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Abstract 

Purpose 

This research aimed at developing a software tool for the purposes of quantifying and 

visualizing HIV-associated lipodystrophy from full body magnetic resonance imaging 

(MRI) datasets.  The primary goal for developing the software tool was to create and 

compare the results gathered from MRI to those from the current gold standard, dual-

energy X-ray absorptiometry (DEXA).  A software based solution for this purpose is 

proposed and a full evaluation with the intention of future clinical use is presented.  The 

additional aim of volume visualization in order to assess the external morphological 

effects of HIV-associated lipodystrophy is also presented.   

Methods 

The data gathered for this study involved a cohort of HIV positive cases (n = 8) which 

were recruited in order to be scanned by both Dual Energy X-ray Absorptiometry 

(DEXA) and MRI techniques to facilitate comparison between the two modalities. 

The accurate identification and segmentation of adipose tissue from MRI datasets was 

identified as one the key components of this piece of research.  A fully automatic 

segmentation algorithm was implemented for this purpose.  Quantification of segmented 

adipose tissue and surface based volume visualization were implemented as the primary 

features of the software tool. 

The fully automatic segmentation algorithm was investigated in regards to accuracy and 

performance.  In order to evaluate the clinical relevance of the results of segmentation, a 

comparison of the results to those of the current gold standard (DEXA) was performed.  

Clinical feedback regarding the usefulness of the software tool in a clinical setting is also 

presented. 

Visualization of adipose distribution and external morphology from full body data were 

also identified as an important component of this project.  A surface based volume 
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visualization technique was implemented in order to allow users to view a patient’s 

external morphology.  Application of a heat map to the surface in order to intuitively 

visualize the distribution of adipose tissue was also implemented.   

Results  

The findings of this study indicate that the results gathered by the software tool 

developed compared well to those of the current gold standard.  A strong correlation 

between the results of the two modalities was found with a correlation coefficient r of 

0.68 and significance level of p < 0.0001 with a very small 95% confidence interval.   A 

reasonable level of agreement between the modalities was also recorded, the mean 

difference in fat measurements between the two was 5.62%.  A panel of MR experts, 

Radiology (n = 2), MSc MRI Radiography Specialists (n = 3), PhD Medical Imaging 

MRI Specialists (n = 2) evaluated the segmentation technique used and it was found to be 

accurate and, due to the fact it was automatic, its results were 100% reproducible. 

Conclusions  

In this study the segmentation, quantification and visualization of adipose tissue from full 

body MRI dataset in place of the current gold standards was targeted and investigated.   

A proof of concept software tool was developed for this purpose and was evaluated for 

accuracy and clinical relevance.  The findings presented provide the evidence base that an 

appropriate tool was developed and could be used with MRI as an alternative to DEXA 

examination.  
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Glossary

mmol: Millimole. The mole is a unit of measurement used in chemistry to express amounts of 

a chemical substance, defined as an amount of a substance that contains as many elementary 

entities (e.g., atoms, molecules, ions, electrons). 

Isosurface: An isosurface is a surface mesh made of polygons that is drawn in the volume 

Pixel: A single unit of a 2D image, typically represented by colour/intensity (usually three 

values, red, green and blue) and transparency information. 

Polygon: A closed plane shape with three or more sides 

Sagittal Plane: This describes the plane that is perpendicular to the coronal plane and cuts the 

body straight down the middle. 

Transverse Plane: this plane is parallel to the xz axis. 

Voxel: A single unit of a volume, the 3D version of the 2D pixel 

Coronal Plane: Also called the frontal plane, is a vertical plane which divides the body into 

ventral and dorsal.   
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1 Introduction 

1.1 Motivation 

The introduction of highly active antiretroviral treatments (HAART) for HIV, while leading to a 

reduction of mortality levels among patients, has also been associated with an increase in long-

term side effects such as HIV-associated Lipodystrophy (HIVLD) [1].  HIVLD is characterised 

by peripheral lipoatrophy, central adiposity, dyslipidaemia, insulin resistance and an increased 

risk of premature cardiovascular disease.  Besides affecting the quality of life of patients, 

specifically patient morale due to unwanted changes in their external morphology, HIVLD can 

also affect adherence to the treatment of HIV.  This can in turn lead to increased rates of 

virological resistance and disease progression [2].   

At present, the imaging modality most commonly used to assess the distribution of adipose tissue 

within the body is Dual Energy X-ray Absorptiometry (DEXA).  There are two primary 

limitations associated with this modality.  Namely that DEXA produces 2D images from whole 

body scans from which an estimate of peripheral fat can be calculated and it cannot give specific 

information regarding central fat, which is associated with insulin resistance and diabetes.  The 

second limitation is the availability and variety of DEXA.  At present there is one research centre 

(dedicated to HIV patients) with a DEXA in Dublin, Ireland, compared with the availability of 

40 Magnetic Resonance Imaging (MRI) scanners in numerous medical establishments.  DEXA 

scanners are available across hospitals nationally but these are not used for the specific purpose 

of adipose tissue quantification.  Patients attending with other medical issues such as for 

osteoporosis diagnosis have the potential to reduce the standardisation of HIV patient imaging 

protocols across centres which can be further affected as different vendors use different methods 

to quantify fat [3].  

This research, which took place between September 2008 and January 2012, aims to enhance 

patient management through the development of a clinically validated software tool which can 

accurately segment, quantify and visualise HIVLD from MRI datasets. 
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1.2 Objectives 

The overall objective of this research was to develop a software tool for use in the assessment of 

patients presenting with/ or at risk of developing HIV-associated lipodystrophy. 

In order to achieve this, a number of objectives were identified: 

 Implementation of an optimal soft-tissue segmentation algorithm for magnetic resonance 

imaging datasets specific to this disease model. 

 Enhanced volume and iso-surface visualisation techniques relevant to the imaging of the 

side-effects of anti-retroviral treatment. 

 Development of clinically-relevant metrics to quantify lipodystrophy specific to HIV anti-

retroviral treatment. 

 Validation of segmentation and visualisation techniques used in the software tool. 

 Validation of the software tool in comparison to the current standard, DEXA. 

1.3 Novel Contributions 

The culmination of this research led to a number of novel contributions: 

 The software tool as a whole is a novel contribution, offering users a fast, automatic and 

accurate method of quantifying adipose tissue from full body MRI datasets. 

 The data gathered through this research has shown that MRI can be used in the same 

manner as DEXA for the purposes of monitoring HIV-associated lipodystrphy without the 

use of ionizing radiation. 

 The 3D visualization has presented the distribution of adipose tissue throughout the body 

in an intuitive and novel manner. 



1. Introduction 

3 

 

1.4 Summary of Chapters 

This thesis is divided into chapters and their contents are now summarised:  

Chapter 2 – Background covers the medical and technological principles relevant to this piece 

of research.  These include an overview of HIV-associated lipodystrophy, medical imaging 

modalities, and image processing/segmentation and data visualisation techniques.  

Chapter 3 – Application describes the graphical user interface (GUI) developed for this 

research.  Focusing on the technologies used to develop the GUI, its relevant features and 

functionality. 

Chapter 4 – Image Processing details the steps taken and algorithms used to process the MRI 

data (particularly intensity inhomogeneity correction and contrast enhancement).  Describes in 

detail the segmentation algorithms applied to said data and process of quantifying the 

segmentation results. 

Chapter 5 – Visualisation covers the technologies and algorithms used to visualise the data and 

the quantification results.  

Chapter 6 – Clinical Trials and Evaluation describes the evaluation techniques which were 

used during the validation stage of this research.  Additionally, the ethical considerations 

associated with the clinical trials are covered in this chapter. 

Chapter 7 – Results details the results acquired from the evaluations employed and discusses 

their impact with respect to the aims of this piece of research. 

Chapter 8 – Discussion of findings in Relation to Previous Studies details the findings of this 

study with regards to related studies. Clinical Limitations details the limitations associated with 

patient scanning and the resulting datasets discovered during the study period. Conclusions and 

Future Work finalises the findings of this piece of research and looks at its possible future 

applications and improvements. 
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1.5 Contributors and Collaborators 

This research was made possible with the aid of the following contributors and collaborators; 

Science Foundation Ireland, University College Dublin, The Mater Misericordiae University 

Hospital and the Catherine McAuley Centre. 
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2 Background 

2.1 HIV Associated Lipodystrophy 

The human immunodeficiency virus (HIV) has a major impact upon a persons’ health affecting 

millions of individuals worldwide.  In 2007 the Joint United Nations Programme on HIV/AIDS 

(UNAIDS) reported that an estimated 33 million people were living with HIV [4].  Since the 

introduction of highly active antiretroviral treatments (HAART) in 1996 there has been a 

substantial decrease in the morbidity and mortality rates of HIV-infected patients [5].  HAART, 

which is now the standard treatment for HIV infection, involves the use of a combination of 

antiretroviral drugs with the aim of suppressing the replication of a virus within host cells.  

Antiretroviral drugs, such as nucleoside reverse transcriptase inhibitors (NRTI) or Protease 

inhibitors (PIs), attempt to interrupt specific stages of the life-cycle of a retrovirus [6, 7].  In the 

majority of cases, antiretroviral drugs will inhibit the activity of certain enzymes which are 

needed by a retrovirus in order for it to successfully replicate [8].  While it is without question 

that HIV-infected patients have benefitted from the use of HAART, there are also a number of 

adverse effects associated with this form of treatment. 

In 1997 one such adverse effect was reported by the United States Food and Drug 

Administration (FDA).  The FDA stated that a small number of HIV-infected patients, who were 

currently prescribed Protease Inhibitors, were presenting with hyperglycemia and type 2 diabetes 

[9].  Over the next few years there were increased reports of HIV-infected patients presenting 

with maldistribution of adipose tissue.  The condition, known as lipodystrophy, is characterized 

by central adiposity, dorsocervical fat accumulation (also known as the ‘Buffalo Hump’), and 

peripheral fat wasting (see Figure 2-1).   
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Figure 2-1 Physical Characteristics of HIV-associated Lipodystrophy (a) facial lipoatrophy with loss of 

subcutaneous adipose tissue (SAT), (b) limb lipoatrophy showing loss of SAT from the limbs, (c) 

visceral fat accumulation evident in the abdomens and (d) fat accumulation in the dorsocervical 

region (upper back) also referred to as ‘buffalo hump’ [10]. 

Besides the overt physical manifestations caused by the syndrome, there have also been a 

number of underlying medical conditions associated with HIV-associated lipodystrophy and the 

use of HAART.  Dyslipidaemia, the presence of an abnormal amount of lipids found in the 

blood, at certain levels has been strongly correlated with an increased risk of cardiovascular 
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disease.  It has been found that 32-54% of HIV patients receiving HAART have total cholesterol 

levels being greater than 6.2 mmol per litre (recommended levels should be below 3.3618 mmol) 

and that 16-22% present with high density lipoprotein cholesterol levels less than 0.9 mmol per 

litre (recommended levels should be greater then 1.0344 mmol). The exact cause of these unsafe 

lipid levels is not certain but there is evidence which suggests a direct link between 

dyslipidaemia and the use of protease inhibitors, HIV infection and lipodystrophy [11].   

The development of insulin resistance has also identified in patients using HAART and 

presenting with HIV-associated lipodystrophy.  It is believed that, along with the use of protease 

inhibitors, the increase of visceral adipose tissue (VAT) in the abdomen and dorsocervical region 

and the decrease in subcutaneous adipose tissue (SAT) caused by peripheral fat wasting both 

correlate with insulin resistance.  Insulin resistance causes an increase in blood sugar levels and 

can eventually lead to patients developing type 2 diabetes [10] [12].  

The increased risk of premature cardiovascular disease is a primary concern with individuals 

presenting with HIV-associated lipodystrophy.  Both insulin resistance and dyslipidaemia greatly 

increase the risk of a patient developing cardiovascular disease [12, 13].  While HAART has 

been strongly correlated with the onset of HIV-associated lipodystrophy and the underlying 

medical conditions associated with it, there are also a number of other factors which play an 

important role.  A patient’s age, sex and the duration of HIV infection have also been linked to 

the incidence of HIV-associated lipodystrophy [12].   

Studies have found that more than 50% of patients receiving HAART will develop lipodystrophy 

[14].   The numerous medial conditions associated with lipodystrophy are becoming problematic 

with respect to successful patient management for many HIV-infected patients using 

antiretroviral drug treatments.  The development of tools to accurately visualize and quantify the 

body’s adipose tissue would aid clinicians in accurate monitoring of the condition so patient 

management decisions can be based upon quantifiable fat level depositions.   

2.1.1  Previous Work 

To date, only one study has been found which strongly relates to this piece of research.  The 

paper, “Comparison of DXA and MRI-measured adipose tissue depots in HIV-infected and 
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control subjects”, was published in The American Journal of Clinical Nutrition in October of 

2008 and made available online through PubMed Central [15] on August 16
th

 2011.  The study 

compared DEXA and MRI measurements of leg, arm, trunk and total of fat in HIV+ and control 

subjects.  A cohort of 877 HIV+ cases and 260 control cases was gathered from 16 HIV or 

infectious disease clinics in the United States.  The researchers used a third party software tool 

(TomoVision’s sliceOmatic) to segment the MRI datasets.  Specifics as to how the segmentation 

was performed or the accuracy of the segmentation were not presented in the study.  The 

findings of the study indicated a strong correlation between DEXA and MRI measurements of fat 

but that there were also important biases with the two modalities.  The primary biases were that 

DEXA generally estimates higher amounts of fat in the limbs then MRI and that as patient 

weight increases the difference in measurements between DEXA and MRI also increase.  The 

main conclusion of the study is that, with the appropriate guidelines, DEXA is an adequate 

modality for measuring fat and that DEXA and MRI measurements of fat can vary depending 

upon certain circumstances [16].  A number of notable differences in the methodologies and 

aims between the study described and the current research study were identified.  Average 

patient weight, slice axis of MRI datasets, segmentation techniques and the use, or lack thereof, 

of volume visualization were all significantly different in the previous research.  Past research 

was a national study aimed at comparing the use of DEXA and MRI in quantification of fat 

whilst this study was principally aimed at developing a proof of concept software tool, fully 

automated in design for quantification and visualization of adipose tissue from MRI.  It is 

important to note therefore that the clinical validation of the software involved a small patient 

cohort in comparison to the research by Scherzer et al.  More detail as to some of the differences 

between the two studies are discussed in Chapter 8. 

2.2 Imaging Modalities 

To date the two most common imaging modalities used for the diagnosis and monitoring of HIV-

associated lipodystrophy are Dual energy X-ray absorptiometry (DEXA) and Computed 

tomography (CT).   
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2.2.1  Dual Energy X-ray Absorptiometry 

Dual energy X-ray absorptiometry (DEXA) is an imaging modality which was initially used for 

the detection of osteoporosis by measuring bone density (at specific sites within the body, e.g. 

lumbar spine or hip).  As the technology associated with the modality has advanced it has also 

become widely used to perform whole body scans and can be used to obtain estimates of three 

separate body components.  These components consist of bone mineral density (BMD), fat mass 

(adipose tissue) and fat-free mass (lean tissue).  The primary components of a DEXA scanner are 

the detector, the X-ray tube and the K-edge filter.  The tube and filter generate X-rays at two 

separate energy peaks.  Different body components will attenuate the individual X-rays to 

different degrees.  This allows the software system in a DEXA machine to differentiate between 

bone mineral and soft tissue and to then further differentiate the soft tissue to fat mass and fat-

free mass.  This is achieved due to the fact that the initial energy of each of the X-rays is known 

and the resulting energy levels after attenuation is collected by the detector.  Previous studies 

have determined the level of attenuation of various tissues within the body and by using this 

information equations can be applied to estimate the amount of fat and fat-free mass for each 

pixel associated with the scan [3]. 

One of the interesting features of DEXA whole body scans is that the software provides the user 

with a very detailed description of the distribution of the three body components throughout the 

body.  Separation of different regions (such as the arms, legs, trunk, pelvis, etc…) is achieved by 

a number of ‘cut lines’ which are drawn over the full body scan (see Figure 2-2).  The position of 

each cut line can be changed by the user before calculating the body composition but this is not 

generally needed.  Due to guidelines on patient position when scanning and certain features 

developed for the machines, the cut lines will usually be in the correct locations.  A more 

detailed description of the body composition results provided by DEXA machines can be found 

in section 4.7. 
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Figure 2-2 An Example of a DEXA scan 

Two of the primary concerns related to the use of DEXA are its reproducibility and radiation 

dose [3] [17] [18].  Two specific issues arise with reproducibility in regards to DEXA.  Firstly, it 

has been found that the body composition results can differ between DEXA manufacturers [3].  

The difference in results has generally been attributed to different edge detection methods 

(detection of soft tissue near bone), differences in dual energy production or differences in the 

calibration for bone (i.e. whether the device includes or excludes intraosseous fat as part of 

bone).  The reproducibility of an individual machine has been found to be quite accurate over the 

short-term.  For whole body composition scans a coefficient of variation for determining full 

body mass was found to be less than 0.2% and that of whole body fat to be between 2-3%.  

Testing for long term reproducibility with patients is not feasible due to possible changes in body 

composition over time [19].  Radiation dose is the second concern related to the use of DEXA 

and can vary depending on the make or model of the machine used.  A number of studies have 

taken place investigating the dose levels associated with DEXA and have found that the effective 
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dose from a scan can range between 1 and 20 µSv.  With specific regards to this piece of 

research, which looks at the use of whole body scans, the average dose received by an adult 

(based on a phantom with a height of 174.0 cm and weight of 71.1 kg) the effective dose can 

range between 4.2 and 13.3 µSv.  These values may be considered low when compared to natural 

background radiation (7 µSv) or a chest X-ray (20 µSv) but nonetheless should still be taken into 

consideration especially with regards to research where one may wish to perform imaging of 

individual patients over an extended period of time [17] [18].  As with any imaging modality, if 

radiation dose can be avoided it should be.  This is one of the primary reasons for investigating 

whether Magnetic Resonance Imaging may be a valid alternative to DEXA with regards to the 

diagnosis and monitoring of HIV-associated Lipodystrophy. 

2.2.2 Computed Tomography 

The introduction of  Computed Tomography (CT) by Godfrey Hounsfield (in 1968) was the first 

time that objects could be represented in a volumetric (3D) form and, in the field of medical 

imaging, is considered a major milestone.  CT uses an emitter/detector system which rotates 

around an object acquiring a series of individual X-ray images (see [19]) which are used to create 

one volume dataset.  There are a number of advantages when using CT compared to 

conventional X-ray or DEXA.  One of the primary advantages, especially for diagnostic 

purposes, of CT is the ability to display the depth or location of anatomical structures within the 

object which has been scanned.  CT is also up to two magnitudes more sensitive then X-ray 

creating images with much greater contrast between tissue types.  This is especially important 

when trying to differentiate VAT and SAT from other tissues and organs within an image [20].  

As stated previously with regards to the radiation dose associated with DEXA, if an alternative 

imaging modality which does not expose a patient to radiation is available and can provide the 

necessary information required then it should be the modality of choice.  This is especially 

important if a patient will be required to undergo scanning over an extended period of time (i.e. 

monitoring the progression of a disease or for the purposes of research). 
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2.2.3  Magnetic Resonance Imaging 

The imaging modality used for this research is magnetic resonance imaging (MRI).  MRI is a 

clinical imaging tool which can trace its routes back to the discovery of the Nuclear Magnetic 

Resonance (NMR) phenomenon in the 1920’s and 1930’s.  The NMR phenomenon showed that 

when certain atomic nuclei are placed within a magnetic field they will interact with said 

magnetic field.  The affected nuclei are then exposed to radio waves of a particular frequency 

(the Larmor frequency).  After this stimulation the nuclei will then release absorbed energy in the 

form of a radio signal and return to their original state.  In the 1940’s instruments for the 

measurement of this phenomenon where developed by Felix Bloch and Edward Purcell.  

Methods for creating tomographic images from the NMR phenomena were developed in the 

1970’s and by the 1980’s MRI was established as core clinical tool for the diagnosis and 

monitoring of a number of medical conditions [21] [22]. 

MRI datasets were selected as the imaging modality most suitable for a quantification study 

investigating lipodystrophy rather than more conventional methods such as Dual energy X-ray 

absorptiometry (DEXA) or Computed tomography (CT).  Firstly, the lack of ionizing radiation 

exposure with MRI is a particular advantage, especially if one wishes to acquire multiple 

datasets over an extended period of time.  Secondly, MRI has shown to produce datasets with 

superior contrast between tissues in comparison with other imaging modalities.  This increased 

contrast is especially noticeable with VAT and SAT [23, 24]. 
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Figure 2-3 2D T1 weighted MRI axes examples: (a) Full body coronal scan. (b) Transverse scan of 

the upper leg. (c) Sagittal scan of the upper back 

2.2.3.1 Noise and Intensity Inhomogeneity 

In order to accurately segment and quantify magnetic resonance imaging (MRI) data one must 

first deal with two inherent artefacts related to the acquisition process. To a human observer, 

noise is the most noticeable of these artefacts in MRI. Noise is generally modelled as having 

either a Rician distribution if there is a low signal-to-noise ratio (SNR) or a Gaussian distribution 

[25]. Rician noise is generally removed using wavelet-domain filtering while additive Gaussian 

noise can, in most cases, be easily detected and removed from the data using topological 

methods.  In some cases, noise can also be removed by simple thresholding.  This is due to the 
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fact that noise can have very low intensity values in comparison with objects of interest in an 

image.  The generally accepted model for an acquired MRI image is: 

 ( )   ( )   ( )   ( ) 

Where v(x) is the acquired image and u(x) is the optimal image free of intensity inhomogeneity 

and noise.  The intensity inhomogeneity b(x) has a multiplicative effect over the image and the 

noise n(x) has an additive effect [26]. 

Intensity inhomogeneity (also known as the bias field or intensity nonuniformity) is a less 

noticeable artefact associated with MRI.  Intensity inhomogeneity can be caused by a number of 

factors such as patient position within the MRI scanner, certain tissues which may be more or 

less susceptible to the magnetic frequency of the scanner or an inhomogeneity of the sensitivity 

of the radio frequency receiving and emitting coils. This artefact is generally perceived to be a 

smooth variation of signal intensities across an image. This can lead to homogenous tissues 

having widely varying intensities based on their location within the image (see Figure 2-4). 

While intensity inhomogeneity does not generally hamper visual diagnosis it does have a 

significant impact on automated image analysis methods, such as segmentation and visualization 

[26]. 

 

Figure 2-4 Image inhomogeneity 

The effect of image inhomogeneity; (a) the original greyscale image, (b) a 3D heightmap of the 

data and (c) the same data with a RGB transfer function applied to it. The variation of intensities 

of adipose tissue (the highest intensity tissue in the greyscale image) can clearly be seen in all 

three images. 
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Numerous methods for the correction of intensity inhomogeneity and noise reduction in MRI 

have been proposed in the past [27]. Although accurate, many of these methods suffer from a 

high computational cost and a certain amount of human interaction. In subsequent sections the 

methods used in this work for fast automatic intensity inhomogeneity correction and noise 

reduction will be discussed. 

2.2.3.2 Slice Gap and Slice Thickness 

Two features of MRI which can effect both tissue segmentation and volume reconstruction are 

slice gap and slice thickness.  Slice gap, measured in millimetres, is the distance between each 

slice within a volume.  Slice thickness, also measured in millimetres, is the amount of tissue 

scanned in each individual slice.  Both slice gap and thickness can negatively affect the accuracy 

of 3D segmentation (especially region growing algorithms).  This is primarily due to the fact that 

the position of part of an object in one slice may not align with the rest of the object in adjacent 

slices.  Slice thickness can also cause issues with regards to segmentation (especially intensity 

based segmentation methods in 2D).  The chance of partial volume effect, a single voxel having 

a mixture of a number of different tissue intensities, increases as the slice thickness increases 

[28].  This can greatly decrease the accuracy of any segmentation technique which relies on 

tissue intensity values as one of its parameters.  Slice gap and thickness must also be taken into 

account when rendering a number of slices from a MRI dataset in 3D.  In order to represent the 

data correctly one must scale the data by the slice gap and thickness [29]. 

2.2.3.3 Scan Time 

An important issue to take into account when acquiring MRI datasets is the time taken to 

complete scans versus the quality of the data.  This is especially relevant in the case of full body 

datasets.  The size of the slice gap and thickness will have an impact on the overall resolution 

and quality of a dataset.  A balance with respect to diagnostic efficacy must be reached in the 

formation of imaging protocols for all imaging modalities.  This was accounted for in the 

discussion of protocols in this study with MRI experts when preparing for ethical approval 

submission.  Which axis is chosen for a MRI scan has a profound effect on the time needed to 

complete the scan.  Issues such as claustrophobia will also often arise with patients undergoing 
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MRI scanning and therefore the general wellbeing of patients must be taken into consideration 

when deciding scanning protocols whilst ensuring the protocols are fit the for purpose at hand.   

2.2.3.4 Magnetic Resonance Imaging and Adipose Quantification 

Magnetic resonance imaging has been established as an effective modality for the quantification 

of adipose tissue.  A number of studies have been performed in order to assess the accuracy and 

precision of MRI as a tool for quantifying total and regional adipose tissue.  In order to compare 

MRI measurements against a ‘Gold Standard’, a common method of such comparison is against 

dissection of human cadavers.  The measurements gathered by MRI of the cadavers are 

compared with direct weighing if adipose tissue from the dissected cadavers.  Results have 

indicated a strong correlation between the two measurements with a mean difference between the 

two of 0.076kg (with a 95% confidence interval between 0.005kg and 0.247kg).  These finding 

have justified the use of MRI for the purposes of adipose quantification and in recent years, there 

has been an increase in the use of MRI for such purposes [30-32]. 

2.3 Image Segmentation 

Segmentation is the process of separating image data into structures which have a relevance to 

the task at hand.  There are a number of different methods used to segment data and it is 

generally the task at hand and the type of data which determines which method to employ.  

Manual and semiautomatic segmentation methods can be challenging and time consuming with 

datasets of a significant size.  It is for this reason that a number of automatic segmentation 

methods are commonly used in order to delineate structures of interest.  There are four primary 

requirements to consider when choosing a segmentation technique: 

 Accuracy. In order to be clinically useful, the results of data segmentation must be 

accurate.  Validation studies can be used to gauge the level of accuracy and these will be 

discussed in further detail in chapter 6. 

 Robustness.  Robustness is an important aspect to consider when applying a 

segmentation technique.  Any technique used should be able to work for a number of 

different cases.  These cases could be patient position, image resolution, patient size, etc. 
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 Reproducibility.  Closely related to accuracy, the results of an accurate segmentation on 

a specific dataset must be reproducible if applied to said dataset again.  This is one of the 

reasons why semi-automatic and automatic segmentation techniques are generally 

favoured over manual segmentation. 

 Speed.  The time taken to successfully segment a dataset is important to take into 

account.  While the results of a specific technique may be superior to others in some 

cases the length of time taken to complete the technique may not be feasible.  The ever-

increasing computational power available to users may alleviate this concern in some 

cases but this is often offset by the increase in resolution and size of datasets as imaging 

technology also evolves. 

While these requirements must all be considered when choosing which segmentation techniques 

to apply to a dataset, the situational context must also be taken into account.  For example, 

reproducibility may be the dominant requirement when monitoring the progression of a disease 

over time or, in situations where time is an issue such as in an operating room, speed might be 

considered more important [20]. 

2.3.1 Segmentation Techniques 

The most common image segmentation techniques can generally be separated into five distinct 

categories: manual segmentation, thresholding methods, classifiers, region growing methods and 

clustering methods. In this section we provide a brief overview of these categories. More 

specialized methods such as atlas-guided approaches (which require previously known 

information about the data in question, such as the general location of certain anatomical 

structures) are not covered in this section due to their relevance. 

Manual segmentation generally involves a user drawing directly on a slice of radiological data in 

order to outline a structure of interest.  While this technique is robust it does suffer from a 

number of limitations.  As stated previously, as a dataset increases in size, the ability to manually 

delineate structures of interest becomes less and less feasible due to the time required.  

Reproducibility is also a concern with manual segmentation.  Although these limitations are 

associated with this segmentation technique, it is still widely used in many areas.  This can be 
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due to a number of reasons such as datasets where contrast is simply too low or where the 

amount of noise is too great to apply other methods [20, 33]. 

Thresholding involves the selection of an intensity value (the threshold) from an image in order 

to create a binary partitioning of the intensities within said image.  Once the intensities have been 

separated into two separate classes (consisting of those above the threshold and all others) then 

the image has been segmented.  Although thresholding is a simple technique to implement and 

often used as an initial step in many image processing frameworks, it does suffer from a number 

of limitations.  Its sensitivity to noise and intensity inhomogeneity (which, as mentioned in 

section 2.2.3.1, are inherent artefacts in MRI) making it unsuitable as a standalone segmentation 

technique [34-36]. 

Classifiers are pattern recognition techniques which aim to partition image data into specific 

classes.  These techniques are considered to be supervised segmentation methods due to the fact 

that they require manually derived training data before they can be used to segment new data.  

One of the simplest examples of a classifier is the nearest neighbour classifier.  This method 

partitions each pixel from a dataset into the same training data class with the closest intensity.  

One of the primary limitations of classifiers, especially when dealing with medical data, is the 

manual interaction needed to create the training data.  Creating individual training sets for a large 

number of datasets would, in most cases, be far too time consuming to justify their use.  While 

using a single training set in such a situation would likely lead to inaccurate segmentation due to 

the physiological and anatomical differences between various subjects [35]. 

Region growing techniques aim to segment an image region which is connected.  The criteria 

which defines whether a region is connected is usually based on edges within the image and/or 

pixel intensities within the region.  Region growing requires a user to pick a seed point (a pixel 

within the region of interest) and, in its simplest form, the technique then segments all 

surrounding pixels which fit the predefined criteria.  For example, one possible criteria may be to 

extract all pixels connected to the seed until an edge is reached (a point where the intensities of 

the pixels being checked are substantially higher or lower then those within the region).  

Generally, region growing techniques are not used alone but as a stage in a set of image 

processing operations.  This is primarily due to the limitations associated with this segmentation 
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technique.  For example, the partial volume effect (an artefact associates with MRI) can lead to 

separate regions being connected and therefore incorrectly segmented [35, 37].   

Clustering algorithms are known to be unsupervised segmentation methods due to the fact that 

they essentially function as classifiers without the need for previously defined training data.  To 

compensate for this, clustering algorithms iterate between segmenting the image and determining 

the characteristic properties of each class within the data.  These algorithms essentially train 

themselves as they progress.  Three of the most common clustering algorithms used for image 

segmentation are the K-means algorithm, the fuzzy c-means algorithm and the expectation-

maximization (EM) algorithm.  Although they do not require training data, clustering algorithms 

do require some initial parameters in order to perform effectively.  The number of classes and the 

initial cluster centroids are the most common parameters needed to initialize a clustering 

algorithm.  As with most segmentation techniques, clustering algorithms do suffer limitations 

with regards to sensitivity to noise and intensity inhomogeneity. [35, 38, 39] 

In-depth detail regarding the segmentation technique used in this piece of research can be found 

in section 4.6. 

2.4 Quantification 

Once a dataset has been successfully segmented, quantification of the tissue of interest is 

generally not a complex task.  The general method of quantification used with MRI data is to 

establish the total number of pixels within a slice of data which consist of all tissues and 

structures present in the scan.  This value is then divided through by the total number of pixels 

which represent the segmentation results and the result is multiplied by 100 to give a percentage 

of the segmented tissue within the current slice (see Figure 2-5).  Once a percentage value is 

known for each slice of data within a volume, it can then be used to give more descriptive 

information regarding the distribution of the tissue of interest, such as the regional percentages of 

distribution (e.g. arms, legs, trunk, etc…). 
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Figure 2-5 Adipose tissue quantification 

The ability to discern the regional distribution of adipose tissue is of particular importance with 

regards to this piece of research due to the fact that this is the way in which DEXA provides 

results for body composition (as described in section 2.2.1).  Greater detail as to how the adipose 

tissue quantification is performed and how the results are used can be found in section 4.7. 

2.5 Visualization 

For the purposes of this research, visualization focuses primarily on the representation of 

volumetric data.  Volumetric data (in this case medical volumetric data) is described as a stack of 

aligned images/slices whose position is adjacent in the z axis and which are of the same 

resolution.  The primary goals of volume visualization are to represent data within an entire 

volume in a manner that is both accurate and displays said data in as simple and intuitive way.  
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There are a number of different scientific data visualization techniques but with regards to 

medical data the two primary methods used are indirect volume visualization and direct volume 

visualization [20]. 

2.5.1  Indirect Volume Visualization 

The aim of indirect volume visualization is to focus on and extract a subset of information from 

within a large dataset and represent it visually.  One of the most commonly used indirect volume 

visualization techniques is surface-based volume rendering.  Due to the fact that structures of 

interest within a volumetric dataset are typically differentiated from surrounding structures by a 

boundary (generally a significant change in pixel intensities from one structure to the next) one 

can then visually represent these structures by rendering there boundaries in 3D.  The resulting 

rendered object is a 3d surface known as an isosurface or 3d contour.  In order to define which 

structures are to be rendered, an isovalue must be chosen.  An isovalue is treated the same as a 

threshold value, in that all values within a volumetric dataset below the isovalue are outside the 

isosurface and all values larger are inside [20]. 

One of the most commonly used algorithms for representing an isosurface is the marching cubes 

algorithm (first published in 1987 at SIGGRAPH [40]).  In order to create the isosurface the 

algorithm ‘marches’ through a volumetric dataset and at each step takes the surrounding eight 

pixel intensities to create a voxel (a cube where each vertex represents one of the values of the 

eight pixel intensities).  These eight intensities are then used to calculate the position and number 

of polygons to be rendered within each cube.  There are 256 possible polygonal configurations 

which can be represented by 15 unique configurations (see Figure 2-6, all 15, when reflected and 

rotated make up the total 256 configurations). 
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Figure 2-6 The 15 Unique Marching Cube Cases.  Image Courtesy of G. Johansson and H. Carr[41] 

Once all the voxels have been processed the isosurface can be rendered as polygonal mesh (see 

Figure 2-7). 

 

Figure 2-7 Surface Rendering 

Example of surface rendering using the marching cubes algorithm.  8 bit CT volume of a lobster 

with dimensions of 301 x 324 x 56.  An isovalue of 35 was used. 
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The presence of artefacts such as holes, the diamond artefact (where individual triangles become 

clearly visible) or staircasing artefact are well known issues with the algorithm and there a 

number of solutions available for dealing with them (such as the introduction of complimentary 

cases for the original 15).  One of the artefacts of particular interest regarding the marching 

cubes algorithm and this piece of research is the staircasing artefact.  This artefact commonly 

appears when rendering an isosurface of segmented data.  Due to the binary nature of segmented 

data (where the segmented area generally consists of high values and other areas consist of zero 

values) the normals (see chapter 5 for more detail regarding normal generation and 3D object 

shading) for each polygon which makes up the isosurface can become distorted leading to a 

surface which is not smooth [20]. 

More details regarding the use of the marching cubes algorithm with regards to this piece of 

research can be found in chapter 5. 

2.5.2  Direct Volume Visualization 

Unlike indirect volume visualization, direct volume visualization aims to represent a volumetric 

dataset directly without generating a meta, or intermediate, representation (such as a polygonal 

based isosurface) of said dataset.  This means that direct volume visualization, commonly known 

as volume rendering, can convey much more information then surface based rendering methods, 

displaying not only the surface but also underlying structures (see Figure 2-8).  While this is a 

distinct advantage over other rendering methods, there is an increased cost in algorithmic 

complexity and therefore the decrease in performance (the time taken to render an object) 

associated with volume rendering [42].  There are a number of ways to optimise and accelerate 

volume rendering algorithms such as using graphics processor unit (GPU) based rendering but 

this technique of visualizing volumetric data is heavily dependent on the quality of the hardware 

it can access (as the quality of a GPU increases so does the performance of the rendering). 
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Figure 2-8 Example of volume rendering using ray casting.  8 bit CT volume of a lobster with 

dimensions of 301 x 324 x 56. 

One of the most commonly used direct volume visualization algorithms is volume ray casting.  

The algorithm computes a 2D image from a 3D volume.  The following steps describe the 

volume ray casting algorithm [43]: 

For every pixel of the 2D image area, a ray is cast (shot) from the camera through the volume 

(see 1 of Figure 2-9).  The equation for the ray is defined by the start point (the camera or 

eye) and the direction. 

1. The volume of interest is enclosed within a bounding primitive (usually a cuboid but can 

vary depending on the dimension of the volume).  A check to see whether the ray 

intersects with said primitive is performed.  If the ray does intersect then the algorithm 

travels along the ray and samples within the volume are collected at either regular or 

adaptive intervals (see 2 of Figure 2-9). 



2. Background 

25 

 

2. At each sample point along the ray, the surrounding data is interpolated in order to 

compute the intensity of the current voxel along the rays current position.  A transfer 

function is then used to compute the RGBA value (red, green, blue and alpha values) for 

said voxel, e.g. the colour and opacity. 

3. The algorithm composites the samples along the ray in order to calculate the final RGB 

value to be placed in the corresponding 2D image pixel (see 4 of Figure 2-9). 

4. The process is then repeated for every pixel in the viewing pane in order to complete the 

image. 

 

Figure 2-9 Illustration of Volume Ray Casting [44] 

While volume ray casting does provide much more information regarding the object being 

rendered, when compared to surface based rendering methods, it is not necessarily the 

volumetric visualization technique of choice.  Two primary considerations must be taken into 

account.  Firstly, the task at hand must be considered and one should determine whether the use 

of a simpler technique will be sufficient for conveying the necessary information.  Secondly, the 

performance of the algorithm should also be taken into account.  What hardware will be 

available to the users of a software tool should be taken into consideration, especially with such a 

computationally expensive visualization technique. 

More details regarding volume rendering and its relation to this piece of research can be found in 

chapter 5. 
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2.6 Imaging Protocol 

To fulfil ethical application requirements, any diagnostic imaging undertaken during medical 

research requires clear and justified imaging protocols. The formulation of protocols allows 

clinical relevance to be discussed and confirmed amongst experts, ensures the safety of the 

patient in that the protocols are clinical appropriate and reproducible to facilitate full research 

analysis of the collected data. In the derivation of the protocols it can be checked that they are 

suitable for the full testing of the research methodology. 

In order to ensure that all pertinent ethical considerations have been considered, that patient 

safety is ensured and that data collection is reproducible, an imaging protocol is necessary.  This 

is especially important with regards to the development of a software tool which will use said 

data.  It is also important that should an individual wish to test the methodology of a piece of 

research or improve upon it, that they too would be able to recreate the data used.  The following 

sections give an overview of some of the important specifications defined for both the DEXA 

and MRI imaging protocols. 

2.6.1  DEXA Protocol 

Prior to receiving a MRI scan, patients underwent a DEXA examination at a clinical site 

dedicated to HIV treatment and research.  The DEXA machine used was a GE Lunar Prodigy 

Advance.  All patients were images in a supine position on the scanning bed.  The maximum 

dimensions and weights for patients are; 263 x 111 x 128 cm (L * W * H) and 275 kg.  

Placement of the patient on the scanning bed was described in the operating manual and in the 

case where a patient is too large to fit in the scanning area then the right lateral side of the body 

is scanned and the results are reused to estimate the left lateral side.  The current scanning 

protocol used by the dedicated unit was employed for this study and ethical approval for the 

DEXA imaging was not specifically required as this was normal imaging protocol for those 

attending patient review.  Details of the protocol were included in the Ethical Approval 

application for reference (see Appendix A). 

Calculation of results for body mass composition was performed by the GE software suite 

provided with the scanner. 
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2.6.2  MRI Protocol 

As stated previously, the modality being investigated for this study is MRI.  All imaging of 

patients took place in a university teaching hospital associated with the dedicated HIV treatment 

and research centre.  All patients were scanned using a Siemens Symphony Tim System [45].  

T1-weighted full body coronal datasets were produced for each patient.  T1-weighted scans were 

chosen due to the increased contrast they provide between adipose tissue and other tissues 

present and a coronal scanning axis was chosen due to the fact that it can produce full body 

datasets faster then the alternative scanning axis (transverse).  The following lists some of the 

important specifications related to the scanning protocol; 

 Scanning sequence: Spin echo 

 Magnetic field strength: 1.5 

 Acquisition type: 2D 

 Photometric interpretation: Monochrome 

 Slice thickness: 7.69 mm 

 Space between slices: 7.69 mm 

 Samples per pixel: 1 

 Bits allocated: 16 

 Bits used: 12 

There are two important details regarding the datasets produced for this study which directly 

affect some of the image processing steps performed on said datasets.  The first being, each 

image produced is in fact three images joined at a specific location (see (a) and (b) in Figure 

2-10).  The second being that the dimensions for each image differ based on the height of the 

patient being scanned.  How these details affect processing these images is discussed in greater 

depth in chapter 4.  
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Figure 2-10 Full Body Scan Image Joins: (a) and (b) show the location where the three images are 

joined together to create a full body slice. 
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2.7 Chapter Summary 

This chapter covered the pertinent background materials for this piece of research; HIV-

associated lipodystrophy, relevant medical imaging modalities, image segmentation techniques, 

quantification of tissues, 3D visualization techniques and the imaging protocol used for this 

research.  The following chapter describes the features of the graphical user interface developed 

for the software tool. 
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3 Graphical User Interface 

The graphical user interface (GUI), from a users perspective, is one of the most important 

aspects of a software tool.  A GUI should provide a user with the necessary functionality they 

require for the task at hand in an intuitive manner.  The following sections describe the key 

features of the GUI developed for this piece of research. 

3.1 QT 

QT is a cross-platform application framework which is primarily used for the development of 

software applications with a GUI.  The QT framework offers a wide range of functionality 

including integrated tools for GUI development and an intuitive application programming 

interface (API) with a rich C++ class library.  Applications developed using QT can be deployed 

across all major platforms, desktops (OS X, Windows and Linux), mobile and also embedded 

devices without the need to re-write source code.  QT is currently owned and maintained by the 

Nokia Corporation and has become an increasingly popular choice as a development tool for 

cross-platform GUI applications [46]. 

3.2 Graphical User Interface Overview 

The first goal of the software tool is to allow the user to load and view a DICOM series.  This 

can be done by either clicking ‘Open DICOM series’ in the File menu or using the open file icon 

in the toolbar (see (a) in Figure 3-1).  Using a file dialog, the user can then select a folder 

containing a DICOM series.  Once loaded, the GUI then displays each slice from a DICOM 

series in a 2D viewing pane (see (b) in Figure 3-1).  The DICOM viewing pane allows the user to 

scroll through a DICOM series, zoom in, zoom out, and displays pixel intensities when the 

mouse hovers over an area of an individual image.   The user has the option the display the 

original unprocessed images from a series, the intensity inhomogeneity and contrast corrected 

images and the images showing the results of the segmentation process (these will be discussed 

in greater detail in sections 4.5 and 4.6 respectively).  The GUI also has a pane for displaying the 

3D visualization (see (c) in Figure 3-1).  The 3D pane allows users to manipulate the object 
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being displayed in a number of ways; to zoom in and out, rotate and drag the object and reset the 

object to its original position and size.  A more in-depth description of the 3D viewing pane, 

what it can display and its features, is covered in chapter 5. 

 

Figure 3-1 GUI overview image 1; (a) widget to allow user to select and load a DICOM series , (b) 

2D DICOM series viewing pane and (c) the 3D viewing  pane. 

The GUI also allows users to view the header information from the current DICOM series being 

displayed.  This can be accessed through the View menu or the header icon in the toolbar.  The 

header information is displayed in a dialog in a format which is common to many medical 

imaging software tools; three columns displaying the tag key, tag label and tag value (see Figure 

3-2).  Access to information within the header data can be useful for clinicians.  A number of 

values extracted from the header data, such as patient weight or the slice gap defined by the 
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imaging protocol, are used by this software tool and are discussed in greater detail in a number of 

the following chapters. 

 

Figure 3-2 GUI overview image 2; (a) widget to allow user to the display header information 

regarding the currently loaded DICOM series and (b) the dialog displaying said information. 

The user can also view the individual histograms of each DICOM within a series.  As with the 

header information, the histograms are displayed in a dialog separate from the main GUI.  The 

user can display the histograms of the original unprocessed images or those of the corrected 

images.  They can also overlay the two types of histogram to be able to more clearly see the 

difference in the distribution of intensity values between the two types of images (see Figure 

3-3). 
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Figure 3-3 GUI overview image 3; (a) a widget which allows the user to display statistical 

information regarding each DICOM within a series and (b) the dialog displaying said 

information. 

One of the final features of the GUI is a dialog which allows users to view the distribution of 

adipose tissue throughout various parts of a patient’s body (see Figure 3-4).  The dialog displays 

a both the percentage of and an approximate count, in grams, of adipose tissue in each region of 

the body (such as the left leg).  It also displays the fat to mass ratios for specific area of the body.  

How these values are calculated and their relevance is covered in more detail in section 4.7. 
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Figure 3-4 GUI overview image 4; (a) the widget which allows users to display information 

regarding the distribution of adipose tissue throughout a DICOM series and (b) the dialog 

displaying said information. 

As stated, the GUI for this software tool has been implemented with the aim of presenting users 

with the data need for the task at hand in a manner that is both simple to use and intuitive.  The 

techniques used to create the data presented to the user and the interpretation of said data is 

covered in detail in the following chapters. 

3.3 Chapter Summary 

This chapter describes the features of the graphical user interface developed for the software 

tool.  The following chapter presents the image processing steps and algorithms implemented in 
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order to successfully load, segment and quantify HIV-associated lipodystrophy from full body 

MRI datasets. 
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4 Image Processing 

A number of processing steps are taken before visualization or interpretation of the collected data 

can be performed.  These include the initial processing stages such as noise reduction, contrast 

enhancement and intensity inhomogeneity correction.  The next stages involve the application of 

a segmentation algorithm to said data and the gathering of results from the segmentation.  The 

following sections describe the steps, tools and algorithms used to complete these stages. 

4.1 DICOM Libraries 

The medical data used in this piece of research are Digital Imaging and Communications in 

Medicine (DICOM) datasets. DICOM is the industry standard in medical imaging for 

transmitting image information.  The standard was developed by the DICOM Standards 

Committee and is overseen by the National Electrical Manufacturers Association (NEMA) [47].  

The standard defines a set of protocols to store, produce, display, process, retrieve, send, print or 

query medical images.  DICOMs, while also providing access to pixel information regarding an 

image, store a number of important details relating to the image; scan time, patients details, the 

number of images in a dataset, details regarding the machine used, etc… 

4.1.1 Insight Toolkit 

The Insight Toolkit (ITK) is a segmentation and registration toolkit developed by the United 

States National Library of Medicine in 1999.  ITK is an open-source and cross platform toolkit 

and was implemented in and supports C++.  In the software tool developed for this research, ITK 

was primarily used to load DICOM files and extract relevant information from them.  The 

reasoning for this is that a number of the more modern or complex segmentation techniques are 

either not yet available in ITK or are currently under patent.  For example, advanced clustering 

methods such as the fuzzy c-means algorithms are not implemented in ITK nor is there an 

automatic intensity inhomogeneity correction algorithm in the library.  More details as to the use 

of ITK can be found in section 4.4 and greater justification for not using ITK during the 

segmentation process can be found in section 4.6.1 [48]. 
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4.2 Image Processing Libraries 

4.2.1  OpenCV 

The Open Source Computer Vision (OpenCV) library is a cross-platform programming library 

which focuses on real time computer vision.  The library, which was originally developed by 

Intel and is now supported by Willow Garage, supports C and C++ and is fully open-source 

under the Berkeley Software Distribution (BSD) license.  OpenCV functionality focuses 

primarily on image processing techniques and the functions available are highly optimized for 

both efficiency and speed.  The OpenCV library is used in a number of areas in the developed 

software tool.  Information regarding its use can be found in section 4.4 [49]. 

4.3 Multi-Threading 

Multi-threading is a programming paradigm that is commonly employed in order to provide 

software developers with an abstraction of concurrent execution.  In an operating system, the 

smallest unit of processing which can be scheduled is a thread of execution.  As the name 

implies, multithreading allows an operating system to process multiple threads concurrently 

within the context of a single process.  The threads are able to share the resources available but 

execute independently [50].  The advantage of using multithreading is an increase in speed on a 

computer system which has multiple cores (a common feature in modern computers).  Another 

advantage of multithreading is that threads performing time-consume tasks can be made to work 

in the background allowing the main thread (the application) to handle user interaction user at 

the same time. 

For the purposes of this piece of research multithreading was implemented for the image 

processing stages.  Each image in a dataset was assigned a thread for the DICOM loading, 

intensity correction and segmentation stages of the software tool.  This greatly decreased the 

time between a user selecting a dataset and being able to view said dataset.  Multithreading was 

realised using QT's native threading modules (QRunnable, QThread and QThreadPool). 
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4.4 Loading DICOMs 

The initial step of loading a DICOM series for display with the software tool developed, involves 

the user selecting a folder which contains a dataset.  ITK is initially used to extract the header 

information from the DICOMs.  This information is stored in order to allow the user to access it 

but certain specific details are extracted to be used in the loading, processing and visualizations 

stages.  These include the image names, the dimensions of the dataset (width and height of each 

image and the number of slices within the dataset) and the slice gap (the space between each 

slice of data).  The image names are used by ITK to then load each image into an 

itkImageFileReader object.  Once loaded, ITK is then used to extract the pixel information for 

each slice of data. 

Before any enhancement, correction or segmentation processes can be applied to the images a 

feature added by the MRI software must be removed.  Four solid white bars are added at either 

edge of the images where the top sub-image is joined with the middle sub-image (see Figure 4-1, 

as mentioned in section 2.6.2 each image is made up of three sub-images joined together).  These 

bars represent the highest possible intensity within the images (4095 for the datasets gathered for 

this research) and therefore must be removed as they were found to affect the intensity 

inhomogeneity correction method employed and the results of the segmentation algorithm used.  

Due to the fact that the general location of the bars within each image is known, they can easily 

be located and removed during the loading process for each individual image.  As the pixel 

information for the images is extracted, the software checks the intensity of the first and last 

pixel in each row.  If the intensity matches 4095 then the bar is set to the background colour (0). 

 

Figure 4-1 Information added to images by MRI software; an example of an untouched MRI data 

slice showing the white bars applied to the MRI images by the MRI software. 
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When working with most medical imaging modalities background noise is one of the most 

noticeable artefacts within the images.  Noise in MRI images is generally modelled as having 

either a Rician distribution if there is a low signal-to-noise ratio (SNR) or a Gaussian distribution 

[25]. Rician noise is generally removed using wavelet-domain filtering while additive Gaussian 

noise can, in most cases, be easily detected and removed from the data using topological 

methods.  If very little noise is present in an image, a common technique for removal is to set a 

low threshold when loading said image to remove the noise (for a 256 bit image this can mean 

setting all pixels with an intensity value of at most 15 back to zero for example).  In relation to 

the MRI data gathered for this piece of research, it was noted that the dataset have little to no 

noise present and therefore more complex noise removal methods where not needed and a simple 

thresholding method was used in the off chance noise was present in certain images. 

All of the pixel information extracted using ITK from the images is then stored in an IplImage 

object (a basic OpenCV storage structure) to be used in the following intensity inhomogeneity 

correction and segmentation steps. 

4.5 Intensity Inhomogeneity 

A number of methods for correcting intensity inhomogeneity, such as using 3D surfaces (for 

example, thin plate splines or Gaussian kernels, were tested on the datasets gathered for this 

study [51, 52].  It was found that methods which took into account all of the intensity 

information within an image in order to make a correction did not perform well on the data 

generated for this study.  Due to the scan axis, the patient’s head is included in in most of the 

images in a dataset and because the head is composed of primarily brain tissue and bone, it 

generally has much higher intensities then other areas of the body.  This large area of very high 

intensities heavily affected a number of correction methods (especially surface based methods) in 

a negative manner.  The fact that each image in a dataset is in actuality a composition of three 

separate images (as described in section 2.6.2) also affects the quality of a number of correction 

methods.  At the two locations where the images are joined there is a significant drop in intensity 

values (sometimes to a point where a tissue becomes indistinguishable from the background).  It 

was primarily due to these two reasons that an adaptive method was chosen in order to correct 

for intensity inhomogeneity.  The follow section describes in detail the method chosen.   
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4.5.1 Contrast Limited Adaptive Histogram Equalization 

The correction method used in this software tool is contrast limited adaptive histogram 

equalization (CLAHE).  Ordinary histogram equalization methods take all the pixel intensity 

information within an image in order to transform the image histogram and thereby the intensity 

values within said image.  By redistributing the most common intensities throughout the 

histogram, this method can lead to an increase in the contrast of certain objects within an image.  

As stated previously, one of the disadvantages of methods such as the standard histogram 

equalization technique is that how they affect the image can be indiscriminate due to the fact that 

they rely on all the intensity information within an image.  This can lead to issues such as 

increasing the contrast of background noise or decreasing the contrast of objects of interest 

within an image.  It is for this reason that an adaptive histogram equalization method was chosen. 

Adaptive equalization methods differ from standard equalization methods by transforming each 

individual pixel within an image based on the histogram derived from a neighbourhood region.  

The neighbourhood is essentially a square surrounding the pixel in question (see Figure 4-2).  

The size of the square is defined before running the algorithm.  Once the size of the regions is 

defined then the local histogram is transformed in the same method as normal histogram 

equalization is performed [53, 54] . 
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Figure 4-2 Adaptive Histogram Equalization; example of creating neighbourhood regions within 

an image. [55] 

The local histogram equalization transformation is achieved by the following: 

For every pixel within the region {x}, ni is the total number of occurrences of the gray level 

intensity i.  L is the max intensity within the region and n is the total number of pixels within the 

region.  

  ( )   (   )   
  
 
         

Px(i) is the probabilty of an occurance of a pixel with the intensity i (normalized to [0,1]).  The 

cumulative distribution function (CDF) is then calculated for each intensity within the region.  

The CDF results can also be used to create the accumulated normalized histogram. 

    ( )   ∑  ( )

 

   

 

Once the CDFs for all the intensities within the region have been calculated, and the minimun 

CDF identified, the values can be used to transform the intensity values with the following 

formula. 
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Where h(i) is the new intensity value for all intensities ni and H and W are the height and width 

of the current region [54]. 

The primary difference between CLAHE and other adaptive histogram methods is that it limits 

the contrast enhancement.  A clip limit is defined and this limits the number of allowed pixels 

per bin within the histogram.  All pixels above the clip limit are redistributed equally among the 

all the bins in the histogram (see Figure 4-3).  This redistribution can lead to certain bins 

exceeding the clip limit and, depending on the parameters assigned when initializing the 

algorithm, the redistribution can be repeated until the level esceeding the clip limit is acceptable.  

For the purposes of this software tool, a clip limit of 3.0 was chosen as it increased the image 

quality without introducing noise.  Clip limits of higher values were found to produce too much 

noise for any of the later image processing stages to be successfully employed. 

 

Figure 4-3 Contrast Limiting; redistribution of intensity values through the use of a clip limit [56] 

The main of advantage of the contrast limiting feature of CLAHE is that it limits the increase in 

noise and over-amplification of contrast which can be caused by general adaptive histogram 

equalization techniques.  As it can be seen in Figure 4-4 (b), a normal histogram equalization 

method applied to images gathered for this research does not give the best results.  While the 

overall contrast of the image is increased, increasing the quality of the image and the definition 

between tissues and objects is greater, it can clearly be seen that in areas that already consist of 

high intensities in the original image (such as the head/neck and inner thigh) the intensities are 
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increased even more after equalization.  This leads to tissues of the same type possibly having 

extreme differences in intensity values and therefore would negatively effect the results of any 

automatic or semi-automatic segmentation techniques.  Image (c) shows the results of CLAHE 

applied to same image.  It can be seen that the algorithm provides the necessary overall increase 

in contrast but without certain areas of the image becoming too bright.   This leads to tissues of 

the same type having a more uniform distribution of intensity values.  Both of these features, the 

increased contrast and increased uniformity, aid in increasing the accuracy of the results of the 

segmentation.  In the following section the segmentation process applied to the gathered datasets 

is covered in detail.   
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Figure 4-4 Contrast Enhancement; (a) is the original image with no pre-processing, (b) is the image 

with a normal histogram equalization applied to it and (c) is the image with CLAHE applied to 

it. 



4. Image Processing 

45 

 

4.6 Adipose Segmentation 

As stated in section 2.3.1, there are a number of segmentation techniques currently available 

which have been tested and validated on a number of image types and formats.  Choosing the 

correct technique to apply to an image dataset can depend on the imaging modality used, the 

quality of the data and even the scan axis.  One of the primary factors which determined which 

type of segmentation technique to use for this piece of research was the size of the datasets 

gathered.  Due to the large size of the datasets (on average each slice has dimensions of 1380 * 

390 with 39 slices per dataset) it was felt that any manual or semi-automatic segmentation 

techniques would be too time consuming, and therefore a fully automatic method was chosen.  

The second reason for choosing a fully automatic method (or unsupervised method) is to ensure 

that the segmentation results for the dataset are reproducible.  The technique chosen was the 

fuzzy c-means clustering algorithm [57]. 

4.6.1  Fuzzy C-means 

The central concept behind any clustering algorithm is to partition data into k number of clusters 

(or classes).  This is no different with the fuzzy c-means clustering algorithm.  Due to fact that 

the aim of this software tool is to segment one specific type of tissue, the fuzzy c-means 

algorithm was initialized to create two clusters; a cluster containing adipose tissue and another 

containing all other tissues.  The first step of this initialization process is defining the centroids 

for each cluster before applying the algorithm to the data. 

For each image within a dataset a minimum intensity representing tissue and the maximum 

intensity representing tissue are determined.  Since it is known that adipose tissue will be the 

highest intensity tissue within the images the location of these pixels and their intensities are 

stored to be used as the initial cluster centroids for the algorithm. 

Once the centroids have been chosen, the algorithm is then initiated.  The central concept of the 

fuzzy c-means algorithm is the minimization of the following objective function.  
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Where m is any number greater then 1 (chosen before the algorithm is run),     is the degree of 

membership that pixel    has in cluster j,    centroid of said cluster and ‖      ‖
 
 expresses the 

similarity (or distance) between the measured pixel and the cluster centroid.   

The fuzzy c-means algorithm partitions the data through iterative optiimization of the objective 

function.  Updating the membership value     and the cluster centroid    is achieved by: 
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The algorithm has two stopping conditions.  If ‖   
        

 ‖ < ε, where ε is a predefined value 

(usually known as the accuracy) between zero and one and k is the current iteration, then the 

algorithm will stop.  The algorithm is also assigned a maximum number of iterations it can 

perform in order to ensure the algorithm stops in the case where the objective function does not 

reach a point where it is lower then the predefined accuracy.  

The following describes the steps of the algorithm: 

1. Calculate Centroids for a slice of data (min and max pixel present in tissue). 

2. Initialize a matrix [   ]. 

3. For k iterations. 

4. At step k, calculate the cluster centroids   . 

5. Update the membership values for    
  and    

   . 
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6. Check if the objective function is less then the accuracy or if the maximum number of 

iterations has been reached, if then stop, If not then return to step 3. 

The appropriate m value to choose before imitating the fuzzy c-means algorithm is a much 

discussed issue in regards to the quality of the output.  Choosing an appropriate value for the 

accuracy value and the number of iterations that the algorithm can perform can greatly affect the 

segmentation results.  By testing a number of different values, it was felt that an accuracy of 

0.0001 and 40 iterations produced the best results in an acceptable amount of time.  Similarly, 

based on testing the algorithm on a number of datasets and available literature, a m value of 2 

was found to generate the best results [58].   

The fuzzy c-means clustering algorithm has been used extensively for image segmentation and 

has proven itself to be a useful and accurate technique for performing automatic segmentation in 

numerous fields including medical imaging [59-61]. 

4.7 Adipose Quantification 

Once segmentation has been successfully performed on a dataset, quantification of the 

segmented tissue takes place.  As stated in section 2.4, for every slice in a dataset the amount of 

pixels which represent all parts of the body are summed as are the number of pixels representing 

the segmented tissue (all pixels with a value greater then 10, with all others considered to be 

background).  The sum of the segmented tissue is then divided through by the sum of all tissues 

and the result multiplied by 100.  This gives the total percentage of the segmented tissue for the 

entire dataset.  While this information can be useful, in order to make a proper comparison to the 

current gold standard (DEXA) much more informative data needs to be presented to the user.  

The following section describes in detail how this was achieved. 

4.7.1  Quantification Method 

After consultation with the clinicians involved with this project, it was decided to quantify and 

present the results of the segmentation in as similar a method as DEXA.  This would allow for a 

better comparison between the two methods and give the user much more information regarding 

the distribution of the segmented tissue throughout regions of the body. 
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In order to simulate how DEXA presents its results, it was necessary to implement cut lines 

which overlay the MRI DICOMs.  The cut lines can be seen in Figure 4-5, they are represented 

as red lines with small squares located at specific points.  The user can change the position of all 

of the cut lines by clicking the ‘Move Cuts’ radio button and dragging the red squares to the 

location they desire.  In general, the vertical central and spinal cuts do not need to be moved, nor 

does the horizontal neck cut.   
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Figure 4-5 Example of DEXA-style Cut Lines Applied to MRI DICOMs 

Once the user is satisfied with the position of the cut lines, they can then unclick the ‘Move Cuts’ 

radio button and click the ‘Calculate Fat%’ button in order to view the results (see Figure 4-6).   
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Figure 4-6 Example of DEXA-style Results from a MRI Dataset 

With the application of the cut lines, the user can be presented with the percentage of fat present 

in each area of the body (similar to DEXA) but, in order to give more detailed results such as 

DEXA does, not only the percentage of fat needed to be presented but the amount of fat in grams 

also needed to be presented.  For each pixel which represents part of a scanned patient’s body, an 

estimation of the weight in grams each pixel represents must be calculated (all pixels with an 

intensity value above 10 were considered tissue and those below either background or noise).  By 

extracting a patient’s weight (which is stored in kilograms) from the MRI DICOM header 

information of a dataset and multiplying by 1000, the patients weight in grams is determined.  

Then, dividing through this number by the total number of pixels which represent the patient’s 

body gives the estimation of weight in grams for each pixel. 
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(                    ) ∑             ⁄  

Once the weight in grams for each pixel has been calculated, this can then be used to estimate the 

amount of grams of fat and non-fat in each area of the body.   

One of the primary differences between the results from DEXA and those of the software tool 

developed for this project is the ability to display information regarding the distribution of fat in 

the anterior and posterior areas of the body.  The software tool presents the user with the fat 

distribution of both the anterior and posterior trunk.  Due to the increase in fat in the 

dorsocervical region and in the abdomen as the condition of HIV-associated lipodystrophy 

progresses, it was felt that displaying this information would be of interest to clinicians.  More 

detail as to how this information would be beneficial can be found in section 8.5.  Once the 

results of fat distribution have been calculated for a patient, the user can export them to a spread 

sheet to be used for further analysis.  Detailed information regarding the performance of the 

software tool and statistical analysis of the results gathered for both DEXA and MRI can be 

found in chapter 7. 

4.8 Chapter Summary 

This chapter presents the image processing steps and algorithms implemented in order to 

successfully load, segments and quantify adipose tissue from full body MRI datasets.  The 

following chapter covers the 3D visualization elements of the software tool. 
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5 Visualization 

5.1.1  OpenGL 

The library used to implement volume visualization for this project was OpenGL.  OpenGL is 

currently the industry standard programming library for the creation of complex 3D graphics and 

is widely used in scientific visualization.  The OpenGL API offers developers many functions 

that allow the rendering of complex three dimensional objects and scenes from simple geometric 

primitives.  OpenGL is a cross platform library and is portable across a number of different 

graphics cards (GPUs).  OpenGL is currently manage by the Khronos Group [62]. 

5.2 Volume Rendering 

Ray casting volume rendering was implemented for this project but, due to a number of reasons, 

was not included in the final software tool.  At the time of implementation volume rendering of 

an entire dataset was tested on a high-end laptop with the following specifications: a NVIDIA 

GeForce GTX 260m with 1024 MB of GDDR3 memory available, 4 GB of ram and an Intel 

Core i5 with a 2.8 GHz clock frequency.  The time taken to render a full dataset was considered 

to be too slow in order to be used in a clinical setting.  This was also reinforced by the frames per 

second (FPS) when rotating or moving the volume within the viewing pane.  The average FPS 

were generally less then 20 FPS, which hampered the responsiveness of the rendering.  It was 

also felt, by both the researcher and the clinicians involved in the project, that due to the physical 

characteristics associated with HIV-associated lipodystrophy (lipoatrophy of the limbs, increased 

size of the abdomen and increased fat in the dorsocervical region) that visualizing the external 

morphology of the patients would be of greater interest.  It is for these reasons that surface 

rendering was chosen as then method of volume visualization for this piece of research. 

5.3 Surface Rendering 

The Marching Cubes algorithm was used for volume visualization in this project.  After a 

number of different techniques were tested it was decided that applying a RGB heat map applied 

to the rendered surface would be an interesting and informative way of presenting the 
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distribution of adipose tissue throughout the body.  The heat map ranges from blue (little or no 

adipose tissue) to red (almost completely adipose).  The percentage of adipose tissue present at 

each level of the image height is converted into a RGB value (based on the heat map) and the 

polygons to be rendered for that part of the surface are subsequently set that RGB value.  While 

also presenting the distribution of adipose tissue throughout the body in an intuitive manner, the 

full body renderings also allow the user to clearly see a patient’s external morphology which 

could be useful for identifying changes in body shape due to the progression of HIV-associated 

lipodystrophy. 

Examples from the software tool developed for this study of full body volume visualization with 

the heat map applied can be seen in Figure 5-1 and Figure 5-2.   
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Figure 5-1 Full Body Rendering with Heat Map 
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Figure 5-2 Magnified Full Body Rendering with Heat Map 
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In order to for the volume visualization to appear correct to a user, lighting must be applied to 

the scene to make the object visible and to create shadows.  Each polygon rendered has normals 

calculated for it in order to ensure they are correctly lit and to give the object a smoother shading 

effect.  Due to the large nature of the datasets gathered for this project, ‘flat’ shading was used 

rather then ‘smooth’ shading.  Flat shading involves the calculation of normals for each triangle 

within the rendered surface and is done at runtime while the polygons themselves are being 

calculated.  In order to achieve smooth, shading interpolation is used on the normals for each 

vertex of a triangle which is more computationally expensive.  The object rendered must also be 

scaled along the z axis in order to represent the patient’s body correctly.  This is due to the slice 

gap between the MRI slices.  By extracting the slice gap from the header information, the object 

can be scaled by the correct amount.   

5.3.1  Interaction with the Volume 

In order to allow users to fully interact with the 3D volume, the functionality to digitally zoom, 

pan and rotate the object have all been implemented.  A user can magnify the object using the 

mouse wheel and pan the object by right-clicking it and dragging it to the desired location.  3D 

rotation is achieved through the use of an arcball.  The arcball, first described by Shoemake, 

utilises quaternion-based  rotation which prevents gimbal lock (the loss of one degree of freedom 

leading to the system being restricted to only two rotational axis) [63].  The user can rotate the 

object of interest by left-clicking it and dragging.  It is important to note that the arcball is always 

centered around the object, even when magnified or panned, in order to insure correct rotation.  

5.4 Chapter Summary 

This chapter covers the 3D visualization elements of the software tool.  The following chapter 

describes, in detail, the methodologies employed in order to evaluate and validate the software 

tool as a whole and the data gathered by said tool. 
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6 Evaluation Methodologies and Clinical Validation 

The following chapter describes methods used to evaluate the software tool developed as a proof 

of concept for this research.  An overview of ethical considerations and patient selection is also 

presented. 

6.1 Quantitative Evaluation 

In order to assess the results gathered from MRI datasets and how they compare to those of 

DEXA, a quantitative evaluation was performed on the data collected.  As the primary concern 

of this research was the quantification of adipose tissue, the primary data used was the 

percentage of fat present in all areas of the body for all patients which took part in the study.  

The two statistical analysis techniques used to assess the two modalities were Pearson’s 

correlation coefficient and the Bland Altman method.  The statistical software tool MedCalc was 

used to analyse the gathered data.  MedCalc was specifically developed for statistical analysis for 

biomedical research [64].  In-depth detail regarding the results of analysis can be found in 

chapter 7. 

6.1.1 Pearson’s Correlation Coefficient 

In order to determine whether there is a statistical relation between the results collected from the 

two imaging modalities employed in this study, Pearson’s correlation coefficient (PCC) was 

used.  PCCs gives a measure of the correlation, or linear dependence, between two variables.  

The PCCs between said variables is defined as the covariance (how similarly the two variables 

change together) of the two variables divided by the product of their standard deviation.  The 

result of PCCs, generally denoted by r, ranges from 1 to -1.  A result of 1 suggests a perfect 

linear correlation between the two variables (as variable X increases so does variable Y).  A 

value of -1 indicates the variables have a negative correlation (as values for X increase, Y 

decreases) and 0 indicates no correlation between the two variables.  General guidelines for 

interpretation of the correlation coefficient have been put forward (see Table 6-1) [65]. 
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Table 6-1 Guidelines for the Interpretation of the Correlation Coefficient 

Correlation Negative Positive 

None −0.09 to 0.0 0.0 to 0.09 

Small −0.3 to −0.1 0.1 to 0.3 

Medium −0.5 to −0.3 0.3 to 0.5 

Strong −1.0 to −0.5 0.5 to 1.0 

 

For the purposes of this research, Pearson’s correlation coefficient was applied to the gathered 

data in order to determine whether a correlation existed between the MRI and DEXA imaging 

results.  Greater detail on the results can be found in section 7.2. 

6.1.2 Bland Altman Method 

As stated in the previous section, a high positive correlation between two methods does not 

necessarily indicate that there is good agreement between said methods [66].  The Bland Altman 

method presents the data in a graphical style so that the range of absolute differences between 

measurements and the overall measurement variability (the system bias) can be easily observed.  

The difference between measurements for an individual case can be estimated by calculating the 

standard deviation of the differences across the sample and the system bias is calculated as the 

mean of the signed differences between two measurements for a specific subject.  If the 

distribution of difference is reasonably symmetrical, then the difference between the 

measurements of the two methods will fall within the range of ± two standard deviations 

(specifically ±1.96) in 95% of cases.  The standard deviation of the differences can be calculated 

as the square root of the sum of the squared differences divided by the sample size.  The 

confidence limits above and below the mean (the system bias) demonstrate the influence of 

random variations between the ratings. 
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If the two methods tend to agree, then the mean will be near zero.  If one method consistently 

gives higher results then the other then the mean will be far from zero and there will be a narrow 

confidence limit.  Alternatively, if the methods do not appear to agree and there is no consistent 

pattern in the results (one method consistently higher than the other), then the mean will be near 

zero but the confidence limit will be very wide [66]. 

The Bland Altman method was used in order to assess the level of agreement between the two 

modalities being studied.  The results of the Bland Altman method can be seen in section 7.3. 

6.2 Qualitative Evaluation 

In order to assess the accuracy of the segmentation technique used in this project an evaluation of 

the technique was performed where a panel of experts were asked to score the accuracy of 

adipose tissue segmentation.  If the segmentation performed on the gathered datasets is not 

sufficiently accurate, then any quantitative evaluation of the segmentation results would be 

flawed. 

In order to assess the quality of the segmentation a group of experts in the field, both radiologists 

and radiographers, were asked to take part in evaluating the segmentation results.  In total, seven 

individuals took part in the evaluation.  The participants were presented with 11 randomly 

selected slices from the MRI datasets.  Images of the un-segmented slice and the segmented slice 

were presented side by side and participants were given instructions to score each image between 

one and five based on following criteria: 

 False Negative Segmentation (FN), the amount of adipose tissue missed (not 

segmented).  With one being no adipose tissue missed and five being all adipose tissue 

missed. 

 False Positive Segmentation (FP), the amount of non-adipose tissue segmented.  With 

one being no non-adipose tissue falsely segmented and five being all non-adipose tissue 

being segmented. 
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 True Positive Segmentation (TP), the amount of adipose tissue correctly segmented.  

With one being no adipose tissue segmented and five being all adipose tissue correctly 

segmented. 

The results gathered from the evaluation and the analysis of said results can be found in chapter 

7. 

6.3 Ethical Considerations 

In any research which involves patients directly or in which patient information is recorded and 

used, ethics permission is required.  This study involved additional imaging in the form of a MRI 

examination. Patients required preparation for the examination, doctor consent and radiology 

reporting of the subsequent images.  This was a change in patient management and therefore 

required full institutional ethical approval.  An ethics committee reviews research ethics 

proposals and grants them permission if they are confident that the patient’s best interests will be 

maintained and that the research parties involved will be competent in maintaining patient 

confidentiality.   All necessary protocols for the MRI examination were formulated and included 

in the ethical approval application, this included detail of how patient data sets were to be 

managed.  During the various stages of this research, all information was stored in one secure 

place on encrypted computer appliances.  Throughout this project, the researcher was only 

supplied with information deemed relevant to the task at hand.  At the beginning of the 

evaluation stage, an ethics application was submitted by the associated HIV clinician to the 

relevant hospital institutional ethics board and ethical approval was subsequently granted.  

Details of the ethics proposal can be found in Appendix A. 

6.4  Patient Selection 

The researcher worked with a clinical team from both a dedicated research unit involved in HIV 

research and a university teaching hospital both linked though an Irish Academic medical centre. 

Recruitment of patients was initiated through the research team in the research centre and MRI 

and DEXA imaging was performed in the clinical sites.  Initial meetings with the clinical team 

facilitated the identification of the staff responsible for patient recruitment and DEXA and MRI 

imaging.  Good communication systems were established between the clinical staff and the 
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researcher and a method of forwarding scans and related data to the researcher were agreed upon.  

In order to ascertain patient anonymity each patient was assigned a study code.   

The recruitment of patients took place over a period of one year and in total nine patients 

underwent DEXA and MRI examinations.  Both examinations were performed in a single day 

for each patient to ensure no changes in physiology between examinations.  Patient 

demographics can be seen in Table 6-2. 

Table 6-2 Patient Demographics 

Code Age Sex Ethnic 

Origin 

Height 

(cm) 

Weight 

(kg) 

BMI 

BHR007 56 M Caucasian 174.7 81.1 26.6 

BHC001A 37 F African 172 72.3 24.4 

BH0004 33 F Caucasian 158 101.4 40.6 

BH0001 35 F African 166 99.4 36.1 

BHR008 38 F African 165 82.3 30.4 

BHC002A 35 F African 168 71.6 25.4 

BH0003 51 M Caucasian 173 92.5 30.9 

BH0002 35 F African 162 83.4 31.8 

BHR009 57 M Caucasian 170 80.1 27.7 
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A number of issues arose during the recruitment and imaging stages of the project which affected 

the overall size of the patient cohort (specifically the high weight of many of the patients was 

found to be a confounder with respect to suitability for MR imaging).   A number of patients also 

declined from participating.  To raise the number of recruits an initial proposal was made to 

extend the recruitment process to alternative clinical sites.  However the time required to 

complete the ethical approval process in distal sites for this was deemed impractical and a 

decision made to recruit solely from the initial Clinical site.  

It should be noted that during the evaluation stage it was discovered that MRI dataset BH007 

was corrupted and therefore unusable.  Due to this, the data from this dataset was not used 

chapter 7.  

6.5 Chapter Summary 

This chapter describes, in detail, the methodologies employed in order to evaluate and validate 

the software tool as a whole and the data gathered by said tool.  The following chapter presents 

the results gathered from the evaluation of the software tool. 
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7 Results 

This chapter reports in detail the data gathered during the clinical trial period for this research 

and provides the results emanating from the statistical analysis performed on said data to assess 

the features and results of the software tool developed over the current method (i.e. DEXA).  The 

performance of the software tool, the accuracy of the segmentation results and a comparison of 

the results gathered from DEXA and MRI will be discussed in the following sections. 

7.1 Overview of Data Gathered from DEXA and MRI Examinations 

The mean DEXA and MRI results were gathered along with the standard deviation for each set 

of results (see Table 7-1, Table 7-2, Table 7-3, Table 7-4, Table 7-5 and Table 7-6).  Individual 

results for each patient for DEXA can be seen in Appendix B and the individual results for MRI 

can be seen in Appendix C. 
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Table 7-1 Overall Mean Results Gathered for all DEXA and MRI Cases 

 DEXA MRI DEXA MRI 

Region Tissue 
(%Fat) 

STDEV Tissue 
(%Fat) 

STDEV Region 
(%Fat) 

STDEV Region 
(%Fat) 

STDEV 

Left 
Arm 

33.79 8.97 44.54 8.18 32.36 8.63 14.72 4.64 

Left Leg 40.76 17.07 46.12 5.62 39.27 16.52 14.53 4.29 

Left 
Trunk 

45.88 8.00 52.89 3.88 44.71 7.82 35.17 4.85 

Left 
Total 

42.14 10.13 47.85 4.18 40.66 9.76 20.09 3.62 

Right 
Arm 

33.80 8.97 43.25 8.68 32.33 8.65 14.29 5.00 

Right 
Leg 

40.80 17.06 49.50 6.28 39.27 16.52 15.07 4.60 

Right 
Trunk 

45.81 8.08 54.83 4.20 44.69 7.82 37.09 4.54 

Right 
Total 

42.18 10.11 49.19 4.66 40.72 9.81 20.76 3.69 

Arms 34.43 9.85 43.90 8.12 33.00 9.57 14.52 4.76 

Legs 39.72 16.56 47.81 5.88 38.24 16.00 14.79 4.43 

Trunk 46.12 8.28 53.87 3.49 44.92 7.96 36.22 4.48 

Total 43.39 11.09 48.52 4.30 41.78 10.72 20.43 3.63 
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Table 7-2 Overall Mean Results Gathered for all DEXA and MRI Cases Continued 

 DEXA 
 

MRI 

Region Tissue (g) STDEV Tissue (g) STDEV 

Left Arm 3864.89 549.17 3780.88 775.95 

Left Leg 13694.67 2844.92 18893.88 2870.54 

Left Trunk 21193.67 3516.84 18887.63 3526.33 

Left Total 40957.44 5277.99 41563.38 5248.42 

Right Arm 3901.89 532.80 4026.50 826.93 

Right Leg 13639.67 2702.68 18821.38 2911.11 

Right 
Trunk 

20857.00 3562.48 19511.75 3986.01 

Right Total 38059.11 6636.52 42360.63 5603.63 

Arms 12253.22 13732.85 7808.13 1481.77 

Legs 24480.22 7759.86 37715.88 5760.74 

Trunk 40289.67 6807.34 38399.88 7466.42 

Total 62487.11 30792.07 83923.25 10766.93 
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Table 7-3 Overall Mean Results Gathered for all DEXA and MRI Cases Continued 

 DEXA 
 

MRI 
 

Region Fat (g) STDEV Fat (g) STDEV 

Left Arm 1295.67 349.65 1689.19 491.49 

Left Leg 5869.22 3034.16 8775.42 2067.77 

Left Trunk 9694.22 2165.96 10037.05 2205.67 

Left Total 17310.00 4896.12 20456.55 3404.17 

Right Arm 1312.56 370.55 1733.57 494.15 

Right Leg 5840.33 2973.66 9382.17 2270.75 

Right 
Trunk 

9556.67 2215.97 10741.28 2501.53 

Right Total 15949.00 4536.77 21703.00 3410.72 

Arms 4871.56 7099.52 3422.89 932.23 

Legs 10148.11 6081.20 18155.84 4325.52 

Trunk 18478.67 3855.30 20779.10 4607.40 

Total 25757.78 14124.92 42160.44 6738.44 
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Table 7-4 Overall Mean Results Gathered for all DEXA and MRI Cases Continued 

 DEXA 
 

MRI 
 

Region Lean (g) STDEV Lean (g) STDEV 

Left Arm 2568.89 569.06 2091.31 478.21 

Left Leg 7825.67 1591.40 10006.58 1372.97 

Left Trunk 11499.11 2704.35 8850.08 1551.40 

Left Total 23647.44 4906.55 21106.45 2191.44 

Right Arm 2589.11 553.58 2292.68 579.91 

Right Leg 7779.11 1514.33 9438.96 1409.88 

Right 
Trunk 

11300.22 2617.39 8769.85 1773.85 

Right Total 22110.11 5879.70 20655.87 2695.37 

Arms 7407.67 6711.33 4384.73 983.72 

Legs 14332.89 4715.52 19559.53 2753.62 

Trunk 21811.00 5635.35 17620.28 3187.39 

Total 36729.33 20535.72 41763.56 4835.86 
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Table 7-5 Overall Mean Results Gathered for all DEXA and MRI Cases Continued 

 DEXA 
 

MRI 
 

Region Total Mass 
(kg) 

STDEV Total Mass 
(kg) 

STDEV 

Left Arm 4.03 0.56 3.77 0.78 

Left Leg 14.22 2.85 18.89 2.87 

Left Trunk 21.71 3.48 18.88 3.53 

Left Total 42.43 5.26 21.96 2.11 

Right Arm 4.09 0.54 4.02 0.83 

Right Leg 14.18 2.73 18.82 2.91 

Right Trunk 21.34 3.54 19.51 3.99 

Right Total 39.44 6.93 42.36 5.60 

Arms 12.73 14.09 7.80 1.48 

Legs 25.46 7.99 37.71 5.76 

Trunk 41.32 6.77 38.40 7.47 

Total 64.80 31.92 83.93 10.77 

 

 

 

 

 



7. Results 

69 

 

Table 7-6 Mean Fat Mass Ratios for all Cases for DEXA and MRI 

DEXA 
 

MRI 
 

Trunk / Total STDEV Trunk / Total STDEV 

0.57 0.11 0.49 0.08 

    

Legs / Total STDEV Legs / Total STDEV 

0.32 0.12 0.43 0.07 

    

(Arms + Legs) 
/ Total 

STDEV (Arms + Legs) 
/ Total 

STDEV 

0.75 0.30 0.51 0.07 

 

From the DEXA results the total percentage of fat for each patient (see Figure 7-1) and the total 

amount of fat in grams alongside the total mass in grams for each patient (see Figure 7-3) have 

been graphed to give an overview of the distributions among cases.  It is important to note that of 

the nine patients scanned, only one fell into the normal body mass index (BMI) range (between 

18.5 and 24.9, see Table 6-2) while the majority of patients recorded BMI values categorised as 

obese.  In regards to the MRI data gathered, the increased weight of many of the patients affected 

both the quality of the scans and the results calculated from the data.  This is discussed in more 

detail in section Error! Reference source not found.. 
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Figure 7-1 DEXA, Total % of Fat for all Cases 

As with the DEXA data, Figure 7-2 and Figure 7-4 presents the total percentage of fat present 

and the total fat in grams versus total mass in grams for each patient.   
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Figure 7-2 MRI, Total % of Fat for all Cases 

 

 

Figure 7-3 DEXA, Total Fat and Total Mass (in grams) for all Cases 
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Figure 7-4 MRI, Total Fat and Total Mass (in grams) for all Cases 

 

Before performing any statistical analysis on the data gathered visualisation of the raw data 

gathered can give a visual indication as to the differences/similarities of the results of the two 

methods being compared.  In Figure 7-5 it can be seen that the total percentage of fat in each 

patient for both modalities.  It can be clearly seen that in the majority of cases the MRI results 

are slightly higher than those from DEXA.  The case of most interest is BH0003, where there is a 

significant difference between the DEXA and MRI results.  The effect on statistical analysis and 

the possible cause of this will be examined in section 7.3.  The mean difference between the 

results of the two modalities is 5.62%. 
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Figure 7-5 Comparison of Total Fat (%) of DEXA and MRI for all Cases 

 

As with the previous figure, in Figure 7-6 it can be seen that the total results fat in grams for both 

modalities.  As would be expected, the results match up very closely with the percentage results 

(MRI presenting higher results in the majority of the patients).  The mean difference between the 

two modalities in this case is 6569.88 grams.  The similarity in results of all cases (except 

BH0003 in which MRI gives substantially higher results then DEXA) suggests there is a 

reasonable level of agreement between the two modalities.  This is examined in greater detail in 

section 7.3. 
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Figure 7-6 Comparison of Total Fat (in grams) of DEXA and MRI for all Cases 

The following sections describe in detail the results of the statistical analysis techniques used to 

compare the data gathered from both DEXA and MRI in relation to adipose tissue quantification.  
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7.2 Pearson’s Correlation Coefficient Results 

A correlation coefficient was performed on the data gathered from the DEXA and MRI scans.  

As the primary interest for this piece of research is in the quantification of adipose tissue, the 

percentage of fat present in each part of the body was used in order to determine whether there 

was a correlation between the results of the two modalities.  For each of the eight patients there 

were 14 different values gathered (arm fat percentage, trunk fat percentage, total fat percentage, 

etc.), leading to a total sample size of 112.  In Figure 7-7 it can be seen that many of the cases lie 

along or near the line of equality suggesting a correlation between the two sets of results. 

 

Figure 7-7 Pearson’s Correlation Coefficient for Fat % for all regions 
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By looking at the numerical results of the correlation coefficient (see Table 7-7) it can be seen 

that the r value is 0.6968, suggesting a strong correlation between the sets of results.  This is 

further strengthened by a p value of less then 0.0001 and a very small confidence interval.  Both 

of these values suggest that the correlation coefficient result is highly statistically significant. 

Table 7-7 Pearson’s Correlation Coefficient Results 

Sample size 112 

Correlation coefficient r 0.6968 

Significance level P<0.0001 

95% Confidence interval for r 0.5871 to 0.7813 

While the use of the correlation coefficient has clearly demonstrated that there is a strong 

positive linear correlation between the results of the two modalities, this does not necessarily 

mean that there is good agreement between said modalities.  In the following section the Bland 

Altman method is described in detail and is applied to the data in order to establish the level of 

agreement between the two modalities used. 

7.3 Bland Altman Method Results 

Through the visual representation of the Bland Altman method using a Bland Altman plot, 

agreement between two methods can be more easily understood (see Figure 7-8).  Each coloured 

shape in the plot represents one dataset.  The upper and lower confidence intervals (±1.96 

standard deviations) are represented by red dotted lines.  The 95% confidence interval indicates 

that 95% of the time, the difference between the two methods will fall into this range.  The mean 

is the solid horizontal blue line.  If the mean is non-zero then that indicates a systematic bias 

between the two methods: one method consistently giving higher (or lower) results then the 

other.  The position of points on the y-axis of the plot indicates the amount of difference between 
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two methods.  Points falling above the mean indicate one method would indicate one method 

scoring higher then the other and vice versa.  Points which lie on or very near the mean suggest 

the two methods are giving similar results.    

Figure 7-8 is a Bland Altman plot of the fat percentage for each area of the body.  Each group of 

coloured shapes represents a specific dataset, with the individual shapes representing the result of 

the comparison of the two modalities for each area of the body.  It can be clearly seen that most 

of the points fall above the mean and are generally quite closely clustered.  This suggests that 

most of the results tend to be in agreement.  The fact that the mean is far from zero suggests that 

one method is consistently scoring higher then the other.  This is confirmed in Figure 7-5, where 

it can clearly be seen that MRI is giving higher results then DEXA in six out of 8 cases.  While 

the confidence interval is quite large (between 11.25 and -21.29) this could be due to outliers and 

therefore each dataset needs to be examined independently.  What is of great interest is the 

clearly noticeable outlier dataset, specifically the orange triangles in the lower left-hand corner of 

the plot.  These represent dataset BH0003, which as stated in section 7.1 was the only dataset to 

have a significant difference in results between DEXA and MRI.  In the following Bland Altman 

plots comparing specific areas of the body, the fact that this dataset is an outlier can be more 

clearly seen. 
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Figure 7-8 Bland Altman Plot Percentage of Fat Present for all Cases 
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Table 7-8 Bland Altman Plot Results 

Sample size 112 

Arithmetic mean -5.0163 

Standard deviation 8.3010 

Lower limit -21.2864 

Upper limit 11.2537 

 

When examining the level of agreement for the quantification of adipose tissue in the arm region 

(see Figure 7-9) it is made even clearer that the results gathered for dataset BH0003 are 

significantly different in there level of agreement to the other datasets.  The majority of the 

datasets fall on or near the mean suggesting more consistent agreement between the methods. 
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Figure 7-9 Bland Altman Plot for Arm Fat Percentage for all Cases 
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Table 7-9 Bland Altman Plot Results for Arm Fat 

Sample size 8 

Arithmetic mean -9.4900 

95% CI -15.5873 to -3.3927 

Standard deviation 7.2932 

Lower limit -23.7847 

95% CI -34.6836 to -12.8857 

Upper limit 4.8047 

95% CI -6.0943 to 15.7036 

 

A similar pattern as with the comparison of arm fat percentage can be seen in Figure 7-10, with 

dataset BH0003 being a clear outlier.  In the case of leg fat percentage it appears there much less 

agreement between the two modalities.  The confidence interval is much larger then the previous 

plot and only four of the cases are closely clustered near the mean.   
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Figure 7-10 Bland Altman Plot for Leg Fat Percentage for all Cases 
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Table 7-10 Bland Altman Plot Results for Leg Fat 

Sample size 8 

Arithmetic mean -3.0688 

95% CI -9.6145 to 3.4770 

Standard deviation 7.8297 

Lower limit -18.4149 

95% CI -30.1155 to -6.7143 

Upper limit 12.2774 

95% CI 0.5768 to 23.9780 

 

Figure 7-11 shows the Bland Altman plot for the trunk fat percentage.  As with the plot of the 

arm fat percentage, most of the datasets fall near the mean suggesting decent agreement between 

the two methods.  Two of the datasets are clear outliers in this plot, with BH0003 again being 

one of them and BH0001 being the other.  This is the only case where there is more then one 

outlier.  The plot shows that in both cases, MRI measurements for leg fat percentage are 

significantly higher then DEXA. 
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Figure 7-11 Bland Altman Plot for Trunk Fat Percentage for all Cases 
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Table 7-11 Bland Altman Plot Results for Trunk Fat 

Sample size 8 

Arithmetic mean -6.6975 

95% CI -12.5268 to -0.8682 

Standard deviation 6.9727 

Lower limit -20.3640 

95% CI -30.7840 to -9.9440 

Upper limit 6.9690 

95% CI -3.4510 to 17.3890 

 

A Bland Altman plot of the quantification of total fat percentage for each case can be seen in 

Figure 7-12.  As with the previous plots, most of the cases fall near the mean with one case 

(BH0003) being a clear outlier.  The outlier causes the size of the confidence interval in all plots 

to be quite high, ranging from ~20 to ~30 depending on which portion of the body is being 

investigated.  This suggests that in 95% of the cases the difference between the two methods 

there is a significant difference between the two methods. 
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Figure 7-12 Bland Altman Plot Total Fat Percentage for all Cases 
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Table 7-12 Bland Altman Plot Results Total Fat 

Sample size 8 

Arithmetic mean -4.4588 

95% CI -9.1204 to 0.2029 

Standard deviation 5.5760 

Lower limit -15.3878 

95% CI -23.7206 to -7.0550 

Upper limit 6.4703 

95% CI -1.8625 to 14.8031 

 

In order to give a clearer picture of the agreement of the two methods and the effect the outlier 

has on calculating the agreement, a Bland Altman plot of the all cases except the outlier is 

presented in Figure 7-13.  With the outlier removed, the size of the confidence interval reduces in 

size to ~15 suggesting there is a maximum difference of 15% in 95% if the cases.  It can also be 

noted that five of the seven datasets lie below the mean, indicating they are giving consistently 

higher results then the gold standard (DEXA).  This is confirmed by examining the graphs 

presented in section 7.1 comparing the gathered results for fat percentage and fat grams present 

in all cases.   
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Figure 7-13 Bland Altman Plot Results Total Fat without Outlier 
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Table 7-13 Bland Altman Plot Results Total Fat without Outlier 

Sample size 7 

Arithmetic mean -2.9200 

95% CI -6.4020 to 0.5620 

Standard deviation 3.7650 

Lower limit -10.2994 

95% CI -16.5680 to -4.0308 

Upper limit 4.4594 

95% CI -1.8092 to 10.7280 

 

As to why case BH0003 is an outlier is not entirely clear.  A visual inspection of the segmented 

dataset showed no issues such as excessive over or under segmentation when compared with 

other datasets.  The fact that the patient is one of only three Caucasian males from the cohort and 

at least 10kg heavier then the other two may have had an effect on the results.  Alternatively the 

patent may have been unknowingly incorrectly scanned with DEXA.  The only way to determine 

whether an error has occurred by either modality (or quantification technique) would be to have 

the patient rescanned and compare the results.  Due to the limitations of this study, that is not 

currently a possibility. 

The results of the Bland Altman analysis indicate, with the exception of one outlier, that MRI 

compares well with DEXA in regards to quantifying adipose tissue through various regions of 

the body. 
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7.4 Segmentation 

Once the datasets had been segmented, it was important to ensure that the segmentation was 

accurate.  The following section describes in detail how the assessment of the automatic 

segmentation technique applied in this piece of research. 

7.5 Qualitative Assessment of Segmentation 

Figure 7-14 shows an example of the segmentation survey in which the participants took place.  

Each image was accompanied by instructions for grading (on the left-hand side of the images) 

and a box for inputting their grade (on the right-hand side of the images). 

 

Figure 7-14 Segmentation Evaluation Example 
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Table 7-14 presents the mean rating each participant gave all 11 images for FN, FP and TP 

respectively.  For FN the overall mean rating was 1.48, which indicates that in general the raters 

scored the images as either having missed no adipose tissue or a small amount of adipose tissue.  

For FP the overall mean rating was 1.52, indicating the raters scored the images as either having 

segmented no non-adipose tissue or a small amount of non-adipose tissue.  Finally, the overall 

mean score given for TP was 4.5, indicating the raters scored the images as either having 

segmented all adipose tissue correctly or most of the adipose tissue correctly.  The raters results 

indicate that the segmentation technique used in this piece of research was acceptable. 

The following describes the raters which took part in the evaluation: 

 Rater 1 - MSc MRI Radiography Specialist 

 Rater 2 - Radiologist 

 Rater 3 - PhD Medical Imaging MRI Specialists 

 Rater 4 - Radiologist 

 Rater 4 - MSc MRI Radiography Specialist 

 Rater 6 - MSc MRI Radiography Specialist 

 Rater 7 - PhD Medical Imaging MRI Specialist 

Table 7-14 Mean Score for Each Rater 

 Rater 1 Rater 2 Rater 3 Rater 4 Rater 5 Rater 6 Rater 7 

FN 1.27 1.27 1.27 1.54 1.54 2 1.45 

FP 1.27 1.54 1.81 1.63 1.72 1.45 1.18 

TP 4.72 4.54 4.36 4 4.63 4.36 4.90 
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Table 7-15 presents the mean score all raters gave for each individual image.  As with the mean 

score for each rater, the results for each image indicate that that raters found the segmentation 

technique to be accurate. 

Table 7-15 Mean Score for Each Image 

 FN FP TP 

Image 1 1.57 1.42 4.14 

Image 2 1.42 1.57 4.42 

Image 3 1.71 1.28 4.28 

Image 4 1.57 1.42 4.57 

Image 5 1.57 1.57 4.42 

Image 6 1.71 1.28 4.71 

Image 7 1.42 1.42 4.57 

Image 8 1.42 1.57 4.71 

Image 9 1.42 1.57 4.71 

Image 10 1.14 1.71 4.57 

Image 11 1.28 1.85 4.42 
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Establishing that the method used for segmentation is accurate is important for justifying any 

analysis done on the results of said segmentation.  All scores given by the raters can be found in 

Appendix D. 

7.6 Visualization 

At group meetings with the primary clinician involved with this study, the results of volume 

visualization were presented.  While the clinician found the visualization techniques 

implemented in the software tool interesting, it was indicated that it was not necessarily 

clinically relevant at the time of evaluation.  The visualization techniques used in this study had 

two aims; presenting the distribution of fat throughout the body in an intuitive and simple 

manner and the comparison of full body renderings of individual patients from MRI scans taken 

over an extended period of time (would be useful in identifying changes in external morphology 

related to the condition).  The clinician indicated they were more interested in the numerical data 

gathered regarding fat distribution (as this is the way the current modality presents its data) and 

due to the time constraints associated with this study the second aim could not be realised.  A 

great deal of time was initially spent implementing and testing a number of different methods of 

visualization but, based on clinical feedback, focus was shifted primarily to the quantification 

aspect of the study. 

7.7 Software Tool Performance 

As stated in previous chapters, due to the size of the datasets gathered for this study, manual or 

even semi-automatic segmentation techniques would be too time consuming and labour intensive 

to be effectively used in this type of study.  In order for the software tool developed to be of any 

significant use in a clinical setting, it must be able to process and return results within a 

reasonable time.  It was for this reason that a fully automatic segmentation technique was 

implemented and that all the processing steps were multithreaded.  On average the time taken to 

load a one of the dataset gathered for this study (from selecting the folder containing a DICOM 

series, to having all images and results available for viewing) is around one minute.  Due to the 
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size of the datasets, the numerous processing steps that need to be taken and the computational 

cost of visualizing such large datasets, this was felt to be an acceptable amount of time.  

7.8 Chapter Summary 

In this chapter the results gathered from the evaluation of the software tool were presented.  The 

following chapter covers the findings of this research in relation to previous studies, the clinical 

limitations discovered during the period of research and the conclusions and future works 

regarding the research as a whole. 
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8 Discussion 

8.1 Findings in Relation to Previous Studies 

As discussed in section 2.1.1, a study published in 2008 compared the fat measurements of MRI 

and DEXA for HIV+ subjects.  A number of significant differences between that study and this 

one were found.  The scan axis used for the MRI dataset in the study was transverse while in this 

one the coronal axis was used.  During the initial formulation of the imaging protocols for this 

study the project advisers in MRI felt it would be impractical and too time consuming to perform 

full body imaging with transverse slices.  Patient weight was also significantly different.  The 

average weight of patients from the 2008 was 75.35kg while the average for this study was 

84.9kg with only two patients who were below 80kg.  This could be due to a difference in 

ethnicity between the two cohorts.  The segmentation of adipose tissue was also noted as a major 

difference between the two studies.  Due to the fact that the previous study used semi-automatic 

segmentation with a third party software tool and there is no evaluation regarding the accuracy or 

repeatability of the segmentation results it would be problematic to compare the results against 

those collected using the fully automatic segmentation technique implemented for this study.  

With regards to DEXA, the fact that the two studies used different DEXA machines (with the 

previous study using multiple different machines) also makes a direct comparison of statistical 

results unfeasible. 

Both studies did find a strong correlation between the two modalities but differ in the overall 

conclusion regarding the difference in measurements from DEXA and MRI.  The previous study 

found that in most cases DEXA estimated higher levels of fat then MRI.  In contrast, the findings 

of this study showed that MRI estimated higher then DEXA in the majority cases.  

The differences in methodologies and cohort size would be the most likely causes for differing 

results between the two studies but it is still of interest that both studies indicate a good 

relationship between measurements taken by the two modalities of interest.  This further 

indicates the potential clinical application of the developed software for the accurate 

quantification of adipose tissue.  
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8.2 Clinical Limitations 

Patient weight proved to be issue in many areas of this study.  As stated previously a number of 

the patients involved in the study had issues with the MRI scanning stage due to their increased 

weight but this increased weight also affected the quality of the datasets gathered.  During the 

evaluation period of this study, it was found that the datasets of larger patients did not segment as 

well as others.  It was noted that towards the centre of a dataset (near the middle slice) the 

segmentation algorithm failed to successfully segment adipose tissue in the abdomen and upper 

chest (see (a) in Figure 8-1).  This was due to a substantial drop in intensity values in that region 

of the dataset.  With patients with a high BMI (especially those in the obese range) this effect 

was clearly visible.  In order to overcome this, a second iteration of the segmentation algorithm 

had to be performed specifically targeting the abdomen and chest.  In the majority of cases this 

succeeded in successfully segmenting that part of the body but in some of the datasets where the 

subject was very large a proportion of the adipose tissue in this region  was still not segmented 

(see (b) in Figure 8-1).    
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Figure 8-1 Example of the Effects of Patient Weight on Segmentation; (a) segmented slice showing 

un-segmented areas in the abdomen and chest regions and (b) segmentation results after an 

extra iteration of the algorithm in those specific areas.  Adipose Tissue highlighted in yellow 

Due to the time limitations associated with this study, only one MRI protocol was tested.  

Testing different protocols (such as changing the scan axis or slice thickness) may provide better 

imaging results with larger patients.  Alternatively, the use an open MRI scanner may also 

overcome the difficulties associated with patient weight and scanning (it would allow for more 

obese patients to be scanned) and further investigation as to the cause of the drop in intensity 

values towards the centre of datasets for obese patients would be of interest.  Despite the issues 

with weight and the quality of the MRI datasets the findings still correlated with DEXA. 

8.3 Research Summary 

This thesis described the development of a proof of concept software tool which could be used as 

an alternative to the current standard modality (DEXA) for the evaluation of HIV-associated 

lipodystrophy using full body MRI datasets.  The primary features of the software tool are 

accurate and reproducible automatic adipose segmentation, presentation of fat distribution in a 

similar method to that of the currently used modality and volume visualization of both the 

external morphology of patients and the distribution of fat throughout a patient’s body.   

In chapter 2 a review of the pertinent literature relevant to this project is presented to primarily 

identify and review the methodologies relevant to the segmentation, quantification and 

visualization of adipose tissue.  The key components of adipose segmentation were identified as 

accuracy and reproducibility.  In order to achieve these aims a fully automatic segmentation 

method was implemented as part of the software tool.  Based on clinician feedback, the 

quantification of adipose tissue and how the results of quantification were presented was based 

strongly on the techniques used by DEXA (implementation of DEXA-style cut lines and 

presentation of fat distribution in a similar method to DEXA).  Finally, using volume 

visualization techniques, the software tool allows clinicians to view the external morphology of a 

patient and the fat distribution throughout the body in a volumetric manner. 
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Chapter 3 described in detail the graphical user interface developed as part of the software tool.  

The interface was developed with a number of aims.  A simple to use and intuitive interface was 

identified as an important aspect in order to allow clinicians who may not be very 

technologically adept to use the software tool with ease.  Similarly, the decision to use cross-

platform languages, libraries and toolkits was made in order to insure the software could be used 

on various operating systems as there is no standardized operating system clinicians use. 

In chapter 4 the methods and algorithms used during the image processing stages (from the 

initial stage of loading the DICOMs to finally viewing the segmented images) were covered in 

detail.  A correction method for intensity inhomogeneity (contrast limited adaptive histogram 

equalization) was implemented as a necessary step for correcting an inherent MRI artefact.  A 

fully automatic segmentation is presented as the next step in the processing stage and the process 

of quantifying the segmented tissue is also described in detail. 

Chapter 5 described in detail the approach taken for volume visualization for the software tool. 

In chapter 6, the findings of this project were presented.  Evaluation of the segmentation 

technique used found that it was accurately segmenting the MRI datasets.  Statistical evaluation 

of the results gathered from both MRI and DEXA with regards to fat distribution indicated a 

strong correlation between the two imaging modalities (as found in [16]) and showed that in 

most cases the two methods agree and give relatively similar results.  Feedback from clinicians 

indicated that, while interesting, the volume visualization of patients was not necessarily 

clinically useful. 

8.4 Conclusions 

This thesis is the culmination of a translational medicine research project which involves the 

merging of computer science and clinical medicine in order to facilitate clinicians with a tool 

which could be used to assess HIV-associated lipodystrophy using MRI data. 

For the completion of this project, the principle components of the five objectives outlined have 

been successfully achieved.  A software tool has been developed which allows accurate 
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segmentation of adipose tissue from full body MRI datasets, volume visualization of both 

datasets and fat distribution and a clinically relevant metric for quantifying fat distribution. 

A small patient cohort (n = 9) of HIV+ patients, predominantly females, was recruited to 

undergo DEXA and MRI imaging in order to evaluate the developed tool. 

A number of validation strategies were undertaken in order to assess the software tool compared 

to the current method used to evaluate HIV-associated lipodystrophy.  The principle findings 

which arose from the validation stages are: 

 Based on expert opinion (n = 7) the segmentation technique implemented was found to be 

accurate and 100% reproducible.  Due to the fact that it was fully automatic it did not 

require user interaction and was significantly less time consuming then manual or semi-

automatic techniques. 

 The quantification of fat distribution generated by the software demonstrated a strongly 

correlated statistical relationship with those of the existing disease evaluation technique.  

A correlation coefficient r of 0.68 and significance level of p < 0.0001.  A mean 

difference in fat measurements between the two techniques was 5.62%.   

 Evaluation of the software tool clearly demonstrated that MRI could be used in place of 

DEXA for measuring fat distribution to aid in the management and treatment of the 

condition. 

The developed software tool has been evaluated in its current state and provides users with a set 

of tools to quantify and visualize the distribution of fat throughout the body of patients with 

HIV-associated lipodystrophy.  The results of the evaluation are positive and justify the 

possibility of a larger and more in depth clinical trial to further strengthen the results of statistical 

analysis. 
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8.5 Limitations and Future Works  

The development methodologies and the completed software tool have achieved the principal 

aims and objectives of this research.  However a number of limitations were identified during the 

evaluation stage. 

8.5.1 Limitations 

The increased weight and body mass index of the patients available for recruitment for this study 

proved to be an issue with regards to MRI scanning.  It was noted that as the weight of a patient 

increased the quality of images produced by MRI degraded in specific areas.  Towards the centre 

of the datasets in the region of the upper chest it was found that tissue intensity values were 

much lower then in other areas of the within the same slice of data.  In some cases this hampered 

the results of segmentation with thinner patients presenting with much better segmentation 

results.  It was also noted by the clinicians involved that at least one patient could not physically 

enter the MRI scanner due to their weight (and were subsequently removed from the cohort) and 

that a number of other patients had difficulty entering and comfortably staying in the scanner 

also due to their weight. 

Recruitment of cases was difficult as the overall patient numbers attending the HIV/AIDS unit 

are reasonably low and several patients declined to participate.  Increased patient cohorts from 

other clinical sites would have involved ethical approval from the individual sites which was not 

feasible to complete in the time frame of this work.  Ethics is currently being applied for to 

facilitate on-going recruitment for imaging purposes and longitudinal imaging along the patient 

pathway. 

The large size of the datasets collected for this study hampered the volume visualization process.  

In order to render a full body dataset a reasonably high-end dedicated graphics card is required.  

It is unlikely a clinician would have access such hardware.   

8.5.2 Future Work 

Two of the main features identified with regards to the use of MRI for evaluating HIV-associated 

lipodystrophy as part of possible future work were the ability to quantify fat in the anterior and 
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posterior regions of the body and the volumetric visualization which can be achieved using MRI 

data.  In a long term study in which patients would be scanned repeatedly over a set period of 

time, both of these features would be advantageous.  The quantification of the anterior and 

posterior trunk fat could be used to evaluate the progression of the lipodystrophy (especially in 

relation to increased accumulation of fat in the abdomen dorsocervical region as the condition 

progresses). Similarly, volume visualization could be used to compare the external morphology 

of a patient over a period of time, to visually identify changes in fat distribution through the 

comparison of full body renderings. 

Increasing the sensitivity and accuracy of the segmentation would yield even better fat 

measurements from MRI dataset.  Implementation and testing of some of the various modified 

fuzzy c-means algorithms would be of interest in order to get the best segmentation results 

available [67, 68].   

With regards to volume visualization, implementation of the surface based visualization using 

modern OpenGL features such as Vertex Buffer Objects (rather then display lists as used in this 

study) or the implementation of GPU based rendering could substantially increase the 

performance of the volume visualization.   

At present there is the possibility to expand this study in order to further develop the software 

tool for the purposes of general obesity trails.  The researcher will be meeting with a group of 

clinicians from this field to discuss this potential. 
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9.2 Appendix B 

Code Region Tissue 
(%Fat) 

Region 
(%Fat) 

Tissue 
(g) 

Fat (g) Lean (g) BMC (g) Total 
Mass 
(kg) 

 

BH0001 Left 
Arm 

31.9 30.6 3974 1267 2707 164 4.1  

 Left Leg 47.7 46.4 18401 8785 9616 534 18.9  
 Left 

Trunk 
46 45.1 23383 10747 12636 428 23.8  

 Left 
Total 

44.2 42.9 48125 21278 26847 1457 49.6  

 Right 
Arm 

31.9 30.6 3974 1267 2707 164 4.1  

 Right 
Leg 

47.9 46.4 17156 8219 8937 551 17.7  

 Right 
Trunk 

46 45.2 23772 10940 12831 418 24.2  

 Right 
Total 

44.2 42.9 47245 20899 26345 1479 48.7  

 Arms 31.9 30.6 7948 2534 5413 329 8.3  
 Legs 47.8 46.4 35557 17004 18553 1085 36.6  
 Trunk 46 45.2 47154 21688 25467 846 48  
 Android 51.9 51.5 7784 4041 3743 61 7.8  
 Gynoid 51.1 50.3 14763 7547 7216 253 15  
 Total 44.2 42.9 95369 42177 53192 2936 98.3  
          
      Trunk / 

Total 
Legs / 
Total 

(Arms + 
Legs) / 
Total 

      0.51 0.4 0.9  
          

 

 

Code Region Tissue 
(%Fat) 

Region 
(%Fat) 

Tissue 
(g) 

Fat (g) Lean (g) BMC (g) Total 
Mass 
(kg) 

 

BH0002 Left 
Arm 

40.7 39 3062 1245 1816 130 3.2  

 Left Leg 59.2 57.1 15029 8904 6126 553 15.6  
 Left 

Trunk 
58.7 57 20081 11784 8297 601 20.7  

 Left 
Total 

56 53.9 40207 22515 17693 1598 41.8  

 Right 40.7 39 3240 1317 1923 140 3.4  
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Arm 
 Right 

Leg 
59.2 57.1 15264 9041 6222 569 15.8  

 Right 
Trunk 

58.7 56.9 19876 11666 8210 614 20.5  

 Right 
Total 

56.1 54 40103 22516 17587 1617 41.7  

 Arms 40.7 39 6402 2563 3739 279 6.6  
 Legs 59.2 57.1 30293 17945 12348 1122 31.4  
 Trunk 58.7 57 39957 23450 16507 1214 41.2  
 Android 59.9 59.2 6298 3773 2525 75 6.4  
 Gynoid 63.3 62.2 16282 10310 5972 295 16.6  
 Total 56.1 53.9 80311 45031 35280 3214 83.5  
          
      Trunk / 

Total 
Legs / 
Total 

(Arms + 
Legs) / 
Total 

      0.52 0.4 0.87  
          

 

Code Region Tissue 
(%Fat) 

Region 
(%Fat) 

Tissue 
(g) 

Fat (g) Lean (g) BMC (g) Total 
Mass 
(kg) 

 

BH0003 Left 
Arm 

23.1 22.2 4895 1130 3764 195 5.1  

 Left Leg 23.5 22.6 13501 3177 10324 537 14  
 Left 

Trunk 
39.7 38.8 24905 9891 15014 577 25.5  

 Left 
Total 

31.9 30.8 45919 14631 31288 1576 47.5  

 Right 
Arm 

23.1 22.2 4895 1130 3764 195 5.1  

 Right 
Leg 

23.6 22.6 13912 3279 10633 583 14.5  

 Right 
Trunk 

39.7 38.7 24489 9728 14761 621 25.1  

 Right 
Total 

31.7 30.6 45911 14568 31343 1639 47.6  

 Arms 23.1 22.2 9728 2261 7529 391 10.2  
 Legs 23.5 22.6 27413 6456 20957 1120 28.5  
 Trunk 39.7 38.8 49394 19619 29774 1198 50.6  
 Android 46.2 45.9 8037 3712 4325 55 8.1  
 Gynoid 29.3 28.6 13010 3815 9195 339 13.3  
 Total 31.8 30.7 91830 29199 62631 3215 95  
          
      Trunk / Legs / (Arms + 
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Total Total Legs) / 
Total 

      0.67 0.22 0.44  
          

 

Code Region Tissue 
(%Fat) 

Region 
(%Fat) 

Tissue 
(g) 

Fat (g) Lean (g) BMC (g) Total 
Mass 
(kg) 

 

BH0004 Left 
Arm 

42.9 41.5 4220 1812 2408 142 4.4  

 Left Leg 52.3 50.7 17065 8929 8136 531 17.6  
 Left 

Trunk 
49.6 48.9 25066 12443 12622 400 25.5  

 Left 
Total 

49.1 47.8 48005 23576 24429 1271 49.3  

 Right 
Arm 

42.9 41.5 4220 1812 2408 142 4.4  

 Right 
Leg 

52.3 50.7 17065 8929 8136 531 17.6  

 Right 
Trunk 

49.6 48.9 24911 12367 12544 361 25.3  

 Right 
Total 

48.6 47.3 48781 23718 25063 1372 50.2  

 Arms 42.9 41.5 8441 3624 4816 284 8.7  
 Legs 52.3 50.7 34129 17858 16271 1061 35.2  
 Trunk 49.6 48.9 49977 24810 25167 760 50.7  
 Android 55.7 55.4 8891 4948 3943 39 8.9  
 Gynoid 55.8 54.7 15559 8681 6877 303 15.9  
 Total 48.9 47.6 96785 47294 49492 2643 99.4  
          
      Trunk / 

Total 
Legs / 
Total 

(Arms + 
Legs) / 
Total 

      0.52 0.38 0.87  
          

 

Code Region Tissue 
(%Fat) 

Region 
(%Fat) 

Tissue 
(g) 

Fat (g) Lean (g) BMC (g) Total 
Mass 
(kg) 

 

BHR007 Left 
Arm 

28.9 27.7 3666 1058 2608 159 3.8  

 Left Leg 9 8.6 9776 878 8898 495 10.3  
 Left 

Trunk 
35.5 34.5 23789 8337 15451 400 24.2  
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 Left 
Total 

26.6 25.8 39854 10602 29252 1301 41.2  

 Right 
Arm 

28.9 27.7 4199 1212 2987 179 4.4  

 Right 
Leg 

9 8.6 9330 841 8489 495 9.8  

 Right 
Trunk 

35 34.4 22540 7892 14648 381 22.9  

 Right 
Total 

26.7 25.8 38356 10236 28120 1266 39.6  

 Arms 28.9 27.7 7865 2270 5595 338 8.2  
 Legs 9 8.6 19106 1719 17397 990 20.1  
 Trunk 35 34.5 46328 16229 30099 781 47.1  
 Android 44.3 43.9 7865 3211 4039 57 7.3  
 Gynoid 13.9 13.5 10037 1399 8639 287 10.3  
 Total 26.6 25.8 78210 20838 57373 2567 80  
          
      Trunk / 

Total 
Legs / 
Total 

(Arms + 
Legs) / 
Total 

      0.78 0.08 0.25  
          

 

Code Region Tissue 
(%Fat) 

Region 
(%Fat) 

Tissue 
(g) 

Fat (g) Lean (g) BMC (g) Total 
Mass 
(kg) 

 

BHR008 Left 
Arm 

48.7 46.4 3632 1768 1864 175 3.8  

 Left Leg 59.5 57.2 14025 8349 5677 577 14.6  
 Left 

Trunk 
56 54.3 19695 11026 8669 619 20.3  

 Left 
Total 

55.3 53.1 39092 21626 17466 1597 40.7  

 Right 
Arm 

48.7 46.4 3961 1928 2033 194 4.2  

 Right 
Leg 

59.5 57.2 14150 8242 5726 573 14.7  

 Right 
Trunk 

55.9 54.3 18956 10602 8354 560 19.5  

 Right 
Total 

54.8 52.5 39460 21620 17840 1685 41.1  

 Arms 48.7 46.4 7593 3969 3897 369 8  
 Legs 59.5 57.2 28176 16773 11402 1150 29.3  
 Trunk 56 54.3 38652 21629 17023 1179 39.8  
 Android 56.6 55.9 5183 2935 2248 70 5.3  
 Gynoid 62.6 61.3 14238 8915 5323 314 14.6  
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 Total 55.1 52.8 78552 43246 35306 3283 81.8  
          
      Trunk / 

Total 
Legs / 
Total 

(Arms + 
Legs) / 
Total 

      0.5 0.39 0.95  
          

 

Code Region Tissue 
(%Fat) 

Region 
(%Fat) 

Tissue 
(g) 

Fat (g) Lean (g) BMC (g) Total 
Mass 
(kg) 

 

BHR009 Left 
Arm 

28.8 27.4 3528 1016 2512 177 3.7  

 Left Leg 29.2 27.9 10615 3096 7519 476 11.1  
 Left 

Trunk 
45.2 44.2 21887 9890 11997 498 22.4  

 Left 
Total 

37.5 36.2 38668 14516 24151 1399 40.1  

 Right 
Arm 

29.2 27.7 3216 938 2278 171 3.4  

 Right 
Leg 

29.2 27.9 10523 3072 7452 480 11  

 Right 
Trunk 

45.2 44.2 21845 9872 11972 504 22.3  

 Right 
Total 

37.9 36.6 37786 14311 23476 1357 39.1  

 Arms 29 27.6 6744 1954 4790 348 7.1  
 Legs 29.2 27.9 21138 6167 14971 956 22.1  
 Trunk 45.2 44.2 43732 19762 23970 1003 44.7  
 Android 51.8 51.4 6959 3606 3353 54 7  
 Gynoid 37.6 36.6 10799 4062 6737 304 11.1  
 Total 37.7 36.4 76454 28827 47627 2756 79.2  
          
      Trunk / 

Total 
Legs / 
Total 

(Arms + 
Legs) / 
Total 

      0.69 0.21 0.41  
          

 

Code Region Tissue 
(%Fat) 

Region 
(%Fat) 

Tissue 
(g) 

Fat (g) Lean (g) BMC (g) Total 
Mass 
(kg) 

 

BHC001
A 

Left 
Arm 

22.9 21.7 3480 797 2682 199 3.7  

 Left Leg 41.6 39.9 13202 5495 7707 583 13.8  
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 Left 
Trunk 

36.7 35.3 15771 5783 9988 628 16.4  

 Left 
Total 

36.2 34.5 34375 12431 21944 1665 36  

 Right 
Arm 

22.7 21.4 3481 790 2691 203 3.7  

 Right 
Leg 

41.7 39.9 13463 5610 7853 604 14.1  

 Right 
Trunk 

36.6 35.3 14939 5473 9467 566 15.5  

 Right 
Total 

36 34.3 34197 12301 21896 1660 35.9  

 Arms 22.8 21.6 6961 1588 5373 402 7.4  
 Legs 41.6 39.9 26665 11105 15560 1187 27.9  
 Trunk 36.7 35.3 30711 11256 19455 1194 31.9  
 Android 32.5 31.9 4052 1316 2735 81 4.1  
 Gynoid 45.8 44.6 10316 4725 5591 285 10.6  
 Total 36.1 34.4 68572 24732 43840 3325 71.9  
          
      Trunk / 

Total 
Legs / 
Total 

(Arms + 
Legs) / 
Total 

      0.46 0.45 1.13  

 

Code Region Tissue 
(%Fat) 

Region 
(%Fat) 

Tissue 
(g) 

Fat (g) Lean (g) BMC (g) Total 
Mass 
(kg) 

 

BHC002
A 

Left 
Arm 

36.2 34.7 4327 1568 2759 190 4.5  

 Left Leg 44.8 43 11638 5210 6428 487 12.1  
 Left 

Trunk 
45.5 44.3 16166 7347 8818 416 16.6  

 Left 
Total 

42.5 40.9 34372 14615 19757 1339 35.7  

 Right 
Arm 

36.1 34.5 3931 1419 2511 187 4.1  

 Right 
Leg 

44.8 43 11894 5330 6564 514 12.4  

 Right 
Trunk 

45.6 44.3 16385 7470 8915 458 16.8  

 Right 
Total 

42.6 40.9 34563 14723 19840 1421 36  

 Arms 36.2 34.6 8257 2987 5270 377 8.6  
 Legs 44.8 43 23533 10540 12992 1001 24.5  
 Trunk 45.5 44.3 32550 14817 17733 874 33.4  
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 Android 49.7 49.1 5142 2554 2588 58 5.2  
 Gynoid 48.8 47.6 9564 4664 4900 225 9.8  
 Total 42.6 40.9 68935 29338 39597 2760 71.7  
          
      Trunk / 

Total 
Legs / 
Total 

(Arms + 
Legs) / 
Total 

      0.51 0.36 0.91  

 

9.3 Appendix C 

Code Region Tissue 
(%Fat) 

Region 
(%Fat) 

Tissue 
(g) 

Fat (g) Lean (g) Total 
Mass 
(kg) 

 

BH0001 Left Arm 39.3 12.33 3332 1309 2021 3.3  

 Left Leg 47.8 13.582 20524 9815 9815 20.52  

 Left 
Trunk 

51.6 34.75 22669 11692 10976 22.66  

 Left 
Total 

46.2 19.57 46526 22817 23708 23.7  

 Right 
Arm 

43.2 12.97 4169 1802 2368 4.17  

 Right Leg 48.5 13.28 21071 10228 10842 21.07  

 Right 
Trunk 

58.3 41.33 23632 13795 9836 23.63  

 Right 
Total 

50.03 20.78 48873 25825 23048 48.87  

 Arms 41.46 12.7 7502 3110 4391 7.5  

 Legs 48.18 13.4 41596 20044 21551 41.59  

 Trunk 55.04 38.02 46301 25487 20813 46.3  

 Anterior 
Trunk 

56.2 30.73 19353 10299 9054 19.35  

 Posterior 
Trunk 

56.4 45.31 26947 15188 11759 26.94  

 Total 48.13 20.18 95399 48642 46757 95.4  

         

      Trunk / 
Total 

Legs / 
Total 

(Arms + 
Legs) / 
Total 

      0.523 0.412 0.476 

 

Code Region Tissue Region Tissue Fat (g) Lean (g) Total  
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(%Fat) (%Fat) (g) Mass 
(kg) 

BH0002 Left Arm 52.61 21.1 2766 1455.193 1310.807 2.76  

 Left Leg 52.84 22.27 17731 9369.06 8361.94 17.73  

 Left 
Trunk 

49.4 32.79 19114 9442.316 9671.684 19.115  

 Left 
Total 

51.62 25.23 39612 20447.71 19164.29 24.097  

 Right 
Arm 

49.56 20.07 2696 1336.138 1359.862 2.69  

 Right Leg 55.2 22.62 17994 9932.688 8061.312 17.99  

 Right 
Trunk 

57.08 37.98 20196 11527.88 8668.123 20.196  

 Right 
Total 

53.91 26.82 40887 22042.18 18844.82 40.887  

 Arms 51.11 20.61 5463 2792.139 2670.861 5.46  

 Legs 53.98 22.45 35725 19284.36 16440.65 35.72  

 Trunk 53.35 35.377 39311 20972.42 18338.58 39.311  

 Anterior 
Trunk 

57.66 35.91 18671 10765.7 7905.301 18.67  

 Posterior 
Trunk 

49.44 34.81 20639 10203.92 10435.08 20.63  

 Total 52.76 26.02 80499 42471.27 38027.73 80.5  

         

      Trunk / 
Total 

Legs / 
Total 

(Arms + 
Legs) / 
Total 

      0.49 0.45 0.52 

 

Code Region Tissue 
(%Fat) 

Region 
(%Fat) 

Tissue 
(g) 

Fat (g) Lean (g) Total 
Mass 
(kg) 

 

BH0003 Left Arm 52.36 14.9 4164 2180 1983 4.16  

 Left Leg 36.26 11.24 18494 6707 11787 18.49  

 Left 
Trunk 

57.44 40.28 23334 13405 9928 23.33  

 Left 
Total 

48.69 20.83 45993 22293 23699 23.69  

 Right 
Arm 

42.46 11.75 4129 1753 2375 4.12  

 Right Leg 37.32 9.98 18150 6774 11376 18.15  

 Right 
Trunk 

56.3 41.5 24726 13922 10803 24.72  
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 Right 
Total 

45.36 19.3 47006 22450 24555 47  

 Arms 47.43 13.31 8294 3934 4359 8.29  

 Legs 36.79 10.57 36645 13481 23163 36.64  

 Trunk 56.86 41.24 48060 27328 20732 48.06  

 Anterior 
Trunk 

57.9 40.66 23267 13472 9795 23.36  

 Posterior 
Trunk 

55.88 41.84 24792 13855 10936 24.79  

 Total 47.03 20.07 93000 44744 48255 93  

         

      Trunk / 
Total 

Legs / 
Total 

(Arms + 
Legs) / 
Total 

      0.61 0.301 0.39 

 

Code Region Tissue 
(%Fat) 

Region 
(%Fat) 

Tissue 
(g) 

Fat (g) Lean (g) Total 
Mass 
(kg) 

 

BH0004 Left Arm 53.9 15.38 3653 1969 1684 3.65  

 Left Leg 50.95 15.32 24848 12662 12186 24.84  

 Left 
Trunk 

52.7 34.69 20952 11043 9908 20.95  

 Left 
Total 

52.52 20.17 49454 25675 23779 23.77  

 Right 
Arm 

56.22 14.61 3399 1911 1487 3.39  

 Right Leg 56.13 17.58 24578 13797 10780 24.57  

 Right 
Trunk 

48.45 31.53 21767 10547 11220 21.76  

 Right 
Total 

53.6 21 49745 26256 23488 49.74  

 Arms 55.02 14.99 7052 3880 3171 7.05  

 Legs 53.53 16.42 49427 26460 22967 49.42  

 Trunk 50.54 33.076 42720 21590 21129 42.72  

 Anterior 
Trunk 

46.67 28.43 20392 9517 10875 20.39  

 Posterior 
Trunk 

54.07 37.96 22327 12073 10253 22.32  

 Total 53.06 20.59 99200 51931 47268 99.2  

         

      Trunk / 
Total 

Legs / 
Total 

(Arms + 
Legs) / 
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Total 

      0.41 0.5 0.58 

 

Code Region Tissue 
(%Fat) 

Region 
(%Fat) 

Tissue 
(g) 

Fat (g) Lean (g) Total 
Mass 
(kg) 

 

BHR008 Left Arm 47.447 21.67 5333 2530.349 2802.651 5.33  

 Left Leg 51.29 19.31 19439 9970.263 9468.737 19.43  

 Left 
Trunk 

58.95 43 16699 9844.061 6854.94 16.69  

 Left 
Total 

52.56 25.07 41472 21797.68 19674.32 21.61  

 Right 
Arm 

50.81 23.49 5421 2754.41 2666.59 5.42  

 Right Leg 55.78 20.15 18800 10486.64 8313.36 18.8  

 Right 
Trunk 

58.41 41.55 16205 9465.341 6739.66 16.2  

 Right 
Total 

55 25.51 40427 22234.85 18192.15 40.42  

 Arms 49.14 22.58 10755 5285.007 5469.993 10.75  

 Legs 53.5 19.73 38240 20458.4 17781.6 38.24  

 Trunk 58.69 42.29 32904 19311.36 13592.64 32.9  

 Anterior 
Trunk 

62.64 42.18 15258 9557.611 5700.389 15.25  

 Posterior 
Trunk 

55.27 42.39 17646 9752.944 7893.056 17.64  

 Total 53.78 25.29 81899 44045.28 37853.72 81.9  

         

      Trunk / 
Total 

Legs / 
Total 

(Arms + 
Legs) / 
Total 

      0.43 0.45 0.57 

 

Code Region Tissue 
(%Fat) 

Region 
(%Fat) 

Tissue 
(g) 

Fat (g) Lean (g) Total 
Mass 
(kg) 

 

BHR009 Left Arm 33.39 8.63 3207 1071 2136 3.2  

 Left Leg 42.82 9.46 15809 6770 9039 15.8  

 Left 
Trunk 

54.09 32.64 19144 10356 8788 19.14  

 Left 43.43 15.73 38161 18197 19964 19.96  
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Total 

 Right 
Arm 

31.99 9.3 4399 1407 2991 4.39  

 Right Leg 47.02 10.14 16013 7530 8483 16.01  

 Right 
Trunk 

56.2 35.87 20425 11479 8945 20.42  

 Right 
Total 

45.07 16.82 40838 20417 20420 40.83  

 Arms 32.58 9 7606 2478 5128 7.6  

 Legs 44.93 9.81 31822 14300 17522 31.82  

 Trunk 55.18 34.26 39570 21835 17734 39.57  

 Anterior 
Trunk 

52.1 29.52 18054 9407 8647 18.05  

 Posterior 
Trunk 

57.76 39.01 21515 12428 9087 21.51  

 Total 44.25 16.27 78990 38615 40384 79  

         

      Trunk / 
Total 

Legs / 
Total 

(Arms + 
Legs) / 
Total 

      0.57 0.37 0.43 

 

Code Region Tissue 
(%Fat) 

Region 
(%Fat) 

Tissue 
(g) 

Fat (g) Lean (g) Total 
Mass 
(kg) 

 

BHC001A Left Arm 35.11 10.9 4062 1426 2636 4.06  

 Left Leg 42.6 12.88 18198 7752 10445 18.19  

 Left 
Trunk 

47.36 27.19 12731 6030 6701 12.73  

 Left 
Total 

41.69 15.94 34992 15209 19782 19.78  

 Right 
Arm 

32.31 9.8 3496 1130 2366 3.49  

 Right Leg 47.81 13.61 18616 8902 9714 18.61  

 Right 
Trunk 

47.92 29.76 13894 6659 7234 13.89  

 Right 
Total 

42.68 16.84 36007 16681 19315 36  

 Arms 33.81 10.41 7559 2556 5003 7.55  

 Legs 45.24 13.26 36814 16654 20159 36.81  

 Trunk 47.65 28.48 26626 12689 13936 26.62  

 Anterior 
Trunk 

49.39 28.35 12788 6316 6472 12.78  
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 Posterior 
Trunk 

46.05 28.61 13837 6373 7464 13.83  

 Total 42.19 16.38 70999 31901 39098 71  

         

      Trunk / 
Total 

Legs / 
Total 

(Arms + 
Legs) / 
Total 

      0.4 0.52 0.6 

         

Code Region Tissue 
(%Fat) 

Region 
(%Fat) 

Tissue 
(g) 

Fat (g) Lean (g) Total 
Mass 
(kg) 

 

BHC002A Left Arm 42.17 12.81 3730 1573 2157 3.73  

 Left Leg 44.43 12.19 16108 7158 8950 16.1  

 Left 
Trunk 

51.55 36.05 16458 8484 7973 16.45  

 Left 
Total 

46.05 18.21 36297 17216 19081 19.08  

 Right 
Arm 

39.42 12.32 4503 1775 2728 4.5  

 Right Leg 48.25 13.16 15349 7407 7942 15.34  

 Right 
Trunk 

55.97 37.16 15249 8535 6713 15.24  

 Right 
Total 

47.88 19.02 35102 17718 17384 35.1  

 Arms 40.67 12.55 8234 3348 4885 8.23  

 Legs 46.3 12.67 31458 14565 16892 31.45  

 Trunk 53.67 36.99 31707 17020 14687 31.7  

 Anterior 
Trunk 

53.93 33.41 14245 7685 6560 14.24  

 Posterior 
Trunk 

53.45 40.57 17461 9334 8127 17.46  

 Total 46.97 18.62 71400 34934 36465 71.4  

         

      Trunk / 
Total 

Legs / 
Total 

(Arms + 
Legs) / 
Total 

      0.49 0.42 0.51 

 

9.4 Appendix D 

FN Rater 1 Rater 2 Rater 3 Rater 4 Rater 5 Rater 6 Rater 7 
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Image 1 
1 1 1 2 2 2 2 

Image 2 
1 1 2 2 1 2 1 

Image 3 
2 2 1 2 2 2 1 

Image 4 
2 1 1 2 1 2 2 

Image 5 
1 1 1 2 2 2 2 

Image 6 
1 2 1 2 2 2 2 

Image 7 
1 1 2 1 1 2 2 

Image 8 
1 1 2 1 2 2 1 

Image 9 
2 2 1 1 1 2 1 

Image 10 
1 1 1 1 1 2 1 

Image 11 
1 1 1 1 2 2 1 

 

FP Rater 1 Rater 2 Rater 3 Rater 4 Rater 5 Rater 6 Rater 7 

Image 1 
2 1 2 1 2 1 1 

Image 2 
2 2 2 1 1 2 1 

Image 3 
1 2 1 1 2 1 1 
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Image 4 
1 2 2 1 1 2 1 

Image 5 
1 1 2 2 2 2 1 

Image 6 
1 1 2 2 1 1 1 

Image 7 
1 1 2 2 2 1 1 

Image 8 
1 2 2 2 2 1 1 

Image 9 
1 2 1 2 2 2 1 

Image 10 
1 2 2 2 2 1 2 

Image 11 
2 1 2 2 2 2 2 

 

TP Rater 1 Rater 2 Rater 3 Rater 4 Rater 5 Rater 6 Rater 7 

Image 1 
4 4 4 4 5 4 4 

Image 2 
4 5 4 4 4 5 5 

Image 3 
4 4 5 4 4 4 5 

Image 4 
5 5 4 4 4 5 5 

Image 5 
5 4 4 4 5 4 5 

Image 6 
5 5 4 4 5 5 5 
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Image 7 
5 5 4 4 4 5 5 

Image 8 
5 5 5 4 5 4 5 

Image 9 
5 5 5 4 5 4 5 

Image 10 
5 4 5 4 5 4 5 

Image 11 
5 4 4 4 5 4 5 
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