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1 Abstract

The identification of somatic mutations that play a causal role in tumour
development, so called “driver” mutations, is of critical importance for
understanding how cancers form and how they might be treated. Several large
whole exome sequencing projects have identified genes that are recurrently
mutated in cancer patients, indicating a possible causal role in tumourogenesis.
While the landscape of coding drivers has been extensively studied and many of
the most prominent driver genes are well characterised, comparatively less is
known about what driver mutations may reside in the non-coding regions of the
genome. Using mutations identified in over 1300 whole cancer genomes, | have
identified regions, both coding and non-coding, that are recurrent targets of
somatic mutations in cancer. Using both recurrence and information on
evolutionary conservation to score regions of the genome as potential driver
mutations, | have identified putative driver regions that include both well known

drivers as well as novel recurrently mutated regions.
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4 Introduction

4.1 Cancer genomics overview

The Catalogue of Somatic Mutations in Cancer
(http://cancer.sanger.ac.uk/cosmic) contains over 21,000 genomes or exomes
from cancer patients [1]. Many of these sequences come from large multi-
institution consortia whose aim is to comprehensively characterise the molecular
variations that occur in human cancers by identifying genes containing somatic
mutations [2]. This task is complicated by the fact that most mutations within the
genome of a cancer cell are “passenger’ mutations which are not directly
implicated in tumour development [3, 4]. Hence, it is not always clear whether a
given mutation in a patient’s tumour is a passenger mutation or a “driver”
mutation, which does confer a selective advantage to cancer cells and is therefore
likely to be involved in pathogenesis. A major effort that has emerged in the field
of cancer genomics is the systematic identification of cancer driver genes (genes
that can contain driver mutations) [5, 6]. The identification of driver genes is critical
both in understanding the molecular events that take place within cancer cells as
well as for the prioritisation of targets for therapeutic intervention. In addition, the
sequencing of thousands of cancer exomes and genomes has allowed the
inference of distinct regional and global mutational signatures and processes from
the genomic variations that have occurred during tumour development [7, 8].

Most cancer mutation studies have focused exclusively on variants that alter the
amino acid sequences of protein coding genes (non-synonymous mutations), and
have assumed that coding mutations that do not alter the amino acid sequence of
a protein are passenger mutations. Hence, translational approaches using insights
from genomic analyses to develop novel therapies or clinical genetic tests have
focused on non-synonymous mutations in driver genes. However, several recent
studies have demonstrated that driver mutations do not need to alter a protein’s
amino acid sequence to drive cancer [9-12]. Furthermore, mutations that reside



outside of coding sequence have been identified as putative driver mutations [9,
12] and the vast majority of somatic mutations in cancer are within non-coding
regions, which comprise >98% of the of the genome. Given the diversity of
functional elements that may reside within non-coding DNA, it is feasible that in
addition to protein-coding driver genes, there exists a class of driver regions within
the non-coding genome that can contribute to tumourigenesis. There are few
genomic studies that have attempted to identify these non-coding driver regions,
and future efforts will likely face unique challenges compared to the search for
coding driver genes.

My aim was to develop a method to prioritise non-coding regions of the genome in
terms of their potential to contain driver mutations. Based on the principle that
driver regions should be recurrently mutated and have a higher likelihood of
containing functional mutations, | developed a scoring method that uses both
recurrence and conservation that can be used to identify putative driver mutations,
both coding and non-coding. | used a set of over 1300 whole cancer genomes to
identify recurrently mutated non-coding regions that may be under selection in
cancer. Below, | review the several concepts that can be helpful in the
identification of driver mutations, and then present the results of my method
applied to this set of whole cancer genomes.

4.2 Somatic mutation rates in cancer genomes

Genome and exome sequencing studies have confirmed vast heterogeneity in the
mutational rates and signatures in cancer genomes. Tumours exposed to
mutagenic environmental factors such as the ultraviolet B component of sunlight in
melanomas and tobacco smoke in lung cancers also have elevated mutation rates
[13]. Furthermore, distinctive C>T (G>A) mutations at the 3’ end of dipyrimidines
predominate in UV exposed melanoma genomes [14, 15], with G>T (C>A)
transversions are prevalent in the lung cancer genomes of smokers [16, 17]. Thus,
these mutational signatures are characteristic of the DNA damage caused by UV-
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light and tobacco smoke. Several signatures have been identified which correlate
with features including patient age, exposure to mutagens such as tobacco smoke
or certain chemotherapy agents, DNA repair deficiencies, as well as numerous
other mechanisms that affect genomic mutation rates [7, 18-20].

The local somatic mutation rate also depends on factors that vary along the
genome. The somatic mutation rate in windows along the genome is positively
correlated with histone marks of closed chromatin, and negatively correlated with
histone marks for open chromatin [8]. Consistent with these observations, DNase |
hypersensitive sites within the genome, a measurement used to identify regulatory
regions, have lower mutation rates compare to flanking DNA [21]. This decreased
mutation rate in DNase hypersensitive sites is absent in individual genomes of
tumours that have mutations in various DNA repair genes [21]. Decreased
variation along the genome has also been observed at a global level in tumours
that are deficient in mismatch repair [22], highlighting DNA repair processes as a
central factor that contributes to genomic variation in somatic mutation rate.
CTCF/cohesion-binding sites (CBSs) mapped in a colorectal cancer cell line
showed an excess of mutations compared to flanking regions in a sample of 213
colorectal cancers, while colorectal cancers deficient in Polymerase ¢ proofreading
showed a depletion of mutations [23]. This effect is amplified in late-replicating
regions of the genome [23]. Given the importance of repair in terms of the
relationship between replication timing and somatic mutation rate [22] as well as
evidence showing that the interplay of replication and repair plays a role in
germline substitution rates [24] the relationship between CBSs, POLE deficiency,
and mutation rates may have important implications for the mechanism by which
somatic mutations occur. CBSs also display substantial overlap with recurrent
mutations in regulatory regions [23], which could be due either to positive
selection of these sites or to the underlying CBS-associated mutational process.

The correlation between chromatin features and somatic mutation rate is strongest
for chromatin features measured in the cell type from which a cancer originated,
suggesting that this relationship is cell type specific [25]. Gene expression is also

3



correlated with somatic mutation rate, with regions of high expression having
lower mutation frequencies compared to regions of low expression [15, 17, 26].
Mutations are more frequent on the untranscribed strand of genes compared to
the transcribed strand, leading to the hypothesis that the relationship between
mutation rate and expression is due to transcription coupled repair [7, 26]. A final
genomic factor that is known to affect somatic mutation rate is replication timing.
Areas of the genome which replicate late during DNA replication have higher
mutation rates compared to regions which replicate early [26, 27]. Additionally,
regions in close physical proximately to late replicating areas also have elevated
mutation rates [27]. Mutations may also display clustering, a phenomenon known
as kataegis. These mutations tend to be C>T or C>G mutations in a TpC context
and often are associated with genomic rearrangements, and indicate a role of
APOBEC family enzymes [7, 28]. Explicitly controlling for the influence of genomic
factors which effect mutation rate when identifying driver genes lowers the number
of significantly mutated genes identified and eliminates many genes that are highly
mutated but for which a role in cancer is biologically implausible, such as olfactory
receptors [26].

As methods for the identification of driver genes are extended to larger number of
samples and to other regions of the genome, it will be critical to apply strategies
that can increase the power to detect true drivers and decrease the rate of false
positive discoveries. In particular for strategies that seek to identify recurrently
mutated genes, appropriately modelling the background mutation rate can reduce
the rate of false positive genes discovered [26]. This is important as some tumours
/ regions of the genome have a higher mutation rate as a result of enhanced
exposure to certain mutational processes, rather than selection for mutations

within the region (Figure 1).
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Figure 1: Many factors contribute to mutation rate variation both within and
between genomes. | conceptually divide the determinations of mutation rate into
four categories. Genomic features such as chromatin state and replication time
are major determinants of mutation rate variation across regions of the genome.
Many highly mutated genomes result from DNA repair deficiencies, either sporadic
or inherited, or because of intense environmental exposures. These factors also
leave unique mutational patterns within individual genomes. Normal somatic cells
also naturally accumulate mutations, both because of stochastic replication and
proofreading errors, as well as endogenous mutation process, such as reactive

oxygen species production.



4.3 ldentification of driver genes

The heterogeneity in mutational rates and processes described above can
obfuscate attempts to identify driver genes or regions in cancer. Many methods
have been devised to identify driver genes using either whole exome sequencing
(WES) or whole genome sequencing (WGS) [29]. Several studies have applied
multiple driver identification methods simultaneously to the same set of cancer
sequences to comprehensively identify large sets of driver genes in pan-cancer
datasets [30, 31]. These studies used several strategies to identify drivers,
including searching for genes with large numbers of somatic mutations [26, 32],
identifying genes with significant clustering of mutations along the gene’s linear
sequence [30, 33], and identifying genes that are enriched for various classes of
functional mutation [30, 34, 35].

Mutation rate affects the rate of false negatives in cancer genomic studies in
addition to the rate of false positives. Saturation analysis using data from 21
tumour types indicates that while most driver genes that are mutated in greater
than 20% of tumours can be detected with currently available sample sizes, many
novel drivers that are mutated in less than 20% of samples will remain
undiscovered using current sample sizes and computational methods [30]. This
problem of identifying genes mutated at low frequencies has been described by
analogy of genes to mountains and hills. "Mountains" describe genes that are
mutated in a large fraction of tumours, whereas "hills" describe genes that are
implicated in cancer, but are mutated at much lower frequency compared to

"mountains” [5, 36].

Most studies aimed at identifying driver mutations have focussed on non-
synonymous (amino acid altering) mutations in protein coding genes as these are
more likely to have a significant functional impact upon the cell. Numerous cancer
genes are known to be recurrently targeted by non-syonymous mutations
including BRAF [37], APC [5, 38], TP53 and KRAS [5]. Oncogenes and tumour



suppressor genes display different patterns of nonsynonymous mutation. Tumour
suppressor genes have an excess of inactivating mutations, such as premature
stop mutations, while oncogenes show clustering of mutations near specific amino
acid residues [5, 39] which may indicate targeting of functional sites, such as ATP
or GTP binding sites [40]. However, the large numbers of somatic mutations that
do not alter the amino acid sequences of proteins are not generally tested for the
potential to function as driver mutations. Several recent studies have challenged
this interpretation and have elucidated roles for synonymous mutations in tumours
[10, 11]. In addition, many mutation types, including synonymous,
nonsynonymous, and intronic mutations can alter mRNA splicing. Therefore, it
may be vital to integrate information on both coding and non-coding mutations to
gain a full understanding of the role of somatic mutations in a tumour (Figure 2).

4.4 Non-coding mutations

Early sequencing projects suggested that, like coding mutations, the vast amounts
of non-coding mutations are likely passenger mutations [17]. Despite this,
mutations with the potential to disrupt binding motifs in the flanking regions of
genes were identified, raising the possibility of regulatory driver mutations [17].
The discovery of driver mutations within the promoter of the TERT gene [41-43]
has generated interest in the role that non-coding mutations play in driving cancer.
Telomerase reverse transcriptase (TERT) is part of a complex which catalyzes the
lengthening of telomeres, and is generally transcriptionally repressed in
noncancerous somatic cells [44]. TERT promoter mutations have been observed
to generate binding sequences for ETS transcription factors, upregulating TERT
expression [41] and are highly recurrent across multiple tumour types, suggesting
that they are driver mutations in these tissues [9, 12, 43].

In addition to this high frequency in many cancer types, somatic mutations in the
TERT promoter are also associated with clinical outcomes. Recently, Schulze et
al. found TERT promoter mutations in hepatocellular carcinoma (HCC) were
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Figure 2: | illustrate the potential consequnces of mutations using a hypothetical
gene. Mutations may have diverse functional consequences, producing various
mechanisms by which somatic mutations may driver cancer. Mutations may affect
distal regulatory elements (A) such as enhancers, either creating or destroying
transcription factor binding sites. Mutations may result in single amino acid
subsitutions (B) as critical residues of a protein, critically altering function. Similar
to mutations in distal elements, promoter mutations (C) may also alter
transcription factor binding. Various types of mutations, including nonsynonymous,
synonymous, and intronic mutations (D) may effect splicing, particularly at exon-
intron borders. UTR mutations (E) may have various functional consequences,
such as altering miRNA binding or other regulatory functions. For each of these

categories, | give an example of previously reported recurrent mutations.



enriched in alcohol-related HCCs and were early events in tumour progression in
cirrhotic livers [45]. Poorer survival has been observed among patients with TERT
promoter mutations in clear cell renal carcinoma [46] bladder cancer [47], thyroid
carcinomas [12] and gliomas [48]. This relationship also appears to be affected by
patient genotypes at the TERT promoter SNP rs2853669 [46, 47, 49]. In a panel
of 23 urothelial cancer (UC) cell lines, TERT promoter mutation was associated
with increased TERT mRNA levels, protein levels, and telomerase enzymatic
activity, as wells as telomere length [50]. Analysis of gene expression data from
two separate cohorts of UC patients revealed that TERT mRNA expression is
associated with poor disease-specific survival in UC, despite previous reports that
TERT promoter mutation status is not associated with clinical features such as
stage and grade in UC [51, 52]. This may be because mRNA expression levels
are a stronger prognostic factor in UC [50] or that the impact of TERT promoter
mutations on survival tend to be independent of other clinical features such as
stage.

A recent study by Katainen et al. underlines the role for mutations in binding sites
in the non-coding genome [53]. The authors integrated whole genome sequencing
of >200 colorectal tumours with chromatin immunoprecipitation sequencing to
identify frequent mutations in CTCF/cohesin-binding sites in microsatellite stable
tumours. The mutations were significantly associated with a particular mutational
signature idenified by Alexandrov et al. [7], however the consequences of the

mutations remain to be elucidated.

Recurrent non-coding mutations have also been identified within the enhancer of
TAL1 in T-cell acute lymphoblastic leukaemia (T-ALL) [54]. Small insertions have
been observed near the TAL17 locus, which create transcription factor binding
sites. These mutations also show increased transcription of the target gene in
luciferase assays. This increase in transcription is not observed in MYB knockout
cells or human embryonic kidney cells, suggesting that the impact of TAL1
enhancer mutations are dependent on tissue-specific regulatory factors [54].
ChlP-seq data indicates that TAL71 enhancer mutations create de novo MYB

binding sites which are critical for MYB binding. This raises the possibility that



non-coding mutations may be important not only for their effect on gene
expression, but also because they can alter the transcriptional networks within the
cell to create novel pathways.

Mutations in UTRs are another important class of non-coding mutations that are
likely to contain oncogenic drivers. There is computational evidence that the 3'
UTRs of dosage sensitive onocogenes are enriched for somatic mutations in
cancer suggesting that UTR mutations are an important class of mutations that
remain under-investigated in cancer genomic studies [10]. In addition, 3' UTR
mutations of CD274 in gastric cancer patients have been shown to disrupt miRNA-
mediated degradation of the mRNA transcript, resulting in overexpression of
CD274 [55], and recurrent 5' UTR mutations in the gene RPS27 have also been
identified in melanoma [56].

Recently, several studies have focused on regulatory regions in an attempt to
comprehensively identify regulatory regions that contain driver mutations [9, 12].
Given the diversity of regulatory elements present within the non-coding regions of
the genome, studies that extend this work are likely to produce valuable insights
about the evolution of cancer genomes, but will also face unique challenges that
are distinct from the study of coding regions.

4.5 Challenges in the identification of non-coding drivers

Although procedures for identifying coding driver regions can be applied to non-
coding regions, the analysis of non-coding regions is more challenging. While
WES is sufficient for studies focusing on coding mutations, the requirement for
WGS to examine non-coding mutations comprehensively significantly limits the
number of samples available for analysis. Given that current studies aimed at
coding driver genes are already potentially underpowered for genes mutated at
lower frequencies in patients, studies of non-coding mutations with currently
available WGS samples will likely face severe power limitations, especially if non-
coding drivers tend to be lower in frequency compared to coding drivers (more hill-
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like than mountain-like) or if mutiple correction penalties are more severe when

considering non-coding regions.

The investigation of non-coding mutations also faces several analytical
challenges. While genes generally form well-defined genomic regions, the
characterization of functional non-coding regions is still in its comparative infancy.
Data that have been employed to identify non-coding regions of interest include
Ensembl gene annotations [9, 57] as well as data from the ENCODE project [12,
58]. While a more unbiased approach would look at the entire non-coding
genome, more restrictive methods could employ stringent criteria to define
regulatory regions, and to declare only regulatory regions near known cancer
genes to be the regions of interest. A recent study of non-coding mutations in
cancer used various methods of defining regions of interest, and it is apparent that
more restrictive methods, using stringent criteria to define regulatory regions,
increase the power to detect drivers that are among these regions [12].

Once regions of interest have been defined, they must be prioritised based on the
strength of positive selection in tumours (Figure 3). A recent study by Weinhold et
al. used three independent methods to identify putative non-coding driver
mutations and identified [9]. The recurrence and clustering (hotspot) based
methods applied in this study are similar to methods used for coding mutations.
Both methods highlighted the TERT promoter as recurrently mutated, and
identified statistically significant putative driver non-coding regions in the
promoters of the PLEKHS1 and WDR74 genes. Notably, the recurrence based
method employed two procedures for estimating the background mutation rate,
referred to as the local and global methods. LARVA [59] is another recurrence-
based method that attempts to improve upon other methods by accounting for
heterogeneity in mutation rate in different genomic regions by modelling mutation
counts as beta-binomial rather than binomial. Comparison to a simple binomial
model showed a better fit of the beta-binomial to observed counts, as well as a
decreased number of statistically significant under the beta-binomial model.
Downstream analysis of the outputs from LARVA [59] also identified enrichment of
mutations in non-coding regions such as BCL3 and CTCF binding sites.
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A third method employed by Weinhold et al. [9] searched for regions that were

enriched for mutations that either create or disrupt ETS binding sites. Among other

significant regions, this method identified mutations in the SDHD promoter which
showed significant association with both mRNA expression and patient survival
using melanoma exome sequencing data. SDHD promoter mutations have been
evaluated in an independent melanoma sample where they were observed in a
smaller proportion of patients (4% in Scholz et al. vs 10% in Weinhold et al.) and
without a significant association with survival. This example shows the power of
using well chosen functional metrics to discover novel regions that can be
investigate by downstream analyses and in further independent analyses.
Recently, Melton et al. used regulatory information from the RegulomeDB
resource [60] to search for recurrent somatic mutations in regulatory regions,
confirming the TERT promoter and identifying several novel regulatory regions in
genes implicated in cancer [61]. Other genomic variables which relate to function
such as evolutionary conservation could also be used, which will reveal regions
with other interesting mutational features. The method FunSeq [62] and it’s
extension FunSeq2 [63] use human polymorphism data to annotate non-coding
regions that are under purifying selection [62]. Application of FunSeq to somatic
variants in cancer identified mutations that occur in regions that are subject to
purifying selection at the population level, including WDR74 promoter mutations,
which were identified as recurrent by Weinhold et al. [9]. FunSeq2, as well as
other methods of annotating non-coding variants, has been applied to promoter
mutations in a melanoma cell line and was found to be moderately predictive of

mutational impact in terms of transcriptional effect in reporter assays [64].

12



® ETS binding-site +
expression associated

@
o

ETS binding-site

conserved element

A

Annotation-based

| motif identification | J | annotations |

| polymorphism data | | conservation |

00 8
0800 (C]C) @
| GGAAATATATTCCTGGA |

ETS binding-site motif annotation

Q0 o
|G AATATATT CTGGA |

conserved element annotation

O
080 3]
0000 e
| GGAAATATATTCCTGGA \

N

Cancer WGS data

/

/

@ (@) (@) (©)
AATATATTCCTGGA |

o
000009

O]
O
(©)

)
®
)
G

|

B| |

mutations

N C

Correlation-based

@] @]
3 : : 2
L % o
8 8 8 (@) (@] QO o [e]e]e]e) (@] O O
| GGAAATATATTCCTGGA| | GGAAATATATTCCTGGA\
test mutation rate RNA-seq correlate with
vs background data expression
@]
3 : :
o000 08 (o] Je)
Q00 o0 [ Jo] )
[0]0]e) Q0O [0]e]e)
| GGAAATATATTCCTGGA| | GGAAATATATTCCTGGA

|

Prioritised Mutations

Figure 3: Many methods have been devised to interrogate non-coding mutations

in cancer. | divide these methods into three categories: annotation-based methods
(A) rely on using annotations or other information, such as information about
regulatroy motifs or evolutionary conservation, rate-based methods focus on
identifying regions mutated more often than expected under some background
model of mutation rate, and correlation-based methods (C) seek to identify

correlations between tumour level mutation status within a region and some other
variable, such as RNA expression or clinical variables.
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Putatively functional promoter mutations were relatively frequent in this analysis (4
putative functional promoter mutations in a single genome, 17% of analysed
promoter mutations) although only 1 was recurrent in TCGA melanoma data,
suggesting that even mutations with altered transcriptional activity may be
passenger mutations [64].

A local background mutational rate method was used in the development of the
software SASE-hunter in order to identify putative positively selected promoter
regions, some of which are associated with gene expression or clinical features
[65]. The authors searched for signatures of accelerated somatic evolution in non-
coding regions and found that lymphoma patients with mutations in the MYC
promoter were significantly younger compared to others and that patients with
mutations in the BCL2 promoter were significantly older. In addition, the
mutational signatures in the promoters of BCL2, TCL1A, or BTGZ2 were associated
with less favourable clinical outcome. In melanoma, patients with mutations in the
RBMS5 promoter had significantly shorter survival and were more likely to have
distant or lymph node metastasis.

Fredriksson et al. [12] used a method which correlated mRNA expression of
genes with non-coding mutations in the region surrounding the gene. This analysis
revealed that TERT promoter mutations are unique in the strength of association
between the presence of mutations and mRNA expression. Associations between
mutations surrounding other genes do not show as significant signals of
association with mRNA expression and it is unclear why mRNA-mutation
associations outside of TERT promoter mutations, if they exist, are so difficult to
discover. In part, this lack of association may be due to sample size
considerations. Even truly recurrent mutations may be rare or confined to certain
cancer types, and may therefore require larger sample sizes to achieve genome-
wide significance. The mutation-expression correlation analysis in Melton et al.
[66] even failed to identify TERT, suggesting that small sample sizes or lack of
sample diversity (e.g. the tumour types included) may impact this analysis.
Fredriksson et al. [12] implemented several strategies that reduce the number of
14



regions considered, which can help limit multiple testing penalities. These
strategies may be useful in future work. However, several simulations in
Fredriksson et al. [12] show that their method is sufficiently powered to detect
mutations with effects weaker than TERT, indicating that factors other than
sample size may contribute to lack of association.An interesting observation made
by Fredriksson et al. is the apparent mutual exclusivity or co-occurrence that
exists between some non-coding mutations and coding mutations known to be
implicated in cancer. Accounting for non-coding mutations will be necessary to
fully understand the heterogeneity that exists both within and between tumours.
Furthermore, the identification of driver mutations may be more effective if both
coding and non-coding mutations are studied together in the context of known
biological pathways. For example, a recent analysis of non-coding mutations in B-
cell ymphoma [67] used pathway analysis to identify pathways enriched for genes
with promoter mutations, and employed a combined analysis of both coding and
regulatory mutations to identify frequently altered genes and to assess the effect
of these alterations on gene expression of the target gene, as well as network
neighbours.

Each method for the identification of non-coding drivers has distinct benefits and
disadvantages. Recurrence based methods are very similar to methods that have
already been applied to coding regions, but may need to be adapted to work
optimally in non-coding regions. The high mutation rate and repetitive nature of
the non-coding genome requires that issues such as high background mutation
rate and potential mapping errors are controlled. Using information other than
simple recurrence, such as evolutionary, functional genomics, network, and motif
information may help to highlight interesting variants or regions. FunSeq2 [63] is
an example of a method that uses the vast array of available genomic data, such
as ENCODE [58] Roadmap Epigenomics [68] position weight matrices, and
network information to attempt to prioritise variants. Conversely, the requirement
for additional data may limit the samples that can be used for analysis. For
example, correlating mutations with RNA-seq based expression limits analysis
only to samples with available RNA-seq data.
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4.6 Obijective of this study

My objective was to develop a scoring system that can prioritise regions of the

genome, particularly non-coding regions, in terms of their potential to act as driver

mutations in cancer. To achieve this, | decided to use whole genome somatic
mutation data to identify recurrently mutated regions, as well as regions that have
mutations at conserved nucleotides. When developing this scoring method, |

focussed on designing a recurrence score that is able to account for the variability

in mutation rate across the genome. To do this, | chose to use a method that
normalizes mutation rates in regions of interest by observed mutation rates in
flanking regions. | then validated the scores that | developed on exonic regions,
using information on genes that are known to be frequently mutated in cancer. In
addition to a pan-cancer analysis, | also sought to apply my scoring system in a
cancer type specific manner. | applied my scoring system to somatic mutations
from over 1300 whole cancer genomes to identify known drivers, both coding and

non-coding, as well as some promising novel candidates.
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5 Methods

In order to identify recurrently mutated non-coding regions that are potential
targets of somatic selection during the development of cancer, | devised a scoring
system to prioritise regions of the genome based on signatures that are indicative
of selection. In the context of coding mutations, driver genes are known to be
recurrently mutated above background mutation rates and also show a pattern of
enrichment for functional mutations (e.g. stop-gain, non-synoymous) compared to
mutations that are less likely to be function (e.g. synonymous mutations). Applying
these same principles to non-coding regions, | developed two scores, one that is
designed to detect regions that are recurrently mutated, and a second designed to
detect regions that have mutations at conserved bases, working on the hypothesis
that conserved positions are more likely to be functional. | then applied these
scores, as well as a combined score, to a set of over 1300 cancer whole

genomes.

5.1 Whole genome mutation data

| assembled a set of pre-called somatic mutations from three sources: release 18
of ICGC [69], data from Alexandrov et al. [7], and the supplemental materials of
Wang et al. [70]. Some of these sources contain data from both whole exome and
whole genome sequencing. | only analyzed mutations annotated as coming from
whole genome sequencing. To avoid the possibility of duplicated samples, in
cases where the same tumour type was included in ICGC and the data from
Alexandrov et al. | included data from only one source. The distribution of samples
across tumour types and data sources is summarized in Table 1. After filtering out
samples lacking sufficient numbers of mutations, | was left with a total of 1349

samples for my final analysis.
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Table 1: The number of samples with 1000 or more valid mutations included in my

final analysis, as well as information about tumour type and original publication for

each sample. For the ICGC samples | give ICGC project codes and use this to

categorise tumour type throughout this work. Although some project codes imply

the same tumour type (e.g. LICA-FR and LINC-JP are both liver cancers) | treat

these separately in case these cohorts might have different properties, either

technical or biological.

Source Cancer type Cancer cohort Number of
samples

Alexandrov et al. Acute Acute lymphoblastic | 1

lymphoblastic leukemia

leukemia (ALL)
ICGC Bone BOCA-FR 3
Alexandrov et al. Breast Breast 116
ICGC Chronic Chronic lymphocytic | 21

lymphocytic leukemia

leukemia (CLL)
ICGC Prostate EOPC-DE 9
ICGC Esophageal ESAD-UK 97
Wang et al. Gastric Gastric 98
ICGC Liver LICA-FR 5
ICGC Liver LINC-JP 31
ICGC Liver LIRI-JP 238
Alexandrov et al. Lung Lung 24
ICGC Lymphoma MALY-DE 44
Alexandrov et al. Medulloblastoma | Medulloblastoma 42
ICGC Ovarian OV-AU 75
ICGC Pancreatic PACA-AU 148
ICGC Pancreatic PACA-CA 151
ICGC Pancreatic PACA-IT 29
ICGC Pancreatic PAEN-AU 37
ICGC Prostate PRAD-CA 89
ICGC Renal RECA-EU 88
ICGC Thyroid THCA-SA 3
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5.2 Annotation data

| used the UCSC genome browser [71, 72] to obtain various annotation files,
including dbSNP and COSMIC variants, information on gene models,
conservation, mappability, and epigenetic data.

5.3 Software

| processed genomic data using bedtools v2.25.0 [73] and conducted statistical
analysis and data manipulation in R 3.2.3 [74].

5.4 Processing mutation data

| mapped all data to hg19. Preliminary analysis revealed several frequent
mutations that overlap known germline SNPs, suggestive of the possibility that
these mutations are not truly somatic. | removed from consideration mutations that
occur at the same genomic coordinate as a known dbSNP entry, unless that
genomic position was also annotated as mutated in COSMIC
(cancer.sanger.ac.uk) [75]. After filtering out known dbSNP entries, | also
excluded mutations from individual tumour samples with fewer than 1000 total
mutations. For dbSNP variants, | used build 142 of dbSNP. dbSNP and COSMIC
variant locations were obtained in bed format from the UCSC Table Browser [71].

5.5 Annotating and filtering genomic regions

| divided the reference hg19 genome into 50bp, non-overlapping windows using
the bedtools makewindows command. | mapped mutations to each window, and
calculated the mean 100-way PhyloP score as well as the mean 35bp uniqueness
(a measure of sequence mappability) across mutations that fell within the window.

| excluded from further consideration any window that had a mean mappability of
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its overlapping mutations that was less than 0.5, as well as any window that was
mutated in fewer than 3 patients (because these regions lack sufficient mutations
to be considered recurrent).

5.6 Calculation of recurrence score

Selection for driver mutations may cause genomic regions to have large numbers
of mutations, as a result for selection for these mutations. To detect such
recurrently mutated regions, | developed a recurrence score which quantifies
regional mutation frequencies. For each 50bp region that met my filtering criteria
(candidate regions), | calculated a recurrence score representing the level of
enrichment of the region with mutations compared to the mutation rate within the
region of the genome flanking the region under consideration. For each candidate
region, | formed a flanking region (Figure 4), which included the region of the
genome that was within 0.5 Mb of the 50bp candidate region on either side,
truncated at chromosome ends. | removed bases within the flanking region that
had mappability less than 0.5. | calculated a flanking mutation rate for each
candidate region by dividing the number of mutations in my set of whole genomes
that overlap valid flanking base positions by the number of valid bases within the
flanking region. | calculated a raw mutation score (Equation 1) by dividing the rate
(mutations per nucleotide) in the candidate region by the flanking mutation rate. |
normalized this raw mutation score by subtracting the median score from all
candidate regions and dividing each score by the median absolute deviation (mad)
over all candidates (Equation 2). | initially planned to perform the normalization by
flanking mutation rate separately for each tumour sample, but this was not feasible
due to the sparsity of mutations in some samples. Equations for the raw and

normalized recurrence scores are:

iz
(L+R)/
(Lo+Ro)

Where T is the number of mutations observed in the target region, Ty is the length

raw score = Equation 1

of the target region, L and R are the number of mutations in the left and right
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flanking regions of the target region, and Lo and Ry are the lengths of the left and
right flanking regions.

raw score— median(raw score) Equation 2

mad(raw score)

normalized score =

5.7 Calculation of conservation score

For each candidate region, | also calculated a conservation score. My strategy
was to use a basepair level measure of conservation, and average across
mutations to score a region based on conservation. | chose the PhyloP score [76]
calculated on a 100-way species tree, which is available from the UCSC genome
browser. PhyloP scores as implemented in the UCSC Genome Browser are
negative log base 10 p-values for a likelihood ratio test against the null hypothesis
of neutral evolution. These scores are calculated at the nucleotide level and are
assigned a sign based on the direction of observed depature from a neutral
(unselected) evolutionary model. The scores are positive when the test indicates
that the nucleotide evolves more slowly (i.e. is conserved) and negative in the
case that it evolves more quickly (acceleration). For each mutation, | mapped
PhyloP scores of the base position at which the mutation occurred. Within each
50bp candidate region, | took the mean of the PhyloP scores for each mutation
within the region as a raw conservation score. Similar to my recurrence score, |
normalized this raw conservation score by subtracting the median score and

dividing by the median absolute deviation.

5.8 Calculation of combined score

For each candiate region, | calculated the combined score as the simple average

of normalized recurrence and conservation scores.
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5.9 Statistical analysis

For comparison of scores in different classes of regions, | used Mann-Whitney
tests, as implemented in R. | also performed simulations to compare the median
scores of known driver regions to non-driver exonic regions. | repeated sampled
with replacement 10,000 samples of non-driver regions with size equal to the
number of candidate regions overlapping known driver regions, took the median
score for each sample, and compared to the observed median for known driver

genes.

5.10I1dentification of known driver genes

Driver genes were identified in humans by combining gene lists from two
previously published lists of driver genes from Vogelstein et al. and Lawrence et
al. [5, 30]. Gene names were taken from table S2A of Vogelstein et al. [5] and
from supplemental table 2 from Lawrence et al. [30]. These gene names were
entered into the UCSC Table Browser [71] to obtain hg19 coordinates for the

coding exons of these genes, which were mapped to mutations using bedtools

[73]. | considered a region to be a known driver if it overlapped a coding exon of a

gene listed in either publication. In total, | constructed a set of 308 driver genes by

this method.
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flanking regions
/candldate region
0.5Mb 50bp 0.5Mb
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raw score =
(L +R) muts / (L, + R,) bp

Figure 4: For each candidate region (red) | identified a flanking region (black) that
encompassed 0.5 Mb on either side, excluding regions of low mappability (white).
| calculated the mutation rate (mutations per base) seperately for the candidate
region and the flanking region. To calculate the rates, | obtained mutation counts
L, R, and T of mutations overlaping upstream flanks, downstream flanks, and the
target region, respectively. | then divided the mutation counts by the lengths in
basepairs Lo, Ry, and Ty. The raw score is then the ratio of candidate rate to
flanking rate, implying that recurrent regions should have a high raw score.
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6 Results

| have developed a set of scores, described in sections 5.6-5.8, that identify
regions of the genome that are more frequently mutated compared to flanking
regions (recurrence score) and that have mutations at bases that are more highly
conserved (conservation score). | have calculated these scores based on 1349
whole cancer genomes from a variety of cancer types for 50bp windows spanning
the entire human genome. Unlike previous efforts aimed at identifying non-coding
driver mutations, which have usally focussed on a limited set of non-coding
regions (e.g. promoters, DNase | hypersensitive sites) | have applied my method
in an unbiased manner to the entire genome, with the sole exception of regions
where mappability is a concern. Here, | examine the characteristics and
performance of my scores, as well as highlight some promising top scoring

regions.

6.1 Mutational processes in cancer whole genomes

My objective was to identify regions of the non-coding genome that are under
positive selection during tumourogenesis. | searched for regions of the genome
that are recurrently somatically mutated in cancer, a signal of positive selection.
Although recurrent mutation may be a result of selection, it may also result from
mutational processes acting on cancer genomes. There is considerable
heterogeneity in mutation rates between different regions of the genome as well
as between different tumours (Figure 5). To discover regions that are mutated
more than would be expected from simple mutational processes, | implemented a
score that normalized for the mutation rate in flanking regions. This method can
account for mutational processes that are constant over large portions of the
genome, but may falsely identify portions of the genome that are particularly
susceptible to mutation within a focussed region. Because of the possibility that
such focal mutational processes might contaminate regions identified by my
scoring method, | additionally sought to understand mutational processes acting
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Figure 5: Log10 of total mutations per genome, ordered by median mutations
within each tumour type. There is considerable variation both within and between
cancer types. The most highly mutated cancer types are generally associated with
intense exposure to known mutational process, such as tobacco smoke in lung
cancer and DNA repair defects in gastric cancer.
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on whole cancer genomes for the purpose of flagging regions that are potentially
false positives. To distinquish between the potential causes of recurrent mutation,
| refer to regions as “putatively hypermutated” to suggest that they may be
mutated due to exposure to mutational processes, as opposed to selection.

6.2 ldentification of putative hypermutated regions

| reasoned that regions of the genome with unusually high exposure to mutational
processes would be expected to have a consistently elevated likelihood of
mutation, whereas selection is expected to diminish once a driver has already
been mutated. For example, gain of function mutations in oncogenes generally
only need to occur once to confer driver activity, and often display mutual
exclusivity with other mutations that have the same effects or that target the same
pathway. This can be explained by a substantial decrease in selection pressure
once an activating mutation has already occurred. Tumour suppressor genes are
an exception, where two mutations may be required to confer driver activity. Thus,
regions that are recurrently mutated due to mutational processes are more likely
to sustain repeated mutations within the same region in the same tumour, while
regions that are recurrently mutated due to selection are more likely to be mutated
only once per tumour. In order to identify regions that may be recurrently mutated
due to mutational processes rather than selection, | calculated the average
number of mutations per patient for each region under consideration. | considered
a region to be potentially hypermutated when the region had an average of 1.2
mutations per patient or greater. | examined the prevalence of mutations within
these putative hypermutated regions across tumour types. Several tumour types
have an excess of mutations from hypermutated regions (Figure 6) such as
lymphomas (“MALY-DE”) and renal cancers (“RECA-EU”). Several of the regions
that | have identified as being hypermutated by this methods lie in promoter
regions and are primarily mutated in lymphoma, potentially suggesting that these
regions are targets of somatic hypermutation rather than selection. Several of
these regions such as the promoter regions of BCL2 and MYC have been
identified as putative targets of selection in a previous analysis [65]. Analysis of
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mutational signatures within the putatively hypermutated regions that | identified
did not identify any specific mutation process that could expain the pattern of base
subsitutions in these regions (Figure 7), although it is possible that this mutational
pattern is partially due to a process identified in CLL and lymphoma that is
associated with somatic hyper mutation [7].

6.3 Mutational processes at CTCF binding sites

In addition to the putatively hypermutated regions that | identified, | also observed
that many recurrently mutated regions overlap regions with ChiP-seq evidence of
CTCF binding (Figure 8 panel A, CTCF binding vs other regions p = 3.8 x 1078,
CTCF DNase | hypersensitive vs other regions p = 2.08 x 102%3, CTCF binding vs
CTCF DNase | hypersensitive p = 1.24 x 10®). A recent analysis also identified
an association between CTCF binding and recurrent mutation [59] potentially
suggesting selection of these mutations, while other evidence from colorectal
cancer by Katainen et al. suggests that CTCF binding sites may be subject to a
unique mutational process which displays an excess of T>G (A>C) and T>C
(A>G) mutations [23]. To discern whether the observed recurrence at CTCF
binding sites in my dataset could result from a mutational process rather than
selection, | compared the mutations at CTCF binding sites with the signature
observed in Katainen et al. [23]. While CTCF binding sites in general do not show
a signature similar to the one in [23] CTCF binding sites that | aso identified as
recurrent in my analysis display an excess of T>G and T>C mutations (Figure 9).
When | examined specific recurrently mutated CTCF binding site that was also
identified in [23] | found that the same bases within the binding site were
recurrently mutated (Figure 10, compare to Figure 3 in [23]). This suggests that
the recurrently mutated CTCF binding sites identified by my analysis are likely the
result of the same process implicated in Katainen et al. [23]. Recent analyses [77,
78] have shown that transcription factor bound regions of the genome are subject
to unique mutational processes and these mutations often preferentially target
certain bases (e.g. G/C bases). The recurrence score correlates slightly with GC
context (rank correlation 0.113) perhaps due to coding driver genes having high
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GC% (Figure 8, panel B). Regions with recurrence score > 10 have comparable
GC% to regions with score < 10 (Wilcoxon rank sum p-value = 0.81). Mutations
can also be more prevalent at some dinucleotide combinations. In particular, C>T
(G>A) mutations are prevalent at CpG dinucleotides [17] which produces at
detectable mutational signature [7]. Some regions may appear to have large
numbers of mutations due to this mutation process, rather than selection.
Although | can not completely rule out this possibility, Figure 7, which plots
mutational contributions by 5’ and 3’ base, does not suggest an excess of CpG
mutations, including within hypermutated and recurrent hypermutated regions.
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Figure 6: For each of three categories: recurrent and hyper mutated regions (red,
832 total mutations), non-recurrent hypermutated regions (green, 20958 total
mutations), and other regions (blue, 10713694 total mutations), | give the percent
of mutations within region that belong to different cancer types. Malignant
lymphoma has a disproportionate share of hypermutated regions, suggesting that
my method of identifying hypermutated regions is capturing some regions that are
targets of somatic hypermutation in this cohort (this is also consistent with my
observation that many apparently recurrent regions are only mutated in this
cohort). Other cancer types also display an excess of hypermutation including
renal cancer (RECA-EU) and gastric cancer, suggesting focal mutational
processes in these cancer types. | define a region to be hypermutated when it has
> 1.2 mutations per tumour, and to be recurrently mutated when it has a
recurrence score greater than 10.
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Figure 7: Observed mutational spectra within recurrent hypermutated, non-
recurrent hypermutated, and non-hypermutated regions. Each column represents
a particular category of mutation, defined by the base change, as well as the
bases that flank the mutated nucleotide, both 5" and 3'. The height of each bar is
proportional to the frequency of the mutational category within each region type.
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Figure 9: | classified mutations as coming from recurrent CTCF binding sites (red)
non-recurrent CTCF binding sites (green) and non-CTCF binding sites (blue). For
each of these three categories, | give percentages indicating how many mutations
from each category exhibit each of the six possible base changes. Although non-
recurrent CTCF binding sites appear similar to non-CTCF binding sites in terms
base change patterns, recurrent CTCF binding sites in my data show a base
change pattern that matches a signature previously observed at CTCF binding
sites in colorectal cancer. | define a CTCF binding site are recurrent when it has a
recurrence score greater than 10.
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Figure 10: For comparision, | show the location of mutations (black arrows) within
a recurrent CTCF binding site that was highlighted in a previous analysis [23]. The
mutation positions and nucleotide changes observed in my sample match those
identified in this previous analysis, despite the fact that my dataset lacks any
colorectal cancer samples.
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6.4 Pan-cancer prioritisation of non-coding mutations

Having identified CTCF binding sites and regions with >1.2 mutation per tumour
as regions that might be enriched for false positives, | next sought to identify
regions that were likely to be under selection. | validated my prioritisation scores
by considering exonic regions within my sample, because many large analyses
have already identified known driver genes in protein coding regions. My
recurrence score (p = 3.8 x 10%’), conservation score (p = 1.32 x 10™"°), and
combined score (p = 3.22 x 10°°) were able to discriminate known driver genes
within the set of all exonic regions (Figure 11), suggesting that my method has
reasonable effectiveness within this subset of the genome, despite the fact that |
did not take advantage of annotations that are available for coding mutations (e.g.
non-synonymous vs synonymous mutations). | confirmed this by direct
comparison of scores between driver and non-driver regions, as well as by
simulation. To compare the known driver regions to a set of non-drivers of equal
size, | resampled the non-driver exonic regions 10,000 times for each score, and
compared the median score of the sampled non-drivers to the observed median of
the known drivers. For all three scores, none of the 10000 samples exceeded the
median driver score (Figure 11). Several of the top scoring coding regions overlap
well known driver genes such as TP53 and KRAS. To check whether the inclusion
of coding sequence within flanking regions had an impact on the regions
identified, | also rescored each candidate region, this time excluding coding
regions from the calculation of the flanking mutation rate. The regions identified
were largely similar, with 94% of top regions in common between the two scoring
methods. In order to assess whether the mutational counts are dominated by
hypermutated samples, | recalculated the number of mutations in each 50bp
window, excluding samples that are two standard deviations above the mean
number of mutations. These counts are highly correlated (r = 0.88, p < 0.0001)
and this correlation is maintained when considering only regions that have greater
than 5 mutations in the full dataset (r = 0.937, p < 0.00001).
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In addition to identifying known coding drivers, | also identified recurrently mutated
non-coding regions, including both previously identifed regions as well as novel
regions (Figure 12, Tables 2-5). | identifed TERT (Figure 13) and PLEKHS1
(Figure 14) [9] promoters as being recurrently mutated, consistent with previous
analyses. TERT appears in the top 50 regions genome-wide by recurrence (Table
2) but not when ranked by the combined score (Table 4). One explanation for this
is that in a genome-wide context, adding conservation will tend prioritise coding
regions more highly, given the higher conservation of coding compared to non-
coding regions. In support of this interpretation, Table 4 appears to be enriched for
coding drivers relative to Table 2, while comparison of the top ten non-coding,
non-hypermutated regions based on recurrence (Table 3) and combined score
(Table 5) are highly similar. Despite the similarity of these lists, adding
conservation does bring some interesting regions into the top ten, including an
intronic region that shows high conservation, as well as a conserved region of a

miRNA. | discuss both of these regions in more detail in the next section.
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Figure 11: For exonic regions, known driver genes score significantly higher in
terms of recurrence (A,D) conservation (B,E) and combined scores (C,F). | also
compare the observed medians scores for drivers (red arrows) to control medians
generated by resampling non-driver regions (grey bars, D-E).

35



°
° ° °
20 ..g o . ° .t °
® o: %% °° °e O§TNNBI ®CTNNB1
OKRAS
®TP53
®TP53 ®TP53
®TP53
®TP53 °
®TP53 Pss
®TP53
10 ®TP53
ess TR,
®TP53
OKRAS
®TP53
(0]
S
8 ®TP53
on
c
o ®TERT
2
S 01 °
(0]
»
c
o
O
~10-
° °
°
20 -
0 2 4 6

Recurrence Score

Figure 12: Scatterplot of all regions mutated in more than two patients with
conservation score on the vertical axis and Log(recurrence score + 2) on the
horizontal axis. The points are colored based on a classification of each region
into one of four categories: coding, non-driver regions (blue), coding driver regions
(red), non-coding, hypermutated regions (yellow), and non-coding non-
hypermutated regions (green). Several known driver regions are also labelled.
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Table 2: Top 50 regions in terms of recurrence score identified by my method. |
give the position of the region, number of genomes that are mutated within the
region, the recurrence score, and a classification of the region based annotations
and my method of identifying hypermutated regions. | also manually annotated
each region by viewing in the UCSC genome browser.

rank chr Start end Mutated | score | Automated | Manual
samples annotation | annotation

1 chr12 | 25398250 25398300 | 256 399.9 | Driver KRAS exon

2 chr17 7577100 7577150 68 182.1 | Driver TP53 exon

3 chr17 7577500 7577550 62 165.7 | Driver TP53 exon

4 chr3 41266100 41266150 65 149.3 | Driver CTNNB1 exon

5 chr17 7578400 7578450 50 130.6 | Driver TP53 exon

6 chr17 7577550 7577600 41 103.9 | Driver TP53 exon

7 chr17 7578200 7578250 32 82.8 Driver TP53 exon

8 chr17 7578250 7578300 31 80.1 Driver TP53 exon

9 chr17 7577050 7577100 29 72.2 Driver TP53 exon

10 chr17 7578500 7578550 26 64.4 driver TP53 exon

11 chr10 | 96652800 96652850 14 60.0 hotspot non-coding

12 chr12 6899300 6899350 3 571 hotspot CD4 intron

13 chr17 7574000 7574050 19 46.2 | driver TP53 exon

14 chr17 7578450 7578500 18 43.5 | driver TP53 exon

15 chr17 7578350 7578400 17 40.9 | driver TP53 exon

16 chr3 195892250 | 195892300 18 38.7 non-coding | non-coding

17 chr17 7577000 7577050 14 38.3 driver TP53 exon

18 chr12 64749950 64750000 7 35.5 hotspot C120rf56 intron

19 chr13 | 50016900 50016950 8 34.5 | hotspot CAB39L intron

20 chr11 63881800 63881850 9 34.4 | hotspot FLRT1 intron

21 chr15 | 64857000 64857050 9 31.6 | hotspot ZNF609 intron

22 chr17 7578150 7578200 13 30.6 | driver TP53 exon

23 chr17 7578550 7578600 13 30.5 driver TP53 splice site

24 chr16 | 88383450 88383500 7 28.9 | hotspot Non-coding / TF
binding

25 chr14 | 24895100 24895150 11 28.8 | hotspot Non-coding / TF
binding

26 chr17 | 79389900 79389950 9 28.8 | hotspot BAHCC1 intron

27 chr17 17424850 17424900 7 28.5 hotspot PEMT intron

28 chr22 | 46697350 46697400 5 27.8 | hotspot GTSE1 intron

29 chr8 30717550 30717600 7 27.8 hotspot TEX15 exon-intron
border

30 chr7 76949650 76949700 6 27.6 hotspot GSAP intron

31 chr14 | 74239050 74239100 8 27.2 | hotspot ELMSAN1 intron

32 chr4 819750 819800 6 27.0 hotspot CPLX1 intron

33 chr16 | 81908550 81908600 7 26.4 | hotspot PLCG2 intron

34 chr4 39684550 39684600 10 26.4 non-coding | non-coding

35 chr22 | 39962000 39962050 6 26.2 hotspot non-coding

36 chr12 | 25380250 25380300 20 26.1 driver KRAS exon

37 chr3 43746400 43746450 11 25.4 non-coding | ABHDS intron

38 chr17 7579300 7579350 10 25.4 driver TP53 exon

39 chr9 21971100 21971150 12 24.5 | driver CDKN2A exon

40 chr8 9921850 9921900 12 24.3 non-coding | MRSA intron

41 chr11 70764100 70764150 6 241 hotspot SHANK?2 intron

42 chr19 12597300 12597350 9 23.8 | hotspot ZNF709 intron

43 chr17 | 49455750 49455800 10 23.6 hotspot non-coding

44 chrb 1295200 1295250 14 23.4 non-coding | TERT promoter

45 chr7 151591800 | 151591850 6 23.2 hotspot non-coding

46 chr21 44524450 44524500 9 22.9 | driver U2AF1 exon

47 chr1 45914900 45914950 7 22.7 hotspot TESK2 intron

48 chr8 29901300 29901350 9 22.4 non-coding | non-coding

49 chr7 606050 606100 7 22.0 | hotspot PRKAR1B intron

50 chr2 49173750 49173800 27 22.0 non-coding | CTCF binding
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Table 3: Top ten non-coding, non-hypermutated regions in terms of recurrence

score.

rank | chr start end samples | score | manual
mutated annotation

1 chr3 195892250 | 195892300 | 18 38.7 non-coding

2 chr4 39684550 | 39684600 |10 26.4 non-coding

3 chr3 43746400 | 43746450 | 11 25.4 ABHDS intron

4 chr8 9921850 9921900 |12 24.3 MSRA intron

5 chrb 1295200 1295250 | 14 23.4 TERT promoter

6 chr8 29901300 | 29901350 | 9 22.4 non-coding

7 chr2 49173750 | 49173800 | 27 22.0 CTCEF binding

8 chr8 70576150 | 70576200 |21 21.8 CTCF binding

9 chr19 893450 893500 9 21.6 MED16 promoter

10 chr2 47359300 | 47359350 | 8 21.0 C20rf61 intron
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Table 4: Top 50 regions in terms of combined score identified by my method. |
give the position of the region, number of genomes that are mutated within the
region, the combined score, and a classification of the region based annotations
and my method of identifying hypermutated regions. | also manually annotated

each region by viewing in the UCSC genome browser.

rank | chr Start End Mutated | Score Automated | Manual annotation
samples annotation

1 chr12 25398250 25398300 | 256 208.4 driver KRAS exon

2 chr17 7577100 7577150 68 98.1 driver TP53 exon

3 chr17 7577500 7577550 62 89.1 driver TP53 exon

4 chr3 41266100 41266150 65 84.0 driver CTNNB1 exon

5 chr17 7578400 7578450 50 72.0 driver TP53 exon

6 chr17 7577550 7577600 41 57.5 driver TP53 exon

7 chr17 7578250 7578300 31 46.1 driver TP53 exon

8 chr17 7578200 7578250 32 45.8 driver TP53 exon

9 chr17 7577050 7577100 29 40.9 driver TP53 exon

10 chr17 7578500 7578550 26 38.6 driver TP53 exon

11 chr10 96652800 96652850 14 30.1 hotspot Non-coding

12 chr12 6899300 6899350 3 28.6 hotspot CD4 intron

13 chr17 7578450 7578500 18 26.4 driver TP53 exon

14 chr17 7578350 7578400 17 25.5 driver TP53 exon

15 chr17 7574000 7574050 19 254 driver TP53 exon

16 chr17 7578550 7578600 13 23.3 driver TP53 exon

17 chr17 7577000 7577050 14 22.6 driver TP53 exon

18 chr17 7578150 7578200 13 225 driver TP53 exon

19 chr21 44524450 44524500 9 20.9 driver TP53 exon

20 chr3 41266050 41266100 10 20.2 driver CTNNB1 exon

21 chr3 195892250 195892300 18 19.5 non-coding | Non-coding

22 chr9 21971100 21971150 12 17.9 driver CDKN2A exon

23 chr12 64749950 64750000 7 17.7 hotspot C120rf56 intron

24 chr17 7579300 7579350 10 16.8 driver TP53 exon

25 chr2 198266800 198266850 9 16.8 driver SF3B1 exon

26 chr12 25380250 25380300 20 16.8 driver KRAS exon

27 chr18 48591900 48591950 11 16.8 driver SMAD4 exon

28 chr3 178936050 178936100 9 16.7 driver PIK3CA exon

29 chr11 63881800 63881850 9 16.3 hotspot FLRT1 intron

30 chr13 50016900 50016950 8 16.0 hotspot CAB39L intron

31 chr19 11134250 11134300 6 15.7 driver SMARCA4 exon

32 chr15 64857000 64857050 9 15.5 hotspot ZNF609 intron

33 chr20 57484400 57484450 13 15.5 driver GNAS exon

34 chr16 3786700 3786750 5 15.4 driver CREBBP exon

35 chr17 17424850 17424900 7 14.9 hotspot PEMT intron

36 chr14 24895100 24895150 11 14.7 hotspot Non-coding / TF
binding

37 chr18 48575150 48575200 7 14.7 driver SMAD4 exon

38 chr18 48604750 48604800 7 14.6 driver SMAD4 exon

39 chr19 11132500 11132550 5 14.6 driver SMARCA4 exon

40 chr17 79389900 79389950 9 14.3 hotspot BAHCC1 exon

41 chr18 48591800 48591850 8 14.2 driver SMAD4 exon

42 chr3 178952050 178952100 7 14.2 driver PIK3CA exon

43 chr7 76949650 76949700 6 14.0 hotspot GSAP intron

44 chr14 74239050 74239100 8 13.9 hotspot ELMSAN1 intron

45 chr17 56408600 56408650 5 13.9 non-coding | MIR142 non-coding

46 chr22 46697350 46697400 5 13.6 hotspot GTSE1 intron

47 chr8 30717550 30717600 7 13.4 hotspot TEX15 exon-intron
border

48 chr10 89692900 89692950 3 13.3 driver PTEN exon

49 chr17 7577600 7577650 5 13.3 driver TP53 splice site

50 chr4 819750 819800 6 13.2 hotspot CPLX1 intron
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Table 5: Top ten non-coding, non-hypermutated regions in terms of combined

score.

rank | chr start end samples | score | manual
mutated annotation

1 chr3 195892250 | 195892300 | 18 38.7 non-coding

2 chr4 39684550 | 39684600 |10 26.4 non-coding

3 chr3 43746400 | 43746450 | 11 25.4 ABHDS intron

4 chr8 9921850 9921900 |12 24.3 MSRA intron

5 chrb 1295200 1295250 | 14 23.4 TERT promoter

6 chr8 29901300 | 29901350 | 9 22.4 non-coding

7 chr2 49173750 | 49173800 | 27 22.0 CTCEF binding

8 chr19 893450 893500 9 21.6 MED16 promoter

9 chr6 142706200 | 142706250 | 9 18.0 GPR126 intron

10 chr17 | 56408600 | 56408650 | 5 11.3 MIR142
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6.5 Novel recurrent non-coding mutations

My method has highlighted several novel non-coding regions that may be
selected. Many highly recurrent regions are either known coding drivers or are
regions that | have identified as hypermutated. Although a region can be both
hypermutated and selected, | focus on highlighting regions that are less likely to
hypermutated. To demonstrate the types of novel regions identified by my
analysis, | examined two regions that scored among the top regions in terms of

both recurrence and conservation scores in my pan-cancer analysis.

The first region that | examined (Figure 15) lies between the protein coding gene
MED16 and the small nuclear RNA RNU6-2. This regions lies within a Dnase |
hypersentitivity site and shows heavy transcription factor binding, suggestive of
promoter activity or some other regulatory function. Each mutation (black arrows)
within the region lies within a conserved sub-region of the window. No mutations
fall within the unconserved regions surrounding this sub-region or within the
nearby RNA gene, despite the fact that these latter regions make up the majority
of the window. Driver mutations often displaying clustering within specific
functional regions. The pattern observed in this region, with mutations clustered
within a single conserved element, is potentially suggestive of driver activity.
Given the evidence for transcription factor binding in this region, one possibility is
that this conserved sub-region is a motif associated with protein binding. Athough
mutations at this locus are focussed within this conserved sub-region, the
mutations are spread throughout the sub-region, not focussed at any single
nucleotide, and do not always show consistent base changes in the cases where
the mutations do occur at the same nucleotide. Assuming that these mutations are
in fact targeting some kind of binding motif, the relatively even distribution of
mutations without consistent base changes possibly suggests that these
mutations are disrupting a binding motif as opposed to a creating a novel motif.
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Figure 15: UCSC browser image depiciting a recurrently mutated region identified
by my method. Mutations are depicted by black arrows. This region is flanked on
the left by the gene MED16. The mutations observed in this region are focussed
within a conserved region overlapping an region of the genome with ENCODE
evidence of transcription factor binding, possibly indicating selection.
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The second region that | highlight (Figure 16) is deep within the intron of the gene
GPR126. This region shows high levels of conservation, and the mutations
observed is region occur exclusively at two base positions. All mutations within
this region are entirely mutually exclusive, and there are no other mutations within
thi region other than at these two positions. This pattern of mutation is similar to
what was initially observed at mutations in the TERT promoter, and is suggestive
of driver activity. These mutations also occur at the same positions within a motif
(GAAC) as mutations in the PLEKHS1 promoter, potentially suggesting a common
process is occuring at these two loci. These mutations lie far from any exon-intron
boundaries, ruling out the possibility that they affect donor or acceptor sites. This
regions overlaps a DNase | hypersensitive site, potentially suggesting that this

region contains on intronic regulatory elements.

| additionally identified recurrent mutations at highly conserved positions
overlapping the miRNA MIR142 (Figure 17). These mutations are spread
throughout the region, and occur exclusively in lymphoma samples, suggesting
that this region may be a target of somatic hypermutation. Puente et al. [79] also
identified recurrent mutations near MIR142 in CLL, which they attribute to somatic
hypermutation. Despite the fact that this region may be a target of hypermutation
rather than selection, the appearance of this region within the top ten non-coding,
non-hypermutated regions in terms of combined score (Table 5) but not
recurrence score (Table 3) suggests that conservation can highlight regions that
are highly conserved but have lower recurrence. As a result, it may be useful to
use both scores seperately to nominate regions with different characteristics. For
example, the region | highlight in Figure 16 also appears in Table 5, but not Table
3.

Finally, I highlight a recurrently mutated region in an intron if the gene MSRA
(Figure 18). Similar to several of the other regions highlighted, this region is
mutated predominantly at two base positions, which in this case occur at
neighboring positions.
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6.6 Cancer type specific analysis

So far, | have focussed on regions that are mutated in multiple cancer types. It
may also be that some non-coding driver mutations are mutated primarily in one
or a few cancer types only. | therefore attempted to identify recurrently non-coding
mutations in a cancer type specific manner my applying my scoring method
independently to each cancer type in the dataset with more than 75 whole
genomes. Consistent with my pan-cancer analysis, when | applied my method to
the exonic regions of specific cancer types, | again identified many known cancer
genes that scored highly within this sample (Figure 19). Several of the genes that |
considered seem to be particularly prominent in cancer types where they are
known to be highly mutated, such as VHL in renal cancer, PIK3CA in breast
cancer, TP53 in ovarian cancer, SMAD4 in esophageal and gastric cancer, and
KRAS in pancreatic cancer.
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Figure 16: UCSC browser image of a second recurrently mutated region identified
by my method. Mutations are depicted by black arrows. This region overlaps a
resonably conserved intron of the gene GPR126. The mutations within this region
occur exclusively at two nucleotides in a wholly mutually-exclusive manner.
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Figure 18: Recurrently mutation overlapping an intron of the gene MSRA. The
mutations occur primarily at two neighboring bases.
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Figure 19: Scatterplots of exonic regions with more than 2 patients mutated within
each cancer type. For each scatterplot, | plot regions mutated in three or more
samples from a cancer type based on scores calculated only within each cancer
type. Regions overlapping known driver genes are depicted in red, while other
coding regions are depicted in blue. Several known driver genes are labelled in
each plot. Several known cancer type specific trends are apparent, such as the
recurrence of VHL specifically in renal cancer, as well as prominent KRAS
mutations in pancreatic cancer and SMAD4 mutations in gastric and esophageal
cancer.
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6.7 Cancer type specific non-coding mutations

In additon to the regions identified in my pan-cancer analysis, | also identified
some non-coding regions that are recurrently mutated in individual cancer types
(Tables 6 and 7). | identified recurrent mutations within an intron of the PRIM2
gene (Figure 20) specifically in renal cancer. These mutations occurred at two
bases in a whole mutally exclusive manner, and exclusively in renal cancer
samples. | also identifed recurrent mutations within an intron of RAD51B in several
breast cancer samples (Figure 21). RAD51B is a DNA repair gene invloved in
homologous recombination [80]. Given the importance of this repair pathway in
breast cancer, this region may be worth further study in this cancer type. Within
the regions prioritised by the combined score, | also identified several extremely
highly conserved regions that are recurrently mutated in the LIRI-JP cohort,
including non-coding regions of the genes BCL11A, BCL6, and PAXS5 (Table 7).
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Table 6: Top ten non-coding, non-hypermutated regions in terms of recurrence

score within each cancer type.

chr start End mutated | score Cohort Annotation
samples
chr10 | 75457700 75457750 4 1.4405 Breast AGAPS intron
chr10 | 115511550 | 115511600 5 1.6216 Breast PLEKHS1 promoter
chr11 296200 296250 3 0.9419 Breast Non-coding
chr14 | 69134600 69134650 3 1.2896 Breast RAD51B intron
chr14 | 104675450 | 104675500 4 1.0002 Breast Non-coding
chr16 | 88260400 | 88260450 3 0.9971 Breast Non-coding
chr16 | 88463300 88463350 3 1.0136 Breast Non-coding
chr17 | 5025550 5025600 3 1.1389 Breast ZNF232 intron
chr22 | 26714000 26714050 5 1.5020 Breast SEZ6L intron
chr4 120322450 | 120322500 4 2.3094 Breast Non-coding
chr1 52344450 52344500 4 27.1847 ESAD-UK | NDR1 promoter
chr10 | 30966600 30966650 5 28.3009 ESAD-UK | Non-coding
chr11 | 63777600 63777650 4 27.7663 ESAD-UK | MACROD1 intron
chr16 | 89081750 89081800 6 34.0315 | ESAD-UK | Non-coding
chr17 521450 521500 5 34.1686 ESAD-UK | VPS53 intron
chr17 552650 552700 6 42.0077 ESAD-UK | VPS53 intron
chr17 | 78287250 78287300 6 47.7300 ESAD-UK | RNF213 intron
chr19 | 49172650 | 49172700 4 27.2390 ESAD-UK | NTN5 intron
chr7 | 151591850 | 151591900 5 33.9840 ESAD-UK | Non-coding
chr9 42858850 | 42858900 4 27.6646 ESAD-UK | LOC286297 ncRNA
chr1 46385450 46385500 6 4.1470 Gastric MAST?2 intron
chr10 | 129059650 | 129059700 11 4.6119 Gastric DOCK1 intron
chr16 | 4039350 4039400 6 4.0935 Gastric ADCY9 intron
chr17 | 62640700 62640750 5 3.9717 Gastric SMURF2 intron
chr19 | 19088350 19088400 7 4.5256 Gastric Non-coding
chr2 25089450 25089500 6 3.8879 Gastric ADCY3 intron
chr3 | 195892250 | 195892300 18 11.3319 | Gastric Non-coding
chr4 169312800 | 169312850 8 6.5470 Gastric DDX60L intron
chr4 169313950 | 169314000 5 3.7960 Gastric DDX60L intron
chr6 | 179868450 | 179868500 6 3.9871 Gastric non-coding TF
binding
chr10 | 89346150 | 89346200 5 9.4418 LIRI-JP non-coding TF
binding
chr16 1709700 1709750 4 11.7738 LIRI-JP CRAMP1L intron
chr19 893450 893500 4 17.4535 LIRI-JP MED16 promoter
chr20 796800 796850 5 12.8574 LIRI-JP CTCF binding
chr20 | 10151100 10151150 6 7.6185 LIRI-JP SNAL25-AS1 ncRNA
chr21 | 16350350 16350400 7 9.6832 LIRI-JP NRIP1 intron
chr3 43746350 | 43746400 7 10.0986 LIRI-JP ABHDS5 intron
chrd | 119394200 | 119394250 6 7.9062 LIRI-JP Non-coding
chrd | 142289250 | 142289300 7 7.3136 LIRI-JP Non-coding
chr7 65090800 65090850 6 8.1183 LIRI-JP Non-coding
chr1 169975450 | 169975500 3 -0.4557 OV-AU KIFAP3 intron
chr1 216051800 | 216051850 3 -0.4633 OV-AU USH2A intron
chr12 | 88776700 88776750 3 0.0648 OV-AU Non-coding
chr12 | 101545800 | 101545850 3 -0.1503 OV-AU Non-coding
chr18 | 32342800 32342850 3 -0.2974 OV-AU DTNA intron
chr2 69530800 69530850 3 1.0857 OV-AU Non-coding
chr2 | 166337300 | 166337350 3 0.2182 OV-AU CSRNP3 intron
chrb 97091250 97091300 3 -0.0193 OV-AU non-coding
chr5 | 131366350 | 131366400 3 0.3409 OV-AU non-coding
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chr8 | 117337100 | 117337150 4 0.3649 OV-AU LINCO0536 / TF
binding

chr1 51589650 | 51589700 3 2.5931 PACA-AU | C1orf185 intron

chr10 | 118803350 | 118803400 4 2.0360 PACA-AU | KIAA15998 intron

chr14 | 74083000 | 74083050 3 3.4429 PACA-AU | non-coding

chr16 | 48483950 | 48484000 5 4.2544 PACA-AU | MIR5095 non-coding

chr16 | 69602250 | 69602300 3 2.6323 PACA-AU | NFATS5 intron

chr17 | 1600600 1600650 3 3.4882 PACA-AU | non-coding

chr2 | 191157850 | 191157900 3 2.0794 PACA-AU | HIBCH intron

chr2 | 203851600 | 203851650 3 2.2701 PACA-AU | non-coding

chr20 | 14680700 14680750 4 2.2964 PACA-AU | MACROD?2 intron

chr6 | 107807150 | 107807200 3 3.2244 PACA-AU | non-coding

chr1 21793400 | 21793450 3 4.0058 PACA-CA | NBPF3intron

chr1 27503450 | 27503500 3 4.3162 PACA-CA | non-coding

chr1 | 206519250 | 206519300 5 6.8580 PACA-CA | SRGAP2 intron

chr10 | 89005600 | 89005650 3 3.5191 PACA-CA | NUTM2A-AS1 ncRNA

chr15 | 67334650 | 67334700 4 4.1283 PACA-CA | non-coding TF
binding

chr16 | 70039200 | 70039250 4 3.7022 PACA-CA | PDXDC2P ncRNA

chrb | 141582500 | 141582550 4 4.5125 PACA-CA | non-coding

chr9 123950 124000 5 6.0043 PACA-CA | CBWD1 intron

chr9 42540200 | 42540250 3 15.9414 | PACA-CA | non-coding

chr9 70996500 | 70996550 4 3.9799 PACA-CA | PGMS5 intron

chr1 | 228032600 | 228032650 3 1.5023 PRAD-CA | PRSS38 intron

chr15 | 41726800 | 41726850 3 1.4188 PRAD-CA | RTF1 intron

chr15 | 73669700 | 73669750 4 2.2093 PRAD-CA | non-coding

chr16 173850 173900 3 1.7730 PRAD-CA | NPRL3 intron

chr16 | 68244200 | 68244250 4 2.9728 PRAD-CA | NFATC3 intron

chr19 | 49815100 | 49815150 3 1.3712 PRAD-CA | SLC6A16 intron

chr2 | 131394050 | 131394100 4 2.2702 PRAD-CA | POTEJ intron

chr4 39684550 | 39684600 6 3.5422 PRAD-CA | non-coding

chr7 | 141323150 | 141323200 4 1.5960 PRAD-CA | AGK intron

chr9 66313600 | 66313650 3 2.4021 PRAD-CA | non-coding

chr1 46226150 46226200 6 2.0896 RECA-EU | non-coding

chr11 | 44336600 | 44336650 5 1.1582 RECA-EU | non-coding

chr12 655150 655200 6 1.3493 RECA-EU | B4GALNT3 intron

chr12 | 122822000 | 122822050 5 1.4043 RECA-EU | CLIP1 intron

chr2 84825300 | 84825350 7 1.3525 RECA-EU | DNAH6 intron

chr3 46746150 | 46746200 6 3.1945 RECA-EU | TMIE intron

chr3 56204600 | 56204650 5 1.8347 RECA-EU | ERC2 intron

chré 57343100 | 57343150 12 4.5837 RECA-EU | PRIM2 intron

chr7 28744950 | 28745000 6 1.6668 RECA-EU | CREBS intron

chr8 29901300 | 29901350 9 2.7300 RECA-EU | non-coding
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Table 7: Top ten non-coding, non-hypermutated regions in terms of combined

score within each cancer type.

chr start End mutated | score Cohort Annotation
samples

chr10 75457700 75457750 4 0.5052 | Breast APGAPS intron

chr10 | 115511550 115511600 5 0.9404 | Breast PLEKHS1 promoter

chr13 23615650 23615700 3 0.4879 | Breast non-coding

chr14 69134600 69134650 3 0.8344 | Breast RADS1B intron

chr16 10746650 10746700 4 0.5450 | Breast TEXT5 intron / TF
binding

chr16 88260400 88260450 3 0.6453 | Breast non-coding

chr16 88463300 88463350 3 0.6663 | Breast non-coding

chr19 42466450 42466500 3 0.9510 | Breast non-coding

chr4 120322450 120322500 4 0.6950 | Breast non-coding

chré 168637600 | 168637650 3 0.9844 | Breast non-coding

chr1 52344450 52344500 4 13.6021 | ESAD-UK | NRD1 promoter

chr10 30966600 30966650 5 12.6044 | ESAD-UK | non-coding

chr16 89081750 89081800 6 15.8425 | ESAD-UK | non-coding

chr17 521450 521500 5 16.9202 | ESAD-UK | VPS53intron

chr17 552650 552700 6 20.3809 | ESAD-UK | VPS53intron

chr17 78287250 78287300 6 23.4776 | ESAD-UK | RNF213intron

chré 38461900 38461950 5 13.9464 | ESAD-UK | BTBD9 intron / CTCF
binding

chr7 127898750 | 127898800 4 13.2956 | ESAD-UK | non-coding

chr7 151591850 | 151591900 5 17.0298 | ESAD-UK | non-coding

chr9 42858850 42858900 4 13.6816 | ESAD-UK | LOC286297 ncRNA

chr11 31150650 31150700 3 2.2649 | gastric DCDC1 intron

chr17 31038650 31038700 4 2.3389 | gastric MYO1D intron

chr17 59465950 59466000 3 4.6770 | gastric BCASS3 intron

chr2 143949750 | 143949800 3 2.5988 | gastric ARHGAP15 intron

chr3 195892250 | 195892300 | 18 5.8723 | gastric non-coding

chr4 169312800 | 169312850 8 3.6715 | gastric DDX60L intron

chr4 169313950 | 169314000 5 2.3140 | gastric DDX60L intron

chré 43041350 43041400 5 2.3349 | gastric KLC4 intron

chré 50570100 50570150 3 2.8894 | gastric CTCF binding

chr8 65519150 65519200 3 2.7909 | gastric CYP7B1 intron

chr16 1709700 1709750 4 5.8069 | LIRI-JP CRAMP1 intron

chr16 52531300 52531350 3 9.9815 | LIRI-JP TOX3 intron

chr19 893450 893500 4 11.9033 | LIRI-JP MED16 promoter

chr2 7342150 7342200 3 7.7298 | LIRI-JP non-coding

chr2 60684450 60684500 3 5.9503 | LIRI-JP BCL11A

chr20 796800 796850 5 6.1129 | LIRI-JP CTCEF binding

chr21 16350350 16350400 7 5.6199 | LIRI-JP NRIP1 intron

chr3 43746350 43746400 7 5.4083 | LIRI-JP ABHDS5 intron

chr3 187439750 | 187439800 3 8.5100 | LIRI-JP BCL6 intron

chr9 36940450 36940500 3 5.2957 | LIRI-JP PAXS intron

chr1 169975450 | 169975500 3 -0.0932 | OV-AU KIFAPS3 intron

chr1 216051800 | 216051850 3 -0.2351 | OV-AU USH2A intron

chr12 88776700 88776750 3 0.0358 | OV-AU non-coding

chr12 | 101545800 | 101545850 3 -0.0795 | OV-AU non-coding

chr18 32342800 32342850 3 -0.0308 | OV-AU DTNA intron

chr2 69530800 69530850 3 0.0374 | OV-AU non-coding

chr2 166337300 | 166337350 3 0.0700 | OV-AU CSRNP3 intron

chrb 97091250 97091300 3 -0.3319 | OV-AU non-coding

chrb 131366350 | 131366400 3 0.2291 | OV-AU non-coding

chr8 117337100 | 117337150 4 0.6292 | OV-AU LINC00536 ncRNA /
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TF binding

chr14 74083000 74083050 3 0.9026 | PACA-AU | non-coding
chr16 | 48483950 48484000 5 2.1310 | PACA-AU | MIR5059 ncRNA
chr16 69602250 69602300 3 1.9837 | PACA-AU | NFATS intron
chr17 1600600 1600650 3 1.7198 | PACA-AU | non-coding
chr19 5250450 5250500 3 1.4586 | PACA-AU | PTPRS intron
chr2 203851600 | 203851650 3 1.7673 | PACA-AU | non-coding
chr20 14680700 14680750 4 0.9078 | PACA-AU | MACROD?2 intron
chré 107807150 | 107807200 3 1.7200 | PACA-AU | non-coding

chr7 122981650 122981700 3 0.9430 | PACA-AU | non-coding
chr8 120286150 | 120286200 3 0.9145 | PACA-AU | non-coding
chr1 21793400 21793450 3 2.0401 | PACA-CA | NBPF3intron
chr1 27503450 27503500 3 4.8274 | PACA-CA | non-coding

chr1 206519250 | 206519300 5 2.8859 | PACA-CA | SRGAP2 intron
chr10 89005600 89005650 3 2.0901 | PACA-CA | NUTM2A-AS1 ncRNA
chr18 | 44002100 44002150 3 2.0086 | PACA-CA | RNF165 intron
chrb 99390600 99390650 3 3.9516 | PACA-CA | non-coding
chr9 123950 124000 5 3.3592 | PACA-CA | CBWD1 intron
chr9 35357550 35357600 3 1.8179 | PACA-CA | UNC13B intron
chr9 42540200 42540250 3 8.0164 | PACA-CA | non-coding
chr9 70996500 70996550 4 1.8112 | PACA-CA | PGMS5 intron
chr10 16330150 16330200 3 0.4259 | PRAD-CA | non-coding
chr14 75148450 75148500 3 0.5223 | PRAD-CA | AREL1 intron
chr15 73669700 73669750 4 1.0125 | PRAD-CA | non-coding
chr16 173850 173900 3 0.9023 | PRAD-CA | NPRL3 intron
chr16 68244200 68244250 4 0.3793 | PRAD-CA | NFATC3 intron
chr17 29476300 29476350 3 0.5816 | PRAD-CA | NF1 intron
chr19 7152400 7152450 3 0.4746 | PRAD-CA | INSR intrron
chr2 203520450 | 203520500 3 0.4251 | PRAD-CA | FAM117B intron
chr4 39684550 39684600 6 1.0123 | PRAD-CA | non-coding

chr7 143666450 | 143666500 3 0.6287 | PRAD-CA | non-coding

chr1 46226150 46226200 6 1.2094 | RECA-EU | non-coding
chr12 69755800 69755850 4 1.0794 | RECA-EU | YEATS4 intron
chr12 | 122822000 | 122822050 5 1.0534 | RECA-EU | CLIP1 intron
chr16 18820800 18820850 4 3.3245 | RECA-EU | SMG1 UTR
chr18 57125350 57125400 4 1.0331 | RECA-EU | CCBET1 intron
chr3 46746150 46746200 6 2.4872 | RECA-EU | TMIE intron
chr3 56204600 56204650 5 1.2752 | RECA-EU | ERC2 intron
chré 57343100 57343150 12 2.0394 | RECA-EU | PRIMZ2 intron
chr7 28744950 28745000 6 1.0070 | RECA-EU | CREBS5 intron
chr8 29901300 29901350 9 1.5436 | RECA-EU | non-coding
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Figure 20: UCSC browser image of a recurrently mutated region overlapping an
intron of the gene PRIMZ2. Mutations are depicted as black arrows. All mutations
within the region occur at one of two nucleotides and are mutually exclusive.
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Figure 21: UCSC browser image depiciting a recurrently mutated region in an
intron of the DNA repair gene RAD51B. This region is mutated specifically in
breast cancer.
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7 Discussion

As is the case in the analysis of coding mutations, | have found that mutational
heterogeneity is a critical factor that impacts the identification of non-coding driver
regions in cancer. My initial analysis revealed that several promising candidate
regions, some of which have been suggested in the literature as potential driver
regions, may actually be recurrently mutated primarily due to focal mutational
processes rather than selection. | highlight AID induced somatic hypermutation as
well as a recenty identified process [23] which targets CTCF binding sites as a
prominent local mutational process. | also propose methods for identifying and
filtering out these putatively hypermutated regions, allowing me to focus on
regions for which | believe the evidence favoring positive selection is stronger.

Using the exome to validate my scoring system, | showed that all three scores can
differentiate known drivers from other coding regions. | also identified several
known driver genes that display a mutation pattern across cancer types consistent
with expectations. For example, | scored VHL highly specifically in renal cancer,
consistent with the known high mutation rate of this gene in this tumour type.
Several well known driver genes are are known to be mutated in many cancer
types were scored highly in several cancer types indendently, such as KRAS and
TP53. While these genes scored highly across many cancer types, they also
appear more prominently in certain cancer types where they are known to be
particularly highly mutated, such as TP53 in ovarian cancer and KRAS in

pancreatic cancer.

In addition to using recurrence as previous studies often have, | also included
conservation as part of my prioritization scores. | show that my conservation score
can separate known coding drivers from non-drivers. Conservation may also be
useful in the analysis of non-coding mutations, both to increase confidence that
recurrent non-coding mutations have to potential to impact function, as well as to

highlight non-coding regions that may have lower recurrence but strong driver

58



potential due to strong conservation. The combined score also appears to
outperform the recurrence score alone in terms of distinguishing known driver
regions from other exonic regions, suggesting that conservation provides valuable
information in addition to recurrence, although this may be more difficult to
interpret within the context of non-coding mutations, given that non-coding regions
are generally less well conserved as a whole compared to coding regions. On the
one hand, the generally low conservation present in non-coding regions sugggests
that functional non-coding mutations might not necessarily always occur at
conserved positions. Thus, it is useful to consider recurrent mutations, even if they
are not at highly conserved positions. On the other hand, high conservation
implies a higher likelihood that a base has functional importance, so incorporating
conservation as a complement to recurrence can help strengthen the case that a
region has driver potential. Using a measure such as the combined score may
also highlight regions that have moderate recurrence but which are highly
conserved. These regions would be good candidates for more “hill-like” drivers. As
a result, | believe that using both recurrence and a combined score that
incorporates both recurrence and conservation to prioritise regions that may have
different properties is a promising strategy. It is also worth noting that more
complex ways of combining these scores might yield additional benefits. | have
simply averaged the scores, after normalizing to make the scores roughly
comparable, but other transformations might also produce insights.

Within these genomes, | also identified several novel recurrently mutated regions,
some of which may operate through novel mechanisms. In addition to the novel
recurrent regions | identified in a pan-cancer analysis, | aso identifed several novel
non-coding regions that appear to be cancer type specific, some of which have
high frequencies in the cancer types in which they occur. These regions, as well
as other regions that score highly within my framework, may be good targets for
future analyses of non-coding somatic mutations in cancer. Although the methods
used here can not definitively establish a mutation as a driver, further investigation
of non-coding mutations using these and other methods may reveal new non-
coding driver mutations. These drivers may have important implications for cancer

therapy if they are directly targetable by drugs or involved in the regulation of
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pathways that are targetable. For example, my analysis identified mutations within
an intron of the gene GPR126, a G-protein coupled receptor that has been
associated with Adolescent idiopathic scoliosis [81]. Although | have not
definitively shown the mutations within this region to be functional, the fact that
this gene is already thought to play a role in human disease is intriguing. Non-
coding mutations such as TERT promoter mutations [50] have been associated
with clinical outcomes, as have mutational processes in cancer [82-84]. | have
highlighted regions that have an excess of mutations in cancer genomes. These
regions may lead to important insights that may have clinical implications if they

are either under selection or indicative of a unique mutational processes.

60



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

8 References

Forbes, S.A., et al., COSMIC: exploring the world's knowledge of somatic
mutations in human cancer. Nucleic Acids Res, 2014.

Cancer Genome Atlas Research, N., et al., The Cancer Genome Atlas Pan-
Cancer analysis project. Nat Genet, 2013. 45(10): p. 1113-20.

Stratton, M.R., P.J. Campbell, and P.A. Futreal, The cancer genome.
Nature, 2009. 458(7239): p. 719-24.

Garraway, L.A. and E.S. Lander, Lessons from the cancer genome. Cell,
2013.153(1): p. 17-37.

Vogelstein, B., et al., Cancer genome landscapes. Science, 2013.
339(6127): p. 1546-58.

Furney, S.J., et al., Prioritization of candidate cancer genes--an aid to
oncogenomic studies. Nucleic Acids Res, 2008. 36(18): p. e115.
Alexandrov, L.B., et al., Signatures of mutational processes in human
cancer. Nature, 2013. 500(7463): p. 415-21.

Schuster-Bockler, B. and B. Lehner, Chromatin organization is a major
influence on regional mutation rates in human cancer cells. Nature, 2012.
488(7412): p. 504-+.

Weinhold, N., et al., Genome-wide analysis of noncoding regulatory
mutations in cancer. Nat Genet, 2014. 46(11): p. 1160-5.

Supek, F., et al., Synonymous Mutations Frequently Act as Driver
Mutations in Human Cancers. Cell, 2014. 156(6): p. 1324-1335.

Gartner, J.J., et al., Whole-genome sequencing identifies a recurrent
functional synonymous mutation in melanoma. Proceedings of the National
Academy of Sciences of the United States of America, 2013. 110(33): p.
13481-13486.

Fredriksson, N.J., et al., Systematic analysis of noncoding somatic
mutations and gene expression alterations across 14 tumor types. Nat
Genet, 2014. 46(12): p. 1258-63.

Pfeifer, G.P., How the environment shapes cancer genomes. Curr Opin
Oncaol, 2015. 27(1): p. 71-7.

Viros, A., et al., Ultraviolet radiation accelerates BRAF-driven
melanomagenesis by targeting TP53. Nature, 2014. 511(7510): p. 478-82.
Pleasance, E.D., et al., A comprehensive catalogue of somatic mutations
from a human cancer genome. Nature, 2010. 463(7278): p. 191-6.
Govindan, R., et al., Genomic landscape of non-small cell lung cancer in
smokers and never-smokers. Cell, 2012. 150(6): p. 1121-34.

Pleasance, E.D., et al., A small-cell lung cancer genome with complex
signatures of tobacco exposure. Nature, 2010. 463(7278): p. 184-90.
Roberts, S.A. and D.A. Gordenin, Hypermutation in human cancer
genomes: footprints and mechanisms. Nat Rev Cancer, 2014. 14(12): p.
786-800.

Poon, S.L., et al., Genome-Wide Mutational Signatures of Aristolochic Acid
and Its Application as a Screening Tool. Science Translational Medicine,
2013. 5(197).

61



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Tomasetti, C., B. Vogelstein, and G. Parmigiani, Half or more of the
somatic mutations in cancers of self-renewing tissues originate prior to
tumor initiation. Proc Natl Acad Sci U S A, 2013. 110(6): p. 1999-2004.
Polak, P., et al., Reduced local mutation density in requlatory DNA of
cancer genomes is linked to DNA repair. Nature Biotechnology, 2014.
32(1): p. 71-+.

Supek, F. and B. Lehner, Differential DNA mismatch repair underlies
mutation rate variation across the human genome. Nature, 2015.
Katainen, R., et al., CTCF/cohesin-binding sites are frequently mutated in
cancer. Nat Genet, 2015.

Reijns, M.A_, et al., Lagging-strand replication shapes the mutational
landscape of the genome. Nature, 2015.

Polak, P., et al., Cell-of-origin chromatin organization shapes the mutational
landscape of cancer. Nature, 2015. 518(7539): p. 360-4.

Lawrence, M.S., et al., Mutational heterogeneity in cancer and the search
for new cancer-associated genes. Nature, 2013. 499(7457): p. 214-8.

Liu, L., S. De, and F. Michor, DNA replication timing and higher-order
nuclear organization determine single-nucleotide substitution patterns in
cancer genomes. Nat Commun, 2013. 4: p. 1502.

Nik-Zainal, S., et al., Mutational processes molding the genomes of 21
breast cancers. Cell, 2012. 149(5): p. 979-93.

Tamborero, D., A. Gonzalez-Perez, and N. Lopez-Bigas, /dentification of
oncogenic driver mutations. Experimental Medicine, 2014. 32.

Lawrence, M.S., et al., Discovery and saturation analysis of cancer genes
across 21 tumour types. Nature, 2014. 505(7484): p. 495-501.
Tamborero, D., et al., Comprehensive identification of mutational cancer
driver genes across 12 tumor types. Sci Rep, 2013. 3: p. 2650.

Dees, N.D., et al., MuSiC: identifying mutational significance in cancer
genomes. Genome Res, 2012. 22(8): p. 1589-98.

Tamborero, D., A. Gonzalez-Perez, and N. Lopez-Bigas, Oncodrive CLUST:
exploiting the positional clustering of somatic mutations to identify cancer
genes. Bioinformatics, 2013. 29(18): p. 2238-44.

Gonzalez-Perez, A. and N. Lopez-Bigas, Functional impact bias reveals
cancer drivers. Nucleic Acids Res, 2012. 40(21): p. e169.

Reimand, J. and G.D. Bader, Systematic analysis of somatic mutations in
phosphorylation signaling predicts novel cancer drivers. Mol Syst Biol,
2013. 9: p. 637.

Wood, L.D., et al., The genomic landscapes of human breast and colorectal
cancers. Science, 2007. 318(5853): p. 1108-13.

Davies, H., et al., Mutations of the BRAF gene in human cancer. Nature,
2002. 417(6892): p. 949-54.

Kong-Beltran, M., et al., Somatic mutations lead to an oncogenic deletion of
met in lung cancer. Cancer Res, 2006. 66(1): p. 283-9.

Davoli, T., et al., Cumulative haploinsufficiency and triplosensitivity drive
aneuploidy patterns and shape the cancer genome. Cell, 2013. 155(4): p.
948-62.

Stehr, H., et al., The structural impact of cancer-associated missense
mutations in oncogenes and tumor suppressors. Mol Cancer, 2011. 10: p.
54.

62



41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Huang, F.W., et al., Highly Recurrent TERT Promoter Mutations in Human
Melanoma. Science, 2013. 339(6122): p. 957-959.

Horn, S., et al., TERT promoter mutations in familial and sporadic
melanoma. Science, 2013. 339(6122): p. 959-61.

Vinagre, J., et al., Frequency of TERT promoter mutations in human
cancers. Nat Commun, 2013. 4: p. 2185.

Gunes, C., et al., Expression of the hTERT gene is regulated at the level of
transcriptional initiation and repressed by Mad1. Cancer Research, 2000.
60(8): p. 2116-2121.

Schulze, K., et al., Exome sequencing of hepatocellular carcinomas
identifies new mutational signatures and potential therapeutic targets. Nat
Genet, 2015. 47(5): p. 505-11.

Hosen, |., et al., TERT promoter mutations in clear cell renal cell
carcinoma. Int J Cancer, 2015. 136(10): p. 2448-52.

Rachakonda, P.S., et al., TERT promoter mutations in bladder cancer
affect patient survival and disease recurrence through modification by a
common polymorphism. Proceedings of the National Academy of Sciences
of the United States of America, 2013. 110(43): p. 17426-17431.
Eckel-Passow, J.E., et al., Glioma Groups Based on 1p/19q, IDH, and
TERT Promoter Mutations in Tumors. N Engl J Med, 2015.
Spiegl-Kreinecker, S., et al., Prognostic quality of activating TERT promoter
mutations in glioblastoma: interaction with the rs2853669 polymorphism
and patient age at diagnosis. Neuro Oncol, 2015.

Borah, S., et al., Cancer. TERT promoter mutations and telomerase
reactivation in urothelial cancer. Science, 2015. 347(6225): p. 1006-10.
Allory, Y., et al., Telomerase reverse transcriptase promoter mutations in
bladder cancer: high frequency across stages, detection in urine, and lack
of association with outcome. Eur Urol, 2014. 65(2): p. 360-6.

Hurst, C.D., F.M. Platt, and M.A. Knowles, Comprehensive mutation
analysis of the TERT promoter in bladder cancer and detection of
mutations in voided urine. Eur Urol, 2014. 65(2): p. 367-9.

Katainen, R., et al., CTCF/cohesin-binding sites are frequently mutated in
cancer. Nat Genet, 2015. 47(7): p. 818-21.

Mansour, M.R., et al., An oncogenic super-enhancer formed through
somatic mutation of a noncoding intergenic element. Science, 2014.
346(6215): p. 1373-1377.

Wang, W., et al., A frequent somatic mutation in CD274 3'-UTR leads to
protein over-expression in gastric cancer by disrupting miR-570 binding.
Hum Mutat, 2012. 33(3): p. 480-4.

Dutton-Regester, K., et al., A highly recurrent RPS27 5'UTR mutation in
melanoma. Oncotarget, 2014. 5(10): p. 2912-7.

Cunningham, F., et al., Ensembl 2015. Nucleic Acids Res, 2015.
43(Database issue): p. D662-9.

Consortium, E.P., An integrated encyclopedia of DNA elements in the
human genome. Nature, 2012. 489(7414): p. 57-74.

Lochovsky, L., et al., LARVA: an integrative framework for large-scale
analysis of recurrent variants in noncoding annotations. Nucleic Acids Res,
2015. 43(17): p. 8123-34.

Boyle, A.P., et al., Annotation of functional variation in personal genomes
using RegulomeDB. Genome Res, 2012. 22(9): p. 1790-7.

63



61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

Melton, C., et al., Recurrent somatic mutations in regulatory regions of
human cancer genomes. Nat Genet, 2015. 47(7): p. 710-6.

Khurana, E., et al., Integrative annotation of variants from 1092 humans:
application to cancer genomics. Science, 2013. 342(6154): p. 1235587.
Fu, Y., etal., FunSeq2: a framework for prioritizing noncoding regulatory
variants in cancer. Genome Biol, 2014. 15(10): p. 480.

Poulos, R.C., et al., Systematic Screening of Promoter Regions Pinpoints
Functional Cis-Regulatory Mutations in a Cutaneous Melanoma Genome.
Mol Cancer Res, 2015. 13(8): p. 1218-26.

Smith, K.S., et al., Signatures of accelerated somatic evolution in gene
promoters in multiple cancer types. Nucleic Acids Res, 2015.

Melton, C., et al., Recurrent somatic mutations in regulatory regions of
human cancer genomes. Nat Genet, 2015.

Mathelier, A., et al., Cis-regulatory somatic mutations and gene-expression
alteration in B-cell lymphomas. Genome Biol, 2015. 16: p. 84.

Roadmap Epigenomics, C., et al., Integrative analysis of 111 reference
human epigenomes. Nature, 2015. 518(7539): p. 317-30.

Zhang, J., et al., International Cancer Genome Consortium Data Portal--a
one-stop shop for cancer genomics data. Database (Oxford), 2011. 2011:
p. bar026.

Wang, K., et al., Whole-genome sequencing and comprehensive molecular
profiling identify new driver mutations in gastric cancer. Nat Genet, 2014.
46(6): p. 573-82.

Karolchik, D., et al., The UCSC Table Browser data retrieval tool. Nucleic
Acids Res, 2004. 32(Database issue): p. D493-6.

Kent, W.J., et al., The human genome browser at UCSC. Genome Res,
2002. 12(6): p. 996-1006.

Quinlan, A.R. and |.M. Hall, BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics, 2010. 26(6): p. 841-2.

Team, R.D.C., R: A language and environment for statistica computing.
2010, R Foundation for Statistical Computing: Vienna, Austria.

Forbes, S.A., et al., COSMIC: exploring the world's knowledge of somatic
mutations in human cancer. Nucleic Acids Res, 2015. 43(Database issue):
p. D805-11.

Pollard, K.S., et al., Detection of nonneutral substitution rates on
mammalian phylogenies. Genome Res, 2010. 20(1): p. 110-21.

Perera, D., et al., Differential DNA repair underlies mutation hotspots at
active promoters in cancer genomes. Nature, 2016. 532(7598): p. 259-63.
Sabarinathan, R., et al., Nucleotide excision repair is impaired by binding of
transcription factors to DNA. Nature, 2016. 532(7598): p. 264-7.

Puente, X.S., et al., Non-coding recurrent mutations in chronic lymphocytic
leukaemia. Nature, 2015. 526(7574): p. 519-24.

Takata, M., et al., The Rad51 paralog Rad51B promotes homologous
recombinational repair. Mol Cell Biol, 2000. 20(17): p. 6476-82.

Kou, |., et al., Genetic variants in GPR126 are associated with adolescent
idiopathic scoliosis. Nat Genet, 2013. 45(6): p. 676-9.

Le, D.T., et al., PD-1 Blockade in Tumors with Mismatch-Repair Deficiency.
N Engl J Med, 2015. 372(26): p. 2509-2520.

Snyder, A., et al., Genetic basis for clinical response to CTLA-4 blockade in
melanoma. N Engl J Med, 2014. 371(23): p. 2189-99.

64



84.

Waddell, N., et al., Whole genomes redefine the mutational landscape of
pancreatic cancer. Nature, 2015. 518(7540): p. 495-501.

65



