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SUMMARY 

 

Chondroitin sulfate proteoglycans (CSPGs) are one major class of axon growth 

inhibitors that are upregulated and accumulated around the lesion site after spinal cord injury 

(SCI), and result in regenerative failure. To overcome CSPG-mediated inhibition, digestion 

of CSPGs with chondroitinase ABC (chABC) has been explored and it has shown promising 

results. chABC digests glycosaminoglycan chains on CSPGs and can thereby enhance axonal 

regeneration and promote functional recovery when delivered at the site of injury. However, 

chABC has a crucial limitation; it is thermally unstable and loses its enzymatic activity 

rapidly at 37 ºC. Therefore, it necessitates the use of repeated injections or local infusions 

with a pump for days to weeks to provide fresh chABC to retain its enzymatic activity. 

Maintaining these infusion systems is invasive and clinically problematic.  

In this dissertation, three studies are reported that demonstrate our strategy to 

overcome current limitations of using chABC and develop a delivery system for facilitating 

chABC treatment after SCI: First, we enhanced the thermostability of chABC by adding 

trehalose, a protein stabilizer, and developed a system for its sustained local delivery in vivo. 

Enzymatic activity was assayed by sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) and dimethylmethylene blue (DMMB), and conformational 

change of the enzyme was measured via circular dichroism (CD) with and without trehalose. 

When stabilized with trehalose, chABC remained enzymatically active at 37 ºC for up to 4 

weeks in vitro. We developed a lipid microtube-agarose hydrogel delivery system for a 

sustained release and showed that chABC released from the delivery system is still 

functionally active and slowly released over 2 weeks in vitro. Second, the hydrogel-
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microtube system was used to locally deliver chABC over two weeks at the lesion site 

following a dorsal over hemisection injury at T10. The scaffold consisting of hydrogel and 

chABC loaded lipid microtubes was implanted at the top of the lesion site immediately 

following injury. To determine effectiveness of topical delivery of thermostabilized chABC, 

animal groups treated with single injection or gel scaffold implantation of chABC and 

penicillinase (P‟ase) were included as controls. Two weeks after surgery, the functionality of 

released chABC and the cellular responses were examined by immunohistological analysis 

with 3B3, CS-56, GFAP and Wisteria floribunda agglutinin (WFA). The results 

demonstrated that thermostabilized chABC was successfully delivered slowly and locally 

without the need for an indwelling catheter by using the hydrogel-microtube delivery system 

in vivo. The results demonstrated that released chABC from the gel scaffold effectively 

digested CSPGs, and therefore, there were significant differences in CSPG digestion at the 

lesion site between groups treated with chABC loaded microtube-hydrogel scaffolds and 

controls. Third, a long term in vivo study (45 days) was conducted to examine axonal 

sprouting/regeneration and functional recovery with both a single treatment each of 

microtube loaded chABC or Neurotrophin-3 (NT-3), and a combination of them by using the 

hydrogel-microtube delivery system. Over the long term study period, the treated animals 

showed significant improvement in locomotor function and more sprouting of cholera toxin 

B subunit (CTB)-positive ascending dorsal column fibers and 5-HT serotonergic fibers 

around the lesion site.  

We demonstrated that this significant improvement of chABC thermostability 

facilitates the development of a minimally invasive method for sustained, local delivery of 

chABC that is potentially a useful and effective approach for treating SCI. In addition to that, 
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we demonstrated that combinatorial therapy with chABC and neurotrophic factors could 

provide a synergistic effect on axonal regrowth and functional recovery after SCI.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. STATEMENT OF PROBLEM 

Unlike in the peripheral nervous system (PNS) or embryonic nervous system, in the 

central nervous system (CNS) the severed axons fail to regrow through the lesion site, even 

though the spared neurons survive for years. 

There are approximately 255,000 people living with SCI in the United States and 

there are 12,000 new cases added each year. After injury to the central nervous system, the 

lesioned axons fail to re-grow and recover function (Schwab and Bartholdi, 1996). The 

extent of sensory and motor function loss after spinal cord injury (SCI) varies depending on 

the level of injury, and often results in permanent functional loss. Complete neurological 

recovery after SCI is experienced by less than 1% of patients. Since 2000, the most frequent 

category of spinal cord injury is incomplete tetraplegia (34.1%), followed by complete 

paraplegia (23.0%), complete tetraplegia (18.3%), and incomplete paraplegia (18.5%). The 

cost for treatment is up to $ 0.7 million per patient in the first year, and the lifetime cost is up 

to $ 3 million (National Spinal Cord Injury Statistical Center, 2008). The cellular and 

molecular mechanisms of the inflammation process, cell death, the mechanism of axon 

growth failure and receptor/targeting relationships are all active areas of research. While 

many groups are investigating a number of strategies to encourage axonal regeneration, a 

breakthrough clinical therapy has yet to be developed.   
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A challenge in the environment of the injured spinal cord is that the inhibitory 

molecules create a non-permissive environment for axonal regrowth and it results in a failure 

of axonal regeneration and complete functional recovery. chABC, which digests CS-GAGs 

on CSPGs, has shown promise as a therapeutic agent for SCI treatment (Yick et al., 2000; 

Krekoski et al., 2001; Bradbury et al., 2002) and CNS regeneration (Moon et al., 2001; Fox 

and Caterson, 2002; Pizzorusso et al., 2002). However there are crucial limitations and 

difficulties to be applied for clinical treatment; chABC is thermally very unstable and it loses 

its enzymatic activity quickly at body temperature. Therefore, multiple injection of chABC or 

mini-pump/catheter-mediated delivery system has been used to provide fresh chABC in vivo 

for long periods. However, these infusion systems are invasive and require much effort to 

maintain. In this study, an alternative strategy for chABC delivery in vivo is developed and 

tested alone or in combination with neurtophin-3 (NT-3) to enhance axonal regeneration after 

SCI.  

 

1.2. HYPOTHESIS 

 The central hypothesis of this dissertation is that the digestion of CSPG by 

chondroitinase ABC will promote axonal regeneration and functional recovery after SCI. The 

chABC digestion will remove the inhibitory effect of CSPGs limiting axonal regeneration 

after CNS injury and provide a permissive substrate for axonal outgrowth. We hypothesized 

that delivery of thermostabilized chABC using our slow and local delivery system will 

provide a sufficient amount of bioactive chABC to effectively digest CSPGs at the lesion site. 

Also, the delivery method will be more efficient than single injection of an equal amount of 

chABC to digest CSPGs, and it will enhance axonal sprouting/regeneration and induce 
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behavioral recovery. Therefore, our slow local delivery system could be an alternative 

method to current mini-pump/catheter delivery methods, which are invasive and infection-

prone because they are chronically implanted. We believe that a combination strategy of 

chABC and neurtophin-3 using the slow release delivery system will encourage even more 

axonal regeneration and functional recovery. 

It is important to achieve following design criteria to demonstrate our hypothesis: 1) 

thermostabilized chABC; 2) a delivery vehicle for slow release in a temporally controlled 

manner; and 3) a non-pump/single administration method in a spatially controlled manner. 

Strategies to solve these challenges are: 1) protein stabilizers; 2) lipid microtube and 

hydrogel mediated delivery system; and 3) a topical delivery model to the dorsal over 

hemisection injury.  
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1.3. OBJECTIVES 

 The overall purpose of the work described in this thesis is to develop an approach to 

successfully use chABC as a therapeutic agent. To overcome limitations of chABC treatment 

for SCI, it is necessary to improve thermostability of chABC and develop a delivery strategy 

for thermostabilized chABC in vivo. 

To meet this goal, the following objectives were set:  

1. To improve the thermal stability of chABC and develop a minimally invasive and 

slow delivery system. 

a. Determine ability of trehalose to improve thermostability of chABC in vitro.  

b. Develop a hydrogel and lipid microtube mediated delivery scaffold and 

evaluate functionality of post-released chABC in vitro. 

2. To supply thermostabilized chABC in vivo by implanting a hydrogel-lipid microtube 

delivery system with a topical delivery model and examine the functionality of 

released chABC and the cellular responses after SCI. 

a. Examine delivery efficiency of chABC by evaluating CSPG digestion two 

after implantation. 

3. To apply a combinatorial strategy using chABC and NT-3 to enhance therapeutic 

effects and examine axonal sprouting/regeneration and functional recovery after SCI.
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CHAPTER 2 

 

RELEVANT BACKGROUND 

 

Injuries trigger cellular and molecular signal cascades which upregulate inhibitors to 

axonal outgrowth and result in regenerative failure. Inhibition could be caused by myelin-

associated inhibitors, immune-response molecules, glial scars, inhibitory extracellular matrix 

(ECM) molecules, and the lack of trophic factors. One major class of growth inhibitors are 

chondroitin sulfate proteoglycans (CSPGs) that accumulate around lesion site after SCI.  

Studies have investigated CSPG-mediated inhibition to axonal regeneration. 

Chondroitinase ABC (chABC) digests glycosaminoglycan chains on CSPGs and can 

potentially overcome CSPG mediated inhibition and promote axonal sprouting/regeneration 

when delivered into lesion sites. However, chABC loses its enzymatic activity rapidly at 37 

ºC, necessitating the use of repeated injections or local infusions with a catheter and pump 

for days to weeks to digest the CSPGs being produced continuously. Maintaining these 

infusion systems is invasive and clinically problematic.  

To overcome the limitations of chABC therapy for clinical application, the following 

technical achievements must be met; stable bioactivity of chABC, a delivery system for 

sustained local delivery in vivo, and a non-pump/catheter administration. In this chapter, 

limitations that need to be overcome are described, and alternative methods and strategies to 

solve these challenges are discussed. 
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2.1 CELLULAR AND MOLECULAR RESPONSES AFTER SCI 

After injury to the central nervous system (CNS), the inflammation process is 

triggered, a series of cellular and molecular responses are cascaded and eventually glial scars 

are formed around the lesioned tissue (Fawcett and Asher, 1999). The failure of neurite 

regrowth and permanent functional loss result from these cellular events. To begin, 

macrophages and microglia, oligodendrocyte precursors, meningeal cells and astrocytes 

migrate into the lesion site. These cells produce inhibitory molecules, such as myelin-

associated glycoprotein (MAG), CSPGs and other proteoglycans, free radicals, nitric oxide, 

etc. The final form is a tightly interwoven glial scar formed around the lesioned site (Rudge 

and Silver, 1990). Macrophages from the bloodstream and microglia from the surrounding 

tissues are the first cells to arrive at the site, usually within a few hours after injury. They 

remove myelin debris, produce and release cytokines, recruit oligodendrocyte precursors and 

initiate reactive astrocytes. Inhibitory molecules are up-regulated and the injury site is 

exposed to non-permissive environment for axonal regeneration. Myelin-derived growth 

inhibitory proteins, such as NOGO, myelin associated glycoprotein (MAG), and 

oligodendrocyte-myelin glycoprotein (OMgp), contribute to the failure of optic nerve 

regeneration and spinal cord regeneration (Selles-Navarro et al., 2001). Oligodendrocyte 

precursors migrate from the surrounding tissue after 3-5 days and myelin debris contains 

myelin-associated inhibitory molecules: NOGO is present on the myelin surface and 

collapses the neuronal growth cone (Bandtlow et al., 1993); MAG is produced by and present 

in oligodendrocytes (Kastin and Pan, 2005); and OMgp is most recently identified and 

inhibits neurite outgrowth (Kottis et al., 2002).  
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If meningeal layers, which cover the CNS, are penetrated, meningeal cells migrate to 

cover the exposed area of CNS and form a barrier to axon regeneration. Astrocytes are the 

predominant and final structure of the astro-glial scar with ECM and ECM molecules. These 

cells divide in reactive form, slowly migrate into the injured area, fill the space caused by 

injury, and produce inhibitory molecules, such as chondroitin sulfate proteoglycans (CSPGs). 

This astro-glial scar acts as a barrier that prevents axons from passing through and inhibits 

axonal regeneration. CSPGs are over-expressed in extracellular matrix at the lesion site 

where reactive astrocytes are present, and ultimately form astro-glial scars that act as barriers 

to axonal outgrowth. CSPGs are generally accepted as potent inhibitory molecules of axon 

growth in the adult CNS. Therefore, recent studies focus on alleviating CSPG-mediated 

inhibition by delivering the enzyme chABC in vivo and to encourage axonal regeneration and 

functional recovery (Moon et al., 2001; Bradbury et al., 2002; Barritt et al., 2006).  

 

2.2 CSPG-MEDIATED INHIBITION AFTER SCI AND CURRENT TREATMENTS 

It is known that axons of the CNS cannot regenerate to form functional connections 

after injuries. However in the mid-1980s studies demonstrated that CNS neurons can 

regenerate their axons over long distances when a favorable environment is provided (So and 

Cho, 1989). Currently, many studies are investigating CSPG-mediated inhibition by 

removing the inhibitory nature of CSPGs through enzyme-mediated modification. These 

studies suggest that attenuating inhibitory effects of CSPG by chABC digestion enhances 

axonal growth and functional recovery. chABC is a bacterial lyase produced from the 

bactreum Proteus vulgaris that is able to digest CSPGs. The therapeutic significance of 

chABC has been demonstrated in studies that delivered this enzyme to enhance nerve 
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regeneration (Bradbury et al., 2002; Barritt et al., 2006). However there are several 

limitations to clinical treatment before implementation can occur. 

 

2.2.1 CHONDROTIN SULFATE PROTEOGLYCANS 

CSPGs consist of a core protein and glycosaminoglycan (GAG) chain that are 

covalently linked to form a brush-like structure (Fig. 2.1). The GAGs are linked to the core 

protein by a trisaccharide composed of two galactose and one xylose residue. GAG is made 

of repeating disaccharides containing either two modifier sugars, glucuronic acid (GlcNAc) 

or galactosamine (GalNAc) and an uronic acid (glucuronate or iduronate). These chondroitin 

sugars can have over 100 individual sugar molecules and each can be sulfated in various 

positions and quantities. Figure 2.2 shows that chondroitin sulfate glycosaminoglycans 

(CSPG) have structural diversity (e.g. chondroitin-4-sulfate (∆glcA-β1,3-4S-galNAc), 

chondroitin-6-sulfate (∆glcA-β1,3-6S-galNAc), chondroitin-2,6-sulfate (∆2S-glcA-β1,3-6S-

galNAc), dermatan-4-sulfate (∆iduA-α1,3-4S-galNAc), etc.) (Gilbert et al., 2005).  

CSPGs are upregulated after injury in the CNS and become a major contributor to the 

failure of axonal regeneration (Pindzola et al., 1993; McKeon et al., 1995; Fitch and Silver, 

1997; Asher et al., 2000; Asher et al., 2002; Jones et al., 2003; Tang et al., 2003). CSPGs 

also regulate neurons during development by defining barriers in CNS structures: 

perineuronal nets (PNNs) (Matthews et al., 2002) in the brain and spinal cord, the roof plate, 

a putative axon barrier, of the spinal cord and optic tectum (Snow et al., 1990a), and the 

hippocampus (Wilson and Snow, 2000). Studies have shown that neurite outgrowth is 

inhibited by CSPGs in vitro (Snow et al., 1990b; McKeon et al., 1991; Snow and Letourneau, 

1992; Condic et al., 1999; Hynds and Snow, 1999; Snow et al., 2001; Johnson et al., 2002) 
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and in vivo after injury of optic nerve (Selles-Navarro et al., 2001) or the dorsal root entry 

zone (Zhang et al., 2001). However, the precise contribution of different CSPGs to CSPG-

mediated inhibition in the CNS and the mechanism of cellular transduction of the inhibitory 

signal mediated by CSPGs are not clear. Because CSPGs have a significant structural 

diversity, the nature and profile of CSPG deposition patterns have been recently investigated 

(Jones et al., 2003; Properzi et al., 2005). Specific CSPGs are differentially over-expressed in 

astro-glial scar after injury and CSPGs have varying degrees of inhibition (Gilbert et al., 

2005).  

After spinal cord injury, glial scars present a physical barrier and also produce 

repulsive molecules such as CSPGs. This effect of CSPG-mediated inhibition can be 

attenuated by applying chABC, which is an enzyme degrading CS-GAG (Snow and 

Letourneau, 1992; Zuo et al., 1998; Krekoski et al., 2001). Therefore, enhanced axonal 

regeneration can be achieved by removing CSPGs or the GAG side chains of CSPGs with 

enzymes, such as chABC.  

 

2.2.2 CHONDROITINASE ABC  

chABC is one of a class chondroitinases and has a molecular weight of 120 to 145 

kDa as determined by gel filtration (100 k Da in the SDS-PAGE). It is produced from 

bacterium Proteus vulgarism and there is no mammalian equivalent (Ryan MJ, 1994). 

chABC cleaves chondroitin, chondroitin-4-sulfate (C-4-S), chondroitin-6-sulfate (C-6-S), 

dermatan sulfate (DS) and hyaluronan GAGs by β-elimination of 1,4-hexosaminidic bonds 

into disaccharides and tetrasaccharides, yielding protein enriched core molecules with a 

linkage of oligosaccharides (Oike et al., 1982). 
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Figure 2.1. Structure of chondroitin sulfate proteoglycan (CSPG). (A) versican, 

a large CSPG belonging to the lectican family and (B) decorin, a small CSPG 

of extracellular matrix.  

(Figure modified from http://web.virginia.edu/Heidi/chapter9/chp9.htm) 
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Figure 2.2. Schematic structure of various CSPGs and hyaluronan. Figure 

from Gilbert et al., 2005.  

 

 

The chABC is isolated from Proteus vulgaris contain two distinct eliminases, endolytic 

(chABC I) and exolytic (chABC II) lyases (Hamai et al., 1997). chABC is commercially 

available and the commonly used chondroitinase enzymes are provided by Seikagaku 

Corporation (Japan) as “chondroitinase ABC (chABC I + chABC II)” and “chondroitinase 

ABC, protease-free (chABC I)”. Usually the highly purified chABC, “chondroitinase ABC, 

protease-free”, has been used for in vivo study and is used in this study. 

chABC I is a 997 amino acid residue monomeric protein that degrades its substrates 

to tetrasaccharides and disaccharides. The complete crystal structure of chABC I has been 
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determined to contain three domains: the N terminal, central, and C terminal domains. The 

overall dimensions of chABC I is 115 Å × 70 Å × 55 Å and is folded into the three distinct 

domains (Huang et al., 2003). This structure shows overall similarity to other GAG lyases 

with additional domains on the N terminal. About 400 amino acid residues are in the C 

terminal domain also shows a homology to chondroitinase AC (cAC; two domain) (Fethiere 

et al., 1999) and bacterial hyaluronidases (Li et al., 2000). The role of this C-domain is not 

clear, however, one loop in this domain acts as a substrate-binding site. The N terminal 

domain consists of residues 25-234 and is the most flexible in chABC I compared to others. 

The N-domain has a common topology to other ligand-binding domains, particularly the 

carbohydrate-binding domains of xylanases and glucanases (Lo Conte et al., 2000).  The 

central domain (residues 235-617) contains 15 α-helices and is most likely the catalytic site. 

The α-helix domain shows very similar sequence identity to the catalytic domains of cAC 

and hyaluronidase. The active site of chABC I, as informed by superimposition with cAC 

structure, has been investigated (Prabhakar et al., 2005a; Prabhakar et al., 2005b). However, 

the active site has not been clearly defined and it is still unknown as to why chABC quickly 

loses its enzymatic function at body temperature. In addition, a strategy has not been 

developed to increase the enzymatic lifetime of chABC.  
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Figure 2.3. Ribbon drawing of chondroitinase ABC I (figure from 

(Huang et al., 2003)); the N-terminal (green), middle catalytic (blue) 

and C-terminal domain (yellow), from top to bottom.  
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chABC has the widest substrate specificity; therefore, it has been used widely, 

including as a therapeutic agent for SCI. Treatment with chABC has shown promising results 

with various CNS applications, such as regeneration of ascending sensory neurons and 

descending corticospinal tract axons in the spinal cord (Bradbury et al., 2002), sensory 

neurons in the dorsal root entry zone (Steinmetz et al., 2005), and retinal ganglian cell axons 

in the tectum (Tropea et al., 2003). Therefore, chABC offers a potential treatment strategy for 

neural injury.  

 

2.2.3 DELIVERY OF CHONDROITIANSE ABC FOR AXONAL REGENERATION 

AND LIMITATIONS 

chABC promotes axonal regeneration and functional recovery after CNS injury (Yick 

et al., 2000; Moon et al., 2001; Bradbury et al., 2002; Yick et al., 2003; Chau et al., 2004) 

and developmental disease (Pizzorusso et al., 2006). It promotes neurite sprouting in intact 

and injured spinal cords (Barritt et al., 2006). Most groups deliver chABC via intrathecal 

injection varying the infusion frequency from every other day to every other week, for time 

periods ranging from 2 weeks up to 6 weeks (Chau et al., 2004; Caggiano et al., 2005; Houle 

et al., 2006; Huang et al., 2006). Some groups inject chABC in combination with other 

therapeutic agents (Tropea et al., 2003) or with transplantation, such as that of E14 fetal 

spinal cords (Kim et al., 2006) or autologous peripheral nervous grafts (Houle et al., 2006), to 

obtain a synergistic effect.  

However, there are several limitations and difficulties to these methods. chABC is 

thermally very sensitive at body temperatures, so after 1 hour of incubation at 37 ºC it 

quickly loses 50% of its enzymatic activity (by Morgan-Elson reaction). It loses most of its 
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enzymatic function after a day. In addition, CSPGs are upregulated and accumulate in the 

extracellular matrix around the injured site up to at least 2 weeks after the primary injury. 

Therefore, most researchers continuously infuse chABC intrathecally through mini-

pumps/catheters to maintain a supply of fresh enzyme. Another limitation is the diffusion of 

chABC. Most of these deliveries are performed intrathecally with a catheter, so it is hard for 

chABC to diffuse into deep regions of the tissue. Because intrathecal delivery allows the 

drug to flow through intrathecal space, the drug washes away quickly and does not last a long 

time in the target area. Also, because of this drug diffusion, the concentration immediately 

dilutes to significantly low concentrations, so high concentrations (from 2U/ml to 1000U/ml) 

are needed to compensate. This is a problem for chABC. Because this enzyme is very 

expensive, it is costly to apply therapeutically in high concentrations. As we can see, there 

are several problems to overcome; specifically there is a compelling need to control chABC 

delivery both spatially and temporally.  

 

2.3 THERAPEUTIC STRATEGIES TO IMPROVE THERMAL STABILITY OF 

PROTEINS 

Thermal stabilization of protein has many practical applications in research and 

industry. Since chemical reactions are generally faster at higher temperatures, enzymes, 

which are stable at higher temperature, would yield a more efficient process (Schoemaker et 

al., 2003; Unsworth et al., 2007). Also in the laboratory, thermally stable proteins/enzymes 

are easier to store or handle. Many studies have been conducted to engineer thermostability 

of proteins and there are two general strategies for protein engineering to improve the 

thermal stability of proteins or enzymes (Bae et al., 2008): rational design and directed 
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evolution. Another strategy is to add cosolvents for modifying solvent environment (Cleland 

and Wang, 1990). 

 

2.3.1 PROTEIN ENGINEERING  

In rational design, precise changes on amino acid sequence are designed from 

detailed knowledge of the structure and function of the protein by using site-directed 

mutation (Chen, 1999; Eijsink et al., 2004). It is generally inexpensive and easy, however the 

detailed structure of a protein is often not available and even with the detailed information it 

is difficult to predict the effect of mutation on protein functions. The other strategy, directed 

evolution, involves generation of random mutations in the protein sequence, and does not 

require information as to how the structure is related to function (Kuchner and Arnold, 1997; 

Eijsink et al., 2005). This mimics natural evolution; random mutation is applied to a protein, 

selected to pick desirable variants, and further rounds of mutation and selection are applied. 

This directed evolution approach is hard to predict the results of stability and functionality, 

and it requires an effort to narrow down best candidate. Random or rational 

engineered/directed mutation is generated by screening a library of variants to produce a 

stable variant. Many mutations that result in the most stable variant would have been difficult 

to predict by rational design and the results of directed evolution are often better than rational 

results. However these two techniques are not mutually exclusive and recently researchers 

engineer proteins in combination of these methods to render desired changes (Eijsink et al., 

2004).  

Enzyme stability can be improved by rational design, directed evolution or in 

combination. Surface position is good candidate for optimizing protein stability (Martin et al., 



18 
 

2002). Surface or near-surface interactions are important for protein stability. However, very 

limited number of mutants can lead to an increase of stability and do not affect functionality. 

Random method has been used to generate mutation and it can lead high stability, but some 

of which are not easy to define rationally. Therefore, recently semi-rational method is 

frequently used. To apply for our case, chABC, several charged residues could be selected 

from the surface of the 3D structure (Prabhakar et al., 2005a; Prabhakar et al., 2005b), except 

active residues, and randomly mutate these residues and find optimized mutants. The stability 

of mutated chABC can be determined by 2D structure (circular dichroism) or 3D (X-ray 

crystal structure), and the functionality by enzymatic activity assays, such as, SDS-PAGE, 

western blotting, DMMB and HPLC method.  

 

2.3.2 USAGE OF COSOLVENTS IN AQUEOUS SYSTEM 

The other approach to stabilize protein is through addition of cosolvents. Cosolvents 

can be broadly categorized into the following: sugars and polyols (sugar alcohol), amino acid, 

amines, salts, polymers and surfactants. The level of stabilization by different cosolvents 

varies for particular proteins. Therefore, a cosolvent that stabilizes one protein/enzyme may 

not stabilize another (Hatti-Kaul and Mattiasson). Sugars (Carninci et al., 1998) and polyols 

(Xie and Timasheff, 1997a) are the more commonly used nonspecific protein stabilizers. 

Amino acids are also commonly used as stabilizer or osmolytes (Taneja and Ahmad, 1994; 

Remmele et al., 1998). The cosolvent may affect both the structural stability and activity of 

protein. Sugars and polyols always have been shown to enhance the thermal stability of 

proteins, but some amino acids have been found to destabilize the protein. The effects of salts 

also depend on pH of the medium and their chemical nature (Rishi et al., 1998). Therefore, 
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sugar or polyol are safe candidates as cosolvents. Often higher concentration of protein 

increases its own stability, however high concentration could lead a chance of protein 

aggregation. Surfactant is often used to reduce protein aggregation or protein surface 

adsorption, however the concentration of surfactants need to be carefully decide to avoid side 

effects (Faustino et al., 2009).  

 

2.3.2.1 TREHALOSE AS A PROTEIN STABILIZER 

Among various cosolvents, trehalose shows an exceptional improvement of thermal 

stability of protein (Kaushik and Bhat, 2003). Trehalose accumulates dramatically during 

heat shock and stationary phase in many organisms, then enhances thermo-tolerance and 

reduces aggregation of denatured proteins. Therefore, trehalose is a good candidate as a 

stabilizer for chABC. It has not been found in mammals, however this improves the tolerance 

of mammalian cells to desiccation and cryopreservation in vitro. This approach would be 

more convenient than the engineering protein.  

Trehalose is found in nature as a disaccharide, two α-D-glucose molecules with the 

alpha bond in a 1α→1 glycosidic linkage (α-D-glucopyranosyl(1→1)-α-D-glucopyranoside). 

It is commonly used as a sweetener in food and as a cryopreservation additive. It is also 

known as an exceptional protein stabilizer, providing protection to biological materials 

during dehydration and desiccation (Sampedro et al., 1998). It promotes survival under 

extreme heat by stabilizing proteins in order to retain their conformation and suppresses the 

aggregation of denatured proteins (Singer and Lindquist, 1998). Further, trehalose stabilizes 

labile proteins during lyophilization (Zhang et al., 2009), protects enzymatic activity, such as 
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with RNase A, lysozyme, cytochromes during exposure to high temperatures in solution, and 

in a freeze-dried state (Kaushik and Bhat, 2003).  

 

 

Figure 2.4. Structure of trehalose. 

 

2.3.2.2 THE POSSIBLE MECHANISMS OF TREHALOSE STABILIZATION OF 

CHABC 

As described previously, trehalose has unique properties with exceptional ability to 

protect biological materials under extreme conditions (Cottone et al., 2005; Hedoux et al., 

2006).  Many studies have been conducted to understand the mechanism of trehalose and 

possible mechanisms have been proposed, however the molecular mechanism of trehalose 

stabilization is poorly understood (Hedoux et al., 2009).  There are several hypotheses to 

explain the mechanism of trehalose efficiency: 1) water replacement model (Crowe et al., 

1984), 2) preferential hydration hypothesis (Arakawa and Timasheff, 1983), 3) vitrification 

of solutions (Green et al., 1989) and 4) the influence on the water tetrahedral hydrogen-bond 

network (Branca et al., 1999). However, the molecular mechanism probably depends on the 

nature of applied stresses.  
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The preferential interaction theory was proposed by Arakawa and Timasheff in 1983. 

They observed that bovine serum albumin and lysozyme were preferentially hydrated in 

amino acids. Preferential interaction is also stated as preferential binding of the cosolvent or 

preferential exclusion (preferential hydration). The cosolvent chemical potential perturbation 

by the protein is the driving force of preferential interaction, which causes change of the 

amount of water in contact with protein (Timasheff, 2002). Studies showed that trehalose 

stabilizes the folded structure of proteins in solution due to greater preferential hydration of 

the unfolded state compared to the native state (Xie and Timasheff, 1997b). Therefore, the 

mechanism seems to be opposite from the stabilization mechanism in the dried state, which is 

water replacement. Sugars generally protect proteins from dehydration by preventing the 

decrease of spacing through hydrogen bonding to the dried protein surface, serving as a water 

substitute (Carpenter et al., 1993). Like this, the mechanism of stabilization can be different 

under different applied stress conditions.   

The primary mechanism by which trehalose is likely to affect the stability of the 

proteins is by increasing the surface tension of water around the proteins due to hydrogen 

bond formation between the hydroxyl groups of trehalose and water. In solution, trehalose 

stabilizes RNase A by increasing the surface tension of the trehalose solution, leading to the 

preferential hydration of the protein (Xie and Timasheff, 1997a). Surface tension of trehalose 

solutions increases linearly with increasing trehalose concentration (Kita et al., 1994), and 

there is a strong correlation between surface tension and increase in Tm (Jai et al., 2003).  

Increasing solvent surface tension necessitates more energy to form a cavity in order to 

increase the surface area of proteins upon denaturation. In fact, other protein stabilizers, such 

as polyols and carboxylic salts (Kaushik and Bhat, 1999) show a correlation between surface 
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tension increase and enhanced protein thermal stability. Studies also have shown that the 

dynamic fluctuation of polar side chains at the solvent-protein interface is reduced in the 

presence of trehalose (Hedoux et al., 2009). The increased surface tension or the limited 

exposure of hydrophobic groups to the water molecules leads to preferential hydration, 

resulting in the stabilization of the tertiary structure of protein (Timasheff, 2002).  

 

2.3.3 PROTEIN STABILIZATION BY PEGYLATION  

PEGylation describes a process of covalent conjugation with polyethylene glycol 

(PEG) polymer chains to biological molecules. PEG (Figure 2.5) manufactured by 

polymerization of ethylene oxide with water, ethylene glycol or ethylene glycol oligomers 

and various molecular weights of PEG can be prepared by modulation of the polymerization 

reaction. In 1970s, Aluchowski et al. studied a pioneering method of PEG conjugation 

(Abuchowski et al., 1977). In the study, methoxypolyethylene glycol was covalently attached 

to bovine serum albumin and it lost its immunogenicity and the potential of PEG conjugation. 

After this successful study, a number of studies followed and PEG has been applied to 

several biological therapies and success have been achieved in parallel with improvements of 

the PEG properties (Veronese and Mero, 2008). PEG is a biologically favorable molecule, a 

non-toxic and non-immunogenic molecules approved by the US FDA for internal use. 

PEGylation has been well established in the clinic and there are many PEGylated 

pharmaceuticals on the market, such as Pegasys (PEGylated interferon alpha), Oncaspar 

(PEGyleated L-asparaginase), Neulasta (PEGylated granulocyte colony-stimulating factor), 

Doxil/Caelyx (PEGylated liposome containing doxorubicin), etc (Veronese and Mero, 2008).  
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Figure 2.5 Poly(ethylene glycol) 

Proteins/enzymes are delicate molecules and easily denatured or deactivated.  

PEGylation is can be applied to these therapeutic agents to modify or improve their stability, 

degradation by proteases or immunogenicity, and degree of renal excertion. The covalently 

attached PEG chains change the physical and chemical properties of the agents. Several PEG 

chains are attached on the surface of agents and result in increasing the molecular weight and 

creating water cloud surrounding the PEGylated agents by hydrogen bond formation between 

ether-oxygen in PEG (Figure 2.6). The modification improves pharmacokinetics of drugs: 

shielding the PEGylated agents from the host‟s immune system reduces immunogenicity and 

antigenicity and increases stability. It also provides high solubility in both aqueous and 

organic solvent, high mobility in solution, high hydration increasing hydrodynamic size in 

solution, and increases of the retention time in blood (Israelachvili, 1997). Due to the 

pharmacokinetic benefits of PEGylation, therapeutic proteins, peptides and antibody 

fragments have been PEGylated for several drug delivery applications (Harris and Chess, 

2003). 
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Figure 2.6 Schematic of PEGylated protein. The circles represent the 

water cloud recruited by the ether-oxygen groups of the PEG polymer.  

Figure from Veronese and Mero, 2008. 

Hydroxyl group of the PEG terminal can react with the various protein amino acid 

residues. Since amino groups are present in every protein, generally at the surface and 

exposed to the solvent, it is the most exploited residue for PEGylation by alkylation or 

acylation. Amino group modification can negatively affect surface properties of the protein 

and in some cases the modification decreases enzymatic/biological activity (Banci et al., 

1990; Greenwald et al., 2003). Modifying cysteine thiol residue by formation of thio-ethers 

or disulfides allows site-specific conjugation. Generally cysteine residues are involved in 

catalysis or disulfide bridges, so available free cysteine residues are rarely present. Therefore, 

sometimes this residue is genetically introduced in a desirable position for convenient 

applications (Kopchick et al., 2002). Disulfide-linked PEG conjugation can be a reversible 

modification and it allows a releasable PEGylation under mild reducing conditions 

(Woghiren et al., 1993). Similarly customized triggering moiety by enzymatic reaction, 

hydrolysis, or linker self-immolation cleaves the link and releases PEGylation, regenerating 

native agents and preserving its bioactivity. Recent reports demonstrate that the customized 

linkers of cytokines, peptide hormones, enzymes or receptor proteins are released under 
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physiological conditions and at specific and therapeutically useful rates (Filpula and Zhao, 

2008).  

Other amino acid residues, such as arginine (Veronese and Mero, 2008), glutamine, 

the alcohol group of serine and threonine, and the phenolic group of tyrosine (Orsatti and 

Veronese, 1999) are usable sites for PEG conjugation. For glutamine residue conjugation, the 

enzyme, transglutaminase, is used because there is no chemical method (Sato et al., 1996) 

and this glutamine-PEGylation is very specific (Fontana et al., 2008). However, because of a 

lack of specificity (arginine) and harsh reaction conditions (serine and theronine) other 

methods still need to be improved for therapeutic applications.   

Since covalent binding is involved in PEGylation, and several PEG chains are usually 

linked on the surface, the size and conformation of the agents are changed. Also, there is a 

possibility that conjugated PEG polymers can block the binding sites and active sites 

resulting in loss or damage of the agent‟s bioactivity. Therefore, the mass, number of chains 

and link positions need to be investigated for each case to maintain its bioactivity. To avoid 

these complications, genetically engineered proteins can be used: a genetic variant of amino 

acids is inserted at a site far from biologically active site and used for a residue to PEG 

conjugation (Kopchick et al., 2002).  

PEGylation has many advantages and some disadvantages to be used as a protein 

stabilizer. In our case with chABC, it would not be an ideal method for several reasons. 

Linked PEG chains can mask catalytic site of chABC, however exact positions of the site are 

still not clear and the mechanism of deactivation of chABC enzymatic activity is also 

unknown. Therefore, it is not easy to design a relevant PEG polymer conjugation for chABC 

to thermostabilize its enzymatic activity. Additionally, chABC is a relatively large molecule 
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and the increased size of chABC with PEGylation will result in limited diffusion through the 

nerve tissue. Therefore, we decided to use cosolvent in this study. 

 

2.4 THERAPEUTIC STRATEGIES FOR CONTROLLED RELEASE OF AGENTS BY 

DELIVERY CARRIERS 

The formulation of macromolecular agents, such as proteins, enzymes, and DNA in 

drug delivery systems is widely investigated due to the increased needs as therapeutics. 

Various carriers have been used for the efficient delivery of agents for different therapeutic 

purposes. For slow and local delivery of chABC after SCI, it is important to control 

temporally and spatially the amount of protein delivered over a period of time. Also, the 

delivery vehicle is able to maintain bioactivity of the agents over the period of time. The 

implanted vehicle itself and by-product of degraded vehicle should not induce significantly 

increase of inflammation response or aggravation of immune responses. Currently major 

delivery method of chABC for clinical and in vivo application to treat SCI is intrathecal 

injection through the implanted catheter with mini-pump or syringe (Bradbury et al., 2002; 

Barritt et al., 2006). This delivery system consists of two parts: 1) an infusion pump or an 

external catheter end implanted under the skin on the back of the animal, and 2) catheter 

inserted in the lesion site. However the internal catheter end is chronically implanted, and 

human cases have reported that intrathecal catheter-tip causes inflammatory mass (Peng and 

Massicotte, 2004), and surgical site infection (Burgher et al., 2007). Also an insoluble gelatin 

sponge and gelfoam containing chABC was used to treat SCI (Yick et al., 2003). In this 

study, we investigated a carrier-based drug delivery. 
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2.4.1 POLYMER NANOPARTICLE 

Various delivery vehicles are used to deliver drugs into the CNS and PNS, such as 

liposomes, polymer nanoparticles and lipid microtubules. In order to locally deliver drugs for 

spinal cord treatment, PLGA nanoparticles and lipid microtubules could be considered for 

sustained delivery. Our laboratory has used both vehicles for in vivo sustained drug delivery. 

PLGA is a biocompatible and biodegradable polymer and is approved by US Food and Drug 

Administration for human use. PLGA nanoparticle have been used for sustain release of 

encapsulated agents (Shive and Anderson, 1997). The double emulsion method is used to 

make PLGA nanoparticles and is simple and takes a relatively short time, a total of 3 days. 

Additionally, it is easy to store in nanoparticle powder form at -80 ºC after lyophilizing. 

However during the double emulsion procedure, the releasing agent, such as protein, can be 

exposed to organic solvents (ex. Dichloromethane) and high temperatures. Without co-

encapsulation of acid-neutralizing base, the pH is predominantly below pH 5.8 (detection 

limit in this paper) (Li et al., 2005). Therefore proteins undergo physical denaturation and 

chemical degradation during fabrication (Sah et al., 1999; Kim et al., 1999) and 

unpredictable release profiles often occur, such as a burst effect or incomplete release (Kim 

et al., 1999). Only a few proteins have shown the ability of controlled delivery from PLGA 

spheres (Kim et al., 2005).  

 

2.4.2 LIPID MICROTUBES 

Lipid microtubes are also capable of the slow release of protein or bio-agents for in 

vivo application. It spontaneously forms hollow and open-ended cylinders (Schnur, 1993) 

with 0.5 µm of the average inner diameter and the lengths of the cylinders depend on the 
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cooling rate (Thomas et al., 1995; Meilander et al., 2001). Microtubes have a high aspect 

ratio and it allows for a large storage volume and they are stable in physiological medium at 

37 ºC (Spargo et al., 1995) for prolonged a period of time. The fabrication process takes a 

relatively long time, a total of 15 days, and microtubes need to be prepared freshly. However, 

there is no toxic procedure for proteins, which could cause denaturation or degradation, 

during the fabrication process. Microtubes show a stable and continuous release profile and 

could be used as sustained delivery vehicles for proteins, such as neurotrophic factors (Jain et 

al., 2006), and even nucleic acids (Meilander et al., 2003). It is also easy to combine with 

hydrogels to support a scaffold for in vivo application and non-inflammatory (Rudolph et al., 

1992; Meilander et al., 2001). Lipid microtubes are injectable either by themselves, or when 

embedded in thermo-reversible hydrogels as reported in Jain et al. (2006) for localization. 

The study showed that an agarose hydrogel scaffold embedded by BDNF loading lipid 

microtubes was implanted into a spinal cord cavity and led to the reduction of the 

inflammatory response and enhanced axonal infiltration into the scaffold.  

The molecules are released through the ends of microtubes, and a mathematical 

model of release profile of proteins has been developed previously in our laboratory 

(Meilander et al., 2004). The release of proteins can be predicted with the molecular weight 

and protein concentration. The slow release of agents can be modified by controlling the 

length of microtube, type of gel, and gel concentration for desire delivered amount of agent 

for different application.  
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2.5   PHARMACOLOGICAL STRATEGIES FOR SCI 

2.5.1 NEUROPROTECTIVE THERAPY TO TREAT ACUTE SCI 

 There are limited therapies for SCI and no effective treatment to reduce damage and 

to promote functional recovery (Martinon and Ibarra, 2008). Methylprednisolone (MP), 

which is a synthetic cortico-steroid and typically used for anti-inflammatory effect, has been 

used as a drug for acute SCI in humans for three decades with limited clinical support, and it 

is the only available drug for acute SCI in human. However it is based in large part on 

physiological hypotheses and its beneficial effect on the neurological recovery of patients has 

not been clearly proven (Hugenholtz, 2003). The effect of MP administration in patients with 

acute spinal cord injury was clinically examined by National Acute Spinal Cord Injury Study 

I, II and III (NASCIS) (Bracken et al., 1984; Bracken et al., 1985; Bracken et al., 1990; 

Bracken et al., 1992; Bracken et al., 1997; Bracken et al., 1998). In NASCIS II, a patient sub-

group received a 24 hour high-dose infusion of MP within 8 hours following acute SCI 

showed improved neurological recovery (Bracken et al., 1990). Therefore within 8 hours 

after injury and high-dose infusion (typically 30 mg/kg bolus injection and 5.4 mg/kg/h 

following injection over 23 hours) has been an implied standard for clinical treatment. The 

high-dose of MP causes several side effects, such as impaired lung capacity and the higher 

incidence of sepsis and pneumonia. Compelling evidence of its efficacy is not yet conclusive 

(Gerndt et al., 1997).   To minimize the side effects related to systemic delivery, localized 

delivery methods have been developed: previously, our group developed a sustained and 

local delivery method. MP was delivered on the top of the lesion site by agarose hydrogel 

delivery system embedded with biodegradable polymer nanoparticles and showed effective 

diffusion through the spinal nerve tissue and significantly reduced early inflammation 
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(Chvatal et al., 2008; Kim et al., 2009). However, still there is the confusion with MP utility 

for acute SCI and MP should be used with caution, particularly if infusion goes longer than 

24 hours. 

 A wide range of other pharmacological treatments have also been evaluated and in 

some cases have shown potential with promising results. Cyclooxygenase (COX) is an 

enzyme that is involved in prostanoids formation. Pharmacological COX inhibitor acts as an 

anti-inflammatory agent reducing inflammation and pain, and some selective (indomethacin; 

(Pantovic et al., 2005)) or non-selective (NS-398 to COX-2; (Hains et al., 2001)) COX 

inhibitors promoted neuroprotection. Immunophilins (IPs) are peptidyl-prolyl cis-trans 

isomerases and some IPs are receptor for immunosuppressive drugs such as cyclosporine A 

and FK506 (Sosa et al., 2005). Drugs inhibits the activity of calcineurin, which is a protein 

phosphatase and activates the T cells of the immune system, and the drug binding can 

promote neuroprotective effect and results in inducing neuroregeneration (Ibarra and Diaz-

Ruiz, 2006).   

Oxygen radical-induced lipid peroxidation (LP) plays an important detrimental role in 

acute CNS injury. Therefore, several therapeutic strategies have been applied to diminish its 

effects (Hall et al., 1992). As previously mentioned, MP has been used for human SCI and 

lazaroids, 21-aminosteroids, also show significant antioxidant effects without the same side 

effects of MP (Hall and Springer, 2004). Tirilazad, one of lazaroids, was also examined in 

the NACIS III and tirilazad treated patients showed slightly better neurological recovery, but 

not significantly higher than those treated with MP (Bracken et al., 1997). Therefore, there is 

a possibility for the use of tirilazad in humans bearing FDA approval.  
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Calpains are a family of calcium-dependent, non-lysosomal cysteine proteases. 

Hyperactivation of calpains follows traumatic brain injury or spinal cord injury due to Ca2+ 

influx and it leads irreversible cell damages such as breakdown of cytoskeleton and plasma 

membrane and damage of ion channels, cell adhesion molecules and surface receptors. 

Therefore, calpain can cause neural cell apoptosis after SCI (Ray et al., 2003). Highly 

specific inhibitor to calpain for therapeutic use has been investigated such as E-64-d (Zhang 

et al., 2003) and leupeptin (Momeni and Kanje, 2006), and these inhibitors demonstrated 

neuprotective ability in models of SCI. 

Besides those therapeutic strategies, there are a number of pharmacological therapy 

targets, such as apoptosis inhibitors, steroid hormone and soldium channel blockers, and 

NMDA and AMPA-Kainate receptor antagonists (Martinon and Ibarra, 2008).  

 

2.5.2 NERVE GROWTH FACTORS: NEW POSSIBLE THERAPEUTIC STRATEGY 

Several neurotrophic factors induce neuroprotection and promote axonal outgrowth 

and functional recovery in traumatic injuries to the CNS. Neurotrophic factors that play an 

important role in the survival, development and function of neurons,  include brain-derived 

neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin three (NT-3) and 

neurotrophin-4/5 (NT-4/5). They belong to a class of growth factors and secreted proteins. 

BDNF was originally found in the brain, but is also found in the peripheral nervous 

system. It helps to support the survival of existing neurons and encourages the regrowth and 

the differentiation of neurons and synapses (Waterhouse and Xu, 2009). Therefore, BDNF 

has been used for treatment after CNS injuries to improve motor and sensory neuronal 

survival and outgrowth (Schmidt and Leach, 2003).  
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NT-3 is in the NGF-family of neurotrophins and binds three receptors: the receptor 

tyrosine kinase neurotrophin receptors (TrkC and TrkB) and low affinity nerve growth factor 

receptor (LNGFR). It helps to support the survival and differentiation of existing neurons, 

and encourages the growth and differentiation of new neurons and synapses. NT-3 leads to 

branching and elaboration of sensory endings (Krimm et al., 2004), promotes nerve 

regeneration and sensory improvement (Sahenk et al., 2005) and acts as a survival factor for 

adult sensory neurons (Ljungberg et al., 1999). Since the sensory pathway runs along the 

dorsal column of spinal cord and a dorsal over hemisection was used in this study, NT-3 was 

chosen for delivery into spinal cord to encourage nerve survival and outgrowth after the 

injury.  

For axonal regeneration through the lesion site after SCI, a balance between a 

permissive and favorable environment for the axons in the lesioned area is important. 

Therefore, in this study, a more permissive environment was achieved by degrading the 

inhibitory molecules CSPGs with chABC, while an improvement of regeneration ability was 

achieved by the supporting neurotrophic factor, NT-3.  

 

2.6 CONCLUSIONS 

Many researchers have shown that strategies delivering chABC alone or in 

combination with other therapeutic agents give promising results after SCI, although there 

are some limitations and difficulties. Therefore, there is a need to develop an alternative 

method to control the release of chABC temporally and spatially in vivo. In this study, we 

improved the thermal stability of chABC and developed a sustained delivery scaffold for 

topical delivery model combining 1) the chABC improved thermal stability by introducing 
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trehalose; 2) a temporal control method using lipid microtubules for long-term and 

continuous slow release; and 3) a spatial control method utilizing agarose gel to fabricate a 

scaffold for local delivery to the lesion site via implantation. 

This chapter briefly summarizes the background to design and develop strategies for 

chABC or neurotrophic factor mediated treatment for SCI, as described above.   
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CHAPTER 3 

 

IMPROVEMENT OF THERMOSTABILITY OF CHONDROITINASE ABC 

ENZYMATIC ACTIVITY AND DEVELOPMENT OF LIPID MICROTUBE AND 

HYDROGEL MEDIATED DELIVERY SYSTEM  

(Partially published with R.J. McKeon and R.V. Bellamkonda, Proceedings of the National 

Academy of Sciences, 2009) 

 

Spinal cord injury (SCI) triggers cellular and molecular signal cascades which, 

amongst other things, induce growth cone inhibitors and result in regenerative failure. 

Chondroitin sulfate proteoglycans (CSPGs) are upregulated and accumulate around lesion 

sites after SCI and are major inhibitors of axonal regeneration. To overcome the inhibitory 

effect of CSPGs, modification or digestion of CSPGs has been explored. It has been reported 

that chondroitinase ABC (chABC) can digest glycosaminoglycan chains on CSPGs and 

enhance regeneration when delivered into lesion sites (Bradbury et al., 2002). However, 

chABC has a crucial limitation; it is thermally sensitive and at body temperature, 37ºC, its 

enzymatic activity is significantly attenuated within 72 hours (Tester et al., 2007). This 

necessitates the use of multiple or continuous infusions with a pump to maintain enzymatic 

functionality for periods as long as two weeks. However, maintaining these infusion systems 

is invasive and clinically problematic. Here, to overcome the current limitations, we report: 1) 

improvement of the thermal stability of chABC, and 2) development of a minimally invasive 

strategy for delivery of chABC in vivo over a period of 2 weeks or longer. By adding a 

protein stabilizer, trehalose, the thermostability of chABC was improved and chABC 
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maintained its enzymatic activity for 4 weeks. Enzymatic activity and conformational change 

were assayed by functional and structural tests such as dimethylmethylene blue staining of 

digested CSPGs, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and circular 

dichroism. A scaffold consisting of lipid microtubules and agarose gel was used for sustained 

and spatially controlled release of thermally stabilized chABC in vitro. chABC released from 

the gel-microtubule scaffold showed enzymatic activity for 2 weeks. These results have 

important implications for strategies that aim to digest CSPGs as a means of reducing growth 

cone inhibition after SCI.  

 

3.1 INTRODUCTION 

Physical damage to the adult central nervous system (CNS) often leads to permanent 

functional loss due to the inability of mature axons to regenerate. A major impediment to 

regeneration is the formation of astro-glial scar tissue at the lesion site along with a number 

of myelin associated inhibitory moieties. After injury to the CNS, an inflammation process is 

triggered that includes a cascade of cellular and molecular responses occurs and a glial scar is 

formed around the lesioned tissue (Fawcett and Asher, 1999). Macrophages, microglia, 

oligodendrocyte precursors, meningeal cells and astrocytes migrate into the lesion site and 

produce inhibitory molecules, such as myelin-associated glycoprotein (MAG), CSPGs, free 

radicals, nitric oxide, etc. The final „product‟ is a tightly interwoven glial scar formed around 

the lesioned site composed primarily of CSPGs and reactive astrocytes.  

chABC has been shown to promote axonal growth and functional recovery in a 

number of models including spinal cord injury (Bradbury et al., 2002) and monocular 

deprivation (Pizzorusso et al., 2006). It promotes axonal sprouting in both intact and injured 
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spinal cords (Barritt et al., 2006), perhaps via its action on perineural nets. Currently, chABC 

is typically delivered via intrathecal injection, with infusion frequency varying from every 

other day to every other week, and for time periods ranging from 2 weeks up to 6 weeks 

(Chau et al., 2004; Caggiano et al., 2005; Houle et al., 2006; Huang et al., 2006). Some 

groups inject chABC in combination with other therapeutic agents (Tropea et al., 2003) or in 

combination with cell transplantation, such as cells from E14 fetal spinal cords (Kim et al., 

2006) or autologous peripheral nerve grafts (Houle et al., 2006), to obtain a synergistic effect. 

However, there are several limitations to using chABC in vivo. ChABC is thermally 

sensitive at body temperature, and loses 50% of its enzymatic activity after 1 hour of 

incubation at 37 ºC (by Morgan-Elson reaction; Seikagaku, Japan). Most of its enzymatic 

function is lost within 3-5 days (Tester et al., 2007). Generally, CSPGs are upregulated and 

accumulate in the lesion site for at least 2 weeks after the primary injury. Therefore for 

chABC to remove CSPGs, it would need to be delivered for at least two weeks intrathecally 

through pumps to provide a „fresh‟ supply of enzyme. Another limitation is that the diffusion 

of chABC into deep regions of the cord is limited when delivered intrathecally. Because of 

this delivery method the drug flows through intrathecal space and washes away quickly, 

necessitating high concentrations (from 2U/ml to 1000U/ml) compensate. Therefore, there is 

a compelling need to control chABC delivery both spatially and temporally. 

To overcome these limitations, trehalose was introduced as a stabilizer to retain the 

enzymatic functionality of chABC. Trehalose is a superior stabilizer among sugars or polyols 

and trehalose could give a longer lifetime to chABC. The concentration of trehalose was 

decided after in vitro experiments with various concentrations of trehalose. Second, to 

develop a sustained and local delivery system for providing bioactive agents, an agarose 
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hydrogel and lipid microtube was used. With the agarose hydrogel and lipid microtube 

mediated delivery system, the release of the drug can be temporally and spatially controlled 

by the combination of the concentration or type of agarose gel and the length of the lipid 

microtube (Meilander et al., 2001). Agarose gel was used to construct an implantable 

delivery carrier in vivo embedded with either lipid microtubes (Jain et al., 2006) or polymer 

nanoparticles (Chvatal et al., 2008; Kim et al., 2009). This is referred to as the „hydrogel-

microtube delivery system‟. Using both trehalose and the hydrogel-microtube delivery 

system, a sustained and local release of chABC and neurotrophine three (NT-3) was achieved.  

In this study, we improved the thermal stability of chABC and developed agarose gel 

scaffolds for spatio-temporal controlled delivery. The in vitro experiments performed 

determined whether trehalose can be used as a protein stabilizer to improve the thermal 

stability of chABC, and ultimately increase the lifetime of enzymatic activity at body 

temperature. In addition, lipid microtubes and an agarose hydrogel were introduced to a 

develop delivery scaffold and subsequently examined as a drug delivery system for spatio-

temporally controlled release in vitro. Last, we showed an alternative approach that will 

allow us to apply chABC as a therapeutic agent in vivo, as described later in chapter 4 and 5. 

3.2 MATERIALS AND METHODS 

3.2.1 ENZYMATIC ACTIVITY ASSAY WITH SDS-PAGE 

Because of its exceptional ability to stabilize and maintain the enzymatic activity of a 

number of proteins, trehalose was used to stabilize chABC at body temperature (37 ºC) 

(Kaushik and Bhat, 2003). To determine the proper concentration of trehalose for stabilizing 

the enzymatic function of chABC, various concentrations of trehalose, from 20 mM to 1 M, 
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were tested for their ability to digest the GAG chains of a specific CSPG, decorin, which 

consists of a core protein and a CS-GAG chain. Various concentrations of trehalose (20, 50, 

100, 250, 500 mM and 1 M) were prepared in 1X phosphate buffered saline (PBS). chABC 

(2U/0.5ml; 250ng) was mixed with these trehalose concentrations and each mixture was 

incubated for 1, 2, 3 or 4 weeks in a 37 ºC water bath. After co-incubating for different time 

durations of trehalose and chABC at 37 ºC, 10 µl of decorin (5 µg) was added, incubated at 

37 ºC for 4 additional hours and the resultant products were analyzed with sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Penicillinase (P‟ase; 250 ng) was 

used as a control enzyme. 

When intact, decorin appears as a large molecular weight smear on an SDS-PAGE gel. 

A tighter and lower molecular weight decorin band after incubation with chABC would 

indicate preservation of chABC enzymatic activity. chABC without trehalose was used as a 

negative control and was incubated at 37 ºC for the same incubation durations, mixed with 

decorin, and incubated at 37 ºC for an additional 4 hours. After incubating, the mixtures were 

diluted 1:1 with Tris-SDS sample buffer containing 5% β-mercaptoethanol and were further 

incubated for 4 minutes at 95 ºC to denature the protein. The gel electrode assembly was 

placed in an electrophoresis chamber (BIORAD) and the chamber was filled with Tris 

running buffer. 20 µl of the prepared samples was loaded into each lane of SDS gradient gel 

(4% - 15%; BIORAD) and run at 200 volts for 1 hour.  

Silver staining was conducted to visualize separated proteins. Because the enzymatic 

thermostability of chABC depends on lot and time (Tester et al., 2007), all experiments in 

this study were performed with chABC from the same lot.  
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3.2.2 SILVER STAINING PROCEDURE 

After running on SDS-PAGE, the gel was fixed in a solution containing methanol, 

acetic acid, and water in a 45:5:50 ratio for 90 min and washed with water for 20 min twice. 

The gel was washed with 0.02 sodium thiosulfate (Na2S2O3·5H2O) for 3 min and with 

water for 30 sec twice, then washed with 0.1 % silver nitrate for 30 min and with water for 

30 sec. A developing solution containing 2.5 % sodium carbonate/ 0.02% formaldehyde was 

added. The gel was developed for 2-4 min and protein bands generally appeared within 30 

sec. The developing solution was removed before overdevelopment and a solution containing 

1 % acetic acid was added to quench the reaction. After rinsing with water, the gel was 

imaged on the BIORAD ChemiDoc XRS HQ in the epi-white mode.  

 

3.2.3 ENZYMATIC ACTIVITY ASSAY WITH DMMB 

To further characterize stability of chABC, a dimethylmethylene blue (DMMB) assay 

was used to quantify CS-GAGs that remained after digestion of decorin with chABC. Diluted 

chABC (40mU) in 1X PBS (200µl) was mixed with 1 M of trehalose and incubated at 37 ºC 

to subject it to thermal stress. 10 µl of incubated chABC solution was sampled for analysis 

on day 1, 3, 7 and 14. The sampled chABC/trehalose was then mixed with 10µg of decorin 

and incubated at 37 ºC for 10 minutes. Next, the DMMB reagent was added and absorbance 

was measured on a Microplate Reader (BIO-TEK Instruments, Inc.). The same concentration 

of chABC/trehalose without added decorin was measured as the background on the same 

plate and the measured background absorbance was subtracted from absorbance of the other 

samples. chABC in 1X PBS without trehalose was prepared to determine the degree to which 

the enzymatic activity of chABC is improved by adding trehalose. The absorbance of decorin 
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digested by fresh chABC was considered to represent 100% of enzymatic activity. The 

percentage of sample absorbance relative to this standard was calculated and a deactivation 

curve was plotted. The absorbance of trehalose in 1X PBS at the same concentration as above 

was measured to make sure that trehalose does not interfere DMMB results. 

 

3.2.4 FABRICATION OF LIPID MICROTUBES 

Hollow and open-ended lipid microtubes (Fig. 3.1.) were fabricated using 1,2-bis-

(triscosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC8,9PC, Avanti Polar Lipids, 

Alabaster, AL) as previously described (Meilander et al., 2001; Meilander et al., 2003). 

Briefly, the lipid was dissolved in 70% ethanol at a concentration of 1 mg/ml. The solution 

was slowly cooled from 55 ºC to 21 ºC, heated to 33 ºC and cooled again to 20 ºC by a 

programmed water bath (Thermo NESLAB, Portsmouth, NH) for 48 hours. During this 

cooling procedure, the microtubes self-assembled into hollow structures (Spargo et al., 1995; 

Meilander et al., 2001). The average length of microtube can be controlled by modifying the 

cooling process (Lando et al., 1990; Thomas et al., 1995). After 2 weeks of incubation at 

room temperature, 50 mM (18.9 mg/ml) of trehalose was added to the microtube solution, 

mixed gently and incubated overnight to support the stability of the lipid microtube structure. 

The microtube solution was centrifuged for 5 min at 3000 rpm, dried overnight in a 

biological hood for complete lyophilization. Microtubes were loaded with chABC, NT-3 or 

P‟ase in buffer, 1 M trehalose in 1X PBS, and incubated overnight at 4 ºC to allow for full 

rehydration. Microtubes were transferred to a new tube and extra buffer, 1 X PBS, was added 

to wash out left-over agents outside.  
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Figure 3.1. Micrograph of lipid microtubes formed from DC8,9PC lipid in 

bright field microscopy, scale bar is 50 µm. Figure from Meilander et al., 

2001.  

 

3.2.5 PREPARATION OF AGENT-LOADED LIPID MICROTUBES 

The loading concentration of the drug was calculated based on the loading efficiency. 

The loading efficiency was defined as the ratio of the entire internal volume of the 

microtubes to the volume of the drug solution added to lyophilized microtubes (Meilander et 

al., 2001). Figure 3.2 shows a histogram of the lengths of microtubes used in this study. The 

average length was about 37 µm (0.5 µm of inner diameter) and the total number of 

microtubes from 1 mg of lipid was approximately 1 × 10
8
. Therefore, the total inside volume 

of microtubes yielded from 1 mg of lipid was 0.75 µl. To increase the loading efficiency, we 

tried to increase the internal volume of lipid microtubes by using more lipid solution, 
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increasing the surface area of lyophilized microtubes for more efficient rehydrating with the 

solution of interest, and decreasing the loaded volume of solution of interest.  

 
Figure 3.2. Histogram of microtube length distribution. The average length 

is about 37 µm, total number of microtubes from 1 mg of lipid is 

approximately 1 × 10
8
 and total inside volume of microtubes from 1 mg of 

lipid is 0.75 µl.  

 

 

3.2.6 ENZYAMTIC ACTIVITY ASSAY OF POST-RELEASED CHONDROTINASE 

ABC FROM LIPID MICROTUBES/HYDROGEL-MICROTUBE DELIVERY 

SCAFFOLD 

SDS-PAGE was used to examine any potential adverse effects of the lipid microtubes 

on chABC as a carrier for sustained release, such as loss of enzymatic activity. The DMMB 
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assay was used to characterize the release profile of chABC from microtubes. After preparing 

microtubes loaded with chABC (~20 mU) and 1 M trehalose, the microtubes were co-

incubated with decorin (5 µg/200 µl). After 4 hours at 37 ºC, the co-incubated samples were 

centrifuged and the supernatant was analyzed by SDS-PAGE as described in the section 3.2.1.  

The enzymatic activity of released chABC from the hydrogel-microtube delivery 

system was characterized via DMMB assay. In order to physically maintain 

chABC/trehalose/microtubes in place in vivo, SeaPlaque® agarose (Cambrex), an agarose 

hydrogel, was dissolved in 1X PBS at a concentration of 1.2% (w/v) (Jain et al., 2006; Dodla 

and Bellamkonda, 2008). After it was cooled below 37 ºC, the gel was mixed with an equal 

volume of microtubes loaded with chABC/ 1M trehalose, placed in a 96-well plate, and 

gelled at 4 ºC. The final working concentration of the gel was 0.6% (w/v).  After the mixture 

gelled, 1X PBS was added above the mixture and incubated in a 37 ºC incubator for up to 2 

weeks. During this incubation, the supernatant was collected and replaced with fresh 1X PBS 

every other day. The collected supernatant was mixed with decorin, incubated at 37 ºC and 

analyzed with DMMB assay as described in the section 3.2.3. The same measurement was 

conducted with microtubes loaded with P‟ase (50 ng; same amount as chABC) and trehalose 

as an enzyme control.   

 

3.2.7 CHABC RELEASE PROFILES FROM LIPID MICROTUBES 

The delivered amount can be determined by calculating the loading efficiency, which 

is the ratio between the loaded volume of therapeutic agent and the entire internal volume of 

the microtubes. After the release profile of the agent loaded microtubes is measured in vitro, 

the daily delivered amount of agent in vivo can be predicted. Currently, there is no 
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commercially available kit for quantifying chABC levels or antibody to chABC, therefore, 

the release profile of chABC was determined via SDS-PAGE and silver staining. The 

samples of chABC released from the hydrogel-microtube mixture were prepared as described 

in section 3.2.6, and the amount of chABC was determined via SDS-PAGE as described in 

section 3.2.1 and silver staining as described in the section 3.2.2. Various different amounts 

of chABC were prepared as a standard and run on SDS-PAGE at the same time with the 

collected samples. Intensity measurements of the collected samples and chABC standards 

were detected using a Microplate Reader (BIO-TEK Instruments, Inc.). The amount of the 

released chABC was determined by the standard curve and the release profile was obtained. 

 

3.2.8 NT-3 RELEASE PROFILES FROM LIPID MICROTUBES 

NT-3 was loaded into lipid microtubes and the release profile of NT-3 was 

determined by using methods similar to those previously published (Jain et al., 2006). An 

NT-3 Sandwich ELISA Kit (Chemicon) was used to quantify the NT-3 release profile. NT-3 

(PeproTech Inc.) containing microtubes were mixed with SeaPlaque® agarose gel, placed in 

a 96-well plate, and cooled for gelation (30 ng per plate). The final working concentration of 

the gel was 0.6 % (w/v). During incubation in a 37 ºC incubator for 2 weeks, the supernatant 

was collected and replaced with fresh PBS every other day after sampling at day 1 and stored 

at -80 ºC.  The retrieved supernatants were pooled for the NT-3 ELISA and absorbance 

measurements of the samples were taken at 450 nm using a Microplate Reader (BIO-TEK 

Instruments, Inc.). The amount of the NT-3 was determined by the standard curve and the 

release profile was obtained. 
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3.2.9 ANALYSIS OF TEMPERATURE DEPENDENT CONFORMATION OF CHABC  

To investigate the potential of conformational changes contributing to the thermal 

destabilization of chABC, we conducted circular dichroism (CD) studies with and without 

trehalose stabilization. chABC was dissolved into 50 mM sodium phosphate (pH 7.4) and 

placed in 10 mm light path length quartz cells. Scans collected measurements from between 

195 and 300 nm with a 1nm bandwidth. For the denaturation curve, scans collected 

measurements from between 5 and 85 ºC at a wavelength of 222 nm with a scan rate of 2.5 

ºC/min. Four scans were averaged for each running condition. The transient temperatures 

between fresh chABC in buffer and chABC in trehalose solution were compared.  

 

3.3 RESULTS 

3.3.1 FUNCTIONAL STABILITY OF CHABC AT BODY TEMPERATURE (37 ºC) 

WITHOUT THERMAL STABILIZATION 

We investigated the enzymatic activity of unstabilized versus trehalose-stabilized 

chABC by evaluating its ability to digest the CSPG decorin followed by SDS-PAGE. 

Decorin, our model CSPG, has a simple molecular structure consisting of one chondroitin or 

dermatan sulfate GAG chain on its core protein. Intact decorin migrates as a larger molecular 

weight broad smear on an SDS-PAGE gel (Fig. 3.3, Lane 3). A tighter and lower molecular 

weight decorin band after digestion by chABC indicates preservation of chABC activity. 

When the CS-GAG chain of decorin was digested by chABC, the core protein migrates at 

~40-45 kDa (Fig. 3.3, Lane 1), and chABC alone migrates between 97 kDa and 116 kDa (Fig. 

3.3, Lane 4). chABC pre-incubated for 24 hours at 37 ºC retained its ability to degrade 

decorin (Fig. 3.3, Lane 2), but chABC lost the ability to completely degrade decorin GAG 
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chains after 1 week of pre-incubation at 37 º (Fig. 3.3, Lane 5). In contrast, following 

incubation with 1 M trehalose at 37 ºC for one week, chABC retained its ability to degrade 

decorin (Fig. 3.3, Lane 6). 

  

 

                                              1             2              3             4           5             6 

Figure 3.3. SDS-PAGE assay for chABC enzymatic activity after 1 

day pre-incubation and 1 week of pre-incubation at 37 ºC with and 

without trehalose. Lane 1: fresh chABC + decorin, Lane 2: 1 day pre-

incubated chABC + decorin, Lane 3: intact decorin, Lane 4: chABC, 

Lane 5: 1 week pre-incubated chABC + decorin, and Lane 6: 1 week 

pre-incubated chABC with trehalose + decorin. Thermostability of 

chABC was enhanced with trehalose and trehalose-chABC still 

retained the ability to digest decorin after 1 week incubation at body 

temperature. 

 

 

3.3.2 TREHALOSE SIGNIFICANTLY ENHANCES THERMOSTABILITY OF CHABC 

ENZYMATIC ACTIVITY 

To improve the thermal stability of chABC, trehalose was introduced as a protein 

stabilizer. To determine the proper concentration of trehalose, different concentrations of 

trehalose, from 20 mM to 1 M, were evaluated for their ability to preserve chABC enzymatic 

activity. Trehalose concentrations above 500 mM successfully preserve chABC enzyme 

activity after 2 weeks of incubation at 37 ºC (Fig. 3.4). 
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                                                         1             2             3             4              5             6 

 

Figure 3.4. chABC enzymatic activity assay with different 

concentrations of trehalose by SDS-PAGE. Each lane represents 1) 20 

mM, 2) 50 mM, 3) 100 mM, 4) 250 mM, 5) 500 mM and 6) 1M of 

trehalose-chABC with decorin after 2 weeks of pre-incubation at 37 ºC. 

 

 

 

                                                1              2            3            4                 5             6              7 

Figure 3.5. chABC enzymatic activity test after 4 weeks of pre-

incubation with and without trehalose at 37 ºC by SDS-PAGE. Lane 1: 

4 weeks pre-incubated chABC with trehalose + decorin, Lane 2: 4 

weeks pre-incubated chABC + decorin, Lane 3: fresh chABC + 

decorin, Lane 4: decorin, Lane 5: fresh chABC + decorin, Lane 6: 

fresh P‟ase + decorin, and Lane 7: fresh P‟ase (out of molecular 

weight range from gel; ~28 kDa). The trehalose-thermostabilized 

chABC still retained its activity to degrade CS-GAG of decorin after 4 

weeks of pre-incubation at body temperature and P‟ase had no effect 

on decorin CS-GAG. 
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To investigate whether trehalose can preserve chABC activity at 37 ºC for longer 

periods, 1M trehalose-chABC solutions were pre-incubated for 4 weeks at 37 ºC, and then 

added to decorin for digestion. In figure 3.5, Lane 1 demonstrates that after 4 weeks of pre-

incubation with 1 M trehalose, chABC digested decorin, and confirms the ability of trehalose 

to preserve chABC activity at 37 ºC. In comparison, after 4 weeks of incubation in PBS at 37 

ºC without trehalose, chABC lost its enzymatic activity (Fig. 3.5, Lane 2). Decorin incubated 

with fresh chABC (Fig. 3.5, Lane 3) and intact decorin (incubated for 4 hours at 37 ºC; Fig. 

3.5, Lane 4) were run as controls at the same time. P‟ase was used as a control enzyme, and 

when decorin was incubated with P‟ase at 37 ºC (Fig. 3.5, Lane 6), no decorin digestion was 

observed as expected. P‟ase was not shown (P‟ase alone; Fig. 3.5, Lane 7) because molecular 

weight of P‟ase (28 kDa) is out of range of this molecular standard weight. 

 

3.3.3 TEMPERATURE STABILIZATION OF CHABC BY TREHALOSE IS DUE TO 

CONFORMATIONAL STABILITY  

Deactivation profiles of chABC enzymatic activity with and without trehalose over 

time were evaluated with by the DMMB assay (Fig 3.6).  At every time point except day 1, 

there was a statistically significant difference between control and trehalose treated samples. 

The enzymatic activity of chABC was maintained up to day 15 with trehalose. In comparison 

however, without trehalose, chABC quickly lost its enzymatic activity after day 3 and was 

completely inactive by day 5. Based on this deactivation study, a kinetic deactivation 

constant kd was evaluated by assuming a two-state transition between native state (N), to 

unfolded state (D):  

N  D 
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dN/dt = − kbN;      N= N0exp(− kbt) 

where N0 represents initial N and the first-order kinetics was adapted (the dotted line in 

figure 3.6). The deactivation rate constant of chABC was computed to be 0.27 [day
-1

; 

R
2
=0.98]. The slope of the decline in chABC activity when it is thermostabilized by trehalose 

is gentle and not precipitous and the kinetic deactivation constant of trehalose-chABC was 

0.017 [day
-1

; R
2
=0.74]. 

To investigate whether increased thermal stability of chABC in the presence of 

trehalose is due to conformational stabilization of the enzyme, conformational changes in 

chABC as a function of temperature with and without trehalose were quantified by CD (Fig. 

3.7). Ellipticity change measured by CD is directly proportional to the change in 

concentration of native and unfolded forms; therefore CD has been applied to protein folding 

study. The thermodynamics of protein conformational stability can be described by following 

equations (Greenfield et al., 1999): 

K = α / (1− α)   (1) 

∆G = nRTlnK;  ∆G = ∆H − T∆S  (2) 

θobs = (a1-a2) α + a2  (3) 

where K is the equilibrium constant of folding, α is the friction folded, ∆G is the free energy 

of folding, R is the gas constant, T is temperature (Kelvin), ∆H is the enthalpy of folding and 

∆S is the entropy of folding. θobs represents the observed ellipticity, a1 is fully folded 

(maximum) θobs and a2 is fully native (minimum) θobs. Based on these equations, ∆H and the 

midpoint transition temperature, Tm, were calculated by fitting the best curve to θobs.   
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Figure 3.6. Kinetic analysis of chABC deactivation by DMMB assay. The 

X axis represents days and the Y axis represents percentage of digested 

decorin. Asterisks denote a significant difference from chABC in 1X PBS 

(P < 0.05) and data represent mean ± SEM. The dotted line represents the 

calculated deactivation curve of chABC in 1x PBS. Data are mean ± SEM. 

chABC in 1X PBS (×) loses most activity within 5 days, and in contrast, 

chABC in 1 M trehalose (Δ) retains its activity to degrade decorin CS-

GAG up to 15 days.  

 

 

 

Initial values of ∆H, Tm, a1 and a2 were estimated, and calculated θ was fitted to the θobs by 

curve fitting routine. The spectrum was measured at 222 nm and from 20 °C to 90 °C at the 

rate of 2.5 °C/min and 1 min of delay. The Tm, ∆Hm and ∆Sm of chABC in 1 M trehalose 

solution were 64.2 °C, 171 kJ∙mol
-1

 and 506 J K
-1

 mol
-1

 respectively, versus the Tm, ∆Hm and 

∆Sm of chABC dissolved in sodium phosphate buffer were 56.2 °C, 176 kJ∙mol
-1

 and 533 J 
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K
-1

 mol
-1

. Therefore, the increment in the midpoint of transition, ΔTm, between the two 

conditions is 8 °C, indicating that chABC‟s conformation is thermally more stable in the 

presence of 1 M trehalose.  

 

 

 

 

 
Figure 3.7. The normalized thermal denaturation curves (fraction unfolded) 

of chABC in pH 7.4 were measured by the changes of the absorbance at 

222nm. The dashed line represents chABC in 50 mM sodium phosphate 

buffer and the solid line represents chABC in 1M trehalose solution. Tm of 

chABC in 1 M trehalose solution was 64.2 °C and the Tm of chABC 

dissolved in buffer solution was 56.2 °C. Therefore, the increment in the 

midpoint of transition, ΔTm, between the two conditions is 8 °C and can be 

attributed to the presence of trehalose.   
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3.3.4 LIPID MICROTUBE ENCAPSULATED CHABC IS BIOLOGICALLY ACTIVE 

FOR 2 WEEKS 

To verify that self-assembled, hollow lipid microtubes (0.5 microns x 40 microns in 

dimensions) can be loaded with chABC without compromising its enzymatic activity, 

chABC released from fresh microtubes (without pre-incubation at 37 ºC) was tested with 

SDS-PAGE (Fig. 3.8B) for its ability to digest decorin. As indicated by the digested decorin 

band, microtube loading does not negatively impact chABC activity. 

After confirming that lipid microtubes can be used for chABC delivery, post-release 

activity of chABC or P‟ase from microtubes was plotted (Fig. 3.8A) as a function of time, 

and their relative enzymatic activity was measured by DMMB assay (Melrose and Ghosh, 

1988; de Jong et al., 1989). 100% of digested decorin on the Y-axis represents 1X PBS with 

no decorin. This release profile showed that, when combined with trehalose, chABC released 

from microtubes retained its enzymatic activity up to 15 days in vitro. As expected, the 

combination of the control enzyme P‟ase with trehalose did not digest of decorin.  
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                 (A)  

                  (B)                                       

Figure 3.8. Enzymatic activity of post-released chABC from lipid microtubes. 

(A) Quantification of the amount of CS-GAGs that remained after digestion of 

decorin with the released enzymes by DMMB assay. chABC (Δ) and P‟ase (×) 

with trehalose/microtubes. The Y-axis represents percentage of digested 

decorin and the X-axis represents time. All data points are significantly 

different (P < 0.05; mean ± SEM). (B) SDS-PAGE assay of chABC released 

from trehalose/microtube + decorin.  
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3.3.5. RELEASE PROFILE OF MICROTUBE ENCAPSULATED NT-3 CONFIRMS A 

SUSTAINED DELIVERY FOR 2 WEEK  

To characterize the release profile of NT-3, NT-3 released from microtubes was 

tested with NT-3 sandwich ELISA kit to measure released amount (Fig. 3.9).   

 

 

Figure 3.9. Release profile of NT-3 from the hydrogel-microtube delivery 

scaffold. 

 

3.4 DISCUSSION 

The purpose of this study was to develop an approach that allows the application of 

chABC as a therapeutic agent in vivo. chABC is one of the more promising therapeutic 

interventions for SCI, however, the thermal instability of chABC compromises its potential 

for in vivo application (Tester et al., 2007). In this study, we demonstrate that the enzymatic 

activity of chABC could be maintained at body temperature over time and that 

thermostabilized chABC delivered by a hydrogel-lipid microtube scaffold system over two 
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weeks remains enzymatically active in vitro. In this chapter, it is shown that this hydrogel-

microtube delivery scaffold has a potential to provide an alternative delivery method to 

chronically implanted, invasive pumps, which is minimally invasive and effectively delivers 

chABC in vivo. 

After 24 hour incubation at 37 ºC, the enzymatic activity of chABC, which is used in 

this study, was still preserved. However after 1 week of incubation at 37 ºC, a broaden 

decorin band appeared (Fig. 3.3, Lane 5), indicating that enzymatic activity was weakened 

leading to incomplete digestion of CS-GAGs on decorin even after sufficient reaction time. 

At body temperature chABC quickly loses most of its enzymatic activity within 5 days (the 

DMMB assay; Fig. 3.6; ×-dashed line) and the retained enzymatic activity is not enough to 

completely digest CS-GAG chains, though partial digestion is still possible (seen as a 

broaden band in SDS-PAGE assay; Fig. 3.3). chABC typically lost most of its enzymatic 

function within one week at body temperature, however the rate of enzymatic activity loss 

and the amount of enzymatic activity retained depend on several factors. The SDS-PAGE 

assay showed different retained activities of chABC from different lots. Other studies also 

showed that enzymatic thermostability of chABC depends on lot and time (Tester et al., 

2007). Large differences exist between lots, since function can be lost anywhere from 1 day 

to 2 weeks, so all experiments in this study were performed with chABC from the same lot. 

Biodegradable polymer nanoparticles also could be considered as a carrier for 

sustained delivery of chABC (Cohen et al., 1991; Genta et al., 2001; Kim and Burgess, 2002; 

Singh et al., 2009). Before using the lipid microtube, poly(lactic-co-glycolic acid) (PLGA) 

nanoparticles were examined as drug carriers for chABC in a preliminary.  The double 

emulsion method was used to make PLGA nanoparticles, and is simple, takes a relatively 
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short time and is easy to store in powder form at -80 ºC after lyophilizing comparing to the 

fabrication procedure of lipid microtubes.  After fabricating powder form of PLGA 

nanoparticle encapsulating chABC, the enzymatic activity of chABC released from the 

PLGA particles was characterized with the same assessment described in the section 3.2.1.  

However the mark band (Fig. 3.3, Lane 1) presenting core protein due to GAG chain 

digestion by chABC was not observed and a broad band of decorin, similar to the one in 

Lane 5 of figure 3.3, was seen in the gel.  chABC lost its enzymatic activity after the 

fabrication procedure of PLGA nanoparticles.  It is possible that proteins undergo physical 

denaturation and chemical degradation during fabrication. The acidification of the internal 

PLGA microenvironment and the water-in-oil-in-water (w/o/w) encapsulation procedure are 

considered major protein stresses inducing inactivation and aggregation (van de Weert et al., 

2000; Perez-Rodriguez et al., 2003; Estey et al., 2006).  During the double emulsion 

procedure, chABC is exposed to organic solvents, dichloromethane, and the pH of inside 

particles is predominantly below pH 5.8 (detection limit in this paper, Li and Schwendeman, 

2005).  

Our laboratory has previously reported the use of lipid microtubes for the slow 

delivery of a variety of proteins (Meilander et al., 2001), DNA (Meilander et al., 2003; Yu 

and Bellamkonda, 2003; Meilander-Lin et al., 2005) and neurotrophic factors (Yu and 

Bellamkonda, 2003; Jain et al., 2006) in vivo. Relative to other delivery systems such as 

polyester based PLGA nanoparticles, lipid microtubes have the advantage that there is no 

exposure to heat or organic solvents that might cause denaturation or degradation, during the 

fabrication process. As is evident from figure 3.8B, release from lipid microtubes does not 

adversely affect the enzymatic activity of chABC. In addition to that, lipid microtubes are 
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injectable either by themselves, or when embedded in thermo-reversible hydrogels as 

reported in Jain et al. (2006), Dodla et al. (2008) and Chvatal et al. (2008).  

Here, the lipid microtube-gel delivery system provides sustained delivery of 

thermostabilized chABC over a period of 2 weeks, with the microtubes enabling slow release 

while the hydrogel localizes the tubes to the lesion site. We have developed a mathematical 

model (Meilander et al., 2001), to predict the release profile of compounds with a range of 

molecular weights such as myoglobin (17.8 kDa), albumin (66.4 kDa) and thyroglobulin 

(660 kDa). These studies suggest that an initial burst release of protein from day 1 to day 3 is 

followed by a slow and continuous release, leading to a cumulative percentage of released 

agents of 80-100% by day 14.  Further, microtubes show a stable and continuous release 

profile with delivery of BDNF (Brain derived neurotrophic factor) (Jain et al., 2006), and 

NT-3 (neurotrophin-3) (Dodla and Bellamkonda, 2008).As the molecular weight of chABC 

(120 kDa) is within the protein molecular weight range previously tested, most of the chABC 

loaded into microtubes is likely released by day 14.   

In this study, we chose to stabilize chABC by adding trehalose since it is known as an 

exceptional stabilizer and widely used with proteins (Carninci et al., 1998; Kreilgaard et al., 

1998). The molecular mechanism of trehalose-mediated thermostabilization is still poorly 

understood (Hedoux et al., 2009). There are several hypotheses outlining the mechanisms of 

protein stabilization by trehalose – water replacement (Crowe et al., 1984), preferential 

hydration (Timasheff, 2002), vitrification of solutions (Green et al., 1989) and the influence 

of trehalose on the water tetrahedral hydrogen bond network (Branca et al., 1999). Previous 

works have shown that surface tension of trehalose solutions increases linearly with increase 

in trehalose concentration (Kita et al., 1994), and there is a strong correlation between 
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surface tension and increase in Tm (Kaushik and Bhat, 2003). Studies have shown that the 

dynamic fluctuation of polar side chains at the solvent-protein interface was reduced in the 

presence of trehalose (Hedoux et al., 2009). The increased surface tension or the limited 

exposure of hydrophobic groups to the water molecules leads to preferential hydration, 

resulting in the stabilization of the tertiary structure of protein (Timasheff, 2002). In this 

study, the Δ Tm of chABC (8 °C) with 1M trehalose addition is similar in range to its effects 

on other enzymes such as RNase A (5.5 °C) and lysozyme (8.4 °C) (Kaushik and Bhat, 2003), 

where increased conformational thermostabilization (increase of Tm) induces an increase in 

enzymatic activity. These enzymes also show an increase of ΔTm when concentration of 

trehalose increases, and it describes the observation that only high concentration (500 mM 

and 1 M) of trehalose preserved the enzymatic activity of chABC in this study. Therefore, 

trehalose‟s ability to thermally stabilize chABC is consistent with its effects on other 

enzymes. 

3.5 CONCLUSIONS 

In this study, improvement of thermostability of chABC enzymatic activity was 

attained by adding trehalose up to 4 weeks. We demonstrated that thermostabilized chABC 

can be slowly delivered by the lipid microtube-hydrogel delivery system and the released 

chABC retains its enzymatically activity over two weeks in vitro.  Therefore, these 

achievements of thermostabilization and development of the sustained delivery system 

provide an alternative and novel application for chABC treatment after SCI. 
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CHAPTER 4 

 

DELIVERY OF THERMOSTABILIZED CHABC BY IMPLANTING HYDROGEL-

MICROTUBE SCAFFOLDS AFTER SPINAL CORD INJURY AND EXAMINATION 

OF CELLULAR AND MOLECULAR RESPONSES: SHORT TERM STUDY  

(Partially as published with R.J. McKeon and R.V. Bellamkonda, Proceedings of the 

National Academy of Science, 2009 ) 

 

Chondroitin sulfate proteoglycans (CSPGs) are upregulated and accumulate around 

the lesion site after spinal cord injury (SCI), and are major inhibitors of regeneration. To 

overcome CSPG-mediated inhibition, modification or digestion of CSPGs with 

chondroitinase ABC (chABC) has been explored. chABC digests glycosaminoglycan (GAG) 

chains on CSPGs and enhances sprouting and regeneration when delivered to the lesion site. 

However, chABC has a crucial limitation; it is thermally unstable at body temperature (37ºC) 

and its enzymatic activity is significantly attenuated within 3 days. Therefore, multiple or 

continuous infusions with an indwelling catheter are necessary to maintain enzymatic 

functionality for periods of 2 weeks or longer and such devices are invasive and clinically 

problematic. To overcome these limitations, we enhanced the thermal stability of chABC by 

adding a protein stabilizer, trehalose, and demonstrated that chABC maintained its enzymatic 

activity for 4 weeks at 37 ºC in vitro. Also, we developed a delivery scaffold for chABC in 

vivo application in the temporally and spatially controlled manner. 

In this chapter, a dorsal over hemisection injury was made at thoracic vertebrae T10 

in adult rats, and thermally stabilized chABC was delivered to the lesion site by a minimally 
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invasive hydrogel-microtube scaffold carrying chABC-loaded lipid microtubules at the lesion 

site immediately following injury. To determine the effectiveness of topical delivery of 

thermostabilized chABC, animal groups treated with single injection or hydrogel scaffold 

implantation of chABC, chABC/trehalose and P‟ase were included as controls. Two weeks 

after surgery, the enzymatic functionality of released chABC in vivo was examined by CS-56, 

WFA and 3B3 immunostaining.   

The results demonstrated that thermally stabilized chABC was successfully delivered 

slowly and locally without a catheter/mini-pump and the released chABC effectively 

digested CSPGs in vivo and significant differences of CSPG digestion were observed in 3B3-

IR and CS-56-IR between groups. We suggest that chABC could be combined with other 

therapies or agents, such as neurotrophic factors to treat SCI. 

 

4.1 INTRODUCTION 

After injury, a series of cellular and molecular events occur, and results in the 

formation of astro-glial scar tissue consisting of interwoven reactive astrocytes and 

chondroitin sulfate proteoglycan (CSPGs). The CSPG-astroglial scar provides a non-

permissive environment for axon regeneration. Studies have shown that CSPGs are 

upregulated after injury in the CNS and neurite regrowth is inhibited by CSPGs (McKeon et 

al., 1995; Stichel et al., 1995; Lemons et al., 1999; Jones et al., 2002). It has been shown that 

growth cone stall or change growth orientation at the CSPG-rich region in vitro and in vivo. 

Therefore, it is important to remove or attenuate the inhibitory nature of CSPGs by 

modifying CSPGs and to encourage axons to regrow through the inhibitory regions around 

the lesion site. Therefore, chABC has been used to treat SCI, based on the concept that 
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removing or attenuating inhibitory activity of CSPGs could promote axonal regeneration. 

After promising results for axonal outgrowth were reported in vitro (Snow and Letourneau, 

1992; Zuo et al., 1998) and in vivo (Yick et al., 2000; Moon et al., 2001; Bradbury et al., 

2002; Yick et al., 2003; Chau et al., 2004; Caggiano et al., 2005; Barritt et al., 2006; Houle et 

al., 2006), it has received a lot of attention as a potential therapy for spinal cord injury.  

chABC shows the best enzymatic activity at 37 ºC and the optimum pH is near 8.0. 

At physiological conditions, body temperature 37 ºC and 7.4 pH, chABC should be suited for 

in vivo usage. However, as described in the previous chapters, there are crucial limitations 

when delivering chABC for SCI treatment, such as thermal stability of chABC and 

difficulties with spatio-temporal control. In general, CSPGs are upregulated and deposited 

around the lesion site for at least 2 weeks after the initial injury, and the CSPG-rich matrix 

surrounding the lesion site persists for up to 8 weeks following injury (Jones et al., 2003). 

Therefore, for chABC to degrade CSPG associated glycosaminoglycans (GAGs), a “fresh” 

supply would need to be delivered intrathecally for at least two weeks. Currently this is 

achieved via intrathecal injection, with the infusion frequency varying from days to weeks, 

and for time periods ranging from 2 to 6 weeks to compensate the rapid loss of enzymatic 

activity of chABC. A single administration of chABC containing gelfoam on lesion site of 

T11 hemisection promotes Clarke‟s nucleus neurons to regrow beyond the injury (Yick et al., 

2000; Yick et al., 2003). Multiple or continuous infusions were also administrated, using an 

osmotic mini-pump (Chau et al., 2004; Houle et al., 2006; Huang et al., 2006) and catheters 

with externalized cannulas (Moon et al., 2001; Bradbury et al., 2002; Caggiano et al., 2005; 

Barritt et al., 2006).   
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Diffusion of chABC into deep regions of the cord, however, is limited when delivered 

intrathecally due to overflow into the intrathecal space, thereby diluting the enzyme rapidly 

and necessitating concentrated infusions (from 2 U/ml to 1000 U/ml) to compensate. With 

the exception of catheters with externalized cnnulas, the efficiency of CSPG digestion is 

dependent on the enzyme‟s stability at body temperature.  Therefore, there is a compelling 

need to develop clinically viable methods for the spatially and temporally controlled delivery 

of „fresh‟ chABC, preferably in a manner confining it to the lesion site. We demonstrated an 

alternative method using trehalose-thermostabilized chABC and a hydrogel and lipid 

microtube based minimally invasive system to deliver chABC in a temporally and spatially 

controlled manner in vivo in chapter 3.  

Therefore, the study in chapter 4 was designed to investigate chABC‟s activity in vivo 

at the lesion site after SCI when delivered via our lipid microtube-hydrogel system and 

compare the CSPG digestion efficiency to a single injection of chABC. In this short term 

(two week) animal study, we locally delivered chABC to the lesion site by a topical delivery 

model and the dorsal over-hemisection injury was used. Thermostabilization of chABC and 

development of sustained delivery scaffold were achieved previously in the chapter 3. Two 

weeks after surgery, the animals were sacrificed, and the functionality of chABC released 

from the gel scaffold was examined. CS-56 and 3B3 immunostaining were used to examine 

the level of CSPGs and CSPG digestion by chABC‟s activity, and WFA was used to 

visualize perineuronal nets, which encapsulate synapses throughout the nervous system with 

CSPGs. 
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4.2 MATERIALS AND METHODS 

4.2.1 FABRICATION OF MICROTUBE-HYDROGEL SCAFFOLDS 

The fabrication procedure of the lipid microtube was previously published (Meilander 

et al., 2001; Meilander et al., 2003) and described in the Chapter 3, section 3.2.4. The 

hydrogel-microtube delivery scaffolds were fabricated by loading chABC/ 1M trehalose 

solution into the microtubes, and mixed with an equal amount of 2% (w/v) SeaPrep® agarose 

gel (Cambrex) in 1X PBS for 1% of final gel concentration. Before mixing SeaPrep agarose 

gel with the microtubes, the gel solution was filtered for sterilization and cooled to below 37 

ºC to avoid deactivation of chABC or P‟ase due to high temperature. After complete gelation 

at 4 ºC, each gel scaffold contained 10mU of chABC prior to being implanted in SCI animals, 

as described below, section 4.2.2. 

 

4.2.2 TOPICAL DELIVERY OF HYDROGEL-MICROTUBE SCAFFOLDS IN A 

DORSAL OVER HEMISECTION INJURY MODEL 

Adult male Spraque-Dawley rats (Charles River Laboratory) weighing between 

235~260 g were anesthetized with 2% of isoflurane and maintained during surgery with 0.5% 

of isoflurane. The surgical area was shaved and the skin and muscles were opened to expose 

the thoracic vertebrae T9-T11. A single laminectomy was performed on T10 to expose the 

spinal cord by removing the bone with a micro-rongeur and the dura mater was excised. 

Using micro-scissors marked at 1.5 mm depth from the tip, a controlled dorsal hemisection 

injury (2 mm of width x 1.5 mm of depth) was made by cutting the dorsal columns at T10. 

Sustained topical delivery of thermostabilized chABC (MTC; n=8) was achieved using 

methods previously published (Chvatal et al., 2008).  Briefly, the SeaPrep agarose hydrogel 
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embedded with lipid microtubes loaded with either chABC/1M trehalose or chABC alone 

was placed on top of the lesion site as shown schematically in figure 4.1. To stabilize the 

hydrogel embedded microtubes in place, a stiffer 0.7% of SeaKem agarose hydrogel solution 

was added on top. This denser gel was quickly gelled in situ by a stream of cooled air (Fig. 

4.2) as described in a previous study (Jain et al., 2006). After ensuring complete gelation, the 

muscles were sutured together and the skin was closed with wound clips. Figure 4.3 

demonstrates the topical delivery model applied into the spinal cord lesion site.   

Table 1 describes experimental and control groups. As controls, 10 mU of chABC in 

5 µL of 1X PBS (SC; n=6) or 1 M trehalose/1X PBS (STC; n=6) was injected as „single 

injection‟ conditions that have local, but not sustained delivery. 100 ng of P‟ase (Sigma) was 

delivered by single injection (STP; n=6) or hydrogel-microtube scaffold (MTP; n=6) with 

1M trehalose as a negative enzymatic delivery control for chABC specificity. Sham (Sham; 

n=4) and trehalose loaded hydrogel scaffold conditions (MT; n=6) were also conducted. To 

avoid differences in the tissue reaction caused by absence of SeaKem agarose gel, after a 

single injection of agents, a pre-made SeaKem block was placed on top of the lesion site. 

After two weeks, the animals were anesthetized with a ketamine-xylazine-acepromazine 

cocktail (1:0.17:0.37 ml/kg) and transcardially perfused with 4% paraformaldehyde. 
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Figure 4.1. Schematic of spinal cord injury model and delivery of enzyme to 

lesion site. The 1 % SeaPrep agarose gel-microtube-scaffold is implanted on 

top of the lesion and covered with stiffer 0.7% SeaKem agarose gel to keep 

the scaffold in place.   

 

 

Figure 4.2. Schematic of gel cooling system. Tubing runs from the nitrogen 

gas tank to a Styrofoam box containing 100% ethanol and dry ice, and runs 

through an aluminum rod inside a tube containing dry ice to keep the 

nitrogen gas cool. The cooled nitrogen gas was applied over the stiffer 

agarose gel solution for in situ gelation, which covers the top of the gel-

microtube delivery scaffold. Figure from Jain et al., 2006.  
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   C   

   C   

Figure 4.3. This figure demonstrates the topical delivery model applied into 

the spinal cord lesion site.  A) Exposed intact spinal cord at T10 level after a 

single laminectomy.  B) Dorsal over hemisection injury made with a single 

cut to the spinal cord column.  C) Gel scaffold, embedded with chABC loaded 

microtubes, implanted on top of the lesion site.  D) The implanted hydrogel-

microtube delivery scaffold was covered with stiffer agarose gel to stabilize 

its location on top of the lesion site. (R = rostral, C = caudal)   

 

R 

R 
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C D 
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Table 1. Experimental design of  2 week study with notation 

Notation of 

groups 
Components # of rats 

MTC 

Agarose gel scaffold embedded with 

microtubes loaded with chABC and 

trehalose 

8 

MT 
Agarose gel scaffold embedded with 

microtubes loaded with trehalose 
6 

STC Single injection of chABC with trehalose 8 

SC Single injection of chABC 6 

MTP 

Agarose gel scaffold embedded with 

microtubes loaded with penicillinase and 

trehalose 

6 

STP 
Single injection of penicillinase with 

trehalose 
6 

NoT Injury and no treatment 6 

Sham 
Conducted the same procedure except 

injury with other groups 
4 

M: lipid microtubes, S: single injection, T: trehalose, C: chABC and P: penicillinase 

 

  

4.2.3 TISSUE PREPARATION AND IMMUNOHISTOCHEMISTRY OF SPINAL 

CORDS 

At two weeks post-surgery, the animals were perfused transcardially with 1X PBS 

followed by 4% paraformaldehyde in 1X PBS. The T9-T11 spinal cord was removed, post-

fixed in 4% paraformaldehyde and placed in 30% sucrose at 4 ºC until it sank to the bottom. 

Tissues were frozen in OCT and sagittal sections were cut with a cryostat (HM 560MV 

Cryostat) at 14 µm thickness. All sections were mounted in serial order onto charged 

microscope slides.  
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Sections were washed with 0.5% Triton X-100 PBS for 10 min and incubated with 4% 

of goat serum/0.5% Triton X-100 PBS (blocking solution) for 1 hour. The sections were 

incubated with primary antibodies diluted in blocking solution at 4 ºC overnight. The 

following primary antibodies were applied: an antibody to the stub protein after chABC 

digestion (1:150, mouse IgM, clone 3-B-3; Seikagaku America) which recognizes 

unsaturated, C6-sulfated glycosaminoglycan stubs (Baker et al., 1991); chondroitin sulfate 

proteoglycan (1:250, mouse IgM, clone CS-56; Sigma) to identify CSPGs; glial fibrillary 

acidic protein (GFAP) (1:600, polyclonal rabbit IgG; Chemicon) for astrocytes; and Wisteria 

floribunda agglutinin (WFA) (5 µg/ml, biotin conjugate; Sigma) for perineuronal nets. After 

primary antibody incubation, sections were washed three times with 0.5% Triton X-100 PBS 

and incubated with the appropriate secondary antibodies conjugated to fluorophores for 1 

hour at room temperature. The following secondary antibodies were used: goat anti-rabbit 

IgG(H+L) Alexa Fluor 488 (1:200 dilution in 0.5% Triton X-100 PBS; Invitrogen) for GFAP; 

goat anti-mouse IgM Alexa Fluor 594 (1:200) for 3B3 and CS-56; and streptavidin Alexa 

Flour 488 for WFA. Sections treated with secondary antibody but without primary antibody 

were used as staining controls. The sections were washed three times with 1X PBS and DAPI 

was applied to some of the sections for 15 min at room temperature to label the cell nuclei. 

The sections were washed twice with 1X PBS and then coverslipped using Fluoromount-G 

(Southern Biotechnology Associates, Inc.).  

To examine the effectiveness and enzymatic functionality of chABC delivered by 

hydrogel-microtube delivery system and single injection treatments, triple staining was done 

with 3B3, GFAP and WFA, and adjacent sections were double stained with CS-56 and GFAP. 

GFAP labeling was used to delineate the border of the astroglial scar lining the lesion site 
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(Fig. 4.4A). Images were taken on the Zeiss Axioskop 2 Plus microscope (Zeiss, Thornwood, 

NY) with an Olympus Microfire digital camera. 

 

4.2.4 QUANTITATIVE ANALYSIS OF CSPG DIGESTION AND ASTROCYTE 

RESPONSE 

Quantification of CSPG digestion 

To quantify the 3B3-immunoreactivity (IR) and CS-56-IR after chABC delivery 

around the lesion site, four or five micrographs were taken at 20x magnification along the 

lesion site as figure 4.4A. Relative to the lesion site, two caudal and two rostral images as 

well as one image underneath the lesion were used. At least four animals were chosen from 

each animal group and relative fluorescent intensity was measured using ImagePro software 

package (MediaCybernetics). The gross fluorescent intensity was measured for the region 

and a mean value was obtained and averaged for each animal. Background intensity was 

measured on each section and deducted from the measured 3B3-IR and CS-56-IR intensity. 

 

Quantification of GFAP 

To quantify the astrocyte responses, the spinal cord tissues were immunostained and 

imaged at 20x magnification along the lesion site with the same exposure time and conditions. 

The images were analyzed with a custom-built image analysis program (MATLAB; 

Mathworks) (Jain et al., 2006). This program generates line profiles radial to the defined 

interface and records the intensity of the fluorescent signal along the line profile, thus 

quantifying the relative value of intensity as a function of distance from the lesion interface 

(x=0) into the spinal cord (Fig. 4.4B). The number of line profiles (e.g. 30 lines), the color 

(one of RGB) to be read and the lesion interface can be selected by the user. With each run, 
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the relative intensity is averaged over all the line profiles. Four scans were performed for 

each staining image and the results were averaged again over all four scans. Four sections 

were chosen from each animal, four animals were chosen from each animal group and at 

least five images were captured. At least 80 images (five images X four spinal cord sections 

X four animals) were used and the relative intensity as a function of distance was averaged 

over 2400 (30 lines X 80 images) line profiles per experiment group. After this analysis, the 

relative intensity was compared between groups for different distances from the interface: 0-

100, 100-300 and 300-500 µm. 

 

  

Figure 4.4. Micrographs of the GFAP immunostained tissue and method of 

image analysis with a custom developed MATLAB program. A) 4x 

immunostained image. The solid line represents the lesion boundary defined 

by GFAP immunoreactivity and the boxed areas denote regions selected for 

quantification. Scale bar is 500 µm. B) One of the boxes in figure A is 

expanded at 20x magnification to show analysis of fluorescent intensity using 

line profiles. The X axis represents distance from the lesion interface in pixel 

unit. The lines were generated from the lesion interface into the tissue, 

averaged and displayed as a function of distance from the interface to between 

experimental groups. Scale bar is 100 µm.   

 

A B 
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4.2.5 STATISTICAL ANALYSIS 

Minitab software was used to determine the statistical differences existing between 

experimental conditions using analysis of variance (ANOVA). A p-value <0.05 was 

considered statistically different.  

 

All animal protocols were approved by the Institutional Animal Care & Use 

Committee at Georgia Institute of Technology. Animal welfare, including pre-care, surgeries, 

pain management, post-care and monitoring was supervised by the Animal Research 

Committee of the Georgia Institute of Technology. 

 

4.3 RESULTS 

4.3.1 SUSTAINED DELIVERY OF ENCAPSULATED CHABC DIGESTS CSPGS 

EFFECTIVELY IN VIVO 

The effectiveness and enzymatic activity of trehalose stabilized chABC when 

delivered in vivo after SIC using our lipid microtube-embedded hydrogel delivery system at 

the lesion site (Fig. 4.1) was examined by CS-56 and 3B3 immunostaining. The 3B3 

antibody recognizes unsaturated, C6-sulfated glycosaminoglycan stubs (Baker et al., 1991) 

and therefore, can be used as a marker for CSPGs digested by chABC. The CS-56 antibody 

was used to identify intact CSPG deposition. GFAP immunoreactivity (GFAP-IR) was used 

to identify reactive astrocytes and in combination with either 3B3 or CS-56, to define the 

lesion boundary. Two weeks after hemisection SCI, tissue sections from the MTC (hydrogel-

microtube delivery scaffold loaded with 1M trehalose/chABC; See Table 1 for notation of 

groups) treated animals showed significantly strong 3B3-IR near the lesion site (Fig. 4.5E) 
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while CS-56-IR in adjacent tissue sections was diminished (Fig. 4.5D). CS-56-IR was strong 

along the lesion interface in most of the tissue sections, however intensity of CS-56-IR was 

significantly reduced overall for the region near the lesion with sustained chABC delivery. In 

the no-treatment (NoT) group, the reverse IR was observed with strong CS-56 intensity and 

no 3B3-IR (Fig. 4.5A and B).  Similar patterns were observed in the rest of the other control 

groups except the MTC group.  

To determine if chABC delivery affected the integrity of PNNs in the vicinity of the 

lesion site, PNNs were labeled with Wisteria floribunda agglutinin (WFA) cytochemistry in 

the same tissue sections that were stained with 3B3. WFA is a lectin specific for N-

aceylgalactosamine and results in visualizing net-like structures of PNNs. PNNs were 

observed near the lesion site in single injection-trehalose-chABC, no treatment (Fig. 4.5C) 

and other conditions except the MTC treated condition where significantly less WFA staining 

was observed (Fig. 4.5F). Immunostaining of WFA, 3B3, and CS-56 showed that WFA-

PNNs were present in conditions when CS-56-IR intensity was strong and 3B3-IR was weak 

or absent around the lesion site. In the MTC treated group, the 3B3 positive region where 

CSPGs were degraded by chABC had no WFA-PNNs and low CS-56-IR.  Therefore 

sustained delivery of chABC resulted in significantly diminished PNNs close to the lesion 

interface implicating the potential for greater axonal sprouting.  
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Figure 4.5. Immunohistological analysis of CSPG digestion in vivo (A-F). 

Images were taken right next to the lesion boundary of no treatment (A, B 

and C) and MTC treatment (hydrogel-microtube delivery scaffold loaded 

with chABC/ 1M trehalose; D, E, and F) animals. CS-56-IR for intact 

CSPGs (A and D). 3B3-IR for digested CSPGs (B and E). WFA staining for 

perineuronal nets (C and F). The intensity of CS-56-IR and WFA is 

inversely proportional to 3B3-IR. Arrows in (C) indicate WFA-PNNs. Scale 

bar is 100µm.  
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4.3.2 QUANTIFICATION OF 3B3, CS-56 AND GFAP IMMUNOSTAINING 

Measurements of fluorescent pixel intensity were as used to quantify 3B3, CS-56 and 

GFAP immunostaining (Fig. 4.6) using an ImagePro software and a custom-built MATLAB 

routine. 3B3-IR is significantly higher in the MTC group as compared to all other groups 

(Fig.4.6A, p<0.05). The average CS-56-IR is significantly lower in the MTC group than 

others and there is a statistical difference for CS-56-IR between MTC and no-treatment 

(NoT); MTC and STP (single injection-trehalose-P‟ase) (Fig. 4.6B, p<0.05).  

GFAP-IR positive astrocytes were used to define the astro-glial scar region and the 

boundary of the lesion site (Fig. 4.4A). The fluorescent pixel intensity was quantified with a 

line profile image analysis program developed in MATLAB (Fig. 4.4B; Jain et al., 2006); the 

program measures intensity changes from the lesion interface into the spinal cord radially. 

The intensity of GFAP-IR decreased from the lesion site into the cord and the number of 

reactive astrocytes also decreased, and correlated positively with CS-56-IR intensity. 

Analyzed intensity was divided into three bins, 0-100, 100-300 and 300-500 µm away from 

the lesion interface. The GFAP-IR was lower in the MTC treated group than other groups, 

and there is a significant difference between the MTC treated group and other groups; NoT, 

STP and MT in 0-100 µm and 100-300 µm (Fig. 4.7, p<0.05). This data confirm that our 

sustained delivery system using lipid microtubes embedded in agarose hydrogel does not 

negatively impact the astrogliotic response. 
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      A                    3B3 

 

       B                   CS-56 

Figure 4.6. Quantitative image analysis of 3B3-IR and CS-56-IR fluorescent intensity. 

The X axis represents each experimental condition treated for animal groups. The Y 

axis represents the relative fluorescent intensity of IR. The relative fluorescent 

intensity was measured alone the lesion boundary, and mean value was obtained and 

averaged for each animal. (A) 3B3-IR quantitative analysis. Asterisk denotes 

significant increase of 3B3-IR in MTC treatment compared to all other treatments 

(p<0.05). (B) CS-56-IR quantitative analysis. Asterisks denote significant decrease of 

CS-56-IR in MTC treatment when compared to NoT and STP treatments (p<0.05). 

No significant differences were observed among other treatments. The data represent 

the mean ± SEM. 
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                       Distance from the lesion site (µm) 

Figure 4.7. Quantitative image analysis of GFAP-IR fluorescent intensity by line 

profile. The X axis represents distance from the lesion interface into the spinal cord in 

µm and 0 represents the lesion interface delineate the border of the astroglial scar 

lining the lesion site. The Y axis represents the relative fluorescent intensity of 

GFAP-IR. Overall the intensity of GFAP-IR decreased from the lesion interface into 

the cord as a function of distance. The GFAP-IR was lower in the MTC treated group 

than other control groups. The IR intensity was analyzed by dividing into three bins, 

0-100, 100-300 and 300-500. Asterisks denote a significant difference between the 

MTC treated group and other control groups; NoT, STP and MT in 0-100 µm and 

100-300 µm (P <0.05). The data represent the mean. 
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4.4 DISCUSSION 

The thermal instability of chABC represented a significant impediment to 

regeneration after SCI, as it limited drug delivery approaches and forced the use of infusion 

pumps or catheters for delivery.  In this study, we demonstrate that the enzymatic activity of 

chABC could be maintained at 37 ºC by adding trehalose and that thermostabilized chABC 

delivered by a lipid microtube-hydrogel scaffold system remains enzymatically active for at 

least two weeks in vivo.  This study therefore demonstrates that a single treatment with of the 

hydrogel-microtube system provides an effective and creative alternative to chronically 

implanted, invasive pumps/catheters that are typically used to deliver chABC in vivo. 

Given that astro-glial scar deposition spans a period of 2 to 4 weeks post-injury, 

clinical application of chABC might require enzymatic activity over a period of weeks. Most 

studies to date have delivered chABC via multiple intrathecal injections to achieve prolonged 

action. The time required to reach peak deposition of CSPG at the lesion site is dependent on 

the type of CSPG (Jones et al., 2003). NG2 is the predominant CSPG expressed after SCI 

and reaches peak deposition between 1 and 2 weeks after injury, and the expression levels of 

neurocan, brevican, and versican are elevated after SCI, peak at 2 weeks and are maintained 

for 4 weeks or more. The production of several CSPGs and proteoglycan species is 

differently affected by degree and type of spinal cord injury. The main deposition pattern is 

that CSPG molecules are significantly elevated within 24 hours, slowly increase until they 

peak and then decrease, and overall CSPG-rich matrix persists up to 2 months. We chose a 

time point of 14 days after surgery to analyze the effectiveness of thermostabilized chABC 

and our delivery system because overall CSPG expression levels are highest at 14 ~ 18 days 

and decrease by 49 days (Iseda et al., 2008).  Delivery of active agents during this period 
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would be expected to affect inflammation and cellular responses, modulate CSPGs 

deposition around lesion site, and promote axonal sprouting and outgrowth. 

The sustained and local delivery of chABC was achieved over a 2 week time period 

using a previously characterized gel scaffold system in our laboratory. It has been 

demonstrated that agarose hydrogel-lipid microtube-based delivery acts as a sustained 

delivery system in vitro with various proteins and DNA (Meilander et al., 2001; Meilander et 

al., 2003).  An in situ technique is used to quickly cool and set the liquid gel, and this gel 

cooling system (Fig. 4.2) allows the gel to mold into the shape of the injury site. A BDNF-

loaded hydrogel-lipid microtube delivery scaffold was used to fill the lesion cavity on the 

dorsal column of the spinal cord (Jain et al., 2006), and methylprednisolone-loaded 

biodegradable PLGA nanoparticle-hydrogel was topically delivered to the contusion -injured 

spinal cord as described in figure 4.1 (Chvatal et al., 2008; Kim et al., 2009). This gel-

microtube system also can be combined with a conduit to provide a bridge with neurotrophic 

factors for peripheral nerve regeneration (Dodla and Bellamkonda, 2008). The previous 

studies and this study demonstrate that our gel-microtube based delivery system does not 

aggravate inflammatory responses compared to control groups. By implanting the stabilized 

chABC sustained delivery scaffold on the top of the lesion site, we avoid a second surgery 

that could cause additional injury and stress to the animal. We also avoid a chronically 

inserted catheter/mini-pump that could induce inflammatory mass and increase infection risk 

(Penn, 2003; Peng and Massicotte, 2004).  

In the MTC treated group, 3B3-IR is significantly higher compared to all other groups. 

As a control, to compare the effect of sustained delivery versus single administration, a dose 

of thermostabilized chABC (STC) equal to the total amount of chABC released from the 
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lipid-microtubes over 14 days was injected at the lesion site.  This single injection had no 

effect as determined by a lack of 3B3 staining.  This data indicates that indeed sustained 

release of chABC is critical either because chABC diffuses away and loses its enzymatic 

activity quickly after the single injection, or because CSPGs continue to be produced over 

time. In the MTC treated group, 3B3-IR is significantly higher compared to all other groups. 

It is interesting that in the STC group, small bright spots of 3B3-IR were observed around the 

lesion site (gray matter) possibly due to chABC digesting some CSPGs before being washed 

out. Once CSPGs are digested, the turn-over is relatively slow. PNNs were also degraded by 

the digestion of CSPGs following microtube-mediated release of chABC.  In comparison, a 

single injection of chABC was not sufficient to break-down PNNs.  In the MTC treated 

spinal cord, PNNs were not observed immediately around the lesion site, but PNNs were 

present approximately 1 mm away from the lesion site suggesting that thermostabilized 

chABC activity was localized to the region in the immediate vicinity of the lesion.  

Permissive environment  

Another consequence of chABC treatment is the effects of the disaccharidic 

degradation products of CSPG generated by chABC digestion. The disaccharidic by-product 

protects neurons against inflammation-induced neurodegeneration by down-regulating T cell 

motility and decreasing cytokine secretion such as interferon-γ and tumor necrosis factor-α 

(Rolls et al., 2006). The by-product modulates intracellular signaling pathways such as PKCα 

and PYK2, and induces neuronal outgrowth and protects neurons against neuronal toxicity 

(Rolls et al., 2004). In this study, GFAP-IR quantification demonstrates that a) there is no 

elevation of inflammation response in gel scaffold treated groups, and b) GFAP-IR was 

significantly lower in the MTC treated group than others (NoT, STP and MT) near the lesion 
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area (Fig. 4.7). Therefore, it is possible that chABC treatment generated disaccharidic 

degradation products act as neuroprotective agents and trigger neuronal protective and 

survival signaling pathways. 

 

4.5 CONCLUSIONS 

In conclusion, this study clearly demonstrates that sustained local delivery of 

thermostabilized chABC digests CSPGs after SCI without aggravating the secondary injury 

response. Combinational therapy of chABC and neurotrophic factors via our delivery system 

could provide a synergic effect on axonal regrowth and functional recovery after SCI. This 

approach obviates the need for invasive, pump mediated delivery of chABC, elegantly 

enhances the thermostability and resultant efficacy of chABC in vivo, and overcomes an 

important technical hurdle for the in vivo application of chABC therapy after SCI. 
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CHAPTER 5 

 

DELIVERY OF THERMOSTABILIZED CHABC AND NT-3 AND EVALUATION 

OF AXONAL REGENERATION AND FUNCTIONAL RECOVERY AFTER SPINAL 

CORD INJURY:  LONG TERM STUDY 

(Partially as published with R.J. McKeon and R.V. Bellamkonda, Proceedings of the 

National Academy of Science, 2009) 

 

CSPGs are one major class of axon growth inhibitors which are upregulated after SCI 

and contribute to regenerative failure. Chondroitinase ABC (chABC) digests CS-GAG chains 

on CSPGs and can thereby overcome CSPG mediated inhibition and promote axonal 

regeneration when delivered at the site of injury. However, chABC loses its enzymatic 

activity rapidly at 37 ºC, necessitating the use of repeated injections or local infusions with a 

mini-pump or catheter for days to weeks. Maintaining these infusion systems is invasive, 

infection-prone and clinically problematic. To overcome this limitation, we thermostabilized 

chABC and developed a system for its sustained local delivery in vivo, obviating the need for 

chronically implanted catheters and pumps in chapter 3.  When stabilized with trehalose, 

chABC remained active at 37 ºC in vitro for up to 4 weeks. A lipid microtube-agarose 

hydrogel system was used for controlled release of chABC over 2 weeks at the lesion site 

following a SCI in chapter 4. The enzymatic functionality of released chABC and the cellular 

and molecular responses were examined by immunostaining with 3B3, CS-56, GFAP and 

WFA two weeks after injury. The results demonstrate significant differences in CSPG 
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digestion between groups treated with the chABC-loaded hydrogel microtube delivery 

system and controls. 

In this chapter, a long term study (45 days) was conducted to examine axonal 

regeneration and functional recovery after chABC treatment and combination treatment with 

a neurotrophic factor, NT-3. The resultant impact of the initial CSPG digestion during the 

first two weeks was still present at 6 weeks following SCI when delivered by a hydrogel-

microtube delivery system. Axonal growth and functional recovery following the sustained 

local release of thermostabilized chABC versus a single treatment of unstabilized chABC 

demonstrated significant differences in CSPG digestion. Additionally, animals treated with 

stabilized chABC in combination with sustained NT-3 delivery showed significant 

improvement in locomotor function, enhanced growth of CTB-positive sensory axons, and 

sprouting of 5-HT serotonergic fibers at the lesion site. We suggest that this significant 

improvement of chABC thermostability facilitates development of a minimally invasive 

method for sustained, local delivery of chABC that is potentially effective in overcoming 

CSPG-mediated regenerative failure. Combination therapy of thermostabilized chABC and 

neurotrophic factors enhances axonal regrowth, sprouting and functional recovery after SCI. 

 

5.1 INTRODUCTION 

After injury to the central nervous system, the lesioned axons fail to re-grow or make 

functional connections (Schwab and Bartholdi, 1996). While the cellular and molecular 

mechanisms of axon growth failure are active areas of research, a breakthrough clinical 

therapy has yet to be developed. Injuries to the CNS induce a series of inflammatory events 

around the lesion site, typically resulting in permanent functional loss.  
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There are many factors contributing to the failure of spontaneous regeneration; a lack 

of sufficient neurotrophic support (Widenfalk et al., 2001), a lack of intrinsic regeneration 

capacity in CNS as compared to PNS microenvironment (Neumann and Woolf, 1999), 

inhibitory molecules such as myelin-associated proteins (Filbin, 2003; Schwab, 2004; 

Schwab et al., 2006) and glial scar-associated CSPGs (McKeon et al., 1995; Silver and Miller, 

2004), which are upregulated after injuries to the CNS and contribute to regenerative failure. 

Strategies can be developed for each inhibitory factor to overcome the lack of repair capacity 

after spinal cord injury. In chapter 3 and 4, we focused on developing a chABC treatment to 

attenuate CSPG-mediated failure of axonal regeneration and provide permissive substrates 

prepared by chABC digestion for axonal outgrowth.  

In this chapter a combination strategy was developed to provide a neurotrophic factor 

for chemo-attracting axons to the lesion site. Combination therapies with chABC have been 

previously investigated. Schwann cell-seeded guidance channels were implanted into 

hemisected adult rats after chABC treatment (Chau et al., 2004) and an autologous peripheral 

nervous system bridge with cellular matrix modified by chABC was grafted onto a 

hemisection lesion (Houle et al., 2006). Synergistic effects were observed on axonal 

sprouting into the dorsal column nuclei after combination treatment with chABC and NT-3 

(Massey et al., 2008). Retinal fiber sprouting with combination treatment with chABC and 

BDNF after denervation of the superior colliculus has been also observed (Tropea et al., 

2003). To encourage axonal outgrowth, we chose to use NT-3 with chABC. Removal of an 

unfavorable environment (CSPG) by chABC and presentation of the supporting neurotrophic 

factor NT-3 was expected to be a promising combination for SCI. 
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A longer 45 day study was designed to examine the functional consequences of 

CSPG digestion by chABC and a combination therapy with the neurotrophic factor NT-3 via 

implantation of a hydrogel-lipid microtube delivery system at the lesion site. We 

demonstrated that the enzymatic activity of chABC can be thermostabilized at 37 ºC due to 

the ability of trehalose to confer conformational stability, and that thermostabilized chABC 

delivered by a lipid microtube-hydrogel scaffold system is enzymatically active in situ for at 

least 2 weeks as described in Chapters 3 and 4.  Here, a combination treatment of 

thermostabilized chABC and NT-3 was used to overcome the CSPG-rich astroglial barrier to 

axonal regeneration and encourage axonal outgrowth. Locomotor behavioral improvements 

with combination delivery of chABC and NT3 were observed, and correlated well to 

immunohistological evidence of axonal sprouting at the lesion site. Analysis of 5-HT sensory 

fibers and CTB-labeled fibers demonstrated that chABC treatment can induce plasticity of 

injured projections within the spinal cord and offers a possible mechanism of chABC-

induced functional recovery. This study therefore demonstrated that a single administration 

of the hydrogel-microtube delivery system provides an effective alternative to chronically 

implanted, invasive catheters or mini-pumps typically used to deliver chABC after SCI. The 

combination therapy of chABC and NT-3 with our delivery method offers a potent approach 

for clinical application after SCI. 



103 
 

5.2 MATERIALS AND METHODS 

5.2.1 TOPICAL DELIVERY OF HYDROGEL-MICROTUBE SCAFFOLDS IN A 

DORSAL OVER HEMISECTION MODEL 

Table 5.1 describes conditions and notations of experimental and control groups in 

the 45 day in vivo study. In the long term study, MTC (hydrogel-microtube delivery scaffold 

loaded with 1M trehalose/chABC; n=7), MTP (hydrogel-microtube delivery scaffold loaded 

with 1M trehalose/P‟ase; n=6) and sham (n=4) treatment conditions were used, the other 

conditions used in the short term study were excluded, and three new treatments were added. 

In the short term study, a single injection of chABC did not show effective digestion of 

CSPGs, and there was no significant difference from no treatment animals in the 2 week 

study (in chapter 4, section 4.3.2). Therefore, single injection controls (SC – single injection 

of chABC, STC – single injection of 1M trehalose/chABC, STP – single injection of 1M 

trehalose/P‟ase) were excluded.  

MTN (hydrogel-microtube-1M trehalose/NT-3), MTCN (hydrogel-microtube-1M 

trehalose/chABC and 1M trehalose/NT-3) and GC (hydrogel mixed with an equal amount of 

1M trehalose/chABC to the MTC treatment condition) treatment conditions were added for 

the long term study. As a control to probe the sustained release enabled by lipid microtubes 

embedded in the hydrogel, 1 % of SeaPrep agarose gel mixed with 10 mU of chABC/1M 

trehalose was implanted on the top of the lesion site (n=6; GC); the other conditions included 

lipid microtubes loaded with NT-3 (n=7; MTN; 100 ng per rat) or combination microtubes 

loaded with chABC and NT-3 (n=8; MTCN) to investigate effect of combination treatment 

of chABC and neurotrophic factor. 
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The surgical procedure followed to induce injury and the delivery methods of 

hydrogel-microtubes delivery scaffold were the same as for the 2-week short term study 

described in the chapter 4, section 4.2.2. Briefly, adult male Sprague-Dawley rats (Charles 

River) received a dorsal over-hemisection injury at the T-10 vertebral level. Sustained topical 

delivery was achieved using methods previously reported (Chvatal et al., 2008) and shown in 

the figure 4.1 and figure 4.3. 

 

5.2.2 RETROGRADE NEUROAL TRACER INJECTION INTO THE SCIATIC NERVE 

Six weeks post-injury and 3 days before sacrificing, cholera toxin B subunit (CTB; 

sigma) was injected into the right sciatic nerve for retrograde axonal tracing. Rats were 

anesthetized using isoflurane gas. The thigh region on the right leg was shaved, and 2 cm of 

incision was made through the skin and muscles to expose the sciatic nerve. 5 µl of 1% CTB 

was slowly injected into the nerve with a 34 gauge needle (NanoFil). The muscles were 

sutured and the skin closed using wound clips. 3 days after injecting the CTB, the animals 

were the animals were anesthetized with a ketamine-xylazine-acepromazine cocktail 

(1:0.17:0.37 ml/kg) and perfused transcardially with PBS followed by a mixture of 4% 

paraformaldehyde in PBS to facilitate fixation. 
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M: lipid microtubes, S: single injection, T: trehalose, C: chABC and P: penicillinase 

 

5.2.3 BEHAVIORAL ANALYSIS 

Locomotion and thermal pain sensitivity were assessed to determine functional 

improvement in the 45 day long term study. The investigators were blinded with regard to 

animal groups throughout these tests. CatWalk (Noldus), a video-based analysis system, was 

used to assess locomotor deficits in voluntarily walking. Each rat voluntarily walked across 

the walkway three times every week after injury. After acquiring raw data, paw prints were 

labeled as right forepaw (RF), left forepaw (LF), right hindpaw (RH) and left hindpaw (LH) 

and measurements of locomotion were provided by the software. Stride length, paw print 

pattern and base support were chosen to examine behavior as a function of time after injury 

Table 2. Experimental design of 45 days study with notation 

Notation of 

groups 
Components 

# of 

rats 

MTC 
Agarose gel scaffold embedded with 

microtubes loaded with chABC/trehalose 
7 

MTN 
Agarose gel scaffold embedded with 

microtubes loaded with NT-3 
7 

MTCN 

Agarose gel scaffold embedded with 

microtubes loaded with chABC/trehalose 

and NT-3 

8 

GC Agarose gel mixed with chABC/trehalose 6 

MTP 

Agarose gel scaffold embedded with 

microtubes loaded with 

penicillinase/trehalose 

6 

Sham 
Conducted the same procedure except 

injury with other groups 
4 
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for all experimental conditions. Stride length was defined as a distance between consecutive 

steps with the same limb. The distance in mm between the two hind paws was defined as the 

base of support and this distance is measured perpendicular to the direction of walking. The 

white boxes in figure 5.1 show abnormal hindpaw print patterns and the number of abnormal 

prints was counted for three step cycles.  

 

Figure 5.1. CatWalk raw data in false color mode. White boxes represent 

abnormal hindpaw print patterns. The dotted lines represent the stride length 

defined as a distance between consecutive steps with the same limb and the 

solid line represents the base of support defined as a distance between the two 

hind paws. (dark red – left hindpaw, light red – left forepaw, dark green – right 

hindpaw and light green – right forepaw) 

 

Thermal sensitivity assessment by a dynamic plantar test (Ugo Basile) was used, 

identical to the method of Hargreaves et al (1988). The device measured the time taken to 

elicit a flexion reflex. Each hind-paw was tested three times every week and averaged. The 

animals were placed on a glass floor under which a mobile radiant infra-red heat source was 

positioned at the animal‟s hind paw. When the animal withdrew its paw, the source power 

turned off, triggered by an automatic sensor.    
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5.2.4 TISSUE PREPARATION AND IMMUNOHISTOCHEMISTRY 

At 45 days post-surgery, the animals were perfused transcardially with PBS followed 

by 4% paraformaldehyde in PBS. The T9-T11 spinal cord was retrieved, post-fixed in 4% 

paraformaldehyde and placed in 30% sucrose at 4 ºC. Tissues were frozen and sagittal 

sections were cut with a cryostat (HM 560MV Cryostat) at 14 µm thickness. All sections 

were mounted in serial order onto charged microscope slides. 

Sections were washed with 0.5% Triton X-100 PBS for 10 min and incubated with 4% 

of goat serum/0.5% Triton X-100 PBS (blocking solution) for 1 hour. The sections were 

incubated with primary antibodies diluted in the blocking solution at 4 ºC overnight. The 

following primary antibodies were applied against: CS-56 (1:250, mouse IgM; Sigma) to 

identify CSPGs; glial fibrillary acidic protein (GFAP) (1:600, polyclonal rabbit IgG; 

Chemicon) for astrocytes; anti-CTB (1:600; abcam); and serotonin (1:150, 5-HT, monoclonal 

mouse IgG1; Abcam) for serotonergic neurons. After primary antibody incubation, sections 

were washed three times with 0.5% Triton X-100 PBS and incubated with the appropriate 

secondary antibodies conjugated to fluorophores for 1 hour at room temperature. The 

following secondary antibodies were used: goat anti-rabbit IgG(H+L) Alexa Fluor 594 

(1:200 dilution in 0.5% Triton X-100 PBS; Invitrogen) for GFAP; goat anti-mouse IgM 

Alexa Fluor 488 (1:200) for anti-CTB, 5-HT serotonin and CS-56. Sections treated with 

secondary antibody but without primary antibody were used as staining controls. The 

sections were washed three times with PBS and coverslipped using Fluoromount-G. 

To evaluate the axonal sprouting, double staining was conducted with CTB and 

GFAP or 5-HT and GFAP. Double staining of 3B3 and GFAP was also conducted to 

examine the level of CSPGs. GFAP labeling was used to define the border of the astroglial 
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scar lining the lesion site (Fig. 4.4A). Images were taken on the Zeiss Axioskop 2 Plus 

microscope with an Olympus Microfire digital camera. 

 

5.2.5 QUANTITATIVE ANALYSIS OF AXONAL SPROUTING 

A montage of each tissue section stained for CTB labeled fibers was obtained at 10x 

magnification using Neurolucida software (MicroBrightField Bioscience). The 0 indicates 

the caudal lesion interface and defined by GFAP immunoreactivity (IR). The relative 

intensity of CTB labeled fibers were measured using ImagePro software (MediaCybernetics) 

at 1 and 0.5 mm caudal to the start of lesion, at the start of the lesion, and 0.5 and 1 mm 

rostral to the lesion. The intensity of CTB labeled fibers 1 mm caudal to the caudal edge of 

the lesion was assumed to represent the total CTB fibers approaching the lesion site and the 

percentage of CTB fibers stopped within the defined regions was determined by measuring 

the relative intensity. Background intensity was measured on each section and deducted from 

the measured CTB intensity.  

To quantify 5-HT serotonin immunofluorescence, micrographs were taken at 20x 

magnification from two defined regions, ventral gray matter caudal and rostral to the lesion 

site, and relative fluorescent intensity was measured by ImagePro software package. The 

gross fluorescent intensity was measured for the region and mean value was obtained. 

Background intensity was measured on each section and deducted from the measured 5-HT 

IR intensity. 
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5.2.6 STATISTICAL ANALYSIS 

Minitab software was used to determine the statistical differences existing between 

experimental conditions using analysis of variance (ANOVA). A p-value <0.05 was 

considered as statistically different.  

 

All animal protocols were approved by the Institutional Animal Care & Use 

Committee at Georgia Institute of Technology. Animal welfare, including pre-care, surgeries, 

pain management, post-care and monitoring was supervised by the Animal Research 

Committee of the Georgia Institute of Technology. 

 

 

5.3 RESULTS 

5.3.1 LEVELS OF CSPG DEPOSITION AFTER SUSTAINED DELIVERY OF CHABC 

AT 6 WEEKS 

To examine whether the resultant impact of the initial 2 weeks of CSPG digestion 

persists in vivo after 6 weeks, CS-56 immunostaining for intact CSPGs was conducted. Tissue 

sections from the MTCN treated animals showed that significantly less CS-56 expression 

compared to MTP treated controls (Fig. 5.2). 
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Figure 5.2. Micrograph of CS-56-IR around the lesion site at 6 weeks. (A) 

MTCN and (B) MTP. CSPG-IR is significantly less in the MTCN treated 

animals compared to MTP treated controls. Scale bar is 100 µm.   

 

5.3.2 SUSTAINED DELIVERY OF CHABC AND NT-3 IMPROVES LOCOMOTOR 

FUNCTION 

Functional recovery was assessed by using the CatWalk
TM

 and thermal plantar tests 

throughout the 45 day period. A significant difference in locomotor function was observed 

six weeks post-injury, but not earlier, and no improvement was observed with the thermal 

pain threshold test in any animal groups throughout the six week testing period.  All the 

animal groups showed improved locomotor function throughout the testing period. At day 7 

and day 14, all animals showed abnormal walking patterns, slow crossing, and abnormal paw 

prints, reflecting the SCI-mediated dysfunction. Four weeks post surgery, most animals 

showed a normal step sequence and the time necessary to cross the walkway decreased. A 

number of abnormal hind paw prints also decreased and stride length increased due to 

recovery from injury. However the differences between animals were not observed by 4 

weeks.  
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Figure 5.3 showed CatWalk raw data of sham (A), MTCN (B) and MTP (C) treated 

animals on the walkway in false color mode at 6 weeks. Dark red represents left hindpaw; 

light red – left forepaw, dark green – right hindpaw and light green – right forepaw. As seen 

on figure 5.3, hindpaws step on the print of the consecutively previous forepaw. Animals 

with higher degree injuries generally fail to walk with a normal step sequence and step on the 

consecutively previous forepaw print. In this study, we used a relatively moderate injury 

(dorsal over hemisection), therefore, most animals showed normal step patterns. Six weeks 

post-SCI surgery, there were significant differences in the stride length between treatment 

conditions (Fig. 5.4). Average stride lengths (mean ± SEM) were 183.6 ± 6.91 mm for 

MTCN, 172.89 ± 20.8 mm for MTC, 157 ± 18.25 mm for MTN, 152.91 ± 13.13 mm for GC 

and 154.07 ± 10.11 mm for MTP at 6 weeks (See Table 2 for notation of groups). Significant 

differences were observed between MTCN and GC (p = 0.019), and MTCN and MTP (p = 

0.035).  

At 6 weeks, the MTCN, MTC and MTN treated animals had more normal foot prints 

(Fig. 5.3B) compared to MTP treated animals (white boxes in Fig. 5.3C). The sham animal 

had normal foot print and the MTP animal had abnormal hindpaw prints (white box in Fig. 

5.3C.). The number of abnormal hindpaw prints was counted per three step cycles and the 

averages were 0.7 ± 0.3 for MTCN, 1.7 ± 0.6 for MTC, 1.8 ± 0.5 for MTN, 2.1 ± 1.3 for GC 

and 3.3 ± 1.3 for MTP. The mean number of abnormal print of the single treated animals, 

MTC and MTN, is less than that of animals treated by GC and MTP and the combination 

treatment MTCN group, on average had even fewer abnormal foot prints.  However while 

these were strong trends, the differences were not significant between animal groups.  
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The distance in mm between the two hind paws was defined as the base of support 

and this distance is measured perpendicular to the direction of walking. Animals tend to 

show a larger base of support after SCI. At 6 weeks, the averages were 31.4 ± 4.8 mm for 

MTCN, 30.7 ± 4.4 mm for MTN, 39.8 ± 8.9 mm for GC and 38.5 ± 4.5 mm for MTP, and 

there was no statistical difference between animal groups.  
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Figure 5.3. CatWalk raw data in false color mode, (A) Sham, (B) MTCN 

and (C) MTP treated animals on the walkway at 6 weeks. All animal 

groups show a normal step sequence. The white box in the figure C 

represents an abnormal hindpaw print. Red represents left paw prints and 

green represents right paw prints (dark red – left hindpaw, light red – left 

forepaw, dark green – right hindpaw and light green – right forepaw).  
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Figure 5.4. Stride length analysis for locomotion functional recovery. Data are 

mean ± SEM and asterisk denotes statistical significance between MTCN and 

MTP, and between MTCN and GC (P <0.05). Sham showed significant 

differences († < 0.05) compared to all other conditions throughout the testing 

period, except for  MTCN at 4 and 6 weeks.  
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5.3.3 SUSTAINED DELIVERY OF CHABC AND NT-3 PROMOTES SPROUTING 

5.3.3.1 AXONAL SPROUTING AROUND THE LESION AREA: CTB-LABELED 

FIBERS 

To examine anatomical regeneration in the dorsal column, CTB was injected into the 

sciatic nerve and resulted in labeling of the primary apparent within the spinal cord. The 

location of labeled fibers was examined; the MTP and GC treated animals had retracted 

CTB-labeled fibers in the glial scar area and few fibers approached the lesion site (Fig. 5.5A). 

However in the MTC, MTN and MTCN treated animals, more CTB-labeled fibers crossed 

the glial scar area and approached the lesion boundary (Fig. 5.5B). CTB-labeled fibers grew 

around cavities along the lesion interface (Fig. 5.5C and D; 0 to 0.5 mm interval in C and 0.5 

to 1 mm interval in D) and a few fibers were observed after 0.5 mm rostral to caudal edge of 

the lesion in chABC and NT-3 treated animals. However no fibers entered the lesion cavity 

in any animal groups. Significantly more fibers crossed 0 and 0.5 mm rostral to the caudal 

edge of the lesion in the MTCN (p=0.03 and p=0.045; p=0.049 and p=0.045, respectively) 

animals compared to GC and MTP treated animals (Fig. 5.6). At one mm rostral to the caudal 

edge of the lesion start, a few fibers were observed in the MTC, MTN and MTCN treated 

animals, however most were not strong enough to be detected by the relative intensity 

measuring method described in section 5.2.5. 
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Figure 5.5. Micrographs of CTB labeled fibers (green) at the lesion site at 

6 weeks. The dashed lines represent the lesion interface. (A) MTP and (B) 

MTCN at 10 x magnification. Scale bar is 500 µm (C) An expanded figure 

from the white box 0 to 0.5 mm interval in figure A, and (D) an expanded 

figure from the white box in 0.5 to 1 mm interval figure B at 20 x 

magnification. Arrows represent CTB labeled fibers. Scale bar is 100 µm.   
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Figure 5.6. Quantification of CTB+ axon growth. The Y axis represents 

the percentage of crossed axons at the distance to the lesion interface and 

the X axis represents distance to the lesion (mm). The data represent the 

mean ± SEM. Asterisks denote a significant difference compared with 

MTCN (P<0.05). 
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5.3.3.2 AXONAL SPROUTING AROUND THE LESION AREA: 5-HT- 

IMMUNOREACTIVE FIBERS 

5-HR-IR fibers in the ventral gray matter were measured to quantify the percentage of 

the lesion site. More 5-HT-IR fibers were observed in the gray matter of MTC, MTN and 

MTCN treated animals. The serotonergic fibers were observed in the gray mater, primarily in 

the ventral horn and lamina X, and more fibers were located rostral versus caudal to the 

lesion (Fig. 5.7A). The spinal cords tissues treated with chABC, NT-3 and combination of 

chABC and NT-3 had higher fluorescent intensity and the 5-HT-IR fibers extended closer to 

the lesion site than MTP and GC treated controls. Quantification confirmed that MTCN 

treatment showed significant sprouting of serotonergic fibers caudal to the lesion versus all 

other conditions (p = 0.008 for MTC, p = 0.024 for MTN, p = 0.001 for GC and p = 0.001 for 

MTP); and rostral to the lesion than MTN (p = 0.015), GC (p = 0.002) and MTP (p = 0.001) 

treatment (Fig. 5.8).   
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Figure 5.7. Immunohistological analysis of 5-HT-IR fibers. (A) 

Micrograph of 5-HT at 4× magnification in the MTCN treated animal 

tissue. The boxed areas in A denote regions selected for quantification and 

the solid white line represents the lesion interface. More fibers were 

located rostral versus caudal to the lesion. Scale bar is 500 µm. (B, C) 

Expanded figures from the white box in figure A. Serotonergic 

innervations rostral to the lesion in MTP (B) and MTCN (C) animals at 

20× magnification. MTCN treated animal has higher fluorescent intensity 

and also had extended closer to the lesion site than MTP treated animal. 

Scare bar is 100 µm.  
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Figure 5.8. Quantitative analysis of 5-HT-IR intensity for the stained 

spinal cord. Quantification demonstrated that caudal to the lesion, MTCN 

showed significantly (* p <0.05) increased 5-HT-IR compared to all other 

treatments, and rostral to the lesion, MTCN showed significantly (* p 

<0.05) increased 5-HT-IR compared to all other treatments except for 

MTC. Data are mean ± SEM.  
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5.4 DISCUSSION 

A six week long term study was performed to determine whether chABC or NT-3 

delivered individually by using the hydrogel-microtube delivery system would encourage 

axonal sprouting/regeneration and improve functional recovery after SCI in the rodent model. 

Also, combination treatment of chABC and NT-3 was tested via our delivery system to 

evaluate whether the combination therapy can provide synergic effect on axonal regrowth 

and functional recovery. CSPG deposition, axonal sprouting and behavioral improvement 

were assessed to determine efficacy of the hydrogel-microtube delivery system and 

combination therapy. CS-56 immunostaining shows that the resultant impact of the initial 

CSPG digestion is still present at 6 weeks. Locomotor behavior improved with combinational 

chABC-NT3 delivery, and correlated well with increased axonal sprouting at the lesion site. 

This study demonstrates that a single treatment of thermostabilized chABC via the hydrogel-

microtube delivery system provides an effective alternative to chronically implanted, 

invasive pumps typically used to deliver chABC in vivo. In addition, the combination 

treatment with NT-3 significantly enhanced functional recovery. 

Once CSPGs are digested, the turn-over is relatively slow (Bruckner et al., 1998). In 

the short term study, significantly decreased CSPG-IR was observed in the animals treated 

with the chABC loaded hydrogel-microtube system. CS-56 immunostaining was performed 

to examine whether CSPG digestion during the first two week still present. CS-56 staining at 

6 weeks (Fig. 5.2) shows that little CS-56 expression persists compared to untreated controls. 

This suggests that thermostabilized chABC digestion was effective early, at the peak of 

CSPG production and its turn-over is slow (more likely), or that chABC activity via 

microtubes is sustained for longer than 2 weeks (unlikely, but possible).  In either case, the 
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chABC digestion via microtubes remains effective over a period of 6 weeks as is evident 

from little CS-56 positive tissue at the 6 week time point.  CSPG levels remain low up to 6 

weeks post-injury, thereby facilitating sprouting and regeneration. Another study reported 

similar results, showing that evidence of chABC digestion remained for at least 7 weeks in 

the spinal cord (Galtrey et al., 2007). 

The results demonstrated that a single treatment of chABC and NT-3 enhanced 

sensory axonal sprouting, and the combination treatment enhanced more axonal sprouting 

around the lesion site. The CTB labeled fibers mainly represent ascending sensory pathways 

in the dorsal columns of the spinal cord. No CTB-labeled fibers entered the lesion cavity in 

any treatment condition, however a significantly higher percentage of axons were approached 

the lesion boundary and grew around the lesion site in the animals treated with single or 

combination delivery of chABC and NT-3 compared to other groups. While some sensory 

functional recovery was expected because of the result of CTB-fiber quantification, no 

improvement was observed using the thermal pain threshold test (hindpaw withdrawal 

latency to heat stimuli) in any of the animal groups during the 45 day test period. There are 

two possibilities to explain the results; first, after the dorsal over hemisection cutting there 

may be possibly spared fibers around the dorsal lateral fasciculus that help retain sensitivity 

in all groups independent of lesion.  Second, despite the significant primary afferent 

sprouting in the treated animals, the sprouting was predominantly located in the dorsal white 

matter and no fiber entered into the lesion site in any animal groups. Therefore, the axonal 

sprouting was not enough to transmit stimuli to the dorsal horn where primary afferent 

terminals are located, explaining why no differences exist between experimental groups. Our 

observation is consistent with other studies. Despite robust primary afferent sprouting in 
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animals treated with chABC, no improvement of noxious thermal sensation (Barritt et al., 

2006) was observed, and transgenic mice expressed chABC under the murine gfap promoter 

showed nearly complete digestion of CSPGs and robust axonal growth into the glial scar, but 

no axon crossing into the lesion or motor functional recovery (Cafferty et al., 2007).  

Enhanced locomotor functions were observed in the MTC and MTCN animal groups 

and there were significant improvements in MTCN treated animals in terms of stride length, 

but not base support or number of abnormal hindpaw patterns. Stride length is an important 

parameter of locomotor efficacy as it impacts speed of locomotion (Hamers et al., 2001). The 

gains in other locomotor functions were probably obscured by our choice of the relatively 

mild hemisection injury model. Quantification of 5-HT serotonergic fiber sprouting 

demonstrated significantly higher sprouting in MTCN group relative to all other groups. As 

microtube-mediated delivery resulted in significant sprouting, with combinatorial delivery 

eliciting even more significant sprouting, it is possible that the sprouted local serotonergic 

spinal circuits facilitated observed locomotor improvements in stride length. This increase in 

sprouting is likely due to chABC mediated digestion of CSPG-rich PNNs that surround 

synapses (Vitellaro-Zuccarello et al., 1998). One of consequence of the chABC treatment is 

the digestion of CSPG-rich perineuronal nets (PNNs) (Massey et al., 2006; Galtrey et al., 

2007; Massey et al., 2008). There is evidence that this structure regulates neuronal plasticity 

(Pizzorusso et al., 2002), protects encapsulated neurons (Bruckner et al., 1999) and supports 

ion homeostasis (Bruckner et al., 1993). This observation is consistent with other reports that 

PNN digestion by chABC leads to increased plasticity and functional improvement due to 

reinnervation and sprouting; PNN breakdown in the cuneate nucleus promoted collateral 

sprouting/plasticity, resulting in axonal sprouting in the forelimb afferents after SCI (Massey 
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et al., 2006) and increasing plasticity in the spinal cord improved peripheral nerve 

regeneration (Galtrey et al., 2007). CSPG removal by chABC delivery in the adult visual 

cortex to treat monocular deprivation increased ocular dominance plasticity by significant 

recovery of dendritic spine density (Pizzorusso et al., 2006). In this study we observed that 

the PNN breakdown around the lesion area after chABC treatment (Fig. 4.5); motor neurons 

and many interneurons are surrounded by PNNs. It may possibly have caused the increased 

sprouting of serotonergic fibers, thereby increasing plasticity of spinal locomotor circuits and 

resulting in functional locomotor recovery.  

The de-stabilized PNNs by chABC digestion would promote anatomical plasticity by 

increasing the density of newly-grown processes in the adult CNS ECM, and it could lead 

functional plasticity. chABC-induced plasticity, such as collateral sprouting (Massey et al., 

2006) or aberrant sprouting (Barritt et al., 2006), is one major mechanism of chABC 

treatment. Therefore, possible negative effects are aberrant sprouting and neuropathic pain 

due to the aberrant plasticity (Woolf and Salter, 2000) or autonomic dysreflexia due to 

increased plasticity (Weaver et al., 2006). These concerns have been raised previously. 

Studies reported that no evidence of hyperalgesia was observed after chABC injection in to 

the spinal cord (Pizzorusso et al., 2006), and no increase of connectivity of nociceptive 

neurons and development of mechanical allodynia or thermal hyperalgesia was observed 

even after aberrant sensory fiber sprouting (Barritt et al., 2006). Therefore, it is very 

important to balance between detrimental sprouting and beneficial sprouting, and the 

molecular mechanism involved in chABC-mediated improvement of plasticity needs to be 

proven to develop the optimized chABC treatment after SCI. 
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In the short term study, there appears to be significant impact of chABC digestion at 2 

weeks, though evidence of functional recovery for in vivo studies was not seen until at least 6 

weeks. With regard to the time lag between peak CSPG deposition and first evidence of 

functional recovery, axonal regrowth and sprouting can occur after CSPG digestion – hence 

the lag in time between CSPG digestion and functional recovery. After injury, severed axons 

retract from the lesion site, therefore, functional recovery requires axonal regrowth and 

sprouting to reconnect/regain the functional pathway. Once our chABC treatment removes 

inhibitory molecules (CSPGs), the CSPG/astroglial-inhibitory region becomes permissive for 

axonal outgrowth, and axons can then regrow and sprout through the region. After SCI, 

animals are typically allowed 6 weeks or longer to assess axonal regeneration and functional 

recovery.  

Our data is consistent with other studies where successful digestion of CSPGs does 

not automatically lead to improved behavioral outcomes (Barritt et al., 2006; Cafferty et al., 

2007). Transgenic mice having a gfap promoter to express chABC demonstrated almost 

complete CSPG digestion at the reactive astrocyte-region. Significant sensory axon sprouting 

was observed, however it was not sufficient to improve motor function (Cafferty et al., 2007). 

It suggests that providing a permissive environment by removing inhibitory components is 

not enough to induce significant functional improvement; combination therapy needs to 

provide to favorable environment for sufficient axon regeneration. When chABC delivery is 

combined with NT-3 lentivirus delivery, dramatically increased axonal extension was 

observed compared to single delivery of chABC or NT-3 (Massey et al., 2008). In this study, 

combination treatment of chABC and NT-3 resulted in significantly increased axonal 

sprouting as compared to a single treatment of each.  
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To apply this method as a clinical therapy, the practicality of chABC treatment 

needs to be considered.  In this study, the chABC activity was limited to 1 mm away 

from lesion site and it is not clear whether this area is large enough to be clinically useful. 

Because chABC is a relatively large molecule, diffusion through neural tissue and 

extracellular space is limited. However, we believe that compared to intrathecal delivery 

of chABC by a mini-pump, chABC delivered via the hydrogel-microtube system diffuses 

deeper into the tissue (up to 1mm). This is because mini-pump delivery affects a larger 

region, diluting the chABC, whereas our delivery system enables local delivery into the 

tissue.  As CSPG deposition tapers off exponentially from the lesion border, the local 

delivery of chABC is relevant and effective, and sufficient diffusion (again as evident 

from our 6 week CS-56 staining) occurs to effectively digest the CSPGs deposited near 

the lesion site.  In humans, there might be a need for greater diffusion distances as the 

CSPG deposition zone may be deeper, but whether or not chABC diffusion into injured 

human cord will be a limitation or not remains to be determined. The minimum clinically 

relevant chABC concentration required to elicit behavioral recovery also remains to be 

determined. 

 

 

5.5 CONCLUSIONS 

In conclusion, we demonstrate that sustained local delivery of thermostabilized 

chABC digests CSPGs after SCI without aggravating secondary injury response. 

Combination therapy of chABC and NT-3 facilitated by our sustained delivery system 

enhanced axonal sprouting and functional recovery after SCI. This approach elegantly 
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obviates the need for invasive, indwelling catheter/pump-mediated delivery of chABC, 

enables combinatorial therapy with neurotrophic factors, and represents a promising 

approach to implementing chABC therapy after SCI.  
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CHAPTER 6 

 

CONCLUSION AND FUTURE PERSPECTIVES 

 

Our delivery method of chABC provides an alternative treatment to spinal cord injury. 

The results showed enhanced axonal sprouting around the lesion site and improved 

functional recovery in locomotion. However the ultimate goal is to develop treatment 

strategies to promote axonal regrowth through the lesion site to regain functional pathways, 

and apply this method for clinical treatment. In this study no axon enters the lesion site and 

complete functional recovery was not achieved yet. Therefore, further studies will be 

discussed in this chapter to overcome these challenges.  

 

6.1 OPTIMIZATION OF CHABC TREATMENT FOR CLINICAL APPLICATION 

To investigate clinical relevance of our method, we need to optimize chABC 

treatment. There are several factors that need to be investigated and determined in order to 

design the optimized chABC administration: 1) characterize release profile of chABC with 

various concentrations of chABC, 2) different lengths of lipid microtube, and 3) then 

determine total amount of chABC for a certain delivery period. 

 For example, with our delivery method the chABC activity was limited to 1 mm 

away from lesion site and it is not clear whether the area is a large enough to induce axonal 

sprouting and functional improvement in clinical study. Because chABC is a relatively large 

molecule, diffusion through neural tissue and extracellular space is limited. chABC delivered 

via the hydrogel-microtube system has advantages and diffuses deeper into the tissue (up to 
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1mm) compared to intrathecal delivery of chABC. However in humans, there might be a 

need for greater diffusion distances as the CSPG deposition zone may be deeper and larger, 

but whether or not chABC diffusion into injured human cord will be a limitation remains to 

be determined. The minimum clinically relevant chABC concentration required to elicit 

behavioral recovery also remains to be determined. 

 

6.2 EFFECTS OF CHABC ON NERVE TISSUE AND IMMUNE SYSTEM 

In this study, single injection of chABC and sustained delivery of chABC did not 

increase inflammatory response compared to other controls (no treatment and P‟ase delivery) 

after injury. However the effects of chABC on nerve tissue and immune system need to be 

considered. When chABC was delivered intrathecally to intact spinal cord, robust sprouting 

of descending projects and primary afferents were observed (Barritt et al., 2006). However, 

in that study, it did not lead an increase in mechanical allodynia (noxious response to a 

usually non-painful stimulus) or thermal hyperalgesia (increased sensitivity to thermal pain). 

Other studies also reported that intrathecal delivery of chABC (0.2 ~ 1 ml of 200 U/ml) 

showed any morphologic changes in the spinal cord and any neurophysiologic changes in 

tibial nerves in rabbits (Olmarker et al., 1991). No adverse effects on nerve tissue and blood 

vessels were observed after intrathecal delivery in pig except a slight intrathecal fibrotic 

reaction (Olmarker et al., 1996). In those studies, they expected that approximately 1/40 

diluted concentration of chABC might be used clinically for chemonucleoysis: however, as 

we mentioned previously, the clinically relevant dosage still needs to be determined. 

chABC is an enzyme produced from bacteria, so there is a chance to evoke immune 

response. In this study, chABC was delivery locally at the lesion site with lipid microtube 
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and hydrogel, however antigenicity and immunogenicity of chABC and the delivery system 

still need to be tested. The safety test of chABC for side effects on nerve tissues and immune 

response needs to be investigated with the relevant dosage range for clinical application and 

sustained delivery system for prolonged delivery period.     

   

6.3 LONGER MICROTUBE: OPTIMIZATION OF DELIVERY VEHICLE 

A prolonged sustained delivery would be clinically desirable as increasing the 

duration of release agents. To prolong the period of sustained delivery, longer lipid 

microtubes can be considered as a delivery vehicle in vivo. The length and properties of 

microtube can be controlled by modifying a cooling procedure, varying concentration of lipid 

solution and changing ratio between ethanol and water for the solution to dissolve lipid 

(Lando et al., 1990; Thomas et al., 1995; Meilander et al., 2001). With the original protocol, 

average 37 micron length of microtube is fabricated. The adjustments were made to the 

original protocol. 70% ethanol and 1 mg lipid per 1 ml ethanol solution were fixed and a part 

of cooling process modified; the rate of decreasing temperature (53-23 deg) changed from 

1deg/40min to 1 deg/10 min. The measured average length of microtube was approximately 

100 micron (Fig. 6.1). We demonstrated that the length of microtube is controllable and since 

the release profile of loaded agents is dependent on the length of microtube, it facilitates to 

control drug delivery. The release duration and rate of agent from the delivery scaffold also 

can be controlled by modifying the gel. The release profiles are dependent on the type and 

concentration of gel (Meilander et al., 2001; Meilander et al., 2003). 
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Figure 6.1. Histogram of microtube length distribution with a modified 

fabrication procedure. The average length is about 100 µm.  

 

 

6.4 OPTIMIZATION OF DOSAGE  

 In this in vivo study presented in Chapter 4 and 5, one concentration/total amount of 

chABC and NT-3 was delivered to examine the effect on levels of CSPG deposition, axonal 

regeneration and functional recovery after SCI in rats. We demonstrated that there are 

significant differences in CSPG digestion, axonal sprouting and functional recovery between 

single injection and sustained delivery. Some other studies reported that there is no 

significant difference in sprouting axons between chABC treatment and untreated groups 

after SCI (Iaci et al., 2007). This implicates that the amount/concentration of delivered 

chABC and delivery frequency/period are important to elicit relevant axonal regeneration 
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and behavioral recovery. Therefore, it is necessary to conduct experiments to optimize the 

concentration and total amount, and delivery period. The optimal dosage delivered in 

combination of chABC and NT-3 also needs to be determined, because combining each 

optimal dosage for individual delivery of chABC or NT-3 might not be the best possible 

dosage for the combination therapy. For example, other study showed that dramatically 

improved (~40 times) axonal sprouting was observed with combination therapy of chABC 

and NT-3 (Massey et al., 2008). In this long term in vivo study, even more enhanced axonal 

sprouting and functional recovery were observed in chABC/NT-3 treated animals than 

individually treated animals. If the concentration and ratio between chABC and NT-3 are 

modified, it could synergistically enhance effects on axonal regeneration.  

 

6.5 LONGER IN VIVO STUDY 

 To evaluate the effects of chABC two animal studies were conducted; a 2 week 

study to evaluate of functionality of our chABC-delivery system in Chapter 4 and a 6 week 

study to examine axonal sprouting/regeneration and functional recovery as discussed in 

Chapter 5. The duration of the in vivo study is a critical factor to determine whether the 

administrated therapy is effective or not to treat injuries or diseases. For example, in this 

study if we had terminated earlier than 6 weeks, we would not observe the significantly 

improved functional recovery in locomotion assessed by stride length between animal groups. 

Similarly, if we conduct longer period animal study, such as 8 or 12 weeks, more fibers 

might outgrow closer to the lesion and even completely grow through/around the lesion site 

to reconstruct synaptic connections. This would lead to improvement of more precise 

locomotion controls.  
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6.6 RATE AND AMOUNT OF CSPG DEPOSITION IN VIVO AFTER SCI 

 In the in vivo study, significant differences were observed in the CS-56-IR and 3B3-

IR intensity at 2 weeks, and CS-56-IR intensity at 6 weeks between the chABC-hydrogel-

microtube treated groups and controls. These results suggested that the enzyme, chABC, still 

retains its enzymatic activity after being released from the hydrogel-microtube delivery 

scaffold in vivo, and digests CSPGs more effectively than the controls, chABC-hydrogel or 

chABC-single injection treated groups. However, it is not clear how constant the enzymatic 

activity of released chABC remains over this time period and how much chABC is released 

from the delivery scaffold and diffused into the tissue. Once chABC is released from the 

hydrogel-microtube delivery scaffold, it can be assumed that the activity of chABC will be 

similar to fresh, unstabilized chABC, because the ratio of trehalose to chABC becomes a lot 

diluted. It is shown that the production of several CSPGs is differentially regulated following 

spinal cord injury (Jones et al., 2003) by immunohistological analysis. However, the rates 

and amount of CSPG deposition are not known and depend on injury models, degree of 

injury and age (Gilbert et al., 2005). Therefore, it would be clinically desirable if the CSPG 

deposition rate can be determined for specific injury models and degree of injury.  

 

6.7 COMBINATION STRATEGIES: CHABC AND STEM CELL TRANSPLANTATION   

This study showed that combination therapy with thermostabilized chABC and NT-3 

significantly enhanced axonal sprouting and functional recovery. Our hydrogel-microtube 

delivery system with thermostabilized chABC could provide permissive environment for 

neurite outgrowth and can be combined with other strategies, such as delivery of 

neurotrophic factor, cell transplantation (NSC, olfactory, Schwann cell, autologus peripheral 
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nerve graft, etc), and acellular scaffold implantation. This combination therapy can be a 

potent treatment for many neurodegenerative diseases by promoting axonal regeneration and 

restoring complete functional recovery after neuronal injuries. One cell transplantation 

strategy, neural stem cell (NSC) therapy, is very promising; however, this approach needs to 

be further elucidated before proceeding with clinical trials.  

Factors regulating NSC have been investigated, and studies showed that the 

modulation of local environment is important in regulating NSC. Evidences have been 

provided that CSPGs regulate neural stem/progenitor cell proliferation and intervene in fate 

decision making between the neuronal and glial lineage. In vitro experiments showed that 

CSPGs inhibit migration of neural stem/progenitor cell (NSPC)-derived cells and chABC 

treatment attenuated the inhibitory effect (Ikegami et al., 2005; chABC). Also, cell-surface 

soluble GAGs involve in internalization of extracellular proteins for some progenitor cell to 

facilitate differentiation; an example would be of heparin sulfate proteoglycan for pancreatic 

stem cells (Ueda et al., 2008; heparin). As explained above, chABC can be used to modify 

the local environment in CNS via digesting CS-GAGs and also to selectively degrade GAGs 

for investigating biological roles of CSPGs in vitro.  

The use of NSCs in conjunction with chABC may prove to be therapeutic in repairing 

CNS by modulating cellular matrix and CSPGs, which act as a barrier for stem cell migration 

after transplantation. In many cases, however, transplanted stem cells fail to migrate and 

integrate into the host tissue and CSPGs are considered as a putative inhibitor of stem cell 

migration in vivo. chABC treatment combined with NSPC transplantation into injured spinal 

cord promoted migration of the transplanted cell into the host spinal cord and resulted in 

increased sprouting of growth-associated protein -43-positive fibers at the lesion site 
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(Ikegami et al., 2005; chABC). When Müller stem cells were implanted with chABC into 

degenerating  retina , this resulted in dramatic increase of migration of stem cell into all of 

the retina cell layers (Singhal et al., 2008; CSPGs; Fawcett) and differentiation into retinal 

neurons and glia (Bull et al., 2008; glaucoma stem). 

Studies suggest that chABC treatment can facilitate migration and differentiation of 

transplanted NSPCs. Therefore, when the sustained local delivery of thermostabilized 

chABC by our hydrogel-microtube system is combined with NSPCs transplantation, it will 

be a promising strategy for the regeneration of injured or degenerated CNS tissues. Also, our 

chABC treatment can be combined with delivery of other neurotrophic factors and cell 

transplantations.  

 

6.8  DIFFERENCES BETWEEN HUMAN CASES AND RAT INJURY MODEL 

It is hard to simulate the human cases of SCI in animal experiments: first, human SCI 

occurs in the closed vertebral system generally under conscious state and a combination force 

of flexion, extension, rotation and compression works on the cord when the injury happens 

(Sharma et al., 1993; Choi, 1996). Most human SCI results from fracture of vertebral column 

or luxation of vertebrae. In contrast, in animal models, injury or compression is always 

conducted on the posterior side of the cord with laminectomy (opened vertebra system) under 

anaesthetized state and one force, such as contusion, compression or incision, is applied to 

produce injury for high reproducibility (Sharma, 2005a). Therefore, human SCI cases are 

more complex and only few cases are similar to experimental models in terms of the 

magnitude and severity of the injury (Sharma, 2005b; Onifer et al., 2007). Table 3 

summarizes different facts between human and rat spinal cord.  
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Parameters Human Rat 

Number of neurons 10
9
 0.3

6
 

Length (cm) 43-45 8-10 

Weight (g) 34 0.7 

Proportion to brain 

(volume %) 
2 35 

Glial/neuron ratio 12-16 10-14 

Weight drop injury (g) 

2438 50* 

971 20* 

485 10* 

Table 3. A comparison between human and rat spinal cord.  

* Weight for rat SCI is about one fifth to human SCI. Table from 

Sharma, 2007.  

 Our study required an SCI model allowing for behavioral and immunohistological 

analysis to examine functional recovery and axonal regeneration. There are several 

commonly used models for spinal cord injury and each has advantages and disadvantages: 

complete spinal transection, dorsal over hemisection, lateral hemisection injury, compression 

and contusion.  

The complete transection model removes any overlap between spared and regenerated 

fibers. However, the animal undergoes severe pain and various syndromes, such as bowel 

and bladder dysfunction and no functional recovery with hindlimbs, because the transection 

completely eliminates functions below the injury site. Therefore, it requires relatively long 

term management with various post-surgical complications and morbidity is higher than 

other injury models.  

The contusion model could be the most clinically relevant model, although it still 

lacks some of the absent factors described above. A fluid filled cyst forms at the impacted 

area and is surrounded by tissue containing spared/intact axons (Kwon et al., 2002). Because 
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of the spared axons around the cyst, it is hard to distinguish between spared and regenerated 

axons (Steward et al., 2003) and it is a limitation for studies focusing on regeneration.  

The lateral transection model is a complete transection of one side of the spinal cord. 

In this model all pathways in one side of the cord are severed. However, intact axons in the 

non-lesioned side can sprout into the lesioned side and make it hard to distinguish from 

regenerated axons (Kwon et al., 2002).  

The dorsal over hemisection model has relatively moderate severity of injury. In this 

injury model, damage is limited in the dorsal column and animals undergo less stress and 

pain with less post-surgery dysfunctions than other injury models. Axonal regeneration can 

be easily quantified by injection of anterograde tracer (i.e. BDA) to the corticospinal tract 

(CST) or retrograde tracer to the primary sensory pathway (i.e. cholera toxin subunit B), and 

spared fiber is not a critical issue. Therefore, the dorsal over hemisection model was chosen 

for our study. There is a chance of spared fibers in the bilateral transected CST (Vavrek et al., 

2006), and the primary sensory pathway was chosen in this study to examine regenerating 

axons.   

As a further study, contusion injury model can be used to examine the delivery 

efficiency of our topical delivery method with chABC and develop a more relevant delivery 

method for human therapy. In the contusion model, it would be difficult to deliver drugs deep 

through the surrounding tissue to the cyst with our topical delivery model if the drug is not 

small enough. Diffusion efficiency of chABC needs to be examined in this model. If the 

diffusion is not enough to remove CSPGs and promote axonal outgrowth, alternative delivery 

methods should be developed, such as a direct injection of mitcrotube-trehalose/chABC into 

the cyst by needle. 
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