metabolite. Given an unbranched pathway, such as 

in the case of Lactococcus, the user may constrain the efflux from one pool to be equal to the 
influx into another pool. Currently BSTBox supports only one-to-one constraint specifications. 
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Formulating Symbolic Equations.  Given the list of fluxes and their effectors, 

BSTBox permits the formulation of GMA or S-system equations with a few clicks. Figure 

8 shows the GUI for generating the (not yet parameterized) model system, based on the 

table of processes and constraints that were specified earlier. BSTBox also offers the 

option to view and format this system of equations in multiple formats like HTML, MS 

Word and MS PowerPoint. For instance, the equations for the Lactococcus case study, 

formatted in HTML, are: 
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…… Eq. 4 

Figure 8: The tab ‘View Functional Model’ allows the user to generate the 
necessary system of BST equations by the simple click of a button.  Due to the 

rigorous rules of BST, BSTBox has enough information in the lists of processes and 
components to generate a (not yet parameterized) model and to present the model 
equations in a variety of formats. When done, the user proceeds to the next tab to 

specify or edit the time course data interactively for all metabolites involved. 
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At this juncture, the user has achieved only a partial specification of the model 

system. It is partial since the parameter values are still unknown or unspecified. If the 

parameter values are unknown, which is usually the case, the user may use the “Estimate 

Parameters” tab, as detailed in a later section ahead. If the parameter values are known, 

the user may bypass the parameter estimation phase by directly typing these values into 

the GUI as shown in Figure 13. 

Editing Time Course Data. BSTBox allows the user to visualize and edit the data 

on which the model is to be based.  Data manipulations are initiated with the “Edit Time 

Series Data” button (shown on the GUI in Figure 9), which in turn invokes the 

SplineTool (shown in Figure 10). The SplineTool allows the user to smooth time courses 

with predefined filters or with curve-fits such as cubic-spline interpolants or some least-

squares approximation.  The user may also manually add or delete time points to the 

curve. An added feature allows the user literally to move a given point into a desired 

position. This is accomplished by increasing or decreasing the x- or y- value of a data 

point using the ‘+’ / ‘-‘ buttons on the lower left section of the SplineTool GUI. After the 

completion of data entering and editing, the user has the option to export the data into an 

MS-Excel file from the BSTBox GUI (Figure 9). Permitting this type of inclusion of 

hypothetical data opens an entirely new realm of modeling possibilities, as will be 

exemplified later. 

For the Lactococcus case study, actual time course data characterizing key 

metabolites of the pathway are available in the form of in vivo NMR measurements of all 

involved variables [34, 51, 52].  As explained above, the BSTBox GUI (Figure 9) in 

combination with the SplineTool (Figure 10) allows the user to view the metabolic time 

series data, to edit and smooth them, for instance with a spline, and to toggle between raw 

and smoothed data. Smoothing is often computationally beneficial for purposes of 

parameter estimation.  If there is suspicion that the smoothing process might introduce 

undue bias, the raw data may be fitted again, once the estimation based on the smoothed 
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data has produced reasonable initial parameter estimates.  Using the SplineTool, each 

experimental time course for the Lactococcus case study was edited, by manually 

removing noisy data points. The semi-smoothed curves, thus obtained, are shown below 

in Figure 11. 

 

Figure 9: The tab ‘Edit Time Series Data’ allows the user to view the raw experimental time 
course data and to smooth them; it is easy to toggle between the raw or smooth data sets by 

means of a drop down menu. The user may select multiple metabolites to view their time courses 
simultaneously. When editing these time plots, BSTBox invokes MATLAB’s Spline Toolbox, 
shown in Figure 10, to allow the user to edit and approximate these time curves using cubic 

splines. In the absence of experimental observations, users of BSTBox have the ability to start 
with time courses (in MS-Excel) that had not been measured but are expected based on the 

biologist’s experience and intuition, load these data into BSTBox, smooth them, specify a model, 
and test hypotheses with this model. The user has the option to export the edited time series data 

as an MS-Excel file.  As a future enhancement, the user will be allowed to import and update 
these data sets with additional experimental observations. When done, the user proceeds to the 

next tab to estimate or specify values for the system parameters. 
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Figure 10: SplineTool for editing time series data. BSTBox provides access to this MATLAB tool 
such that the user’s time series data are directly loaded into the Spline Tool interface and made 

available for editing purposes. The user may add or delete time points using the right click menu 
in the upper plot area; the lower plot shows the error in the approximated curve from the original 

(raw) time series data; the GUI elements on the left hand allow the user to choose between 
multiple approximation schemes such a cubic spline interpolation or least-squares approximation; 
on the lower left hand side, the user may manually edit each data point in the table of values listed 

here. All changes are preserved and saved in BSTBox. 
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Figure 11: Smoothed Time Course Data; each of these curves was manually 
enhanced, using the Spline Tool interface. A cubic spline interpolation was used 

and data points were manually deleted from the set of points available, generating 
the curves shown here. magenta: raw data; blue: manually smooth data 

For concept modeling, it is important to have the facility to enter and manipulate 

hypothetical time courses that had not been measured but are based on the biologist’s 

intuition.  An example could be that, after a particular stimulus, variable X3 is expected to 

rise sharply in a sigmoidal fashion to about twice its baseline value, even though specific 

data are not (yet) at hand.  In this case, the user could start with an empty spreadsheet and 

create data according to his or her qualitative knowledge about the data.  For instance, 

suppose variable X3 is initially assumed to be at its nominal value.  A data point X3(t=0) 

at time zero is created with the known nominal value or with a value of 1, which would 

correspond to a representation of the variable in a scaled manner.  If doubling of the 

variable occurs within twenty minutes, the user specifies the corresponding value of 
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X3(t=20) and have the option of creating hypothetical data connecting the two points in a 

sigmoidal fashion and to refine them, where necessary, with the manual editing tool. 

Parameter Estimation.  Given time course data and a mathematical model in the 

form of a system of differential equations, the estimation of parameter values constitutes 

an inverse problem.  Many methods of optimization and system identification have been 

developed throughout the past decades. Notable examples include nonlinear regression 

[21, 62, 63], genetic algorithms [23, 64, 65], evolutionary programming [66, 67], and 

simulated annealing [25]. Sadly, none of these methods is ideal, and parameter estimation 

continues to be the bottleneck of mathematical modeling. 

Conceptually, the process of parameter estimation involves: (1) construction of an 

objective function such as the sum-of-squared-errors between model and data; (2) 

selection of an initial guess for each parameter; and (3) application of a numerical, 

iterative optimization scheme designed to minimize the objective function. This process 

is depicted graphically in Figure 12. 
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Figure 12: General architecture of an optimization scheme for parameter estimation.  Three sets of “inputs” are 
the measured or hypothetical data, the symbolic (not-yet parameterized) model equations, and initial guesses 

for all parameter values.  The optimization algorithm begins by solving the equations with the guessed 
parameter values and computing the residual error between the solution and the data.  It then determines new 
parameter guesses, solves again, and computes the error again.  This cycle is iterated thousands of times, in an 
attempt to minimize the error between the computed model time courses and the data curves (“shrinking” of 

the green arrows, indicating that the residual error is to be minimized). 



The enormous technical difficulties in executing this seemingly straightforward 

process have been explored in great detail in previous research on Lactococcus case study 

[68, 69]. A diverse repertoire of techniques were explored and analyzed, including local 

gradient-based techniques such as regular-ODE based estimation and slope-based 

estimation, as well as global optimization techniques like genetic algorithms. Many of 

these techniques are directly accessible from the BSTBox GUI illustrated in Figure 13, 

which also allows the user to specify technical features like upper and lower bounds for 

parameter values, initial guesses, an acceptable residual error, and the choice of a 

numerical ODE solver. The user may choose to estimate parameters while minimizing 

the error with respect to the raw experimental data or a smoothed data set, and also select 

the range of time over which each parameter is to be optimized.  Results associated with 

the Lactococcus case study, obtained with BSTBox, are shown in Figure 14.  

Simulation and Analysis. Once the system has been fully identified, complete with 

all variables, processes, and parameter values, the BSTBox GUI shown in Figure 13 

allows the user to simulate, by the click of a button, the entire system, a single 

component, or a subset of components. As during parameter estimation, if only a sub-

system is being simulated, BSTBox automatically feeds the system values for the 

“offline” components upon cubic spline approximation.  The GUI then displays the 

results from the simulation together with the experimental data, which facilitates 

comparisons and assessments of quality of fit. These simulation results may also be 

viewed in separate windows. 

One of the common analyses with computational models is the investigation of 

changes in system dynamics in response to changes in the initial values of the system. 

Known as “perturbation studies”, such analyses entail examining whether the system 

returns to its original or a different steady state or possibly to a different attractor like a 

stable limit cycle. To facilitate such analyses, the BSTBox GUI provides a placeholder for 

specifying different initial conditions for each dependent variable. 
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Figure 13: The ‘Estimate Parameters’ tab provides an interface to call various parameter 
estimation techniques. From the radio button selection in the top panel, a user can select either 
slope-based and/or ODE-based local optimization, or a global optimization technique such as a 
genetic algorithm. The user may change the default settings for the bounds of parameter search, 

initial parameter guess and acceptable residual error. When using ODE-based estimation, the user 
may also specify the desired numerical solver to be employed for integrating the equations. The 

user furthermore chooses whether to search for parameters that would make the underlying model 
fit the raw data or the smoothed data and determines the time period of the data over which the 

parameters should be optimized. Building upon the offline-spline-based approximation 
framework, the user can estimate parameters for either the entire system simultaneously, for one 

parameter at a time, or for combination(s) thereof. Finally, the user has the option to ‘bypass’ 
parameter estimation if the parameters are already available. The user can directly type these 
parameter values into the GUI and proceed to the next tab to simulate the system. In such a 

scenario, the user does not have to provide time series data, and only initial values at the start 
time are expected in the MS-excel file. 
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Figure 14: Model fits (lines) to the Lactococcus data (symbols), obtained with parameters 
estimated using regular ODE-based optimization scheme. The initial parameter guesses were set 

to +0.5 or to -0.5, depending on the sign of each parameter, which is usually known from the 
tenets of BST.  The lqscurvefit routine, available within the MATLAB Optimization Toolbox, 

was used.  The complete optimization took about 20 minutes. Note that the raw data for the initial 
five minutes, for both 3-PGA and PEP, were made-up i.e. they are artificial data points. In reality, 

PEP and 3PGA are not detected before addition of labeled glucose, because they are unlabeled, 
but after the glucose bolus and while glucose is present they are not detected because their 

concentration is below the detection limit. 
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Figure 15: The tab ‘Run Simulation’ uses the functional model, combined with initial time 
values and final parameter values from previous tabs to simulate the system. The user may choose 

to simulate either the entire system, one component at a time, or a subset of components.  As 
earlier, spline approximations are used for all offline components.  For assessments of quality, the 

GUI displays the results together with the data or in separate windows. It is easy with this 
interface to conduct ‘perturbation studies’ by changing the initial values for one or some of the 

metabolites. The user can also choose different integration schemes to simulate the system. Upon 
the successful execution of the simulation, the user may export the simulation results, which 

include all categories of time series data – raw, smoothed/edited and simulated, to an MS-Excel 
file. 
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Concluding Remarks 

In the past, the primary role of mathematics in molecular biology has been 

bookkeeping, first as a means of recording and storing quantitative information, and more 

recently, with the advent of bioinformatics, as a means of mining and interpreting the 

enormous amounts of data generated by high-throughput methods.  Greatly increased 

computer power, advanced mathematical techniques, and the availability of data of vastly 

enhanced quality and quantity are now slowly beginning to move mathematics into the 

more prominent role of integrating information, offering predictions, and guiding future 

experimentation through the generation of computationally inspired hypotheses.  A 

crucial component of this emerging “computational systems biology” is the development 

of mathematical models.  These have traditionally been constructed from the bottom up, 

that is, by assembling network models from representations of local features.  More 

recently, and complementing traditional approaches, effort has been dedicated to top-

down model development and parameterization from time series data, which modern 

methods of molecular biology are generating with increasing frequency. In this chapter, a 

novel method is proposed that bridges the gap between semi-quantitative biological 

knowledge and the construction of detailed mathematical models.  The starting point for 

this method is a concept map, which shows connections and interactions between 

components of biological systems and responses.  This type of map is very prevalent in 

the biological literature, yet it has not really been exploited for modeling purposes.  The 

key toward model construction is the translation of biological expertise, experience, 

qualitative insights and intuition associated with the map into quantifiable temporal 

responses of all components.  This translation subsequently allows the application of 

modern inverse methods for the determination of parameter values that specify the model 

and render it useful for analysis and simulation.  The method of concept map modeling 

thus has the potential of converting biological insight into a concrete mathematical model 

that may be used to test assumptions and generate testable hypotheses. 

 47



CHAPTER 3 

DYNAMIC FLUX ESTIMATION (DFE) 2

 

At the center of computational systems biology are mathematical models 

translated from concept maps (as described in the previous chapter) that capture the 

dynamics of biological systems and offer novel insights. While there exist several 

software tools to assist in this translation, the bottleneck in the construction of these 

models is presently the identification of model parameters that make the model consistent 

with observed data. Dynamic Flux Estimation (DFE) is a novel methodological 

framework for estimating parameters for models of metabolic systems from time series 

data. DFE consists of two distinct phases, an entirely model-free and assumption-free 

data analysis and a model-based mathematical characterization of process 

representations. The model-free phase reveals inconsistencies within the data, and 

between data and the alleged system topology, while the model-based phase allows 

quantitative diagnostics of whether—or to what degree—the assumed mathematical 

formulations are appropriate or in need of improvement. Hallmarks of DFE are the 

facility to: diagnose data and model consistency; circumvent undue compensation of 

errors; determine functional representations of fluxes uncontaminated by errors in other 

fluxes; and pinpoint sources of remaining errors. The results presented here suggest that 

the proposed approach is more effective and robust than presently available methods for 

deriving metabolic models from time series data. Its avoidance of error compensation 

among process descriptions promises significantly improved extrapolability toward new 

data or experimental conditions. This chapter outlines the theory and application of DFE 
                                                 

 
 
2 Part of this chapter is published in: G. GOEL, I.-C. CHOU and E. O. VOIT, "System estimation from 
metabolic time-series data". Bioinformatics. 24(21): p. 2505-2511, 2008 
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and demonstrates how this technique is useful in circumventing some key issues in 

parameter and system estimation from time-series data. 

System estimation from time-series data 

Recent advances in molecular and systems biology have provided us with a 

strikingly novel parameter estimation strategy, which is based on experimentally 

determined time series of observations at the genomic, proteomic, or metabolic levels. 

These time profiles contain enormous information about the structure, dynamics and 

regulatory mechanisms that govern the biological systems of interest. However, 

extraction and integration of this information into fully functional, explanatory models is 

a daunting task, and about one hundred articles have appeared within the past ten years, 

each improving certain aspects of the estimation process.  Most of them used regression, 

genetic algorithms, simulated annealing, or different evolutionary approaches [65, 67, 70-

75] to attack the main problem of optimizing parameter values against the observed time 

series data. Other papers developed support algorithms, for instance, for smoothing 

overly noisy data, characterizing basins of attractions containing solutions with minimal 

error, or circumventing the costly integration of differential equations [29, 31, 50, 74, 76-

79]. 

All of the proposed estimation methods developed up to date face significant 

problems in four distinctly different classes: 

1. Computational issues, including: slow algorithmic progress toward the error 

minimum or lack of convergence; very complicated error surfaces with 

numerous local minima; substantial time requirements for integration of 

differential equations. 

2. Data related issues, including: overly noisy data; missing data; missing time 

series; collinearity between time series; solution spaces with equal error; non-

informative, e.g., essentially constant, time profiles. 
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3. Mathematical issues, including: distinctly different, yet equivalent solutions; 

non-equivalent solutions with similar error; invalid assumptions regarding the 

chosen process descriptions; error compensation within and among flux 

descriptions and within and among equations (see illustrations in the next 

section). 

4. Issues of model quality beyond goodness of fit, including: lack of diagnostic 

tools beyond the residual error; lack of model fit for data not used in the 

estimation; model failure in extrapolations; lack of criteria for optimality of 

the obtained parameters; lack of criteria for determining the appropriateness of 

the chosen mathematical representations; lack of methods for assessing 

whether residual errors are due to idiosyncrasies or noise in the data, an 

invalid model structure, inadequate computational methods, or a combination 

thereof. 

Many articles have acknowledged and discussed various computational issues in 

great detail and some have addressed issues related to data and models.  However, there 

has been little if any substantial discussion of model validity and quality beyond residual 

errors, except for the common statement that the estimated parameter set may not be 

unique. 

Issues of error compensation 

All parameter estimation algorithms encounter the risk of compensating an 

inaccurately determined parameter value through adjusted values in other parameters.  A 

very simple, yet instructive case occurs when two parameters p1 and p2 always appear as 

the product p1 · p2.  Even if p1 is vastly under- or over-estimated, there is no residual error 

if p2 is correspondingly adjusted.  As an extension, systems may allow “conserved 

quantities” that do not change, no matter what the dynamics of the system is.  The 

analysis of Hamiltonian systems and Lie transformation groups assesses these exact 
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conservation laws.  In the context of BST, certain products of power-law functions may 

remain invariant under the action of the dynamics systems [12, 80]. 

Besides mathematically exact invariants, different parameter implementations of 

the same model structure, obtained from fitting (noisy) data, may be indistinguishable 

within the magnitude of the data noise.  As a consequence, these different data sets are 

“equally good,” but only with respect to the one data set used for estimation.  If new data 

are considered, the two model implementations are likely to incur different errors.  These 

issues are illustrate below with a didactic example. 

Consider the simple biochemical pathway shown in Figure 16, which consists of a 

linear flow pattern, which is regulated through inhibitory and positive feedback.  

Specifically, the degradation of X1 into X2 is inhibited by the downstream product X3 , 

while the conversion of X2 to X3 is activated by X3 itself. Equations governing the 

dynamics of the above system could be described with a variety of functions.  For the 

purpose of illustration, one Michaelis-Menten process and two power-law representations 

are used (Eq. 5). The example demonstrates different types of redundancies that pose the 

risk of error compensation in tasks of estimating parameters from data. 

 

X2 X3X1 Flux v3 

Flux v2 

Flux v1 

 

Figure 16: Simple linear pathway with feedback inhibition and one activating 
signal 
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Using a standard gradient-based search algorithm, such as fmincon or lsqcurvefit 

in MATLAB, one can easily determine alternative sets of “valid” parameters that match a 

set of fictitious data. Three different scenarios were analyzed whereby using lsqcurvefit 

different combinations of parameter values were obtained for first, flux v1 only (in 

Scenario 1),  secondly for flux v1 and v2 combined (in Scenario 2) and lastly for flux v1 

and v3 combined (in Scenario 3). The parameters were optimized against 5,000 artificial 

data points in noise-free time series for X2 and X3. 

For each scenario, the parameter values and the combined squared 2-norms of the 

residuals for X2 and X3 are listed in the respective tables below. The following general 

observations were made from evaluating the quantitative and qualitative information in 

the tables and the corresponding graphs: 

A) The error residual alone is by no means a reliable indicator that the fitting 

parameters are numerically correct. This is clearly evident as all parameter 

sets yield more or less the same error residual but different, though acceptable 

fits, as is evident in the plots. 

B) Combinations of different parameter values within the same flux term can 

compensate amongst each other to yield output that is mathematically not 

truly equivalent, but nevertheless very similar (Scenario 1; see Table 2 and 

Figure 17). More generally, the output can be compensated within and 

between fluxes, within equations, and throughout the entire system, and still 

produce dynamic profiles for metabolites within some error tolerance 

(Scenarios 2 (Table 3; Figure 18) and 3(Table 4; Figure 19)). Among these 

results, the underlying flux profiles can be strikingly different, but this 

“redundancy” would go undetected if the true internal flux profiles were not 

known a priori.  It is easy to imagine that using a “wrong” set of flux 
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representations would lead to problems in cases of new data or other 

extrapolations (see next section). 

 

Table 2: Error compensation within the same flux (v1) 
 

Set Vmax Km Ki p1 p2 p3 p4 p5 Residual 
1 88.2533 91.2397 1.8482 1 0.5 1 1 0.5 6.3238 
2 18.6819 9.7831 0.5992 1 0.5 1 1 0.5 2.0628 
3 63.0698 66.1785 1.9714 1 0.5 1 1 0.5 7.0341 
4 91.0532 94.3597 1.855 1 0.5 1 1 0.5 6.4499 
5 14.2804 10 1.019 1 0.5 1 1 0.5 3.8237 
6 82.7704 87.9852 2.0162 1 0.5 1 1 0.5 7.3094 
7 88.7362 93.0726 1.9447 1 0.5 1 1 0.5 6.6048 
8 92.4504 97.0702 1.9466 1 0.5 1 1 0.5 6.616 
9 68.9295 67.7172 1.6343 1 0.5 1 1 0.5 4.9066 
10 18.2178 8.9871 0.5458 1 0.5 1 1 0.5 2.2876 

 

Figure 17: Although the parameters vary quite noticeably (Table 2), the residual errors do not 
differ much, and the resulting dynamics would hardly be distinguishable if noisy data were to 

be fitted. 
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Table 3: Error compensation between fluxes v1 and v2 
 
Set Vmax Km Ki p1 p2 p3 p4 p5 Residual 
1 104.9701 92.1829 1.3281 1.0021 0.5785 1.0038 1 0.5 3.4688 
2 57.0719 91.5615 15.2508 0.9401 0.9865 1.7386 1 0.5 4.4663 
3 13.0088 9.5706 1.0968 1.0173 0.5921 0.9671 1 0.5 6.6559 
4 103.6876 93.837 1.3967 0.9688 0.6418 1.2038 1 0.5 5.6134 
5 12.4525 9.971 1.2927 1.0055 0.5812 1.0271 1 0.5 2.8754 
6 10.01 8.8733 1.7075 1 0.6676 1.1052 1 0.5 6.624 
7 124.476 88.9055 0.8893 0.9841 0.544 1.0853 1 0.5 3.0074 
8 13.5262 9.5896 1.0152 1.013 0.6045 1.0017 1 0.5 7.2336 
9 60.7643 96.3775 13.346 0.9117 1.0602 1.8375 1 0.5 6.3344 
10 12.3914 9.5007 1.1869 1.0086 0.5676 1.0079 1 0.5 2.7299 

 

Figure 18: As in figure 17, different sets of parameter values (Table 3) may lead to similar residual errors 
and data fits. 

Similar to the case of error compensation within a flux, error may be compensated 

among different fluxes within the same equation (Figure 18).  As a consequence, if one 

flux is fitted with a “wrong” model, some or all of the other fluxes will adjust to 

compensate for that error and will therefore be modeled wrongly as well. 
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Table 4: Error compensation between different equations x2 and x3 
 

Set Vmax Km Ki p1 p2 p3 p4 p5 Residual 
1 17.5775 9.9988 0.6979 1 0.5 1 1.001 0.5786 4.5287 
2 19.0012 9.0003 0.5203 1 0.5 1 1.0178 0.4659 3.2879 
3 11.0985 7.5279 1.0842 1 0.5 1 1.0001 0.5842 7.1035 
4 16.5287 7.7719 0.5241 1 0.5 1 1.0205 0.4605 3.5256 
5 17.8896 9.2186 0.5967 1 0.5 1 1.0206 0.4705 3.1041 
6 87.5991 94.1804 2.1613 1 0.5 1 0.9669 0.6658 5.1819 
7 15.5174 7.7989 0.5839 1 0.5 1 1.0011 0.5316 2.5845 
8 24.2938 8.3902 0.3257 1 0.5 1 1.0057 0.4595 7.4577 
9 21.3578 9.055 0.4464 1 0.5 1 1.0248 0.4567 6.3633 
10 22.064 8.7065 0.4023 1 0.5 1 1.0256 0.4397 7.1653 

 

Figure 19: Variations in parameters may be compensated throughout the entire system and yield 
similar residual errors and data fits. 

As an extension of error compensation within an equation, error may be 

compensated among different equations (Figure 19), thereby potentially spreading errors 

in some part of the model throughout the entire system.  It is to be expected in this case 

that fluxes describing other variables are poorly represented. 
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Effects of error compensation on extrapolation 

Suppose the same system is now studied with a different amount of input X1.  

Specifically, assume that in a new set of experiments X1 is reduced from 2 to 1.1, and the 

question is whether the estimated model is able to predict the dynamics of X2 and X3.  

Selecting parameter sets 1 and 6 from Table 4 confirms that both produce very similar 

responses for X1 = 2.  However, for X1 = 1.1, the responses are quite a bit different 

(Figure 20). 
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Figure 20: While two numerical system representations may be similar for the dataset 
used for fitting, they may lead to dynamic responses that are quite different if some of the 
“experimental settings” are changed. In the case shown, the input in pathway (figure 16) 

was reduced from 2 to 1.1. 

These illustrations highlight some deep rooted flaws that have been inherent in 

parameter estimation strategies to date but as discussed ahead, these can now can be 

addressed with the innovative approach of DFE. 
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A novel approach 

A novel approach to estimating metabolic pathway systems, called Dynamic Flux 

Estimation (DFE), is proposed, which resolves several of the issues outlined and 

explained above. The approach consists of two distinct phases. The first consists of an 

entirely model-free and assumption-free data analysis that reveals inconsistencies within 

the data, and between data and the alleged system topology. The second phase addresses 

the mathematical formulation of the processes in the biological system.  In contrast to all 

currently available methods, this phase allows quantitative diagnostics of whether—or to 

what degree—the assumed mathematical formulations are appropriate or in need of 

improvement. DFE builds upon the tenets of stoichiometric [81-83] and flux balance 

analysis (FBA; for a review see [84] in that it focuses on the stoichiometry at all nodes in 

the investigated system to ensure conservation of mass and to estimate flux distribution at 

each instant in time.  However, in DFE the system is typically not in a steady state or 

quasi-steady-state [35-38, 85, 86], and its transient dynamics is utilized as a crucial 

indicator of the regulation within the system. 

Because DFE consists of two phases that include several steps, some of which are 

new, some computational, some logistic (e.g., the choice of mathematical representations 

in the second phase), and some using any of a variety of existing methods, its exact 

computational time requirements and accuracy of solution are difficult to assess against 

currently available methods. Nonetheless, results obtained from case studies (presented 

here) suggest that the proposed approach is more effective and robust than presently 

available methods for deriving metabolic models from time series data. Specifically, its 

combined model-free and model-based analyses avoid compensation among and within 

equations and therefore promise significantly improved extrapolability toward new data 

or experimental conditions. Its diagnostic tools pinpoint causes of inadequate fits between 

model and data and suggest either changes in assumptions related to model choice or the 

use of data as un-modeled “off-line data”. 
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The following sections describe DFE and demonstrate its features with a series of 

successively more complicated (and more realistic) situations, beginning with an 

idealized, yet representative case, and ending with actual experimental observations 

describing fermentation in the bacterium Lactococcus lactis. 

The proposed method requires time series data that characterize the dynamics of 

the system variables.  Such data are still relatively rare but are being generated with 

increased frequency and quality.  Some suitable data sets that exist already have been 

obtained with in vivo NMR [34], mass spectrometry [86] and other methods [87]. 

Furthermore, the prospect of the availability of efficacious methods of analysis may 

inspire experimentalists to generate more of these types of data, which is technically 

possible and probably worth the effort, even if it is more expensive.  Since much of the 

advantage of DFE is the result of natural constraints among fluxes, DFE is particularly 

useful for metabolic systems, but less so for gene expression and protein interaction 

systems. 

Method 

DFE is a phased approach with well-defined outcomes for each step and rigorous 

checks and balances that ensure consistency of the solution (see Table 5 below).  

Table 5: Phases and steps of dynamic-flux based parameter estimation from metabolic 
time series data 
 
Phase Steps/Activities Outcomes Checks & Balances 

• Estimate missing data 
(if any) 
• Smooth and optimize 
data to achieve mass 
balance (if necessary) 
• Estimate slopes 

• Smooth, balanced 
time-series data 
• Slope estimates 

• Mass/Material 
balance 

I 

• Formulate system of 
fluxes 
• Solve linear system of 
fluxes at each time point 

• Linear system of 
fluxes 
• Dynamic flux 
profiles 

• Flux balance  
• Integrateable flux 
time-series 
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II 

• Evaluate flux-substrate 
plots to choose 
representative functional 
forms 
• Fit parameters of 
kinetic function to flux 
profiles 

• Parameterized 
kinetic model 

• Check fit of 
functional forms to flux 
profiles 
• Simulate system 

 

Each phase facilitates incremental development and analysis of the metabolic 

target model. Phase I, which is entirely model-free, consists of two distinct sets of 

activities yielding slope estimates and dynamic flux profiles. First, the experimental data 

are analyzed for mass/material balance and smoothed as necessary. Slope estimates can 

be derived using different numerical techniques. Next, the pathway structure (i.e., the 

system topology) is used to generate a system of symbolic equations describing the 

dynamics of the system. Substituting slope estimates in this system of equations results in 

a system of fluxes that is linear at each time step t. This linear set of equations can be 

solved at each time step to obtain dynamic (time-series) profiles of all fluxes in the 

system. These dynamic flux profiles can be checked for flux balances at the overall 

system level and at the level of each metabolite pool.  Phase II is model-based. Here, 

based on the flux profiles from the previous phase, one evaluates each plot of a flux 

versus its alleged substrates and modulators to analyze and choose between possible 

mathematical representations for each flux. Once decided, the parameters of the chosen 

functional form are fitted easily with some regression technique to obtain a fully 

parameterized kinetic model for the system. The fitness of the parameters for each flux 

function can be evaluated independently and the same can be done for the overall system 

performance. 

Wide arrays of robust numerical techniques are available for the computational 

aspects of each component of DFE, including data smoothing, slope estimation, the 

assessment of linear flux systems, and linear/nonlinear regression methods for parameter 

estimation.  The proposed DFE workflow (Figure 21) consists of distinct steps. 
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Figure 21: Dynamic-Flux Estimation (DFE) approach to metabolic system estimation from in 
vivo time-series data. Starting with experimental time series, the data are simultaneously balanced 

and smoothed for constant total mass throughout the time series. Then the slopes are estimated 
using published methods. Combined with the knowledge of the system topology, the slope 

information yields a linear system of fluxes. The system is solved, using linear algebra 
techniques, yielding dynamic profiles of all extra- and intra-cellular fluxes in the system. Next, 
functional assumptions are formulated on how to best represent the processes mathematically. 
These functions result in symbolic flux representations that can be independently fitted with 

regression methods to the respective dynamic flux profiles. When combined with knowledge of 
the system topology, the numerical flux functions are integrated as a single unified system model 

to obtain time courses. 

1. (Phase I: Model Free Estimation) If necessary, smooth and balance the data 

in the sense that there should be no gain or loss of material over time. This 

balance is readily checked against the system stoichiometry.  I developed for 

this purpose a combined non-linear programming and moving-average 

algorithm to remove noise while simultaneously balancing the time-series data 

for constant total mass. The smoothing and slope estimation aspects can be 
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accomplished with finite difference approximations, cubic splines, or more 

sophisticated methods [88]. 

2. (Phase I: Model Free Estimation) Substitute differentials with estimated 

slopes for each variable and at each time point [13, 30, 31] and construct a 

linear system of the form “Slope Vector(t) = [Stoichiometric Matrix]×[Flux 

Vector(t)],” where the matrix is directly derived from the known (or 

hypothesized) topology of the system. Solve the system with methods of 

linear algebra.  The result is a (discrete) set of dynamic profiles (time series) 

of all extra- and intra-cellular fluxes in the system.  Over-determined systems 

require the pooling of fluxes or the use of pseudo-inverse methods. Several 

constraint-based optimization techniques have been proposed for flux analysis 

of underdetermined metabolic networks [89]. These approaches have become 

a mainstay of FBA and served well under steady-state and quasi-steady state 

conditions [84, 90]. Analogous methods may be developed for DFE by using 

these established approaches as the starting point. Also, Ishii and collaborators 

recently proposed a hybrid method for modeling metabolic systems [91]. This 

novel approach distinguishes between dynamic and static enzyme activities 

based on the estimation of time dependent enzyme reaction rates. The system 

is split into dynamic and static modules such that a quasi-steady state is 

attained in the static module at each instant, while the complete system acts 

dynamically. The transient dynamics of the system is regenerated by 

interactions between kinetic-based dynamic models and metabolic flux 

analysis-based static models. A similar separation in dynamic and static 

modules could be applied to DFE as well. In addition, underdetermined 

systems may be complemented with information from steady-state FBA, 

concentration measurements using mass spectrometry or NMR, and traditional 

enzyme kinetics. Finally, it is possible to pool sequential and collinear 
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variables [50] and to combine DFE with methods of structure identification 

[33, 50] that are to be applied to select portions of the system.   

3. (Phase II: Model Based Estimation) Up to this point no assumptions have 

been made with respect to the mathematical formulation of the flux terms. The 

next step is now to plot each flux against time and also against the variables 

affecting this flux (possible in two or three dimensions). As a default, assume 

that each flux Vk is representable as a product of power-law functions of form 

 as it is done in Biochemical Systems Theory (BST [11, 

13]). Regress V

knki f
n

f
ik XXR ...

k in logarithmic coordinates against the contributing variables 

to obtain the rate constant Rk and the kinetic orders fki, ... fkn, etc.  Analyze the 

quality of fit visually and/or with methods of linear regression diagnostics 

[92].  For non-power-law flux representations (e.g., Michaelis-Menten or Hill 

functions), it might be possible to execute the analysis with inverse quantities, 

as in Lineweaver-Burk analysis, or one has to resort to methods of nonlinear 

regression. 

Case studies 

Application of DFE  is demonstrated here with four case studies that were 

inspired by data describing how the bacterium L. lactis converts glucose into lactate via 

the pathway shown in Figure 22a. The data was obtained from in vivo Nuclear Magnetic 

Resonance (NMR) time series experiments with L. lactis that were performed by our 

collaborators Drs. Santos and Neves at ITQB, Portugal [34, 51, 93-98]. These NMR data, 

with a time resolution of 30 seconds, provided time courses for substrate consumption, 

product formation and intracellular metabolite pools, all monitored in vivo.  Specifically, 

they characterized the dynamics of glycolytic metabolite pools in a suspension of cells 

that metabolized a 20 mM bolus of [6-13C] glucose under aerobic conditions at pH 6.5 

[34]. These data are as good as a modeler can presently hope for. They are more or less 
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complete, show clear trends and exhibit experimental noise that is quite reasonable in 

most cases. Most aspects of the observed time courses make intuitive sense. The bolus of 

external glucose is gradually used up, during which time all subsequent metabolites 

increase in concentration. With the external glucose pool becoming depleted, the 

immediately subsequent pools (G6P and FBP) decrease while the subsequent trioses 

(3PGA and PEP) approach high levels.  Interestingly, these high levels do not decrease 

appreciably during the hour-long experiment, even though the pathway is essentially 

linear. 

Idealized situation (proof-of-concept) 

DFE was first tested and proven to work with an idealized data set (Figure 22b), 

which was constructed per simulation with an earlier model [61] (see Appendix A). 

These data are by design smooth and balanced and permit error-free estimation of slopes 

directly from the equations. Following the guidelines of DFE, the stoichiometric, time 

dependent matrix equation was solved using computed slopes on the left-hand side of this 

equation, and the flux values were thus obtained at each time point t (Figure 22c). 

Note that these dynamic flux profiles were obtained purely from knowledge of the 

system topology and “experimental data,” yet without any assumptions regarding an 

underlying functional model. Mimicking a realistic situation, a numerical model was 

derived based on the assumption that all fluxes could be validly modeled with products of 

power-law functions, as it is customary in BST. Thus using a symbolic power-law 

representation for each flux that included all contributing variables, the estimation of the 

kinetic orders and rate constant was straightforward since each flux term becomes linear 

when represented in logarithmic coordinates. The dynamic model with these flux 

representations was integrated and its behavior closely matched that of the experimental 

time-series data (Figure 22b). (see Appendix A for model details)
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Figure 22: Results of Case Study 1. (a) Fermentation pathway in Lactococcus lactis. Dark arrows show flow of material. Dashed arrows indicate 
leakage of material into secondary pathways. Enzyme activation and inhibition are indicated by light gray arrows. Abbreviations:  G6P: glucose 6-

phosphate; FBP: fructose 1,6-bisphosphate; 3-PGA: 3-phosphoglycerate; PEP: phosphoenolpyruvate; ATP: adenosine triphosphate; ADP: 
adenosine diphosphate; Pi: inorganic phosphate; NAD+: nicotinamide adenine dinucleotide (oxidized); NADH: nicotinamide adenine dinucleotide 
(reduced). (b) Dynamic metabolic profiles. Time series data of major metabolites in the primary pathway (symbols). Solid lines indicate fits with a 
model derived using DFE. (c) Dynamic flux profiles. The symbols show the time series of flux profiles estimated solely from data and the system 

stoichiometry using DFE. The solid lines indicate fitting of a power-law model to the dynamic flux data. 

 



Simulated data with noise 

To test the robustness of the DFE approach against noise, 10% artificial pseudo-

random noise (drawn from a uniform distribution) was added to the ideal data set from 

Case 1. Due to the noise, the total mass in the system was no longer constant and required 

balancing, along with smoothing (Figures. 24a, b). An iterative optimization and 

smoothing scheme was developed to simultaneously smooth and balance the metabolic 

time-series data (Figure 24a). The slopes were then estimated from the smooth balanced 

data. Substituting slopes in the stoichiometric equation, the solution to the linear system 

of fluxes was obtained at each time point t (Figure 24c) and parameters were estimated 

for each of the power-law functional forms. The result was a fully parametric kinetic 

model (Figure 23) that captured the dynamic behavior of the noisy experimental data well 

(Figs. 24c, d). 
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Flux Power-law Flux Models 
v1 0.35(se)1.06(Gluco1 86.0)PEP  
v2 55.0 ATP()G6P(28.2 05.0)  
v3 87.0 ()FBP(33.1 04.0)Pi  
v4 22.0 .14)PEP(46.21      15.0)3PGA(26−  
v5 .023.148.0 )Pi()FBP()PEP(64.26 47.2001 )PEP(14.16+−  
v6 6.0 ()Pyruvate(100 59.0)FBP  
v7 86.0 ()Pyruvate(500 73.0)Pi  

Figure 23: Numerical power-law model derived for the scenario in case study 2 (simulated date 
with noise) 
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Figure 24: Results of Case Study 2.  (a) Dynamic metabolic profiles. Metabolic time-series data with added artificial noise (symbols). The 
solid lines represent the smoothed and balanced time series. (b) Dynamic mass balance. The random noise leads to mass imbalance which is 
successfully restored after optimization and smoothing. (c) Dynamic flux profiles. The linear system of fluxes is solved to obtain unique flux 

profiles (symbols). Power-law models are fitted to each flux time series independently (solid lines). (d) Results from the numerical model. 
Using DFE, a fully parametric kinetic model is derived from noisy metabolic time series data (symbols). The results of the model (solid 

lines) closely match the original dynamic metabolic data. 
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Simulated data with non-power law terms 

In the first two cases, the data generating system was implemented with power-

law representations. To test and demonstrate the diagnostic capabilities of DFE, the same 

system (without noise from case 1) was simulated with a non-power-law, sigmoidal 

glucose uptake function (Figs. 25a, b). Next, the slopes were estimated and the dynamic 

stoichiometric system was solved as before. The estimated fluxes were notably different 

from those obtained in the earlier studies, especially at the initial time points (Figure 26). 

Attempts to model this system of fluxes exclusively with power-law functions failed.  

Other methods would have had to stop at this point, simply concluding that the fit was 

sub-optimal.  Even worse in some sense, the simultaneous fitting of all equations or of all 

terms within each equation would have led to error compensation between terms, thereby 

not only mis-fitting the sigmoidal flux but other fluxes as well.  The overall fit might 

actually have been acceptable, but attempts to extrapolate the resulting numerical model 

to other datasets or conditions would have become problematic.  In contrast to this 

“system-wide distribution of error,” DFE prevented such distribution of error and 

pinpointed the source of error accurately by enabling me to test every flux individually 

against any hypothesized functional representations. When executing this analysis with 

power laws, using linear regression in log space, the result was very encouraging:  All 

fluxes were reasonably well represented with power-laws except for the uptake process 

(Flux v1). Evaluation of the flux plots for this reaction step (Figure 25c) confirmed that 

the flux in glucose and PEP deviated systematically from the experimental flux when it 

was modeled by a product of power-law functions. More importantly, even though this 

flux was not well represented by power-laws, I obtained excellent power-law fits for the 

other fluxes, such as flux v3 (Figure 25d), which clearly demonstrated that errors in one 

flux were not compensated anywhere else in the system.  



 

68 

 

Figure 25: Results of Case Study 3. (a) Sigmoidal glucose uptake. This type of uptake dynamics has been observed in experiments 
(symbols) and is difficult to represent with a simple power-law function (solid line). (b) Dynamic metabolic profiles. Time series data of 
the major metabolites that result from sigmoidal glucose uptake. (c) and (d) Flux substrate plots. The “experimental” flux profile (red), 
obtained using DFE, is plotted against the corresponding flux obtained by fitting a power-law model (blue). Fig. (c) shows systematic 

error when flux v1 is fitted with a power-law model. On the other hand, a power-law model accurately reproduces other fluxes like v3 in 
the same system (d). 
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Figure 26: (a) Dynamic flux profiles estimated purely from data (symbols) and flux profiles, modeled as power-laws (solid lines) for Case 
scenario 3. It is obvious that flux v1 (glucose uptake) is not well modeled. (b) Dynamic metabolite profiles (symbols) simulated with the sigmoidal 

sugar uptake model and results from a model, derived using DFE, where glucose uptake was flagged as non-power-law and therefore taken off-
line; all other fluxes were represented as power-laws (solid lines). 

 

 

 

 



 

Real data 

Many methods seem to function well for artificial data, yet break down in the real 

world. Therefore actual experimental NMR data from the L. lactis pathway (Figure 22a; 

Figure 27a) was used to further test DFE. Note that experimental measurements were 

available for only key metabolites (including G6P, FBP, 3PGA and PEP). The other 

metabolites along the primary pathway, such as F6P, DHAP, GAP etc could not be 

measured as they were well below the detection limit of the NMR. Also, data for the initial 

five minutes, for both 3-PGA and PEP, were made-up i.e. they are artificial data points. In reality, 

PEP and 3PGA are not detected before addition of labeled glucose, because they are unlabeled, 

but after the glucose bolus and while glucose is present they are not detected because their 

concentration is below the detection limit. Strategies to deal with the peculiarities of this data set 

have been discussed in detail in [61]. 

As a first check, the total mass in the raw experimental data was assessed at each 

time point and it was detected that they were significantly unbalanced (Figure 27b).  

None of the current parameter or system estimation algorithms, including our own [33, 

61, 88], check for overall mass balance. As a consequence, these algorithms model 

something different from what is implicitly expected, which casts doubt on the ultimate 

estimation results and is likely to lead to problems with new data sets or extrapolations.   

Attributing the imbalance to measurement noise merely did not allow for mass 

balancing within acceptable noise limits. Consultation with our collaborators revealed 

that several secondary metabolites and fluxes had not been included in the main dataset 

Figure 22a). These metabolites are not as well characterized as the mainstream species 

because they are present in very low abundance and hence unobservable during the 

course of the experiment. Using single time-point measurements, obtained at the end of 

the experiment, and combining knowledge of the pathway for these minor metabolites, 

the expected time profiles of these metabolite concentrations were estimated (Figure 
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28a). Accounting for these minor metabolites finally enabled me to balance the system in 

mass (Figure 27b).  

Once mass balanced data was achieved, subsequent steps of DFE were executed 

to compute slopes, estimate flux values at each time point t (Figure 27c), and fit all 

fluxes, except for glucose uptake, by power-law functions.  Instead of trying to fit the 

uptake with some sigmoidal function, this flux was left un-modeled and incorporated it 

into the model as off-line data [57, 61]. All other fluxes were found to fit very well 

(Figure 27c) but yet when integrated the system did not yield the same results as 

observed in experiments. Upon close inspection it was found that minor deviations in the 

metabolic profiles during integration caused the flux functional forms to return values 

which were far from the true (DFE) fluxes. Because these true fluxes were known, I 

replaced each flux function by an offline spline of that flux (one at a time) and integrated 

the system back again. By using this somewhat reductionist approach, the source of error 

was located to be present in the functional form for flux v2 (Figure 28c) which was 

causing the G6P and FBP profiles to be erratic during simulation.  Additionally, when 

trying to fit a functional form for the flux between PEP and Pyruvate, it became apparent 

that the conversion of PEP into pyruvate may consist of two fluxes (in addition to the 

PTS system), namely the main flux that is subject to activation by FBP and inhibition by 

Pi and a very small flux that is less affected by these modulators.  The reason to postulate 

this minor flux is the observation that acetate continues to increase even after FBP is 

depleted.  To model this situation, the flux v5 therefore consists of two components. In the 

end, the result was a parametric kinetic model that closely reproduced the dynamics of 

the metabolite pools (Figure 27d). It is worth noting that the residual error of this model 

may be larger than the error in a model that is optimized with standard methods, because 

a standard estimator has the freedom of distributing errors throughout some or all fluxes, 

which DFE does not permit.  As a consequence, the total error in DFE may be higher, but 

the fit to each individual flux is more reliable. 
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Figure 27: Results of Case Study 4.  (a) Dynamic metabolic profiles. Measured dynamics of metabolite pools in L. lactis following a 20 mM 
[6-13C] glucose bolus (symbols). (b) Dynamic mass balance. Systematic mass imbalance in the experimental data was attributable to missing 

information about secondary metabolites. The balance was successfully restored by accounting for secondary fluxes. (c) Dynamic flux 
profiles. The linear system of fluxes is solved to obtain the unique flux profiles (symbols). Power-law models are independently fitted to each 

flux time series, using linear and non-linear regression (solid lines). (d) Results from the numerical model.  Using DFE, a fully parametric 
kinetic model is derived from the actual metabolic time series data (symbols). The results of the model (solid lines) closely match the data. 



 

Figure 28: (a) Expected dynamics of secondary metabolites.  (b) Actual data and model fit obtained upon mass balancing, 
consideration of secondary metabolites and application of DFE. (c) Pseudo-three-dimensional representation of flux v2.  Interestingly, 
the flux fitted to the data (red) in the model-free phase of DFE is quite close (blue).  Although the flux in the fully integrated model is 

less well modeled (black), the overall dynamics of the system (panel b) is acceptable. The green points indicate initial conditions. 
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Discussion 

Dynamic Flux Estimation is proposed as a new approach that resolves at least 

some of the open issues in the estimation of metabolic pathway systems. The first, model-

free and essentially assumption-free phase of DFE permits consistency checks within the 

metabolic time series data and leads to numerical representations of fluxes as functions of 

the variables affecting them.  The second, model-based phase allows the objective testing 

of functional forms for fluxes and is not within the repertoire of any of the existing 

methods.  The two-phased approach thus permits rigorous, quantitative diagnoses of the 

metabolic data, the alleged pathway structure, the assumptions made in the choice of flux 

representations, and the causes of residual errors. DFE eliminates compensation of error 

among terms and among variables, which has been a tremendously complex problem 

with other methods, especially when it comes to extrapolations with the estimated model. 

While DFE very significantly reduces error compensation between equations and 

between flux terms, it still admits error compensation among the parameters within a 

given flux, independent of what representation is chosen. In the context of BST, this type 

of compensation between a rate constant and the kinetic orders is well known [33, 80, 

99]. For reliable extrapolations, the within-flux compensation should also be removed. 

This removal seems to require data covering wide ranges of variation, multiple datasets 

or additional information about some of the parameter values, for instance, from 

traditional enzyme kinetics. 

It has been observed in related work that the strategy of replacing differentials 

with slopes may lead to good fits for the dynamics of each variable in isolation, yet cause 

problems when all estimated parameter values are entered into the differential equation 

model [30].  The reason is that even small deviations between data and model results in 

one variable can lead to an amplification of error in other equations.  This issue occurs in 

DFE as well.  However, in contrast to other methods, DFE allows diagnostic analyses of 
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the solution (Case of flux v2 in scenario 4; Figure 28c).  In response to such a situation, 

one may ignore the differences, search for causes of the deviations, or substitute 

smoothed data for a troublesome flux in the form of an off-line process [57, 61]. 

A key feature of DFE is the requirement of time series data that are sufficient to 

capture the dynamics of the system. It is in general difficult to say how many data points 

are needed for reliable estimations. The key reason is that there is no good, quantitative 

criterion for the complexity of a time course. In simple dynamic responses, such as 

monotonically saturating functions, a few data points may be enough to characterize a 

time trend with sufficient reliability.  In other cases, such as the example demonstrated 

here, the number of time points needed is higher. It seems quite evident that the number 

very much depends on the complexity of the time course and the noise in the data. 

Importantly, the types of data required for DFE are becoming more commonplace 

because modern methods of molecular biology permit their measurement with a variety 

of already existing experimental methods. 

DFE is an estimation approach particularly geared towards metabolic pathway 

systems, which are better suited for this type of estimation than genomic or proteomic 

systems because of conservation of mass at all nodes. Furthermore, DFE focuses on 

parameter estimation rather than on the identification of structure and regulation in ill-

characterized pathway systems. Issues needing further development are related to missing 

data, missing flux information, underdetermined stoichiometric matrices, and ill-

characterized systems topologies. 
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CHAPTER 4 

COMBINING MULTIPLE DATA SOURCES WITH DFE 3

 

Under ideal conditions, DFE appears to be as close to perfect as it is currently 

possible. However, it has two very significant limitations: i) DFE requires comprehensive 

time-series data, which are seldom available, and ii) the linear system of fluxes needs to 

have full rank. This chapter discusses how these issues may be overcome by resorting to 

information from additional sources.   

Complementation of DFE with additional information 

A direct, unique solution of the flux equations in DFE is only possible if the flux 

system is of full rank. The most frequent case in practical applications, however, is an 

under-determined system, because most actual pathway systems contain more fluxes than 

metabolites. As a consequence, the best purely algebraic solution possible is the 

expression of some fluxes as functions of other fluxes, which is not very useful per se. 

However, in most practical cases, other information about the system is known, and this 

information may be used to complement DFE. This complementation does not come for 

free and either requires assumptions about functional forms of fluxes, mechanistic details, 

or inferences regarding missing time series.  

As an illustration, the glycolytic pathway in the bacterium Lactococcus lactis 

(Figure 29) is used. The experimental data (Figure 30) were obtained from the laboratory 

of Drs. Helena Santos and Ana Rute Neves who utilized the method of in vivo nuclear 

magnetic resonance (NMR) to measure the accumulation of intracellular metabolites 

                                                 

 
 
3 Part of this chapter is published in: E. O. VOIT, G. GOEL, I.-C. CHOU and L. L. FONSECA, 
"Estimation of metabolic pathway systems from different data sources". IET Syst Biol. (In press), 2009 
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under anaerobic conditions following a 40 mM glucose bolus [34, 93]. Since glucose 6-

phosphate (G6P) was not measured for this specific bolus, it was adapted from a 

corresponding NMR experiment with a 20 mM glucose bolus (presented in earlier 

chapters). Thus, data on the key metabolites (including G6P, FBP, 3-PGA, and PEP) 

were available, but data on less important metabolites (such as F6P, DHAP, GAP etc.) 

were not.  

Glucose

FBP

3PGA

PEP

PyruvateInternal
Lactate

NAD+
NADH PiATP

ADPNAD+
NADH PiATP

ADP

G6P

F6P

2PGA

GAPDHAP
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Lactate

PEP v1

v2
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v7
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v10 v9 v11

Figure 29: Schematic representation of the glycolytic pathway in Lactococcus lactis. Blue 
arrows indicate material flux, green arrows activation, and red arrows inhibition. 

Abbreviations:  G6P: glucose 6-phosphate; F6P: fructose-6-phoshpate; FBP: fructose 1,6-
bisphosphate; DHAP: dihydroxyacetone phosphate; GAP glyceraldehyde 3-phosphate; 3-PGA: 
3-phosphoglycerate; 2-PGA: 2-phosphoglycerate; PEP: phosphoenolpyruvate; ATP: adenosine 

triphosphate; ADP: adenosine diphosphate; Pi: inorganic phosphate; NAD+: nicotinamide 
adenine dinucleotide (oxidized); NADH: nicotinamide adenine dinucleotide (reduced). 
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In generic terms, non-ideal situations that require complementation of DFE arise 

from a combination of the following issues. 

Issue 1: The connectivity of the system is not fully known.  

Issue 2: Some time series were not measured, although it is known that the 

corresponding metabolites are involved in the pathway. A typical example for this 

situation is a metabolite that is very quickly converted into another product, thereby 

precluding accurate measurements. 

Issue 3: Some unknown or not measured metabolites are in fact important. The 

exclusion of these metabolites is a potential reason for mass imbalances in the system. 

Issue 4: All relevant metabolites have been measured as time series, but the flux 

system is under-determined. This situation is the rule rather than the exception.  

Resolving these issues seems only possible if additional information is available 

and/or if assumptions are made regarding the functional forms of some of the fluxes in 

the system. 
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numerically integrating the system of DFE fluxes. 
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Solution strategies for issue 1 

Distinctly different methods have been developed for computationally inferring 

the unknown or ill-characterized connectivity of biological pathways (for a recent review 

see [100]). They include a wide spectrum of techniques, ranging from causality models 

[101-103] to perturbation methods [104], correlation based approaches [105], and 

probabilistic graph models for deducing causality [106]. Some methods (e.g., [26, 53, 56, 

76, 107-109]) used time series data as the basis for their analysis. Specifically for 

metabolic pathways, methods like Alternating Regression (AR) [33] and Eigenvector 

Optimization (EO) [50] were proposed as structure identification methods that do not 

necessarily require knowledge of the connectivity or regulation of the pathway system. 

If information is scarce or if the data are noisy, purely computational estimations 

are not always reliable, and within-term, within-equation, and between-equation error 

compensation may become a significant issue (illustrated in previous chapter). Instead of 

relying on structure identification algorithms alone, it may be useful to employ simpler 

algorithms that merely attempt to establish the connectivity pattern within the pathway. 

An example is a linearization procedure that generates probabilities for a given equation 

to be affected by combinations of system variables [26]. A different approach consists of 

an algorithm that reconstructs equations from the bottom up, testing first the data fit with 

the most parsimonious parameter set and gradually increasing the complexity of the 

equation [56]. It is also possible to optimize parameters for a predefined set of 

biochemically feasible candidate models [109]. 

Solution strategies for issue 2 

The lack of time series data for certain metabolites may or may not be serious. An 

important determinant is the mass of the missing metabolite pools during the experiment. 

If this mass is small, methods of compensatory mass balancing may provide a solution 

that is not overly damaging. However, significant amounts of missing mass cannot be 
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ignored. If enzymatic information is available for fluxes producing and degrading a 

metabolite in question, it is sometimes possible to reconstruct its unknown time profile 

from neighboring time series. 

Example: Consider the reversible isomerization of G6P to F6P, which is catalyzed 

by phosphoglucose isomerase (PGI). The kinetics of PGI has been characterized for both 

directions, and if one assumes a reversible Michaelis-Menten rate law for the net flux 

(Eq. 6), pertinent parameters are readily obtained from the literature [110-112]. By 

combining this kinetic in vitro information with the time series data on G6P and the in 

vivo G6P degradation flux estimates for v2 at the measured time points, which was 

obtained with DFE, one can deduce the time series for the unknown metabolite F6P. This 

is accomplished by expressing Eq.6 with F6P as the dependent variable and solving it for 

all measured time points. 
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The reconstructed F6P profile is similar to the G6P profile (Figure 31), but at a 

scale of about 1:10, which is in line with the common understanding of a fast equilibrium 

between the two. 
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Solution strategies for issue 3 

The consequences of unknown or not measured metabolite pools may range from 

irrelevant to utterly detrimental for any estimation effort, depending on the extent of 

lacking information. A diagnostic aid for this situation is the checking of mass balance in 

the entire system throughout the experimental time period. If significant changes in 

balance are observed, because non-negligible amounts of mass are gained or lost, 

additional biological insight will be needed to remedy the situation. If the masses are 

more or less balanced, it is still possible that important fluxes or metabolites are missing. 

There is currently no obvious defense in this situation. 

A slightly different situation occurs if relevant cofactors or modulators were not 

measured. For instance, NAD+ and NADH may affect the speed of a reaction, but 

because of moiety conservation, no change in (carbon) mass is observable, so that the 

(carbon) mass in the system is perfectly balanced. Nonetheless, factors influencing the 

Figure 31: In vivo NMR measurements of G6P in Lactococcus lactis and reconstructed time series of 
F6P derived from a combination of DFE and kinetic literature information 
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NAD+ / NADH ratio may significantly affect the dynamics of the pathway. Again, this 

situation requires a case-by-case treatment. 

Example: As discussed in previous chapter (test case 4), the detected mass 

imbalance was too severe to be attributable to acceptable measurement noise, and 

smoothing efforts still left 10% of the supplied glucose unaccounted. It turned out that 

several secondary metabolites and fluxes had not been included, and accounting for these 

enabled the balancing of the system. 

Solution strategies for issue 4 

If the flux system is under-determined, it is necessary to obtain some fluxes by 

means outside DFE. Distinct options are available for this purpose, at least in principle. 

First, it may be possible to obtain fluxes directly from experiments. In a few cases, flux-

substrate relationships were measured (e.g., see parameter estimation in [48] from flux 

data in [113]), but such data are rare. Much more prevalent is information on the kinetic 

properties of enzymes and the reactions they catalyze. This information is closely linked 

to an alleged functional form for each flux. For instance, if a Michaelis-Menten rate 

function is deemed appropriate and if applicable KM and Vmax values can be found, the 

parameters and the time series data may be entered into the rate function to compute the 

appropriate flux value at each time point. 

As an alternative, or if pertinent kinetic information is unavailable, it has been 

shown that regression methods, genetic algorithms (GA), as well as specialized methods 

like AR and EO [33, 50], have the potential of determining parameter values in pathway 

models from metabolic time series data [100]. This feature renders it possible in principle 

to determine the necessary number of missing fluxes and to use them in the first phase of 

DFE. A considerable drawback of this strategy is that GA and the various regression 

methods must a priori assume specific mathematical representations of the fluxes that are 

to be estimated. However, the most appropriate representations are often unknown. This 
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situation becomes less of a hindrance if some of the variables and fluxes operate within 

relatively small ranges, because one might expect that the typical canonical 

approximations, such as products of power-law functions or lin-log expressions, would 

be sufficiently accurate throughout these limited ranges. Thus, while many combinations 

of fluxes could theoretically be chosen to supplement DFE in an under-determined 

estimation task, it is advisable to choose variables and fluxes that remain relatively close 

to some normal operating values. At the same time, variables that do not vary much at all 

(i.e. that they stay at more or less a steady state) contain relatively weak information, 

which may lead to mis-estimation, so that the choice of fluxes requires a compromise. In 

addition to the fact that estimation algorithms must assume specific functions, they are 

also susceptible to error compensation between the terms of an equation. 

Example: As an illustration for the use of kinetic information, pretend that the 

glycolytic system under investigation were under-determined. Specifically, consider the 

phosphofructokinase (PFK) step (v3 in Figure 29), in which a phosphoryl group is 

transferred from ATP to F6P, yielding FBP and ADP. Since F6P is not observed under 

the given experimental conditions, it is not possible to estimate the PFK flux directly 

from the given time series data using DFE. However, it is well established that G6P and 

F6P are in rapid equilibrium, and because F6P is below the detection limit (2.5mM), it 

was assumed that its accumulation pattern is one-tenth that of G6P at all time points. This 

is a safe assumption considering the results that we have seen from the example 

demonstrated for issue 2 in the previous section (see Figure 31). It is furthermore known 

that the PFK reaction is essentially irreversible under physiological conditions and that 

the enzyme is allosterically inhibited by ATP, FBP and PEP, while being activated by 

ADP. Several rate laws have been proposed for the PFK reaction (e.g., [114, 115] and 

references therein). I chose the model of Hoefnagel and collaborators (Eq. 7; [111]), 

because it was developed specifically for L. lactis under comparable conditions. 
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Using this model with the published parameter values [111] and the time series of 

G6P (divided by 10 for the expected profile of F6P), a parameterized, mechanistic PFK 

model is obtained that very well represents the process in vivo, as it was obtained with 

DFE (Figure 32). This result is quite remarkable, first, because it confirms that kinetic 

information can indeed be used under opportune conditions to supplement DFE and, 

second, because it confirms that the entirely model-free phase of DFE yields very 

reasonable, numerical flux representations. 
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Figure 32: Flux v3, obtained with DFE as a numerical estimate (red), and formulated as a published rate 
function with parameter values directly taken from the literature (Eq. (2); blue line). The numerical DFE 

estimate reflects different phases of glucose uptake, which may be due to a differential affinity of the 
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Discussion 

DFE has the severe limitation that the fluxes in the pathway have to form a 

system of full rank. For more or less linear pathways, this assumption may be true, but as 

soon as pathway systems with cycles are under investigation, DFE cannot be applied 

directly, because the fluxes outnumber the metabolites. Other complicating factors are 

missing time series and uncertainties with regard to structure and regulation of the 

metabolic pathway system. Faced with the situation that ideal scenarios allowing direct 

application of DFE are rare, this chapter explored the question as to what degree DFE 

may be supplemented with other information. In essence, the ideas and solutions 

presented here suggest using DFE as a means to an integrative “bottom-up” and “top-

down” system identification approach. The options for DFE supplementation span a 

range of methods. If all significant metabolic time series are available, and if some of the 

enzymes in the system are well characterized under pertinent conditions, it may be 

possible to construct flux-time and flux-variable relationships and use these as substitutes 

for unknown fluxes in DFE. Sufficient kinetic information may even allow the 

construction of time series profiles of metabolites that were not measured. Alternatively, 

or in addition, if one may reasonably assume functional forms for a few of the fluxes 

within the system, then a genetic algorithm or more specialized methods like Alternating 

Regression or Eigenvector Optimization can be employed to estimate a sufficiently large 

subset of fluxes to execute DFE on the rest of the flux system. The combination of 

methods presented here serves primarily as a proof of concept, and it is to be expected 

that targeted work on combined forward and inverse estimation methods will lead to 

refined and possibly even entirely novel system identification strategies. Such strategies 

will become increasingly important, because one should expect a rapidly growing number 

of time series data of high quality, which however will very seldom be comprehensive 

enough for a unidirectional estimation approach. 
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CHAPTER 5 

A KINETIC MODEL OF GLUCOSE METABOLISM IN 

LACTOCOCCUS LACTIS 

 

The integrative top-down and bottom-up approach to system identification, 

presented in the previous chapter, is applied to develop a detailed kinetic model of 

glycolysis. This case study presents a significant challenge for flux and parameter 

estimation since it has several elements of a real-life scenario: noisy and incomplete data, 

unobservable intermediate metabolites, missing information on secondary metabolites, an 

overwhelming amount of kinetic information, much of which however is not useful for 

system identification, and multiple candidates for functional forms (other than power-

laws).  

All reported interactions of the primary metabolic pathway were considered and 

kinetic models were used to supplement the DFE. Dynamic flux profiles were derived for 

multiple wild-type experimental data sets with different initial glucose concentrations: 

20mM, 40mM, and 80mM. When analyzed per DFE, these dynamic fluxes revealed 

unexpected and intriguing temporal patterns. To elucidate the mechanisms underlying 

these flux patterns a detailed kinetic model was fitted to one set of data (80mM glucose) 

by combining time-series data (of metabolites, cofactors and fluxes) with kinetic and 

regulatory information obtained from independent enzymatic studies. Subsequently, a 

qualitative functional analysis of the model was conducted to investigate the mechanisms 

that determined the peculiar trends observed in the DFE fluxes. In lieu of sensitivity 

analysis, the qualitative functional analysis provided insights into what controlling factors 

are likely to prevent faster glucose uptake into this pathway. The model was also tested 
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against another set of experimental data (40mM glucose) and the results of these analyses 

are presented here in this chapter.  

Challenges in dynamic flux estimation 

As is customary with DFE, I began with a detailed map for the glycolytic pathway 

in L. lactis (Figure 33) and with experimental data measured in the laboratory of Drs. 

Helena Santos and Ana Rute Neves with methods of in vivo nuclear magnetic resonance 

(NMR) under anaerobic conditions following a 20mM, 40 mM, or 80mM glucose bolus 

(Appendix B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33: Schematic representation of glucose metabolism in Lactococcus lactis 
Note in Figure 33 that the pathway does not include any secondary metabolites.  
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The NMR data provided measurements for only key metabolites in this pathway, 

which included FBP, 3PGA and PEP. When the mass balance was checked for each of 

the data sets, on average only 90% of carbon could be accounted for. This, however, is 

not attributable to measurement noise but rather is a limitation of the NMR technique, 

which detects metabolites only when they accumulate above a detection limit of about 

2.5mM. Thus, the unaccounted mass is presumably distributed between the unobservable 

intermediate metabolites of the primary pathway (F6P, DHAP, GAP, 1,3BPGA, 2PGA 

and Pyruvate) as well as secondary metabolites. The secondary metabolites represent 

mass leaking out of glycolysis and entering various pathways (as discussed in Chapter 3; 

see Figure 22a), largely per catabolism of pyruvate, into mixed acids and other 

compounds such as aspartate, malate, succinate, acetoin and 2,3-butanediol. Moreover, 

3PGA and PEP measurements are available only from the time after glucose is exhausted. 

There were, thus, three key challenges that prevented direct application of DFE to this 

pathway: (a) incomplete time-series data for primary metabolites (3PGA and PEP); (b) 

missing time-series data for intermediate metabolites (F6P, DHAP, GAP etc); and (c) 

missing information on secondary metabolites. To meet these challenges, I followed a 

phased approach to DFE whereby I successively addressed and resolved each of the three 

issues, beginning with the most simple pathway topology and later extending it to include 

aggregate leakage fluxes. The phases are discussed ahead.  

Step 1: Addressing incomplete time-series data 

The raw experimental data show (see Appendix B) that 3PGA and PEP 

measurements are available only for the time period after glucose is depleted. This is due 

to two reasons. PEP and 3PGA are not detected before addition of labeled glucose, 

because they are unlabeled, but after the glucose bolus and while glucose is present they 

are not detected because their concentration is below the detection limit. It is, however, 

safe to assume that the cell would have stored high levels of 3PGA and PEP during 
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starvation. Tandem experiments [34] have shown that 3PGA and PEP are in high 

concentrations before the addition of the second glucose bolus. These experiments 

provide guidance on what these time-series profile should look like while glucose is 

available. Consequently, artificial data points for 3PGA and PEP were introduced based 

on the tandem study. Likewise, since glucose 6-phosphate (G6P) was not measured for 

the specific bolus of 40mM and 80mM, it was adapted from the corresponding NMR 

experiment with 20 mM glucose bolus. Complete data on the key metabolites (G6P, FBP, 

3PGA, PEP) were thus available, but data on other intermediate metabolites were not 

since they were practically below the detection limit of the specific NMR set-up 

(2.5mM).  

Step 2: Selecting preliminary pathway topology 

Before accounting for missing time-series data of intermediate metabolites, it was 

essential to make preliminary assumptions about the secondary metabolites or, in 

essence, about the pathway topology. Given the primary interest in understanding control 

of glycolysis, i.e., the conversion of glucose into pyruvate, the secondary metabolites 

were ignored in the initial stages of flux computation. The pathway shown in Figure 33 is 

based on the assumption that there are no leakage fluxes and that all carbon mass is 

converted from glucose to lactate via this primary pathway. The lactate time-series data 

was hence adjusted to account for the remainder 10% mass, thus ensuring mass balance 

for the subsequent flux computations.  

Step 3: Accounting for missing time-series data and estimating fluxes 

Interestingly enough, each of the unobservable intermediate metabolites are 

products of a reversible step in the pathway and they exist in fast equilibrium with their 

respective precursor. Moreover, the kinetics of several of these enzymes has been 

characterized for L. lactis and the pertinent parameters are readily available [110]. These 
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include include phosphoglucose isomerase (pgi; flux v2); fructose 1,6-bisphosphate 

aldolase (fba; v4); phosphoglyceromutase (pgm; v7) and enolase (eno; v8). The flux 

through triosephosphate isomerase (tpi) is well known to be extremely fast and is 

considered to be always in equilibrium, implying that the rate of reaction is governed 

primarily by the equilibrium constant between GAP and DHAP.  

By assuming a reversible Michaelis-Menten rate law for the net flux for each of 

the other enzymes, and using the parameter values obtained from literature [110, 111], 

the time-series data for all intermediate metabolites (F6P, DHAP, GAP and 2-PGA) were 

derived by solving the system sequentially rather than simultaneously [57]. Specifically, 

first the glucose influx into G6P pool (flux v1) was estimated using the slope estimates 

for the glucose time-series data. Subsequently, the efflux from G6P (flux v2) was 

estimated by solving the balance equation for rate of change of G6P by substituting time 

values of the slope of G6P time-series and flux v2. Next the time-series for F6P was 

derived by combining the kinetic model for PGI with the time series data on G6P and the 

flux estimates for v2. Continuing in this fashion, the time-series data for fluxes and 

remainder of unobserved metabolites were computed sequentially.   

The time-series data for 1,3BPGA however was artificially constructed because 

there are no known well-fitting kinetic rate-laws available for either glyceraldehyde 3-

phosphate dehydrogenase (gapdh; v5) or phosphoglycerate kinase (pgk; v6). Thus, in all, 

19 kinetic parameters were used from the literature for the 4 reversible Michaelis-Menten 

functions (for fluxes v2, v4, v7 and v8) (see model in Appendix C) and the time-series 

data were derived/constructed for 5 intermediate metabolites (F6P, DHAP, GAP, 1-

3,BPGA, 2-PGA). (see Figure 34 for 80mM data set).  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34: Smooth and derived time-series data based on glucose metabolism of L.lactis initiated with 80mM glucose bolus.  
(a), (b) Smoothed data for experimentally observable metabolites (c) Derived data for experimentally unobservable metabolites  

(d) Smoothed data for experimentally observable cofactors (NAD+,NADH,ATP,Pi)
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Step 4: Extending pathway topology using mass balance for co-factors 

DFE offers the unique opportunity to estimate not only intracellular fluxes of the 

primary pathway but also fluxes of the coupled processes / enzymes, such as the ATPase 

and NADH-oxidase, which recycle the co-factors used in the primary pathway. Another 

advantage is that DFE facilitates the estimation of biochemical buffers, which are mostly 

a function of the experimental set-up rather than the biological system itself. For instance, 

the in vivo NMR data set, which quantifies both carbon metabolites and intracellular 

parameters (pH, ATP, Pi), had to be obtained from two distinct experiments where the 

cells were suspended in non-identical medium. The intracellular pools of intermediate 

metabolites were determined by 13C-NMR using cells that were suspended in a 50mM 

potassium phosphate buffer (KPi; ph 6.5) whereas the intracellular parameters were 

monitored on-line by 31P-NMR using cells suspended in a 50mM MES-NaOH buffer (pH 

6.5). The Pi time-series data obtained using the second experiment obviously does not 

account for the phosphate rich medium used in the first experiment, which arguably 

served as a buffer to meet the demands of the metabolic pathway. The dynamic profile 

for this Pi buffer can be estimated by combining the time-series data from the two 

experiments with the DFE flux estimates. 

Estimating the fluxes for coupled processes and/or buffers was a straightforward 

task within DFE. The ATPase flux was directly estimated by solving the following mass 

balance equation for ATP, using time-series data for the numerical DFE fluxes (v3, v6 

and v9) and estimated slope of ATP time-series data. 

 

The estimated ATPase flux is shown in Figure 35a. Likewise, the Pi-buffer was estimated 

from the following balance equation for Pi (profile shown in Figure 35b). 

 

•
−++−= ATPv9v6v3ATPase

dtATPasev5 Pi  PiBuffer ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

•
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dtLDHv5 NAD  litesSec_Metabo fluxratingNAD_Regene ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

•

The balance equation for NAD+ was used to compute the aggregate leakage flux 

that oxidizes NADH to produce NAD+. The mass accumulated from this aggregate flux is 

representative of all the secondary metabolites which are derived from pyruvate and 

produce NAD+ along the pathways. These include pathways leading to metabolites such 

as alanine, aspartate, succinate and 2,3-butanediol. (In reality, aspartate and succinate are 

derived from oxaloacetate, which is derived from carboxylation of PEP and/or pyruvate, 

but the flux from PEP is not considered here).  

 

 

There are, of course, other secondary metabolites derived from pyruvate as well, 

such as acetate, which do not involve NAD+ regenerating pathways under anaerobic 

conditions and these metabolites are determined by establishing mass balance of carbon 

metabolites at the level of the entire pathway. Figure 35c shows the extensions to the 

primary pathway and Figure 35d shows accumulation of secondary metabolites derived 

from NAD+ regenerating and NAD+ independent fluxes. 

 

Having extended the pathway to include aggregate leakage fluxes and coupled 

processes, the DFE flux profiles for all datasets (20mM, 40mM and 80mM) were 

analyzed for common trends and significant patterns. A detailed kinetic model was 

identified to fit the 80mM data and this model was analyzed qualitatively and tested 

against the 40mM dataset. These results are presented and discussed ahead. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35: (a) Estimated ATPase profile (b) Estimated Pi-buffer and measured Pi  

(c) Extensions to primary pathway (d) Estimated leakage mass, derived from pyruvate
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DFE fluxes reveal unexpected temporal patterns 

The flux profiles for all three datasets (20mM, 40mM, 80mM) are presented in 

Figure 36.When compared across the three data sets, these flux profiles exhibit similar 

trends and reveal three distinct phases underlying the observed wild-type dynamics: 

A) Initial ramp-up and drive-down. Within the first 2 minutes, all fluxes in the 

system ramp up to a high value but before the end of the 3rd minute, all fluxes 

begin to slow down. This suggests global inhibition of all fluxes at/after 2-2.5 

minutes including glucose transport. But this is counterintuitive: why would 

the bacterium, which has been starved of glucose, inhibit its glucose uptake 

when given a fresh bolus of sugar? Also note that all fluxes attain a higher 

value with lower glucose bolus than with higher glucose concentrations (max. 

flux value with 20mM glucose is 350mM/min whereas with 40mM and 

80mM glucose it just above 250mM/min). 

B) Quasi steady-state. This phase is predominantly visible in fluxes derived from 

80mM data (Figure 36c). During the time-period of 3-10 minutes, all fluxes 

are found to be collectively decreasing and have the same value whereas all 

metabolites and cofactors in the system are found to be at approximately 

constant values during the same period (compare Figures 36c and 34). This is 

perplexing because the system has achieved steady state concentrations with 

decreasing flux values! This seems mathematically plausible but raises the 

questions of what regulatory mechanism enable this quasi-steady-state. 

C) Reversal of flux ranks. At about 12 minutes (for 80mM data), the fluxes in 

the system depart from quasi steady state and there is a visible reversal in the 

rank of the fluxes compared to the ramp-up phase. This is true for 20mM and 

40mM data as well; during the ramp-up phase, glucose transport is the fastest 

flux, but after the ramp-up and steady-state phase, the glucose transport 
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becomes the slowest flux. By the same token, the slowest flux from the first 

phase becomes the fastest flux in the third phase. What is confusing here is 

that the time point at which the glucose transport becomes the slowest does 

not correspond to the levels of glucose left for consumption. In 80mM it 

occurs at about the 12th minute when glucose concentration is still more than 

15mM!



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36: Dynamic flux profiles for (a) 20mM, (b) 40mM, and (c) 80mM wild-type data. Key representative fluxes are shown 
including glucose transport (v1), pfk (v3), gapdh (v5) and net efflux from PEP (v1+v9). Panel (d) compares fluxes derived from 

40mM and 80mM glucose data sets.

97 

 

20mM Glucose bolus WT Anaerobic DFE Fluxes

0

50
100

150

200

250
300

350

0 1 2 3 4 5
Time (min)

Fl
ux

 (m
M

/m
in

)
2*(v1) 2*(v3) v5 (v1+v9)

40mM Glucose bolus WT Anaerobic DFE Fluxes

0

50

100

150

200

250

0 1 3 6 8 10
Time (min)

Fl
ux

 (m
M

/m
in

)

2*(v1) 2*(v3) v5 (v1+v9)

80mM Glucose bolus WT Anaerobic DFE Fluxes

0

50

100

150

200

250

0 1 3 6 8 10 12 14 17 19 21
Time (min)

Fl
ux

 (m
M

/m
in

)

2*(v1) 2*(v3) v5 (v1+v9)

80mM and 40mM Glucose bolus WT Anaerobic DFE Fluxes

0

50

100

150

200

250

0 1 3 6 8 10 12 14 17 19 21

Time (min)

Fl
ux

 (m
M

/m
in

)

2*(v1)_80 2*(v3)_80 v5_80 (v1+v9)_80
2*(v1)_40 2*(v3)_40 v5_40 (v1+v9)_40

a b

c d

20mM Glucose bolus WT Anaerobic DFE Fluxes

0

50
100

150

200

250
300

350

0 1 2 3 4 5
Time (min)

Fl
ux

 (m
M

/m
in

)
2*(v1) 2*(v3) v5 (v1+v9)

40mM Glucose bolus WT Anaerobic DFE Fluxes

0

50

100

150

200

250

0 1 3 6 8 10
Time (min)

Fl
ux

 (m
M

/m
in

)

2*(v1) 2*(v3) v5 (v1+v9)

80mM Glucose bolus WT Anaerobic DFE Fluxes

0

50

100

150

200

250

0 1 3 6 8 10 12 14 17 19 21
Time (min)

Fl
ux

 (m
M

/m
in

 

)

2*(v1) 2*(v3) v5 (v1+v9)

80mM and 40mM Glucose bolus WT Anaerobic DFE Fluxes

0

50

100

150

200

250

0 1 3 6 8 10 12 14 17 19 21

Time (min)

Fl
ux

 (m
M

/m
in

)

2*(v1)_80 2*(v3)_80 v5_80 (v1+v9)_80
2*(v1)_40 2*(v3)_40 v5_40 (v1+v9)_40

a b

c d



 

Model Identification 

The combined approach to estimating dynamic flux profiles resulted in not just 

the numerical flux estimates but also kinetic functions for 4 out of the total 10 fluxes that 

needed to be modeled in this system. The (symbolic) kinetic rate laws for the remainder 

of the fluxes were determined based on the regulatory information collected from the 

literature. The parameter values were optimized using the lsqcurvefit function in 

MATLAB where the objective function was to minimize the sum of least squared errors 

between the numerical fluxes, obtained from DFE, and values yielded by the kinetic 

function. 

Glucose Transporter (flux v1) 

Modeling glucose uptake presented a significant challenge because mechanisms 

of glucose transport regulation are not yet completely understood. As mentioned in the 

previous section, and shown in Figure 37, the glucose uptake was found to increase for 

the first 2-3 minutes and then continuously to decrease for the remainder of the time that 

glucose was available. Moreover, the glucose uptake flux was found to achieve faster 

speeds with lesser initial glucose. These observations led to several speculations and 

candidate models. 

On the one hand, it was found that the observed slow-down of glucose transport 

could be modeled using an inhibition effect by a downstream intermediate metabolite 

such as G6P or FBP. It can be argued that the cells might employ such an inhibition 

mechanism to prevent high accumulation of phosphorylated metabolites which are toxic 

for the cells. However, there are no such reports of PTS activity inhibition by these 

metabolites. 

On the other hand, it was found that inhibition by either of the substrates alone, 

glucose or PEP, could yield the same dynamic flux as obtained by DFE. But again, there 
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is no experimental evidence to confirm or disprove such inhibition. It stands to be argued 

that a third model incorporating inhibition by a fermentation product could very likely fit 

the data as well, but unless experimentally verified and proven, all these models will 

remain mere speculations. 

These possible inhibition signals at the metabolic level are not the only factors to 

be taken into account. In addition, consequences of the experimental set-up should not be 

overlooked. For instance, the cell suspension is circulated through a 6-m-long loop 

connecting the bioreactor with the NMR tubes, where the actual measurements take 

place. Obviously, this transport causes a time delay. Nor must one ignore the fact that the 

glucose substrate is consumed not by a single cell but by a population of starving cells, 

which are likely to differ in membrane and transport properties that govern substrate 

uptake. It has been shown elsewhere [32] that if the uptake speed is more or less normally 

distributed among the cells, the resulting overall uptake characteristic is sigmoidal. 

Arguably the observed data describe glucose transport as a collective outcome of several 

of these processes. 

Recently, Castro et al. [116] described all components involved in glucose 

transport in L. lactis. Their model included two PTS systems with distinct affinities for 

the two anomeric forms of glucose and a non-PTS permease. The model used here was 

directly adapted from that study: 
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Phoshpofructokinase (PFK) (flux v3) 

PFK catalyzes the transfer of a phosphoryl group from ATP to fructose-6-

phosphate yielding fructose 1,6-bisphosphate: 

F6P + ATP → FBP + ADP + H+

The PFK reaction is essentially irreversible under cellular conditions, and it is the 

first “committed” step in the glycolytic pathway; G6P and F6P have other possible fates 

but FBP is targeted for glycolysis. In Lactococcus, PFK is reportedly activated by ADP 

and inhibited by ATP, PEP and FBP [52].  

Inhibition of PKF by ATP is observed only when F6P is low (less than 0.6mM) or 

the ratio of ATP to F6P is greater than 1.Since in the given case study F6P was 

unobservable, it was assumed that F6P levels were very low in actuality and that ATP 

inhibition was thus present. Based on this information, the following rate law was 

formulated: 
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Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (flux v5) 

Oxidation of Ga3P to 1,3-bis-phosphoglycerate is catalyzed by Ga3PDH: 

Ga3P + Pi + NAD+ ↔ 1,3-PGA + NADH + H+

 
The reaction involves oxidation and phosphorylation of Ga3P by NAD+ and Pi. 

The kinetics of this enzyme are reportedly very difficult to model not just for L. lactis but 

for yeast as well [112]. There is no clear consensus on the governing regulation which 

determines the wide range of activity exhibited by this enzyme. Different variants of 

Michaelis-Menten formalism have been proposed including reversible two-substrate two-

product Michaelis-Menten functions with or without cooperativity, and some have 

included inhibition by adenine nucleotides. The model used for the present study was 

derived from the theoretical work of Hanekom [117]. The model is a specialized case 

derived from the general kinetic equations and is the following: 
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Phosphoglycerate kinase (PGK) (flux v6) 

PGK transfers the high energy phosphoryl group from the carboxyl group of 1,3-

PGA to ADP, forming ATP and 3-PGA: 

1,3-PGA + ADP ↔ 3-PGA + ATP 

The kinetics for this enzyme was modeled based on the general derivation of a 

kinetic rate law for reversible two-substrate two-product Michaelis Menten with Hill 

effects [117]. 
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Pyruvate Kinase (PK) (flux v9) 

The last step in glycolysis is the transfer of the phosphoryl group from PEP to 

ADP, catalyzed by PK, which requires K+ and either Mg2+ or Mn2+: 

PEP + ADP + H+ → Pyruvate + ATP 

In Lactococcus, pyruvate kinase is known to be inhibited by Pi and ATP while it 

is activated by FBP, G6P, DHAP, F6P, and GAP [52]. At low activator concentrations, 

the affinity of this enzyme for both PEP and ADP is reported to decrease (in the presence 

of saturated FBP concentration). Furthermore, Pi is reported to decrease the affinity for 

PEP and increase the FBP concentration required for half maximal velocity. Based on 

this regulatory information, the following model was constructed: 

 

The second term in the model for v9 above is a compensatory term that has a very 

low non-zero value even after G6P and F6P are depleted (unlike the first term which is 

reduced to zero). This term allows the system to channel mass from FBP into products 

downstream of pyruvate after glucose is depleted. In the absence of the second term, the 

v9 flux would be reduced to zero as soon as G6P or F6P are depleted which would lead 

to a very high accumulation of 3PGA and PEP in the system.  
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Lactate dehydrogenase (LDH) (flux v10) 

For glycolysis to continue, NAD+, which cells have in limited quantities, must be 

recycled after its reduction to NADH by Ga3PDH. In the absence of oxygen, NAD+ is 

replenished by the reduction of pyruvate in an extension of the glycolytic pathway, either 

through homolactic or alcoholic fermentation. In the presence of oxygen, the there is an 

additional coupled process in which the reducing equivalents of NADH are oxidized by 

NADH oxidase (NOX). LDH specifically catalyzes the oxidation of NADH by pyruvate 

to yield NAD+ and lactate: 

Pyruvate + NADH ↔ Lactate + NAD+

In Lactococcus LDH is activated by FBP but inhibited by high levels of 

intracellular PEP and Pi. Inhibition of LDH by Pi has been associated with an increase in 

the activation constant for FBP [52]. Based on this information, the flux through LDH 

was modeled as follows: 
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Model Results 

The parametric flux functions obtained from the model identification (Appendix 

C) fit the numerical fluxes computed using DFE (Figure 37). Thus, when integrated, this 

system of flux functions closely reproduces the observed experimental time courses of 

metabolites. The results for 80mM data set are shown in Figure 38.  

The model fluxes demonstrate almost similar trends as those observed in DFE 

fluxes (Figure 39). There is the distinct initial ramp-up of fluxes, followed by a 

simultaneous steady decline of fluxes while glucose is available and the rank of the 

fluxes, from fastest to slowest, changes during the course of time (around the 12th minute) 

even when there is abundant glucose available. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37: Model output (solid lines) contrasted with numerical fluxes computed using DFE for 80mM data set.  
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Figure 38: Model output (solid lines) contrasted with 80mM data set. Filled symbols in panels (a) and (b) represent experimental observations of 

metabolic data. Empty symbols in panels (c) and (d) represent artificial time-series data for experimentally unobservable intermediate metabolites 
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Figure 39: Intracellular fluxes derived from numerical integration of the detailed kinetic model for glycolysis in L. lactis. (see Appnedix C) 
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Model analysis: A case against sensitivity analysis 

Having established a well-fitting model of glycolysis in the 80mM dataset, it is 

necessary to analyze whether any biologically meaningful information can be derived 

from this model. The first and foremost question typically asked is: which parameters 

have the greatest impact on biological outputs. The answer, of course, is obtained by 

conducting a sensitivity analysis where the parameters are ranked by a measure of the 

ratio of the fractional change induced in a biological variable of interest with respect to 

the fractional change induced in a parameter value. The general usefulness of this 

analytical tool is not in question but I do argue against its application to the kinetic model 

of glycolysis at hand for several reasons: 

a. The system under investigation does not have a steady state while glucose is 

being consumed. The classical definition of sensitivity was developed for and 

applicable to systems in steady state only. Nonetheless, there are recent 

extensions and applications of sensitivity analysis to dynamical systems which 

include numerical computation of time-dependent sensitivities [118] [119], 

normalized sensitivities [120], and regional sensitivities [121]. But I cannot, 

as yet, use any of these numerical methods for the reason mentioned next. 

b. The current kinetic model of glycolysis is still incomplete. Even though I have 

developed detailed kinetic models for each of the enzymes in the primary 

pathway, and have estimated coupled fluxes and hidden buffers in the system, 

I have not yet developed any models for the latter. As such, all co-factors 

(NAD+, ATP, Pi) are still modeled using time-dependent uni-variate cubic 

splines. This makes it impossible to compute numerical sensitivities from this 

model because the co-factors will not change dynamically in response to a 

perturbation in any parameter. Alternatively, I could make the simple but 

naïve assumption that the co-factor profiles do not change significantly as 
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long as the parameters are perturbed within a few percent of their nominal 

value and thus compute sensitivities in that context. It can be argued that since 

these co-factors are consumed and produced in several processes other than 

the metabolic pathway, the organism would likely be robust to a 5% or 10% 

perturbation in parameters and hence the co-factor profiles do not change. But 

I have found, in the course of model identification for each of the enzymes, 

that they are very sensitive to minor fluctuations in co-factor profiles. Hence, I 

am not convinced that the exercise in sensitivity analysis on this incomplete 

model will be anything but futile. 

c. Lastly, I do question the significance and/or the ability of sensitivity analysis 

to address the biological questions that interest my collaborators the most. The 

questions being: what controls glucose uptake? Can the organism/pathway be 

engineered to increase the speed of glucose consumption? If so, how? If not, 

why? Is the pathway already optimized to operate and consume glucose at the 

maximal speed possible? 

In my view, the problem lies not in estimating dynamic sensitivities 

per se but in the belief that sensitivity analysis will successfully answer the 

question of what controls glucose uptake. In essence, the notion of sensitivity 

analysis mirrors and supports the practice of finding a “bottleneck” (in a 

sequential assembly of processes) with the hope that when the “bottleneck” is 

removed it will increase the flux through the entire system. And sensitivity 

analysis does just that: it measures fractional changes in a variable of interest 

in response to perturbation of a “single” parameter. I highly doubt that 

effecting such singular parametric changes experimentally will yield any 

significant improvements in glucose uptake. In fact, there is more than a 

decade long history of experimental research by several groups, including that 

of my collaborators, to alter the expression of each enzyme in the pathway, 
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one at a time, and none of these efforts have led to significant changes in 

glucose uptake by resting cells of L.lactis.  

Moreover, if we were to experimentally perturb not one but the top 

two, three or five most sensitive parameters, there would be no guarantee that 

the individual parameter sensitivities would be preserved. It is likely that the 

parameter for which the system was observed to be sensitive, when perturbed 

alone, does not turn out to have the same affect on the system when two other 

parameters are changed simultaneously. There are two conventional ways to 

deal with this situation. One, we could compute and analyze numerical 

sensitivities for simultaneous changes induced in pairs or triplets or 

quadruplets of parameters. This, of course, leads to a combinatorial explosion 

of possibilities to analyze, considering that the current model has 84 

parameters. Even if we start perturbing two parameters at a time and account 

for the fact that each parameter can be either increased or decreased from its 

estimated value, there are five different scenarios to be accounted for: values 

for both parameters are increased, decreased, or changed in opposite ways, or 

changed together randomly. This alone generates 5 x (83 x 84) x (2 x range of 

parameter values) possibilities to analyze. The total number of scenarios 

would thus be significantly higher when perturbing three or more parameters. 

The other-- and perhaps better-- alternative would be to set it up as an 

optimization problem: estimate minimum parametric variation that will 

maximize the speed of glucose uptake. This approach however is also 

challenged by the same perils as known in traditional parameter estimation 

and these have been researched and explored in depth by Torres and Voit [14]. 

 

What we thus need is a new approach to analyzing dynamical models, one that 

can effectively guide us to the solution of the biological questions of interest, in a more 
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structured and less heuristic manner. A very simple and a novel approach, named 

“Qualitative Functional Analysis”, is proposed here. 

Qualitative Functional Analysis (QFA) 

The motivation to devise this novel and simple analysis approach comes from an 

insistence to rephrase the very questions we asked when analyzing dynamical models. 

For the glycolytic model at hand, there remained two questions that demanded 

explanations: (a) what controls glycolysis; and (b) what are the mechanisms underlying 

the temporal patterns observed in DFE fluxes (Figure 36)?  

By comparing the theoretical upper limit for each flux function (i.e., its Vmax 

value) with its maximum operating value (i.e., the peak of the DFE flux profile), it was 

found that none of the flux functions were operating at their theoretical maximal limit. 

This led to the question: what prevents each flux in the pathway to achieve its theoretical 

maximum velocity? The hope was that by analyzing each flux separately,  “Qualitative 

Functional Analysis” would answer this question, as discussed, in the following. 

Consider the functional form for the phoshpofructokinase flux (v3) (shown 

below) which describes the kinetics for this enzyme as determined by two substrates (F6P 

and ATP), product inhibition (by FBP), competitive inhibition (by PEP), substrate self-

inhibition (by ATP) and activation (by ADP). This function can be studied as a product of 

three terms: Vmax, S1-term and S2-term. By substituting the time series data for each of 

the involved metabolites and co-factors in these terms, the lesser-valued function was 

identified to be S2-term (see Figure 40). This term was of interest because it suggested a 

clue to the question: what prevented flux v3 from operating at maximum velocity (Vmax) 

 

 112



 113

 

 

Since the S2-term was identified to be the lesser valued term, it was further 

analyzed in terms of S2 and P2 (shown in blue and green boxes above). It turns out that 

the value of S2 was significantly high to the extent that the number 1 in the denominator 

could be easily ignored, and S2 thus be canceled between the numerator and the 

denominator, leaving only P2 in the denominator (see Figure 40). Thus, the observed 

values of the S2-term are primarily driven by the function P2. 

In conclusion, QFA reveals that loss of activation of ADP results in very low 

values of P2, which make the S2-term the least valued term among Vmax, the S1-term and 

the S2-term. Thus, loss of activation by ADP is most likely to prevent the flux v3 from 

operating at its theoretical maximal value. 

Similar analyses were conducted for each step of the pathway, and the results of 

this analysis are shown in Appendix D. 
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Figure 40: Qualitative Functional Analysis of flux v3.



 

QFA: factors preventing faster glucose uptake 

The following were observed after having analyzed each of the flux functions 

with QFA to investigate factors preventing faster fluxes at that specific step: 

a. Loss of ADP activation prevents PFK (v3) from operating at a higher value 

b. A higher NAD+/NADH ratio would be required to drive the GAPDH (v5) flux 

higher 

c. Reduction of ADP, which is a substrate for PGK (v6), keeps the flux at a 

lower level 

d. Pi inhibition predominantly prevents PK (v9) flux from gaining higher speed 

e. The glucose transport flux (v1) is primarily driven by both its substrates 

(Glucose and PEP) (S2-term) (see Figure D5 in Appendix D)  

Model Validation 

The norm in model development and analysis is to build a model using a training 

data set and then validate the model with a separate test data set that was not a part of the 

parameter optimization phase. In line with this practice, the kinetic model developed for 

wild type L.lactis, which reproduces the metabolic profile observed with 80mM glucose 

bolus under anaerobic conditions, was tested for 40mM glucose bolus under similar 

conditions. The model cannot be extrapolated to test for 20mM glucose because the 

necessary offline cofactor measurements are not available for that experiment. It was 

hoped that because the kinetic models were fitted to true intracellular fluxes, derived 

using DFE, that these functions would be easily and reliably extrapolated. Unfortunately, 

that is not the case.  
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Discussion 

This case study showcases how DFE can be augmented with information from 

diverse sources to derive not just intracellular fluxes but also time-series data for 

unobserved processes that are coupled to observed processes. The model-free fluxes 

revealed unexpected patterns which raise interesting biological questions. When fitting 

functional forms for each of the fluxes, though DFE clearly avoided error compensation 

between fluxes, it seems that the kinetic models might have been “overfitted” for the 

intracellular fluxes of 80mM data set. It was attempted to re-optimize the kinetic models 

to fit to DFE fluxes for both 80mM and 40mM data set simultaneously but no good 

results were obtained at the time of writing this thesis. When trying to obtain a working 

model for 40mM data set alone, some of the kinetic parameter values obtained from the 

optimization were too high and unrealistic suggesting the need to alter the structure of the 

underlying function. This raises deeper questions about the assumption that a single 

model should be able to explain all datasets. Perhaps there are some additional factors, 

may be experimental or biological, which affect the regulation of the key enzymes that 

need to be accounted between these datasets. If not then the failure to extrapolate these 

functions suggests that the flux-substrate surface which involves complex regulation, 

such as what we have modeled here, cannot be reliably estimated from one data set alone. 

Future extensions of this work will have to consider fitting the model to several more 

replicates of data simultaneously to correctly approximate the flux surface in high 

dimensions.  

Even though the current model could not extrapolate reliably, it could be used as a 

basis to gain insights into the underlying mechanisms of regulation. QFA revealed the 

factors that prevented each step from operating at its maximum theoretical velocity. From 

this local information about each step, it can be concluded that it should be possible to 

increase the glycolytic flux through the entire pathway by maintaining higher ratios of 
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ADP/ATP and NAD+/NADH while counter-balancing the high inhibition of Pi with 

activation of high levels of FBP. This strategy might work provided the glycolytic flux is 

not further limited by the glucose uptake function itself which, as determined by QFA, 

seems to determined by both its substrates as well as non-metabolic, physiological 

factors. Even though this conclusion is based on the model derived from the 80mM 

dataset, which does not extrapolate well for other datasets, it will be interesting to see 

whether models derived for other datasets also lead to the same biological conclusions. 
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CONCLUDING REMARKS 

 

 

In the course of this research, I believe we have significantly advanced our 

approach to system identification from time-series data. We gained deep insights into the 

issues beset with conventional approaches to parameter estimation. We isolated the true 

sources of error in these methods and proposed the novel approach of Dynamic Flux 

Estimation (DFE) which circumvents several of these issues. We have demonstrated the 

power of DFE both as a methodology and a framework which serves us well in a variety 

of non-ideal cases. But even before we arrive at a working kinetic model, which can be 

reliably extrapolated, DFE bears the unique ability to offer model-free insights into the 

underlying fluxes in the system. The fluxes derived with DFE, based either purely on 

measured time-series data or even when supplemented with a myriad of kinetic 

assumptions, hold within them complete information about local and global regulation of 

the system. As a computational technique, DFE adds immense power to the tools of 

experimental biology because it provides access into the unobservable state (enzyme 

activity) of the system from the measurable variables (metabolites) of the system. The 

mechanisms of regulation that we attempt to uncover from our study of metabolic 

pathways are in fact mechanisms acting at the level of enzymes. The metabolic system 

that we observe and quantify today are, in essence, recording the effects of a dynamical 

system of enzymes underplay. And DFE provides a reliable first means to translating the 

metabolic time-profiles into the underlying dynamic flux profiles. What remain to be 

developed are good approximations to model the system of fluxes. I firmly believe, with 

the growing number of time-series data that is becoming available in higher and higher 

quality, DFE is well positioned to lead the way in analyzing metabolic pathways. 
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APPENDIX A: PROOF-OF-CONCEPT MODEL 

It is straightforward to construct different symbolic models for a metabolic 

system, such as the glycolytic pathway of interest here (Figure 22a, A1).  In most 

formats, the underlying structure is given by the stoichiometry of the system.  Thus, for 

each pool, a differential equation is set up that accounts for fluxes entering and leaving 

the pool. The equations for given case are shown in Figure A1. 

 

 
For many analytical purposes, it is convenient to reformulate this representation as a 
stoichiometric matrix equation of the following form 
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 •
Gluc              : 

•
X1    =   −v1

•
G6P              : 

•
X2    =   v1  −   v2

•
FBP              : 

•
X3   =   v2 − v3

•
3-PGA          : 

•
X4   =  2*(v3) −v4

•
PEP              : 

•
X5   =  v4−v1−v5 

•
Pyruvate       : 

•
X6   =  v1 + v5−v6−v7

•
Lactate          : 

•
X7   =  v6

•
Acetate          : 

•
X8   =  v7
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X2 
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v7 

Figure A 1: Flux pattern in the Lactococcus pathway and corresponding, 
essentially assumption-free, mathematical representation of system of fluxes. 
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Flux Power-law Flux Model 
v1 81.0)PEP(0.4se)9.47(Gluco  
v2 4.074.0 )ATP()G6P(75.30  
v3 01.088.0 )Pi()FBP(11.1  
v4 32.043.0 )3PGA(97.31)PEP(88.70      −  
v5 30.20001.033.153.0 )PEP(08.8)Pi()FBP()PEP(97.42 +−  
v6 04.146.0 )FBP()Pyruvate(100  
v7 46.00.1 )Pi()Pyruvate(500  

 

At this point, mainstream models begin to differ.  In standard stoichiometric and 

Flux Balance Analysis, it is assumed that the system is in steady state.  Thus, the vector 

on the left-hand side is a vector of zeros.  Furthermore, it is assumed that all fluxes are 

describable as constant flux rates, which is legitimate if the system is in a steady state.  If 

all vi are constant, Eq. A1 becomes a simple matrix equation that can be analyzed with 

methods of linear algebra. 

In the Generalized Mass Action format within Biochemical Systems Theory, the 

starting point is again the stoichiometric matrix equation.  However, no assumption is 

made that the system is in a steady state.  Furthermore, the fluxes are assumed to be 

functions of the system variables, and possibly other variables outside the system.  As a 

consequence, the fluxes are functions of time-dependent variables and are therefore time 

dependent as well.  Specifically, BST represents these fluxes as products of power-law 

functions that contain a rate constant and each contributing variable, raised to a real-

valued kinetic order.  In the given case (Chapter 3, Idealized Situation, Figure22), a 

numerical implementation of the glycolytic pathway in Lactococcus is given as shown in 

Figure. A2. The dynamic time courses of this particular model are shown in Figure 22b 

 

 

. 

 

…….(Eq. A2) 
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APPENDIX B: RAW EXPERIMENTAL DATA 
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40mM Glucose bolus WT Anaerobic
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80mM Glucose bolus WT Anaerobic
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APPENDIX C: KINETIC MODEL FOR GLYCOLYSIS 

Kinetic Functions 
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Kinetic Parameters 

v5KmGAP 0.0168  v3KmF6P 0.0000    
v5KmNAD 7.4247  v3KmATP 0.1053    
v5KmPi 0.0000  v3KiFBP 0.4628    
v5KmBPGA 0.0000  v3KiPEP 0.0008    
v5KmNADH 0.1144  v3KiATP 647.1835    
v5VmxFOR 599.9236  v3KaADP 0.9954    
v5VmxREV 418.5004  v3h1 0.0790    
v5h1 0.3148  v3h2 33.4956    
v5h2 24.7483  v3Vmx 3154.8279    
        
v6KmBPGA 0.0000  v13KmPYR 0.1722    
v6Km3PGA 0.0001  v13KmNADH 0.0002    
v6KmADP 138.4104  v13KmLAC 9.6662    
v6KmATP 3.6761  v13KmNAD 266.5506    
v6VmxFOR 7796.1885  v13KaFBP 0.0878    
v6VmxREV 54.8435  v13KiPi 0.0729    
v6h1 0.0729  v13KiPEP 0.4077    
v6h2 2.7232  v13VmxFOR 430.0131    

   v13VmxREV 0.1295    
   v13h1 1.1237    
   v13h2 48.4191    
v9KmPEP 0.4049  v13h3 0.4619    
v9KmADP 6.0154       
v9KiPi 0.1274  v9KmPEP 2.1092    
v9KaFBP 3.8206  v9KmADP 2.9372    
v9KaG6P 0.8146  v9KiPi 43.1158    
v9KaF6P 0.0014  v9KaFBP 0.0056    
v9KaDHAP 0.0007  v9KaDHAP 0.926    
v9KaGAP 0.0013  v9KaGAP 0.0927    
v9KiATP 10.8326  v9KiATP 0.0371    
v9h1 0.7359  v9h1 15.6572    
v9h2 8.3415  v9h2 0.4756    
v9Vmx 2623.3337  v9Vmx 10136.4683    

        
V1Vmx 241.3592  V1Vmx 247.1829  V1Vmx 50 
v1KmGLU 280.0612  v1KmGLU 218.9962  v1KmGLU 768.33 
v1KmPEP 37.2885  v1KmPEP 0.3083  v1KmATP 2.9756 
v1h1 19.6019  v1h1 1  v1h1 4.2705 
v1h2 41.3087  v1h2 1  v1h2 19.1497 
a 2.2661  a 0.3149  a 1.238 
b 1.3015  b 0.0436  b 9.3437 
c 0.4892  c 0.5042  c 1.8273 
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Figure D1: Qualitative Functional Analysis of flux v3.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D2: Qualitative Functional Analysis of flux v5   
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Figure D3: Qualitative Functional Analysis of flux v6 
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Figure D4: Qualitative Functional Analysis of flux v9   
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Figure D5: Qualitative Functional Analysis of flux v1   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 134



 

REFERENCES 

 [1]     M. A. SAVAGEAU, "The challenge of reconstruction". New Biol. 3(2): p. 101-2, 
1991 

 [2]     G. GOEL, I.-C. CHOU and E. O. VOIT, "Biological systems modeling and 
analysis: A biomolecular technique of the twenty-first century". J. Biomol. Tech. 17(4): 
p. 252-269, 2006 

 [3]     Z. QI, G. W. MILLER and E. O. VOIT, "Computational systems analysis of 
dopamine metabolism". (submitted), 2008 

 [4]     A. E. N. FERREIRA. "Power Law Analysis and Simulation Software".  2000; 
Available from: http://www.dqb.fc.ul.pt/docentes/aferreira/plas.html. 

 [5]     P. MENDES. "Gepasi: Biochemical Simulation".  2004; Available from: 
http://www.gepasi.org/. 

 [6]     J. SCHWACKE. "BSTLab: A Matlab Toolbox for Biochemical Systems Theory". 
Available from: http://bioinformatics.musc.edu/bstlab/. 

 [7]     M. TOMITA. "BestKit". Available from: http://helios.brs.kyushu-u.ac.jp/~bestkit/. 

 [8]     H. KURATA, K. MASAKI, Y. SUMIDA and R. IWASAKI, "CADLIVE dynamic 
simulator: direct link of biochemical networks to dynamic models". Genome Res. 15(4): 
p. 590-600, 2005 

 [9]     M. A. SAVAGEAU, "Biochemical systems analysis. I. Some mathematical 
properties of the rate law for the component enzymatic reactions". J Theor Biol. 25(3): p. 
365-9, 1969 

 [10]     M. A. SAVAGEAU, "Biochemical systems analysis. II. The steady-state 
solutions for an n-pool system using a power-law approximation". J Theor Biol. 25(3): p. 
370-9, 1969 

 [11]     M. A. SAVAGEAU, "Biochemical Systems Analysis: A Study of Function and 
Design in Molecular Biology. ". 1976: Advanced Book Program. Reading, MA: Addison-
Wesley, . 

135 

http://www.dqb.fc.ul.pt/docentes/aferreira/plas.html
http://www.gepasi.org/
http://bioinformatics.musc.edu/bstlab/
http://helios.brs.kyushu-u.ac.jp/%7Ebestkit/


 [12]     E. O. VOIT, "Canonical nonlinear modeling: S-system approach to understanding 
complexity". 1991: New York: Van Nostrand Reinhold. 

 [13]     E. O. VOIT, "Computational Analysis of Biochemical Systems: A Practical 
Guide for Biochemists and Molecular Biologists. ". 2000: Cambridge University Press: 
New York. 

 [14]     N. V. TORRES and E. O. VOIT, "Pathway Analysis and Optimization in 
Metabolic Engineering". 2002: New York: Cambridge University Press. 

 [15]     R. CURTO, E. O. VOIT, A. SORRIBAS and M. CASCANTE, "Mathematical 
models of purine metabolism in man". Math Biosci. 151(1): p. 1-49, 1998 

 [16]     R. CURTO, E. O. VOIT, A. SORRIBAS and M. CASCANTE, "Validation and 
steady-state analysis of a power-law model of purine metabolism in man". Biochem J. 
324 ( Pt 3): p. 761-75, 1997 

 [17]     R. CURTO, E. O. VOIT and M. CASCANTE, "Analysis of abnormalities in 
purine metabolism leading to gout and to neurological dysfunctions in man". Biochem J. 
329 ( Pt 3): p. 477-87, 1998 

 [18]     M. A. SAVAGEAU and E. O. VOIT, "Recasting Nonlinear Differential-
Equations As S-Systems - A Canonical Nonlinear Form". Mathematical Biosciences. 
87(1): p. 83-115, 1987 

 [19]     F. SHIRAISHI and M. A. SAVAGEAU, "The tricarboxylic acid cycle in 
Dictyostelium discoideum. I. Formulation of alternative kinetic representations". J Biol 
Chem. 267(32): p. 22912-8, 1992 

 [20]     N. V. TORRES, "Modeling approach to control of carbohydrate-metabolism 
during citric-acid accumulation by aspergillus-niger .1. Model definition and stability of 
the steady-state". Biotechnology and Bioengineering. 44(1): p. 104-111, 1994 

 [21]     D. M. BATES and D. G. WATTS, "Nonlinear regression analysis and its 
applications.". Wiley series in probability and mathematical statistics. Applied 
probability and statistics. 1988, New York: Wiley. 

 [22]     J. E. DENNIS, JR., D. M. GAY and R. E. WALSH, "An Adaptive Nonlinear 
Least-Squares Algorithm". ACM Trans. Math. Softw. 7(3): p. 348-368, 1981 

 136



 [23]     M. MITCHELL, "An Introduction to Genetic Algorithms". Complex Adaptive 
Systems. 1996: MIT Press: Cambridge, MA. 

 [24]     S. E. SELVAN, C. C. XAVIER, N. KARSSEMEIJER, J. SEQUEIRA, R. A. 
CHERIAN and B. Y. DHALA, "Parameter estimation in stochastic mammogram model 
by heuristic optimization techniques". IEEE Trans Inf Technol Biomed. 10(4): p. 685-95, 
2006 

 [25]     R. H. J. M. OTTEN and L. P. P. GINNEKEN, "The Annealing Algorithm". 1989, 
Boston: Kluwer Academic Publishers. 

 [26]     S. R. VEFLINGSTAD, J. ALMEIDA and E. O. VOIT, "Priming nonlinear 
searches for pathway identification". Theor Biol Med Model. 1: p. 8, 2004 

 [27]     G. GOEL, "Reconstructing Biochemical Systems: Systems Modeling and 
Analysis Tools for Decoding Biological Designs". 2008, Saarbrücken, Germany: VDM 
Verlag Dr. Müller. 

 [28]     B. I. EPUREANU and H. S. GREENSIDE, "Fractal basins of attraction 
associated with a damped Newton's method". Siam Review. 40(1): p. 102-109, 1998 

 [29]     Z. KUTALIK, W. TUCKER and V. MOULTON, "S-system parameter 
estimation for noisy metabolic profiles using newton-flow analysis". IET Syst Biol. 1(3): 
p. 174-80, 2007 

 [30]     E. O. VOIT and J. ALMEIDA, "Decoupling dynamical systems for pathway 
identification from metabolic profiles". Bioinformatics. 20(11): p. 1670-81, 2004 

 [31]     E. O. VOIT and M. A. SAVAGEAU, "Power-law approach to modeling 
biological systems;  III. Methods of analysis". J Ferment Technol. 60(3): p. 223-241, 
1982 

 [32]     E. O. VOIT, S. MARINO and R. LALL, "Challenges for the identification of 
biological systems from in vivo time series data". In Silico Biol. 5(2): p. 83-92, 2005 

 [33]     I.-C. CHOU, H. MARTENS and E. O. VOIT, "Parameter estimation in 
biochemical systems models with alternating regression". Theor. Biol. Med. Model. 3: p. 
25, 2006 

 137



 [34]     A. R. NEVES, A. RAMOS, M. C. NUNES, M. KLEEREBEZEM, J. 
HUGENHOLTZ, W. M. DE VOS, J. ALMEIDA and H. SANTOS, "In vivo nuclear 
magnetic resonance studies of glycolytic kinetics in Lactococcus lactis". Biotechnol 
Bioeng. 64(2): p. 200-12, 1999 

 [35]     Y. SEKIYAMA and J. KIKUCHI, "Towards dynamic metabolic network 
measurements by multi-dimensional NMR-based fluxomics". Phytochemistry. 68(16-18): 
p. 2320-9, 2007 

 [36]     A. P. TEIXEIRA, S. S. SANTOS, N. CARINHAS, R. OLIVEIRA and P. M. 
ALVES, "Combining metabolic flux analysis tools and 13C NMR to estimate 
intracellular fluxes of cultured astrocytes". Neurochem Int. 52(3): p. 478-86, 2008 

 [37]     C. WITTMANN, "Fluxome analysis using GC-MS". Microb Cell Fact. 6: p. 6, 
2007 

 [38]     C. YANG, Q. HUA and K. SHIMIZU, "Quantitative analysis of intracellular 
metabolic fluxes using GC-MS and two-dimensional NMR spectroscopy". J Biosci 
Bioeng. 93(1): p. 78-87, 2002 

 [39]     A. R. NEVES, W. A. POOL, J. KOK, O. P. KUIPERS and H. SANTOS, 
"Overview on sugar metabolism and its control in Lactococcus lactis - the input from in 
vivo NMR". FEMS Microbiol Rev. 29(3): p. 531-54, 2005 

 [40]     H. M. LEICESTER, "Development of Biochemical Concepts from Ancient to 
Modern Times". 1974, Cambridge, MA: Harvard University Press. 

 [41]     E. J. CRAMPIN, M. HALSTEAD, P. HUNTER, P. NIELSEN, D. NOBLE, N. 
SMITH and M. TAWHAI, "Computational physiology and the Physiome Project". Exp 
Physiol. 89(1): p. 1-26, 2004 

 [42]     H. V. WESTERHOFF and B. O. PALSSON, "The evolution of molecular 
biology into systems biology". Nat Biotechnol. 22(10): p. 1249-52, 2004 

 [43]     L. VON BERTALALANFFY, "Der Organismus als physikalisches System 
betrachtet". Die Naturwissenschaften. 33: p. 521-531, 1940 

 138



 [44]     N. V. TORRES, E. O. VOIT and C. H. ALCÓN, "Optimization of nonlinear 
biotechnological processes with linear programming.  Application to citric acid 
production in Aspergillus niger". Biotechn Bioengin. 49: p. 247-258, 1996 

 [45]     A. E. N. FERREIRA, A. M. PONCES FREIRE and E. O. VOIT, "A quantitative 
model of the generation of N(epsilon)-(carboxymethyl)lysine in the Maillard reaction 
between collagen and glucose". Biochem J. 376(Pt 1): p. 109-21, 2003 

 [46]     E. O. VOIT, "Biochemical and genomic regulation of the trehalose cycle in yeast: 
review of observations and canonical model analysis". J Theor Biol. 223(1): p. 55-78, 
2003 

 [47]     F. ALVAREZ-VASQUEZ, K. J. SIMS, L. A. COWART, Y. OKAMOTO, E. O. 
VOIT and Y. A. HANNUN, "Simulation and validation of modelled sphingolipid 
metabolism in Saccharomyces cerevisiae". Nature. 433(7024): p. 425-30, 2005 

 [48]     F. ALVAREZ-VASQUEZ, K. J. SIMS, Y. A. HANNUN and E. O. VOIT, 
"Integration of kinetic information on yeast sphingolipid metabolism in dynamical 
pathway models". J. Theor. Biol. 226(3): p. 265-291, 2004 

 [49]     R. ALVES, E. HERRERO and A. SORRIBAS, "Predictive reconstruction of the 
mitochondrial iron-sulfur cluster assembly metabolism: I. The role of the protein pair 
ferredoxin-ferredoxin reductase (Yah1-Arh1)". Proteins. 56(2): p. 354-66, 2004  

 [50]     M. VILELA, I.-C. CHOU, S. VINGA, A. T. VASCONCELOS, E. O. VOIT and 
J. S. ALMEIDA, "Parameter optimization in S-system models". BMC Syst Biol. 2: p. 35, 
2008 

 [51]     A. RAMOS, A. NEVES, R. and H. SANTOS, "Metabolism of lactic acid bacteria 
studied by nuclear magnetic resonance". ANTONIE VAN LEEUWENHOEK 
INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR 
MICROBIOLOGY. 82(1-4): p. 249-261, 2002 

 [52]     A. R. NEVES, Metabolic strategies to reroute carbon fluxes in Lactococcus 
lactis: kinetics of intracellular metabolite pools by in vivo Nuclear Magnetic Resonance. 
Instituto de Tecnologia Química e Biológica. 2001, Portugal: Universidade Nova de 
Lisboa. 

 [53]     E. O. VOIT, F. ALVAREZ-VASQUEZ and K. J. SIMS, "Analysis of dynamic 
labeling data". Math Biosci. 191(1): p. 83-99, 2004 

 139



 [54]     R. CURTO, A. SORRIBAS and M. CASCANTE, "Comparative characterization 
of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems 
theory and metabolic control analysis.  Model definition and nomenclature.". Math 
Biosci. 130: p. 25-50, 1995 

 [55]     E. O. VOIT and A. E. N. FERREIRA, "Buffering in models of integrated 
biochemical systems". J Theor Biol. 191: p. 429-438, 1998 

 [56]     S. MARINO and E. O. VOIT, "An automated procedure for the extraction of 
metabolic network information from time series data". J. Bioinform. Comput. Biol. 4(3): 
p. 665-691, 2006 

 [57]     R. LALL and E. O. VOIT, "Parameter estimation in modulated, unbranched 
reaction chains within biochemical systems". Comput Biol Chem. 29(5): p. 309-18, 2005 

 [58]     V. L. CROW and G. G. PRITCHARD, "Purification and properties of pyruvate 
kinase from Streptococcus lactis". Biochim. Biophys. Acta,. 438: p. 90-101, 1976 

 [59]     W. MASON P, P. CARBONE D, A. CUSHMAN R and S. WAGGONER A, 
"The importance of inorganic phosphate in regulation of energy metabolism in 
Streptococcus lactis". Journal of Biological Chemistry. 256(4): p. 1861-1866, 1981 

 [60]     J. L. GALAZZO and J. E. BAILEY, "Fermentation pathway kinetics and 
metabolic flux control in suspended and immobilized Saccharomyces cerevisiae.". 
Enzyme Microb. Technol. 12: p. 162-172, 1990 

 [61]     E. O. VOIT, J. ALMEIDA, S. MARINO, R. LALL, G. GOEL, A. R. NEVES and 
H. SANTOS, "Regulation of glycolysis in Lactococcus lactis: an unfinished systems 
biological case study". Syst Biol (Stevenage). 153(4): p. 286-98, 2006 

 [62]     E. DENNIS J, M. GAY D and E. WELSCH R, "Adaptive Non-Linear Least 
Squares Algorithm". ACM Transactions on Mathematical Software. 7(3): p. 348-368, 
1981 

 [63]     S. M. GOLDFELD, R. E. QUANT and H. F. TROTTER, "Maximization by 
quadratic hill-climbing". Econometrica. 34(541-555), 1966 

 [64]     Z. MICHAELEWICZ, "Genetic Algorithms + Data Structures = Evolution 
Programs". 1994, Berlin: Springer-Verlag. 

 140



 [65]     S. KIKUCHI, D. TOMINAGA, M. ARITA, K. TAKAHASHI and M. TOMITA, 
"Dynamic modeling of genetic networks using genetic algorithm and S-system". 
Bioinformatics. 19(5): p. 643-650, 2003 

 [66]     D. B. FOGEL, L. J. FOFEL and J. W. ATMAR. Meta-evolutionary 
programming. in 25th Asilomar Conference on Signals, Systems and Computers: IEE 
Computer Society. 

 [67]     S. KIMURA, K. IDE, A. KASHIHARA, M. KANO, M. HATAKEYAMA, R. 
MASUI, N. NAKAGAWA, S. YOKOYAMA, S. KURAMITSU and A. KONAGAYA, 
"Inference of S-system models of genetic networks using a cooperative coevolutionary 
algorithm". Bioinformatics. 21(7): p. 1154-63, 2005 

 [68]     G. GOEL, I. C. CHOU and E. O. VOIT, "Biological systems modeling and 
analysis: a biomolecular technique of the twenty-first century". J Biomol Tech. 17(4): p. 
252-69, 2006 

 [69]     G. GOEL, Biochemical Systems Toolbox. Bioengineering. 2006, Atlanta: Georgia 
Institute of Technology. 136. 

 [70]     D. Y. CHO, K. H. CHO and B. T. ZHANG, "Identification of biochemical 
networks by S-tree based genetic programming". Bioinformatics. 22(13): p. 1631-40, 
2006 

 [71]     T. DAISUKE and P. HORTON, "Inference of scale-free networks from gene 
expression time series". J Bioinform Comput Biol. 4(2): p. 503-14, 2006 

 [72]     O. R. GONZALEZ, C. KUPER, K. JUNG, P. C. NAVAL, JR. and E. 
MENDOZA, "Parameter estimation using Simulated Annealing for S-system models of 
biochemical networks". Bioinformatics. 23(4): p. 480-6, 2007 

 [73]     K.-Y. KIM, D.-Y. CHO and B.-T. ZHANG. Multi-stage evolutionary algorithms 
for efficient identification of gene regulatory networks. in EvoWorkshops 2006. 2006: 
Springer. 

 [74]     S. KIMURA, M. HATAKEYAMA and A. KONAGAYA, "Inference of s-system 
models of genetic networks from noisy time-series data". Chem-Bio Informatics Journal. 
4(1): p. 1-14, 2004 

 141



 [75]     N. NOMAN and H. IBA, "Inferring gene regulatory networks using differential 
evolution with local search heuristics". IEEE/ACM Trans Comput Biol Bioinform. 4(4): 
p. 634-47, 2007 

 [76]     Y. MAKI, T. UEDA, M. OKAMOTO, N. UEMATSU, Y. INAMURA and Y. 
EGUCHI, "Inference of genetic network using the expression profile time course data of 
mouse P19 cells". Genome Informatics. 13: p. 382-383, 2002 

 [77]     J. S. ALMEIDA and E. O. VOIT, "Neural-network-based parameter estimation in 
S-system models of biological networks". Genome Inform. 14: p. 114-23, 2003 

 [78]     E. O. VOIT, S. MARINO and R. LALL, "Challenges for the identification of 
biological systems from in vivo time series data". In Silico Biology. 5: p. 0010, 2004 

 [79]     K. Y. TSAI and F. S. WANG, "Evolutionary optimization with data collocation 
for reverse engineering of biological networks". Bioinformatics. 21(7): p. 1180-1188, 
2005 

 [80]     P. J. SANDS and E. O. VOIT, "Flux-based estimation of parameters in S-
systems". Ecol Modeling. 93: p. 75-88, 1996 

 [81]     G. STEPHANOPOULOS, A. A. ARISTIDOU and J. NIELSEN, "Metabolic 
Engineering: Principles and Methodologies". 1998, San Diego, CA: Academic Press. 

 [82]     R. HEINRICH and T. A. RAPOPORT, "A linear steady-state treatment of 
enzymatic chains. General properties, control and effector strength". Eur. J. Biochem. 
42(1): p. 89-95, 1974 

 [83]     G. R. GAVALAS, "Nonlinear Differential Equations of Chemically Reacting 
Systems". 1968, Berlin: Springer-Verlag. 

 [84]     B. O. PALSSON, "Systems Biology: Properties of Reconstructed Networks". 
2006, New York: Cambridge University Press. 

 [85]     M. OKAMOTO. System analysis of acetone-butanol-ethanol fermentation based 
on time-sliced metabolic flux analysis. in Symposium on Cellular Systems Biology. 2008. 
National Chung Cheng University, Taiwan. 

 142



 [86]     N. ISHII, K. NAKAHIGASHI, T. BABA, M. ROBERT, T. SOGA, A. KANAI, 
T. HIRASAWA, M. NABA, K. HIRAI, A. HOQUE, P. Y. HO, Y. KAKAZU, K. 
SUGAWARA, S. IGARASHI, S. HARADA, T. MASUDA, N. SUGIYAMA, T. 
TOGASHI, M. HASEGAWA, Y. TAKAI, K. YUGI, K. ARAKAWA, N. IWATA, Y. 
TOYA, Y. NAKAYAMA, T. NISHIOKA, K. SHIMIZU, H. MORI and M. TOMITA, 
"Multiple high-throughput analyses monitor the response of E. coli to perturbations". 
Science. 316(5824): p. 593-7, 2007 

 [87]     X. DU, S. J. CALLISTER, N. P. MANES, J. N. ADKINS, R. A. 
ALEXANDRIDIS, X. ZENG, J. H. ROH, W. E. SMITH, T. J. DONOHUE, S. 
KAPLAN, R. D. SMITH and M. S. LIPTON, "A computational strategy to analyze label-
free temporal bottom-up proteomics data". J Proteome Res. 7(7): p. 2595-604, 2008 

 [88]     M. VILELA, C. C. BORGES, S. VINGA, A. T. VASCONCELOS, H. SANTOS, 
E. O. VOIT and J. S. ALMEIDA, "Automated smoother for the numerical decoupling of 
dynamics models". Bmc Bioinformatics. 8: p. 305, 2007 

 [89]     H. P. J. BONARIUS, G. SCHMID and J. TRAMPER, "Flux analysis of 
underdetermined metabolic networks: The quest for the missing constraints". Trends in 
Biotechnology. 15(8): p. 308-314, 1997 

 [90]     J. L. REED and B. O. PALSSON, "Thirteen years of building constraint-based in 
silico models of Escherichia coli". Journal of Bacteriology. 185(9): p. 2692-2699, 2003 

 [91]     N. ISHII, Y. NAKAYAMA and M. TOMITA, "Distinguishing enzymes using 
metabolome data for the hybrid dynamic/static method". Theor Biol Med Model. 4: p. 19, 
2007 

 [92]     J. NETER and W. WASSERMAN, "Applied Linear Statistical Models". 1974, 
Homewood, IL: Richard D. Irwin. 

 [93]     A. RAMOS, A. R. NEVES and H. SANTOS, "Metabolism of lactic acid bacteria 
studied by nuclear magnetic resonance". Antonie Van Leeuwenhoek. 82(1-4): p. 249-61, 
2002 

 [94]     A. R. NEVES, R. VENTURA, N. MANSOUR, C. SHEARMAN, M. J. 
GASSON, C. MAYCOCK, A. RAMOS and H. SANTOS, "Is the glycolytic flux in 
Lactococcus lactis primarily controlled by the redox charge? Kinetics of NAD(+) and 
NADH pools determined in vivo by 13C NMR". J Biol Chem. 277(31): p. 28088-98, 
2002 

 143



 [95]     A. R. NEVES, A. RAMOS, C. SHEARMAN, M. J. GASSON, J. S. ALMEIDA 
and H. SANTOS, "Metabolic characterization of Lactococcus lactis deficient in lactate 
dehydrogenase using in vivo 13C-NMR". Eur J Biochem. 267(12): p. 3859-68, 2000 

 [96]     A. R. NEVES, A. RAMOS, H. COSTA, S. VAN, II, J. HUGENHOLTZ, M. 
KLEEREBEZEM, W. DE VOS and H. SANTOS, "Effect of different NADH oxidase 
levels on glucose metabolism by Lactococcus lactis: kinetics of intracellular metabolite 
pools determined by in vivo nuclear magnetic resonance". Appl Environ Microbiol. 
68(12): p. 6332-42, 2002 

 [97]     A. RAMOS, A. R. NEVES, R. VENTURA, C. MAYCOCK, P. LOPEZ and H. 
SANTOS, "Effect of pyruvate kinase overproduction on glucose metabolism of 
Lactococcus lactis". Microbiology. 150(Pt 4): p. 1103-11, 2004 

 [98]     P. GASPAR, A. R. NEVES, A. RAMOS, M. J. GASSON, C. A. SHEARMAN 
and H. SANTOS, "Engineering Lactococcus lactis for production of mannitol: high 
yields from food-grade strains deficient in lactate dehydrogenase and the mannitol 
transport system". Appl Environ Microbiol. 70(3): p. 1466-74, 2004 

 [99]     P. H. BERG, E. O. VOIT and R. L. WHITE, "A pharmacodynamic model for the 
action of the antibiotic imipenem on Pseudomonas aeruginosa populations in vitro". Bull 
Math Biol. 58(5): p. 923-38, 1996 

 [100]     I.-C. CHOU and E. O. VOIT, "Recent developments in parameter estimation 
and structure identification of biochemical and genomic systems". 2009 (submitted) 

 [101]     A. ARKIN and J. ROSS, "Statistical construction of chemical-reaction 
mechanisms from measured time-series". J. Phys. Chem. 99(3): p. 970-979, 1995 

 [102]     A. S. TORRALBA, K. YU, P. SHEN, P. J. OEFNER and J. ROSS, 
"Experimental test of a method for determining causal connectivities of species in 
reactions". Proc. Natl. Acad. Sci. U S A. 100(4): p. 1494-1498, 2003 

 [103]     W. VANCE, A. ARKIN and J. ROSS, "Determination of causal connectivities 
of species in reaction networks". Proc. Natl. Acad. Sci. U S A. 99(9): p. 5816-5821, 2002 

 [104]     E. SONTAG, A. KIYATKIN and B. N. KHOLODENKO, "Inferring dynamic 
architecture of cellular networks using time series of gene expression, protein and 
metabolite data". Bioinformatics. 20(12): p. 1877-1886, 2004 

 144



 [105]     M. B. EISEN, P. T. SPELLMAN, P. O. BROWN and D. BOTSTEIN, "Cluster 
analysis and display of genome-wide expression patterns". Proc Natl Acad Sci U S A. 
95(25): p. 14863-8, 1998 

 [106]     K. SACHS, O. PEREZ, D. PE'ER, D. A. LAUFFENBURGER and G. P. 
NOLAN, "Causal protein-signaling networks derived from multiparameter single-cell 
data". Science. 308(5721): p. 523-529, 2005 

 [107]     E. J. CRAMPIN, P. E. MCSHARRY and S. SCHNELL, "Extracting 
biochemical reaction kinetics from time series data". Lecture Notes in Artificial 
Intelligence. Vol. 3214. 2004: Springer-Verlag. 329-336. 

 [108]     S. KIKUCHI, D. TOMINAGA, M. ARITA and M. TOMITA, "Pathway finding 
from given time-courses using genetic algorithm". Genome Informatics. 12: p. 304-305, 
2001 

 [109]     J. SRIVIDHYA, E. J. CRAMPIN, P. E. MCSHARRY and S. SCHNELL, 
"Reconstructing biochemical pathways from time course data". Proteomics. 7(6): p. 828-
838, 2007 

 [110]     S. EVEN, N. D. LINDLEY and M. COCAIGN-BOUSQUET, "Molecular 
physiology of sugar catabolism in Lactococcus lactis IL1403". J Bacteriol. 183(13): p. 
3817-24, 2001 

 [111]     M. H. HOEFNAGEL, A. VAN DER BURGT, D. E. MARTENS, J. 
HUGENHOLTZ and J. L. SNOEP, "Time dependent responses of glycolytic 
intermediates in a detailed glycolytic model of Lactococcus lactis during glucose run-out 
experiments". Mol Biol Rep. 29(1-2): p. 157-61, 2002 

 [112]     B. TEUSINK, J. PASSARGE, C. A. REIJENGA, E. ESGALHADO, C. C. 
VAN DER WEIJDEN, M. SCHEPPER, M. C. WALSH, B. M. BAKKER, K. VAN 
DAM, H. V. WESTERHOFF and J. L. SNOEP, "Can yeast glycolysis be understood in 
terms of in vitro kinetics of the constituent enzymes? Testing biochemistry". Eur J 
Biochem. 267(17): p. 5313-29, 2000 

 [113]     W. I. WU, V. M. MCDONOUGH, N. J. T. JR., L. KO, F. A.S., T. R. VLAES, 
A. H. J. MERRILL and G. M. DARMAN, "Regulation of lipid biosynthesis in 
Saccharmomyces cerevisiae by fumonisin B1". J. Biol. Chem. 270(22): p. 13171-13178, 
1995 

 145



 [114]     K. PESKOV, I. GORYANIN, AND O. DEMIN,, "Kinetic model of 
phosphofructokinase-1 from Escherichia coli.". Journal of Bioinformatics and 
Computational Biology,. 6(4): p. 843-867, 2008 

 [115]     J. HOFMEYR, J. ROHWER, AND J.L. SNOEP,. "Concepts in Computational 
Systems Biology: Structural Analysis, Kinetics, Control and Regulation of Cellular 
Systems.".  2007; Available from: http://www.jjj.sun.ac.za/minicourse/). 

 [116]     R. CASTRO, A. R. NEVES, L. L. FONSECA, W. A. POOL, J. KOK, O. P. 
KUIPERS and H. SANTOS, "Characterization of the individual glucose uptake systems 
of Lactococcus lactis: mannose-PTS, cellobiose-PTS and the novel GlcU permease". Mol 
Microbiol. 71(3): p. 795-806, 2009 

 [117]     A. J. HANEKOM, Generic kinetic equations for modelling multisubstrate 
reactions in compuatational systems biology. 2006: University of Stellenbosch. 114. 

 [118]     F. SHIRAISHI, Y. HATOH and T. IRIE, "An efficient method for calculation of 
dynamic logarithmic gains in biochemical systems theory". J Theor Biol. 234(1): p. 79-
85, 2005 

 [119]     J. H. SCHWACKE and E. O. VOIT, "Computation and analysis of time-
dependent sensitivities in Generalized Mass Action systems". J Theor Biol. 236(1): p. 21-
38, 2005 

 [120]     W. W. CHEN, B. SCHOEBERL, P. J. JASPER, M. NIEPEL, U. B. NIELSEN, 
D. A. LAUFFENBURGER and P. K. SORGER, "Input-output behavior of ErbB 
signaling pathways as revealed by a mass action model trained against dynamic data". 
Mol Syst Biol. 5: p. 239, 2009 

 [121]     A. MAHDAVI, R. E. DAVEY, P. BHOLA, T. YIN and P. W. ZANDSTRA, 
"Sensitivity analysis of intracellular signaling pathway kinetics predicts targets for stem 
cell fate control". PLoS Comput Biol. 3(7): p. e130, 2007 
 
 

 146

http://www.jjj.sun.ac.za/minicourse/)

