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Many distributed complex problems address a particular form of resource scheduling 

where proper resource management can cut costs by stabilizing a set of stochastic 

fluctuating parameters. Wireless sensor network communication, supply chain 

management, stock trading, intelligent traffic management, and smart grid systems are 

examples of these problems. Among the various solutions, a common strategy often used 

to address this type of problems is fluctuation reduction via resource buffering combined 

with load shifting. Respectively, stable wireless communication, demand for supplies, 

liquidity, traffic speed, and power demand reduce cost and can be achieved by properly 

managing sensor data buffers, warehouses, capital, distance between vehicles, and power 

storage units. Although on the surface, the differences between such problems appear to 

warrant completely different multi-agent solutions, they can be rephrased or 

approximated in common terms that enable the generalization of various solutions and 

techniques. 

This thesis is concerned with generalizing fluctuation reduction problems and 

their solutions. To that end, this thesis defines the fluctuation problem class in a 

multiagent framework, provides a general solution, applies the general solution to the 

smart grid problem, investigates the solution dynamics with respect to common multi-



agent system techniques, and finally defines a set of solution approach autonomy 

measurements. The resulting conceptual framework and applied investigation are directed 

at synthesizing currently disparate MAS research efforts which address fluctuation 

stabilization. 
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CHAPTER 1 INTRODUCTION 

A broad class of multi-agent problems is concerned with improving the efficiency and 

effectiveness of each agent and/or the system as a whole by managing and reducing 

fluctuations in production and consumption of resources where production, 

consumption, and resources are potentially abstracted concepts. Often, each problem 

provides limited information regarding future production and/or consumption, means 

to throttle current production and/or consumption, and means to buffer or store 

resources.  

Generally these problems define various entities which are subject to 

information, communication, and processing restrictions that render an otherwise 

straightforward centralized optimal deterministic solution impractical. On the other 

hand multi-agent system built around simple concepts are inherently appropriate for 

solving such problems. 

The general agent strategy is to use the available limited information to 

predict production/consumption in order to manage and schedule buffering and 

throttling resources in an effort to stabilize production/consumption which results in 

improved agent and/or systemic efficiency and effectiveness. We refer to this class of 

MAS problems as the stabilization problem class. 

Most related multi-agent work has been concerned with various approaches 

and solutions to individual problems of the stabilization problem class. These 

solutions are mostly not generalizable to the class and as a result of being 
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entanglement with problem specifics, they are prone to being complicated and 

potentially less effective.  

The intention of this thesis is to create a basis for generalizing and 

understanding multi-agent problems and solutions related to the stabilization problem 

class. As such, this thesis presents a generalized approach and methodology to 

developing multi-agent solutions to problems of the mentioned class, a detailed multi-

agent solution to the smart grid problem, the analysis of various standard multi-agent 

approaches in combination with the proposed methodology, and a new metric to 

measure agent autonomy versus efficiency. 

1.1 Background 

The stabilization problem class is broad; particularly, since many seemingly unrelated 

problems can be reduced to, or approximated in terms of a fluctuation minimization 

problem. Contrary to appearances, at heart many high profiles MAS problems such as 

intelligent traffic control, and high frequency stock trading, are in fact in instances of 

the stabilization problem class. Over the following subsections we introduce some 

background on the problem class and the premise of our research through several 

examples. For the sake of clarity we avoid exotic examples in this chapter; however, 

we do provide such examples in Subsections 9.1.2.1 and 9.1.2.2.  

1.1.1 The Bullwhip Effect 

In the field of business, the bullwhip effect increases demand fluctuation at various 

stages of a distribution channel starting from the end customer to the production 

source [1]. Consider a distribution channel consisting of the consumer, retail, 
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wholesale, and manufacturer stages. As a result of the bullwhip effect, a small 

fluctuation in consumer demand increases demand fluctuation at the retail stage, 

which subsequently further increases demand fluctuation at the wholesale stage and 

ultimately the manufacturer stage (see Figure 1.1).  

 

Figure 1.1: The bullwhip effect on demand at various stages of a distribution channel 

(Wikipedia). Ziet is German for time. 

The manufacturer suffers the greatest demand fluctuation as a result of a 

relatively minor consumer demand fluctuation. In most cases demand fluctuation 

introduces a large amount of overhead to each stage of the distribution channel 

resulting in higher product costs. The problem of reducing the bullwhip effect is 

generally approached in terms of improving demand forecast quality and improving 

production scheduling; however, it can also be considered in terms of minimizing 

demand fluctuation through the distribution channel [1] [2] [3]. The general solution 

approach it to predict demand in order to throttle production, manipulate stage-

intermediate storage space and prioritize orders in the distribution channel such that 

demand fluctuation is reduced at each stage. Prediction, throttling, and storage are a 
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recurring solution theme discussed by this thesis. The storage space at any stage in a 

channel can act as a buffer absorbing some demand fluctuations imposed by higher 

channel stages making it possible to impose a more stable demand on lower channel 

stages without compromising sales. The same effect can be achieved by spreading the 

response to demand received from a higher stage over time by delaying and 

prioritizing the demand. Much work has been devoted to developing MAS solutions 

to the bullwhip effect problem [4] [5] [2] [6] [7]. In short, a generalization of the 

bullwhip effect problem to the entire problem class becomes apparent when 

considering the problem in terms of reducing demand fluctuation. 

1.1.2 The Cluster Load Balancing Problem 

Another example from the problem class is related to server cluster load balancing. 

Consider a cluster supporting a large scale social media website, a search engine, or 

an online video streaming website. At certain times a particular region may place a lot 

of demand or even possibly an overwhelming demand on the clusters while at other 

times and for other region the cluster may be underutilized. The fluctuation in 

demand degrades the efficiency of the cluster by introducing cost overhead from 

idling, short upgrade cycles, customer dissatisfaction, and even reliability issues. The 

problem would not exist if users did not have fluctuating demand. 

It is possible for the cluster to considerably even out demand by caching 

media and media associations useful to each region and time when customer demand 

is low. The process of caching imposes demand on the cluster where otherwise it 

would be relatively idle. When demand increases a portion can be supported by the 
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cache effectively reducing end demand on the cluster at those times. By predicting the 

type of demand, relevant content can be cached increasing the cache effectiveness. 

Furthermore, the cluster may postpone some low priority operations such as loading 

new advertisement content in place old content to a time when demand is lower; such 

tasks will eventually complete within their required timeframe, but in this way 

demand fluctuation on the cluster can be reduced. 

1.1.3 The Smart Grid Problem 

Another instance of the problem class that this thesis develops on extensively is the 

smart grid problem. The smart grid is a conceptual power system in which the 

resources that are responsible for generation, transmission and distribution of 

electricity are not only decentralize and distributed across the system but their 

management and the management of customer demand leverages recent advances in 

communication and computation to maximize system operation. The distributed 

resources include (but are not limited to) power lines, generators, and electrical 

storage systems. Recently, MASs are being recognized as well suited for smart grid 

resource management. In this thesis we define the smart grid problem to be that of 

minimizing the individual expenses of satisfying the load of electricity customers 

while maximizing system effectiveness and efficiency. As discussed later the 

effectiveness and efficiency of a power system has a direct relation with the demand 

fluctuation of electricity customers and ultimately electricity rates. Although finding a 

solution to the smart grid problem is extremely complex and potentially infeasible at 

best, it is possible to approximate the problem and solution in terms of minimizing 
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global demand fluctuation in place of minimizing customer expenses and maximizing 

system effectiveness and efficiency. The smart grid problem is an example problem 

which has a good approximation contained in the fluctuation problem class while 

possibly not being a problem class instance itself. Similar to the bullwhip effect 

problem, the general approach to the smart problem approximation is to shift 

customer demand in order to minimize demand fluctuation and to improve the 

prediction of customer demand. Demand shifting is accomplished by advancing 

demand to charge a storage system such as a battery or is accomplished by 

postponing demand by prioritizing customer loads such that customer activity is not 

disturbed. 

Many other examples exist which for the most part have been investigated 

independently by the MAS community. As suggested by the examples, there are 

many similarities in the MAS solution approaches and the problem instances 

themselves making it possible to generalize the problems and solution approach and 

investigate the generalizations as to what extent common MAS techniques, such as 

coalitions, can contribute. 

1.2 Problem Statement 

The stabilization problem class consists of problems in which the main concern is the 

efficient production and consumption of a set of resources. Common to these 

problems are a set of producers and consumers each interested in maximizing the 

efficiency of their production and consumption respectively. In order to do so, a 

subset of the producers and consumers can modify their supply and demand 
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respectively using a buffer resource. The producers can meet varying demands; 

however, they are substantially more efficient at nearly any if not all steady 

production rates than equal or lower but fluctuating production rates. Consequently 

the cost of production in such problems is predominantly dependent on production 

fluctuation. Inherent to these problems is that consumption costs are directly related 

to production costs. The direct relationship may be imposed by an abstract cost 

function by the producer or it may be intrinsic. It is often the case that an abstract cost 

function may not capture the actual production costs but rather a best effort 

estimation in which case consumers may leverage the estimations to their advantage 

at the cost of the producer. An example of an abstract cost function would be 

amortizing the cost of producing and storing perishable commodities to supply 

fluctuating market demand. An example of an intrinsic production and consumption 

cost relations is the fuel consumption of a car being driven in the stop-and-go 

environment of a city compared to driving steadily on the highway, where the 

producer is the car, the product is displacement, the consumer is a driver with 

fluctuating displacement demands, and the cost is fuel. 

Another key property of the problem class is that producers and consumers are 

imposed restrictions on what they can observe and manipulate in the environment; in 

particular, they do not know of the current global supply or global demand. In other 

words, the environment which the class instances describe are inherently distributed. 

In summary the problem class has the following key properties: 

1. Producers and consumers are interested in being efficient 
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2. Production is generally most efficient at a steady rate 

3. Consumption costs are directly related to production efficiency 

4. Producers and consumers can adjust their demand via a buffer 

It is important to note that producers may or may not have the capacity to adjust their 

production rate independent of demand; however, in general over or under production 

is inefficient; consequently, producers will avoid such situations as much as possible 

if the option to over or under produce exists. We refer to the problem class having the 

properties above as fluctuation problems. 

It is worth emphasizing that the four fluctuation problem properties listed 

above imply that the problem of optimizing cost is strongly rooted in reducing 

fluctuation. Although reducing fluctuation does not necessarily guarantee cost 

reductions, particularly as a consequence of property 2, reducing fluctuation does in 

all significant cases reduce cost. Where such a general rule fall short of an optimal 

direct solution, MAS solutions, which are intended to address otherwise intangible 

problems, are intended to leverage such rules to produce the most effective practical 

solution. 

The general solution to any fluctuation problem is for producers and 

consumers to modify their supply and demand rate such that both fluctuation is 

minimized and their functionality, namely, providing the product demanded by 

consumers in the case of producers, and consuming the required product in the case 

of consumers, is not sacrificed.  
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Section 1.1 demonstrated the extent of the problem class by described various 

instances. Our intention is to generalize a solution for all instances of the problem 

class. We focus on the smart grid problem, in order to evaluate and investigate the 

proposed multi agent solutions to the entire problem class; for that reason, the 

following section develops on this problem more extensively. 

1.3 Smart Grid Power Network Problem 

The smart grid is a future intelligently managed distributed power system which is 

slowly replacing the current centralized power system. As a power system, the smart 

grid is concerned with the scalable, reliable and efficient transmission and distribution 

of power. The smart grid, like micro-girds, leverages heterogeneous low capacity 

distributed power system components in order to accomplish its objectives with 

higher scalability and reliability. However, where micro-grids suffer from the 

complexities of managing distributed resources, the smart grid harnesses advances in 

computation and communication in order to efficiently and even in some cases 

intelligently manage resources. 

The smart grid leverages advanced technologies such as the wireless sensor 

networks, communication networks, local direct current power, to name a few, in 

order to address real time pricing, and responsiveness requirements associated with 

power storage and renewable energy. 

The smart grid consists of power plants, utility companies, and the 

transmission and distribution networks, which for simplicity we collectively refer to 
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as the grid, and various residential, commercial and industrial customers. In terms of 

the problem class the grid is the producer and the customers are the consumers. 

Consumers, particularly those of the same class, have similar demand profiles. 

For instance, most customers are likely to turn their lights on at night while in the 

early morning they are mostly inactive. As a result global consumer demand has 

extreme peaks and dips. Enough investment in gird capacity must be made in order to 

reliably support peak global consumer demands. Most of the time this investment is 

underutilized since peak demands are short lived and infrequent. Other than low 

investment utilization, the producers also suffer inefficiency due to higher investment 

depreciation and increased unreliability as a result of fluctuating demand and 

production rates. Producers incorporate the costs they incur as a result of inefficient 

production into electricity rates. As a result consumers suffer higher electricity rates 

and lower reliability when production is inefficient. As a result both produces and 

consumers satisfy property 1, 2, and 3 of the problem class. 

Producers and consumers can advance their supply and demand respectively 

to an earlier time by using storage devices such as batteries or mechanical 

displacements. Consumers can additionally postpone inessential loads to a later time. 

These adjustments act as a controllable buffer between producers and consumers 

fulfilling property 4 of the problem class. 

In this example production is adjusted to be almost the same as demand since 

over producing will harm equipment and under producing will halt the electricity 

system. Nevertheless, some power plants may elect to over produce and discard 
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excess power in order to avoid fluctuating production rates although this is rare since 

discarding excess power is very costly. Often the power plant pays external sources to 

dispose of such excess power since it is cheaper [8] [9].  

We refer to the problem of efficiently managing buffering resources by 

individual producers and consumers in order to minimize supply and demand 

fluctuation and thereby minimizing costs, as the smart grid problem.  

1.4 Solution Approach 

Common to the stabilization problem class is the notion that:  

Steady utilization of resources produces more optimal results than overwhelming 

than idling resources in short bursts. 

This tendency results in a desire to schedule and manage resources accordingly. For 

instance, a wireless sensor network modeled as an MAS may be concerned with 

stabilizing network traffic so as to minimize contention and wasted energy at each 

node. The objective of stabilizing a set of global properties is not unique to 

scheduling systems. For instance, a modular robot modeled as an MAS may be 

concerned with stabilizing the center of gravity to insure the robot as a whole remains 

balanced despite dynamically changing external forces. 

By definition of the problem class, stabilizing global demand is central to 

achieving efficient production and consumption. Demand in this sense is an abstract 

concept with interpretations that vary from problem instance to problem instance. 

Global demand is the net effect of a distributed deficit which must be satisfied; as 
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such, global demand presents itself as a set of aggregate environment properties1. We 

differentiate between distributed local observations of demand as local demand and 

their aggregation as aggregate demand and the absolute demand of a disjoint system 

component as the global demand of that component.  

In order to stabilize global demand without sacrificing consumption, global 

demand must be offset and spread as evenly as possible over time. In order to offset 

global demand it must be predicted accurately. 

1.5 Investigation through Autonomy 

In the field of MAS, autonomy, in its most simple and common form, is understood 

as the amount in which an agent can realize its goals independent of anything external 

to itself. As such autonomy provides great insight into important internal MAS 

dependencies. Over our investigation into the smart grid problem and the generalized 

solution for the stabilization problem we strongly rely on the notion of autonomy to 

uncover key internal properties. In particular we explore the dynamics of the smart 

grid problem and solution by comparing the results of varying autonomy with one 

another. 

Finally we generalize our research process itself by defining two measures of 

autonomy which aid comparative investigation into goal dependencies of various 

                                                 
1 In most cases demand presents itself as one aggregate property such as citywide electricity 

demand, but this need not be the case. For example consider the problem of workers in a city. 

Workers may work from home and reducing demand on city roads as their demand for 

internet bandwidth is more satisfied. In this example, demand for roads and internet 

bandwidth form a set which describe a more general demand for connectivity. 
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classes of MAS solutions. We revisit the idea of autonomy and how it relate to 

uncovering core MAS solution dynamics more over subsequent chapters. 

1.6 Contributions 

Our key vision is to establish a conceptual framework which unifies many MAS 

problems and solutions, which until now have been considered independently, under 

the stabilization problem class. In the direction of realizing the first step towards that 

vision we define the simulation problem class, propose a general solution 

methodology, and apply the methodology in producing a solution approach for the 

smart grid problem. We then investigate the dynamics of the solution approach and 

indirectly the solution methodology by creating an MAS simulation framework that 

implements the smart grid and solution approach. In order to gauge the flexibility of 

the solution approach to MAS techniques we introduce and implement an ad-hoc 

coalition enhancement to the solution approach. We then investigate the solutions by 

simulating them under conditions where autonomy is controlled. Finally we 

generalize our investigation process itself by defining two measures of autonomy 

which capture the autonomy inherent to MAS techniques such as coalitions, learning, 

auctioning, negotiating, voting, etc., when applied under a set of reasonable 

restrictions to a baseline solution approach. In summary our research: 

1. Proposes a general solution that applies to all instances of the stabilization 

problem class 

2. Applies and evaluates the general solution using the smart grid problem 
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3. Produces an MAS simulation framework for stabilization problems and 

customizes the framework to simulate the smart grid problem 

4. Describes a relative and absolute measure of autonomy inherent to an MAS 

technique, such as learning or coalitions, when applied to a solution approach 

1.7 Overview 

In Chapter 2, we review the current state of related literature and the details of some 

MAS solutions related to the bullwhip problem and smart grid problem. In Chapter 3, 

we define the terminology and formulate the methodology that we propose as the 

basis of our solution to all stabilization problems. Chapter 4 elaborates the 

components of the smart grid and describes the approach we derive from the 

methodology to target the smart grid problem. Chapter 5 describes the details of our 

simulation framework and the configuration options it provides that are relevant to 

the smart grid and this thesis. Chapter 6 walks through the process of some 

preliminary simulations with the objective of finding and justifying configurations for 

3 simulations cases, namely the solo, neighborhood, and unity simulation cases. 

Chapter 7 interprets and justifies the results observed from each of the simulations 

configured in the previous chapter. Chapter 8 generalizes the investigation process 

covered in Chapter 6 and Chapter 7 by defining two measures of autonomy and using 

those measures to recapture our findings in Chapter 7. In Chapter 9 we summarize 

our results and their significance, and finally, as future work we propose two 

revisions to our solution methodology and two high profile MAS problems which 

despite appearances are in fact likely to be instances of the stabilization problems. 



15 

CHAPTER 2 LITERATURE REVIEW 

Our investigation covers defining and solving the stabilization problem, a new 

solution to the smart grid problem, and new autonomy measures. We have reviewed a 

large body of work done in each area. The following sections summarize our 

understanding of this body of work grouped by the areas covered in this thesis. 

2.1 Reviewing Stabilization Problem 

In Chapter 1 we have provided several examples of stabilization problems which have 

been addressed by MAS solutions. Over our literature review, we did not find any 

work addressing the generalized stabilization problem class as a whole. Most of the 

relevant MAS work are disparate studies and solutions on particular instances of the 

stabilization problem class. Although it is not feasible to enumerate through the MAS 

research addressing all subject categories that the stabilization problem class spans, 

we have reviewed a large body of work done covering fractional reserve banking, 

reservoir water management, stock trading, grid computing, communication network 

traffic, supply chain management (SCM), smart grid networks, intelligent traffic 

management. Although the problems posed in many of these subjects are good 

candidates for the stabilization problem class, the research work addressing the 

problems posed SCM and smart grid networks were most explanatory of the current 

state of relevant work relevant to the stabilization problem class. Except for the 

subject of grid computing, the relevant research in other subjects was difficult to 

exemplify in order to provide a good representation of the current state of related 

work; mostly this is due to the sparseness of related work relative to the body MAS 
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work in each of the other subjects. The following subsections summaries our 

understanding of the current state of relevant work through exemplifying the subjects 

of SCM and the smart grid. 

2.1.1 Supply Chain Management 

Extensive MAS researcher has been focused on SCM in which the primarily concern 

is establishing a stable supply chain (SC). This research predominantly builds on 

SCM domain concepts by applying various communication and collaboration 

protocols, learning and intelligence strategies, and other MAS techniques and 

principles. This has led to many disparate approaches and strategies which all share 

management of warehouse or inventory facilities to buffer fluctuations in supply and 

demand [10] [3] [5] [2] [6] [7]. For example, [2] proposes SC agents communicate 

both the amount of supplied needed to meet the demand they are facing but also the 

supplies needed to replenish inventory changes during the period it takes for the 

supplies to arrive. In this manner agent can communicate their over/under-order for a 

product down the SC allowing for each supplying agent to recognize short lived 

requests from its upstream demanding agents. The authors of [5] propose the use of 

genetic algorithms for forecasting demand at each inventory echelon having agent 

share information and demand forecasts using a communication protocol. The authors 

of [6] propose capturing typical SCM dynamism as a constraint network model and 

having agent optimize over the model by sharing information and following a genetic 

algorithm.  
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Ultimately, most of these approaches take a domain specific top down 

approach which is difficult to generalize and does not directly address the objective of 

reducing demand fluctuations in a SC.  

2.1.2 The Smart Grid 

There have been spanning developments in smart grid MAS [11] [12] [13] [14]. Some 

of these developments address the smart grid problem. But, even in the subject of 

applying MAS to solving the smart grid problem, a myriad of approaches have been 

taken. Although all of these independent solutions ultimately reduce demand 

fluctuation to some extent, they do so indirectly under the restrictions of the approach 

as opposed to under the restrictions of the actual objective. As such, the approaches 

lead to a diversification of solutions as opposed to a generalization. We will cover 

some popular approaches.  

2.1.2.1 Utility Based Approaches 

In the utility based approach agents are prescribed various utility functions describing 

what action to take and to what extent to take them. The agents then optimize over the 

utility space as opposed to the space measuring the final goals. For instance, consider 

the possible flow of energy for a smart grid agent from Figure 2.1. An agent may opt 

for a subset of the energy flows each based on a set of associated utility functions, say 

the utility of consuming and the utility of selling [15].  
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Figure 2.1: A possible set of energy flow options for a simple smart grid entity. In 

general generation cannot be directly consumed; however, some forms of generation 

(thermal collector enhanced solar panels) and some forms of consumption (water 

heating) allow the option of direct power consumption. 

In a similar approach, the difference in market utility at two points in time, 

where market utility is defined of the attractiveness of buying power from the market, 

has been used [16]. Other solutions focus more on general utility optimization that 

rely on multi-attribute utility theory and incorporate Monte Carlo and logistic 

regression methods with various agent learning techniques [17]. The final objective of 

the systems in each of the solutions is to reduce demand fluctuation. However, the 

utility function approach quickly leads to the definition of a solution space that does 

not capture the objective naturally and as such does not capture the interest of the 

agent. In the case of the smart grid the agents benefit from solving the systemic 

problem of demand fluctuation.  

2.1.2.2 Game Theoretic Solutions 

Many solution are based on game theoretic frameworks. The general approach is to 

design at least one game where the agents as players each try to receive the highest 

score or pay-off. Usually the pay-off is based on the cost of satisfying the agent’s load 

over a particular time [18] [19] [20] or in more complicated games the pay-off is the 

Storage Grid 

Consumption Generation 
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difference in value of the obtained power and the cost of obtaining the power [21]. 

Finally, as evidence of correctness it is demonstrated that optimum performance is 

achieved as the Nash equilibrium. Although these techniques do provide elegant easy 

to explore and verify solutions, the solutions are again very much specific to the 

smart grid problem. 

2.2 Defining Autonomy  

Autonomy is one of the key properties and motivations for MASs. In its general 

sense, autonomy is a very broad concept making it difficult to define or quantify. 

Consequently, autonomy has predominantly been studied subject to a particular 

definition and in a relational manner where always a set of agents are the object of the 

relation. The consensus is that autonomy is a directional spectrum which at its 

maximum presupposes independence or the absence of relationship and additionally 

requires goals to be minimally achievable [22] [23] [24] [25]. At the minimum end of 

the spectrum, the absence of autonomy assumes full dependence such that any level 

of functionality is not possible [22] [23] [24]. For instance, in the case of a teenage 

child and parent, the child is considered somewhat autonomous with respect to her 

parent since she is able to achieve some level of survival regardless of the parent but 

flourishes with the added care of the parent, where here we assume surviving well is 

the agent’s goal. The directionality of autonomy suggests that the degree of autonomy 

entity 𝐴 has from entity 𝐵 does not have to be the same visa-versa [24]. The 

directional nature of autonomy is evident from the child parent example. Concisely, 

autonomy is the degree in which a set of goals can be independently realized.  
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2.3 Autonomy Research Branches 

Research on agent autonomy can be split into two broad categories: 

1. Agent-user autonomy: Autonomy of agents from users 

2. Agent-agent or agent-environment autonomy: Autonomy of agents from non-

user entities 

Much research on autonomy targets understanding the autonomy of a set of 

agents from a set of users. A large application of such research is agent driven robotic 

technology designed to coexist or serve users such as astronomers [26] [27]. It is 

common in such research that a component of an agent goal be carrying out the 

preferences and will of the user set. In this research category, a common desire, and 

indeed one of key defining factors of the category, is to maximize autonomy of agents 

from users, since maximizing autonomy would result in agents serving their goals 

with minimal dependence to users [24]. This branch benefits from most of attention to 

research MAS autonomy. 

Another large yet less considered branch of autonomy research is concerned 

with understanding autonomy among various sets of agents or between a set of agents 

and a subset of the system environment not including users. The common desire in 

such research is to minimize complexity while maximizing agent and/or system 

effectiveness. In particular, the desire is to understand the relationship between 

autonomy and rules and policies, system distributiveness, and system or agent 

reliability [28] [29]. But perhaps more fundamental to this area of research, is 
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understanding the trade-off autonomy often exhibits with respect to performance, 

accuracy, and complexity (overhead) of agents or the system as a whole [30]. 

Most of the progress made in this branch does not target its fundamentals and 

furthermore is accomplished through independent studies which are indirectly related 

to the relationship between autonomy and solution performance/complexity. Our 

thesis is more interested in the agent-agent autonomy. 

2.4 Motivating Agent-Agent Autonomy 

The relationship between agents is often indirect and difficult to capture; autonomy 

measures such as those discussed in Section 2.5 provide a means, not only to detect 

but also measure the impact agents have on one another’s ability to achieve their goal, 

whether their goals be completely the same or not.  

To underline the importance of autonomy and what role it plays in MAS it is 

helpful to look at MAS from a general vantage point. In essence MAS are practical 

approximations to otherwise intangible solutions. As a particular form of Autonomy 

Oriented Computation (AOC) [31], the general approach enabling MAS 

approximations can be viewed as: 

 Eliminating or relaxing dependencies and entanglements that restrict and 

complicate the proper solution such that the new approximate solution space 

can adequately represent the original solution space 

 Breaking down the intangible goal of the complete problem into smaller 

tangible goals which composed together cover most of the intangible goal 
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When designing a MAS to approximate a difficult problem, the designer 

consciously or subconsciously prunes away dependencies in the original solution and 

decomposes the original goal into sub-goals such that each sub-goal can be achieved 

with little to no dependence to the other. Each mechanism that undertakes a sub-goal 

forms an autonomous component of one agent or a set of similar or dissimilar 

interdependent agents (i.e., a coalition). By design such an autonomous component 

has some degree of autonomy with respect to other autonomous components which 

each are undertaking their corresponding sub-goals. The ability to detect and measure 

the autonomy of various solution components allows us to fine tune how the original 

problem solution is broken up to create a MAS approximation. The ability to detect 

and measure autonomy not only allows us to fine tune a MAS during design time but 

also opens the door for a dynamically adjusting MAS approximation particularly of 

interest in problem which has a dynamic not easily predictable or generalizable goal 

[32] [33] [25] [34] [35] [23] [22]. 

2.5 Measuring Autonomy 

Let 𝔸 be the set of all agents in a MAS and 𝑆 ⊆ 𝔸 a nonempty subset and 𝑖 ∈ 𝔸 an 

agent. For some ratio scale measure of performance, let 𝑣𝑆
𝑖  be the performance 

corresponding to agent 𝑖 in the presence of only the agents in set 𝑆, and let 𝑣𝑖
𝑖 be the 

performance of agent 𝑖 in the presence of only itself. Table 2.1 lists various autonomy 

measures and their formalization as reasoned and defined by Bryanov and Hexmoor 

[24]. 
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Table 2.1: Formulation of some autonomy definitions. 

Definition Formulation 

Autonomy of agent 𝒊 with 

respect to agent set 𝑺 

𝐴𝑆
𝑖 =

𝑣𝑆
𝑖

𝑣𝑖
𝑖
 

Group autonomy of set 𝑺 𝐴𝑆 =∑𝐴𝑆∖{𝑖}
𝑖

𝑖∈𝑆

 

Autonomy of agent set 𝑺 with 

respect to agent 𝒌 

𝐴𝑘
𝑆 =

∑ 𝐴(𝑆∪{𝑘})∖{𝑖}
𝑖

𝑖∈𝑆

𝐴𝑆
 

  

Such measurements open the door to many research opportunities in MAS; 

however, most research building on these measures is directed toward dynamic 

adjustment of autonomy, particularly, that of dynamically adjusting agent-user 

autonomy. Not much work leverages autonomy measures in order to understand the 

role agent-agent autonomy plays is defining limits on approximation effectives and 

complexity. For instance, using the measures from Table 2.1 and similar derived 

measures, given only a preconfigured black box MAS, and an agent performance 

metric, it is possible for one to produce a directed weighted graph describing the 

autonomy of each agent in the system with respect to others at a given moment. 

Given a set of autonomy graphs capturing snapshots of the MAS, in the case where 

the MAS is heterogeneous or composed of collaborative units, one could potentially 

classify each agent type and collaborating component. This classification can be done 

by measuring the network flows across various graph cuts. Since only a black box 

MAS is needed one could apply such an approach to reverse engineer naturally 
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occurring MASs or uncover implicit agent collaboration not stipulated by the MAS 

design. However, most importantly perhaps, it is possible to understand the flow of 

information and effects in the system and to identify points where autonomy, 

accuracy, and complexity can be fine-tuned. We will subsequently investigate some 

ideas posed here; however, most of them will be left for future work.  

Aside from there not being much research leveraging agent-agent autonomy, 

current measures are subjective to particular instances of a simulation. It is not easy to 

compare agent autonomy across multiple similar simulations each leveraging set of 

varying MAS techniques such as coalitions, learning, auctioning, and etc. 

In this thesis we introduce two measures which are independent of the 

relationship between individual agents corresponding of different MASs. The 

proposed measures are absolute across all MAS enhancements possible for a given 

solution approach. We further show how these measures can simplify finding 

relations between autonomy, computational complexity, and accuracy for a given 

solution approach.  
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CHAPTER 3 METHODOLOGY 

As discussed in Section 1.2 and 1.4, our approach to solving the class of problems 

posed in Section 1.2, is reducing demand fluctuation. This Chapter describes a 

general methodology for reducing demand fluctuation by leveraging the buffering 

resources described in Section 1.3. The methodology is general in the sense that it is 

independent of consumer collaboration and relies only on modifying demand by 

partially advancing and/or postponing. 

3.1 Basics and Demand Profile 

For the sake of simplicity, let consumer refer to a collection of one or more 

consumers and let demand refer to the demand of a consumer. Let a property profile 

refer to the expected behavior of a stochastic and periodic property over and expected 

period; in particular, let demand profile refer to the expected demand over the 

duration of the expected demand period. Recall demand is periodic and stochastic 

(see Section 1.2); therefore, a consumer will know only an estimation of its demand 

profile and in particular demand period. In most of this Chapter, we consider property 

profiles in place of actual properties to explain the general problem structure and 

describe the proposed solution methodology without being limited by the 

complexities of the stochastic nature of these properties. Figure 3.1 illustrates a 

simple demand profile. We will use the demand profile in Figure 3.1 to illustrate the 

demand stabilization methodology described in this Chapter. 
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Figure 3.1: An illustration of an example demand profile. The blue curve indicated the 

expected demand at a given moment in the expected demand period of a consumer 

collection. The green curve indicates the mean of the demand over all time. The region 

where demand is negative corresponds to production or an excess of product. 

It is important to note that demand can be negative in which case the 

interpretation is that the consumer is in fact a producer or provider; this has no 

ramification on the problem objectives since a producer or provider is just as 

interested in stabilizing production as a consumer is interested in stabilizing demand. 

As long as an entity has a positive (negative) mean demand we refer to it as a 

consumer (producer). Although the following methodology only refers to consumers 

the methodology applies to both consumers and producers. 

3.2 Demand Stabilization 

If demand adjustments were optimal and were able to successfully eliminate demand 

fluctuations, then the resulting demand profile would be the constant mean of the 

original demand over all time; in terms of Figure 3.1, such an adjustment would 
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modify the demand profile curve in blue to be the mean line in green. Our proposed 

demand stabilization methodology is motivated by this line of reasoning. 

Let 𝑑(𝑡), 𝛿(𝑡), 𝑑̃(𝑡), and 𝛿(𝑡) respectively be the demand, demand 

modification, demand profile, and demand modification profile of a particular 

consumer at time 𝑡. In general we will decorate a periodic stochastic variable with a 

tilde to indicate its profile. Let 𝑇 be a time interval starting from 0 spanning one 

period of 𝛿(𝑡); |𝑇| is then the expected period duration of the demand of the 

consumer. The mean demand of the consumer is: 

𝑑̅ =
1

|𝑇|
 ∫𝑑̃(𝑡)𝑑𝑡
𝑇

  (3.1) 

Since demand adjustment is limited to advancing and/or postponing demand 

and since collectively a consumer does not consume or produce more or less after 

adjusting its demand, then stochastically the total adjustment over 𝑇 should satisfy: 

∫𝛿(𝑡)𝑑𝑡
𝑇

 = 0 (3.2) 

All demand modifications are accomplished via buffering resources which 

either advance or postpone demand. Consequently, 𝛿(𝑡) is limited by the total 

buffering resource capacity 𝑅𝑐 as follows: 

|∫ 𝛿(𝑡)𝑑𝑡
𝑡1

𝑡0

| ≤ 𝑅𝑐 ∀ (𝑡0, 𝑡1) (3.3) 
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where (𝑡0, 𝑡1) is any possible time interval; as a result this is also true for the demand 

modification profile as well. The interpretation of (3.3) is simply that a consumer may 

not adjust its demand over any time interval more than the consumer’s buffering 

resources support. 

The demand resulting after applying the adjustment 𝛿(𝑡) is: 

𝑑𝛿(𝑡) = 𝑑(𝑡) + 𝛿(𝑡) (3.4) 

From (3.2) it is clear that the mean of any modified demand 𝑑𝛿(𝑡) is still 𝑑̅. As 

discussed earlier, the optimal demand modification, 𝛿⋆(𝑡), must satisfy: 

𝑑̅ = 𝑑(𝑡) + 𝛿⋆(𝑡) (3.5) 

Therefore, with information about the mean demand and demand, the optimal 

demand modification can be computed by: 

𝛿⋆(𝑡) = 𝑑̅ − 𝑑(𝑡) (3.6) 

The interpretation of 𝛿⋆(𝑡) is to advance or postpone demand exceeding the 

average to some other point in time where demand is short of average. In other words, 

the demand modification redistributes peak demands to moments with relatively low 

demand (see Figure 3.2). It is important to note demand is not compromised; that is, 

all consumer demand is always satisfied at the moment when the consumer makes the 

demand; demand modifications simply act as a buffer between the stabilizing 

consumer demands. Figure 3.2 illustrates some of defined terms and the central 

methodology concept.  
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Figure 3.2: The red area is the total amount of demand exceeding the mean demand 

(total over demand) which is equal to the yellow area which is the total demand short 

of the mean demand (total under demand). Ideally, 𝛅̃⋆(𝐭) redistributes the over and 

under demand of 𝐝̃(𝐭) such that the resulting demand profile is precisely 𝐝̅. 

It is important to note that finding and exploiting 𝛿⋆(𝑡) is challenging. In 

practice the 𝑑̃(𝑡) and 𝑑̅ are generally not known beforehand, therefore 𝑑̃(𝑡) and 𝑑̅ 

can, in general, only be estimations from 𝑑(𝑡) –we do not consider other information 

that may be available in particular problem instances. Consequently only estimations 

of 𝛿⋆(𝑡) are possible. Further complicating the matter is that generally 𝑑(𝑡) is only 

known at or after moment 𝑡 has come to pass. Although, in some problem instances, 

it is possible that demand is unknown even until sometime in the past, and in other 

problem instances demand is known in advance; we will consider the case that 

demand is known only at the current time 𝑡 and before since the other cases can be 

reduced to this case by applying other methodologies when precise demand in the 

future is known beforehand. Since it is not possible to compute 𝛿⋆(𝑡) we can only 

𝑡 

𝑑̃(𝑡) 

−𝛿⋆(𝑡) 

𝑑̅ 

𝛿⋆ 
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rely on the periodic stochastic nature of demand to predict or estimate demand in the 

future. As such, aside from external information inherent to particular problem 

instances, in general, it is only possible to estimate 𝛿⋆(𝑡𝑓) based on 𝑑(𝑡𝑝) where 𝑡 is 

the current moment in time and 𝑡𝑝 ≤ 𝑡 < 𝑡𝑓. Estimations based on local observations 

are likely to be less effective than aggregate information, and consequently some 

form of consumer collaboration would be beneficial for estimating 𝛿⋆(𝑡) more 

effectively. Proposed prediction and collaboration techniques and their evaluations 

are not related to the general methodology and are discussed in Chapter 4. Finally, 

only a limited amount of resources for advancing or postponing demand are available. 

Therefore, applying 𝛿𝑖
⋆(𝑡) is unlikely to be within means and thus achieving 

optimality is unlikely. In the following, we present a distributed, approximated 

approach to minimize demand fluctuations based on the above optimality criterion. 

3.3 Minimizing Demand Fluctuations 

Until now we referred to 𝛿⋆(𝑡) as optimal since it completely removes all demand 

fluctuation. However, when considering only a prediction of 𝛿⋆(𝑡) is available, the 

notion of optimal demand modification must capture the likelihood of any demand at 

time 𝑡𝑓 occurring such that the buffering resource state at 𝑡𝑓 can be prepared to 

accommodate arising circumstances accordingly. As such, the problem of minimizing 

demand fluctuation is difficult to solve deterministically, particularly when 

considering the interference of multiple customers on global demand. As a result, the 

methodology developed in this Chapter suffices to approximate the solution in an 

efficient distributed manner so that it can be applied as a MAS. We will still consider 
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the same definitions to further describe the methodology; however, in practice, 

particularly when describing an application in Chapter 4, all value must be 

approximated except for 𝑑(𝑡𝑝) where 𝑡𝑝 ≤ 𝑡. 

In order to reduce demand fluctuation and consequently costs, some 𝛿(𝑡)must 

be found such that it is as similar to 𝛿⋆(𝑡) as possible while satisfying restrictions 

dictated in (3.2) and (3.3). The interpretation of 𝛿(𝑡) being similar to 𝛿⋆(𝑡) is 

dependent on the particular problem being addressed, but in general, it can be 

interpreted as minimizing the inherent cost function of the problem; however, since 

directly minimizing such a cost function is generally impractical, other similarity or 

dissimilarity based cost functions are more desirable. Since we are guaranteed that 

reducing demand fluctuation reduces costs, minimizing or maximizing any similarity- 

or dissimilarity-based cost functions respectively will result in minimizing costs as 

well. Using such cost functions in place of the inherent problem cost function could 

result in different priorities when allocating buffering resources. Therefore, although 

we are guaranteed given enough buffering resources, both cost functions limit to the 

same cost optimum, we are not guaranteed the same when resources are a limiting 

factor. Examples of possible simple difference cost functions are the mean squared 

error and the Minkowski distance; and an example of a possible similarity cost 

function is the cosine distance. 

Although a cost function could be used to produce an algorithm to find 𝛿(𝑡) 

from 𝛿⋆(𝑡), we instead directly describe an algorithm which guarantees 𝛿(𝑡) will 
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converge to 𝛿⋆(𝑡) as resources are increased. This algorithm (see Section 4.4) will 

have an associated cost function which is not directly of interest in this thesis. 

Our proposed methodology uses a greedy heuristic to find 𝛿(𝑡) from 𝛿⋆(𝑡). In order 

to describe the heuristic we formalize the resource capacity restrictions on find 𝛿(𝑡). 

As previously mentioned in this section and discussed in Section 1.3, there are two 

forms of resources: one advances and one postpones demand, referred to as 𝑅𝑎 and 

𝑅𝑝, respectively. 𝑅𝑎 and 𝑅𝑝 act as a buffer to positive and negative amounts of 

product each having capacity 𝑅𝑐
𝑎 and 𝑅𝑐

𝑝
 respectively. Therefore, 𝑅𝑐 = 𝑅𝑐

𝑎+𝑅𝑐
𝑝
, 

which is consistent with the earlier definition of 𝑅𝑐. When demand is advanced, some 

product is buffered into 𝑅𝑎 prior to being needed. When demand is postponed, the 

absence of some product (or the interest in some product) is buffered into 𝑅𝑝 for a 

later time. For a resource 𝑅𝑥, where 𝑥 ∈ {𝑎, 𝑝}, the amount of free and used buffer 

space at time 𝑡 is 𝑅𝑓
𝑥(𝑡) and 𝑅𝑢

𝑥(𝑡) respectively. Let 𝑅𝑥(𝑡) be defined as 𝑅𝑥(𝑡) =

𝑅𝑥
𝑎(𝑡) + 𝑅𝑥

𝑝(𝑡) where 𝑥 ∈ {𝑓, 𝑢} (free capacity, and used capacity respectively). 

Let the expected demand exceeding average and its total over a time interval 

be referred to as over demand, 𝑑̂𝑖(𝑡), and total over demand, Σ̂𝑖(𝑡), respectively. 

Similarly, let the expected demand short of average and its total over a time interval 

be referred to as under demand, 𝑑̌𝑖(𝑡), and total under demand, Σ̌𝑖(𝑡), respectively. 

Currently we define the time interval to be (𝑡, 𝑡 + Δ𝑡) for some constant foresight Δ𝑡; 

however, in a more general manner, it is possible to define the interval as (𝑡, 𝑓(𝑡)) for 

some foresight function 𝑓 as discussed in later chapters. Table 3.1 provides the 

formulation for these definitions. 
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Table 3.1: The formulation of over and under demand at instant 𝐭 and total over and 

total under demand at an instant 𝐭 over some predefined foresight 𝚫𝐭. 

 Instantaneous Total 

Over demand 𝑑̂(𝑡) = max  {−𝛿⋆(𝑡) , 0} Σ̂(𝑡) = ∫ 𝑑̂(𝑥)𝑑𝑥
𝑡+Δ𝑡

𝑡

 

Under demand 𝑑̌(𝑡) = max  {𝛿⋆(𝑡), 0} Σ̌(𝑡) = ∫ 𝑑̌(𝑥)𝑑𝑥
𝑡+Δ𝑡

𝑡

 

  

Total over demand indicates how much resources must be buffered in order to 

level demand over the foreseeable future Δ𝑡; it also indicates how much buffering 

resources are needed to accomplish the task.  

The heuristic used to find 𝛿(𝑡) is to ration out the used buffer resources 𝑅𝑢 

proportional to the amount of over demand when demand is over average and to 

ration out the free buffer resources 𝑅𝑓 proportional to the amount of under demand 

when demand is lower than average. In other words, when demand is over average, 

ration out the buffered product proportional to the over demand such that any 

foreseeable unit of over demand gets the same unit of buffered product; when demand 

is under average buffer product proportional to the under demand such that any 

foreseeable unit of under demand receive the same unit of free buffer space. The 

following equations formalizes the description of 𝛿(𝑡): 
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𝛿(𝑡) =

{
 
 

 
 𝛿⋆(𝑡) (min {

𝑅𝑢(𝑡)

Σ̂(𝑡)
, 1}) , 𝛿⋆(𝑡) < 0

𝛿⋆(𝑡) (min {
𝑅𝑓(𝑡)

Σ̌(𝑡)
, 1}) , 𝛿⋆(𝑡) > 0

0, 𝛿⋆(𝑡) = 0

 (3.7) 

Let 𝜇(𝑡) be defined as: 

𝜇(𝑡) =

{
 
 

 
 min {

𝑅𝑢(𝑡)

Σ̂(𝑡)
, 1} , 𝛿⋆(𝑡) < 0

min {
𝑅𝑓(𝑡)

Σ̌(𝑡)
, 1} , 𝛿⋆(𝑡) > 0

0, 𝛿⋆(𝑡) = 0

 (3.8) 

then (3.7) can be simplified as 𝛿(𝑡) = 𝜇(𝑡)𝛿⋆(𝑡). 

Figure 3.3 illustrates the demand redistribution process. Figure 3.4 illustrates 

the resulting demand profile after modifying the profile in Figure 3.3 by 𝛿(𝑡). 

 

Figure 3.3: The process of modifying the demand profile indirectly with 𝛅(𝐭). The area 

in red is the expected amount displaced by 𝛅(𝐭) to the statistically equal area in yellow. 

The redistributed area is less than or equal to the total resource capacity 𝐑𝐜. 

 

𝑡 

𝑑̃(𝑡) 

−𝛿⋆(𝑡) 

𝑑̅ 

−𝛿(𝑡) 

𝛿 
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Figure 3.4 The resulting demand profile after applying the demand profile, 𝛅̃(𝐭), in 

Figure 3.3. 
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CHAPTER 4 METHODOLOGY APPLICATION 

TO THE SMART GRID PROBLEM 

This chapter describes several multi-agent solutions based on the methodology posed 

by this thesis to the smart grid problem described in Section 1.2. As discussed earlier, 

the smart grid problem is an instance of a larger problem class. Our solutions to the 

smart grid problem described in this chapter serve to demonstrate and investigate the 

application and methodology posed by this thesis to the entire problem class. The 

only assumptions of the methodology are the four properties of the problem class 

described in Section 1.2; therefore, the methodology applies to the entire problem 

class as exemplified by the solutions in this section. 

4.1 Smart Grid Problem Simulation 

The smart grid simulation is a multi-agent system consisting of electricity customers 

which each can potentially have their own electricity generation and storage facilities. 

All customers are connected to the grid where the grid simulates the electricity 

distribution and transition network and power plants. It is also possible that many 

customers have peer-to-peer electricity lines where direct peers are referred to as 

neighbors.  

For the purposes of this study we consider the case where the environment is 

simulated at intervals of 1 hour and the demand profile captures expected customer 

behavior over 24 hours. 
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The following subsections describe the components of the smart grid problem 

simulation in more detail; however, many details considered in the simulation are 

beyond the scope of this study. 

4.1.1 Random Model 

Key stochastic simulation parameters are simulated by Random Models (RM). 

Depending on requirements, a RM can be based on either a function or statistical 

data. The function or data captures the expected value of the stochastic parameter 

being modeled in the form of 𝑓(𝑡) at given time 𝑡; in other words the function or data 

represents the profile of the simulated variable. In its simplest form, the RM uses 𝑓(𝑡) 

as a seed to find the simulated stochastic parameter value Γ(𝑡) as: 

Γ(𝑡) = 𝑐𝜓(𝑓(𝑡), 𝜎) (4.1) 

where 𝜓 is the normal distribution with mean 𝑓(𝑡) and standard deviation 𝜎 and 𝑐 is a 

scaling constant.  

4.1.2 Generators 

Power generators of any type may be simulated. The main differentiating factor of a 

generator is its generation profile. For our purposes we will focus on wind turbine and 

solar cell generators with the profiles shown in Figure 4.1 and Figure 4.2. 



38 

 

Figure 4.1: The generation profile of an average wind generator; the profile is 

primarily dependent on wind speed. 

 

 

Figure 4.2: The generation profile of an average solar cell grid; the profile is primarily 

dependent on sunlight intensity. 

Generators are simulated by RM. Let 𝑔𝑖(𝑡) refer to the generation of the generator of 

customer 𝑖 at time 𝑡.  
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4.1.3 Storage Devices 

The storage device is the primary buffering resource in the smart grid. Storage 

devices simply store electrical power for a later time and can displace demand by 

forwarding it to an earlier time. Storage devices of any type, which include batteries, 

fuel cells, mechanical displacers, can be simulated. For the purposes of this thesis we 

focus only on the capacity 𝑆𝑖
𝑐, free capacity 𝑆𝑖

𝑓
, and used capacity 𝑆𝑖

𝑢 parameters of a 

storage device. These parameters are related by: 

𝑆𝑖
𝑐 = 𝑆𝑖

𝑓
+ 𝑆𝑖

𝑢 (4.2) 

4.1.4 Customers 

Each customer may have up to one generator and/or one storage device. Every 

customer in the smart grid has an electrical management system which is responsible 

for autonomously managing the customer’s resources such that the customers load is 

satisfied with minimal cost. Every management system is modeled by an agent in the 

simulation. 

Every customer has a load profile which describes the load behavior of the 

customer. The load of customer 𝑖 at time 𝑡 is simulated by the RM, 𝑙𝑖(𝑡). The load of 

a customer consists of a mission critical component, which is essential to the 

customer such that it must be satisfied immediately upon request, and an uncritical 

component, which can be postponed to a later time without interrupting the activities 

of the customer but must be eventually satisfied. Examples of critical loads are 

turning on lights at night time, turning on the water heater just before the use of 
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heated water, and recording a TV program. Examples of uncritical loads are turning 

on the water heater or washing and drying cloth despite there being no intended use 

of heated water or clean cloths anytime soon. It is assumed that all uncritical loads 

must be satisfied statistically over the duration of the expected demand period. This 

thesis only investigates the simple 24 hour daily periodic behavior of customer 

demand. For the sake of simplicity, instead of a RM we use a constant 𝜆𝑖 to identify 

the critical fraction of the customer load. Therefore the critical and uncritical load of a 

customer are 𝑙𝑖
𝑐 = 𝜆𝑖𝑙𝑖(𝑡) and 𝑙𝑖

𝑢 = (1 − 𝜆𝑖)𝑙𝑖(𝑡) respectively. 

Different classes of customers, in particular commercial, industrial, and 

residential customers are differentiated based on their load profiles, generators, and 

storage devices. The load profiles of the various customer classes are as shown in 

Figure 4.3, Figure 4.4, and Figure 4.5.  

 

Figure 4.3: The residential load profile. 
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Figure 4.4: The commercial load profile. 

 

 

Figure 4.5: The industrial load profile. 

4.1.5 Neighbors 

Customers may be directly connected by a limited number of private peer-to-peer 

transmission lines to other customers effectively forming a graph where customer 
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agents are nodes and connections are edges. Let 𝑎𝑖 be an agent 𝑖 in such a graph, then 

𝑁ℎ(𝑎𝑖) is the graph theoretic ℎ-neighborhood of 𝑎𝑖 which is a set containing all 

agents reachable from 𝑎𝑖 using at most ℎ hops. For convenience let 𝑁(𝑎𝑖) = 𝑁
1(𝑎𝑖). 

The simulation supports direct power trades between any 𝑎𝑖 and the agents in 

𝑁(𝑎𝑖). Trade rates in the neighborhood are advantageous over trade rates with the 

grid for both buyer and seller. 

4.1.6 The Grid 

The purpose of the grid is to simulate the electricity rate of the system as well as be a 

final source and destination for demand. The grid represents all elements of the power 

system remaining from the customers and their resources. The grid includes the 

transmission and distribution networks, power plants, load serving entities (LSE), 

independent system operators (ISO) etc. All demand which is not managed by the 

agents themselves must be managed by the grid: as a result all excess electricity or 

electrical deficiency is respectively bought by or from the grid. Details beyond how 

the electricity rates are determined by the grid are beyond the scope of this thesis. 

It has been shown that electricity valuation is dominated by a direct 

exponential relationship with global demand [18]. Let the global demand 

modification be: 

Δ(𝑡) =∑𝛿𝑖(𝑡)

𝑖

 (4.3) 

and the global demand be: 
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𝐷(𝑡) =∑𝑑𝑖(𝑡)

𝑖

 (4.4) 

and the global modified demand or global demand imposed on the grid be: 

𝐷Δ(𝑡) =∑𝑑𝑖(𝑡) + 𝛿𝑖(𝑡)

𝑖

 (4.5) 

where 𝑖 indicates a particular agent. The grid must compute the base electricity rate 

𝑟(𝑡) before any trades can be made; however, 𝐷Δ(𝑡) cannot be determined until all 

trades in hour 𝑡 are complete. As a results the gird must compute 𝑟(𝑡) based on an 

estimation of the expected demand 𝐷̃Δ(𝑡). The manner in which the simulation 

computes estimation will be described shortly. For the purposes of this thesis we 

consider the following simple base electricity rate function: 

𝑟(𝑥) = 𝑐1𝑒
𝑟1𝑥 + 𝑐2𝑒

𝑟2𝑥 (4.6) 

where 𝑥 = 𝐷̃Δ(𝑡) and the constants 𝑐1, 𝑟1, 𝑐2 and 𝑟2 are selected so 𝑟(𝑡) fits average 

observed electricity rates as a function of demand. Equation (4.6) does not capture the 

expected electricity rate behavior when 𝐷̃(𝑡) < 0 nor is this condition expected since 

as such the grid would become a consumer for any 𝑡 satisfying the condition. 

Therefore, the grid is simulated such that at any moment the total amount of power 

the grid buys from the agents is never more than what the grid expects to sell to the 

agents. 
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As a result of the direct exponential relationship of 𝑟(𝑥) with respect to global 

demand, 𝑟(𝑥)must be monotonically increasing, and therefore after fitting 𝑟(𝑥) to 

observations, 𝑐1, 𝑟1, 𝑐2 and 𝑟2 must, without loss of generality, satisfy: 

𝑟1 ≥ 𝑟2 𝑟1 ≥ 0 𝑐1 > 0 𝑐1 + 𝑐2 > 0 (4.7) 

Figure 4.7 shows a general graph of 𝑟(𝑥). 

Since the number and type of customers may vary over simulation instances, 

the average amount of demand from the grid will also vary as a result. Therefore, 𝑐1, 

𝑟1, 𝑐2 and 𝑟2 must be recomputed for each simulation instance so that 𝑟(𝑥) fits 

observations despite variations in expected total periodic global demand for each 

simulation. Refitting 𝑟(𝑥) for each simulation instance allows for the results of 

different instances to be comparable. Refitting 𝑟(𝑥) can be interpreted as assigning a 

generation capacity to the grid proportional to the expected customer demand of any 

particular simulation instance. 

In general the grid profits when trading with agents. The grid buys electricity 

from agents at a lower rate than the rate at which it sells electricity to agents. For 

simplicity, the system simulates the grid’s buying price from the base price 𝑟(𝑥) as: 

𝑟𝑏(𝑥) = (1 − 𝜅)𝑟(𝑥) (4.8) 

and the selling price as: 

𝑟𝑠(𝑥) = (1 + 𝜅)𝑟(𝑥) (4.9) 
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where 0 < 𝜅 < 1. As explained earlier agents trade at an electricity rate which is 

advantageous to the grid, otherwise there is little motivation for the agents to invest in 

a peer-to-peer network and no motivation to trade amongst each other when the grid 

is functioning. Therefore, any trade among agents has an electricity rate greater than 

𝑟𝑏(𝑥) and less than 𝑟𝑠(𝑥). For simplicity we let all agent-agent trades to be conducted 

at the base electricity rate 𝑟(𝑡). 

4.2 Confirming Problem Properties Are Satisfied 

This sections confirms that the simulation environment indeed captures the key 

properties of the problem class we are interested in investigating. The smart grid 

problem inherently captures properties 1 and 2 as discussed in Section 1.3; as such, 

the simulation also captures these properties. Since agents of the smart grid can either 

advance their load using their storage equipment or can postpone low priority loads to 

a future time, property 4 is also satisfied by the simulation. Property 3 requires that 

the expenses of satisfying customer electricity loads in general be lower when global 

demand from the grid and demand from other agents is more stable. The remainder of 

this section provides a high level discussion of why (4.6), (3.8) and (4.9) satisfy 

property 3.  

Since electricity rates increase exponentially as global demand increases, it is 

intuitive that reducing peak global demand will reduce electricity rates at those times 

drastically while increasing global demand at times where global demand is relatively 

lower results in a relatively small increase in electricity rates. Let us consider that the 

total amount of any agents demand over time is not compromised. Then, reducing 
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peak global demands requires increasing periods with low global demand, intuitively 

suggesting that reducing global demand fluctuation without reducing the net demand 

of any agent over time can drastically reduce electricity rates. 

Global demand fluctuation can be measured in many ways. Regardless of the 

measure being used, global demand fluctuation decreases as the distance between the 

maximum and minimum global demand decreases. 

Let 𝜙 be an upper bound on the arithmetic2 range of 𝐷Δ(𝑡) over 𝑇 as follows: 

0 ≤ max
𝑡∈𝑇

𝐷Δ(𝑡) − min
𝑡∈𝑇

𝐷Δ(𝑡) ≤ 𝜙 < max
𝑡∈𝑇

𝐷(𝑡) − min
𝑡∈𝑇

𝐷(𝑡) (4.10) 

In order for the total global demand to be conserved after demand modifications it 

must be: 

𝐷̅|𝑇| = ∫𝐷̃(𝑡)𝑑𝑡
𝑇

= ∫𝐷̃Δ(𝑡)𝑑𝑡
𝑇

 (4.11) 

as a result of which follows: 

𝐷̅ =
1

|𝑇|
∫𝐷̃(𝑡)𝑑𝑡
𝑇

=
1

|𝑇|
∫𝐷̃Δ(𝑡)𝑑𝑡
𝑇

 (4.12) 

Consequently: 

min
𝑡∈𝑇

𝐷̃Δ(𝑡) ≤ 𝐷̅ ≤ max
𝑡∈𝑇

𝐷̃Δ(𝑡) (4.13) 

and therefore: 

                                                 
2 Not to be confused with the range of a function. 
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lim
𝜙→0

𝐷̃Δ(𝑡) = 𝐷̅ ∀ 𝑡 ∈ 𝑇 (4.14) 

That is the global demand resulting from demand modifications that remove global 

demand fluctuation must be exactly the mean of the original unmodified global 

demand. This result is general and applies to any problem in the problem class under 

consideration. 

For illustrative purposes let the global demand 𝐷(𝑡) and the base electricity 

rate 𝑟(𝑥) over 𝑇 be as in Figure 4.6 and Figure 4.7 respectively.  

 

 Global demand  

 Mean net demand 

 

 

Figure 4.6: A simple sinusoidal global demand 𝐃(𝐭) over 𝐓 for illustrative purposes.  
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 electricity rates 

 minimum electricity rate 

 

 

Figure 4.7: An illustration of a general electricity valuation function. 

Let 𝑇̂ and 𝑇̌ be defined as the times when global demand is over average and 

under average respectively: 

𝑇̂ = {𝑡 ∈ 𝑇|𝐷(𝑡) > 𝐷̅} (4.15) 

𝑇̌ = {𝑡 ∈ 𝑇|𝐷(𝑡) < 𝐷̅} (4.16) 

Let Δ(𝑡) = 𝜇, then 𝐷Δ(𝑡) = 𝐷(𝑡) + 𝜇. For any 𝑡̂ ∈ 𝑇̂ and 𝑡̌ ∈ 𝑇̌, since 𝑟(𝑥) is 

monotonically increasing, it must be 𝑟(𝐷(𝑡̂)) > 𝑟(𝐷(𝑡̌)). Considering restriction 

(4.7) and the expected fact that 𝐷(𝑡) ≥ 0, it follows that: 
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𝑐1𝑒
𝑟1(𝐷(𝑡̂)+𝜇) + 𝑐2𝑒

𝑟2(𝐷(𝑡̂)+𝜇) > 𝑐1𝑒
𝑟1(𝐷(𝑡̌)+𝜇) + 𝑐2𝑒

𝑟2(𝐷(𝑡̌)+𝜇)

→ 𝑐1𝑒
𝑟1𝜇(𝑒𝑟1𝐷(𝑡̂) − 𝑒𝑟1𝐷(𝑡̌)) > 𝑐2𝑒

𝑟2𝜇(𝑒𝑟2𝐷(𝑡̌) − 𝑒𝑟2𝐷(𝑡̂))

→ 𝑐1𝑟1𝑒
𝑟1𝜇(𝑒𝑟1𝐷(𝑡̂) − 𝑒𝑟1𝐷(𝑡̌)) > 𝑐2𝑟2𝑒

𝑟2𝜇(𝑒𝑟2𝐷(𝑡̌) − 𝑒𝑟2𝐷(𝑡̂)) 

(4.17) 

As a result it must be: 

𝑐1𝑟1𝑒
𝑟1(𝐷(𝑡̂)+𝜇) + 𝑐2𝑟2𝑒

𝑟2(𝐷(𝑡̂)+𝜇) > 𝑐1𝑟1𝑒
𝑟1(𝐷(𝑡̌)+𝜇) + 𝑐2𝑟2𝑒

𝑟2(𝐷(𝑡̌)+𝜇) (4.18) 

Since: 

𝜕𝑟

𝜕𝜇
= 𝑐1𝑟1𝑒

𝑟1(𝐷(𝑡̂)+𝜇) + 𝑐2𝑟2𝑒
𝑟2(𝐷(𝑡̂)+𝜇) (4.19) 

it follows from (3.8): 

𝜕𝑟(𝐷(𝑡̂))

𝜕𝜇
>
𝜕𝑟(𝐷(𝑡̌))

𝜕𝜇
 (4.20) 

The interpretation of (4.20) is that the rate of change in electricity prices with 

respect to adjusting global demand when global demand is above average is higher 

than that of when global demand is under average. As a result by redistributing over 

average global demand to under average global demand not only does the average 

cost of electricity decrease but the amount of electricity demanded by agents when 

prices are high also gets replaced by demand when prices are lower. 

Inequality (4.17) and (4.20) together indicate electricity rates must reduce 

when shifting demand from any time 𝑡̂ to any time 𝑡̌ as long as 𝐷Δ(𝑡̂) ≥ 𝐷̅ ≥ 𝐷Δ(𝑡̌) 

after shifting. Figure 4.8 shows the electricity rate associated with the global demand 
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profile of Figure 4.6 as determined by the electricity valuation function of Figure 4.7 

illustrating how higher-than-average electricity demands have a much higher 

associated electricity rate while lower-than-average electricity rates have a relatively 

negligible lower electricity rate and as such illustrated why property 3 holds. 

 

 electricity rate as a function of time 

 electricity rate of global demand 𝑑̅ 

 

 

Figure 4.8: The electricity rate associated with the global demand profile. Under the 

claim restrictions the electricity rate associated with 𝐝̅ is minimum. 
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CHAPTER 5 SMART GRID SIMULATOR 

This chapter describes the relevant details of the multi agent smart grid simulator 

developed for this thesis. The simulator was developed in a general manner as to 

allow investigations in various aspects of multi agent smart grids scenarios and MASs 

as a whole. In particular, the simulator supports various electricity and resource 

auctions, infrastructure failure, agent algorithms, and social structures, in addition to 

configuring various agent classes and resources. The simulation framework was built 

on repast symphony [36]. 

This chapter is concerned with describing the configuration parameters which 

determine a smart grid simulation environment. This is key in understanding the 

context of the results and observation in the following chapters. 

5.1 Random Model 

Central to describing the simulation environment is the concept of random models. 

Random models are used to model time dependent stochastic properties such as the 

amount of load each home needs to satisfy over at a given moment in time. The 

random model can be based on any one of the following models: 

1. data model: statistical data that models a properties behavior over time 

2. function model: a function of time that models a properties behavior 

3. random distribution 

A random model uses a normal distribution with a mean corresponding to 

some scaling of the model’s basis in order to generate a random value corresponding 



52 

to a property of interest. This allows the simulation to mimic the chaos of the real 

world while still preserving the macroscopic properties of interest. 

Each model describes a function 𝑓(𝑡) relating the simulation moment 𝑡 to a 

random value as described in subsection 0. A random model is constructed from 𝑓(𝑡) 

by: 

Γ(𝑡) = 𝑠𝜓(𝑓(𝑡), 𝜎) (5.1) 

where 𝑠 is a scaling factor and 𝜓(𝜇, 𝜎) is an instance from a normal distribution if 

standard deviation 𝜎 about the mean 𝜇. Figure 5.1 illustrates the values generated by 

a random model describing wind power generation for an agent. 

 

Figure 5.1: A graph of the interpolated values of a random model with σ = 0.15 

describing the wind power generation profile of a particular agent (blue), and the 

expected wind power generation profile for any agent described by f(t) from a data 

model (red). 

In some simulator versions, it is possible to synthesize an agent’s prediction of Γ(𝑡 +

Δ𝑡) at Δ𝑡 in the future by: 
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Γan(𝑡, Δ𝑡) = 𝜓(Γ(𝑡), 𝑘 ⋅ log(Δ𝑡 + 1)) (5.2) 

where 𝑘 > 0 is constant selects at simulation design. Synthesizing agent prediction 

can be replaced in favor of having agents actually performing predictions. Figure 5.2 

illustrates the increase in prediction error as agents make predictions more distant into 

the future. 

 

Figure 5.2: A graph of the interpolated values predicted by an agent from the random 

model (blue) and the expected values (red) shown in Figure 5.1. The horizontal axis 

indicates the number of hours into the future the prediction is made. The error in 

prediction increases logarithmically as the agent makes more distant predictions into 

the future. 

5.2 Models 

5.2.1 Data Model 

As the name suggests, statistical data is used to directly define 𝑓(𝑡). Table 5.1 and 

Figure 5.3 provide an example data model describing expected wind generation for a 

given hour of a day.  



54 

Table 5.1: Data model describing the expected wind generation for a given hour of any 

day. 

Hour of day 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Generation 1 1.1 1.2 1.2 1.5 1.5 1.5 1.1 1 0.9 0.9 0.5 0.4 0.3 0.5 0.3 1 1.1 1.2 1.2 1.5 1.5 1.5 1.1 

  

 

Figure 5.3: Graph of the interpolation of the data model in Table 5.1. 

5.2.2 Function Model 

A function model is defined by: 

𝑓(𝑡) = (𝑔 ∘ ℎ)(𝑡) (5.3) 

where ℎ(𝑡) can be any property during a simulation at time 𝑡, such as average agent 

demand, and 𝑔(𝑥) is any function describing the relationship between ℎ and the 

property being modeled. Eq. 5.4 and Figure 5.4 provide an example function model 

describing the electricity rate for a given time. 
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Eq. 5.4: A function model f(t) describing the price at time t where h(t) is the average 

power demand during a simulation and g(x) = c1 e
r1x + c2 e

r2x with c1 = 2.298, r1 =
0.5805, c2 = 0.3028, r2 = 2.537 describes the relation between average demand and 

electricity rate. 

𝑓(𝑡) = (𝑔 ∘ ℎ)(𝑡) = 𝑐1𝑒
𝑟1ℎ(𝑡) + 𝑐2𝑒

𝑟2ℎ(𝑡) 

 

Figure 5.4: A graph of g(x) from Eq. 5.4. 

5.2.3 Radom Distribution 

As the name suggests, 𝑓(𝑡) is defined by a random distribution 𝛾. The distribution is 

used to construct an infinite random set of values 𝑆, and 𝑓 randomly maps 𝑇 → 𝑆. A 

random distribution can be any one from Table 5.2. 

Table 5.2: The list of supported random distributions from which a random model may be 

constructed. 

B through E E through N N though Z 

Beta Exponential Normal 

Binomial Exponential Power Poisson 

Breit Wigner Gamma Poisson Slow 
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Breit Wigner Mean Square Hyperbolic StudentT 

Chi Square Hyper Geometric Uniform 

Constant Logarithmic Von Mises 

Empirical Log Normal Zeta 

Empirical Walker Negative Binomial  

  

5.3 Load Factor 

The key measurement we us to capture the degree in which an agent realizes its goals 

is the load factor (LF). LF captures the amount of fluctuation in demand over a given 

period of time. As captured by Definition 5.1, LF is the average demand over the 

maximum demand for a given period; as such, for nonnegative demand the LF 

measure is confined between 0 and 1 indicating minimum and maximum performance 

respectively. 

Definition 5.1: Load Factor 

𝑳𝑭 =
∫ 𝒅(𝒕)𝒅𝒕
𝒕𝟏
𝒕𝟎

(𝒕𝟏 − 𝒕𝟐) 𝐦𝐚𝐱
𝒕∈(𝒕𝟎,𝒕𝟏)

𝒅(𝒕)
 

  

5.4 Simulation Time 

The simulation is based on discrete units of time; however, as indicated in the 

following sections, the simulations environment can be configured to support any unit 

of time limited only to simulation hardware. In the case where environment volatility 

must be captured the simulation time interval can be configured as small as necessary 
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to provide result accuracy. For the purposes of this thesis we configure the 

simulations to support 1 hour intervals. 

5.5 Simulation Environment Configuration 

The simulation environment is very flexible leading to complicated configuration 

scenarios. Since we are interested in isolating most of the environment parameters in 

our investigations, it is important to know the simulators general configurability but 

details are omitted.  

It is possible to configure the simulator to either simulate supplier entities 

using individual agents or to synthesize supplier entity dynamics through a singular 

grid agent (see Table 5.3). 

Table 5.3: General configurations options governing the simulation of supplier side 

dynamics. 

Simulated Suppliers Synthetic Suppliers 

several power plants responsible for 

generating power 

A singular grid agent responsible for 

power generation, pricing, and 

distribution power auctioning agents responsible for 

pricing and distribution 

  

We omit the details of configuring simulated suppliers and focus only on 

describe general configurability of the grid agents. Simplified this way, every 

simulation environment is constructed from a grid agent and a nonempty set of 

customer agents.  
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Most of the configurable components are constructed from random models, 

random distributions and value adjusters. The simulation components are configured 

by XML as described in the following subsections. 

5.6 Configuring Random Models 

Random models are not defined individually but instead are defined in classes. When 

a simulation starts, the necessary random models are randomly drawn from instances 

of random model classes. Random model classes are defined using the following 

XML structure of Pseudo Code 5.1. 

<[PropertyName]> 

   <Failure>…</Failure> 

   <Repair>…</Repair> 

   <Mean>…</Mean> 

   <MeanFactor>…</MeanFactor> 

   <StandardDeviation>…</StandardDeviation> 

   <PredictionError>…</PredictionError> 

   <CostFactor>…</CostFactor> 

   <Adjuster>…</Adjuster> 

</[PropertyName]> 

Pseudo Code 5.1: The configuration template for a random model. 

The [PropertyName] is a placeholder for the XML friendly name of the environment 

property being simulated by the random model (i.e. PowerRate simulating electricity 

rates, GenerationModel simulating power generation, etc). 

 The element: 

1. Failure: is a random distribution of failure events 

2. Repair: is a random distribution of repair time durations 

3. Mean: is a model describing 𝑓(𝑡) for random model instances 
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4. MeanFactor: a random distribution of 𝑠 for random instances 

5. StandardDeviation: a random distribution of 𝜎 for random model instances 

6. PredictionError: a random distribution of 𝑘 for random model instances 

7. CostFactor: a random distribution of unit cost per final value for random 

model instances 

8. Adjuster: a collection of nested adjusters each adjusting the final random 

model values 

5.6.1 Configuring Data Models 

The following XML structure describes a data model: 

<Mean type="DataModel" format="json"> 

   [1, 1.1, 1.2, 1.2, 1.5, 1.5, 1.5, 1.1, 1, 0.9, 0.9, 0.5, 0.4, 

    0.3, 0.5, 0.3, 0.4, 0.6, 0.8, 0.9, 1, 1.1, 1.2, 1.1] 

</Mean> 

Code Snippet 5.1: An example of configuring a data model. 

The type attribute must have a value of DataModel. The format attribute indicates the 

format in which the data is provided, the value can be XML, json, etc. The example 

provided above describes the data model for wind generation presented in Table 5.1. 

5.6.2 Configuring Function Models 

The following XML structure describes function models: 
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<Mean type="ExponentialDynamicFunctionModel"> 

   <A value="2.298"/> 

   <B value="0.5808"/> 

   <C value="0.3028"/> 

   <D value="2.537"/> 

   <DynamicFunctionList> 

      <DynamicFunction value="getNormalPredictedDemandByPeriod"> 

         <Adjuster>…</Adjuster> 

       </DynamicFunction> 

   </DynamicFunctionList> 

</Mean> 

Code Snippet 5.2: An example of configuring a function model; in particular this example 

configures and exponential function model. 

The type attribute indicates the Java class which describes the function 𝑔(𝑥) of the 

model. Depending on the function various parameters may be configurable each in an 

element (i.e. A is 𝑐1, B is  𝑟1, C is 𝑐2, D is 𝑟2 from Eq. 5.4). The dynamic function list, 

provides a list of Java methods from the simulation which are composed together to 

construct ℎ(𝑡); as in the example above, usually one such function is used. The 

Adjuster elements adjust the value returned by the dynamic function they are nested. 

5.6.3 Configuring Random Distributions 

The following XML is an example definition for a normal random distribution: 

<[PlaceHolder] type=”Normal”> 

   <Mean value="2" /> 

   <StandardDeviation value="0.2" /> 

   <Adjuster>…</Adjuster> 

</[PlaceHolder]> 

Code Snippet 5.3: An example of configuring a random distribution. The [Placeholder] 

should be replaced by the property name being modeled by the distribution. 
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The element name [PlaceHolder] is a placeholder for the component being described 

by a random distribution (i.e. MeanFactor, CostFactor, etc). The type attribute 

indicates the type of distribution, which can be any of the distributions in Table 5.2. 

Depending on the type of distribution various elements are used to provide 

distribution parameter values such as mean, and standard deviation for the normal 

distribution. The Adjuster elements adjust any final values as described in the 

following subsection. 

5.6.4 Configuring Adjusters  

Some randomly generated values may not be directly applicable to the property they 

describe. For example a normal distribution may infrequently produce negative 

values in which case a clamp adjuster may for such values to be mapped to zero. 

Adjusters are simple function which refine value and can be nested in one another. 

5.7 Grid Agent Configuration 

The grid agent calculates electricity rates based on its prediction of power demand for 

a given moment. Predictions can be done is several ways; however, we will focus on 

using expected aggregate demand given a set of samples from the past as the 

prediction mechanism. 

The grid can simulate failures in distribution, generation capacity, etc. The 

frequency and type of failures, their extent, and their repair can be configured using 

the corresponding XML elements. All failures including grid failures are disabled in 

our simulations and their configurations will not be explained further. 

The grid is defined by the GridModel XML element as follows: 
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<GridModel> 

   <Failure>…</Failure> 

   <Repair>…</Repair> 

   <BlackoutRadius>…</BlackoutRadius> 

   <PowerRateRandomModel>…</PowerRateRandomModel> 

   <PriceAdjustment>…</PriceAdjustment> 

</GridModel> 

Code Snippet 5.4: A template for configuring a grid agent. 

  The element: 

1. Failure: is a random distribution defining the failure frequency 

2. Repair: is a random distribution defining repair durations 

3. BlackoutRadius: is a random distribution describing the graph theoretic 

neighborhood of an agent from where a blackout originates 

4. PowerRateRandomModel: a random model describing electricity rates 

5. PriceAdjustment: a constant value 𝑚 such that given base electricity price 𝑝, 

the grid by back price is (1 − 𝑚)𝑝 and the sales price to customers is 

(1 + 𝑚)𝑝 

5.8 Customer Agent Configuration 

Customer agents are not configured individually but in classes of similar agents. Each 

customer agent class is defined by an AgentGnerator XML element which has a name 

and population attribute (see: Code Snippet 5.5). Each agent has the following 

configurable components: 

1. Load profile 

2. Load suspension profile 

3. Generation profile 
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4. Storage system 

5. Foresight 

Each of these components are in turn selected from a corresponding 

component classes. Each component class is specified by a corresponding element in 

the AgentGenerator element as shown in Code Snippet 5.5. At start up, the simulation 

generates the number of customer instances specified by the population attribute, each 

time selecting an instance of each agent component from the corresponding 

component class. 

<AgentGenerator name="Commercial Agents" population="50"> 

   <Failure>…</Failure> 

   <Repair>…</Repair> 

   <SuspendableModelGenerator>…</SuspendableModelGenerator> 

   <LoadModelGenerator>…</LoadModelGenerator> 

   <GenerationModelGenerator>…</GenerationModelGenerator> 

   <StorageGenerator>…</StorageGenerator>  

   <ForesightRandomParameter>…</ForesightRandomParameter> 

</AgentGenerator> 

Code Snippet 5.5: Example XML describing a class of commercial agents which may 

represent hospitals, shopping malls, and other such business, from which 50 instances will 

be randomly generated and added to the environment. 

The element: 

 Failure: is a random distribution defining the failure frequency 

 Repair: is a random distribution defining repair durations 

 SuspendableModelGenerator: is a random distribution and defines the class of 

load suspension profiles 

 LoadModelGenerator: is a random model and defines a class of load profiles  
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 GenerationModelGenerator: is a random model and describes generation 

profiles 

 StorageGenerator: describes a storage class, see 5.9 for more details 

 ForesightRandomParameter: describes a class of values from which an 

agent’s foresight is drawn 

5.9 Storage System Configuration 

Instances of a customer agent’s storage are not directly configured, instead a storage 

class from which storage instances are randomly drawn from are configured. The 

following XML structure describes a storage class: 

<StorageGenerator> 

   <Failure>…</Failure> 

   <Repair>…</Repair> 

   <Capacity>…</Capacity> 

   <Efficiency>…</Efficiency> 

   <Retention>…</Retention> 

   <CostFactor>…</CostFactor> 

</StorageGenerator> 

<StorageGenerator> 

   <Failure>…</Failure> 

   <Repair>…</Repair> 

   <Capacity>…</Capacity> 

   <Efficiency>…</Efficiency> 

   <Retention>…</Retention> 

   <CostFactor>…</CostFactor> 

</StorageGenerator> 

Code Snippet 5.6: A template for configuring a storage system. 

There element: 

 Failure: is a random distribution defining the failure frequency 
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 Repair: is a random distribution defining repair durations 

 Capacity: is a random distribution defining possible storage capacities 

 Efficiency: is a random distribution defining the charging/discharging 

efficiency of a storage unit 

 Retention: is a random distribution defining the fraction of stored power 

retained at any moment 

 CostFactor: is a random distribution defining the cost per capacity of 

maintaining the storage unit at any momenta 

5.10 Network Configurations 

As described in previous chapters, the network distributing power and 

communication among agents forms a graph. In general all customer agents are 

connected to the grid agents. The graph determining how customer agents are 

connected to one another is generated randomly and is governed by the following 

options: 

 Minimum Connectivity: the minimum number of customer agents any 

particular customer agent must be connected. 

 Maximum Connectivity: the maximum number of customer agents any 

particular customer agent can possibly be connected. 

 Strongly Connected: whether or not there is a path between any pair customer 

agents which do not involve the grid agents. 
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5.11 Algorithm Specific Configurations 

Depending on personal and collaborative strategies many other configurations exist. 

These configurations will be discussed when the simulation evaluating a particular 

strategy is considered. These configuration include the preferences of a customer 

agent when conducting business with others, the amount and type of agent memory 

and etc. 
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CHAPTER 6 SIMULATIONS 

In order to understand the dynamics and tradeoffs of the proposed approach, we 

investigate the dependencies the system and agents have toward achieving their goals. 

In other words, we investigate the autonomy of the agents while they follow the 

proposed approach. In that direction, we carefully craft and configure three 

simulation cases each following the proposed approach but with varying levels of 

agent collaboration. More specifically, in this chapter we will: 

1. identify a set of values for the simulation variables such that they minimally 

limit the effectiveness of each simulation case 

2. define simulation cases such that they only vary in autonomy 

To accomplish each of the aforementioned items respectively we: 

1. conduct some preliminary investigations into the simulation sensitivity of 

problematic variables 

2. we define each simulation case such that the agents of each vary only on what 

their goals can possibly depend 

The next section informally clarifies some concepts that are used in accomplishing 

item 2 of the above lists. We will revisit these concepts in more detail at the 

beginning of Chapter 8. 

6.1 Controlling Autonomy 

To summarize what was mentioned in Section 2.2, agent autonomy is simply the 

degree in which an agent is dependent on external factors in order to achieve its goals 

to some appreciable extent. To control autonomy without changing the approach, we 
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can only vary the dependencies since the approach defines the goals. It is worth 

emphasizing that the notion of goal being used here is general in the sense that it does 

not change; particularly, a goal is not dependent on any particular state of the 

environment. The external dependencies an agent has in achieving its goals 

irrespective of its environmental state is limited to the information and control over 

its external environment. We refer to the information and control and agent has over 

the environment external to itself as the agent’s authority over its environment or 

simply the agent’s authority. We will revisit the concept of authority in Chapter 8, but 

until then we will be explicit about agent information and control when referring to 

the notion of authority.  

Agent authority in terms of the smart grid simulation cases considered in this 

thesis, refers to: 

1. the information an agent has regarding the demand profile of other agents  

2. the control the agent has over buffering resources other than its own 

The reason other forms of information and control are not relevant in the smart grid 

simulations is because the methodology and approach the simulations follow only 

rely on demand profiles and buffering resources. 

Therefore, we control the autonomy of the simulation cases by controlling 

agent access to external demand profiles and buffering resources. This is possible 

since an agent must achieve its goals while only relying on the authority it has 

available. Consequently, in the most extreme case, if an agent is given no authority, it 
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will be forced to achieve its goals independent of everything external to itself; 

consequently, such an agent must be fully autonomous. 

6.2 Simulation Case Overview 

Table 6.1 describes the three elected simulation classes each corresponding to a 

general category of agent cooperation. 

Table 6.1: Simulations grouped by collaboration category of the agents. 

 Autonomy Distribution 

Resource 

Complexity 

Communication 

Overhead 

Solo 

Agents are 

completely 

autonomous 

Independent Distributed Low None 

Neighbors 

Agents form ad-

hoc bonds 

Loosely coupled 

without 

commitment  

Distributed Medium Low 

Unity 

Agents merge 

into one entity 

Tightly coupled 

Fully 

centralized 

Generally 

Intractable 

Generally 

Intractable 

  

The results of these simulations give insight into the relationship between 

autonomy and optimality. The following subsections describe the simulations and 
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their configurations. Each configuration includes both environment and agent 

algorithm configurations. 

Across all simulations the reduction of demand fluctuation based on the 

approach described in Chapter 4 is held constant. Only the degree of collaboration, 

particularly that defined by the exchange of information and the exchange of impact 

on the environment (i.e. agent 𝐴 acts on its local environment on behalf of agent 𝐵 

who cannot directly or efficiently act on the local environment of 𝐴) is allowed to 

vary. 

6.3 Common Configuration 

The environment in all the simulations is composed of the agents in Table 6.2. 

Table 6.2: Agent composition of the simulations. 

Number Agent Type Description 

1 Grid Synthesizes the market, distribution, suppliers  

200 Smart homes Simulates a household who have installed a system to 

manage their load, storage, generation, and transactions 

with the grid and possibly neighbors 

200 Normal homes Simulates a traditional household who manually manages 

their load and purchases from the grid but may install a 

simple device to manage purchases from neighbors as 

well 
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50 Modern 

commercial 

entities 

Simulates commercial environments like shopping malls, 

banks, and hospitals which manage their load, storage, 

generation, and transactions with the grid and possibly 

neighbors through system similar to smart homes 

50 Traditional 

commercial 

entities 

Simulates commercial environments like shopping malls, 

banks, and hospitals which manually manage their load 

and purchases from the grid but may install a device to 

manage purchases from neighbors as well 

25 Industrial 

entities 

Simulates industries heavily dependent on electricity such 

as aluminum and chemical plants; these industries can 

only operate by consuming power from the grid and 

possibly neighbors and cannot rely on storage 

 

6.3.1 Smart Home and Normal Home Configurations 

Smart homes are configured as described in Code Snippet 6.1. The normal home 

follows the same configurations except that it is lacking corresponding configurations 

for storage and generation since normal homes do not have generation and storage. 

Also normal homes are unable to effectively manage their load and therefore the 

amount of load they can suspend for later is set to 10% of that possible by a smart 

home. The relationship between the smart home and normal home suspension 

capabilities is not relevant to the study and its effects are canceled by holding the 

relationship constant across simulations. 
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<AgentGenerator name="Homes Batt/Win" population="200"> 

   <SuspendableModelGenerator type="StaticRandomModel"> 

      <Mean type="ConstantModel" format="json"> 

         <Constant value="0.2"/> 

      </Mean> 

   </SuspendableModelGenerator> 

   <LoadModelGenerator name="LoadModel"> 

      <Mean type="DataModel" format="json"> 

         [0.54, 0.5, 0.47, 0.46, 0.48, 0.53, 0.59, 0.62, 0.65, 

          0.68, 0.72, 0.76, 0.8, 0.84, 0.87, 0.9, 0.92, 0.96, 

          1, 1.02, 0.98, 0.87, 0.73, 0.62] 

      </Mean> 

      <StandardDeviation type="Constant"> 

         <Constant value="0.1"/> 

      </StandardDeviation> 

      <Adjuster type="Clamp"> 

         <Min value="0"/> 

      </Adjuster> 

   </LoadModelGenerator> 

   <GenerationModelGenerator> 

      <Mean type="DataModel" format="json"> 

         [1, 1.1, 1.2, 1.2, 1.5, 1.5, 1.5, 1.1, 1, 0.9, 0.9, 

          0.5, 0.4, 0.3, 0.5, 0.3, 0.4, 0.6, 0.8, 0.9, 1, 1.1, 

          1.2, 1.1] 

      </Mean> 

      <StandardDeviation type="Constant"> 

         <Constant value="0.1"/> 

      </StandardDeviation> 

      <CostFactor type="Constant"> 

         <Constant value="3.6"/> 

      </CostFactor> 

      <Adjuster type="Clamp"> 

         <Min value="0"/> 

      </Adjuster> 
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   </GenerationModelGenerator> 

   <StorageGenerator> 

      <Capacity type="Normal"> 

         <Mean value="1.5"/> 

         <StandardDeviation value="0.2"></StandardDeviation> 

         <Adjuster> 

            <Min value="1.0"/> 

            <Max value="2.0"/> 

         </Adjuster> 

      </Capacity> 

      <CostFactor type="Constant"> 

         <Constant value=".48"/> 

      </CostFactor> 

   </StorageGenerator> 

   <ForesightRandomParameter type="Constant"> 

      <Constant value="24"/>  

   </ForesightRandomParameter> 

</AgentGenerator> 

Code Snippet 6.1: Configuration of smart homes. 

Figure 6.1 and Figure 6.2 shows the defining characteristic of homes; the general load 

and generation profile. As indicated by Figure 6.1 a typical home starts in the day 

with gradually increasing power requirements until it peaking around dark when the 

whole family is at home and lights are needed. The power requirement typically 

dwindle down as people rest reaching a minimum early in the morning. The home 

generation profile is based on that of wind turbines. No particular generation profile 

impacts our comparison of performance among simulations since the profile is 

constant over the simulations; however, the existence of generation adds to the 

dynamism of the environment allowing for a larger range of stabilization performance 

results. A more dynamic environment provides a more challenging optimization task 
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for the agents of the various simulations ultimately increasing possible result spreads. 

The wind generation profile and home load profile are more similar than that of solar 

generation profiles particular when considering a phase shift in the wind profile. A 

phase shift requires less storage and load suspension making wind energy more 

suitable for homes. 

 

Figure 6.1: The expected home load over a day. 
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Figure 6.2: The expected home generation over a day. The generation profile is based 

on wind generation. 

6.3.2 Modern and Traditional Commercial Entity Configurations 

The modern commercial entity configurations appear in Code Snippet 6.2. Normal 

commercial entities are configured the same except that they lack storage and 

generation and their associated configurations. Load suspension capability of 

commercial entities are less than homes due to the more mission critical nature of the 

loads of commercial entities. The particular value selected for suspension capacity is 

of no relevance to the study and cancels out since the configurations is held constant. 

<AgentGenerator name="Commercial Batt/Sol" population="50"> 

   <SuspendableModelGenerator type="StaticRandomModel"> 

      <Mean type="ConstantModel" format="json"> 

         <Constant value="0.1"/> 

      </Mean> 

   </SuspendableModelGenerator> 

   <LoadModelGenerator name="LoadModel"> 

      <Mean type="DataModel" format="json"> 
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         [0.83, 0.81, 0.8, 0.8, 0.8, 0.77, 0.8, 0.96, 1.18, 1.36, 

          1.46, 1.5, 1.51, 1.53, 1.52, 1.46, 1.3, 1.19, 1.15, 

          1.14, 1.05, 0.96, 0.89, 0.86] 

      </Mean> 

      <StandardDeviation type="Constant"> 

      <Constant value="0.2"/> 

      </StandardDeviation> 

      <Adjuster type="Clamp"> 

         <Min value="0"/> 

      </Adjuster> 

   </LoadModelGenerator> 

   <GenerationModelGenerator> 

      <Mean type="DataModel" format="json"> 

         [0, 0, 0, 0, 0, 0.1, 0.8, 1.5, 1.7, 1.9, 2.2, 2.2, 2.2, 

          1.9, 1.7, 1.6, 1.5, 1.5, 0.8, 0.4, 0, 0, 0, 0] 

      </Mean> 

      <StandardDeviation type="Constant"> 

         <Constant value="0.2"/> 

      </StandardDeviation> 

      <CostFactor type="Constant"> 

         <Constant value="3.6"/> 

      </CostFactor> 

      <Adjuster type="Clamp"> 

         <Min value="0"/> 

      </Adjuster> 

   </GenerationModelGenerator> 

   <StorageGenerator> 

      <Capacity type="Normal"> 

         <Mean value="25"/> 

         <StandardDeviation value="0.2"></StandardDeviation> 

         <Adjuster> 

            <Min value="20.0"/> 

            <Max value="30.0"/> 

         </Adjuster> 
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      </Capacity> 

      <CostFactor type="Constant"> 

         <Constant value=".42"/> 

      </CostFactor> 

   </StorageGenerator> 

   <ForesightRandomParameter type="Constant"> 

      <Constant value="24"></Constant> 

   </ForesightRandomParameter> 

</AgentGenerator> 

Code Snippet 6.2: Modern commercial entity configuration. 

Figure 6.3 and Figure 6.4 show the commercial load and generation profile 

respectively. Similar to homes opting for commercial agents to use solar energy has 

not impact on our study other than to increase the amount of dynamism and 

optimization challenge for agents. The load of commercial entities drastically as 

businesses and their customers start their daily routine; the load slowly dwindles 

people return home carrying their loads with them. As clear from Figure 6.3 and 

Figure 6.4 the commercial load profile and solar generation profile matches very well 

reducing storage and load management requirement. 
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Figure 6.3: Expected commercial load over a day. 

 

 

Figure 6.4: The expected commercial generation over a day. The generation profile is 

based on solar energy. 
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6.3.3 Industry Agents 

The configurations for the industry agents appear in Code Snippet 6.3: Industrial 

agent configurations. Industrial agents can suspend a large portion of their load to off 

peak hours. The load profile of industries are shown in the following. 

<AgentGenerator name="Industrial" population="25"> 

   <SuspendableModelGenerator type="StaticRandomModel"> 

      <Mean type="ConstantModel" format="json"> 

         <Constant value="0.5"/> 

      </Mean> 

   </SuspendableModelGenerator> 

   <LoadModelGenerator name="LoadModel"> 

      <Mean type="DataModel" format="json"> 

         [9.99, 9.71, 9.57, 9.68, 10.29, 11.63, 13.53, 15.56, 

          17.3, 18.5, 19.23, 19.54, 19.8, 19.8, 19.41, 18.54, 

          17.25, 16.26, 15.84, 15.39, 14.23, 12.72, 11.38, 10.5] 

      </Mean> 

      <StandardDeviation type="Constant"> 

         <Constant value="2"/> 

      </StandardDeviation> 

      <Adjuster type="Clamp"> 

         <Min value="0"/> 

      </Adjuster> 

   </LoadModelGenerator> 

   <ForesightRandomParameter type="Constant"> 

      <Constant value="24"/> 

   </ForesightRandomParameter> 

</AgentGenerator> 

Code Snippet 6.3: Industrial agent configurations. 

Figure 6.5 shows the load profile of industry entities. The load profile is similar to 

that of commercial entities; however, power demand at any given hour is much higher 

in scale. 
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Figure 6.5: The expected power requirements of industrial entities over a day. 
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Performance includes equilibrium stability, how well an agent can use additional 

resources to improve load factor (see Definition 5.1), and load factor values 

themselves. 

In the following we present some initial results on finding the appropriate 

configurations for our simulation. 

6.4 Initial Results of Configurations 

Table 6.3 lists the general environment configuration parameters their description and 

their values as selected from the results of the preliminary analysis. Other parameters 

exist but are irrelevant. 

Table 6.3: General simulation parameters and their values. 

Name Value Description 

GenerationScrooge False If true the agent will try to spend all its generation on 

filling its storage before selling it to the grid; however, 

by doing so the storage may predictably fill forcing all 

future excess generation to be sold to the grid. 

Regardless of the setting ultimately all excess power is 

sold to the grid, the setting simply controls whether the 

agent will procrastinate the sale as a result of trying to 

keep the excess power as long as possible. 

ForceDumping False  If true the agent can choose to waste excess generation 

instead of selling it to the grid in order to maintain a 

more steady demand fluctuation. 
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AgentMemory 1,200 The number of hours into the past that the agent can 

remember and draw predictions from. 

GridBuyBack ∞ A hard limit on the total amount of power the grid will 

buy back from all agents until the future. 

ConnectedGraph True Insures a path exists between any two neighbors through 

the neighborhood graph. 

Suspension False Indicates where agents are allowed to suspend power. 

This value is false unless in some simulation it is 

specified otherwise. 

Connectivity 12 The number of neighbors surrounding any agent, this 

value is a best effort.  

OrderNeighbors True Indicates whether agents pick neighbors in some order 

of preference when collaborating or if they are oblivious 

to the neighbor identities and pick neighbors randomly 

SimulateFailures False Indicates whether or not to simulate system failures and 

blackouts. 

  

If false the parameter OrderNeighbors causes agents to randomly select a 

neighbor at every instant the agent wishes to collaborate with others. As such, 

effectively no agent can observe the identity of any other agent including its 

neighbors and cannot choose which part of its neighboring environment it can 

influence. On the other hand if OrderNeighbors is true agents may distinguish and 
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select to influence particular neighbors. The implementation being studied leverages 

the ability to distinguish neighbor and selectively interact with them by enabling each 

agent to use its memory to keep track of the amount each of its neighbors satisfied its 

requests for power; for example, if an agent requests 𝑥 units of power from a 

neighbor and the neighbor responded with 𝑦 units of power then the agent will 

remember 𝑦 until memory limits cause the agent to replace 𝑦 with more relevant up 

to date information. Using this information, when interested in collaborating, an agent 

will select to interact with its neighbors in order of their previous reputation. The 

subtle difference between OrderNeighbors being true or false is central to this study 

since when OderNeighbors is true agents are less independent and more entangled 

with other agents than when OrderNeighbors is false. Although it may seem that 

agents are just as autonomous for either value of OrderNeighbors since in both cases 

agents can opt out of interacting with their neighbors, when OrderNeighbors is true 

agents are actually slightly less autonomous than otherwise since their state is 

dependent on the information and influence received by neighbors. The difference in 

autonomy between the two environments becomes even clearer when considering 

coalition enabled environments where the increased reliability of interactions comes 

at the cost of externally imposed rules in addition to more agent information and 

influence entanglement; in such light one can more easily see that the difference in 

autonomy between the two environments defined by OrderNeighbors is but a notch in 

the greater scale situated between utter absence of information distribution and 

control between agents to full information distribution and control among agents such 
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that any agent is equivalent to the entire system of agents. A system of agents where 

any one agent has as much information and control over the environment as the whole 

system, is completely centralized. In such a situation the agents are not 

distinguishable and the whole system appears as one agent or in fact one algorithm. 

This raises an interesting question: what avenues of information and control over the 

environment must be carved out of an optimal and centralized system in order to split 

the system into agents with some degree of autonomy such that their autonomy is 

minimized while solution approximation is optimized considering the nature of the 

problem the system targets? Experience suggests that the more the autonomy of the 

agents, the lower the complexity of the resulting system of agents will be compared to 

the centralized system. 

Preliminary data was collected by running the simulations with the parameter 

sweeping configurations listed in Table 6.4 and Table 6.5. In order to find the number 

of simulation hours necessary to capture the equilibria of each simulation, all 

simulations were run until the variance of their 96-hour rolling variance over each of 

the 96 most recent hours was negligibly close to zero. 
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Table 6.4: The number of iterations and duration of each simulation. 

Name Value/Values Description 

Runs 20 The number of times each setting was simulated. This allows 

for anomalies caused by outliers to be averaged out. 

Hours 12,000 The number of simulated hours each run simulated. The 

number of simulated hours determines whether the 

equilibrium of the simulation is captured. 

  

 

Table 6.5: Parameters sweeping configurations. 

Parameter Initial Value Final Value Step 

AgentMemory 120 1,200 60 

NeighborhoodConnectivity 4 30 2 

OrderNeighbors False True  

  

Figure 6.6 and Figure 6.7 show the results of the preliminary simulations. The 14 

groups in the horizontal axis correspond to the neighborhood connectivity values: 

4, 6, … , 30. The horizontal values of each group correspond to the 19 agent memory 

values: 120, 180,… ,1140, which is in units of simulation hours. 
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Figure 6.6: The average load factors for each neighborhood connectivity and agent 

memory setting when OrderNeighbors is set to false. The horizontal axis is made of 14 

groups each corresponding in order to one of the neighborhood connectivity values being 

swept. Each neighborhood connectivity group consists in order of the 18 agent memory 

values being sampled. 

 

Figure 6.7: The average load factors for each neighborhood connectivity and agent 

memory setting when OrderNeighbors is set to true. The horizontal axis is made of 14 

groups each corresponding in order to one of the neighborhood connectivity values being 

swept. Each neighborhood connectivity group consists in order of the 18 agent memory 

values being sampled. 
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Figure 6.8 and Figure 6.9 show comparable system performance as a function of 

neighborhood connectivity when, for both agent types, the memory size is held 

constant at 720 units. 

 

Figure 6.8: The load factor change over neighborhood connectivity corresponding to a 

memory size of 720 illustrating the typical performance as a function of neighborhood 

connectivity for agents randomly selecting neighbors when interacting. 
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Figure 6.9: The load factor change over neighborhood connectivity corresponding to a 

memory size of 720 illustrating the typical performance as a function of neighborhood 

connectivity for agents who exhibit preferences when interacting with neighbors. 

Figure 6.6 and Figure 6.8 affords the following key observations: 

1. System performance improves dramatically as connectivity increases after 

which peaking at roughly a neighborhood connectivity of 10 then dropping 

steadily as connectivity increases further; 

2. System performance improvement decreases as agent memory increases; 

3. For neighborhood connectivity’s less than those associated with local optimal, 

system performance is not significantly impacted if not reduced as agent 

memory increases; 

4. As neighborhood connectivity increase every other agent memory step shows 

a separate trends where odd steps consistently perform less than even steps; 

and 
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5. The high fluctuation of performance as agent memory increases indicates 

performance instability and parameter sensitivity. 

As neighborhood connectivity increases, so does the number of options each 

agent has to choose from when needing assistance with its objective. As the number 

of options increases so do the odds of an agent getting help; however, as the number 

of neighbors increases so do the chances that any one neighbor prepares resources to 

provide assistance to others but never is able to do so since other neighbors provided 

that assistance sooner. Preparing the resources to collaborate with other agents 

increases demand; however, this demand is short lived since agents who 

unsuccessfully prepared resources quickly learn their help is not needed and 

discontinue until they are again randomly picked to collaborate in which case they 

again increase preparation. The effects of decreased system performance as 

connectivity increases can be seen particularly well in Figure 6.8. Despite the fact that 

agents randomly select their neighbors for collaboration, as agent memory increases 

so does the ability of any neighbor to better predict the amount of resources to 

prepare. Given the agent settings and their distribution, the amount of impact agent 

memory comes second to neighborhood connectivity; as such, agent memory is 

rendered nearly mute when optimizing agent performance by neighborhood 

connectivity. 

Since the number of agents requesting to collaborate with a neighbor is less 

while neighborhood connectivity is low, it is more often the case that the same pair of 

agents collaborate every time; therefore, agent memory does not help improve 
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predictions by much since the collaboration patterns are fairly consistent. However, 

as the number of neighbors increases so does the number of collaborating pairs and 

so does the combined collaboration pattern complexity making agent memory 

advantageous. 

The increase in system performance jaggedness as agent memory increases is 

due to the fact that the step was intentionally selected to be a fraction of the period of 

the expected agent behavior; in particular, the 60-memory unit step is 2.5 times the 

length of the expected 24-hour period. The agent memory size corresponding to odd 

steps of the parameter sweep is fully divisible by the expected agent behavior period; 

which is not the case for even steps in the sweep. Selecting such a parameter sweep 

step affords us additional insight into system performance sensitivity and equilibrium 

stability without complicating the preliminary analysis. 

Such insight is afforded as a result of the nature of the problem of scheduling 

resources. In order to schedule resources an agent must predict its behavior in the 

future; however, inconsistent prediction quality among different hours in the future 

limits the reliability of resource scheduling to that of the most poorly predicted hour 

in the schedule. Sensitivity to consistent unbiased prediction quality among hours 

being scheduled is not surprising since an error in any efficiently packed schedule 

will cascade and cannot be recovered from unless the schedule can be made more 

efficient which contradicts the initial assumption of an efficiently packed schedule. In 

order to minimize predictive quality bias, the agents are designed to give each hour of 

their expected behavior period, an equal amount of memory up to what is possible 
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given the discrete nature of agent memory and simulation time. Consequently, in 

order for an agent to divide its memory evenly over each period hour, the problem 

becomes: an agent must predict its behavior period in order to predict its behavior in 

general. We elected to design the agents such as to constantly predict their behavior 

period to be the expected agent behavior period of 24 hours (or whatever period is 

dictated by the agent configurations); this prediction is simple and fairly accurate. As 

such, it is assumed every agent knows its own expected behavior period, which is not 

an over expansive assumption, since this information is common knowledge among 

the agents – in analogy, real world consumers commonly know they have a daily 

routine. 

Although the expected behavior of each agent has a period of 24 hours, this 

may not hold true for any particular span of time. As such, it is often the case that 

over any given short period of time and agents behavior does not have a period of 24 

hours, in which case, the agent will suffer prediction biases from having a memory 

size equally divisible over the expected period hours. Consequently, the sensitivity an 

agent has to locally miss predicting its behavior period can be captured by simply 

providing agents with a memory length which is unlikely to be divisible by any of its 

local behavior patterns. 

From Figure 6.6, in particular from the jaggedness of system performance as 

agent memory increases, it can be inferred that an agent who randomly selects 

neighbors for collaboration, suffers more and more performance and equilibrium 

instability as a result of its behavior period dynamism. 
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Figure 6.7 and Figure 6.9, which corresponds to agents having information 

about the identity of their neighbors and the ability to selectively interact with them, 

offers the following observations: 

1. System performance improves dramatically as connectivity increases after 

which peaking at roughly a neighborhood connectivity of 12 then dropping 

negligibly as connectivity increases further. 

2. System performance improves drastically as agent memory increase such that 

it quickly peaks. 

3. For neighborhood connectivity less than those associated with the local 

optimal, system performance is not significantly improved if not slightly 

reduced as agent memory increases. 

4. Performance given changes in agent memory is very stable. 

Item 3 and 4 in the previous list is of particular interest since it indicates that 

agents who are able to selectively interact and identify their neighbors are not only 

less sensitive to parameter changes, but they also support a more established 

equilibrium than agents who randomly elect neighbors for collaborations. 

Furthermore, the average and maximum performance of agents with preferences is 

higher than those without. These advantages make agents aware of reputation more 

appropriate for generalizing results since they are less affected by parameters not 

targeted by the study. 

In order to better understand the impact memory size has on the reputation-

based system, we took the maximum load factor over all connectivity values for each 
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memory size and split them into two series based on whether the memory size was 

biased or unbiased (see Figure 6.10). The results show that in general as memory 

increases, so does the maximum possible load factor achievable by any sampled 

network connectivity. Although the maximum load factor corresponding to unbiased 

memory appears not to be increasing for large memory sizes, after taking noise into 

account, the given results show the maximum load factor always increases given 

more memory although ever so slightly. 

From the results provided in Figure 6.10 we can also infer that equilibrium 

stability must also increase as memory increases, which agrees with what we would 

expect. In order to justify our claim, we must more accurately define the notion of 

memory size bias introduced earlier in this section and better understand its effects on 

performance. As mentioned earlier every agent exhibits a periodic behavior of which 

the agent is itself aware. As prescribed by our simulation configurations, the behavior 

of each agent has an expected period of 24 hours. Let the memory bias of an agent be 

the minimum number of hours in the expected agent behavior period having the same 

share of memory units after memory is divided among each period hour as evenly as 

possible. For the sake of clarity the relationship between the integral values of bias, 𝑏, 

and memory size, 𝑚, is: 

𝑏 = |((𝑚 + 12) 𝑚𝑜𝑑 24) − 12| (6.1) 

As such, the maximum possible bias in our simulation is 12 hours, since any number 

larger would mean that the memory is not divided across the period hours as evenly 

as possible. The minimum bias in our simulation is 0 and corresponds to memory 
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sizes which are divisible by the 24. As discussed earlier, memory bias produces 

biases in prediction and therefore significantly reduces performance. Although adding 

any number of memory units less than 24 to an unbiased memory size does provide 

space for more information for the agent, this information only serves to bias 

predictions for a particular set of period hours since other period hours would lack 

such added information. Therefore, keeping in mind that the simulation divides 

memory as evenly as possible across the expected period hours, for any memory size 

having the same minimum number of memory units per period hour, the maximum 

and maximum load factor corresponds to the memory size with the minimum and 

maximum bias respectively. Therefore, the load factor of the unbiased memory sizes 

from Figure 6.10 must be the maximum possible for any network connectivity value 

that was sampled, since the bias of those memory values is 0. Likewise, the load 

factor of the biased memory size (from Figure 6.10) must be the lowest that can be 

maximally achieved by any sampled network connectivity value. 

As mentioned earlier, over any particular short span of time, the behavior periods of 

an agent likely does not exhibit the expected behavior period of that agent. When 

normally a memory size divisible by 24 would be unbiased, since none of the 

behavior periods in such a time span is 24, the memory size would be biased for the 

agent behavior periods in that time span. As such, the maximum performance 

achievable under the constant parameters and all the network connectivity values 

should be between the unbiased and biased load factors in Figure 7.10. Now, we have 

observed that the distance between the unbiased and biased performance decreases as 
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memory size increases, it follows that equilibrium stability—which is inversely 

correlated to such distance—also increases as memory size increases, given the right 

network connectivity conditions exist.  

 

Figure 6.10: The maximum recorded load factor for each of the tested neighborhood 

connectivity as memory is increased. Each memory bucket from 1 through 9 signifies 

memory values of 120, 240, …, 1080 for the unbiased sequence and 180, 300, …, 

1140 for the biased memory sequence. If we were to measure time in units of 5 periods 

(similar to say how a week can be viewed as seven 1-day periods) then each memory 

bucket would have enough space to store information for 1, 2, …, 9 units of time. 

This phenomenon is observable regardless of whether agents interact with one 

another or are completely independent. So by picking the memory to be large enough 

for all test cases the amount of system underperformance and equilibrium 

unreliability for any particular test can be made negligible. As such we will conduct 

tests with the memory size to be set to the largest unbiased tested value which is 

enough for each agent to store information they observe for 1,200 units of time. 

Neighborhood connectivity can only influence the test case involving 

neighborhood trading. So, in order to avoid any underperformance in that test case 
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with respect to others, we will perform tests using the empirically optimal 

neighborhood connectivity of 12, which was concluded from the results in Figure 6.7. 

According to the results shown in Figure 6.6 and Figure 6.7 and by the 

reasoning brought in this section, the peak performance of agents who are able to 

selectively interact and identify their neighbors is not only higher but is much more 

stable and consistent over parameter sweeping; therefore, we will consider 

OrderNeighbors to have a value of true in the simulations. 

We have justified the values selected for the problematic general parameters; 

the remainder of the parameters are not particular to any simulation case and have a 

straightforward impact on the simulations.  

6.5 Solo Simulation 

In this simulation agents do not interact or even know of one another’s existence. The 

agents are only able to observe and interact with their local environment which only 

includes adjusting their demand from the grid using their own resources which only 

includes generation and storage. The results of this simulation will give us a baseline 

on agent performance.  

6.5.1 Demand Management Implementation 

Pseudo Code 6.1 details the implementation of the proposed methodology and 

approach described in Chapter 3 and Chapter 4. The pseudo code explicitly describes 

how an agent manages its resources in order to advance and postpone its load 

depending on its available resources and predicted over and under average deficit. 
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Satisfy as much load possible with generation 

if 𝐷𝑒𝑓𝑖𝑐𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ > 0  

  if 𝐷𝑒𝑓𝑖𝑐𝑖𝑡 = 𝐷𝑒𝑓𝑖𝑐𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅  then 

    Satisfy load by buying 𝐷𝑒𝑓𝑖𝑐𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅  amount of electricity from grid 

  else if 𝐷𝑒𝑓𝑖𝑐𝑖𝑡 > 𝐷𝑒𝑓𝑖𝑐𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅  then 

    Satisfy load by buying 𝐷𝑒𝑓𝑖𝑐𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅  amount of electricity from grid 

    𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑆ℎ𝑎𝑟𝑒 ←
𝑆𝑡𝑜𝑟𝑒𝑑𝑃𝑜𝑤𝑒𝑟

𝐿𝑜𝑐𝑎𝑙𝑂𝑣𝑒𝑟𝐴𝑣𝑔𝐷𝑒𝑓𝑖𝑐𝑖𝑡( )
𝐿𝑜𝑎𝑑 

    Satisfy load by retrieving 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑆ℎ𝑎𝑟𝑒 amount of electricity from 

storage 

  else 

    if 𝐷𝑒𝑓𝑖𝑐𝑖𝑡 > 0 then 

      Satisfy suspended load using remaining generation 

    else 

      Satisfy all load by buying electricity from the grid 

    𝑆𝑢𝑠𝑝𝑒𝑛𝑑𝑆ℎ𝑎𝑟𝑒 ←
𝑆𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑𝐿𝑜𝑎𝑑

𝐿𝑜𝑐𝑎𝑙𝑈𝑛𝑑𝑒𝑟𝐴𝑣𝑔𝐷𝑒𝑓𝑖𝑐𝑖𝑡( )
(𝐷𝑒𝑓𝑖𝑐𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝐷𝑒𝑓𝑖𝑐𝑖𝑡) 

    Satisfy suspended load by buying 𝑆𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑𝑆ℎ𝑎𝑟𝑒 electricity from grid 

and let the satisfied amount be referred to by 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 

    𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 ← 𝐿𝑜𝑐𝑎𝑙𝑈𝑛𝑑𝑒𝑟𝐴𝑣𝑔𝐷𝑒𝑓𝑖𝑐𝑖𝑡( ) − 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡  

    if 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 > 0 then 

      𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑆ℎ𝑎𝑟𝑒 ←
𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟
(𝐷𝑒𝑓𝑖𝑐𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝐷𝑒𝑓𝑖𝑐𝑖𝑡 − 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡) 

      Energize the battery 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑆ℎ𝑎𝑟𝑒 amount of electricity from the grid 

else 

  if 𝐷𝑒𝑓𝑖𝑐𝑖𝑡 = 𝐷𝑒𝑓𝑖𝑐𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅  then 

    Sell −𝐷𝑒𝑓𝑖𝑐𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅  amount of electricity to grid from generation 

  else if 𝐷𝑒𝑓𝑖𝑐𝑖𝑡 < 𝐷𝑒𝑓𝑖𝑐𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅  then 

    Sell −𝐷𝑒𝑓𝑖𝑐𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅  amount of electricity to grid from generation 

    𝑆𝑢𝑠𝑝𝑒𝑛𝑑𝑆ℎ𝑎𝑟𝑒 ←
𝑆𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑𝐿𝑜𝑎𝑑

𝐿𝑜𝑐𝑎𝑙𝑈𝑛𝑑𝑒𝑟𝐴𝑣𝑔𝐷𝑒𝑓𝑖𝑐𝑖𝑡( )
(𝐷𝑒𝑓𝑖𝑐𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝐷𝑒𝑓𝑖𝑐𝑖𝑡) 

    Satisfy suspended load by spending 𝑆𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑𝑆ℎ𝑎𝑟𝑒 electricity from 

generation and let the satisfied amount be referred to by 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 

    𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 ← 𝐿𝑜𝑐𝑎𝑙𝑈𝑛𝑑𝑒𝑟𝐴𝑣𝑔𝐷𝑒𝑓𝑖𝑐𝑖𝑡( ) − 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 

    if 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 > 0 then 

      𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑆ℎ𝑎𝑟𝑒 ←
𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟
(𝐷𝑒𝑓𝑖𝑐𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝐷𝑒𝑓𝑖𝑐𝑖𝑡 − 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡) 

      Energize the battery 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑆ℎ𝑎𝑟𝑒 amount of electricity from 

generation 
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Pseudo Code 6.1: Simulation implementation of an agent’s power management following 

the approach and methodology described in Chapter 3 and Chapter 4. 

  else 𝐷𝑒𝑓𝑖𝑐𝑖𝑡 < 0 then 

    Sell all generation to the grid 

    𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑆ℎ𝑎𝑟𝑒 ←
𝑆𝑡𝑜𝑟𝑒𝑑𝑃𝑜𝑤𝑒𝑟

𝐿𝑜𝑐𝑎𝑙𝑂𝑣𝑒𝑟𝐴𝑣𝑔𝐷𝑒𝑓𝑖𝑐𝑖𝑡( )
(𝐷𝑒𝑓𝑖𝑐𝑖𝑡 − 𝐷𝑒𝑓𝑖𝑐𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 

    Sell 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑆ℎ𝑎𝑟𝑒 amount of stored power to grid from storage 

  else 

    𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑆ℎ𝑎𝑟𝑒 ←
𝑆𝑡𝑜𝑟𝑒𝑑𝑃𝑜𝑤𝑒𝑟

𝐿𝑜𝑐𝑎𝑙𝑂𝑣𝑒𝑟𝐴𝑣𝑔𝐷𝑒𝑓𝑖𝑐𝑖𝑡( )
(𝐷𝑒𝑓𝑖𝑐𝑖𝑡 − 𝐷𝑒𝑓𝑖𝑐𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 

    Satisfy load by retrieving 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑆ℎ𝑎𝑟𝑒 amount of electricity from 

storage letting 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 be any 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑆ℎ𝑎𝑟𝑒 left over from satisfying load 

    Sell 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 amount of stored power to grid from storage 

The implementation in Pseudo Code 6.1 divides the state of and agent into the 

following cases: 

1. 𝐷𝑒𝑓𝑖𝑐𝑖𝑡 = 𝐷𝑒𝑓𝑖𝑐𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ > 0 

2. 𝐷𝑒𝑓𝑖𝑐𝑖𝑡 > 𝐷𝑒𝑓𝑖𝑐𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ > 0 

3. 𝐷𝑒𝑓𝑖𝑐𝑖𝑡 < 𝐷𝑒𝑓𝑖𝑐𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑎𝑛𝑑 𝐷𝑒𝑓𝑖𝑐𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ > 0 

4. 𝐷𝑒𝑓𝑖𝑐𝑖𝑡 = 𝐷𝑒𝑓𝑖𝑐𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≤ 0 

5. 𝐷𝑒𝑓𝑖𝑐𝑖𝑡 < 𝐷𝑒𝑓𝑖𝑐𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≤ 0 

6. 𝐷𝑒𝑓𝑖𝑐𝑖𝑡 > 𝐷𝑒𝑓𝑖𝑐𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑎𝑛𝑑 𝐷𝑒𝑓𝑖𝑐𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≤ 0 

The reason for this division of state is not because the proposed approach 

requires each case to be handled uniquely, but instead because the source and 

destinations the agent receive and sends power to are different for each case. The 

approach does not require for such casing; it would have been possible to abstract the 

power sources and destinations such that all cases would be handled under one 

general case; however, such an implementation would not be enlightening. In each 

case, at any moment in time, the agent simply tries to reduce the difference between 

the average deficit and its current deficit. This is done by postponing or advancing 
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demand at any given moment by the ratio of resources to total predicted adjustments. 

The equations in the algorithm describing how much power should be transferred for 

each adjustment and the expressions describing each of the 6 cases are effectively 

utility functions which could be abstracted and formalized; however, that level of 

indirection is not necessary for our interests. Abstracting and formalizing the utility 

functions would allow for demand adjustments that are more complex than simply 

reducing demand fluctuation by a constant factor as suggested by the proposed 

approach. Such an abstraction would be useful for situations where the cost 

associated with demand fluctuation is itself complex and possibly not monotonically 

increasing. 

After an agent has managed its resources and adjusted its demand or if it did 

not have any resources to begin with, the agent follows the prescribed steps in Pseudo 

Code 6.2 to satisfy any remaining load and spend any remaining generation. In other 

words any remaining demand after adjustments must be applied to the grid or 

reconciled if the grid is not available. These steps are prescribed since the agent does 

not have resources or options at this point. Table 6.6 describes the variables and 

function used in the pseudo code. 
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Pseudo Code 6.2: An agent not having any resources or an agent with resources who has 

completed its demand adjustment using Pseudo Code 6.1 satisfies its remaining load and 

spends its remaining generation according to these prescribed steps. These steps are 

prescribed because the agent has not options at this point. 

Satisfy any remaining load by buying power from the grid if possible 

Satisfy any remaining load by using available stored power if possible 

Use any remaining generation to satisfy any suspended load 

if GenerationScrooge is true then  

  store any remaining generation if possible 

Sell any remaining generation to the grid if possible 

// at this point the agent has done anything is could to satisfy it load 

and benefit from its generation 

Forcefully postpone any remaining load since no resources are available 

Dump any remaining generation since it cannot be benefited from 

 

Table 6.6: A brief description of the variables introduced in Pseudo Code 6.1. 

Variable Definition 

𝑫𝒆𝒇𝒊𝒄𝒊𝒕 

The amount of power the agent will require in 

addition to its generation to satisfy its needs. 

𝑫𝒆𝒇𝒊𝒄𝒊𝒕̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Average deficit as recalled using the agent’s 

memory. 

𝑳𝒐𝒂𝒅 

The amount of load for the given hour that is 

remaining and must be satisfied. 

𝑳𝒐𝒄𝒂𝒍𝑶𝒗𝒆𝒓𝑨𝒗𝒈𝑫𝒆𝒇𝒊𝒄𝒊𝒕( ) 

𝑳𝒐𝒄𝒂𝒍𝑼𝒏𝒅𝒆𝒓𝑨𝒗𝒈𝑫𝒆𝒇𝒊𝒄𝒊𝒕( ) 

The total amount of deficit above (under) the 

average deficit the agent has or predicts it will 

have starting from the current moment in time 
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until the first moment in the future where the 

deficit is below (above) average. 

𝑺𝒕𝒐𝒓𝒆𝒅𝑷𝒐𝒘𝒆𝒓 

The maximum amount of power the agent can 

extract from its storage at that given moment. 

𝑨𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆𝑺𝒕𝒐𝒓𝒂𝒈𝒆𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚 

The maximum amount of power the agent can 

store for future use at that given moment. 

𝑺𝒖𝒔𝒑𝒆𝒏𝒅𝒆𝒅𝑳𝒐𝒂𝒅 

The total amount of load the agent has 

postponed for the future. 

  

6.6 Neighborhood Setup 

The neighborhood described until this point is a simple implementation of an ad-hoc 

coalition. If an agent 𝐴 is unable to reduce its demand fluctuation any further on its 

own, then 𝐴 looks to its neighbors for assistance by requesting its electricity shortage 

from each neighbor in some order of priority. If neighbor 𝑁 agrees to assist 𝐴 then it 

does so because 𝐴 shares the benefits of the additional reduction of demand 

fluctuation. In other words, the collaboration of 𝐴 and 𝐵 produces value which they 

benefit from as a collective. This collective can be arbitrarily large and can form 

arbitrarily complex networks with cycles because already collaborating agents may 

also collaborate with other neighboring agents. In order to facilitate sharing of 

benefits we elected to simulate trading of monetary value and electricity among 

neighbors particularly such that both collaborating parties receive half the benefits of 
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collaborating. As described in previous sections the benefits of collaborating 

(reducing demand fluctuation) consist of local and aggregate benefits. For the sake of 

completeness, aggregate benefits appear as a reduction in future electricity rates the 

benefits of which are shared among collaborating agents by default, and local benefits 

𝑏𝑙 can be expressed as:  

𝑏𝑙 = 𝑑(𝑝𝑠 − 𝑝𝑏) (6.2) 

where 𝑑 is the remaining demand adjustment an agent requests assistance with from 

its neighbor, and 𝑝𝑠 and 𝑝𝑏 are the current selling and buying electricity rates that an 

agent must cope with if not trading electricity with a neighbor (in terms of the 

simulation implementation 𝑝𝑠 and 𝑝𝑏 are the grid agent’s selling and buying price). 

As such a collaborating pair of neighboring agents each receives 
𝑏𝑙

2
 benefits. In other 

words, the remaining demand adjustment 𝑑 than an agent fails to personally handle 

would have a surplus cost of 𝑏𝑙, which the agent can save if it were to trade with a 

neighbor.Since at any given moment, by simplicity of the neighborhood design, no 

agent knows how much excess resources any neighbor 𝑁 has available or will have 

available in the future, and furthermore, since an agent only knows the power 

requirements of a neighbor confidently the moment the neighbor makes the request, 

agents reserve the option not to partake in collaborations at any moment if the 

collaboration risks self-interest. In other words, an agent 𝐴 knows its condition better 

than it can guess the condition of a neighbor 𝑁; therefore, 𝐴 does not collaborate with 

𝑁 unless it is sure the chance and amount of what it stands to gain is more than the 

risk and amount it stands to lose.  
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In particular agents do not know of one another’s demand profile or buffering 

resource availability, as such they are less sure of the benefits they can gain from 

cooperating with one another than they can be sure of watching out for their 

immediate self-interest instead. As such, an agent may not prepare in advance to 

assist a neighbor in favor of being better prepared to handle its own potential yet 

more predictable problems. 

6.6.1 Neighborhood Implementation 

Agents enabled to perform neighborhood interactions manage their demand as in 

Pseudo Code 6.1 with the added steps in Pseudo Code 6.3.The added steps govern 

how an agent determines its excess resources and how it applies the proposed 

approach to those resources and the neighborhood request history to reduce demand 

fluctuation. If an agent’s available storage is more than the total predicted local under 

average deficit, then the agent will have excess free resources since at most the agent 

would store all the total predicted local under average deficit to supply the predicted 

future equivalent over average deficit. In this case the agent will store power for a 

neighbor as specified by the proposed approach only if the predicted neighbor request 

for that moment is less than average; as such, the agent will effectively be advancing 

the neighbors future request to the current moment. 

An agent sells power to its neighbors upon the neighbors request using the 

algorithm described in Pseudo Code 6.4. It is important to note that both Pseudo Code 

6.3 and Pseudo Code 6.4, which implement neighborhood interactions, comply with 

the methodology and approach described in Chapter 3 and Chapter 4 respectively. 
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Pseudo Code 6.3: The algorithm used by an agent to prepare resources for trading with its 

neighbors. An agent which can perform neighborhood interactions performs this algorithm 

as part of its demand management after performing Pseudo Code 6.1. 

if 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 > 𝐿𝑜𝑐𝑎𝑙𝑈𝑛𝑑𝑒𝑟𝐴𝑣𝑔𝐷𝑒𝑓𝑖𝑐𝑖𝑡( ) 

      and 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑅𝑒𝑞𝑢𝑒𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ > 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑅𝑒𝑞𝑢𝑒𝑠𝑡( ) then 

  𝑢𝑛𝑑𝑒𝑟𝐴𝑣𝑔𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ← 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑅𝑒𝑞𝑢𝑒𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  −  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑅𝑒𝑞𝑢𝑒𝑠𝑡( ) 

  𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑅𝑎𝑡𝑖𝑜𝑛 ←
(𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦−𝐿𝑜𝑐𝑎𝑙𝑈𝑛𝑑𝑒𝑟𝐴𝑣𝑔𝐷𝑒𝑓𝑖𝑐𝑖𝑡( ))

𝐿𝑜𝑐𝑎𝑙𝑈𝑛𝑑𝑒𝑟𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡( )
𝑢𝑛𝑑𝑒𝑟𝐴𝑣𝑔𝑅𝑒𝑞𝑢𝑒𝑠𝑡 

  Store as much 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑅𝑎𝑡𝑖𝑜𝑛 from generation and then grid as possible 

𝑝𝑜𝑤𝑒𝑟 ← 0  

in order of reputation for each 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 

  if 𝑝𝑜𝑤𝑒𝑟 < 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 then 

    ask 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 to 𝑠𝑒𝑙𝑙𝑃𝑜𝑤𝑒𝑟(𝑟𝑒𝑞𝑢𝑒𝑠𝑡 − 𝑝𝑜𝑤𝑒𝑟) and let 𝑟𝑒𝑠𝑢𝑙𝑡 be the power 

provided by 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 

    𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 + 𝑟𝑒𝑠𝑢𝑙𝑡 

  else return 𝑝𝑜𝑤𝑒𝑟 

return 𝑝𝑜𝑤𝑒𝑟 

 

Pseudo Code 6.4: An agent capable of neighborhood interactions will sell power to 

neighbors based on this algorithm. 

def 𝑠𝑒𝑙𝑙𝑃𝑜𝑤𝑒𝑟(𝑟𝑒𝑞𝑢𝑒𝑠𝑡) 

if 𝑆𝑡𝑜𝑟𝑒𝑑𝑃𝑜𝑤𝑒𝑟 ≤ 𝐿𝑜𝑐𝑎𝑙𝑂𝑣𝑒𝑟𝐴𝑣𝑔𝐷𝑒𝑓𝑖𝑐𝑖𝑡( ) 

      or 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑅𝑒𝑞𝑢𝑒𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≥  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑅𝑒𝑞𝑢𝑒𝑠𝑡( ) 

      or 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ≥ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑅𝑎𝑡𝑖𝑜𝑛( ) then return 0 

  𝑝𝑜𝑤𝑒𝑟 ←
𝑆𝑡𝑜𝑟𝑒𝑑𝑃𝑜𝑤𝑒𝑟 – 𝐿𝑜𝑐𝑎𝑙𝑂𝑣𝑒𝑟𝐴𝑣𝑔𝐷𝑒𝑓𝑖𝑐𝑖𝑡( )

𝐿𝑜𝑐𝑎𝑙𝑂𝑣𝑒𝑟𝐴𝑣𝑔𝑅𝑒𝑞𝑢𝑒𝑠𝑡( )
⋅ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑅𝑒𝑞𝑢𝑒𝑠𝑡( ) 

          −𝑝𝑜𝑤𝑒𝑟𝑆𝑜𝑙𝑑𝑇𝑜𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 

if 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 > 𝑝𝑜𝑤𝑒𝑟 then return as much of 𝑝𝑜𝑤𝑒𝑟 from storage possible 

else return as much of 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 from storage possible 

An agent who is providing power on request to a neighbor is in fact treating 

the neighbors request just as it would any other load with the exception of a 
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neighbor’s request having lower priority. The demand associated with satisfying the 

neighborhood’s request is managed in the same way as the agent’s personal demand 

would, however with added restriction of reduced priority and complete absence of 

information regarding the requesting agent’s demand profile aside from that which 

can be inferred from the requests itself. In this way an agent does not know how to 

efficiently appropriate resources for a neighbors future request but the agent can 

predict based on previous requests how much resources and by when they must be 

appropriated. Table 7.7 documents the variables and their definitions, used in Pseudo 

Code 7.3 and 7.4. 

Table 6.7: Variables and their definitions as introduced in Pseudo Code 6.3 and Pseudo 

Code 6.4. 

Variable Definition 

𝑵𝒆𝒊𝒈𝒉𝒃𝒐𝒓𝒉𝒐𝒐𝒅𝑹𝒆𝒒𝒖𝒆𝒔𝒕 

The amount of power that has been 

requested by the neighborhood for the 

current hour 

𝑵𝒆𝒊𝒈𝒉𝒃𝒐𝒓𝒉𝒐𝒐𝒅𝑹𝒆𝒒𝒖𝒆𝒔𝒕̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

The average amount of power that has been 

request from by the neighborhood as 

recalled from the agents memory 

𝒑𝒐𝒘𝒆𝒓𝑺𝒐𝒍𝒅𝑻𝒐𝑵𝒆𝒊𝒈𝒉𝒃𝒐𝒓𝒔 

The amount of power sold to neighbor 

during the current hour 
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𝑳𝒐𝒄𝒂𝒍𝑶𝒗𝒆𝒓𝑨𝒗𝒈𝑹𝒆𝒒𝒖𝒆𝒔𝒕( ) 

The total amount of power requested or 

predicted to be requested by the 

neighborhood which is in excess of the 

average neighbor request starting from the 

current hour until the first hour where 

neighborhood requests are less than 

average 

𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅𝑵𝒆𝒊𝒈𝒉𝒃𝒐𝒓𝒉𝒐𝒐𝒅𝑹𝒆𝒒𝒖𝒆𝒔𝒕( ) 

The amount of neighborhood request 

which is predicted for the current hour as 

extrapolated from the agent’s memory 

  

6.7 Unified Agent Implementation 

Holding the solution approach and all simulation variables constant an agent can only 

vary on its performance through varying its degrees of collaboration. Holding all 

simulation variables constant, each simulation case being studied is in fact a discrete 

sampling of the agent collaboration space. The unity test case is purposed to sample 

the maximum end of the agent collaboration spectrum. The agents in the unity test 

case should be able to optimally collaborate. Agents can only share information and 

act on behalf of one another either directly or indirectly. Furthermore, an agent can 

only act on its environment by manipulating its resources and consuming power, all 

other actions, such as trading with a neighbor, if any, only facilitate resource 

manipulation and power consumption and therefore can be considered a component 
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of resource manipulation and power consumption. Therefore at maximal collaborative 

extreme agents can at best share all their state information and grant full control over 

resources and power consumption to one another. Since in addition to holding all 

parameters constant we are holding the solution approach itself constant there is only 

one very specific way to leverage all shared state information and shared will to act 

on the environment. Therefore, the system must leverage all information to compute 

the mean demand, over and under demand, and the ratio of demand to displace as a 

function of available resources; furthermore, the system must leverage all abilities to 

act on the environment to use buffering resources and consume power in accordance 

to what is calculated with the information. Therefore, such a system of agents would 

appear to function exactly as any one agent would except for the fact that the system 

of agents would have full information and control over each other. It is not practical 

to construct or simulate a system where all agents can fully communicate state 

information and fully command each other’s will. However, since under the imposed 

restrictions the maximally collaborative system of agents is equivalent to one agent 

having a load and generation profile and resources equal to that of the entire system 

of agents, it is possible to synthesize such a system by simulating one agent.  

Synthesizing the system of maximally collaborative agents, although 

impractical in the real world, affords us an understanding of what is theoretically 

achievable if given the proposed methodology, collaboration were maximized. By 

definition an agent of such a theoretical maximally collaborative MAS would have no 

autonomy of its own since its information, actions, and ability to achieve a goal 



108 

would be entirely dependent on all other agents in the system. This is a key idea we 

will return to when trying to understand the role autonomy plays in the proposed 

approach. 

6.8 Summary 

Over this chapter we have justified the parameters we are holding constant and 

described in detail each simulation case. We are interested not only in studying the 

performance of the proposed methodology and approach described in Chapter 3 and 

Chapter 4 by comparing the performance of various solution implementations each 

focused on leveraging a key MAS collaboration concept, but we are also interested in 

understanding the role of collaboration itself in the grander scheme of things. In order 

to do so we intend to hold the solution approach and all simulation parameters 

constant. Under such conditions an agent can only vary its performance through 

varying its degrees of collaboration. The simulation cases are designed such that they 

each are a discrete sampling of the agent collaboration space. By empirically 

maximizing the performance of each simulation case through fine tuning the 

parameters that uniquely influence each of collaborative capacities of the simulation 

cases, we can compare the performance of each case without any bias up to empirical 

precision. 
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CHAPTER 7 SIMULATION RESULTS 

We ran the simulations outlined in Table 6.1 with the configurations described in 

Chapter 6. Table 7.1 recaps our intentions for the simulations and our direction in this 

chapter. 

Table 7.1: Recapping the outline of where we are heading with the simulations in this 

chapter. 

Simulation Distinguishing Factor Simulation Objective 

Solo 

Simulation 

Case 

Agents are fully 

autonomous up to that 

prescribed by the 

proposed approach 

To understand the dynamics of the proposed 

approach and provide a lower bounds on 

expected performance when varying 

simulations on resources and autonomy. 

Neighborhood 

Simulation 

Case 

Agents are mostly 

autonomous and have 

information 

dependencies only 

To understand the dynamics of applying the 

proposed approach MAS concepts, in 

particular ad-hoc coalition with partial 

information sharing. 

Unity 

Simulation 

Case 

Agents are minimally 

autonomous up to what 

is prescribed by the 

proposed approach 

To understand an upper bound on 

performance when varying only autonomy 

and resources. Provides a means of 

comparing optimal performance of the 

proposed approach to a more feasible 

collaboration based approach. 
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Storage resources were varied among simulation instances by a multiple of the 

storage capacity defined by the simulation configurations described in Code Snippet 

6.1, Code Snippet 6.2, and Code Snippet 6.3. The storage capacity multipliers were 

swept over 0 to 9.75 inclusively with a step of 0.25. As such, each simulation case 

was associated with 40 instances, each instance corresponding to one storage capacity 

multiplier. Each instance was run 20 rounds, in order to compensate for noise 

introduced by the stochastic nature of the simulation, and for 12,000 simulation 

hours, in order to capture the equilibrium. The load factor and price at equilibrium for 

each simulation instance was estimated by averaging the load factor and price of the 

last 1,200 simulations hours over the corresponding 20 round of that instance. Figure 

7.1 and Figure 7.2 show the resulting load factors and base prices respectively.  

 

Figure 7.1: The load factor corresponding to each of the simulation cases as storage 

capacity is scaled by the factors specified on the horizontal axis. 
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Figure 7.2: The base price corresponding to each of the simulation cases as storage 

capacity is scaled by the factors specified on the horizontal axis. 

7.1 Solo Simulation Case 

The solo simulation provides a baseline for the performance achievable given the 

prescribed approach. In other words, any performance lower than this base line 

requires the agents not be using the prescribed approach. We summarize the 

reasoning brought until now for this claim. 

For system demand fluctuation to reduce, aggregate demand must be adjusted. 

We have proposed a solution describing how to compute and apply demand 

adjustments to reduce demand fluctuation in Chapter 3 and Chapter 4. The solution 
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In order to substantiate our claim, we will show how the variables for these two items 

are all either fixed or controlled in the simulation. 

Agent control over the environment: 

The simulations fix buffering resource sizes and the smart grid problem 

prescribes that buffering resources be controlled in a distributed manner. Therefore, 

up to this point, all variables related to the extent at which an agent can control its 

environment are fixed except for the amount of overlapping—and sometimes 

interfering—control that agents have on the environment. The simulation cases each 

control the amount of overlapping control agents have on the environment in order to 

facilitate studying the effects of this control on system performance. 

Agent information about the environment: 

The simulations fix the amount of agent memory. Furthermore, as opted by 

implementation of the proposed approach covered in Chapters Chapter 3, Chapter 4, 

and Chapter 5, agents predict future deficit on the expected deficit behavior computed 

from their memory. The amount of information the agents share with each other is 

controlled by each simulation case. Table 7.2 summarizes the overlaps in information 

and environment control for each simulation case. 
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Table 7.2: The amount of information and environment control overlap for agents in each 

of the simulation cases. 

Simulation case 

Required resource 

control overlap 

Required information overlap 

Solo 

None, each agent 

controls their own 

resources 

Only know about their own deficit history and 

expected deficit period 

Neighborhood 

None, each agent 

controls their own 

resources 

In addition to the information agents have in 

the solo simulation case, neighboring agents 

know each other’s identity and can share how 

much deficit over average they are unable to 

level out and how much power they are 

willing to trade. 

Unity 

All agents share 

control over all 

their resources 

All agents share information about each 

other’s expected deficit period, demand 

deficit history, and resource states. All agents 

recognize each other’s identity. 

  

Therefore the solo simulation represents the case where agent are only aware of their 

own state and control their own resources. Since all other parameters are fixed, the 

solo simulation represent the performance which can be achieved using the proposed 

approach, with only local control and information. Any additional control and 

information should only provide a means of improving performance; in the worst case 
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agent of such a system would have everything necessary to perform at least as well as 

the solo simulation case.  

Figure 7.1 shows that as the resources factor—i.e., storage scaling factor—

increases the load factor of the solo simulation case increases at a near linear rate 

after which the rate of increase in load factor slowly decreases until the load factor 

reaches a cap. The results suggest that the load factor and resources have a 

proportional relation until a point where the improvement in performance becomes 

sub-linear3. 

We collected information on the load factor of agents with resources and 

agents without access to resources in order to understand the sub-linear increase in 

load factor and load factor cap; see Figure 7.3. 

The results show that the load factor of the proposed approach is not inhibited 

by anything; the proposed approach can leverage any amount of resources until 

agents reach the proximity of the maximum load factor. As shown in Figure 7.3, the 

reason for the load factor cap of the solo simulation seen in Figure 7.1 is because 

agents without resources do not benefit from additional resources provided by the 

other agents. Since the demand fluctuation of agents without resources is never 

improved, they will always introduce some fluctuation in aggregate demand, hence 

the load factor cap. 

                                                 
3 A sub-linear relationship of variable 𝑦 with respect to variable 𝑥, indicates that as 𝑥 

increases 𝑦 generally increase less and less. Similarly a super-linear between the same 

variables would indicates that as 𝑥 increases, 𝑦 generally increases more and more. 
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Figure 7.3: The load factor of agents with resources increases until peaking at near 

maximum which the load factor of the agents without resources remains constant. The 

reason for the load factor of the agents without resources starting higher than the 

agents with resources is because the agents without resources include the industry 

agents whereas the later does not; as such only the load factor trending is comparable. 

Figure 7.3 also shows a sub-linear increase in load factor as the resources 

factor increases. This is caused by agents having resource capacity and deficit profiles 

that are sampled from a normal distribution. Because of the resource capacity and 

deficit distribution, as resources increase, some agents reach their load factor cap 

sooner than others. Furthermore, due to the normal distribution of the deficit of any 

agent, at some point the increase in capacity can only be of assistance if the deficit is 

over the expected amount for a given hour. Since the chances of a deficit being higher 

than the expected amount for a given hour reduces in accordance with a bell curve for 

higher and higher demands the chances that any agent can use the additional resource 

capacity decrease for significantly large resources. Therefore, compensating for the 
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effects of resource and demand distribution, we can conclude a linear relation 

between load factor and resource capacity up to the maximum load factor.  

This is an important finding since if the approach were to produce a sub-linear 

load factor relation with respect to resource capacity, then the approach would have a 

decreasing ability to leverage new resources which could arguably suggest 

performance shortcomings. The same could be said for a super-linear3 relationship 

between the load factor and resource capacity since this would arise the question of 

why the approach is not able to leverage lesser resources the same proficiency as it 

can higher resources? 

Limited to the proposed approach, the agents in the solo simulation case are 

completely independent of each other. This means that each agent can achieve its 

goals without any reliance on information or actions from other agents. Although 

system performance as a whole can be influenced by the demand fluctuation 

cancelations among multiple agents, the performance of any particular agent is not 

dependent on another agent. Furthermore, although each agent can glean some 

information about other agents from observing electricity rates or other environmental 

properties, under the proposed approach and in the solo simulation case, the agents do 

not leverage this information when taking action. The agents only minimize the 

fluctuation of their personal demand as prescribed by the proposed approach. Simply 

put the solo simulation the minimum base line performance for a completely 

autonomous implementation of the proposed approach. This gives us a basis in which 

to compare the performance of other simulation cases in terms of autonomy. 



117 

7.2 The Unity Simulation Case 

In the unity simulation case, as defined and implemented in Subsection 6.7, each 

agent has full information about the deficit of all other agents; therefore, each agent 

can compute the expected aggregate demand fluctuation for the system as a whole. 

Furthermore, although it may be physically infeasible, theoretically, the agents can 

coordinate resources such that, despite being managed in a distributed manner, 

collectively the resources can be treated as a large aggregated logical storage system. 

One way to do so would be to change and discharge all resources according to their 

capacity and to route all excess power at one agent through a peer-to-peer network or 

the distribution network to a sink where the power is stored or used4. The purpose of 

our unity simulation is to provide an upper performance bound for the given 

approach, since the unity simulation has all the same parameters as the other 

simulation cases except there are no bounds on information and ability to control the 

environment as dictated by the proposed approach. 

Given the proposed approach, the advantage the unity simulation has over all 

other simulation cases is that demand adjustments are made to aggregate system 

demand which takes into account any demand profile fluctuation cancelations; as 

such, the agents of the unity simulation do no spend resources on reducing local 

demand fluctuation which would have otherwise been canceled out without such 

expenses. Furthermore, since all agents have full control over one another resources, 

                                                 
4 Note that such an infrastructure would be very impractical given today’s technology leave 

agent privacy interests, security problems, regulations and laws which may each alone 

preempt such a system. 
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technically there are no agents without resources. The only limitation the system can 

have is the proposed approach itself. Figure 7.1 shows that as resource factor 

increases the load factor of the unity simulation increases linearly until suddenly 

hitting the maximum load factor. 

The unity simulation, represents the case where agent have minimal 

autonomy. In fact, the results of the simulation are synthesized by simulating the 

system as one giant agent in having all the resources, deficit memory, etc. of the 

entire system as described in Sections 6.7. It is worth noting our distinction between 

simulate and synthesize. A simulation suggests that all relevant nuances and details 

are carried out in a virtual manner in order to produce results that reflect those 

nuances whereas synthesis will directly produces only the results. Synthesis is only 

possible if there are no nuances and special dynamics to be captured making a 

generalization and abstraction of the system possible. In the case of the unity 

simulation, it is not practical to simulate the information communication allowing for 

total awareness of every agent regarding anything any other agent knows and for all 

agents to coordinate each other control over one another’s resources; however, since 

all agents know and control everything any other agent knows and controls we use 

this uniformity and lack of nuance to generalize one agent to synthesize the precise 

results of the theoretical simulation. In fact it is not difficult to implement a full 

simulation for the unity case; however, producing the results in a timely manner is not 

practical. We outline one such implementation in Sections 6.7. Although it may be 
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possible to simulate the unity case, it is nearly impossible to physically produce a 

smart grid that can support the power transmission among other physical limitations. 

It is difficult to prove that the agents of the unity simulation indeed are 

minimally autonomous in the absolute sense since the proposed approach may inhibit 

minimal autonomy by indirectly forcing some level of independence among agents; 

however, up to what is required by the proposed approach the agents of the unity 

simulation are minimally autonomous. This is simply because we are applying the 

proposed approach at the aggregate scale which is the composite of all the system 

agents. If an agent were independent it could only be that it does not contribute to 

aggregate demand fluctuation and does not have any resources to share this is the 

only case where if the agent is removed the for the system or the system is removed 

from the agent it would not have any impact on performance. We are not interested in 

such agents since they do not exist in the problem statement where demand 

fluctuation is required. 

7.3 Neighborhood Simulation Case 

Figure 7.1 shows that, unlike the load factor of the solo and unity simulation cases, 

the load factor of the neighborhood simulation, for the most part, improves at a 

decreasing rate as the resource factor increases. The only exception is were at roughly 

2.5 times the configured storage capacity the load factor improvement rate of the 

neighborhood simulations increases. Figure 7.1 also shows that between the resources 

factor of 0 and about 0.5 the neighborhood load factor is almost as good as that of the 

unity simulation case. The reason the non-uniform load factor improvement and loss 
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of effective resource utilization beyond the resource factor of 0.5 can be understood 

by observing the load factor behavior of each agent type when it collaborates with 

other agents. 

In order to further understand the collaboration dynamics among agent types, 

we ran 6 simulations where each simulation corresponded to a pair of agent types one 

having and the other lacking resources. The configurations in these simulations are 

identical to those of the neighborhood simulation case with the exception that all 

agent types other than the agent type pair being examined are excluded from the 

system. Table 7.3 describes the agent type pairs included in each of the simulation 

cases. 

Table 7.3: Table of agent types associated with each simulation. 

# Agents with resources Agents without resources 

1 

100 Home agents 

100 Home agents 

2 50 Commercial agents 

3 25 Industrial agents 

4 

50 Commercial agents 

100 Home agents 

5 50 Commercial agents 

6 25 Industrial agents 

  

Figure 7.1 and Figure 7.5 show change in load factor relative to resource 

factor as corresponding to the simulations listed in Table 7.3: Table of agent types 

associated with each simulation. In particular, Figure 7.1 and Figure 7.5 correspond to 

the simulations where the resource possessing home and commercial agent type 
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respectively, support agent types without any resources through neighborhood 

collaboration. 

 

Figure 7.4: The load factor corresponding to systems where 100 homes with resources 

support homes, commercial agents, and industrial agent each not having any resources. 

 

Figure 7.5: The load factor corresponding to systems where 50 commercial agents with 

resources support homes, commercial agents, and industrial agent each not having any 

resources. 
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Figure 7.4 and Figure 7.5 afford the following observations each providing 

unique insight into the dynamics of the solution approach when applying 

neighborhood collation: 

1. The load factors in Figure 7.4 and Figure 7.5 all increase until reaching 

maximum after which neither agents nor neighborhood collaboration are able 

to leverage any additional resources toward improving system load factor. 

2. Figure 7.5 shows that the load factor for all simulations where the commercial 

agent type having resources supports other agent types, drastically increases 

as the resource factor increase from 0 to 0.5. 

3. The load factors of each collaborating agent type pair in Figure 7.4 and Figure 

7.5 exhibit an inflection point at different resource factors, respectively. 

Although the inflection points in the simulation cases where commercial agent 

types having resources support commercial and industry agent types without 

resources are not prominent, nonetheless the inflection point exists for even 

these cases and are demonstrated later in Subsection 7.3.3. 

4. Figure 7.5 shows a pronounced dip in load factor for the simulation where 

commercial agent types having resources support the industry agent type 

when the resource factor reaches roughly 0.75. 

Over the following subsections we will explain the dynamics behind each of 

these observations and how they manifest in the overall performance of the 

neighborhood simulation case performance results shown in Figure 7.1. 
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7.3.1 Understanding the Load Factor Cap 

All simulations, except for the unity simulation case, show that agents reach a 

performance ceiling lower than the maximum possible. That is, at this performance 

ceiling no amount of additional resources can improve system performance. For 

performance to improve until reaching the absolute maximum as resources increase, 

agents who are unable to independently modify their demand must somehow do so 

entirely with the resources of other agents. The results for the simulations listed in 

Table 7.3 show that neighborhood collaboration is unable—or at least insufficient—

to provide a mechanism for agents without resources to indirectly or directly 

manipulate the resources of others to the extent that they depend in order to 

completely remove system demand fluctuation. The bottle neck can only be of either 

of the following types:  

1. resource-possessing agents do not offer enough control over their resources to 

other agents 

2. collaborating agents do not have proper information to coordinate action on 

one another’s behalf correctly 

In other words resource-possessing agents are too autonomous with respect to 

resource-deprived agents to allow maximum demand fluctuation reduction. Since 

neighborhood collaboration allows for full indirect manipulation of all excess 

resources of neighboring agents the bottleneck is information.  

As specified by the neighborhood design, if a resource-deprived agent 

requests to purchase precisely the power exceeding its average deficit from any 
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neighbor having unlimited resources, then that neighbor can respond by providing all 

the power necessary for the agent to eliminate its demand above average deficit. 

Given every such agent power request, a helpful neighbor will eventually have all the 

information needed to predict the demand over average deficit of the requesting agent 

to the same accuracy as the requesting agent itself. What the neighbor is lacking 

however, is information regarding the requesting agent’s demand under average 

deficit. Without this information the neighbor can only make an educated guess 

regarding the demand below average deficit. 

Figure 7.7 and Figure 7.10 illustrate how an agent and its neighbor would 

collaborate in the scenario just described above if the agent’s deficit profile was 

sinusoidal; the blue curve represents the agent’s deficit. The agent requests power 

from its neighbor when the deficit is above average. Using the information gained 

from the requests it receives, the neighbor is able to prepare resources and collaborate 

with the requesting agent. The grey curve illustrates how the neighbor would have 

prepared its resources in order to collaborate with the agent and how the transaction is 

conducted after the preparation. In particular, notice how the preparation is a flat 

constant; this is because, the neighbor does not know any better than the expected 

deficit below average corresponding to the collaborating agent. 

Figure 7.7 illustrates the effective demand profile of the agent after its demand 

is adjusted by collaborations with its neighbor. Figure 7.7 and Figure 7.10 illustrate 

how the neighbor’s lack of information regarding the agent’s deficit below average 

can in general produce a limit on load factor improvement since an agent’s deficit 
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below average is seldom the expected (average) value thereby making it unlikely that 

the neighbor can properly cancel out the demand fluctuation related to the agent’s 

demand below average deficit. 

 

Figure 7.6: An illustration of how an agent’s neighbor with a large amount of excess 

resources would behave given the agent’s deficit profile in green. 
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Figure 7.7: The effective demand of the agent after the collaborating neighbor’s 

demand adjustments are completed. 

Under such restrictions and the proposed approach, the best a neighbor can do 

is completely eliminate demand fluctuation for a requesting agent’s demand over 

average deficit and reduce, but not in all likelihood, eliminate the demand fluctuation 

for any arbitrary demand behavior below average deficit for the same agent. The only 

way the neighbor can improve on its collaboration effectiveness is through finding the 

missing information. 

Although it is possible to glean some of the missing information from the 

environment through trial and error, say by observing electricity prices after making a 

change to collaboration, this little information must be extracted from the noise 

introduced by the trial an error of other agents and the dynamism of the system both 

of which quickly becomes impractical without new venues of collaboration as the 

number of agents increases. 

There are two points here to take away: 
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1. The reason for a load factor cap is because of the lack of information 

neighbors have regarding the demand behavior below deficit of requesting 

agents. 

2. If the missing information were made available to an agent’s neighbors, then 

the neighbors would be directly or indirectly dependent on the source of the 

information and as such would have less autonomy. 

In essence, given the restriction and proposed approach, improving the system 

performance would require agents to be less autonomous otherwise any performance 

improvement would be done without the missing information which results in a 

contradiction since the only way performance can be improved is if the neighbor 

demand adjustments cancel out those of the agent requesting power in which case the 

inverse of the neighborhood demand adjustments would be the missing information. 

7.3.2 Understanding the Drastic Increase in Load Factor 

Figure 7.5 shows that all agent types benefit dramatically from collaborating with 

commercial agent types with resources. In fact the rapid increase in load factor 

between resource factor 0 and 0.5, shown in Figure 7.1, is almost entirely the result of 

agents collaborating with commercial agent types having resources. The drastic load 

factor improvements seen in Figure 7.5 are due mainly to the large amount of 

resources that commercial agents have. Since each step in the resource factor 

multiplies each agent’s resource capacity, the total resources of the system increase 

drastically given the large resources capacity of commercial agents. The high quantity 

of commercial agent resources causes the performance cap to be reached much faster 
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than that of the home agents explaining the knee in the neighborhood load factor at 

resource factor 0.5 in Figure 7.1.  

Since resources among all simulation cases are the same, the large amount of 

resources corresponding to commercial agents does not explain why the load factor of 

the neighborhood simulation case below a resource factor of 0.5 is almost as high as 

the load factor of the unity simulation case (see Figure 7.1). The nearly identical 

performance of the neighborhood and unit simulation cases for small resources has 

interesting implications in the field of MAS-based fluctuation reduction solutions, 

including MAS smart grids, since the results suggest that for practical resource 

capacities the neighborhood system does perform near optimal under the proposed 

approach. 

Figure 7.1 shows that for small amounts of excess resources neighborhood 

collaboration provides enough information to participating agents to leverage their 

excess resources as effectively as in the unity simulation case. This may be in contrast 

to our expectations since neighbors are missing the information needed regarding 

requesting agent demand under average in order to properly adjust the demand 

corresponding to this region as illustrated in Figure 7.6 and Figure 7.7. 

The reason why neighbors are so effective despite their lack of information is 

that small demand adjustments based on the expected demand under average deficit 

behavior, leads to an adjustment profiles which is similar to that of adjustments based 

on the missing information. In other words, for small demand adjustments, the 

adjustment profile of the neighborhood and unity simulation cases are similar for 
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adjustments to demand under average deficit. The demand over average deficit can be 

adjusted just as effectively by neighborhood collaboration as it can if the resource-

requesting agent managed the excess resources itself. For the sake of clarity, Figure 

7.8 and Figure 7.9 illustrate how for small enough demand adjustments, optimally 

adjusted demand and demand adjusted by the neighborhood are negligibly different. 

 

Figure 7.8: An Illustration of how optimal demand adjustments and neighborhood 

adjustments can be negligibly different for small enough adjustments. 
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Figure 7.9: An Illustration of how optimally adjusted demand and neighborhood 

adjusted demand can be negligibly different for small enough adjustments. 

Comparing the illustrations in Figure 7.8 and Figure 7.9 to Figure 7.6 and 

Figure 7.7 outlines how the neighborhood performs better for small demand 

adjustments than for large demand adjustments. 

In essence, from an information theoretic standpoint, for small adjustments, 

the information requirements are very low since the adjustments being made for each 

hour under the proposed approach are all very similar and well approximated by their 

average. In other words, since the adjustments for each hour all have a more equal 

chance of happening, the information needed to select each hour’s demand 

adjustments is less. Therefore, for small adjustments, even a little information 

regarding the demand adjustments under average deficit, such as, the total sum of 

demand adjustments under deficit in the case of neighborhood collaboration, goes a 

long way. 
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Therefore, the neighborhood simulation case can sustain low agent 

information dependence, which translates to higher autonomy, while still performing 

near optimal given the proposed approach for low resource availability conditions.  

7.3.3 Understanding the Inflection Point 

The inflection point is caused by neighbors putting personal interest ahead of other 

agents. Neighbors will only partake in collaboration if they are sure that in the future 

their excess resources will not be needed to reduce their own unpredicted demand 

fluctuation. The reason is that a neighbor does not know for a certainty if the 

currently requesting neighbor will indeed in the future request to collaborate again. In 

such a case the neighbor puts its own demand fluctuation, even if the extent of 

fluctuation is improbable, over any external request since the request is not reliable. 

In other words, the agents are aware of the nature of ad-hoc collaborations not having 

any guarantees and therefore will only prepare resource for another agent if that 

perpetration does not conflict with its own. 

As resource capacity increases from nil, agents focus their resources on 

reducing their own demand fluctuation. As resource capacity further increase, these 

agent will find semi-excess resources beyond their average requirements becoming 

available; however, due to the stochastic nature of their deficit the agents find they 

can still leverage these resources to stabilize deficit outliers even if only seldom. 

Although the agent cannot fully benefit from the semi-excess resources, it will be 

reluctant to commit the resources to meet external requests since the requests are not 

guaranteed to repeat. At some point the resources become enough to where an agent 
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no longer worries that it cannot reduce its own fluctuation more than it is sure it can 

reduce the fluctuation of a requesting agent. It is at this point in the resources 

dimension that the neighbor can dedicate excess resources to a requesting agent. As 

the resources of neighboring agents reach this transition point, they are less and less 

able to use semi-excess resources in reducing their load factor causing the increase in 

load factor of the system to diminish. Once the transition point is passed, the agents 

suddenly start using the excess resources to reduce the load factor of the combined 

collaborating pair. Since resource capacity and deficit are stochastic, each neighbor 

may reach this transition point sooner or later than other neighbors causing an 

inflection point to appear in the load factor as opposed to a sudden jump. 

The inflection points in Figure 7.5 are not very pronounced since the load 

factor cap is reached so fast. In order to compare the amount in which the commercial 

agents and homes having resources are each able to contribute to the performance of 

other agent types through neighborhood collaboration, we repeated the simulations 

shown in Figure 7.5 such that the total system resources capacity increases at the 

same rate as the simulations shown in Figure 7.4. The results of simulations appear in 

Figure 7.10.  
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Figure 7.10: The load factor corresponding to the resource factors roughly between 0 

and 1.25 from Figure 7.5 where instead of resource factor the horizontal axis is in total 

storage capacity. The total storage capacity of each horizontal tick corresponds to the 

total storage capacity of at each resource factor tick in Figure 7.4. 

Table 7.4 provides the approximate storage capacity corresponding to each of 

the load factor inflection points of each of the 6 simulation cases described in Table 

7.3. The results were found by observing a change in sign in the rate of change of the 

load factors of each simulation case; there was an outlier in the home-to-home 

collaboration case which produced a short lived inflection point for which we 

compensated. 
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Table 7.4: The approximate storage capacity observed from Figure 7.4 and Figure 7.10 

where the load factor inflection point occurs for each of the simulation cases in Table 

7.3. 

 Home with 

resources 

Commercial 

with resources 

Home without resources 300 565 

Commercial without resources 412.5 262.5 

Industry without resources 450 412.5 

  

We make the following observations from Table 7.4 and the storage capacity 

points where the load factor first top off in Figure 7.4 and Figure 7.10: 

1. The home-to-home and commercial-to-commercial load factor inflection 

points happen at a lower storage capacity point than that of the home to 

commercial and commercial to home simulations.  

2. The home to industry and commercial to industry load factors do top off at 

much higher storage capacities than that of the other collaborating type pairs 

3. The home to industry and commercial to industry load factors top off at 

storage capacities higher than 1200 units but their inflection points happen at 

nearly 1 3⁄  the storage capacity 

7.3.3.1 Similar Agents Collaborate More Effectively 

Since similar agents have similar deficit profiles there is less tension between 

choosing self-interest over collaboration for agents having resources. The reason is 

because similar agents can benefit from the same demand adjustment strategy; 
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therefore, adjustments that an agent would make for itself do not conflict with the 

adjustments the agent would make in order to collaborate with its neighbor. In such a 

case an agent will find that excess resources perpetrations, although still at the risk of 

not ending in collaboration, are likely to be helpful to the agent itself to some extent 

in the case of outlying deficits. For this reason, home-to-home and commercial-to-

commercial collaboration achieve load factor inflection points at lower storage 

capacities than that of the other collaborations. Consequently, the collaboration 

performance of similar agents is higher than that of dissimilar agents. 

7.3.3.2 Industrial Agents Collaborate More Ineffectively 

They key feature of industrial agents is their massive deficit peaks. The reason for 

collaboration among homes and industry and commercial and industry not improving 

load factor as fast as that of other collaborating agent types is due slightly to the fact 

that much more resources are needed in order to reduce the large demand peaks 

caused by industry. More significantly though is that as larger and larger demand 

adjustments become possible with the availability of more resources, so does the 

resource preparations. The larger the resource preparations the larger the demand 

adjustments made by the neighborhood when the requesting agents demand deficit is 

below average. As explained in Subsection 7.3.2, for such large adjustments, the 

difference between the adjustment made by the neighborhood and the adjustment that 

would have been possible if information about the deficit profile below average were 

available is very pronounces. As a results, such large adjustments are suboptimal 

compared to the best adjustments possible given the proposed approach. 
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Consequently neighborhood collaboration performance when collaborating with 

industry type agents is very poor. 

7.3.3.3 Industrial Agent Collaboration Inflection Points 

The reason for the load factor inflection points of collaborating agent type pairs 

involving industrial agent types being so distant from the point where the load factor 

tops off is because the inflection point only has bearing on the agent being able to 

transition from only considering immediate self-interest and interest gained through 

collaboration. Home and commercial agents are able to satisfy their personal 

requirement with relatively little resources with respect to industry agents. Therefore 

the load factor inflection points for home and commercial agents should be relatively 

the same for any collaboration varying only as a result of tension between differences 

in deficit profile among the collaborating parties. There is no exception for home or 

commercial collaborations with industry agents. 

7.3.4 Understanding Load factor Dip 

A dip in load factor corresponding to the case where commercial agent types with 

resources collaborate with industrial agent types, is well pronounced in Figure 7.5 and 

Figure 7.10. The dip in load factor is the result of requesting agents being indecisive 

about with which of their neighbors to collaborate. This indecisiveness comes about 

when both some of the neighbors of a requesting agent trade roughly the same portion 

of the original request and also sometimes fail to trade due their personal interested 

being at risk. In such a case, the requesting agent’s collaboration preferences very 

around a critical point which when crossed causes the requesting agent to reorder 
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whom and how much it wishes to collaborate. The constant change in collaboration 

trends causes spikes in trade requests from neighbors which in turn make it more 

difficult for the neighbors to predict and rely on the requesting agent’s future 

collaboration.  

Figure 7.11 shows the aggregated requests placed by requesting agents from 

neighboring agents and the corresponding aggregated request predictions made by the 

neighbors for the cases where commercial agent types having resources collaborate 

with industrial agent types. Figure 7.11 top and bottom, correspond to the resource 

factor of 0.5 and 0.75 respectively. One would expect that with more resources the 

neighbors should be able to collaborate more steadily; however, comparing the two 

graphs in Figure 7.11 one can see more inconsistent requests and prediction in the 

case having more resources. The correlation between predictions and requests in the 

top graph is 0.912 and in the bottom is 0.849; meaning that the request predictions of 

the case with more resources are more inaccurate. It is important to note that the 

values shown in Figure 7.11 are aggregates across all agents in the simulation case 

and therefore the aggregations cancel out the majority of local fluctuations in 

neighborhood request and request predictions. As such, even a small decrease in 

correlation between aggregated request and predicted request, suggests a much more 

pronounced decrease in correlation for a per agent basis. The lower correlation in 

predictions and requests have more severe consequences in the case of the industry 

and commercial agents over other collaborations involving one of these agents since: 
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1. The deficit profiles of the commercial and industrial agent types allow for 

more tension in the choice the commercial agent faces between self-interest 

and collaboration. 

2. The industry agent’s deficits have very high peaks, as a result, in the case that 

an industry shifts from requesting to collaborate with one commercial agent to 

another, the change in requests being observed from each of the commercial 

agents drastically changes. 
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Figure 7.11: The aggregate neighborhood requests and predicted request corresponding to 

the commercial agent types having resources collaborating with industrial agents having a 

resource factor of 0.5 (top) and a resource factor of 0.75 (bottom).  
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7.4 Time to Equilibrium 

In extremely dynamic environments it is often more important that the time to 

equilibrium be low than the actual equilibrium be near optimal. It is often the case for 

chaotic or extremely dynamic environments that over the time needed for a system to 

reach equilibrium performance the environment would have already transitioned to a 

different state. In this section we take a look at how the time to equilibrium of the 

proposed approach fair for each simulation case. 

We measured the load factor standard deviation of a moving window of 96 

hours (4 periods) starting from each hour for each simulation case. We approximated 

the time required to reach equilibrium by averaging the first hour where the ratio of 

the corresponding load factor stander deviation over that of the next hour was within 

±0.5% of 1. In other words, we measured the average simulation time required to 

reach the first 96 hour period where the load factor was stable. Figure 7.12 shows 

average time required to reach equilibrium as the resource factor increases. It is 

important to note that the manner in which we measured the time to equilibrium is 

very subjective to the moving window length and the selected percentage change in 

standard deviation. Although this measure allows us to compare how rapidly each 

simulation case is able to adjust to it environment, the measure does not actually tell 

use when any particular simulation reaches equilibrium. In practice the state of being 

in equilibrium or not is often not discrete but rather a fuzzy measure; consequently, 

measure the time required for a system to reach equilibrium in an absolute manner is 

often not practical. 
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Figure 7.12: The average number of simulation hours it tokes each simulation case to 

reach equilibrium as measured in the manner described in this section.. 

The results show that the solo agents roughly take a constant time to reach 

equilibrium whereas with enough resources neighborhood collaborating agents and 

unity agents are able to ultimately reach equilibrium in a negligible amount of time. 

In order to understand how reliable each of the simulation case systems are in 

quickly attaining equilibrium we measured the standard deviation of the time to 

equilibriums of each of the 20 simulation repetitions (see Figure 7.13). A high 

confidence in time to equilibrium means that the attributed system is expected to 

reach equilibrium in a reliable manner every time the environment state changes 

whereas a low confidence in time to equilibrium suggests that the attributed system 

may not in some instance be able to adapt to sudden changes in environment very 

reliably.  
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Figure 7.13: The confidence in time to equilibrium for each resource factor and 

simulation case. The confidence is measured in units of standard deviation of time to 

equilibrium. 

Although, for the most part the results in Figure 7.13 are not conclusive, the 

results do support that the time to equilibrium of the unity simulation case system has 

near maximum confidence whereas the neighborhoods confidence progressively 

reduces until peaking at a resources factor of roughly 4 and subsequently increasing 

to near maximum. The peak lack of confidence of the neighborhood simulation case 

corresponds to the inflection point visible in Figure 7.1 occurring at the same resource 

factor.  

These results are expected since:  

 The unity simulation case all agents are aware of all information relevant to 

the proposed approach and therefore are not struck by any surprises when 

following the approach. 
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 Neighborhood collaboration is not reliable particularly when the resource 

factor nears the inflection points where an agent is struck whether to pursue its 

self-interest or collaboration. 

Despite the time to equilibrium confidence of the neighborhood simulation 

case being generally lower the decreasing average time to equilibrium with respect to 

that of constant time to equilibrium of the solo agents can make the neighborhood 

enable system an option for environments where the solo agents are not applicable. 
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CHAPTER 8 MEASURING AUTONOMY 

Over the course of our observations we have identified and measured the deficiencies 

of solo agents with respect to other more collaborative agents. The short coming of 

the solo agents are: 

1. Solo agents cannot stabilize the system demand fluctuation beyond reducing 

their local demand fluctuation to virtually its minimum. In other words, solo 

agents, even with excess resources, cannot actively contribute to reducing the 

demand fluctuation of other system agents 

2. Solo agents have no information about the demand profiles of other agents 

and as such cannot actively take advantage of demand fluctuation cancelations 

among multiple agents. In the worst case, it may be that, independently, solo 

agents suffer extreme demand fluctuations while the system as a whole is 

completely without demand fluctuation. Under such conditions the solo agent 

will still consume resources to reduce local demand fluctuations. 

As a result of the shortcomings listed above, solo agents have the lowest 

performance of all the other agents. In other words, solo agents are unable to fully 

leverage their resources in order to attain high load factors. As explained earlier, in 

order to overcome these limitations, solo agents must have more information. This 

information cannot be gained without introducing inter-agent dependencies. 

Therefore, in order to advance performance, solo agents must sacrifice autonomy by 

some means or another. 
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In general reduced autonomy comes at a cost. Under such conditions it is 

naturally of interest to find the conditions where: 

1. the costs of reducing autonomy offers the largest amount of system 

performance improvement benefits 

2. the minimum cost of reducing autonomy is accepted in order to satisfy some 

system performance constrain 

In line with finding these points of interest, over our study we have suggested 

a means to find system performance bounds in terms of autonomy; namely, to hold a 

solution approach and all relevant configurations short of degree in which an agent is 

informed and in control of its external environment, constant. In this chapter we 

define a means of quantifying the autonomy of direct or indirect collaboration 

techniques relative to an MAS solution approach. 

We start our discussion on measuring autonomy by iterating over some key 

concepts that have been, in previous chapters, presented in general or used in the 

context of the smart grid or the proposed demand fluctuation reduction approach. In 

Section 2.2 we defined autonomy to be the degree in which a set of goals can be 

independently realized. Over our discussion of the simulations and their results in 

Chapter 6 and Chapter 7 we refer to the term agent performance as a measure of how 

well an agent can realize its goals given its dynamic environment and a set of 

resources. Simply, performance gauges how well an agent uses its resources in order 

to realize its goals all while under constraints of its environment. Crucially, 

performance is not a function of a particular state of the environment. For instance, it 
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is possible an agent effectively uses its resources to achieve its goals at unproblematic 

moments in the environment while under the regular environment stress, it may fail to 

properly utilize resources and achieve goals. Such an agent would have poor 

performance since it is not adept to its environment.  

In general, aside from personal information and given resource, an agent can 

only be dependent in achieving its goals on information and control over the 

environment external to itself. It is normal for an agent to be dependent on its 

environment; however, it is desirable that an agent be less dependent on some parts of 

an environment such as other agents, users, or facilities. When measuring a particular 

type of agent autonomy, we are measuring how much the performance of that agent is 

dependent on its information and control over some subset of its external 

environment. In Section 6.1 we defined the information and control an agent has over 

its external environment to be the authority of the agent over its environment, or 

simply authority. We have used the notion of agent authority in designing and 

explaining the smart grid simulation cases, particularly in the introduction of Chapter 

6 and Chapter 7 and in Sections 7.1 and 7.2. 

8.1 Relative Enhancement Autonomy 

We build off of the work done by Braynov and Hexmoor on quantifying relative 

autonomy [24] in order to define a means of quantifying the autonomy of an MAS 

with respect to the maximum potential of the solution approach. We recap the 

definition introduced in Section 2.5. For the sake of simplicity instead of considering 
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the autonomy of agent 𝑖 with respect to a set of agents 𝑆, we will consider the 

particular case where the set 𝑆 contains only agent 𝑗. 

Definition 8.1: Relative Agent-Agent Autonomy 

For some ratio scale measure of agent performance, let 𝒗𝒋
𝒊 denote the 

performance of agent 𝒊 when in the presence of agent 𝒋. The relative 

autonomy, 𝑨𝒋
𝒊 of agent 𝒊 with respect to agent 𝒋 is: 

𝑨𝒋
𝒊 =

𝒗𝒋
𝒊

𝒗𝒊
𝒊
 

  

At the heart of the definition, the relative autonomy 𝐴𝑗
𝑖 is the fraction of 

performance agent 𝑖 gains when in the presence of agent 𝑗, over the performance 

agent 𝑖 would have had relying on only itself. It is possible that the presence of agent 

𝑗 disturbs the performance of agent 𝑖 by imposing some direct or indirect limitations 

on system control or visibility, or perhaps due to constructive collaboration the 

presence of agent 𝑗 brings about performance improvements for agent 𝑖. At any rate, 

the performance changes are solely attributed to the presence of agent 𝑗. 

It is worth clarifying that the performance of an agent, and consequently the 

relative agent-agent autonomy, is dependent on an often non-empty set of variables. 

An agent or system uses a set of resources and in order to accomplish its goals. The 

effectiveness of the agent or system in utilizing those resources to achieving some 

extent of their goals is the performance of that agent or system. Consequently; 

performance is a function of resources. Again, the measure of an agent’s performance 
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captures the agent’s ability to achieve its goals in its environment. As such, 

performance captures an agent’s ability to succeed regardless of environment 

dynamism and chaotic events. 

It is noteworthy that changes in agent-agent autonomy measures do not 

directly map to the natural quality measure of the autonomy concept; meaning, an 

increase or decrease in an agent-agent autonomy measure, respectively, does not 

directly mean that the agent is more or less autonomous. For instance, it is possible 

𝐴𝑗
𝑖 > 𝐴𝑗

𝑘 for agents 𝑖, 𝑗 and 𝑘, which, contrary to expectation, depending on 

application, can be interpreted as agent 𝑖 is less autonomous than is agent 𝑘 with 

respect to agent 𝑗. 

We extend Definition 8.1 to allow for the relative autonomy associated with a 

solution approach enhancement to be measured. Let 𝑆 denote the MAS for a given 

solution approach and let 𝐺(𝑆) denote the set of goals of the agents of 𝑆 such that, for 

any 𝑔1, 𝑔2 ∈ 𝐺(𝑆), it is not possible for either 𝑔1 or 𝑔2 to fully contain the other 

unless 𝑔1 = 𝑔2. In other words let 𝐺(𝑆) be the set of generalized goals of 𝑆 where 

each goal has a unique component which is not addressed by any other goals. 

Furthermore, let 𝑆𝑘 denote the MAS following the prescribed approach having 

enhancement 𝑘 where an enhancement is defined as any agent adaptation where the 

final agents have more authority and 𝐺(𝑆) = 𝐺(𝑆𝑘) such that the added authority 

results in improved goal realization. Put simply, an enhancement must improve agent 

performance through increasing agent authority all while leaving the goals defined by 
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the approach unchanged. By the definition of enhancement, an enhanced agent must 

be less autonomous than the original agent. 

We clarify that an enhancement to an approach is a different means of 

achieving the goals defined by the approach itself. The goals defined by an approach 

may or may not be identical to the goals defined by the optimal solution. Therefore, 

an approach enhancement is limited by the goals of the approach itself and 

consequently can only improve the system to the extent of which optimally achieving 

the approach goals are possible. In many cases the approach goal may indeed be 

exactly that of the optimal solution. But this does not need to be the case since often 

times the approach suggests an approximation of the optimal solution. It is worth 

clarifying that an agent or environment property change does not necessarily 

constitute an enhancement to an approach if access to information or control over the 

external environment with respect to any agent remains the same. By definition, 

changes which do not impact the information or control of any agent do not introduce 

any changes in autonomy relative to themselves and an external entity since otherwise 

the enhancement would be performing better without any additional authority which 

would require that the enhancement not follow the approach. Examples of an 

enhancement could be: 

 various learning, since an agent produces a model which can extract 

information from observation data or allow for a new point of control to be 

discovered  
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 various agent collaborations, negotiations, voting, auctioning, etc., since each 

of these mechanisms may introduce new means of control or state information 

to the agent they did not already have 

We are interested in such a definition of enhancement because we are 

interested in describing a means of measuring the autonomy changes introduced by 

generalized MAS mechanism since these enhancements are fundamental techniques 

in MAS research to improve existing solution approaches.  

Definition 8.2: Relative Enhancement Autonomy 

For some ratio scale performance measure, let 𝒗𝑺 and 𝒗𝑺𝒌  be the 

performance of 𝑺 and 𝑺𝒌 for some approach and approach enhancement 𝒌 

with goals 𝑮(𝑺) = 𝑮(𝑺𝒌) respectively. The autonomy, 𝑨𝑺
𝑺𝒌 , of 𝑺𝒌 with respect 

to 𝑺 is: 

𝑨𝑺
𝑺𝒌 =

𝒗𝑺𝒌
𝒗𝑺

 

  

Since the objective of approach 𝑆 and enhanced approach 𝑆𝑘 are the same the 

performance measurements of 𝑣𝑆 and 𝑣𝑆𝑘 are comparable. If the objectives of 𝑆 and 

𝑆𝑘 were not the same, then it would likely be the case that a measurement of how 

effective 𝑆 is at achieving 𝐺(𝑆) cannot be compared with a similar measurement of 

how effective 𝑆𝑘 is at achieving 𝐺(𝑆𝑘). Under such conditions the measurements 

would likely not be comparable since, either the measure would not capture the 

effectiveness of achieving both goal sets simultaneously or if so the scale of the 
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measures would not be the same. Since 𝐺(𝑆) = 𝐺(𝑆𝑘) it must be the cause that the 

performance measures of 𝑆 and 𝑆𝑘 are comparable. Similar to Definition 8.1 the 

autonomy measure defined in Definition 8.2 is generally a function of several 

variables. 

By definition, the aggregated effects of autonomy internal to 𝑆 is a base-line 

dictated by the solution approach; therefore, up to what is required by the solution 

approach the internal autonomy of 𝑆 is maximal. By definition, the difference in 

performance of 𝑆𝑘 is solely dependent on the reduced autonomy introduce by the 

enhancement to the approach. Last but not least, the definition requires that the goals 

of the two systems being compared be the same. Therefore, Definition 8.2 is based on 

the same principles as Definition 8.1. Table 8.1 summarizes how Definition 8.2 is 

extended from Definition 8.1. 

Table 8.1: An outline of how Definition 8.2 extends from Definition 8.1. 

 Definition 8.1 Definition 8.2 

Objectives 

The objective of agent 𝑖 is 

constant regardless of whether 𝑗 

is present or not, therefore the 

performance measurements 𝑣𝑗
𝑖 

and 𝑣𝑖
𝑖 are comparable 

By definition, the objective of 

approach 𝑆 and enhanced 

approach 𝑆𝑘 are the same, 

therefore the performance 

measurements 𝑣𝑆 and 𝑣𝑆𝑘  are 

comparable 
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Measure in 

the 

numerator 

Performance of agent 𝑖 when 

directly or indirectly interacting 

with agent 𝑗 beyond the 

interactions it would have had 

otherwise; in other words, 

performance of agent 𝑖 when 

affected through any channel of 

autonomy triggered by the 

existence of 𝑗 

System performance of agents 

directly or indirectly interacting 

with each other beyond that which 

would have been possible 

otherwise; in other words, the 

system performance of 𝑆 when 

effected through the channels of 

autonomy introduced by 

enhancement 𝑘 

Measure in 

the 

denominator 

Baseline performance agent 𝑖 has 

in the presence of only itself 

System baseline performance of 

the approach 𝑆 only 

  

Essentially, Definition 8.2, measures the fraction of performance gain that is 

solely produced by direct or indirect collaboration introduced by the enhancement, to 

that of the base-line approach which only allows for collaboration up to what is 

required by the approach. In other words, Definition 8.2, captures the percent 

performance improvement brought about by increased collaboration. Again this 

collaboration may be constructive or destructive. At any rate, any change in the 

measure value of Definition 8.2 is directly the result of changes in autonomy brought 

about by the enhancement, and therefore, provides a measure of the autonomy of the 

enhancement with respect to the approach. As such, Definition 8.2 allows one to 

determine the extent of any introduced dependencies agents have in achieving their 
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goals after incorporating various common MAS techniques, such as learning, 

coalitions, etc. into a previous solution approach.  

Similar to agent-agent autonomy, relative enhancement autonomy does not 

directly map to the qualities associated with the notion of autonomy. In fact, relative 

enhancement autonomy has an inverse relation with the notion of autonomy. This 

means the higher the measured relative enhancement autonomy the lower the 

autonomy and visa-versa.  

Relative enhancement autonomy measures the autonomy of the enhancement 

free of the maximum autonomy dynamics inherent to the approach. As such, relative 

enhancement autonomy captures variations in autonomy introduced by the 

enhancement alone. For instance, let us assume the maximum autonomy inherent to 

an approach fluctuates as more resources are made available. Relative enhancement 

autonomy would allow for the changes in autonomy introduced by the enhancement 

to be measured without the measures being influenced the approach in which the 

enhancement is based. As such, the measures are clear of the fluctuating dynamics of 

the maximum autonomy limits inherent to the approach. 

One of the weaknesses of relative autonomy is that the scale of the measure is 

not uniform for different resources. This is because, for different sets of resources it is 

possible that the corresponding minimum autonomy attainable by the approach be 

different as well. Although relative enhancement autonomy captures only the changes 

in autonomy resulting from the enhancement, those changes are measured relative to 

a scale which varies depending on the minimum autonomy of the approach. Although 
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for any given set of resources, using relative enhancement autonomy, it is possible to 

contrast the autonomy of various enhancements clear of the dynamics of the 

maximum autonomy of the approach the enhancements share, it is often not very 

meaningful to compare measures corresponding to different sets of input resources 

since each is subject to a different scale. 

8.2 Smart Grid Performance Measure 

Until now we have been using load factor in order to directly measure the demand 

fluctuation of a smart grid agent or system. Although, in our discussion of the smart 

grid we have used the term performance, we did not quantify any measure other than 

to suggest the performance of an agent or system is not only related to its load factor 

but to the amount of resources it requires to achieve any such load factor. 

In essence, the suggested approach spends storage space and load suspension 

tolerance in order to reduce demand fluctuation. Therefore, the performance of an 

agent or system based on this approach is dependent on how effectively the agent or 

system can use any given resources to achieve its goal. Consequently, smart grid 

performance is a function of these resources. Performance is also dependent on other 

variable as well; however, we hold these variable constant in our simulation 

instances. 

There are many ways to define a measurement for this performance definition. 

For simplicity we elect the following performance definition. Let the performance of 

a smart grid agent or system be the load factor per unit of resources the agent or 

system is able to achieve for a given amount of resources in its expected environment. 



155 

Particularly, in the case of our simulation tests where agents never had any tolerance 

for load suspension, the smart grid performance measure is simply the agent or 

system load factor to unit of storage capacity for a given amount of storage. Let 𝜆𝑆(𝑟) 

signify the load factor of smart grid system 𝑆 and storage capacity 𝑟 then the system 

performance 𝑣𝑆(𝑟) is: 

𝑣𝑆(𝑟) =
𝜆𝑆(𝑟)

𝑟
 (8.1) 

8.3 Smart Grid Autonomy Measure 

Given the relative enhancement autonomy from Definition 8.2 and the performance 

equation (8.1) the smart grid autonomy measure is: 

𝐴𝑆
𝑆𝑘(𝑟) =

𝑣𝑆𝑘(𝑟)

𝑣𝑆(𝑟)
=

𝜆𝑆𝑘(𝑟)

𝑟
𝜆𝑆(𝑟)
𝑟

=
𝜆𝑆𝑘(𝑟)

𝜆𝑆(𝑟)
 (8.2) 

We extend the definition of 𝐴𝑆
𝑆𝑘(𝑟) for the case where 𝑟 = 0 to be: 

lim
r→0+

𝐴𝑆
𝑆𝑘(𝑟) = lim

r→0+

𝜆𝑆𝑘(𝑟)

𝜆𝑆(𝑟)
 (8.3) 

Figure 8.1 shows the results of measuring the relative enhancement autonomy for 

each of the simulation cases. 



156 

 

Figure 8.1: The change in autonomy beyond that of the solo simulation case as 

introduced by collaboration in the unity and neighborhood simulation cases. 

The fraction of performance each of the unity and neighborhood simulations 

have over the solo simulation measure the extent at which the goal of each simulation 

is realized as a sole consequence of the agent collaboration introduced by each 

simulation case. In other words, the measure indicates what extent of goal realization 

is dependent on the agent collaboration enhancements of the unity and neighborhood 

simulations. As such, the values in Figure 8.1 capture the autonomy inherent to the 

collaboration tactics of the unity and neighborhood simulations. 

We are only interested in presenting the relative enhancement autonomy 

measurement and motivating its value and short comings, so we will not delve into 

analyzing the results of the relative enhancement autonomy measure of the smart grid 

simulation cases in fine detail. 

From Figure 8.1 we can conclude that as the resource factor of 2.5 is 

approached the agents of the neighborhood simulation case become less and less 
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reliant on the neighborhood to achieve their goals with respect to their independent 

strategy. As such, at a resource factor of 2.5, the agents of the neighborhood 

simulation case are less reliant on neighborhood collaboration itself in order to 

achieve their goals than that of the same agents at any resource factor greater than or 

equal to 0.5.  

Given the ability to measure relative enhancement autonomy one can for 

instance know from measurement shown in Figure 8.1 that at a resource factor of 2.5 

an 8.38% percent performance improvement is entirely the result of neighborhood 

collaboration enhancement made to the base-line approach of the solo simulation 

case. 

More interesting perhaps is the peak and subsequent dip of relative 

enhancement autonomy of the unity simulation case. At the peak relative 

enhancement autonomy achieved at resource factor 1.5, the unity simulation system 

performance shows a 42.75% improvement over the baseline solo simulation system 

which is solely attributable to the unrestricted collaboration of the unity simulation. 

At this point the approach reaches its maximal dependence on collaboration. In other 

words if at the resource factor of 1.5 all collaboration in the unity simulation was lost 

the system would lose the ability to achieve an equivalent of 42.75% of the goal 

achievable without collaboration. Such information not only enables the reliability of 

the system to failing collaboration, memory, learning, or some other enhancement 

affecting autonomy to be gauged and fine-tuned but also allow the dependencies 

inherent to an approach enhancement itself to be gauged and fine-tuned to meet 
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computational complexity requirements. For instance, given relative autonomy 

measures, the resources of a neighborhood trading enabled smart grid can being tuned 

so that the agents not only perform well but are also as independent to neighborhood 

collaboration failures as possible or perhaps the infrastructure supporting the 

neighborhood collaboration could be budgeted to reflect the dependency of the MAS.  

The dip in relative autonomy of the unity simulation case as the resource 

factor increases beyond 1.5 is entirely due to the increased relative performance of the 

base-line solo simulation case for the same resource factors. Since the agents of the 

unity simulation case are defined to be minimally autonomous up to what the 

approach allows, the corresponding relativity enhancement autonomy measures are 

maximal for any implementation of the approach. Similarly since the agents of the 

solo simulation case are defined to be maximally autonomous up to what is required 

by the approach, the corresponding relative enhancement autonomy measures are 

minimal for all implementation of the approach. Therefore all enhancements to the 

approach must have a relative enhancement autonomy measure between that of the 

unity and solo simulation cases. By definition the relative enhancement autonomy 

measure of the base-line approach is always the constant 1. Since the upper bound of 

the relative enhancement autonomy can scale freely with respect to the base-line for 

various MAS input parameters in a similar manner to that of the smart grid 

simulation, then all the values confined between the upper and lower bound are 

skewed by the relative nature of the measurement. As such it is hard to identify the 

trends in autonomy natural to an enhancement since the relative enhancement 
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autonomy for the enhancement will be influenced by the autonomy trends of the base-

line approach. Therefore, relative enhancement autonomy is valuable when we are 

interested relational measurements and not when we are interested in measuring the 

absolute autonomy of an enhancement alone. 

8.4 Absolution Enhancement Autonomy 

Occasionally, given a set of input resources, it is possible to find the maximum 

performance of an MAS following a prescribed approach over the range of applicable 

authority options. In many cases, the ability to find a maximally performing MAS is 

possible simply because the approach itself dictates the scope of applicable 

collaboration and learning by describing what information and control is useful to the 

approach. In other cases, it may be impractical to find the maximum performing 

enhancement to an MAS or to even simulate such a system; however, it may still be 

possible to find the maximum performance of an approach by other means. This is 

possible since in some cases the approach, the fixed input resources, and the complete 

knowledge of the problem statement and environment allow for the maximum 

performance to be calculated, modeled, or synthesized. In the worst case, it is 

possible to impose reasonable assumptions allowing for an upper or lower bound on 

the maximum performance to be found.  

It is often a much simpler task to find the minimum expected performance of a 

solution approach for a given set of resources when varying only authority. The 

reasoning is that if an approach and problem statement and their simulation 

environment, and finally the set of approach resources, are known then the 
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information and control each agent is minimally prescribed to have by the approach is 

already given.  

For such approaches, where the minimum and maximum performance over 

the range authority prescribed by the approach for a given set of input resources is 

available, we define the absolute autonomy of an enhancement. 

Definition 8.3: Absolute Enhancement Autonomy 

For some ratio scale performance measure, let 𝒗𝑺, 𝒗𝑺𝒌 , 𝒗𝑺𝑴  be the 

performance of the approach 𝑺, and performance of the approach enhanced 

by 𝒌 and 𝑴 respectively such that 𝑮(𝑺) = 𝑮(𝑺𝒌) = 𝑮(𝑺𝑴) and 𝑴 is the 

maximum performing enhancement of 𝑺 for any set of input resource. The 

absolute autonomy 𝑨𝑺𝒌 of 𝑺𝒌 is: 

𝑨𝑺𝒌 =
𝒗𝑺𝒌 − 𝒗𝑺

𝒗𝑺𝑴 − 𝒗𝑺
 

The absolute autonomy 𝑨𝑺 of approach 𝑺 is defined to be 𝟎. 

  

It is important to notice that as a consequence of the definition of an 

enhancement, 𝑣𝑆 < 𝑣𝑆𝑘 ≤ 𝑣𝑆𝑀. Furthermore, by definition of an enhancement it is not 

possible for 𝑆 = 𝑆𝑘; hence, the explicit declaration of 𝐴𝑆 = 0 in Definition 8.3. 

Finally it is worth noting by Definition 8.3, it must be that 0 ≤ 𝐴𝑆𝑘 ≤ 1 for any 𝑆, 𝑘 

and set of input resources. Similar to relative enhancement autonomy, absolute 

enhancement autonomy has an inverse relationship with the quantitative notion of 

autonomy. 
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The key benefit of absolute enhancement autonomy is that its measure is 

scaled to match the minimum and maximum possible autonomy of the approach. As 

such, the measure is not only reflective solely of the autonomy changes introduced by 

the enhancement, but the measure follows a uniform scale for across possible 

resources sets. This feature makes for the differences among autonomy changes 

introduced by different enhancements to be not only compared but also uniformly 

measured. Where it is not very meaningful to compare the difference of relative 

enhancement autonomy of two separate enhancements corresponding to two different 

resource sets it is meaningful to do so in terms of absolute enhancement autonomy. 

The key short coming of the absolute enhancement autonomy is that it requires a 

means of measuring the maximum possible performance of the approach. This is 

often not feasible since in the worst case one must solve the original problem whose 

infeasibility motivated the MAS approximation in the first place, and in the best case, 

a mathematical modeling, synthesizing (computational modeling) or estimating the 

maximum performance of the approach is required which is a difficult task in itself.  

We close our discussion by considering the absolute enhancement autonomy 

of the smart grid simulations shown in Figure 8.2 as an example.  
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Figure 8.2: The absolute enhancement autonomy of the solo, neighborhood, and unity 

simulation cases. 

As observable from Figure 8.2, due to the stochastic nature of the simulations, 

the measured results for the neighborhood simulation case are not exactly what is 

theoretically expected. Namely, the expected measurements for the resources factors 

0, 0.25, and 0.5 are exactly 0, at most 1, and at most 1 respectively, which differ from 

the measures results. Nonetheless, the outlying measurements miss the expected 

values with an average error rate of 4.3%, which is well within tolerance for outlying 

samples. The error could have been reduced by running each simulation more than 20 

times and taking the median performance instead of the average, or completely 

eliminated if we were to modify the simulation infrastructure to replay the same 

random events for each simulation case. At a resource level of 0 all simulation cases 

are reduced to the same plain grid and no longer have interesting smart grid 

properties. Figure 8.3 show the results after cleaning the data, applying polynomial 
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regression to reduce noise, and excluding the sample related to the uninteresting 0 

resource factor. 

 

Figure 8.3: Absolute approach enhancement autonomy of the simulation cases after 

cleaning the data and using polynomial regression. 

Results from Figure 8.3 show the autonomy of the neighborhood enhancement 

with respect to the maximal (Unity) and minimal (Solo) autonomy enhancements 

applicable to the proposed solution approach. Since the autonomy introduced to the 

approach by the neighborhood enhancement is measured and scaled against the 

minimal and maximal autonomy of any possible enhancement to the approach, the 

results express the autonomy of the neighborhood enhancement in terms of the 

autonomy space of all possible approach enhancements. Therefore, the resulting 

measure is absolute over the domain of possible enhancement. 

Absolute enhancement autonomy affords us clear insight into the 

dependencies an enhancements introduces in achieving the goals of an approach. The 

afforded insight is clear since all relative autonomy information corresponding to the 
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approach under consideration in addition to that of any other potential approaches 

have been discarded. In essence the resulting the autonomy measurements are from a 

scale which corresponding only to the possible enhancements of an approach.  

Returning to our example, given the absolute neighborhood autonomy 

measure from Figure 8.3 one can immediately see the observations we made in 

Section 7.3 from Figure 7.1, in particular the near optimal performance of the 

neighborhood enhancement at low resource factors, the skepticism of agents in 

collaborating with neighbors at resource factor 2.5, and the inflection point in load 

factor. The inflection point in load factor for the neighborhood simulation case is not 

easy to find in Figure 7.1 or even Figure 8.4, but it is well pronounced at a resource 

factor of 4.25 from Figure 8.3. 

The absolute enhancement autonomy trend shows only the changes in 

autonomy that the enhancement introduces. This allows for the dynamics and in 

particular the short comings of the enhancement to be identified. One important 

enhancement shortcoming that the absolute enhancement autonomy exposes is the 

addition of artificial or costly dependencies in the system. In the example of the 

neighborhood simulation case, the notion of self-interest implemented in the 

enhancement is suboptimal since it results in a dip in absolute enhancement autonomy 

at resource factor 2.5, whereas the same approach at higher and lower resources is 

able to sustain higher absolute enhancement autonomy. The results suggest that a 

similar enhancement with a better implementation of the notion of self-interest can 

produce more consistent results. In short many of the results we found in Section 7.3 
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could have been found much more readily using absolute enhancement autonomy 

allowing for the enhancement itself to be gauge more appropriately. 
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CHAPTER 9 CONCLUSIONS AND FUTURE 

WORK 

We have provided two full MAS solution implementations for the smart grid 

problem, namely that based on the solo and the neighborhood agents. In order to do 

so, we first generalized the smart grid problem to an instance of the stabilization 

problem class. We then devised a methodology for solving instances of the 

stabilization problem class based on the core defining factor of the class, namely the 

monotonic increase in cost with respect to fluctuations in a set of properties – see 

Section 1.2. In particular the proposed solution methodology adjusts the fluctuating 

properties of any stabilization problem such that the property values approach their 

average by manipulating a set of given buffering resources which can advance or 

postpose the fluctuating properties. The proposed solution methodology has 

significant consequences in that it applies to a large number of seemingly unrelated 

problems some of which are very high profile MAS problems such as intelligent 

traffic management systems and stock market trading systems to name a few – see 

Subsections 9.1.2.1 and 9.1.2.2. Many problems which are considered subjectively in 

the MAS community are in fact at heart an instance of the stabilization problem. 

We adapted the proposed solution methodology into a solution approach for 

the smart grid problem where we treated the problem as a representative of the 

stabilization problems. Since the approach is based on the solution methodology for 

the stabilization class, even though the approach is customized for the smart grid 
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problem, still by reconfiguring and relabeling parameters it is readily possible to 

solve many other instances of the stabilization class; for instance any demand driven 

market problem is likely to be solvable with the same approach as the smart grid. The 

differences between various custom approaches grounded in the proposed 

methodology mainly derive from how an agent can predict the fluctuating properties, 

the rules/infrastructure governing agent collaborations, and the limitations imposed 

on manipulating buffering systems.  

The results of the solo simulation case, corresponding to the base-line smart 

grid MAS having no agent collaboration abilities, showed that not only does the 

methodology allow a maximum demand stability to be achieved but also does so with 

a linear relation to resource capacity which suggests that the methodology can equally 

utilize resources in order to stability objectives – see Section 7.1 and Figure 7.3.  

The results of the neighborhood simulation case, corresponding to the smart 

grid MAS having ad-hoc coalition abilities in terms of neighborhood collaboration, 

showed sustained performance improvements over the solo simulation case. In 

particular the performance improvements for small resource capacities where near 

maximal with respect to what the approach allows – see Subsection 7.3.2 and Figure 

7.1. As such, the results support the theoretical ability for the solution methodology to 

completely stabilize properties – see Chapter 3. 

We investigated the time to equilibrium of both our smart grid MAS solutions 

with respect to the maximal value the approach allowed given the imposed 

restrictions. The results showed that the base-line smart grid MAS having no agent 
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collaboration have a nearly constant time to equilibrium which made the system less 

effective under highly dynamic conditions. On the other hand the smart grid MAS 

solution with ad-hoc collaboration did show improvements in time to equilibrium up 

to a point where with enough resources time to equilibrium was negligible. These 

improvements did have inconsistent confidence levels suggesting that for some 

resource capacities the reliability of time to equilibrium of the neighborhood 

simulation case is substantially lower than other resource capacities levels and even 

that of the solo simulation case. These results suggested for large enough resources 

the neighborhood is much more adaptive and versatile against highly dynamic 

systems than the solo simulation case. However, the neighborhood simulation case 

was far from the optimal achievable by the approach suggesting the effects of noisy 

local observations versus aggregate observations. 

The common theme over the course of our investigation was the effects of 

autonomy on the solution approach. By generalizing our investigation process we 

defined two autonomy measures which capture the autonomy introduced by 

enhancement to an approach; namely, relative enhancement autonomy and absolute 

enhancement autonomy. Using these measures we were able to readily show the 

neighborhood enhancement dynamics exposed over Chapter 7 particularly those in 

Subsections 7.3 and 7.4. The absolute enhancement autonomy measure clearly 

exposed the main shortcoming of the neighborhood simulation; namely, the 

inappropriately defined notion of self-interest indeed produced outcomes which were 

not actually in the self-interest of the neighborhood agents. One of the main values 
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that the autonomy measures provide, is the ability to find anomalies in performance 

dependencies of an enhancement. Finding such anomalies allow for the enhancement 

to be improved much more readily. 

MAS affords us approximate solutions to problems which are otherwise 

intractable. Autonomy is one, if not the key, mechanism of MASs in which difficult 

centralized problems with optimal solutions are transformed into a simpler distributed 

problem with an approximate solution. Intuitively, the range between full autonomy 

and full unification form a continuous scale such that as a solution tends from 

autonomy to unification a low computational complexity MAS approximation tends 

to an optimal yet high computational complexity solution. The ability to measure the 

autonomy of enhancements to a base-line approach allows for the approximation and 

complexity of an MAS to be fine-tuned allowing the best mix of reliability, accuracy, 

and computational complexity to be pinpointed by an enhancement. 

9.1 Future Work 

The research presented in this thesis covers three main areas: 

1. Smart Grid MAS Solutions 

2. Stabilization Problem Solutions 

3. Enhancement Autonomy  

We divide the future work into these areas. 
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9.1.1 Smart Grid MAS Solutions 

Our investigations into the smart grid cover only the basics. The following is a non-

exhaustive list of details which we have not covered in this thesis yet which are 

essential to understanding smart grid MAS solutions: 

1. Dynamically changing pricing function such as auctions and market depth 

2. Investigations into system reliability and resilience to failure 

3. The application of learning and reliable coalition 

4. Investigations into the dynamics of agent load suspension tolerance 

Although the simulation infrastructure used in this thesis and variants of the 

infrastructure allow the simulation of stochastically modeled failures, the simulation 

of auctioneers, buyers and sellers, and the ability to postpone demand by relying on 

agent tolerance to load suspension, neither this thesis nor our separate investigations 

have significantly covered the items listed above. In particular, investigations into 

various applications of learning and reliable collaboration to smart grid MAS 

solutions are a very promising area of research. A major short coming of our research 

is the absence of a long term reliable collaboration mechanism to contrast against the 

short term ad-hoc collaboration of the neighborhood. One of the collaborative 

strategies which captured our interest is based on the idea of agents leasing their 

excess resources to one another. Such a strategy could potentially reduce the issues 

and shortcomings that naturally arise from the complicated definition of self-interest 

necessary in short lived ad-hoc collaborations – see Subsections 7.3.3 and 7.3.4. 

Leasing excess resources is essentially a contractual guarantee of collaboration which 
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simplifies the problem of defining self-interest due to the reliable nature of such 

collaboration. More importantly perhaps, leasing excess resources has the potential of 

addressing the information deficiency faced by neighborhood agents when trying to 

prepare resources – see Subsection 7.3.2. By leasing, agents exchange the control 

over excess resources where as in the neighborhood model agents exchange partial 

deficit profile information. As such leasing allows the control and full information to 

be places in the hands of resource deprived agents whereas neighborhood 

collaboration only allows partial deficit profile information and control to be 

available to agents who own excess resources. Investigating the autonomy and 

performance dynamics of reliable collaborations based on leasing in comparison to 

ad-hoc neighbor collaborations not only promises an effective MAS-based smart grid 

solutions but also offers deeper insight into solutions to the stabilization problems 

class in general.  

9.1.2 Stabilization Problem Solutions 

We are aware of several limitations to the proposed methodology from 

Chapter 3 which each can be addressed in future investigations. One of the main 

shortcomings of the approach is the lack of consideration of the effects of the pricing 

function in the demand adjustment profile. In ideal conditions where predictions 

about the future are at least consistent as time passes if not accurate, the methodology 

suggests producing a demand adjustment profile which is a constant fraction of the 

negated predicted deficit profile – see Section 3.3 particularly Eq. (3.8). As an 

example let us consider the scenario where for some problem, the cost function 
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associated with fluctuation is such that bounding the range of a demand profiles 

optimizes profit. Let us consider the problem of optimally adjusting a sinusoidal 

deficit profile with 0 average deficit given the aforementioned cost function.  Figure 

9.1 top, illustrates a more appropriate adjustment profile (green) than the adjustment 

profile proposed in this thesis (orange). Figure 9.1 bottom, compares the demand 

profiles resulting from applying the more appropriate demand adjustment (green) and 

demand adjustment proposed by this thesis (orange). The range of the more 

appropriate demand adjustment profile is substantially lower than that of the demand 

adjustment proposed by this thesis. Consequently, given the particular cost function 

considered in this example the more appropriate demand adjustment will result in 

higher profits compared with the adjustment proposed in this thesis.  

As suggested by the results in Section 7.1, the methodology can produce 

optimal stabilization for all instances of the stabilization problem class; however, 

given an arbitrary cost function the methodology is likely to have sub optimal 

reductions in costs. As such, much work remains in creating a cost optimal 

generalized solutions to the stabilization problem class. 
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Figure 9.1: The top graphs illustrates what the proposed demand adjustment profile 

would be for the corresponding original deficit profile in comparison with a more 

appropriate demand adjustment profile which considers a particular cost function that 

dictates: bounding minimum and maximum of the original demand is most profitable. 

The bottom graph shows the resulting demand profiles after the adjustments are made. 

More important remaining investigations may perhaps be simply further 

understanding the scope of the stabilization problem class itself. For instance it is not 

unlikely that some MAS-based stock market related problems, or even MAS-based 
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intelligent traffic management problems are indeed instances of the stabilization 

problem class if not at least their equivalent approximation problems are instances of 

the stabilization class. Providing a solution approach to each of these problems are 

promising investigations in their own right. The following subsections provides 

evidence as to why the problem of stock trading or intelligent traffic systems are 

likely instances of the stabilization problem class despite seeming unrelated on the 

surface. 

9.1.2.1 The Stock Trading Problem 

In the case of the stock trading problem, an agent is motivated to maximize profit by 

strategically buying and selling stocks. We observe profiting in stock trades is made 

possible by fluctuations in stock price over time, yet at the same time for a trader to 

make optimal benefits they must buy and sell at local minimum and maximum prices 

respectively. In doing so such optimal trades have the effect of increasing and 

reducing the minimum and maximum price respectively. In the same line, if an agent 

over sells or over buys, it will cause a local minimum or local maximum in prices 

respectively which another agent could use to its advantage to profit at the expense of 

the later. Put simply, an agent profits by bounding the local minimum and local 

maximum in price, or in other words by stabilizing the price, where as an agent opens 

itself to the risk of losing capital by introducing instability in the price. As such, 

agents are interested in reducing any price fluctuations caused by changes in market 

demand. Finally the available funds and stocks of a trader each act as buffering 

resources which can be used to conduct transaction which in turn lead to price 
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adjustments and potentially price stabilization. As such, the problem of optimally 

trading stocks appears to have all the key properties of a stabilization problem 

introduced in Section 1.2. 

9.1.2.2 The Intelligent Traffic Management Problem 

Let us consider the problem of equipping land vehicles with an agent device which 

given a source and destination can without user interference drives the vehicle safely 

to the destination. It is likely infeasible to reliably control such an agent in a 

centralized manner due mostly to wireless communication limitations during bad 

weather, in tunnels, between tall buildings, and during traffic congestions (where 

bandwidth limitations may cause problems). 

Let us assume that a path between two points contains only one lane but can 

have many points where other paths merge. Such an assumption is not far from 

realistic since a multi-lane freeway can be simulated by a path for each lane and in the 

case of adjacent lanes enough merging points between the two paths could simulate 

adjacency and ability to swap lanes with any desired accuracy. 

As a vehicle merges into a new path it will slow down and subsequently 

accelerate causing the traffic behind the vehicle in the previous and new path to slow 

down in order to avoid collisions. The agents are interested in minimizing the amount 

of fuel costs and wear on the vehicle while giving a smooth and safe ride to the 

passengers. The agent can accomplish this by minimizing the amount and number of 

start and stops. In other words, the vehicle saves costs and gains value by reducing 

unnecessary fluctuations in speed – for safety reasons when merging to a new path 
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speed must fluctuate and as such reducing this fluctuation is not of interest; however, 

reducing other forms of speed fluctuation reduces risk of collisions. Finally a vehicle 

has some space in front and behind itself between other vehicles. An agent can 

postpone reducing its speed by cruising the distance it has in front of itself until the 

next vehicle or it can advance reducing speed by using the space it has behind itself 

until the previous vehicle. An agent can advance and postpone acceleration in the 

same manner using the distance before and after itself. As such, an agent has 

buffering resources in which is can use to stabilize its speed in a dynamic 

environment. Finally we observe the problem just posed satisfies all the key 

properties of the stabilization problem described in Section 1.2. 



177 

REFERENCES 

 

[1]  J. W. Forrester, Industrial Dynamics, MIT Press, 1961.  

[2]  T. Moyaux, B. Chaib-draa and S. D'Amours, "Multi-Agent coordination based 

on tokens: reduction of the bullwhip effect in a forest supply chain," AAMAS, 

pp. 670-677, 2003.  

[3]  V. Jaglan, V. Dhankhar, S.Srinivasan and M. Kumar, "A Multi-Agent Based 

System For Reduction Of Bullwhip Effect In Supply Chain Management," 

Asian Journal Of Computer Science And Information Technology, vol. 2, no. 4, 

pp. 82-88, 2012.  

[4]  S. O. Kimbrough, D. Wu and F. Zhong, "Computers play the beer game: can 

artificial agents manage supply chains?," Decision Support Systems, pp. 323 - 

333, 2002.  

[5]  W.-Y. Liang and C.-C. Huang, "Agent-based demand forecast in multi-echelon 

supply chain," Decision Support Systems, pp. 390 - 407, 2006.  

[6]  S. Yung and C. Yang, "A new approach to solve supply chain management 

problem by integrating multi-agent technology and constraint network," in 

HICSS, 1999.  

[7]  M. F. Zarandi, M. Pourakbar and I. Turksen, "A Fuzzy agent-based model for 

reduction of bullwhip effect in supply chain systems," Expert Systems with 

Applications, pp. 1680 - 1691, 2008.  

[8]  U.S. Energy Information Administration, "Negative prices in wholesale 

electricity markets indicate supply inflexibilities," http://www.eia.gov/, 23 2 

2013. [Online]. Available: 

http://www.eia.gov/todayinenergy/detail.cfm?id=5110#. [Accessed 14 7 2014]. 

[9]  N. Bowden and J. E. Payne, "Short term forecasting of electricity prices for 

MISO hubs: Evidence from ARIMA-EGARCH models," Energy Economics: 

Technological Change and the Environment, vol. 30, no. 6, p. 3186–3197, 

2008.  

[10]  M. S. Fox, M. Barbuceanu and R. Teigen, "Agent-Oriented Supply-Chain 

Management," Information-Based Manufacturing, pp. 81-104, 2001.  

[11]  S. Ghosn, P. Ranganathan, S. Salem, J. Tang, D. Loegering and K. Nygard, 

"Agent-Oriented Designs for a Self Healing Smart Grid," 2010.  

[12]  M. Pipattanasomporn, H. Feroze and S. Rahman, "Multi-agent systems in a 

distributed smart grid: Design and implementation," Seattle, 2009.  

[13]  S. D. Ramchurn, P. Vytelingum, A. Rogers and N. Jennings, "Agent-based 

control for decentralised demand side management in the smart grid," 2011.  

[14]  R. Roche, B. Blunier, A. Miraoui, V. Hilaire and A. Koukam, "Multi-agent 

systems for grid energy management: A short review," 2010.  



178 

[15]  S. Kahrobaee, R. Rajabzadeh, L.-K. Soh and S. Asgarpoor, "A Multiagent 

Modeling and Investigation of Smart Homes With Power Generation, Storage, 

and Trading Features," Smart Grid, IEEE Transactions on, vol. 4, no. 2, pp. 

659-668, 2013.  

[16]  M. Deindl, C. Block, R. Vahidov and D. Neumann, "Load shifting agents for 

automated demand side management in micro energy grids," in IIEEE Intl. 

Conf. on Self-Adaptive and Self-Organizing Systems, Venice, 2008.  

[17]  M. M. V. Prashant P. Reddy, "Factored Models for Multiscale Decision-Making 

in Smart Grid Customers," in AAAI Conference on Artificial Intelligence, 

Toronto, 2012.  

[18]  P. Vytelingum, T. D. Voice, S. D. Ramchurn, A. Rogers and N. R. Jennings, 

"Agent-based Micro-Storage Management for the Smart Grid," Toronto, 2010.  

[19]  A.-H. Mohsenian-Rad, V. W. Wong, J. Jatskevich, R. Schober and A. Leon-

Garcia, "Autonomous Demand Side Management Based on Game-Theoretic 

Energy Consumption Scheduling for the Future Smart Grid," Smart Grid, IEEE 

Transactions, vol. 1, no. 3, pp. 320 - 331, 2010.  

[20]  H. K. Nguyen, K. Hee, J. Song and Z. Han, "Demand side management to 

reduce Peak-to-Average Ratio using game theory in smart grid," Computer 

Communications Workshops (INFOCOM WKSHPS), IEEE Conference on, pp. 

91 - 96, 2012.  

[21]  Z. M. Fadlullah, M. Q. Duong, N. Kato and I. Stojmenovic, "A Novel Game-

based Demand Side Management Scheme for Smart Grid," Wireless 

Communications and Networking Conference (WCNC), pp. 4677 - 4682, 2013.  

[22]  K. S. Barber and C. E. Martin, "The Motivation for Dynamic Decision-Making 

Frameworks in Multi-Agent Systems," Autonomous Agents and Multi-Agent 

Systems, vol. 13, no. 3, 2006.  

[23]  S. Barber, A. Goel and C. E. Martin, "Dynamic adaptive autonomy in multi-

agent systems," vol. 2, no. 12.  

[24]  S. Braynov and H. Hexmoor, "Quantifying Relative Autonomy in Multiagent," 

Agent Autonomy, 2003.  

[25]  S. A. Mostafa, M. S. Ahmad, M. Annamalai, A. Ahmad and G. S. Basheer, "A 

Layered Adjustable Autonomy Approach for Dynamic Autonomy Distribution," 

Frontiers in Artificial Intelligence and Applications, vol. 252, 2013.  

[26]  G. Dorais, R. P. Bonasso, D. Kortenkamp, B. Pell and D. Schreckenghost, 

"Adjustable autonomy for human-centered autonomous systems," 1999.  

[27]  J. M. Bradshaw, M. Sierhuis, A. Acquisti, P. Feltovich, R. Hoffman, R. Jeffers, 

D. Prescott, N. Suri, A. Uszok and R. V. Hoof, "Adjustable Autonomy and 

Human-Agent Teamwork in Practice: An Interim Report on Space 

Applications," Agent Autonomy , vol. 7, 2003.  



179 

[28]  M. Nowostawski and M. Purvis, "The Concept of Autonomy in Distributed 

Computation and Multi-agent Systems," in Intelligent Agent Technology, 

IEEE/WIC/ACM International Conference on, Fremont, CA, 2007.  

[29]  J. W. Tweedale, "Using Multi-agent Systems to Pursue Autonomy with 

Automated Components," in 17th International Conference in Knowledge 

Based and Intelligent Information and Engineering Systems, 2013.  

[30]  C. Tessier, L. Chaudron and H.-J. Müller, "Conflicting Agents: Conflict 

Management in Multi-Agent Systems," Multiagent Systems, Artificial Societies, 

and Simulated Organizations, vol. 1, no. 16, p. 335, 2001.  

[31]  J. Liu, X. Jin and K. C. Tsui, Autonomy Oriented Computing: From Problem 

Solving to Complex Systems Modeling, Boston: Kluwer Academic Publishers, 

2005.  

[32]  S. A. Mostafa, M. S. Ahmad, A. Y. C. Tang, A. Ahmad, M. Annamalai and A. 

Mustapha, "Agent's Autonomy Adjustment via Situation Awareness," Studies in 

Computational Intelligence, 2014.  

[33]  S. A. Mostafa, M. S. Ahmad, A. Ahmad, M. Annamalai and A. Mustapha, "A 

Dynamic Measurement of Agent Autonomy in the Layered Adjustable 

Autonomy Model," Recent Developments in Computational Collective 

Intelligence , 2014.  

[34]  S. A. Mostafa, M. S. Ahmad, M. Annamalai and S. S. G. Azhana Ahmad, "A 

Conceptual Model of Layered Adjustable Autonomy," Advances in Information 

Systems and Technologies , vol. 206, 2013.  

[35]  S. A. Mostafa, M. S. Ahmad, M. Annamalai and S. S. G. Azhana Ahmad, "A 

Dynamically Adjustable Autonomic Agent Framework," Advances in 

Information Systems and Technologies, vol. 206, 2013.  

[36]  Repast [Online]. Available: http://repast.sourceforge.net/.  

[37]  P. R. v. Oel, M. S. Krol and A. Y. Hoekstra, "Application of multi-agent 

simulation to evaluate the influence of reservoir operation strategies on the 

distribution of water availability in the semi-arid Jaguaribe basin, Brazil," 

Physics and Chemistry of the Earth, Vols. 47-48, pp. 173-181, 2011.  

[38]  N. Bowden and J. E. Payne, "Short term forecasting of electricity prices for 

MISO hubs: Evidence from ARIMA-EGARCH models," Energy Economics: 

Technological Change and the Environment, vol. 30, no. 6, pp. 3186-2197, 

2008.  

 

 


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Summer 7-17-2014

	Measuring Autonomy And Solving General Stabilization Problems With Multi-Agent Systems
	Rasheed A. Rajabzadeh

	Measuring Autonomy and Solving General Stabilization Problems With Multi-Agent Systems

