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SUMMARY 

Cardiovascular diseases are the leading cause of death throughout the world and 

various estimates predict that heart diseases will remain the number one killer in the 

world. Pharmacotherapies have not shown significant long term survival benefits to the 

patients. Therefore, alternate therapeutic strategies such as bioactive agent delivery and 

cell therapy based approaches are being investigated. One of the major causes of heart 

failure is the disease progression after an ischemic event and any successful therapy will 

be needed over the course of several days/weeks. Oxidative stress is greatly increased 

in the myocardium following infarction. This plays a significant role in cardiac disease 

progression and it has also been implicated in the failure of implanted cell therapy. 

Therefore, reducing oxidative stress in damaged tissue using antioxidants may have 

broad clinical implications for both the treatment of cardiac dysfunction and for cardiac 

regeneration applications. This dissertation work examines the effect of sustained 

delivery of endogenous antioxidant superoxide dismutase (SOD) to the rat myocardium 

following ischemia/reperfusion (IR) using polyketal polymers as drug carriers. The 

second major objective of this dissertation is to examine the effects of oxidative stress 

on cardiac progenitor cells – a promising endogenous adult stem cell in cardiac cell 

therapy applications. 

Intracellular delivery of Cu/Zn SOD (SOD1) remains difficult and studies with 

SOD1 have had little success, mainly due to poor pharmacokinetics of the drug. Thus 

newer methods are required to improve the delivery of this rapidly-cleared protein. 

Biocompatible and neutral degradation products formation following the hydrolysis of 

poly(cyclohexane-1,4-diyl acetone dimethylene ketal) (PCADK) makes this polymer an 

attractive carrier to deliver drugs to treat chronic inflammatory heart diseases. We tested 

the in vitro and in vivo efficacy of SOD1 microencapsulated within PCADK polymer 
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(PKSOD) and found that (a) PKSOD efficiently scavenges both extra- and intra-cellular 

superoxide formed within RAW macrophages and (b) PKSOD but not free SOD1 

treatment improves the acute cardiac function and decreases apoptosis in the ischemic 

myocardium following IR.  

C-kit receptor positive cardiac progenitor cells (CPCs) have the potential to 

regenerate the myocardium following transplantation. However, one of the major bottle 

necks of cell based therapies is the poor survival of the transplanted cells and oxidative 

stress has been implicated in the death of the cells following transplantation. 

Additionally, oxidative stress and antioxidant levels control the differentiation, 

senescence and self renewal of stem cells. We studied the basal SOD levels and 

oxidative stress induced apoptosis of CPCs and found that (a) CPCs have significantly 

higher amounts of SODs compared to neonatal cardiomyocytes and (b) CPCs are 

resistant to oxidative stress induced apoptosis compared to myocytes. We have also 

studied the basal SOD levels of young and senescent phenotypes of human CPCs and 

found that young phenotype of CPCs have significantly higher activity of SOD2 

compared to the senescent phenotypes. 

 



CHAPTER 1 

INTRODUCTION 

Cardiac dysfunction following myocardial infarction is a leading cause of global 

mortality, and in the United States alone, there is roughly one death per minute due to a 

coronary event. In addition, according to the American Heart Association (AHA) report, 

the total financial burden to the US due to heart diseases runs in hundreds of billions of 

dollars each year outnumbering the direct and indirect costs associated with other major 

diseases. In the year 2007 alone, financial burden due to heart diseases in the US was 

about 180 billon dollars [1]. Thus, identifying new treatment options or improving the 

existing options could improve patient health and potentially reduce the enormous 

financial burdens.  

 

1.1 Motivation 

Ischemic heart diseases are a leading cause of global mortality, and the best 

method of preventing and controlling cardiac disease is to adopt a healthy life style [2]. 

However in current populations, there is increasing incidence of obesity, diabetes and 

high blood pressure, all of which increases the risk of cardiovascular diseases, coupled 

with sedentary lifestyles. Not surprisingly, various estimates predict that cardiac 

diseases will remain the leading cause of death in the world [1, 3, 4]. Currently, heart 

transplantation is the only definitive cure for patients suffering from end stage heart 

failure. While a viable cure, there is immense shortage of donor hearts in addition to 

other perioperative risks involved in this procedure. Thus, not many patients survive to 

receive a donor heart. The existing care procedures, both surgical and pharmacological 

interventions, have significantly improved the survival rate of patients after a first 

coronary event. However, most of these interventions focus on restoring blood flow, and 
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are not able to prevent the myocardial disease progression and chronic remodeling 

events following myocardial infarction (MI), which eventually lead to heart failure [5]. 

Widely prescribed pharmacotherapeutic drugs such as β-adrenergic receptor blockers, 

Angiotensin-Converting-Enzyme inhibitors, lipid lowering drugs and anti-platelet agents 

significantly improve the quality of life and reduce repeated hospitalization. However, 

these drugs have systemic effects with concerns for side effects and, importantly, these 

drugs do not provide permanent cure to the heart, and the heart remains more 

vulnerable for future cardiac events [6]. Therefore, identifying alternate, effective 

treatment options is essential.  

Myocyte death following insults such as ischemia/reperfusion (IR) is one of the 

main reasons for the compromised ability of the heart to pump blood, leading to heart 

failure [7]. Further, these losses in the myocytes are mainly regional [8]. Therefore, a 

localized therapy reducing myocyte death or regenerating the lost myocytes could 

potentially provide a functional benefit to the heart. Although, previously heart was 

considered a post-mitotic organ with no regenerative potential, recent studies have 

revealed the existence of endogenous cardiac progenitor cells and evidences of 

cardiomyocyte renewal in the human heart [9, 10]. This led to the exploration of alternate 

therapeutic strategies by directly delivering bioactive molecules such as genes, micro-

RNAs and proteins or whole cells to the heart with the aim of regenerating the 

myocardium [11]. One of the major bottlenecks in the progress of bioactive molecule 

based interventions is the lack of a suitable carrier or delivery vehicles, and in the same 

manner, the progress in cell based interventions is mainly hindered by poor survival and 

engraftment of the transplanted cells to the myocardium. Therefore, a part of this 

dissertation investigates the potential of a recently invented polymeric carrier in 

delivering soluble factors to the myocardium and the other part of this dissertation 
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presents few basic studies on survival of cardiac progenitor cells under physiological 

stress conditions.  

1.2 Research Objectives 

Following myocardial ischemia/reperfusion (IR), there is excessive reactive 

oxygen species (ROS) generation, cardiomyocyte apoptosis, and ultimately cardiac 

failure [12]. Roles of high oxidative stress in cardiac disease progression have been a 

subject of considerable interest, and it has been proposed as the unifying mechanism 

behind various risk factors of heart diseases [13]. The superoxide radical is thought to be 

a major contributor in initiating the cascade of events associated with reperfusion injury 

and levels of the endogenous superoxide scavenger – superoxide dismutase (SOD) – 

sharply decrease shortly after occlusion. Direct administration of SOD, overexpression 

and gene therapy studies – that increase bioavailability of the enzyme – protect the heart 

against post-ischemic injury, reduces infarct size and reperfusion damage [14-16]. In 

addition to the damage of ROS on cardiomyocytes directly, they can also have 

deleterious effects on resident stem and progenitor cell population. The total oxidative 

stress level and antioxidant levels within the progenitor cells directly affect their 

differentiation abilities [17]. Thus, antioxidant status in and around the cells of the 

myocardium could affect both the normal physiology of a healthy heart and the 

pathophysiology and recovery of a diseased heart.  

Despite the large role of oxidative stress in cardiac dysfunction, successful 

antioxidant therapies have proved elusive, and many clinical trials have failed to show a 

significant benefit. It has been hypothesized that the therapy is limited by poor 

pharmacokinetics and inadequate delivery of the drug [18]. Although gene therapy with 

SOD is a good analytical tool, quantifying drug delivery and targeting tissues are very 

difficult with this method. Additionally, because of oncogenesis and other safety issues 

associated with it, gene therapy has not been met with much enthusiasm. Thus, 
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significant interest exists in developing better SOD delivery systems. Many modifications 

have been made on SOD protein mainly to improve the protein pharmacokinetics and for 

targeted delivery. Additionally, existing SOD therapies involve continuous injection or 

infusion of high levels of SOD protein following myocardial injury. Therefore, a treatment 

involving a single injection of SOD would be advantageous over existing treatment 

options. Polyketals, are recently described class of biomaterials and poly (cyclohexane-

1,4-diyl acetone dimethylene ketal) (PCADK), is a polyketal polymer that hydrolyzes 

slowly at physiological pH values and degrades into non-toxic, FDA-approved 

compounds. Importantly, PCADK causes minimal tissue inflammatory response and, its 

ability to treat inflammatory heart diseases by delivering small molecule anti-

inflammatory drugs to the myocardium is known [19]. In the first part of this research, 

PCADK is used to microencapsulate and deliver SOD1 to the myocardium. Initially, the 

efficacy of SOD1 encapsulated PCADK (PKSOD) in reducing the superoxide levels 

within the cells was evaluated in macrophage cell line, followed by investigations in vivo 

to study the effects of sustained reduction in excess superoxide levels on restoration of 

cardiac function following acute myocardial IR (Figure 1.1).  

Cell based therapies benefit the myocardium either through direct differentiation 

of transplanted cells to cardiovascular lineage or through secretion of survival factors. 

Various candidates of stem cell populations such as bone marrow stem cells and 

embryonic stem cells exist, and evidences from many clinical trials suggest modest 

benefits of cell therapy to the myocardium [20]. A promising recent addition to these cell 

types is endogenous c-Kit positive myocardial progenitors. They exhibit robust 

cardiovascular lineage differentiation potential, and can be isolated during biopsies 

which can later be expanded in vitro for subsequent autologous administrations [10, 21]. 

Because of the promising regenerative potential of these cells, preclinical studies are 

already completed, and phase 1 clinical trials are in progress. However, transplanting 
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any cell type to the ischemic myocardium is a challenge because of the hostile tissue 

microenvironment with enhanced oxidative stress and the excessive inflammatory 

response after IR. As mentioned above, excessive oxidative stress levels and the 

antioxidant status of the cells affects both the survival and differentiation ability of 

progenitor cells. Compared to other cell types, CPCs are recent with their identification 

only in the year 2003. Although they are in clinical trials, many of its basic properties 

such as its response to physiological stresses remain unknown.  Therefore, the second 

part of the thesis deals with understanding the response of CPCs when subjected to 

oxidative stress - one of the main physiological stresses in the ischemic myocardium 

(Figure 1.1). 

 

 

Figure 1.1. Schematic of the research objectives. Sustained delivery of SOD1 and stem cell 

transplantation has the potential in providing benefits to the diseased myocardium. In this 

research work, SOD1 will be encapsulated within PCADK polymer by double emulsion method. 

The efficacy of PKSOD in scavenging superoxide will be tested in RAW macrophage cell line. In 

vivo efficacy of PKSOD will be tested in a rat model of IR. Finally antioxidant SOD1 status and 

oxidative stress induced apoptotic response will be tested in CPCs. 
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1.3 Specific Aims 

The central hypothesis of this dissertation is that retention of SOD1 within the 

infarct area over the course of several weeks reduces superoxide levels and restores 

function following myocardial IR and that the levels of SODs protects the progenitor cells 

from oxidative stress induced death. The objective of the dissertation will be completed 

by testing the central hypothesis using the following aims. 

 

Specific Aim 1: Test the efficacy of SOD1 encapsulated PCADK microparticles 

(PKSOD) to scavenge superoxide in vitro. We hypothesize that micron-scale PKSOD 

can scavenge both intracellular and extracellular superoxide in vitro. In this aim, SOD1 

was encapsulated within PCADK through a double emulsion process and the ability of 

PKSOD to reduce elevated superoxide levels in stimulated RAW macrophage cell line 

was assessed. Intracellular and extracellular superoxide was quantified using 

dihydroethidium – a superoxide specific probe – based HPLC analysis.  

 

Specific Aim 2: Evaluate the ability of PKSOD to improve cardiac function. We 

hypothesize that PKSOD delivered to the myocardium following IR injury in rats, will 

scavenge excess superoxide following infarction and improve the cardiac function. In 

this study, oxidative stress levels in the myocardium were analyzed, and 

echocardiography based cardiac function was evaluated. Additionally, various 

histological analyses were performed to try to understand the cause of the observed 

functional effects of PKSOD.  

 

Specific Aim 3: Assess the SOD levels and oxidative stress induced death in 

CPCs. We hypothesize that SOD levels within the cardiac progenitor cells will improve 

the survival of these cells subjected to oxidative stress. Initially, CPCs were isolated from 
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rat myocardium and expanded in vitro. Oxidative stress induced cell death was analyzed 

using propidium iodide and TUNEL assays. Later, SOD levels of CPCs was compared 

with other cell types and the role of SODs in offering protection to CPCs were 

established using siRNA based gene silencing studies. 
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CHAPTER 2 

BACKGROUND 

2.1 Myocardial Infarction and pathophysiology of ischemia/reperfusion 

Recent AHA guidelines define heart failure as “a complex clinical syndrome that 

can result from any structural or functional cardiac disorder that impairs the ability of the 

ventricle to fill with or eject blood” [22]. One of the major causes of heart failure is the 

disease progression after an ischemic event. During ischemia, the myocardial oxygen 

demand is not met by the existing coronary blood perfusion due to events such as 

atherosclerotic plaques blocking the normal blood flow. While a mild ischemia leads to 

angina pectoris or chest pain, a severe ischemia and poor collateral distribution in the 

tissue bed causes irreversible injury to the cells leading to acute myocardial infarction 

(MI) – commonly termed as heart attack. MI following ischemia follows a “wavefront 

phenomenon” of cell death from sub-endocardial region to sub-epicardial region of the 

myocardium [23, 24]. 

Ischemia alters the normal biochemical, electrical and mechanical properties of 

the myocardium which eventually leads to severe myocardial injury. Because of 

decreased oxygen tension, the major mode of metabolism in the myocardium shifts from 

aerobic oxidative phosphorylation in mitochondria to anaerobic glycolysis through 

glycogen breakdown thus leading to a significant reduction in adenosine triphosphate 

(ATP) availability [25]. This reduces the activity of sodium/potassium ATPases, which 

alter the balance of crucial ions such as Na+, K+ and Ca2+. These changes lead to altered 

myocyte contraction, impaired membrane integrity and cell swelling which ultimately 

causes irreversible injury and oncotic cell lysis within minutes to hours following the 

onset of ischemia [26, 27].  
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The extensive necrosis and acute damages caused by permanent occlusion of 

coronary artery are reduced when there is spontaneous, pharmacological, or 

percutaneous restoration of blood flow termed as reperfusion [28, 29]. However, the 

beneficial effects of reperfusion are countered by its equally damaging effects called 

reperfusion injury, observed initially in 1960 [30]. Subsequent investigations have 

revealed various cellular and sub-cellular changes that promote inflammation and 

chronic remodeling events following reperfusion. One crucial cellular response initiated 

by reperfusion is the recruitment and activation of inflammatory cells such as neutrophils 

[31]. Important subcellular changes observed after reperfusion include damage to 

mitochondria by forming mitochondrial permeability transition pores [32] and 

development of hypercontracture in the myocytes due to calcium overload [33]. Further, 

humoral factors such as complement systems are activated by IR [34]. Additionally, IR 

stimulates the production of inflammatory cytokines [35] and free-radicals [36]. All these 

changes induced by reperfusion causes damaging effects such as endothelial 

dysfunction [37], no-reflow phenomenon [38], apoptosis [39], contraction band necrosis 

[40], reperfusion arrhythmias [41] and myocardial stunning [42]. Excessive levels of 

molecular oxygen [43] and calcium ions [44] were thought to be the causative agent of 

many of these events leading to debates in oxygen paradox and calcium paradox and 

later to the hypothesis that both these paradoxes are the facets of the same problem – 

the problem of excessive reactive oxygen species production after reperfusion [45, 46].  

 

2.2 Reactive oxygen species, oxidative stress and myocardial infarction 

Reactive oxygen species (ROS) include reactive molecules formed from 

molecular oxygen. They include species derived from reduction of dioxygen: 

superoxide/hydroperoxyl radicals (O2
-./HO2

.), hydroxyl radical (OH.) and hydrogen 

peroxide (H2O2); carbon-centered radicals with molecular oxygen: peroxyl (ROO.) and 
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alkoxy radicals (RO.); and free radical forming oxidants such as peroxinitrite (ONOO-). 

They are all highly reactive entities with unpaired electrons in their valence shell. ROS 

are not always toxic, and their presence is essential for normal physiological functions of 

cells (Figure 2.1). Nitric oxide (NO), for example, is essential for regulating the tension of 

blood vessels. Low ROS concentrations (< 15 μM H2O2) stimulate cell growth and 

proliferation, and act as important signaling molecules [47]; mild concentration arrests 

cell growth temporarily [48]. Moderate ROS levels alter gene expression profiles of many 

proteins such as heme oxygenase, catalase, mitochondrial superoxide dismutase 

(SOD2), and mitogen-activated protein kinases eventually inducing a transient cellular 

adaptation [49]. High ROS levels (~400 μM H2O2) arrest cell growth permanently [48]. 

 

Figure 2.1. ROS play an important role in both physiology and pathology of a cell. Low 

oxidative stress (<15 µM H2O2) stimulates growth. However, high oxidative stress (>1mM 

H2O2) stimulates apoptosis and necrosis. Stress-activated genes induce the expression of 

many proteins within the cells as a transient adaptation to moderate oxidative stress. 
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Still higher concentrations (~ 1 mM H2O2) induce apoptosis and very high ROS levels 

(>5 mM H2O2) induce cell disintegration and necrosis [50, 51]. Thus, ROS play an 

important role in both physiology and pathology of a cell. 

Tissues are usually protected from excess ROS by the presence of antioxidant 

enzymes such as superoxide dismutase (SOD) and catalase, or easily-oxidized organic 

compounds such as vitamins C and E. During disease states, the cells are continuously 

in a stressed state because the flux of free radicals is much higher than the scavenging 

ability of antioxidants. This stressed state called oxidative stress is considered to have 

an important role in ageing and pathogenesis of many diseases [52]. During oxidative 

stress, there is an imbalance in the pro and anti-oxidant level in the biological system. 

When the balance tips towards pro-oxidant mechanisms, extensive cellular damage 

occurs [13].  

The role of oxidative stress in the pathology of heart diseases has been studied 

substantially [53-56]. Redox imbalance is implicated in many pathological states of the 

heart including hypertrophy [57], ischemia-reperfusion injury [58, 59] and myocardial 

stunning [60, 61]. Antioxidant levels in the heart are altered during pathological 

conditions. While preconditioning protocols of brief, repetitive IR increase the expression 

of antioxidants such as SOD2 and offer benefits to the myocardium [62], models of 

prolonged ischemia (> 20 min) followed by reperfusion, reduce the antioxidant levels in 

the myocardium [63]. For example, antioxidants such as ascorbate and ubiquinol 

declined in a systematically organized relationship under IR in a rat model [64]. 

Additionally, activities of major endogenous antioxidants such as SOD and glutathione 

peroxidase dropped by 43% and 39% after IR thus compromising the ability of 

myocardium to scavenge the excess free radicals [65, 66]. Oxidative stress is also 

known to upregulate factors such as TGFβ that induce myocardial fibrosis leading to 

hypertrophy and heart failure [67].  
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 Scavenging ROS using antioxidants improves the functional recovery of 

myocardium after IR [68]. However, negative reports of antioxidant therapies are also 

documented [69]. Among the various free radicals, the role of superoxide anions in 

cardiac diseases have been implicated by both direct measurements and indirect 

inferences [70] in the pathogenesis of infarct development [71, 72], reperfusion injury 

[73] and eventual myocardial dysfunction [74]. Thus, a treatment option targeting the 

oxidative stress, specifically the superoxide radical, could potentially improve the 

recovery of the myocardium after IR. 

 

2.3 Superoxide radical 

Molecular oxygen (O2) can add two additional electrons to its antibonding 

orbitals. Superoxide radicals (O2
-.) are the species formed when oxygen is reduced by a 

single electron. Under acidic environment (pH<4.8), they exist as hydroperoxyl radicals 

(HO.
2). Reaction rate constants of O2

-. and HO.
2 with bioorganic compounds are in the 

range of 103 to 104 liters mole-1 s-1 [75]. Because of their moderately high reactivity, 

higher concentrations of superoxide radicals can cause toxicities such as inducing lipid 

peroxidation reactions in the cells [76, 77]. Importantly, superoxide radicals are the 

source for the generation of many other toxic ROS such as hydrogen peroxide (H2O2) 

and radicals such as peroxinitrite and hydroxyl (OH) which cause more damage to the 

biological system. Hydroxyl radicals, for example, are regarded as one of the very toxic 

and highly reactive free radicals [78]. Its rate constants in chemical reactions approach 

108 to 1010 liters mole-1 s-1 [79] or in other words they are at least four orders of 

magnitude more reactive than superoxide radicals. However, formation of hydroxyl 

radical from superoxide has never been independently demonstrated in biological 

systems using classical chemical methods [80].  
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There are three main endogenous sources of superoxide. The first and an 

important source of superoxide in the heart is the aerobic respiratory oxidative chain in 

mitochondria, which converts 1% to 2% of molecular oxygen to superoxide radicals [81]. 

A second source that is relevant to reperfusion injury is produced by xanthine oxidase 

(XO). Ischemia triggers, a post translational modification of NAD+- reducing xanthine 

dehydrogenase enzyme to ROS generating XO enzyme. Thus, when the myocardium is 

reperfused with oxygen laden blood after an ischemia, excess superoxide radicals are 

formed [82]. These reactive radicals elicit an inflammatory response by recruiting 

inflammatory cells such as neutrophils and macrophages that become a third source of 

superoxide during a phenomenon called respiratory burst [83]. During the respiratory 

burst, membrane bound NADP(H) oxidase supports the flow of electron from NADP(H) 

to oxygen to produce superoxide radicals. In addition to phagocytic cells such as 

macrophages, NADP(H) oxidase is also present in non-phagocytic cells such as 

fibroblasts and endothelial cells that can generate superoxide radicals in the 

myocardium [54]. Other than these physiological sources, superoxide can also be 

formed through exogenous influences, which include UV rays and industrial chemicals 

[77].  

Superoxide radicals are formed rapidly within 10 s of reperfusion in the ischemic 

myocardium [59], and they are implicated in the development of subsequent cardiac 

pathology [54, 84]. Additionally, superoxide is known to be involved in development of 

other human diseases such as alzheimer’s, parkinson’s and amyotropic lateral sclerosis. 

Therefore, scavenging these radicals using superoxide dismutase – an endogenous 

superoxide scavenging enzyme – inhibits the propagation of oxidative cascade at an 

early stage thereby preventing the formation of many other toxic radicals and their 

associated pathologies [85].  
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2.4 Superoixde dismutases 

SODs make up an important line of endogenous antioxidant defense systems 

against ROS, particularly superoxide. These metalloenzymes are widely distributed in 

prokaryotes and eukaryotes. Animal tissue contains at least three types of SODs: 

cytoplasmic Cu/Zn SOD (SOD1), mitochondrial Mn SOD (SOD2) and extracellular Cu/Zn 

SOD (SOD3) [86]. In aqueous solutions, superoxide reacts with itself spontaneously to 

give an oxidized and reduced form (dioxygen and hydrogen peroxide respectively). This 

self radical-quenching dismutation reaction of superoxide occurs at rates in orders of 105 

liters mole-1 s-1 at neutral pH conditions [75]. All isoforms of SODs catalyzes the 

dismutation of superoxide and increases this reaction rates to orders of 109 liters mole-1 

s-1 [75] thus aiding in the rapid quenching of these radicals.  

SOD1 

SOD1 is a copper and zinc containing enzyme and is a stable homodimer with a 

molecular mass of about 32 kDa. It is found in the cytoplasm, nuclear compartments 

and, lysosymes of mammalian cells [87]. Knockout studies suggest that although SOD1 

knockouts were mild compared to lethal SOD2 knockouts, the absence of SOD1 

produces subtle defects such as reduced reproductive potential [88]. Its presence is also 

very much essential for growth factor signaling. For example, it can act as a master 

regulator of extracellular signal-regulated kinase pathway by modulating the oxidation of 

protein tyrosine phosphatases [89]. mRNA level of SOD1 can be dramatically regulated 

by environmental conditions such as shear stress and UV radiation [87]. More 

importantly, the expression level and half life of its mRNA are reduced by physiological 

conditions such as hypoxia [90], which is relevant in diseased conditions such as 

myocardial ischemia. Ischemia and IR related pathologies in the myocardium increases 

the oxidative stress, reduces the activity of SOD [65] and its mRNA level [91], and SOD1 

overexpression suppress these ischemia and reperfusion related injuries [15, 92]. It is 
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also known to create anti-apoptotic microenvironment within myocytes by modulating the 

activation of transcription factors such as NF κB [93]. Because of the positive effects of 

SOD1 in the heart, it remains an important therapeutic protein for the treatment of 

cardiac pathologies.  

Other SOD isoforms: 

SOD2 is a manganese-containing enzyme and is localized in the mitochondria 

[87]. The action of SOD2 is compartmentalized to the mitochondria, and diseases due to 

lack of SOD2 cannot be treated by other isoforms [94]. The importance of SOD2 in 

myocardium can be understood by the neonatal cardiomyopathy and mortality in SOD2 

knockout mice [95] and, by the protection offered by SOD2 overexpressing mice against 

IR injuries [96]. SOD3 is a recently discovered copper/zinc containing enzyme. It has 

high affinity for heparin and is localized in the extracellular space and about one half of 

blood vessel SOD activity is due to SOD3. It has implications in cardiovascular diseases 

since it indirectly aids in smooth muscle relaxation by preventing the consumption of NO 

by superoxide radicals [18]. SOD3 administration is also known to reduce IR injuries 

[97]. 

SOD delivery 

Gene-based SOD therapies are excellent analytical tools, but drug quantification 

is difficult, and prolonged overexpression of SOD could exacerbate cardiac dysfunction 

following IR [98]. Thus, delivery of SOD proteins becomes an important alternate 

treatment option to gene thearpy. In spite of the importance of SOD proteins, its 

therapeutic potential is not yet fully recognized due to its unfavorable pharmacokinetics. 

It has a rapid protein half-life: half life of circulating wild type bovine SOD in rat blood is 

about six minutes [99] and depending on the modifications made to the protein, its half 

life increases to about six hours [99-101]. Its bioavailability varies widely based on the 

route of administration; in rats, the bioavailability after oral administration is almost 
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nonexistent compared to subcutaneous administration [102], which is attributed to the 

poor absorption combined with its rapid degradation in the gastrointestinal tract. Many 

studies have modified the SODs to improve its half life and target it to specific tissue by 

coupling the SODs to various synthetic molecules such as polyethylene glycol and poly-

styrene-co-maleic acid [103].  

Thus, it can be understood that SODs have positive effects in the heart, and the 

role of SOD1 in particular is well established. Moreover, it can be inferred that delivery of 

SOD is an active area in therapeutic research and newer methods are required to 

improve the pharmacokinetic properties of this rapidly-cleared protein. 

 

2.5 Controlled delivery of drugs 

Widely practiced parenteral drug delivery methods to myocardium are minimally 

invasive. However, they require repeated drug administration and their effects are 

systemic. This problem could be resolved by employing a localized and targeted delivery 

platform to the myocardium such as by using drug eluting stents. However, drug eluting 

stents are cost effective only in limited circumstances [104]. Recent advances employ 

biocompatible polymers to achieve the same targeted and controlled release of drugs to 

the myocardium [105].  

Polymeric carriers – both biodegradable and non-biodegradable – are frequently 

used in drug delivery. Non-degradable polymers are used as patches or inserts, where 

they can be recovered after the delivery of drug, or for oral ingestion when the polymer 

passes through the gastrointestinal system [106]. Biodegradable polymers – both natural 

and synthetic – have attracted much enthusiasm in controlled release technology 

because they require no intervention after implantation into the body. Some of the 

synthetic biodegradable polymers commonly used include polyesters, polyorthoesters, 

polyanhydrides, polyaminoacids and polyphosphazenes [107]. These systems are 
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designed such that they erode mechanically or degrade chemically or enzymatically to 

simpler compounds that can be eliminated through normal metabolic processes within 

the body or excreted [108]. Thus, it will be advantageous to use biodegradable polymers 

for treating cardiac diseases, since after the delivery of drug with a single injection; no 

further interventions will be required. In cardiovascular applications, both natual 

polymers such as alignate and, synthetic polymers such as poly lactic-glycolic acid 

(PLGA) polymers are used [105]. In this dissertation, polyketals – a recently identified 

biodegradable polymer – will be employed to deliver SOD1 to the myocardium. Because 

of the highly favorable property of polyketals undergoing acidic degradation to give 

neutral and biocompatible degradation products, they were chosen as a drug carrier in 

these studies and discussed in more detail, in 2.6 [109].  

Controlled release technology uses active and passive modes of drug targeting 

through various delivery platforms including polymers and liposomes to achieve 

temporal- or distribution-based control. Temporal control systems deliver the drug over 

an extended duration or at specific time points and distribution control systems deliver 

the drug to specific sites in the body [106]. These systems are delivered as injectable 

hydrogels, or as sheets or patches of drug-containing polymer implanted to the site 

interest. Other drug delivery techniques based on strategies such as polymeric micelles, 

liposomes and dendrimers exist, and one of the widely used delivery strategies is to 

encapsulate the drugs within biodegradable polymers to create micro and nanoparticles.  

Considerable interest exists in biodegradable microparticles, nanoparticles and 

microcapsules over the past few decades because of the ease of administration of a 

wide range of drugs in vivo through a syringe [107]. They are colloidal systems ranging 

in size from 10 nm to 1000 μm depending on the application involved [110]. Only few 

polymers are generally accepted for administration to human beings as microparticles. 

Polylactic acid, polyglycolic acid and their co-polymers are some of the best defined 
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polyester-based biomaterials for micro and nanoparticles-based delivery [108]. However, 

the hydrolysis and degradation products of microspheres based on these polymers are 

acidic, and they can lead to denaturation of pH sensitive proteins [111]. These acidic 

degradation products are also pro-inflammatory, which potentially limit their applicability 

in inflammatory diseases [19].  

Retention of drug within extensive vasculature of heart is difficult. Additionally, 

drugs and other small molecule proteins are useful only when appropriate therapeutic 

regimen is followed which usually involves daily or multiple injections [111, 112]. As 

discussed above, microparticle based delivery has the ease of administration of a wide 

range of drugs in vivo through a syringe. Further, by suitable adjustment of the size of 

microparticles, they can be made to retain in the tissue for much longer time. Thus, 

considering different delivery platforms, microparticle-based delivery system appears 

more simple and apt for cardiac drug delivery applications.  

 

2.6 Polyketal based delivery system 

Cardiac dysfunction is an inflammatory disease, [113] and drug delivery with 

existing compounds such as PLGA microspheres may induce more inflammation due to 

acidic degradation products [114]. Thus, there is a need to explore other types of 

polymers with neutral degradation products. Polyketals (PK) are new biodegradable 

polymers designed for drug delivery. They hydrolyze into neutral compounds, which 

should therefore prevent the further recruitment of inflammation mediators including 

macrophages. Currently, polyketals such as poly-(1,4-phenylene acetone dimethylene 

ketal) (PPADK), poly (cyclohexane-1,4-diyl acetone dimethylene ketal) (PCADK) and 

PCADK copolymers (PK3) have been synthesized for drug delivery applications [109, 

115, 116]. While the degradation product of PPADK has benzene dimethanol, a 

potentially toxic compound, the hydrolysis of PCADK generates only acetone and 1-4-
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cyclohexanedimethanol, both of which have excellent biocompatibility. Hydrolysis of PKs 

is rate limited by the diffusion of hydronium ions/water into the polymer matrix. This can 

be inferred from the half life of 24 days at pH 4.5 for more hydrophobic PCADK and 2 

days at the same pH for more hydrophilic PK3 [116]. Therefore, PK3 has been used for 

the treatment of acute inflammatory diseases such as acute liver failure. On the other 

hand, PCADK has increased half life and can release the drug of interest slowly over an 

extended period of time. Therefore, PCADK should be more suitable for chronic 

diseases including heart failure. Importantly, PCADK causes very little recruitment of 

CD45-positive cells, an inflammatory cell marker and other inflammation mediators such 

as TNFα, IL-6 and IL-12 compared to PLGA [19]. Therefore in this dissertation, cardiac 

dysfunction, which is an inflammatory disease modulated by free radicals, will be treated 

using SOD1 as drug and PCADK as the polymeric drug carrier.  

 

2.7 Cardiac Regeneration and cell therapy 

Heart failure affects 22 million people throughout the world, and heart transplant is 

currently the definitive therapy for heart failure. However, it is limited to about 4,000 

recipients each year due to dearth in donor organ and other perioperative risks [3, 117]. 

Thus, cardiac repair and regeneration become an imperative alternative, and 

pharmaceutical-, gene- or cell therapy-based interventions are among the major 

treatment options being investigated [118-120]. Prevention of myocyte death is an 

important aspect in these therapies as their death results in loss of cardiac function and 

eventual heart failure [121]. Wound healing responses begin with acute inflammatory 

responses within the first day after cardiomyocyte death leading to increased neutrophil 

infiltration, cytokine activation and extra cellular collagen matrix degradation (Figure 2.2). 

The chronic phase of inflammation begins within two weeks of infarction, increasing the 

recruitment of macrophages and myofibroblasts [122]. Unfortunately, these reparative 
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responses only lead to fibrosis and scarring in human myocardium, unlike the healing 

and regenerative responses in the hearts of zebrafish [123]. Importantly, the 

endogenous regenerative mechanisms in human heart leading to effective healing are 

are inadequate. The rate of new myocyte formation is 1% per year at the age of 25, and 

by the age of 70, this rate decreases to 0.5% [9]. 

  

Figure 2.2. Wound healing responses in the myocardium post-infarction. Acute 

inflammation in the myocardium peaks within a day of infarction marked by recruitment of 

inflammatory cells such as neutrophils. Apoptosis and necrosis of myocytes begin within few 

hours after infarction. Chronic inflammatory phase begins within a day which increases the 

recruitment of macrophages. This phase prevails even five weeks post-infarction characterized by 

a large number of myofibroblasts and excessive collagen deposition. Extracellular matrix 

remodeling begins within a day of infarction marked by increased changes in the activities of 

matrix metallo proteinases (MMP) and tissue inhibitors of MMPs (not shown). Adapted from 

Jugdutt (2003) [122].  
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Recently, there is intense research in cardiac regeneration through cell therapy 

after the evidence that bone marrow cells can transdifferentiate into cardiomyocytes and 

vascular cells [124]. Cell based therapies have wide medical implications and its 

therapeutic applications range from its use as a drug delivery vehicle to its regenerative 

role in tissue engineering [125]. Cell types such as skeletal myoblasts, endothelial 

progenitor cells, mesenchymal stem cells (MSCs) and cardiac derived stem cells are few 

of the reported donor cells used for cardiac regeneration [10, 126-128]. For example, 

transplantation of MSCs is known to improve cardiac function following infarction [129]. 

Additionally, MSCs inhibit the functions of the dendritic cells [130] which suggest that 

their allogenic administration should be more favorable. EPCs are known to aid 

angiogenesis and in patients with myocardial infarction, the levels of circulating EPCs 

and its ability to migrate decreased [131]. Given that endothelial-cardiomyocyte 

interactions play a crucial role in cardiomyocyte development and repair [132], 

transplantation of EPCs may be useful in cardiac regeneration. Recently there is much 

enthusiasm on adult cardiac-derived stem cells (CSCs) in the field of cardiac 

regeneration since they have robust cardiovascular lineage differentiation ability. They 

have been identified by the expression of markers such as c-Kit, Sca-1 and MDR1 [10, 

133]. The loss of functionally competent resident CSCs is suggested to be responsible 

for the onset of heart failure [134].   

Irrespective of the type of cells used in transplantation, one of the largest hurdles 

in cell therapy is the limited survival of transplanted cells in the hostile ischemic 

myocardial environment [125]. Studies demonstrate that 70% to 90% of the transplanted 

cells die within the first few days [135]. Oxidative stress is implicated in the death of 

endogenous cardiomyocytes and implanted stem cells. For example, a recent study 

revealed that the average life span of cardiac stem cells was shortened by oxidative 

stress [136]. Additionally, oxidative stress is suggested to play a critical role in the 
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regulation of self-renewal and senescence of stem cells [137, 138]. Further, progenitor 

cells such as EPCs have higher expression of antioxidant enzymes, such as catalase 

and SOD2 to fight effectively against oxidative stress [139]. These suggest that 

maintenance of low oxidative stress levels is a stringent requirement in stem cells [138, 

140].  

 

2.8 Summary of background studies 

In summary, it has become overwhelmingly clear that new treatment methods to 

repair and regenerate the heart after myocardial infarction are needed. Evolving 

treatment options include delivering bioactive materials and cells to the myocardium. 

Given the importance of oxidative stress in development of heart failure, targeting the 

excessive free radical levels, superoxide in particular, should correct much cardiac 

pathologies. SODs provide some benefit to myocardium; however, delivery of this 

protein with short circulating half life remains difficult. Therefore, identifying new delivery 

vehicles to SOD is essential. Cell based therapies are promising treatment alternatives 

to regenerate the myocardium. However, oxidative stress levels both inside and outside 

the cells affect the survival and efficacies of cell therapies. Hence, identifying the 

oxidative stress response of the transplanted cells could potentially benefit the cell 

based therapeutics. 
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CHAPTER 3 

INTRACELLULAR SOD DELIVERY WITH POLYKETAL 

MICROPARTICLES 

 

In this chapter, in vitro studies conducted to test the efficacy of SOD1 

encapsulated PCADK microparticles (PKSOD) to scavenge superoxide will be 

discussed. Micron-size PKSOD was synthesized using a double-emulsion method, and 

based on the results from extra- and, intra- cellular quantification of superoxide levels, 

the ability of PKSOD to scavenge the superoxide radicals was determined. This chapter 

will demonstrate the potential of polyketal particles in intracellular delivery of drugs. 

 

3.1 Introduction 

Proteins are attractive as therapeutic agents due to their beneficial effects. 

However, they are difficult to deliver to the inside of cells since they are larger and their 

molecular weight ranges in thousands of Daltons. Cell membranes do not allow 

spontaneous entry of large molecules unless there is an active transport mechanism. In 

addition, due to the hydrophilic nature of many proteins, they are less permeable to 

hydrophobic cell membranes.  Additionally, enzymatic proteins are less stable and lose 

their activity when their complicated three dimensional structures are altered. Therefore, 

delivery of proteins and other bigger hydrophilic compounds to the cells remain a 

challenge [111, 141].  

SOD1 protein is an efficient, natural endogenous superoxide scavenger. 

However, similar to many other proteins, intracellular delivery of this enzyme remains 

difficult. Superoxide generation occurs both inside and outside cells. A simple 

intravenous administration of free SOD1 protein could potentially help in reducing the 
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extracellular superoxide levels. However, intracellular superoxide buildup cannot be 

adequately addressed by a simple parenteral SOD1 administration. In addition, 

sustained action of SOD1 cannot be seen due to its poor bioavailability and rapid serum 

half life [101].  Few studies show that SOD1 can directly traverse the membranes in cell 

types such as endothelial cells and hepatocytes through receptor mediated endocytosis 

[142]. However, less than 5% of internalized proteins are released to the cytoplasm 

following such internalization mechanisms [143]. Therefore, identifying better carriers for 

an effective and sustained delivery of SOD is essential to address both extra- and intra- 

cellular superoxide buildup. 

Intracellular delivery of proteins can be achieved either by invasive or non-

invasive delivery systems. Invasive methods such as microinjection [144], osmotic 

permeabilization [145] and electroporation [146] damage the cell membranes. Therefore, 

significant research is being conducted using non-invasive methods using carriers such 

as liposomes, micelles, cell penetrating peptides and, polymers to achieve intracellular 

delivery [141]. Polymer based carriers offer the advantage of freedom in the ease and 

range of chemistries that can be performed on them to custom fit the specific need. 

Biodegradable polymers have been studied for more than 30 years, and protein delivery 

using biodegradable microspheres is one of the widely used delivery systems. 

Microencapsulation is the process of enclosing micron sized solid or liquid in an inert 

shell that offers benefits such as controlled and targeted release of the encapsulated 

protein and, protection to the protein from the external environment [147]. Due to their 

efficacy and ease of manufacturing, many commercial formulations such as Zoladax® of 

Imperial Chemical Industry (now AstraZeneca) and Posilac® of Monsanto exist as drug 

encapsulated microspheres. Various polymers are used in this microencapsulation 

platform. For example, poly-d, l -lactide-co-glycolide (PLGA) is one of the most widely 

used polyester based polymers. However, their degradation products – lactic and 
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glycolic acid – are acidic, and therefore, may not be suitable to deliver pH sensitive 

bioactive compounds [148]. Polyanhydrides are other widely used polymeric carriers. 

They have water sensitive linkages and are useful in a short term rather than a 

sustained drug release. They also form acidic degradation products that may contribute 

to the inflammatory response. Other than these widely used polymers, various other 

carriers such as poly-amino acids, polyphosphazenes, and polyphosphoesters exist with 

their own pros and cons [106].   

Recently acetal and ketal based polymers are used in drug delivery systems and 

unlike the acidic degradation products of other widely used carriers, acetals and ketals 

undergo acid hydrolysis to form neutral degradation products [149]. This property has 

been used for delivery of drugs [150] and to develop pH responsive delivery vehicles 

[151]. Additionally, polyacetals have previously been used for intracellular delivery of 

proteins such as ovalbumin to dendritic cells using microencapsulation platform [152]. 

Similarly, polyketals have been used as micro and nanoparticles for intracellular delivery 

of drugs [109]. Among the various reported polyketals, PCADK (poly (cyclohexane-1,4-

diyl acetone dimethylene ketal) has slower hydrolysis kinetics which is advantageous for 

sustained delivery of drugs in chronic diseases.  Additionally, it is known to have minimal 

inflammatory response compared to PLGA [19].  Therefore, identifying the ability of 

PCADK as an intracellular drug delivery vehicle is essential.   

There are various techniques employing chemical, physicochemical or physico-

mechanical processes to microencapsulate the drugs. Chemical techniques such as 

interfacial polymerization and in situ polymerization encapsulate the compounds 

simultaneously during the polymerization of monomer [153, 154]. Therefore, these 

methods are not convenient to encapsulate a protein on polymers synthesized using 

multiple synthetic steps. Physicochemical methods such as coacervation techniques 

could potentially produce effective microencapsulated drugs [155]. However, this 
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technique has the tendency to produce agglomerated particles. Importantly, since the 

amount of solvent used in this method is higher, there are issues with excessive residual 

solvent retention in the final microspheres [155, 156]. Spray drying is a physico-

mechanical process that involves passing the microparticle through a heated drying 

chamber, and therefore, this technique is better for encapsulating non heat sensitive 

materials such as fragrances and flavors [147]. Solvent evaporation is another widely 

used physico-mechanical process to encapsulate both hydrophilic and hydrophobic 

drugs by employing emulsification techniques. While a single emulsification step is 

sufficient to encapsulate a hydrophobic drug, it is necessary to use double emulsions or 

solid-in-oil methods to encapsulate hydrophilic drugs [157]. Importantly, the ability of 

PCADK to microencapsulate SOD1 using a water in oil in water double emulsion 

process is known [115]. This double emulsion-solvent evaporation process briefly 

involves dispersing the aqueous phase of hydrophilic drug in an oil phase of solvent to 

create the first emulsion of water in oil. This emulsion is subsequently dispersed again in 

an external aqueous phase to create water in oil in water emulsion (Figure 3.1). The 

volatile solvent used in the process is evaporated in the water bath and finally, the drug 

encapsulated microparticles are obtained after the downstream washing and drying 

steps. 

Cytoplasmic delivery of bioactive agents to macrophages remain difficult [158]. 

Further, they will be a relevant model system to investigate the efficacy of PKSOD since 

these cells play a vital role in all inflammatory diseases including cardiac diseases [159]. 

Therefore, in this chapter, the ability of PKSOD to scavenge the superoxide both inside 

and outside the macrophages is investigated. Initially, it will be shown that micron scale 

PKSOD particles can be created by double emulsion-solvent evaporation method. 

Subsequently it will be demonstrated that PKSOD can efficiently scavenge both 

intracellular and extracellular superoxide in a stimulated macrophage cell line. During 
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incubation of these micron-sized particles with macrophages, larger particles remain 

outside the cells while the smaller particles are internalized via phagocytosis. 

Distribution of the particles both inside and outside the cells should therefore reduce 

both intracellular and extracellular superoxide levels. However, the hydrophilic free 

SOD1 should remain outside the cells without encapsulation. This will be demonstrated 

by quantifying superoxide using dihydroethidium (DHE) and a high performance liquid 

 

Figure 3.1. Encapsulation of hydrophilic drugs using double emulsion – solvent 

evaporation technique. Initially, the hydrophilic drug is dissolved in an aqueous phase 

containing emulsion-stabilizers such as polyvinyl alcohol (PVA). This water phase is 

emulsified in the polymer containing solvent acting as the oil phase using homogenization to 

create the first water in oil emulsion. This is further dispersed in an external aqueous phase 

containing PVA using homogenization. By altering the turbulence created in this step, the 

microparticle size can be easily adjusted. Finally, the volatile solvent is evaporated and the 

particles are thoroughly washed and lyophilized to yield the drug-encapsulated microparticles. 
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chromatography (HPLC) based assay. DHE is cell permeable. However, 2-

hydroxyethidium (HE), a superoxide specific oxidation product of DHE, is cell 

impermeable. DHE oxidized to HE by extracellular superoxide will remain in treatment 

media that can be analyzed and quantified by HPLC. However, DHE that has crossed 

the cell membrane will be trapped as HE inside the cells after being oxidized by 

intracellular superoxide and it can be quantified separately.  

 

3.2 Experimental Methods 

Synthesis of PCADK 

Poly(cyclohexane-1,4-diyl acetone dimethylene ketal) (PCADK) was synthesized  

as described previously [116]. Briefly, before beginning the reaction, the solvents 

including benzene and 2,2-dimethoxypropane were distilled in inert nitrogen atmosphere 

to remove traces of water. Additionally, p-toluenesulfonic acid was recrystallized prior to 

use. The reaction setup was begun by dissolving 1,4-cyclohexane dimethanol in 

benzene and heating it upto 100 ºC with constant stirring. A solution of p-toluenesulfonic 

acid in ethyl acetate was added to catalyze the acetal exchange reaction between 1,4-

cyclohexane dimethanol and 2,2-dimethoxypropane. The ethyl acetate was allowed to 

boil off and subsequently 2,2-dimethoxypropane was added, in equimolar ratio to 1,4-

cyclohexane dimethanol in benzene solution, to begin the polymerization reaction. 

Additional doses of 2,2-dimethoxypropane and benzene were subsequently added 

dropwise to compensate for the 2,2-dimethoxypropane and benzene that had been 

distilled off. The reaction was stopped after 48 hours by the addition of 500 μL of 

triethylamine. When lower molecular weight PCADK was made, the reaction was 

stopped in six hours. The polymer was precipitated in cold hexane (stored at -20°C) and 

separated out by vacuum filtration. The molecular weight was determined by Shimadzu 

gel permeation chromatography equipped with UV detector. Tetra hydro furan was used 
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as the mobile phase at a flow rate of 1 ml/min. The molecular weight of the resulting 

polymer was approximately 6 kDa with a mean polydispersity of 1.923. All reagents were 

purchased from Sigma-Aldrich.  

PKSOD and empty PCADK (PK) particle preparation 

PKSOD particles were made by a double emulsion-solvent evaporation process 

as described by Lee et al. [116] with slight modifications. Briefly, an aqueous solution of 

15 mg SOD1 from bovine erythrocytes (Sigma-Aldrich) (75 KU) dissolved in 80 μl of 1% 

(w/v) polyvinyl alcohol (PVA), pH 8, was dispersed in 300 mg PCADK dissolved in 1 ml 

methylene chloride. Homogenization at (Power Gen 1000™, Fisher Scientific) 30,000 

rpm for 30 seconds resulted in a first emulsion of water in oil (w/o). The w/o emulsion 

was redispersed at 7500 rpm for 1 minute in an external aqueous bath containing 5 ml of 

4% (w/v) PVA. For creating sub-micron particles, following mechanical homogenization, 

the second emulsion was sonicated on ice with 30 pulses each of 0.5 s duration. The 

water in oil in water emulsion (w/o/w) was then poured into a bath containing 50 ml of 1 

% (w/v) PVA and stirred for 5 hr at room temperature to allow the methylene chloride to 

evaporate. The solidified microparticles were washed four times with water by 

centrifugation (8,000 rpm, 10 minutes), and the slurry was finally freeze dried to yield 

white solid powder. PK particles were made in a similar manner without the addition of 

SOD1 protein. Solid in oil in water emulsion was made as described by Castellanos et al 

[160]. Briefly, SOD1 was co-lyophilized with polyethylene glycol (8 kDa) at a ratio of 1:4, 

and the lyophilized solids were emulsified in methylene chloride, to get the first emulsion 

of solid in oil. Further processing of this emulsion to create the solid in oil in water 

particles is the same as described for w/o/w. 

 

 

 

29 
 



 

Encapsulation efficiency 

500 μl of methylene chloride and 500 μl of PBS was added to 1 mg of PKSOD or 

PK particles. After vortexing, the polymer dissolves and distributes predominantly in oil 

phase. The encapsulated SOD protein was extracted thrice to fresh aqueous phase by 

gentle mixing for one hour at room temperature. Protein content in the aqueous phase 

was determined by a micro BCA protein analysis kit. Encapsulation efficiency was 

expressed as the ratio of actual and theoretical SOD loading. Cumulative protein release 

was studied by suspending 2 mg of polymer in various tubes containing 1 ml of either 

acetate buffer (pH 4.5) or phosphate buffered saline (pH 7.5) at 37 ºC. The protein 

released to the buffer from the hydrolyzed polymer at various time points was quantified 

using micro BCA protein assay, and the percentage was calculated based on the total 

encapsulated protein levels.  

Macrophage culture 

RAW264.7 macrophages were maintained in DMEM (Fisher) supplemented with 

10% fetal bovine serum (Hyclone), l-glutamine, and penicillin/streptomycin (Invitrogen). 

Kreb’s Hepes buffer (KHB) containing (g/l): NaCl, 5.79; KCl, 0.35; NaHCO3, 2.1; 

KH2PO4, 0.14; D(+) Glucose, 1.01; Na-HEPES, 5.21; CaCl2.2H2O, 0.37; MgSO4. 7H2O, 

0.30, was used as treatment media. For experiments involving PMA stimulation, cells 

were seeded on a 12 well plate (2 million cells/well) and, quiesced overnight in serum 

free DMEM. The media was then aspirated and replaced with treatment media 

containing SOD1 (50 U), PKSOD or PK, and incubated for 5 hr at 37 ºC to allow the 

particles to be engulfed by macrophages. Cells were then washed with ice cold KHB 

buffer followed by the addition of treatment media with or without 10 μM PMA for 20 min 

at 37 ºC in order to stimulate superoxide production.  
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Intracellular and extracellular superoxide measurement.  

Superoxide was detected by separating the oxidation products of DHE using 

HPLC [161]. In the cell culture experiments, macrophages were stimulated with 10 μM 

PMA along with 20 μM DHE and were incubated at 37 ºC for 20 minutes protected from 

light. For extracellular superoxide measurement, 100 μl of reaction buffer was 

suspended in 300 μl methanol. For intracellular superoxide measurement, the cells were 

mechanically homogenized and suspended in 300 μl methanol. A small aliquot (50 μL) 

was saved for protein estimation, and the samples were injected into the HPLC system 

(Beckman coulter with system gold 125 solvent module) with C-18 reverse phase 

column and, equipped with Jasco FP-2020 plus fluorescent detector and Beckman 

coulter System gold 166 UV detector. Solvent A (water) and B (60% acetonitrile/0.1% 

trifluoracetic acid) were used as mobile phase with a linear gradient in pump to increase 

the acetonitrile concentration from 37 to 47% over 23 min at a flow rate of 0.5 ml/min. 

HE and ethidium were monitored by fluorescence detection with excitation 480 nm and 

emission 595 nm and in order to quantitate the analytes, the areas of the corresponding 

peaks were measured using the software provided with the HPLC system. The results 

were normalized to the protein concentration in the cell lysates, and fold of increase in 

HE with respect to control levels were calculated. 

 

3.3 Results 

Micron-scale, PKSOD particles can be created.  

A double emulsion method was used to encapsulate SOD1 within the PCADK particles 

(PKSOD). Particle analysis with ImageJ software revealed that the size ranged from 

about 2 μm to 30 μm with a mean particle size of 11.4 + 4.9 μm (Figure 3.2 A bottom 
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panel).  Representative SEM images are shown in Figure 3.2 B. Empty particles (PK) 

were similar in size and morphology to PKSOD particles (10.8 + 5.9 μm, Figure 3.2 A top 

panel). Micro-BCA protein analysis of the encapsulated protein revealed an 

encapsulation efficiency of 50% (expressed as the ratio of actual SOD1 loading to the 

theoretical maximum), corresponding to almost 100 U of SOD1 per mg of polymer 

(Figure 3.2 C). Cumulative release profile of the encapsulated protein, varied with the 

pH. Irrespective of the pH conditions about 60% of the protein was released within 

 

Figure 3.2. SOD can be encapsulated within PCADK to create micron sized particles. (A) 

Histogram of the microparticles analyzed with ImageJ software (B) SEM image (500X) of PKSOD 

made by a double emulsion technique that yields large microparticles. (Scale bar: 20 μm) (C) 

50% protein encapsulation efficiency is obtained as measured by micro-BCA protein analysis  
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six hours suggesting their surface presence and their easy dissolution into the 

surrounding medium (Figure 3.2 D). However, the remaining proteins were released with 

a release half- life of around 5 days at pH 4.5 and more than two weeks at pH 7.5. This 

suggests that the protein release from the in the inner core of the polymer occurs only 

when the PCADK undergoes acid hydrolysis  

Figure 3.2 (Continued). SOD can be encapsulated within PCADK to create micron sized 

particles. (D) Cumulative SOD1 release profile from PKSOD at acidic and neutral pH 

conditions 

 

Encapsulation efficiency is affected by various factors 

 In order to compare the water in oil in water (w/o/w) double emulsion technique 

with solid in oil in water (s/o/w) technique, PCADK with a molecular weight of 

approximately 4 kDa was used with polymer to drug ratio of 10:1. s/o/w technique 

yielded only 5 % encapsulation of SOD1 and this percentage was increased by two fold 

by employing the w/o/w technique (Figure 3.3 A). In both techniques, more than 90 % of 
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the protein was leaked into the aqueous solvent-evaporation bath. In order to address 

this issue, a higher molecular weight PCADK (6 kDa) was used in the w/o/w technique. 

This modification helped in decreasing the protein leak during solvent evaporation and 

 

Figure 3.3. PKSOD microparticle encapsulation is affected by various factors. (A) w/o/w 

technique is better than s/o/w technique in encapsulating SOD1. (B) Increasing the molecular 

weight of PCADK and doubling the polymer to drug ratio (w/w) improves the encapsulation 

efficiency in PKSOD.  
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Figure 3.4. Encapsulation efficiency reduces when creating PCADK nanoparticles. (A) 

High molecular weight polymer at 20:1 polymer to protein ratio has a drastic reduction in 

encapsulation efficiency when the particle sizes are reduced to submicron levels. (B) Bovine 

serum albumin encapsulation in PCADK nanoparticles (~500 nm) increases by altering reactor 

geometry and volume fraction of oil to external water phase and by reducing the outer and 

inner protein concentration difference. Sub-micron PKSOD encapsulation (white box) was 

increased to 20% by implementing these changes. 
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aided in increasing the encapsulation efficiency to 20 % (Figure 3.3 B). This was further 

increased to 50 % by increasing the oil phase polymer concentration through higher 

(20:1) polymer to drug ratio (Figure 3.3 B).  

When the particle size was reduced using sonication to submicron range 

(averaging 500 nm), the encapsulation efficiency dropped to 8 % (Figure 3.4 A). In our 

subsequent investigations on the factors that could improve the encapsulation 

efficiencies, bovine serum albumin (BSA) was used as a model protein as they were 

more economical. The encapsulation efficiency was doubled by changing the geometry 

of the reactor from flat bottomed to round bottomed tube (Figure 3.4 B). Additionally, the 

protein encapsulation was increased to 43% by increasing the ratio of oil phase to 

external aqueous phase by a factor of 2 (Figure 3.4 B). Further, addition of BSA to 

external aqueous phase decreases the protein concentration difference between the 

internal and external aqueous phase. This reduces the protein leakage into the solvent 

evaporation bath leading to 58% encapsulation of BSA (Figure 3.4 B). However, this last 

improvement may not be an economical option for one time encapsulation of costly 

proteins. Implementing these changes in the parameters while creating PKSOD 

nanoparticles (white bar, Figure 3.4 B) resulted in a 20% encapsulation efficiency 

compared to 7 % efficiency before the modifications (Figure 3.3 A).  

PKSOD scavenges both intracellular and extracellular superoxide.  

The ability of PKSOD particles to scavenge superoxide radicals was investigated 

in macrophage cell culture (RAW 264.7) using quantitative DHE-HPLC. PMA stimulation 

resulted in a 1.6-fold increase in extracellular superoxide production as compared to 

control cells (p<0.01). This increase was significantly inhibited by application of 

exogenous SOD1 (50 U/mL) (p<0.001; Figure 3.5 A). Cells pretreated with PK particles 

also showed a significant PMA-induced increase in superoxide levels (p<0.01 vs. vehicle 

treated control), whereas cells treated with PKSOD for 5 hours prior to PMA-stimulation 
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had no significant increase in superoxide levels compared to control cells. This inhibition 

was evident at both 0.25 mg and 0.125 mg of polymer per million cells (Figure 3.5 A). 

 

 

Figure 3.5 PKSOD dose-dependently decrease both intracellular and extracellular 

superoxide release in stimulated macrophage cell line. (A) Extracellular superoxide 

concentration from media per million cells represented after normalizing with respect to 

control. (B) Intracellular superoxide per mg protein represented after normalizing with 

respect to control. Only PKSOD reduced the PMA induced intracellular superoxide levels. 

Results are average of four experiments. **p<0.01, ***p<0.001 vs. PMA. ANOVA followed by 

Tukey’s post-test. 
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Analysis of intracellular superoxide levels revealed that PMA stimulation 

significantly increased superoxide levels 3.9-fold as compared to control cells (p<0.01). 

In contrast to the results observed in extracellular superoxide measurement, treatment 

with exogenous SOD1 was not able to reduce PMA-induced intracellular superoxide 

production (Figure 3.5 B, p<0.001 vs control). Similarly, PK pretreatment also had no 

significant effect on intracellular superoxide levels (p<0.01 vs. vehicle treated control; 

Figure 3.5 B). Interestingly, PKSOD pretreatment was able to dose-dependently reduce 

the PMA-induced intracellular superoxide levels (Figure 3.5 B), suggesting efficient 

delivery of active SOD1 to the intracellular space.   

 

3.4 Discussion 

In this chapter, PCADK – a polyketal based biodegradable polymer – was used 

as a carrier to deliver SOD1 to scavenge both intra- and extra- cellular superoxide. 

Unlike polyester based biomaterials, these polymers do not have acidic degradation 

products, and they cause no significant inflammatory response [19].  Therefore, SOD1 

encapsulated within these polymers were tested for its efficacy to scavenge superoxide 

radicals. Hydrophilic compounds can be microencapsulated using the widely used w/o/w 

solvent evaporation method. Although, few reports suggest better encapsulation of BSA 

in PLGA carriers using s/o/w technique [162], our results suggest that w/o/w technique is 

better than s/o/w in encapsulating SOD1 to PCADK. Our particle size analysis revealed 

that PKSOD microparticles in 2 to 30 μm size range can be made using a double 

emulsion method by employing low speeds during the homogenization step. This size 

distribution would be advantageous and could potentially be retained by a single 

injection in vascular tissues such as the myocardium, while still having particles small 

enough to be taken up by macrophages. In addition, our protein release data 

demonstrate that PCADK releases the drug slowly over a period of few weeks following 
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the initial rapid release of proteins from the surface. This property of slow protein release 

from PCADK in acidic conditions is previously reported in literature compared to other 

polyketals such as PK3 [115]. This property could potentially be used for sustained 

release of drugs in chronic diseases. 

Many studies have shown that increasing the molecular weight of the polymer 

and polymer concentration increase the encapsulation efficiency of the protein [163, 

164]. Therefore, the effect of molecular weight on PKSOD encapsulation efficiency was 

investigated. Similar to the literature reports, our results also demonstrate the PKSOD 

encapsulation increase with molecular weight and polymer concentration. PCADK 

molecular weight was not increased beyond 6 kDa in our studies; since beyond that 

range, the solubility of the polymer in methylene chloride decreases drastically. 

Macrophages can phagocytose particles larger than 20 µm [165]. However, fibroblasts 

and other cell types can phagocytose only sub-micron to less than six micron size 

particles [166]. Therefore, to achieve intracellular delivery of SOD1 to other cell types, it 

may be necessary to make nanoparticles of PKSOD. However, our results suggest that 

reducing the particle size reduces the amount of protein encapsulated. Turbulence is 

one of the important factors affecting the encapsulation. Geometry of the reactors [167] 

and, the volumes of oil phase and external aqueous phase, [157, 168] have profound 

effects on the turbulence. In addition, there is a huge difference in protein concentration 

from internal to external aqueous phase, and higher encapsulation efficiency could be 

obtained by reducing this concentration difference. Therefore, the effect of these factors 

on encapsulation efficiency was investigated. Our results show that, by modifying these 

parameters, about 25% of SOD1, is encapsulated within nano sized PCADK polymers. 

This has the potential for efficient intracellular delivery of SOD1 to other cell types.  

Superoxide generation occur both inside and outside the cells, and because of its 

enhanced reactivity and short life time, it is difficult to assay these radicals in 
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physiological systems. Electron spin resonance is a widely used standard method for 

superoxide quantification. However, because of the complexity and cost of the 

technique, other agents such as cytochrome C, lucigenin and luminol are often 

employed for superoxide detection [169]. These compounds are not superoxide specific 

as they have side reactions with many other free radicals. However, the dye 

dihydroethidium (DHE) is reported to form a superoxide specific oxidation product -

hydroxyethidium - along with other oxidation products [170]. Therefore, HPLC based 

separation of hydroxyethidium was performed in these studies for specific quantification 

of superoxide [161]. As expected, results for extracellular superoxide measurements 

demonstrate the ability of free SOD1 to scavenge the superoxide radicals. In addition, as 

large proteins do not cross the cell membrane, it is not surprising when our result shows 

that free SOD1 did not scavenge the intracellular superoxide. In stark contrast, our 

PKSOD particles were able to significantly reduce the superoxide levels intra- and 

extracellulary, suggesting the particles were taken up by macrophages and the contents 

released intact within. This finding suggests potential advantages of PKSOD to reduce 

the intracellular superoxide buildup. A simple parenteral administration of SOD1 is not 

adequate to scavenge the superoxide within the cells, and it requires modifications to 

increase cell permeability, such as coupling it to polyethylene glycol (PEG).  Not only 

does this entail more synthetic steps, but PEG itself may induce an oxidative response 

[171]. Scavenging the superoxide within macrophages reduces the production of 

inflammatory cytokines such as tumor necrosis factor alpha [172], which has the 

potential to provide benefits to native cardiomyocytes [173].  
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CHAPTER 4 

PKSOD DELIVERY TO THE MYOCARDIUM AND PROTECTION 

FROM MYOCARDIAL ISCHEMIA REPERFUSION INJURY 

 

In this chapter, in vivo studies conducted to evaluate the ability of PKSOD to 

improve cardiac function are presented. Micron-size PKSOD were injected in the border 

of the cyanotic tissue of rat myocardium following IR, and based on the histochemical 

analysis and, functional evaluation of the heart, the effects of PKSOD on cardiac 

function were determined. This chapter will show the effects of sustained SOD1 therapy 

to the myocardium. 

 

4.1 Introduction 

Ischemic heart diseases, leading to myocardial infarction and heart failure, are a 

leading cause of global morbidity and mortality [3]. Loss of myocytes through necrosis 

and programmed cell death (apoptosis) following insults such as ischemia/reperfusion 

(IR) is mainly regional [174]; suggesting the potential benefit of a localized therapy in 

preventing the development of cardiac dysfunction. However, because the disease is 

progressive in nature, localized therapy must also be sustained to deliver a consistent 

amount of drug over relevant times. Oxidative stress has been proposed as the unifying 

mechanism behind various risk factors of heart diseases [13], and it is implicated in 

many pathological disease states of the heart including hypertrophy [57], IR injury [58] 

and, myocardial stunning [61]. Thus, a therapy that could address the high oxidative 

radicals over a sustained period of time will have great potential in prevention of cardiac 

dysfunction.  
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Direct measurements and indirect inferences have implicated the role of excess 

superoxide levels in the pathogenesis of infarct development, reperfusion injury and 

eventual myocardial dysfunction [71, 74]. Additionally, mRNA expression levels of 

superoxide dismutase (SOD), an endogenous superoxide scavenger, decrease 

significantly after myocardial infarction thereby potentially exacerbating superoxide 

levels [91]. Antioxidant therapy with SOD including transgenic overexpression and gene 

therapy studies improve cardiac function following infarction, but the clinical relevance of 

these studies is still unclear as questions still remain regarding the safety and efficacy of 

gene therapy [14, 15].  

Despite the large role of oxidative stress in cardiac dysfunction, there is a strong 

lack of consistency in the efficacy of Cu/Zn SOD (SOD1) protein therapy and many large 

animal trials have failed to show a significant benefit [175, 176]. Possible factors 

contributing to these discrepancies are the unfavorable pharmacokinetics and the rapid 

protein half-life of SOD1. Half life of circulating wild type bovine SOD1 in rat blood is 

about six minutes [99] and depending on the modifications made to the protein, its half 

life can increase to about six hours [99, 101, 102]. Thus, there is significant interest in 

developing better SOD delivery systems, and many modifications have been made to 

the SOD protein to improve its pharmacokinetics and delivery including the addition of 

cell penetrating molecules and targeting sequences [103]. Although, these modified 

proteins have better efficacies than the native SOD protein, intracellular delivery of the 

drug remains a challenge. In addition, high doses of these modified SODs are used in 

most studies [103] which by itself can exacerbate the cardiac pathologies [98]. Thus, a 

single time administration of SOD1 that could sustain in the heart during disease 

progression, by using suitable drug carriers, could offer an advantage over existing 

treatment methods. 
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Various natural and synthetic polymeric drug carriers including collagen, fibrin, 

matrigel, PLGA, PGA and peptide nanofibres exist for use in cardiovascular applications 

[177]. Polyketal polymers are promising new candidates to treat inflammatory diseases 

since they form neutral degradation products upon acid hydrolysis. They are reported to 

be better a better drug delivery vehicle than the widely used PLGA polymers in the 

treatment of both acute and chronic inflammatory diseases [19, 115, 178]. As described 

in Chapter 2, various polyketals such as PPADK, PCADK and PK3 exist which differ in 

their degradation products and degradation rate. Among them, PCADK (poly 

(cyclohexane-1,4-diyl acetone dimethylene ketal) has half life of about three weeks at pH 

4.5, and it degrades to 1-4-cyclohexanedimethanol, which is an FDA approved 

compound, and acetone, which is on FDA GRAS list. Due to these neutral and safe 

degradation products, PCADK is known to have minimal inflammatory response in the 

myocardium compared to PLGA [19]. Therefore, it will be advantageous to employ 

PCADK as a carrier of SOD1 to treat inflammatory heart diseases. 

The aim of this chapter is to investigate the effects of a direct myocardial injection 

of SOD1 encapsulated within PCADK microparticles on oxidative stress levels in the 

myocardium and on cardiac functional recovery following IR injury. The study was 

performed in a rat model of myocardial IR by injecting PKSOD or PK particles in the 

myocardium immediately after IR. After the treatment time (3 or 21 days), the hearts 

were analyzed for oxidative stress levels and myocyte apoptosis. Functional 

improvement of myocardium was determined from echocardiography. Additionally, the 

effect of PKSOD on infarct size, collagen deposition, matrix metalloproteinase levels and 

mRNA levels of calcium handling proteins were analyzed. Based on these results, the 

effects of PKSOD delivery on cardiac function were determined. 
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4.2 Materials and methods 

PKSOD and fluorescent PKSOD (PKFSOD) particle preparation 

The preparation of PKSOD is described in section 3.2. PKFSOD was made by 

encapsulating fluorescein isothiocyanate (FITC) conjugated SOD (FSOD) within 

PCADK. FSOD was made by stirring SOD1 (5 mg/ ml pH 9.0 carbonate buffer) with 

FITC (1 mg/ml DMSO) overnight at 4°C. The conjugated protein was purified by dialysis 

(8k molecular weight cutoff) and lyophilized. 

Animals 

A randomized and blinded study was conducted using adult Sprague-Dawley rats 

(obtained from Charles River) weighing 250 g. Rats were divided into two time points (3 

and 21 days) containing five groups (n = 7 to 12 per group) each. While one group was 

subjected to sham surgery, the other four groups received IR surgery (30 min. coronary 

artery ligation followed by reperfusion), with or without the injection of 100 μl of 

phosphate buffered saline (PBS) containing either 80U SOD1, 10 mg PK or PKSOD per 

ml of PBS with or without 5 mg SB239063 (p38 inhibitor) per ml PBS, into the perimeter 

of cyanotic ischemic zone (3 locations) through a 30-gauge needle immediately after 

reperfusion.  Studies conducted to investigate the effect of higher concentrations of 

microparticles had 20 mg of either PK or PKSOD per ml of PBS. The animals were 

sacrificed after specific time points, and the hearts were molded in Optimal-Cutting-

Temperature compound and, snap frozen in liquid nitrogen, or they were dehydrated 

and, embedded in paraffin for immunohistological analysis. In studies requiring real time 

analysis of gene products, the left ventricle of the myocardium was homogenized with 

Trizol® reagent and stored at -80 ºC until further processing. The investigation 

conformed to The Guide for the Care and Use of Laboratory Animals published by the 
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US National Institutes of Health (NIH Publication No. 85-23, revised 1996) and all animal 

studies were approved by Emory University Institutional Animal Care and Use 

Committee. 

Oxidative stress and superoxide detection following IR.  

Reduction of cytochrome C by superoxide was measured as a change in 

absorbance at 550 nm as described previously [169]. Briefly, three days after surgery, 

the hearts were excised and the left ventricles were cut to small pieces and incubated for 

15 minutes at 37 °C in KHB media with or without 50 U/ml SOD and supplemented with 

100 μM partially acetylated cytochrome C (Sigma). Oxidative stress level in the 

myocardium was analyzed by measuring malondialdehyde and 4-hydroxyalkenals in the 

tissue homogenate using colorimetric lipid peroxidation assay kit (Oxford Biomedical 

Research) following the manufacturer’s protocol. In situ-superoxide production was 

detected, using DHE as described previously with slight modifications [179]. Briefly, 10 

μM DHE was topically applied over unfixed frozen 20 μm heart sections and incubated 

at 37 ºC in a light protected CO2 incubator for 5 minutes. After 2 minutes of DAPI 

staining, the slides were mounted with antifading medium (Vectashield® HardSet™; 

Vector laboratories) and were analyzed with Axioscope fluorescence microscope with 

identical camera acquisition settings. DHE fluorescence intensity was quantified using 

ImageJ software (NIH).  

Apoptosis detection.  

Terminal transferase-mediated dUTP-fluorescein nick end labeling (TUNEL) 

assay kit (Roche diagnostics catalogue number 12 156 792 910) was used as per the 

manufacturer’s protocol to determine the number of apoptotic cells in the tissue sample. 

Briefly, unfixed 5 μm frozen heart sections were washed with PBS and fixed with 2% 

paraformaldehyde for 30 min at room temperature. After washing with PBS, the heart 
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sections were permeabilized with ice cold 0.1 % sodium citrate containing 0.1% Triton-X 

100 for 2 min. 50 μl solution containing 45 μl TUNEL label and 5 μl TUNEL enzyme (or 

50 μl TUNEL label alone for negative control) were applied topically over the heart 

sections and incubated for 1 h at 37 ºC in CO2 incubator. After washing the unbound 

TUNEL label with PBS, the nuclei were stained with 4, 6-diamidino-2-phenylindole 

(DAPI, 1 µg/ml) for 5 minutes at room temperature and washed once with PBS. The 

slides were then mounted with Vectashield® HardSet™ mounting medium and were 

imaged using Axioscope Fluorescence microscope at identical camera settings. The 

number of TUNEL positive cells were reported as a percentage of total cell count. 

Echocardiography.  

Anesthetized rats were subjected to echocardiography prior to and after 3 or 21 

days of IR surgery. Short axis values of left ventricular end systolic (ES) and end 

diastolic (ED) dimension were obtained using Acuson Sequoia 512 echocardiography 

workstation with 14 MHz transducer. An average of 2 consecutive cardiac cycles was 

used for each measurement and were made three times in an investigator-blinded 

manner. Changes in fractional shortening (calculated as (ED-ES)/ED) were determined 

after normalizing each rat to its own baseline value.  

Infarct size measurement. 

 Infarct size was measured using the methods previously reported using Evan’s 

blue dye and 2,3,5-triphenyltetrazolium chloride (TTC) [93]. Briefly, after the hearts of the 

animals were excised, the LAD was re-occluded at the same location and was perfused 

with Evan’s blue dye to define the area at risk. The left ventricle (LV) was then sliced into 

transverse sections (~2 mm) and incubated with TTC for two minutes to stain the viable 

myocardium. The sections were then fixed in 4% paraformaldehyde and photographed 

for analysis. Noninfarcted tissue was identified by deep blue staining, ischemic but viable 
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myocardium was identified by deep red staining, and necrotic LV tissue was identified by 

white coloration. Planimetry was performed with ImageJ software (NIH) by tracing the 

three areas in all sections. Area at risk was determined as the percentage of area with 

red plus white coloration in relation to the total LV area (red plus white plus blue). Infarct 

size was determined as the percentage of area with white coloration in relation to the 

area with red plus white coloration. These values were determined from all the slices 

and averaged. 

Immunofluorescence, immunohistochemistry and in-situ zymography 

Collagen deposition was determined by Picrosirius Red (Sigma) staining as described 

previously [19]. Briefly, 5 µm paraffin embedded heart sections from 21 days treatment 

groups were dewaxed with Histo-Clear (National Diagnostics) and subjected to gradual 

hydration with aqueous ethanol. The tissue sections were subsequently stained with 

pico-sirius red solution (0.5 g of sirius red F3B in 500 ml of saturated aqueous solution of 

picric acid) for one hour and washed with two changes of acidified water (5 ml glacial 

acetic acid in 995 ml of distilled water). Finally, the sections were dehydrated, mounted 

in a resinous medium and were imaged in brighfield using Axioscope microscope at 

identical camera settings. Fibrotic area was reported as percentage of red area in total 

area. For immunohistochemistry, the tissue sections were subjected to antigen retrieval 

with citrate based antigen unmasking solution (Vector laboratories) and probed with an 

antibody to C-Kit (Santa Cruz Biotechnology), then with a fluorescent secondary 

antibody (Alexa Fluor® 568, Invitrogen) before mounting with Prolong Gold mounting 

medium (Invitrogen). For isolectin staining, 1 µg/ml Alexa Fluor® 488 conjugated 

isolectin GS-IB4 (Invitrogen) was incubated for 1 hour with proteinase K (20 µg/ml) 

treated (10 minutes) tissue sections. In situ zymography to detect matrix 

metalloproteinase activity in the heart sections subjected to three days of IR with or 

without treatments was performed by incubating the frozen sections for 12 h at 37 ºC 
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with 10 µg fluorescein conjugated DQ collagen, type IV (Invitrogen) per ml of zymogram 

developing buffer (Invitrogen). All tissue sections for immunofluorescence were imaged 

with Axioscope fluorescence microscope with identical acquisition settings.  

Real time polymerase chain reaction. 

 mRNAs were extracted using Trizol® reagent (Invitrogen) according to 

manufacturer’s protocol from the left ventricle of the myocardium subjected to 3 days of 

IR with or without treatments. c-DNAs were synthesized by reverse transcribing the 

mRNA using Superscript reverse transcriptase (Invitrogen) along with oligo dT and 

random hexamers as primers. Real time polymerase chain reactions were run on 

StepOnePlus™ Real-Time PCR System (Applied Biosystems) with SYBR Green PCR 

master mix (Applied Biosystems) using primers (Appendix) for SOD1, SOD2, SERCA-

2a, ryanodine receptors, sodium calcium exchanger and phospholamban. All the 

reaction products were normalized to the cDNAs of 18s primers. 

Statistics.  

All statistical analyses were performed using Graphpad Prism software as 

described in the figure legends. All data are expressed as mean + SEM. p values of less 

than 0.05 were considered significant. 

4.3 Results 

PKSOD retention in the myocardium  

In order to determine the ability of PKSOD to remain in the heart after IR, either 

fluorescent SOD1 (FSOD) or PKFSOD were injected intramyocardially (n=3) and 

analyzed by confocal microscopy three days following IR surgery (Figure 4.1). Three-

dimensional reconstruction of images showed bright fluorescence from PKFSOD 

particles scattered in the left ventricular infarct zone of the myocardium (Figure 4.1 A). 

There was no fluorescence in the right ventricular region that is far from the site of 

particle injection. Additionally, data obtained in our laboratory demonstrates retention of 
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the particles for up to 10 days in native myocardium [19]. This fluorescence was totally 

absent in FSOD injected hearts (Figure 4.1 B).  

 

 

Figure 4.1. PKSOD microparticles are retained in the heart. Three-dimensional rendering 

of a confocal fluorescent microscope image of infarcted myocardium section injected with 

either free FITC-SOD1 (FSOD) or polyketal-encapsulated FITC-SOD1 (PKFSOD). (A) Bright 

green fluorescent PKFSOD particles can be observed in the myocardium three days 

following ischemia-reperfusion surgery. (B) No green fluorescence can be observed in 

myocardial tissue injected with FSOD. (Blue is DAPI counter staining, white bar represents 

50 μm).

In vivo superoxide scavenging ability of PKSOD.  

In preliminary studies, a significant increase in superoxide production was 

observed at 3 days following IR as measured by SOD inhibitable increase in the 

absorbance of cytochrome C reduction at 550 nm. This reduction was fully inhibited by 

PKSOD treatment (Figure 4.2 A). Malondialdehyde (MDA) and 4-hydroxyalkenals (HAE) 

generated during lipid peroxidation are an indirect indicator of oxidative stress levels. 

Our analysis of lipid peroxidation levels suggested a trend of decreased MDA and HAE 

in the PKSOD treatment group compared to IR alone (Figure 4.2 B). To better localize 
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the superoxide generation/scavenging, DHE-based in situ superoxide detection was 

performed as described in methods. Our results show that 

  

Figure 4.2. PKSOD scavenges superoxide in the ischemic myocardium following ischemia-

reperfusion. (A) Superoxide production as measured by cytochrome C assay is enhanced 

following IR which is inhibited significantly only by PKSOD treatment, n=3 per group. (B) There is 

a trend of reduced lipid peroxidation due to PKSOD treatment in the left ventricle of the 

myocardium, n=3 per group. (Figure continued)
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Figure 4.2 (Continued). PKSOD scavenges superoxide in the ischemic myocardium 

following ischemia-reperfusion. (C) Pictures shown are representative images of DHE 

fluorescence in the myocardium, imaged with identical camera settings. Individual images 

were quantified for red fluorescence intensity using ImageJ software in a blinded manner. n>5 

per group. Chart shows that only PKSOD significantly reduced DHE fluorescence 3 days 

following IR, with no effect of empty PK or free SOD1. *p<0.05 vs. IR; NS: Not significant vs. 

IR; ANOVA, followed by Dunnett’s multiple comparison test. 
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 superoxide levels were significantly increased in the ischemic left ventricular region 

surrounding the borders of excessive infiltration (p<0.05). Treatment with PK or free 

SOD1 protein was not able to reduce the increase in DHE fluorescence while PKSOD 

treatment was significantly (P<0.05) able to reduce it to basal levels (Figure 4.2 C). 

Examination of the infarct core demonstrated no significant increase in DHE 

fluorescence with IR (data not shown).  

Effect of PKSOD on apoptosis in the myocardium following IR  

In order to measure apoptosis, rats subjected to different treatments were 

sacrificed after three days and TUNEL staining was performed on 5 μm frozen sections, 

and the percentage of TUNEL positive cells was determined by manual counting in a 

blinded manner. Within the left ventricle infarct zone outside the borders of scarred 

infiltrated region, IR injury significantly (p<0.05) increased the percentage of TUNEL 

positive cells greater than 4-fold as compared to sham operated animals. There was no 

significant decrease in apoptosis with either PK or free SOD1 treatment; however, 

PKSOD treatment significantly (p<0.05) reduced the TUNEL-positive myocyte count 

(Figure 4.3 A). However within the core of the infarct containing heavy infiltration, there 

was no significant difference in apoptosis among the treatment groups (Figure 4.3 B). 

Effect of PKSOD on infarct size after reperfusion injury 

To determine the effect of prolonged superoxide scavenging on development of 

infarct size, the animals were subjected to IR surgery with or without particle injection. 

Infarct sizes were measured in a blinded manner by TTC and Evan’s Blue staining 3 

days following IR surgery. Infarct size in IR animals with vehicle treatment was 38% of 

the area at risk (AAR) and treatment with PK did not significantly reduce the infarct size 

(25% of AAR). Conversely, a significant inhibition of infarct size was observed with both 

free SOD1 (15 % of AAR) and PKSOD treatments (12% of AAR) as compared to IR or 

PK treated groups (p<0.05, Figure 4.4).  
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Figure 4.3. PKSOD treatment decreases apoptosis in the myocardium. (A) Three days 

after surgery in the borders of scarred myocardium in the left ventricle, IR injury significantly 

increased the apoptosis compared to sham operated animals that was not attenuated by 

empty polyketal (PK) or free SOD1 treatment. In contrast, PKSOD treatment was able to 

significantly reduce the TUNEL-positive count. (B) TUNEL counts within the infiltrated region 

were not significantly different between treatment groups. n>6 per group. *p<0.05 vs. IR; NS 

Not significant vs. IR; ANOVA followed by Dunnett’s multiple comparison test. 
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Figure 4.4. Acute SOD1 and PKSOD treatment decreases the infarct size. Three days after 

surgery, the hearts were stained with Evan’s blue and TTC to identify the infracted area in the 

myocardium. Infarct area normalized to areas at risk (AAR) was reported as percentage. While 

IR and PK treatment has about 30% infarct area in the AAR, immediate injection of SOD1 and 

PKSOD after reperfusion was able to reduce the infarct size significantly. n>6 per group 

*p<0.05 vs. IR. ANOVA followed by Dunnet’s multiple comparison test. 

Effect of PKSOD on acute cardiac function following IR 

To determine the effect of sustained SOD delivery on acute cardiac function, 

echocardiography data were collected. This method was chosen over the more accurate 

technique of measuring end systolic pressure volume relationships mainly because the 

latter method is fully invasive requiring multiple surgeries on animals. Prior to surgery, 

echocardiography data were collected to determine basal function, and then again 3 

days after surgery as described in methods. As shown in Figure 4.5, IR significantly 

reduced cardiac function (p<0.01) as measured in absolute change in fractional 

shortening from baseline to 3 days post-injury. In addition, both SOD1 and PK groups 
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had a significantly reduced cardiac function (p<0.01, not shown in figure) compared to 

sham operated animals, and they did not function better than IR (Figure 4.5). In stark 

contrast, treatment with PKSOD significantly (p<0.05) improved function to sham levels 

(Figure 4.5).  

 

 

Figure 4.5. PKSOD treatment improves acute cardiac function following IR. Adult male 

Sprague-Dawley rats subjected to sham or IR surgery with or without indicated treatments 

were subjected to echocardiography prior to surgery, and 3 or 21 days post-infarction. Change 

in fractional shortening was normalized to baseline values of each rat before surgery. PK SOD 

treated rats had significantly improved cardiac function as compared to ischemia-reperfusion 

(IR) alone 3 days following infarction, with no effect of empty PK or free SOD1. n≥10 per group, 

*p<0.01, **p<0.001. 

Effect of PKSOD on chronic cardiac function and fibrosis following IR 

To investigate the effect of free SOD1 and PKSOD on chronic cardiac function, 

baseline and 21 days post-surgery echocardiographic data were collected. IR-injury 

significantly impaired chronic cardiac function as measured by absolute change in 

fractional shortening from baseline to 21 days (p<0.01). A trend with cardiac functional 

improvement was observed in PKSOD treated animals as compared to PK or free SOD1 
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injection. However, the rats were not significantly improved compared with IR alone 

(Figure 4.6 A). Further, chronic collagen deposition was higher in IR 

Figure 4.6. PKSOD treatment does not improve chronic cardiac function following IR. 

(A) Only a dual treatment with PKSOD and PK-p38i significantly improved cardiac function 

21 days following infarction as compared to IR alone. No significant effect was seen with 

PKSOD, empty PK, or free SOD 1. n≥10 per group (B) Collagen deposition as measured by 

pico-sirius red staining show a trend of increased collagen deposition in all treatment groups 

compared to sham animals. (C) Doubling the units of free SOD1 injected or increasing the 

amount of delivered particles (2mg instead of 1 mg) to the myocardium did not offer any 

improvement in chronic function following IR. In B and C, n ≥ 4 per group. *p<0.05, 

**p<0.001 vs. sham, ANOVA followed by Dunnet’s post-test 
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compared to sham operated animals and neither SOD1, PK nor PKSOD treatment were 

able to reduce the extent of fibrosis (Figure 4.6 B). These observations were again not 

statistically significant. In addition, doubling the dosage in all the treatment groups did 

not have any additional benefit in chronic cardiac function (Figure 4.6 C). Thus, we 

investigated whether dual delivery with particles containing a p38 inhibitor (PK-p38i) that, 

in prior published studies had no acute effect but improved chronic cardiac function due 

to inhibition of fibrosis [19], could improve function in these rats. Interestingly, dual 

treatment with PKSOD and PK-p38i significantly improved cardiac function (p<0.05) 

compared to IR alone (Figure 4.6 A), suggesting the need for multiple therapeutics to 

combat the different phases of the disease. 

Effect on angiogenesis and stem cell recruitment  

 Isolectin B4 (IB4) from Griffonia simplicifolia binds to terminal α-galactosyl 

residues expressed by endothelial cells [180]. Therefore, fluorescently tagged IB4 were 

used to quantify angiogenesis in the left ventricle of each hearts, 3 days post-surgery 

(Representative image in Figure 4.7 A). IR shows a trend of increased angiogenesis (23 

endothelial cells per hundred nuclei) compared to sham (18 cells) (Figure 4.7 A). Both 

PK and free SOD1 treatment had similar trends of increased angiogenesis (24 and 23 

cells respectively per hundred cells) compared to sham. However, endothelial cell count 

in PKSOD treatment was not increased (16 cells) after surgery (Figure 4.7 A). These 

data however did not reach any statistical significance. In addition to angiogenesis, the 

effect of sustained PKSOD delivery on stem cell recruitment was studied by staining the 

hearts 21 days post-surgery for c-kit positive cells. All the treatment groups were similar 

to sham animals and all the groups had roughly equal percentage of c-kit positive cells 

(about 7 cells for every thousand cells, Figure 4.7 B).  
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Figure 4.7. Effect of PKSOD delivery on angiogenesis and stem cell recruitment. (A) 

Endothelial cells were stained in heart sections 3 days post-surgery using Alexa-Fluor 488 

tagged isolectin B4 (staining shown in representative picture). On an average IR, PK and 

SOD1 treatment had about 30% higher endothelial cell count compared to sham or PKSOD 

treated animals. (B) Immunohistochemistry performed to identify c-kit positive cells in the 

myocardium 21 days post-surgery shows no differences between groups. n ≥ 4 per group. 

ANOVA revealed no significant difference between groups. 
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Effect on calcium handling and antioxidant gene expression 

 To investigate if there are any changes in the gene expression levels of major 

calcium handling proteins following SOD1 delivery, real time polymerase chain reaction 

(RT-PCR) was conducted on cDNA obtained from the left ventricle of the rat 

myocardium, 3 days post-surgery. Except expression of sodium calcium exchanger 

(NCX) mRNA which did not vary significantly among any treatment groups compared to 

control (Figure 4.8), the expression of other major calcium handling proteins including 

Figure 4.8. Effect of sustained SOD1 delivery on gene expression of major calcium 

handling proteins. RT-PCR analysis performed on c-DNA isolated from the left ventricle of 

myocardium 3 days post-surgery shows that SERCA2a and PLB mRNA level decrease 

significantly only in SOD1 treated animals. NCX mRNA levels did not vary among any 

treatment groups. Interestingly, mRNA level of RYR did not drop in PKSOD treatment 

compared to sham and its expression level remained significantly higher compared to IR. All 

data normalized to 18s mRNA expression, n ≥ 4 per group. NS Not significant vs. Sham, * 

p<0.05 vs. Sham, † p<0.05 vs. IR.
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sarco-endoplasmic reticulum calcium ATPase-type 2A (SERCA2a), phospholamban 

(PLB) and ryanodine receptors (RYR) varied significantly between groups (Figure 4.8). 

There is a trend of decreased SERCA2a mRNA expression following IR and PKSOD 

treatment. However, following SOD1 treatment SERCA2a mRNA expression decreased 

significantly (p<0.05) compared to control. The same trend is observed for the 

expression of PLB mRNA where significant reduction (p<0.05) occurs only with SOD1 

treatment following IR. RYR mRNA level decreases following IR and SOD1 treatment. 

However, it did not reach statistical significance. Interestingly, RYR mRNA expression 

did not decrease in PKSOD treatment compared to control and it maintained a 

significantly higher (p<0.05) expression level compared to IR (Figure 4.8). 

 In addition to analyzing the gene expression of calcium handling proteins, mRNA 

levels of major antioxidant proteins including SOD1, SOD2, catalase and glutathione 

peroxidase1 (GPX1) were also quantified using RT-PCR. Only SOD2 mRNA had a trend 

of decreased expression following IR, SOD1 or PKSOD treatment compared to sham 

operated animas (Figure 4.9). However, statistical significance was not reached. The 

expression of SOD1, catalase and, GPX1 mRNAs did not show any specific trend, and 

none of their expression differed significantly within treatment groups (Figure 4.9)  

Effect on cardiac remodeling proteins 

In order to study the effect of sustained SOD1 delivery on remodeling, in situ 

zymography was performed on heart sections three days post-surgery to analyze the 

activity levels of matrix metalloproteinases (MMP) in the left ventricle of the myocardium. 

In order to do that, DQ collage IV substrate with heavy fluorescein conjugation was 

incubated with the tissue sections. Initially, because of an excessive number of 

fluorescent dyes attached to the substrate, the fluorescence signal is almost non-

existent. Collagen hydrolysis following MMP activity in the tissue sections results in the 

separation of the dye molecules from one another and the fluorescence signal increases 
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(Figure 4.10 

representative picture). In each field of the image, areas with MMP induced fluorescence 

was calculated after subtracting out the areas with non-specific signals from matched 

sections stained with DQ collagen in the presence of MMP inhibitor (EDTA). The 

analysis shows that IR results in a trend of having more areas with MMP activity in left 

Figure 4.9. Effect of sustained SOD1 delivery on gene expression of major antioxidant 

proteins. RT-PCR analysis was performed on c-DNA isolated from the left ventricle of 

myocardium 3 days post-surgery to investigate the expression of SOD1, SOD2, catalase and 

GPX1 expression levels normalized to 18s mRNA expression. Data suggest that only SOD2 

mRNA levels had a trend of decreased expression post IR in all treatment groups compared 

to sham. Whereas, the gene expression of SOD1, GPX1 and catalase did not show any 

specific trend and were not different vary within the treatment groups. n ≥ 4 per group. 

ANOVA showed no statistical difference between treatments. 
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ventricular region, compared to sham animals (Figure 4.10). Areas with MMP activity did 

not increase in SOD1 and PKSOD treatment compared to control (Figure 4.10). 

However these observations were not statistically significant. 

 

  

Figure 4.10. Effect of sustained SOD1 delivery on MMP activity. In situ zymography was 

performed using fluorescein tagged DQ collagen substrate to measure the MMP activity levels 

(shown in representative picture) in the frozen sections of the hearts subjected to 3 days of 

treatment. Although IR shows a trend of more areas with MMP activity in left ventricular 

region, there was no statistical significance between various treatment groups. n ≥ 4 per 

group. 

4.4 Discussion 

The overproduction of superoxide plays a central role in the progression of 

ischemia/reperfusion (IR) injury and causes a rapid loss of cardiomyocytes and 

decreased cardiac function. In spite of convincing studies on the role of superoxide in 
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causing cardiac pathologies and the ability of SOD1 to reverse this [15, 92], conflicting 

results exist on the efficacy of SOD treatment [16, 175] likely due to its poor stability. The 

findings in this chapter indicate that PCADK microparticles can be used for sustained 

delivery of SOD1 protein, which improves cardiac function during the acute phase of 

reperfusion injury. 

In these studies, total particle injected (1 mg) constitutes only 0.0004% by body 

weight, and if the average heart volume is 2 ml (119), the volume injected (100 μl) 

constitutes only 5% of heart volume. Higher amount of particle injection (> 2mg) was not 

chosen in the studies since previous observations have suggested reduced metabolic 

activity of the cells at high doses [181]. In addition, no attempts were made to identify the 

lowest possible beneficial PKSOD dosage in these studies. While administering the 

drug, PKSOD hydrolyses to acetone (LD50 = 5800 mg/kg rat) and cyclohexane 

dimethanol (CDM) (LD50 = 3200 mg/kg rat). Here, 1 mg of PCADK is injected, which 

can generate about 0.29 mg acetone and 0.71 mg CDM per 250 g rat that corresponds 

to 1.16 mg acetone/ kg rat and 2.84 mg CDM/kg rat for spontaneous total degradation of 

polymer. Therefore, given the degradation time of the polymer ranges from weeks to 

months, the actual concentration of the hydrolysis products are well below the toxic 

limits. Additionally, chronic but not acute treatment with 0.25 M acetone is known to 

increase the generation of oxygen radicals in rat liver microsomes (117). Here, even if 

spontaneous total degradation of polymer is assumed, the maximum local acetone 

concentration in the zone of injection will be around 5 μM. Thus, it can safely be 

assumed that the degradation products will have only minimal if any effect on modifying 

the free radical levels.  

The heart is a highly vascularized organ, and as such most small molecules and 

proteins are rapidly cleared [182]. Therefore, many therapies usually involve daily or 

multiple injections of drugs and proteins over extended time periods [100, 111]. Although 
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gene therapy could provide a solution for this problem [183], targeting specific tissues 

and cell types is very difficult through this method. Further, prolonged overexpression of 

drugs such as SOD1 could exacerbate cardiac pathologies [98]. Intracellular delivery of 

SOD1 using cell penetrating peptides may protect the myocardium against ischemic 

insult [184]. However, through this method the protein was delivered systemically, 

increasing the chances for nonspecific effects and protein loss. Thus, given the fact that 

intramyocardial injections are considered safe [185], a one-time localized administration 

of drugs that could sustain antioxidant levels in the heart during disease progression 

could offer advantage over existing treatment methods. Initially, to determine whether 

micron-sized PCADK particles are retained in the heart, fluorescent dye (rubrene) 

loaded particles were injected to healthy myocardium. Confocal microscopy showed the 

particles to be scattered in the myocardium three days following surgery and even over a 

week later [19]. Additionally, prior studies from this laboratory have demonstrated that 

the half life of these particles was quite stable in neutral environments with no 

inflammatory response. Thus, the particles can be expected to remain stable for several 

weeks in the myocardium [19, 116]. Subsequently, the retention of PKSOD particles in 

ischemic myocardium was determined by injecting fluorescent PKFSOD or FSOD 

intramyocardially following IR. The confocal images clearly show the local retention of 

PKFSOD in the myocardium three days after IR surgery. 

To determine the effect of prolonged SOD1 retention with polyketals, PKSOD 

particles were injected in a randomized and blinded study to the myocardium of IR 

injured rats, injecting the treatments immediately after reperfusion. Cytochrome C 

reduction assay shows that, PKSOD administration reduces the oxidative stress levels in 

the left ventricle of the myocardium. Additionally, DHE staining shows that 3 days 

following IR, excess superoxide is generated along the borders of scarred regions in the 

ischemic left ventricle. This increase in superoxide is not affected by administration of 
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free SOD1 protein, but completely inhibited by intramyocardial injection of PKSOD 

several days after injection. This finding is striking not only due to the prolonged effect of 

PKSOD administration, but also because of the dose given (single injection of 1 mg per 

rat, corresponding to 80U of SOD1). This dose is several orders of magnitude lower than 

previous published reports demonstrating infusion of over 1,000 U/kg prior to infarction 

followed by continuous infusion of over 1,000 U/kg thereafter [71, 72]. We speculate that 

our treatment was more effective due to the localized nature of the superoxide 

generation (border zones only) and the fact that our microparticles are retained within 

the injection site. These conclusions are supported by our imaging data demonstrating 

that the native protein is not retained in the myocardium following injection. Thus, large 

doses of free SOD1 would be needed to maintain pharmacologically relevant doses in 

the affected area.  

Superoxide generation is known to cause cardiomyocyte apoptosis [67], which is 

generally held to be responsible for progressive loss of cardiomyocytes after IR, in spite 

of wide variations in the percentage of apoptotic myocytes (0.05 to 35%) [186, 187]. The 

majority of cardiomyocyte apoptosis occurs within the first 72 hours of reperfusion, thus 

it was hypothesized that, the sustained reduction of superoxide by PKSOD 

administration would be beneficial in reducing early cardiomyocyte apoptosis. 

Interestingly only PKSOD treatment significantly reduced cardiomyocyte apoptosis, 

suggesting that prolonged superoxide scavenging plays an important role in the survival 

of endogenous cardiomyocytes. This is in contrast to some studies showing free SOD1 

infusion reduces apoptosis and infarct size, however it should be noted that the levels 

used to correspond to our PKSOD treatment (80U) were much lower than levels used in 

those studies [71].  

Decreases in cardiomyocyte apoptosis may lead to a reduction in infarct size 

[188]. In addition, overexpression of SOD is known to reduce infarct size in mice [93]. 
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Further, considerable collateral flow exist in rat myocardium [189] which can create 

zones of sub-optimal flow in the ischemic zone that can be salvaged by appropriate 

treatment. Thus, we performed a separate study to determine the effects of PKSOD on 

infarct size. Three days after IR, we found an infarct size of roughly 30% of the area at 

risk (AAR) in vehicle treated rats. Interestingly, both free SOD1 and PKSOD treatment 

significantly reduced the infarct size to about 15% of AAR. Because the presence of free 

SOD1 was relatively short lived, this result suggests that, scavenging the excess 

superoxide generated immediately after IR plays a significant role in reducing infarct 

size, and that other processes, such as autophagy and necrosis, and not just apoptosis, 

may play an equally important role in determining infarct size [190].  

Next, the effect of prolonged superoxide scavenging by PKSOD on cardiac 

function was measured by echocardiography. Change in fractional shortening from 

baseline echocardiograms demonstrated a significant improvement in function due to 

PKSOD treatment three days following treatment, with function similar to sham operated 

animals. In contrast, no functional improvements were observed with free SOD1 or PK 

treatment suggesting a critical need for sustained therapy. During the chronic phase (21 

days following IR), no significant improvement in cardiac function was observed with 

PKSOD. Though there was a trend toward improved function with PKSOD treatment 

(30% better than IR alone) as compared to PK and free SOD1, this result did not 

achieve statistical significance. Additionally, there was no difference in the extent of 

fibrosis between IR and PKSOD treatment. It is possible that PKSOD dosage at 1 mg 

was completely consumed in the early phase. Therefore, a higher dose of PKSOD (2 

mg) was injected to the myocardium to investigate if it offers any benefit. However, no 

chronic functional improvement was observed even at higher concentrations. It may be 

possible that increased superoxide alone does not determine the fate of orchestrated set 

of events happening in myocardial disease progression. Thus a single antioxidant alone 
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may not be sufficient to rescue function in the chronic phase of disease development. 

Supporting this, our recent study using polyketals to deliver small molecule inhibitors 

demonstrated no acute effect of p38 pathway inhibition, though sustained delivery had a 

striking effect on chronic remodeling. To address this interesting possibility, we delivered 

both PKSOD and PK-p38i following reperfusion and measured function at baseline and 

21 days following injury. The combined treatment was not significantly different 

compared to PKSOD alone. However, the combined treatment significantly improved the 

cardiac function as compared to IR alone, suggesting the potential need for multiple 

therapies to treat this progressive disease.  

Prior studies have shown that just a change of 0.023% in apoptosis in the 

myocardium is sufficient to induce a lethal cardiomyopathy [187, 191]. The data in this 

study also show that there is a low percentage of apoptotic cells (about 0.5%) after IR 

and a reduction of that percentage to about 0.1% by PKSOD treatment was able to show 

a significant functional recovery. Whereas inhibiting initial apoptosis is critical in 

maintaining normal function and homeostasis, the sustained inhibition of superoxide 

levels may additionally play important role outside of cell survival, such as improving 

vasculogenesis [192], expression of contractile proteins [193] and, recruitment of 

regenerative cells [192], which could potentially improve functional recovery 

synergistically with apoptosis reduction. Therefore, the effects of PKSOD on these other 

roles were investigated. None of the treatment groups had significant effect on 

angiogenesis. However, IR, PK and SOD1 treatment had a trend of expressing about 

30% more endothelial cell count compared to sham and PKSOD treated rats. ROS 

generation following IR helps in promoting angiogenic response, and therefore, 

scavenging the ROS can prevent angiogenesis [194, 195]. Adding more animals to the 

groups could help in inferring about the significance of this trend and could potentially 

provide information on the amount of SOD that could be used beneficially without 
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compromising on the angiogenic response. Indirect inferences suggest vulnerability of c-

kit positive cardiac stem cells to oxidative stress [196]. Therefore, it was analyzed to see 

if there are any changes in the percentage of c-kit positive cells existing in the 

myocardium following PKSOD treatment. However, no significant changes were 

observed between treatment groups. While initially discouraging, it should be noted that 

these snapshots merely represent one time point in selected areas and inferences 

should not be made about an entire population. 

SERCA2a, PLB, NCX and, RYR are major calcium handling proteins affecting 

the contractility of the myocardium [197]. Additionally, their activity levels are redox 

mediated [198]. Therefore, their gene expression levels were analyzed. Following 

PKSOD treatment, the ryanodine receptors expression levels remained similar to sham 

level while significantly differing from a trend of decreased RYR expression in IR. RYR 

play a vital role in calcium induced calcium release [197], and therefore, their expression 

level could potentially alter the calcium transients within the myocardium [199]. mRNA 

levels of SERCA2a and PLB decreases during end stage heart failure [200, 201]. Our 

analysis show that the expression of SERCA2a and PLB genes drop significantly in 

SOD1 treated animals. It is possible that significant modifications in the expression of 

these important calcium handling proteins affect the contractility of SOD1 treated 

animals, in spite of infarct reduction. Further in depth investigations could provide an 

answer to this possibility. Since oxidative stress could alter the expression of antioxidant 

proteins, the effect of SOD1 delivery, on gene expression of major antioxidant proteins, 

was investigated. However, the results did not show any significant changes between 

treatments.  

Oxidative stress affects remodeling in the myocardium by modulating the MMP 

activity [202]. Therefore, in situ zymography was performed to investigate MMP activities 

in the heart sections. However, zymogrpahy results showed that the differences in MMP 
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activities between various treatment groups were not statistically significant. It should be 

noted that this observation is based on collagen IV degrading MMP activity. Future 

studies with additional MMP substrates including gelatin, collagen I and IV subtypes 

could help us get a better picture of variations in total MMP activities following PKSOD 

treatment.  

This chapter has demonstrated that following PKSOD delivery to rat heart 

subjected to IR, oxidative stress level is decreased, and its acute functional ability is 

improved. Although, the effects of PKSOD delivery on various factors were analyzed, 

only apoptosis reduction following PKSOD treatment could offer possible reason for the 

observed acute functional improvement. Oxidative stress affects many reactions in the 

biological systems. Therefore, to fully understand if sustained SOD1 delivery offer 

beneficial or harmful effects to the myocardium more investigations are needed. 
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CHAPTER 5 

OXIDATIVE STRESS INDUCED DEATH AND INTRACELLULAR 

SOD LEVELS IN CARDIAC PROGENITOR CELLS 

 

In this chapter, experimental findings on the effects of oxidative stress on the 

survival and antioxidant response of c-kit positive cardiac stem cells are presented. 

Endogenous c-kit positive cardiac progenitor cells (CPCs) were separated from the rat 

myocardium using immunomagnetic isolation technique. These cells were expanded and 

subjected to xanthine/xanthine oxidase induced oxidative stress and analyzed for 

apoptosis and antioxidant response. Later, SOD levels of CPCs were compared with 

myocytes and the role of SODs in offering protection to CPCs from oxidative stress was 

determined. 

 

5.1 Introduction 

The heart was considered a post-mitotic organ without regenerative potential, 

and the post-natal growth was attributed to cardiomyocyte hypertrophy [203].  However, 

recent studies show the existence of cardiomyocyte mitosis and endogenous 

regenerative capability within the myocardium [9, 204, 205]. Moreover, evidence began 

to accumulate showing that injection of stem cells to the heart can benefit the 

myocardium [124]. Additionally, the existence of cardiac stem cells with myocardial 

regenerative ability was identified in 2003 [10]. These paradigm changing observations 

have led to intense research in this field, and delivery of stem cells to the diseased 

myocardium has the potential of becoming a promising therapeutic strategy to repair and 

regenerate the heart.  
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Different stem cells – both exogenous and endogenous in origin – are being 

investigated to regenerate the myocardium.  Exogenous pluripotent cell lines such as 

embryonic stem cells (ESC) can enhance the function of the infarcted myocardium [206]. 

However, ESCs have ethical issues and problems of teratoma formation and 

immunological rejection. Induced pluripotent stem cells (iPSCs) are multipotent and form 

functional cardiomyocytes [207], and like ESCs these cells also have problems with 

teratoma formation and immunological rejection. More basic understandings of the 

development and differentiation of autologous iPSCs could solve these issues and 

potentially help in utilizing iPSCs in regenerative therapies. Adult stem cells such as 

bone marrow derived stem cells (BMCs) provide modest benefits to the myocardium 

[20]. However, bone marrow derived cells such as hematopoietic stem cells do not 

transdifferentiate to cardiomyocytes [208]. Similarly, the transplantation of mesenchymal 

stem cells offers benefits to the myocardium despite its poor cardiomyocte differentiation 

ability [209, 210]. The benefits proffered by these cells are attributed to paracrine effects 

[211]. Endothelial progenitor cells also benefit the myocardium upon transplantation 

[212]. However, their cardiovascular differentiation ability has not been established, and 

long-term functional benefit in humans is questionable [213]. Large scale studies on the 

transplantation of adult skeletal myoblasts to the myocardium did not show any cardiac 

functional improvement [214].  

Endogenous cardiac stem cells represent another pool of cells with promising 

potential for their applications in myocardial regeneration. A variety of endogenous 

myocardial stem cell populations exist that vary in their expression of signature markers 

on its surface. Hierlehy et al (2002) identified cells with stem cell-like activity in the 

postnatal myocardium. These cells excluded the dyes such as Hoechst 33342 and 

rhodamine 123 due to high efflux mediated by the expression of ATP-binding cassette 

transporters such as multidrug-resistance member 1 (MDR1). Thus they were termed as 
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side population (SP) cells [215]. Although cardiomyogenic potential of SP cells with Sca-

1 expression is established in vitro [216], there is limited information about the in vivo 

regenerative potential of these cells.  Endogenous progenitor cells positive for the LIM-

homeodomain islet-1 transcription factor (isl+ cells) are another variety of progenitors 

existing in neonatal myocardium with multipotent cardiogenic differentiation potential 

[217]. However, there are no reports on the existence of isl+ cells in adult myocardium. 

Following gentle enzymatic digestion of rat myocardium or human cardiac biopsies, 

another multipotent fibroblast-like population with cardiogenic potential termed 

cardiospheres was obtained. They are positive for markers such as c-kit, Sca-1 and CD-

34 [218]. However, functional benefits offered by these cells to the myocardium are not 

known. Finally, there are resident, clonable c-kit positive cells which are observed in rat, 

dog and human myocardium and characterized by the presence of markers including c-

kit, Sca-1 and MDR-1 [10, 219].  Termed cardiac progenitor cells (CPCs), they improve 

ventricular function following transplantation [220] and differentiate to cardiomyocytes, 

smooth muscle cells, endothelial cells and fibroblasts [221, 222].  In addition, they can 

be obtained from human endomyocardial biopsies [223]. Due to their potential in cardiac 

regeneration, currently two phase I clinical trials are ongoing using cardiac stem cells 

(CADUCEUS, clinical trials identifier NCT00893360; and SCIPIO, clinical trials identifier 

NCT00474461).  

Irrespective of the cell types used, poor survival and, engraftment of cells are two 

of the major limitations of cell transplantation therapy. There is a poor survival of cells in 

hostile ischemic myocardium with increased inflammatory cytokines and oxidative 

stress. For example, the survival of skeletal myoblasts and MSCs are 1% [224] and 

0.5% respectively of the transplanted cells in the ischemic myocardium [225]. However, 

if the cells are transplanted a week after ischemic injury, the survival significantly 

improves [226]. Additionally, reducing the oxidative stress levels by SOD delivery in the 
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myocardium during transplantation increases the survival of the cells [227]. Further, 

enhanced expression of antioxidants such as SOD2 protects endothelial progenitors 

during oxidative stress [139]. Intracellular ROS levels and antioxidants regulate other 

important properties of stem cells such as their self-renewal and senescence [137, 138]. 

However, many of the basic properties of CPCs such as their antioxidant levels and their 

response to physiological stresses such as oxidative stress remain unknown. Therefore, 

additional research in these areas will improve our understanding and potentially aid in 

successful implantation of c-kit positive CPCs in myocardial regenerative therapies.  

Therefore, the aim of this chapter is to investigate the effects of oxidative stress 

on the in vitro survival and on the antioxidant response of c-kit positive cardiac 

progenitor cells. Additionally, the basal SOD levels of rat CPCs compared to neonatal rat 

myocytes were determined, and the role of SODs in offering protection to CPCs from 

oxidative stress was investigated.  Further, the SOD status between two subtype 

populations of human derived CPCs was compared, and their apoptotic response to 

oxidative stress was studied. 

 

5.2 Materials and methods 

C-kit coated magnetic beads for cell isolation 

 Micron sized magnetic beads (Dynabeads®, Invitrogen), were used as solid 

supports to bind antibodies targeted against c-kit cell surface receptors as per 

manufacturers protocol. Briefly, 50 µl beads were washed with 2 ml of sterile phosphate 

buffered saline containing 0.1% (w/v) bovine serum albumin (PBS/BSA) and the beads 

were separated from unbound antibody using Dynal® magnetic particle concentrator. 

The beads were incubated for 2 h at 37 °C in 2 ml of PBS/BSA containing 5 µl of H-300 

c-kit antibody (Santa Cruz Biotechnology). The antibody coated beads were washed 

twice and stored at 4 °C in 2 ml of PBS/BSA and used within two weeks. 
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Isolation of cardiac progenitor cells 

Endogenous cardiac resident progenitor cells were isolated from rat myocardium 

as previously described [10] with slight modifications. Healthy adult Sprague-Dawley rats 

(Charles River Labs) were euthanized; hearts were excised and washed with sterile 

Hank’s balanced salt solution (HBSS) and their ventricles were minced to small pieces. 

The extracellular matrices in the minced hearts were digested for 30 minutes at 37 °C 

using 50 mg of collagenase type-2 dissolved in 50 ml of sterile HBSS. The digested 

tissue suspension was passed through a 70 µm cell strainer and centrifuged. The cell 

pellet was resuspended with 2 ml of c-kit coated magnetic beads for 2 h at 37 °C. C-kit 

positive fractions of the cells bound to the beads were separated using magnetic particle 

concentrator and washed three times with sterile PBS/BSA to remove non-specifically 

bound cells. Finally, the bead-bound cells were grown in culture media and expanded. 

Human CPCs isolated from endomyocardial biopsies as previously described [223] were 

kindly provided by Dr. Piero Anversa’s laboratory (Brigham and Women’s Hospital, 

Harvard Medical School).  

Immunocytochemistry 

 The isolated cells were characterized using immunocytochemistry. Briefly the 

cells were fixed with cold 70% ethanol; permeabilized with 0.1% triton (Sigma) in PBS; 

blocked with 3% BSA in PBS and labeled with primary and fluorescent secondary 

antibodies. Primary antibodies used were: c-kit, sca-1, MDR-1, CD34, CD45, Nkx2.5 and 

GATA4 (Santa Cruz Biotechnology). The labeled cells were then subjected to flow 

cytometric analysis to measure the percentage of population positive for the labeled 

markers.  

Isolation of cardiomyocytes 

Cardiomyocytes were isolated from 1-2 days old Sprague Dawley rat pups 

(Charles River Labs) as previously described [228]. Briefly, the rat pups were 

74 
 



decapitated, and their hearts were washed with sterile HBSS and minced to a size of 

about 1 mm3; followed by extracellular matrix digestion in 1 mg/mL trypsin solution in a 

rotating shaker at 4°C for 6h. Following centrifugation, the supernatant was removed, 

and the pellet was digested at 37 °C for 10 min with 0.8 mg/mL collagenase solution. 

The tissue suspension was passed through 70 µm cell strainer to remove the undigested 

tissues. Rapidly adhering cells such as vascular smooth muscle cells and endothelial 

cells were removed by plating the suspension for 1h in fibronectin-coated T75 flasks. 

The non-adhered fractions consisting of cardiomyocytes were removed and cultured in 

fibronectin-coated 6 well plates. 

Cell culture and cloning 

 C-kit positive cells from rat myocardium were cultured in growth media that have 

Ham’s F-12 media (Cellgro) supplemented with 10% (v/v) heat inactivated fetal bovine 

serum (FBS) (Hyclone), l-glutamine, penicillin/streptomycin (Invitrogen), 10 ng/ml 

leukemia inhibitory factor (Sigma) and 10 ng/ml basic fibroblast growth factor (Fisher 

Scientific). Human cardiac stem cells were cultured using the same growth media 

without the addition of leukemia inhibitory factor. Before commencing the experiments 

the cells were grown to 80% confluence, serum starved in starvation media containing 

Ham’s F-12 media supplemented with, l-glutamine, insulin / transferrin / selenium (ITS) 

serum supplement (Cellgro) and penicillin/streptomycin. Single cell cloning was 

performed to test the clonability of cells. Briefly, c-kit positive cells were counted and 

subjected to serial dilution until there is no more than 1 cell per ml of growth media. The 

diluted cell suspension was distributed to the wells of 24 well plates, such that only 12 

wells of the 24 wells received a cell. Cells growing from a single colony were 

subsequently expanded and tested for cardiac progenitor cell markers using flow 

cytometry.  
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Cardiomyocytes were mantained in DMEM (Cellgro) supplemented with 10% 

FBS (Hyclone), l-glutamine, and penicillin/streptomycin (Invitrogen). They were serum 

starved overnight before experiments in DMEM supplemented with l-glutamine, and 

penicillin/streptomycin. Human umbilical vein endothelial cells (HUVECs), kindly 

provided by Dr. Hanjoong Jo’s laboratory, were cultured in 0.1% gelation coated plates 

with Meidum 199 (Cellgro) supplemented with 20% (v/v) heat inactivated fetal bovine 

serum (Hyclone), l-glutamine, and penicillin/streptomycin (Invitrogen), 50 µg/ml 

endothelial cell growth supplement (BD Biosciences) and 20 U/ml Heparin (Sigma). 

They were quiesced overnight in Medium 199 supplemented with 2% fetal bovine serum, 

ITS, l-glutamine, and penicillin/streptomycin. 

Xanthine/Xanthine oxidase treatment 

 Oxidative stress was induced in the medium using xanthine/xanthine oxidase 

system (XXO). Briefly, Ham’s F12 supplemented with l-glutamine, ITS serum 

supplement (Cellgro) and, penicillin/streptomycin was used as the treatment media for 

the cells. Before the experiments, 1 mM xanthine and 10 U/ml catalase dissolved in the 

treatment media were added to the quiescent cells. Catalase was used to have 

increased flux of superoxide in the XXO system. The formation of superoxide radicals in 

XXO system was measured using DHE staining as described in section 3.2. In addition, 

the flux of ROS generated was measured using Amplex red assay kit (Invitrogen) as per 

the manufacturer’s protocol. The experiments with XXO were terminated at same time 

point (48 h) and at 0 h, 6 h, 12 h, 24 h and 48 h before the termination of experiments; 

the treatment medium was subjected to 10 mU/ml xanthine oxidase addition. For groups 

receiving oxidative stress more than 24 h, the treatment media was subjected XXO 

addition once every 24 h to maintain the free radical levels. For time matched control 

experiments, each experiment had various indicated termination points with each time 

point having its own respective control and XXO treated cells.  
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Apoptosis detection 

 Sub-G1 cell fractions containing fragmented DNAs are stained with propidium 

iodide using protocols previously described to detect apoptosis in the cells [229]. Briefly, 

the cells were fixed in cold (-20 °C) 70% ethanol, washed with PBS and centrifuged at 

250 g. DNA was extracted with 0.2 M Na2HPO4 containing 0.004% Triton (Sigma) 

followed by staining for 1 h at 37 °C with 1 ml PBS containing 20 µg propidium iodide 

(Sigma) and 200 µg DNAse free RNAse (Sigma). The stained cells were analyzed by 

flow cytometry; single cells were gated and, the percentage of sub-G1 fraction was 

quantified. Additionally, in independent experiments, cells were fixed with 4% 

paraformldehyde and apoptosis was determined using TUNEL assay as described in 

section 4.2.  

SOD activity assay 

 Total SOD activity was measured using SOD assay kit (Dojindo Molecular 

Technologies) using manufacturer’s protocol. This assay is based on inhibition of color 

forming reaction between superoxide and water soluble tetrazolium (WST) in the 

presence of active superoxide dismutase. Briefly, proteins were extracted by lysing the 

cells overnight at 4 °C using cell lysis buffer (1 mM EDTA, 150 mM NaCl, 10 mM 

KH2PO4, 10 mM Tris-HCl, 1% NP-40) containing cocktails of protease and, 

phosphatase inhibitors (Sigma) and stored at -20 °C until further analysis. During the day 

of analysis, the cell lysates and WST were loaded onto the well of 96 well plate and the 

absorbance at 450 nm was measured kinetically at 37 °C for 30 min. SOD2 activity was 

calculated using the same protocol in the presence of 4 mM potassium cyanide which 

inhibits the activities of SOD1 and SOD3. Since the amount of extracellular SOD inside 

the cells is minimal [18], the difference between the activities of total SOD and SOD2 is 

estimated as the activity of SOD1. All the activities were reported after normalizing to the 
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protein content in the samples. Protein content was measured using micro BCA protein 

assay kit (Thermo Scientific) according to manufacturer’s protocol. 

Western blotting 

 Equal amounts of denatured proteins from cell lysate were subjected to sodium 

dodecyl sulfate polyacrylamide gel electrophoresis, as described previously[230]. The 

separated protein were blotted onto a polyvinylidene fluoride (PVDF) membrane using 

wet transfer procedure as described previously [231]. Protein blotted PVDF membranes 

were blocked with 4% milk in tris buffered saline, containing 0.1% Tween, and probed 

with antibodies for SOD1, SOD2, GAPDH or beta-actin (Santa Cruz Biotechnology). The 

membranes were incubated with horse radish peroxidase-bound secondary antibodies 

and subjected to chemiluminescence reaction, and the signals were developed and 

quantified on Kodak Image station 4000 MM PRO and, Carestream MI software. 

Real time polymerase chain reaction. 

mRNAs were extracted from CPCs using Trizol® reagent (Invitrogen) according 

to manufacturer’s protocol. c-DNAs were synthesized by reverse transcribing the mRNA 

using Superscript reverse transcriptase (Invitrogen) along with oligo dT and random 

hexamers as primers. Real time polymerase chain reactions were run on 

StepOnePlus™ Real-Time PCR System (Applied Biosystems) with SYBR Green PCR 

master mix (Applied Biosystems) using primers (Appendix) for, SOD1, SOD2, catalase, 

and GPX1. All the reaction products were normalized to the cDNAs of 18s primers. 

siRNA transfection 

 Lipofectamine RNAiMax (Invitrogen) was used to transfect the cells with 

specified siRNAs as per manufacturer’s protocol. Various duplexes of siRNAs for SOD1, 

SOD2 gene silencing and non specific scrambled siRNA (Appendix) were obtained from 

IDT. 10 nM siRNAs were reverse transfected to CPCs using RNAiMax, and the duplexes 

were tested for si knockdown after 24 h of transfection using RT-PCR. The duplex giving 
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the best gene silencing was chosen for further experiments. During the experiments, 

CPCs were transfected with chosen siRNAs and allowed to grow for 48 h before 

beginning serum starvation and XXO treatment. 

Statistics.  

All statistical analyses were performed using Graphpad Prism software as 

described in the figure legends. All data are expressed as mean + SEM. p values of less 

than 0.05 were considered significant. 

 

5.3 Results 

Isolation of c-kit positive cardiac progenitor cells from adult rat myocardium 

Heart cells were separated from 8-10 weeks old Sprague Dawley rat myocardium 

after digesting the extracellular matrix. C-kit positive cell population was isolated from 

the homogenous cell mixture using immunomagnetic separation by incubating with anti-

c-kit H-300 antibody that recognize the N-terminal domain (corresponding to amino acids 

23-322) of c-kit receptors on the cell membrane. The cells bound to the magnetic beads 

were cultured for about three weeks, and the colonies were subsequently expanded. 

Immunocytochemistry followed by flow cytometric analysis show that the isolated cells 

are >90% c-kit positive (Figure 5.1). Additionally, more than 80% of the population was 

positive for MDR-1, Sca-1, CD-34 and early cardiac transcription factors Nkx-2.5 and 

GATA-4 (Figure 5.1). However, these cells were negative for CD-45 (Figure 5.1). 

Analysis of these cells from passage number four to fifteen shows that, during population 

doublings, the percentage of C-kit, MDR-1, Sca-1, CD-34, Nkx-2.5 and GATA-4 remain 

greater than 70% (data not shown). For subsequent experiments, CPCs were used from 

passage 5 to passage 14. In addition, c-kit positive clonal cells can be expanded (Figure 

5.1) from the CPCs following serial dilution procedure.  
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Figure 5.1. Isolation of c-kit positive CPCs from rat myocardium. Adult male Sprague-

Dawley rat hearts were subjected to enzymatic digestion and incubated with c-kit coated 

magnetic beads. Cells attached to the beads were cultured and expanded. Flow cytometric 

analysis showed that the isolated cells were characterized by the presence of c-kit, Sca-1, 

MDR1 and CD-34 and by the absence of CD-45. They also expressed early cardiac 

transcription factors Nkx2.5 and GATA4. Additionally the clonal cells also expressed c-kit 

markers.  

CPCs are more resistant to oxidative stress induced apoptosis 

 In our preliminary experiments, CPCs were subjected to xanthine/xanthine 

oxidase (XXO) or lumazine/xanthine oxidase induced oxidative stress. Various 

concentrations of xanthine (200 µM to 2.5 mM) were added to CPC treatment media with 

or without 10 mU/ml xanthine oxidase (XXO). Following 10 h of oxidative stress, DNA of 
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CPCs were stained with propidium iodide (PI) and the sub-G1 DNA fractions in the cells 

were quantified using flow cytometry. At various substrate concentrations of xanthine, 

there was no significant change in the sub-G1 fractions between control and XXO 

treated CPCs (Figure 5.2 A). Replacing xanthine with lumazine as a substrate to 

Figure 5.2. Effect of XXO treatment on CPCs. (A) Analysis of sub-G1 fraction of CPC DNA 

following propidium iodide staining show that following 10 h of treatment of CPCs with 10U/ml of 

xanthine and varying concentrations of xanthine or 200 µM of lumazine (brown bar) did not 

induce cell death compared to control cells without XXO treatment. (B) DHE based HPLC 

quantification of superoxide in 0.5 or 1 mM xanthine treatment media 15 h after 10 mU/ml XXO 

addition. (C) H2O2 analysis using Amplex red assay using XXO media with and without SOD 

shows that about 75 µM of superoxide flux is generated in the treatment media within 15 h. 
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increase the flux of superoxide generation had no effect on sub-G1 fractions (brown bar 

in Figure 5.2 A). In our subsequent studies, treatment media containing 1mM xanthine, 

10 U/ml catalase and 10 mU/ml XXO was used to generate the oxidative stress. In those 

conditions, DHE based HPLC analysis showed the presence of superoxide in the media 

even 15 h after XXO addition (Figure 5.2 B). In addition, preliminary studies with amplex 

red assay show that around 75 µM of superoxide flux was generated over 15 h using this 

substrate/enzyme concentration (Figure 5.2 C).  

Subsequently, using this treatment condition, we compared oxidative stress 

induced apoptosis in CPCs and neonatal cardiomyocytes and analyzed the data using 

two-way ANOVA. Similar to preliminary observations, CPCs had no significant difference 

in the sub-G1 fraction between 12 h of XXO treated cells and time matched controls. In 

stark contrast, myocytes subjected to the same treatment conditions had 25 % more 

sub-G1 fractions compared to the control cells (Figure 5.3 A). Due to the differences in 

basal cell death between the cell types, apoptosis was also quantified using TUNEL 

assay in independent experiments conducted using same the treatment conditions. 

CPCs had about 15% basal cell death, and addition of XXO did not increase the 

percentage of TUNEL positive cells. However, addition of XXO in myocytes significantly 

increases (p<0.05) its TUNEL positive cell count by 80% compared to control (Figure 5.3 

B).  

CPCs have higher basal SOD levels compared to HUVECS and myocytes 

 CPCs, HUVECs, and myocytes were cultured to 80% confluence; quiesced 

overnight and the basal SOD activities in the cell lysates were assayed using water 

soluble tetrazolium based assay. The SOD1 activity in CPCs was about 3.8 U per mg of 

protein (Figure 5.4 A). However, the activity level of SOD1 in both HUVECs and 

neonatal cardiomyocytes were two fold lower (p<0.01) compared to CPCs (Figure 5.4 

A). Similarly, the basal activity levels of SOD2 followed the same trend in these three cell 
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types. While CPCs had about 0.3 U of SOD2 activity per mg of protein, the activity 

 

Figure 5.3. CPCs are resistant to apoptosis following XXO treatment compared to 

myocytes. (A) PI staining shows that only myocytes and not CPCs have significantly 

higher apoptosis following 12 h of XXO treatment compared to control. (B) TUNEL staining 

shows that only myocytes and not CPCs have significantly higher apoptosis following 24 h 

of XXO treatment compared to control. n=4, *p<0.05 vs. control, ††p<0.01 between cell 

types, two-way ANOVA followed by Bonferroni post test. 
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Figure 5.4. CPCs have higher basal SOD activity and protein levels compared to 

myocytes and HUVECs. (A) Quiesced CPCs have higher SOD1 (left panel) and SOD2 (right 

panel) activity compared to quiesced HUVECs and myocytes. n≥4, **p<0.05 vs. CPC, 

*p<0.05 vs. CPC, ANOVA followed by Dunnett’s post test. Pie chart shows that in all the 

three cell types, 90% of total SOD activity is due to SOD1 and the remaining is due to SOD2. 

Western blot analysis shows that CPCs have significantly higher basal SOD1 and SOD2 

protein levels normalized to β-actin vs. myocytes (B) and normalized to GAPDH vs. HUVECs. 

n≥4, *p<0.05 vs. CPC, t-test 
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levels of SOD2 were about 30% less (p<0.05) in both HUVECs and myocytes compared 

to CPCs (Figure 5.4 A). In these three cells, only about 10% of total SOD activity is due 

to SOD2, while 90% of total activity is due to SOD1 (Figure 5.4 A, pie charts). In addition 

to the activity levels, the basal protein levels of both SOD1 and SOD2 were analyzed 

semi-quantitatively using western blotting technique. Figure 5.4 B shows that the SOD1 

and SOD2 protein levels in myocytes were significantly less (p<0.01 and p<0.05 

respectively) compared to CPCs. In the same fashion, HUVECs had significantly less 

protein levels of both SOD1 and SOD2 (p<0.001 and p<0.01, respectively) compared to 

CPCs (Figure 5.4 C).  

XXO treatment increases the expression of SOD mRNAs 

 RT-PCR was conducted to investigate the antioxidant gene expression of CPCs 

subjected to XXO treatment. The experiment was conducted as single end point 

experiment where cells without XXO addition act as control for other treatment groups 

(Figure 5.5 A). After 3 hours of XXO addition, the expression of SOD1 mRNA increases 

(p<0.01) by 1.75-fold and at later points, the expression returned back to control levels 

(Figure 5.5 B). In a similar manner, after 6 h of XXO addition, SOD2 mRNA expression 

was significantly (p<0.05) increased by 1.70-fold compared to control (Figure 5.5 B). 

However, the mean catalase gene expression level did not vary among the treatments 

following XXO addition (Figure 5.5 C). There was a trend toward an increase (1.3-fold) in 

catalase mRNA levels after 6 h of XXO addition though it was not statistically significant 

(Figure 5.5 C). Dunnet’s comparison of GPX1 mRNA level of control cells with the 

treatment group 6 h after XXO addition shows a significant (p<0.05) 1.6-fold increase 

(Figure 5.5 D). However, the mean GPX1 gene expression levels among all the 

treatment groups remained the same with no significant difference.  
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Figure 5.5. Effect of XXO treatment on antioxidant enzyme expression in CPCs. (A) In 

single end point experiments, all groups were subjected to same treatment duration in 

media containing xanthine but differing in the duration of XXO added ‘t’ hours before the 

end of the experiment. (B) SOD1, SOD2 and GPX1 mRNA expressions are significantly 

increased following XXO addition compared to control cells without XXO. n≥7, ANOVA 

followed by Dunnett’s post test, *p<0.05 vs. control, **p<0.01 vs. control. 
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SOD activity increases in CPCs after XXO treatment 

To investigate the changes in total SOD activities in CPCs following XXO 

treatment, the cells were cultured to 80% confluence and quiesced overnight. 

Subsequently during the 48 h treatment of CPCs, they were subjected to various 

durations of oxidative stress by the addition of XXO. Total SOD activity in the cell lysate 

dropped significantly (p<0.01) by 50% within six hours of XXO addition (Figure 5.6 A). 12 

h after the addition of XXO, the activity remained 40% lower (p<0.05) than control levels. 

Gradually, this drop of total SOD activity was compensated back to control levels by 24 h 

following XXO addition and with increasing duration of the treatment (48 h after XXO 

addition), there is a trend of 30% higher SOD activity compared to control cells (Figure 

5.6 A). In contrast, when the SOD response of neonatal cardiomyocytes was 

investigated, their total SOD activity did not drop after XXO treatment. Instead, they had 

a trend of gradual increase in the SOD activity level following XXO treatment (Figure 5.6 

B). When both CPCs and myocytes were compared using two-way ANOVA for their total 

SOD activity 48 h after XXO addition, they did not differ from each other in their SOD 

response. Both CPCs and myocytes had significantly higher (p<0.0001 and p<0.01 

respectively) SOD activity 48 h after XXO addition, compared to their respective controls 

(Figure 5.6 C).  

In addition to total SOD activity, SOD1 and SOD2 activities were also measured 

in CPCs with time-matched controls to understand the changes in the variations in basal 

SOD activities during the treatment. Two-way ANOVA analysis of the data shows that 

the basal SOD1 activity of the control group dropped by 40% within 48 h. However, this 

drop was not statistically significant (Figure 5.7 A). However, following 48 h of XXO 

treatment in CPCs, SOD1 activity increases significantly (p<0.001) by 1.4-fold compared 

to its time matched control (Figure 5.7 A). Basal SOD2 remains similar to control levels 

during the treatment (Figure 5.7 B). Further, similar to changes in SOD1 activity, SOD2 
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activity also increases significantly (p<0.01) by about 2-fold compared to the time 

matched controls of CPCs 48 hours after XXO addition (5.7 B).  

 

Figure 5.6. Effect of XXO treatment on total SOD activity of CPCs. (A) Total SOD activity of 

CPCs drops significantly within 6 h compared to control. However, it compensates back as XXO 

treatment duration is increased. n≥5, *p<0.05 vs. control. ANOVA followed by Dunnets post test. 

(B) Total SOD activity variation in myocytes following XXO treatment. (C) Two-way anova of 

CPCs and myocytes show that by 48 h of XXO treatment, total SOD activity of both these cell 

increase significantly. n=4, NS not significant, ***p<0.0001, **p<0.01 vs. respective control.  
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Figure 5.7. Effect of XXO treatment on SOD1 and SOD2 activities of CPCs. Both 

SOD1 and SOD2 activities represented as fold change normalized to treatment 

beginnings are significantly increased within 48 h following XXO treatment compared to its 

time matched controls. n≥4, Two-way ANOVA followed by Bonferroni post test, **p<0.01, 

***p<0.001 vs respective time matched controls  
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SOD2 protects CPCs from apoptosis following XXO treatment 

 CPCs were subjected to siRNA-induced gene silencing experiments. Following 

siRNA screening, two siRNAs that give selective and efficient silencing of SOD1 and 

SOD2 expression were selected. After 24 h of transfection with SOD1 siRNA, the copy 

numbers of SOD1 mRNA were reduced by 95% compared to transfection-alone control 

(Figure 5.8 A). SOD2 mRNA levels were not significantly affected due to SOD1 siRNA 

transfection (Figure 5.8 A). In a similar manner, transfection of CPCs with SOD2 siRNA 

reduced the expression SOD2 mRNA levels by 95% compared to transfection-alone 

control, while the copy levels of SOD1 mRNA were unaffected (Figure 5.8 B). Following 

48 h of siRNA transfections, TUNEL assays were conducted in the presence or absence 

of XXO, to investigate the oxidative stress induced apoptosis in CPCs. Results from 

duplicated experiments show that, 48 h after the tranfection of scrambled siRNA, the 

percentage of TUNEL positive CPCs did not increase basally nor following 12 h of XXO 

treatment, compared to its own time matched controls (Figure 5.8 C). SOD1 siRNA 

transfection showed a trend of increased percentage of TUNEL positive cells following 

XXO treatment. However, the variability was high between the experiments, and 

therefore, was not statistically significant (Figure 5.8 C). Interestingly, XXO treatment 

induces a significant (p<0.05) 2.5-fold increase in the percentage of TUNEL positive 

cells, following SOD2 siRNA treatment, with no effect on basal cell death (Figure 5.8 C).  

SOD levels in human CPCs and effects of XXO treatment  

 Human CPCs (hCPCs) were obtained from myocardial biopsies and two 

subtypes of hCPCs were cultured: young hCPC phenotype containing IGF1 receptors 

(IGFR+ hCPC) and, senescent hCPCs containing lower percentage of IGF1 receptors 

(IGFR- hCPC) [232]. In order to determine the SOD activities levels in hCPCs, the cells 

were quiesced overnight and the proteins were extracted using lysis buffer. There was 

about 1.8 U of basal SOD1 activity per mg of protein in IGFR+ hCPCs (Figure 5.9 A). 
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Although, this was not significantly different from the SOD1 activity of IGFR- hCPCs 

(1.13 U/mg protein), the activity was about 60% higher than the SOD1 activity of IGFR- 

hCPCs. On the other hand, the basal SOD2 activity of IGF- hCPCs was about 0.1 U/mg 

protein which is significantly (p<0.01) lower than the SOD2 activity of IGF+ hCPCs (0.22 

U/mg protein) (Figure 5.9 B).  

 

Figure 5.8. Effect of XXO treatment on siRNA induced gene silencing of SOD1 and SOD2 in 

CPCs. (A) SOD1 si but not SOD2 si reduces the expression of SOD1 mRNA normalized to 18 

mRNA in CPCs. (B) SOD2 si but not SOD1 si reduces the expression of SOD2 mRNA 

normalized to 18 mRNA in CPCs. (C) 12 h of XXO treatment following 48 h of si RNA transfection 

show that the percentage of TUNEL positive cells increases significantly only in SOD2 silenced 

CPCs. n=2, two-way ANOVA followed by Bonferroni post test. 
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Figure 5.9. Basal SOD levels in human CPCs. (A) Basal SOD1 activity of both IGFR+ 

hCPCs and IGFR- hCPCs did not differ significantly from each other (B) SOD2 activity of 

IGFR- hCPCs are significantly lesser than SOD2 activity of IGFR- hCPCs. n≥4, unpaired t-test, 

*p<0.05 vs. IGFR+ hCPC.  

When both IGFR- and IGFR+ hCPCs were subjected to similar oxidative stress 

levels as that used for treating rat CPCs (1 mM xanthine and 10 mU/ml XXO), >90% the 

cells died within 6 hours of treatment (data not shown). Therefore, hCPCs were 

subjected to treatment with 500 µM xanthine and 5 mU/ml XXO for six hours and the 

apoptosis was measured using TUNEL assay. There was a significant difference 

(p<0.01) between the cell types. IGFR+ hCPCs had lower basal cell death compared to 

IGFR- hCPCs. Following the addition of XXO, there was no significant increase in 

TUNEL count in IGFR+ hCPCs, compared to its own control (Figure 5.10 C). Similarly, 

TUNEL count was not significantly increased in IGFR- hCPCs following XXO treatment. 

However, the data show a trend of increased cell death in IGFR- cells following XXO 

addition (Figure 5.10) 
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Figure 5.10. Apoptosis in human CPCs following XXO treatment. IGFR- hCPCs have 

higher basal cell death after 6h treatment with or without 500 µM xanthine and 5 mU/ml XO 

treatment following serum starvation. n=4 patients, two-way paired ANOVA followed by 

Bonferroni post test, **p<0.01 between cell types.  

5.4 Discussion 

Endogenous c-kit positive cardiac progenitors are a promising cell type for 

myocardial regenerative therapies. They have robust cardiovascular differentiation 

abilities and direct intramyocardial delivery of these cells structurally integrates and 

improves the performance of rat myocardium [221]. In addition, autologous CPCs can be 

obtained from human myocardial biopsies [21, 223]. Therefore, in vitro expansion and 

transplantation of cardiac progenitor cells is a potential therapeutic strategy to 

regenerate the myocardium. However, one of the major roadblocks of cell 

transplantation therapy is survival and engraftment of cells in the ischemic myocardium. 
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Oxidative stress is increased following an ischemic event and the survival, senescence, 

and differentiation of stem/progenitor cells are affected by intracellular ROS levels [233, 

234]. Further indirect evidences suggest the vulnerability of CPCs to oxidative stress 

[196]. The findings in this chapter indicate that rat CPCs have higher amount of basal 

SODs compared to adult myocytes and endothelial cells. Further, rat CPCs are more 

resistant to oxidative stress-induced cell death compared to myocytes. In addition, our 

studies show that basal SOD levels were higher in healthy rat CPCs compared to human 

CPCs isolated from unhealthy patients and thus may not make the optimal test bed for in 

vitro testing. Additionally, we also found significant differences in SOD levels between 

young and senescent phenotypes of human CPCs. 

Various cell surface markers are used in the isolation of cardiac stem cell 

population [235]. The population identified by the presence of c-kit markers has robust 

cardiovascular differentiation ability [10]. Therefore, we isolated c-kit positive cells 

expressed in the myocardium using an immunomagnetic method. The current isolation 

yielded a population that is greater than 90% c-kit positive and the percentage vary from 

60 to 90% from passages 4 to 15. Although, the exact reason for variation in the 

percentage of c-kit expression is not known, c-kit receptors are known to undergo ligand 

induced dimerization and internalization [236]. C-kit expression is essential for the 

promotion and regulation of cardiac stem cell differentiation [237]. However, lower 

percentage (20%) of c-kit expression does not reduce its cardiogenic potential [221]. 

The c-kit expression is not exclusive to cardiac stem cells. C-kit is a receptor tyrosine 

kinase identified after a series of studies conducted in white spotting loci and steel loci of 

mice [238]. These receptors are also found in many other progenitors including 

hematopoietic lineage and mature cell lines such as mast cells, astrocytes, sweat glands 

and, breast glandular epithelial cells [239]. Therefore, the c-kit positive cells were tested 

for the presence of other markers such as Sca-1, MDR-1 and CD-34 that are reported to 
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exist in cardiac stem cells and also tested for its clonability [235]. Our analysis shows 

that the isolated cells are clonable and are positive for cardiac stem cell markers Sca-1, 

MDR-1 and CD-34 and negative for hematopoietic marker CD-45. Additionally, the cells 

used in this study were positive for the expression of early cardiac transcription factors 

such as Nkx-2.5 and GATA-4. Therefore, they were termed as cardiac progenitor cells 

instead of cardiac stem cells that lack the expression of these transcription factors [10].  

Xanthine/xanthine oxidase (XXO) is a physiologically relevant system to 

generate reactive oxygen species – particularly superoxide and hydrogen peroxide 

[240]. Our preliminary experiments confirmed the generation of free radicals in the 

treatment media following XXO addition. Further, XXO is known to induce apoptosis in 

many cell types [241, 242]. Therefore, in our studies, XXO was used to investigate the 

effects of oxidative stress on CPC apoptosis. Following propidium iodide staining of the 

DNA, increased fractions of fragmented DNA, generated due to cell death, can be 

observed behind the diploid peak of normal, non-fragmented DNA. Quantification of this 

hypodiploid or sub-G1 fraction gives a simple estimate of what are believed to be 

apoptotic cells [229]. While previous reports show apoptosis with 100 µM xanthine and 

10mU/ml XXO in HUVECs [241], our PI staining studies in CPCs show that there is no 

difference in the sub-G1 fraction between XXO treated cells and control cells even at 

higher xanthine concentrations. This interesting observation prompted us to compare 

the oxidative stress induced apoptosis in CPCs and neonatal cardiomyocytes isolated 

from rat pups. Independent apoptosis quantification using PI staining and TUNEL assay 

show increased apoptosis in myocytes following XXO treatment with no effect of XXO in 

CPCs. The data in Figure 5.3 A also show differences in basal cell death with propidium 

iodide. In order to make legitimate comparisons between cells, both cell subtypes were 

quiesced in serum-free conditions. It is likely that primary neonatal myocytes, being a 

terminally differentiated cell, are more sensitive to serum depletion in this assay that 
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may measure global cell death; however, TUNEL assays confirmed the effect of XXO on 

apoptosis.  

SODs are one of the major endogenous antioxidant enzymes providing first line 

protection against oxidative stress. For example, higher SOD2 and catalase levels in 

circulating progenitors protect them from oxidative stress induced apoptosis compared 

to related cell types [139]. In addition, enhanced expression of antioxidant genes is 

considered one of the ‘stemness’ trait in many progenitor cells [243]. Therefore, the 

basal SOD protein and activity levels of CPCs were compared with other adult cardiac 

cell types. Interestingly, CPCs had significantly higher protein levels of both SOD1 and 

SOD2 enzymes compared to HUVECs and myocytes suggesting this as a mechanism 

by which CPCs were protected from oxidative stress, unlike cardiomyocytes. SOD 

activity assays confirmed Western analysis, though SOD2 levels were not significantly 

lower in cardiomyocytes compared to CPCs, despite the large difference in protein 

levels. As SOD2 activity is dependent on other co-factors, in addition to protein levels 

(Mn, for example), this could be an area for future study. 

Oxidative stress is known to have a modest effect on the expression of 

antioxidant enzymes in many cell types such as epithelial cells and fibroblasts [244-246]. 

Therefore, the effect of oxidative stress on the antioxidant enzyme gene expression in 

CPCs was investigated. SOD2 is known to be regulated by external factors while SOD1 

is often constitutively expressed in various cell types [247]. RT-PCR analysis of CPC 

mRNAs showed that XXO treatment induced about 2-fold higher expressions of SOD1, 

SOD2 and GPX1 mRNAs in 3-6 hours, perhaps suggesting a compensatory 

mechanism. SOD proteins are known to undergo proteasome-induced degradation 

[248]. Further their levels drop within 2 hours of oxidative stress [249]. SOD activities 

measured in CPCs show that the cells lose about 50% of total SOD activity within six 

hours of oxidative stress. In contrast, myocytes did not exhibit this drop in activity after 
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oxidative stress. However, within 48 h of oxidative stress, both CPCs and myocytes had 

significantly higher total SOD activity levels, compared to control cells. Additionally, 2-

way ANOVA conducted on CPCs with time matched controls demonstrate significantly 

higher activity of SOD1 and SOD2 following 48 h of XXO treatment suggesting that the 

increased SOD mRNA expression following oxidative stress may have led to the 

generation of new SOD protein.  

To determine if enhanced SOD levels were responsible for the resistance of 

CPCs to oxidative stress-induced apoptosis, siRNA based gene silencing experiments 

were conducted to decrease the expression of SOD1 and SOD2 mRNAs in CPCs. While 

decreased SOD1 had no significant effect on protection against XXO-induced apoptosis, 

our results showed that by decreasing the expression of SOD2, CPCs had significantly 

higher apoptosis following XXO treatment. This result is interesting given that total 

SOD2 activity is only 10% of total activity is CPCs. The result also implicates the 

importance of maintaining the mitochondrial homeostasis and oxidative stress level in 

CPCs.  

Recently, CPCs isolated from human cardiac biopsies have demonstrated the 

presence of young and senescent phenotypes of cardiac stem cells marked by the 

presence or absence respectively of insulin like growth factor receptor 1 (IGFR1) [232]. 

Previous studies and our studies show that, following serum starvation, IGFR+ hCPCs 

have lower basal apoptosis compared to IGFR- hCPCs. Serum deprivation induces 

oxidative stress [250] and our siRNA studies suggest that, in rats, SOD2 levels can 

provide resistance to oxidative stress induced apoptotis. Therefore, basal SOD1 and 

SOD2 levels of IGFR+ and IGFR- hCPCs were determined. IGFR+ hCPCs had higher 

SOD1 levels than IGFR- cells. While this was a 60% increase, it was not statistically 

significant. More interestingly, IGFR- hCPCs had significantly less SOD2 levels 

compared to IGFR+ hCPCs. These results suggest the importance of endogenous SOD 
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levels especially SOD2 in offering protection to human CPCs during oxidative stress. 

Further studies on the role of these enzymes in CPCs could potentially help in improving 

the survival of these cells during transplantations. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

6.1 Summary and conclusions  

The motivation of this dissertation work was to identify new treatment options or 

improve the existing options to treat myocardial diseases. Pharmacotherapeutic options 

to treat the post-ischemic myocardium do not shown significant, long term benefits. 

Therefore, cell based therapies and alternate therapeutic strategies such as delivering 

bioactive molecules including micro-RNAs and proteins are being investigated [11]. 

Further, oxidative stress is increased in ischemic heart disease and antioxidant status in 

and around the cells of the myocardium could affect both physiology and 

pathophisiology of the myocardium [70]. In the third chapter of this work, our 

experimental findings on the potential of a recently invented PCADK polymer to deliver 

SOD1 protein intracellularly are presented. In the fourth chapter of this dissertation, the 

effects of PKSOD delivery to the ischemic myocardium were investigated. In the fifth 

chapter, studies conducted on antioxidant status of CPCs and the effects of oxidative 

stress on the apoptosis of CPCs are presented.  

Intracellular SOD1 delivery 

 Delivery of SOD1 to inside of the cells remains difficult. Using a double emulsion 

– solvent evaporation method, SOD1 encapsulated PCADK (PKSOD) microparticles 

were made. Our HPLC based quantification of superoxide specific DHE products 

showed that free SOD1 delivery scavenged only extracellular superoxide; however, it 

was not adequate to scavenge the superoxide within the cells. Pre-incubation of RAW 

macrophage cells with PKSOD reduced both intracellular and extracellular superoxide 

within the cells. The key finding in the third chapter of this dissertation was that micron-
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sized PKSOD particles efficiently scavenged both extracellular and intracellular 

superoxide generated following PMA stimulation in cultured macrophages. 

Sustained SOD1 delivery to the myocardium following IR 

Superoxide anion radicals are implicated in reperfusion injury and eventual 

myocardial dysfunction [74]. Although SOD1 helps in scavenging the superoxide, the 

delivery of this enzyme is difficult due to its poor plasma half life. Therefore, SOD1 was 

encapsulated within micron sized PCADK particles and delivered to the rat myocardium 

following IR. PKSOD particles were found to remain in the myocardium even a week 

after the particle injection, indicating the potential for sustained delivery. Additionally, 

preliminary cytochrome c assay and DHE staining showed that superoxide levels were 

less in PKSOD treated myocardium following IR. Free SOD1 infusion at low doses is 

known to reduce infarct size [98] and our published study demonstrated that infarct size 

was reduced by both free SOD1 and PKSOD administration. However, apoptosis after 

IR was reduced significantly only by PKSOD treatment. In addition, only PKSOD 

treatment improved acute cardiac function. There was neither significant chronic 

functional improvement nor reduction of fibrosis in the myocardium due to PKSOD 

treatment. Published studies from our lab demonstrated that sustained delivery of a p38 

inhibitor (PK-p38i) significantly improved long-term function and reduced fibrosis [19]. 

We found that a combination treatment with PKSOD and PK-p38i improved both the 

acute and chronic cardiac function. No significant changes were observed in 

angiogenesis, or in the gene expression of major antioxidants and, calcium handling 

proteins following PKSOD treatment. Additionally, PKSOD did not induce significant 

changes in MMP activity following IR. The main finding in the fourth chapter of this thesis 

is that early PKSOD delivery to the rat myocardium restores the acute cardiac function 

following myocardial ischemia-reperfusion. The study also shows that PKSOD reduces 

apoptosis in the ischemic myocardium. 
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Antioxidant and apoptotic response of CPCs subjected to oxidative stress 

 CPCs are promising a promising candidate for cell based approaches to repair 

the myocardium due to their cardiovascular lineage differentiation ability [222]. While 

clinical trials are underway, many of their basic properties remain unknown. In this study, 

c-kit positive cardiac progenitor cells were isolated from adult rat myocardium using an 

immunomagnetic isolation technique. The isolated cells were negative for hematopoietic 

stem cell marker CD-45 but positive for cardiac progenitor cell markers such as c-kit, 

Sca-1, MDR-1 and CD-34. They also expressed early cardiac transcription factors such 

as Nkx2.5 and GATA4. Propidium iodide and TUNEL staining showed that the isolated 

CPCs did not undergo apoptosis following xanthine/xanthine oxidase (XXO)-induced 

oxidative stress. In contrast, XXO treatment induced apoptosis in myocytes. Analysis of 

basal SOD activity and protein levels showed that CPCs had higher basal levels of both 

SOD1 and SOD2 compared to myocytes and HUVECs. RT-PCR data showed that both 

SOD1 and SOD2 mRNA levels were significantly increased following XXO treatment. 

Additionally, both SOD1 and SOD2 activity levels were significantly increased 48 h 

following XXO treatment compared to their time-matched controls. siRNA-based gene 

silencing experiments demonstrated that reduced expression of SOD2 mRNA increased 

oxidative stress-induced apoptosis in CPCs. Finally, the studies with human CPCs 

showed that the “young” phenotype of CPCs marked by the presence of the IGF-1 

receptor had significantly higher SOD2 levels compared to a “senescent” phenotype of 

CPCs that lack the IGF-1 receptor. The key finding in the fifth chapter of this dissertation 

is that CPCs have significantly higher basal expression of SOD1 and SOD2 compared to 

adult cardiac cells. Our study also demonstrates that CPCs are more resistant to 

oxidative stress induced apoptosis compared to myocytes.  
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6.2 Perspectives and future directions 

Intracellular SOD1 delivery with polyketal microparticles 

During these investigations, various other protocols for improving the 

encapsulation efficiency were tested. Those results show that the efficient encapsulation 

of SOD1 depends on various process parameters. Additionally, since each protein varies 

in its stability, they need to be optimized separately to identify optimal encapsulation 

parameters. Enhanced encapsulation of SOD1 was achieved by altering the turbulence 

and by increasing the molecular weight of the polymer. Altering the turbulence is easier 

to control as molecular weights of the polymer can vary depending on a large number of 

variables. Current polyketal synthesis protocols yield polymers around 5 kDa. This is far 

less than the molecular weights (~100 kDa) of widely used polyester based polymers 

[251]. Additionally, increasing the molecular weight of polyketals beyond 6 kDa reduces 

its solvent solubility drastically (observation from preliminary studies). Therefore, 

polyketal synthesis techniques should be refined to obtain soluble high molecular weight 

polymers. One possibility is to increase the branching in the polymer or to include side 

groups in the polymer backbone to improve its solubility characteristics [252]. 

Our studies indicate that PCADK efficiently encapsulates SOD1 and the model 

bovine serum albumin protein efficiently using a double-emulsion technique. However, 

this observation cannot be generalized to all proteins. For example, when we attempted 

to encapsulate catalase using the same technique within PCADK, less than 2% of the 

protein was encapsulated. Additionally, catalase activity was found to decrease 

drastically following mechanical homogenization. Therefore, to encapsulate unstable and 

sensitive proteins within polyketals, methods with minimal mechanical interferences such 

as coacervation techniques could be attempted [155]. Nevertheless, using the lessons 

from PKSOD project, we have observed that polyketals can be used to encapsulate 

various other bioactive agents including transcription factors. In our collaborative work 
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with the laboratory of Dr. Young-sup Yoon (Emory University), we have achieved about 

25% encapsulation of induced pluripotent stem cell transcription factors such as Oct4, 

Sox2, c-Myc and Klf4 within polyketal microparticles. 

Following the publication of intracellular SOD1 delivery in macrophages using 

PCADK microparticles in Biomaterials [253], the encapsulation and delivery of various 

other bioactive agents using polyketal micro and nanoparticles were investigated. For 

example, while our early data demonstrated efficient uptake of polyketals by 

macrophages, new modifications were made to deliver encapsulated drugs to the inside 

of cardiomyocytes - a relatively non-phagocytic cell. This was achieved by encapsulating 

the drugs after surface modification of polyketals with N-acetyl-glucosamine [254]. 

Altering the particle size also affects the internalization by the cells. For example, in our 

preliminary studies with cardiac progenitor cells (CPC), we had observed that while 

microparticle (> 10 µm) internalization by CPCs was minimal (<15%), the internalization 

was higher (> 50%) when the particle size was reduced below 2 µm. Another project on 

polyketal based delivery of bioactive agents involves siRNA delivery. Ion-pairing 

methods are currently being examined to encapsulate and deliver siRNA to reduce 

levels of ROS generating enzymes within macrophages, similar to work presented in this 

dissertation. This work will hopefully provide additional insights on the effects of reducing 

the levels of ROS in the ischemic myocardium following the polymer-siRNA delivery. 

Sustained delivery of SOD1 with polyketal particles to the myocardium 

This chapter demonstrates how the sustained retention of SOD1 through PKSOD 

delivery improved acute cardiac function. During the study, the IR model was chosen 

due to its clinical relevance and since the model is known to generate excessive 

superoxide radicals within 10 seconds of reperfusion [59]. Additionally, IR is known to 

cause myocardial disease progression [27]. Therefore, PKSOD was injected 

immediately after IR, to see if it provided benefits to the myocardium compared to empty 
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particle and free SOD1 delivery. Injection of 1 mg of PKSOD significantly reduced the 

oxidative stress levels in the ischemic myocardium. This led to an improvement in acute 

cardiac function; also, this significantly reduced the apoptosis in the myocardium. 

However, chronic function was not improved. These results suggest that sustained-

reduction of superoxide radicals has beneficial effects on the heart, during the acute 

phase of the disease, but the chronic phase is likely more complex.  

The role of free radicals on the myocardium may be positive or negative 

depending on the endpoint examined. For example, while superoxide scavenging 

reduced myocyte apoptosis, more in-depth studies may suggest that free radical 

generation is necessary for proper chronic remodeling given the role of oxidative stress 

on extracellular matrix regulation. Therefore, in addition to considering the scavenging 

the absolute concentration of free radicals, the temporal and spatial aspects of ROS 

generation also need to be considered before a conclusion can be reached on the role of 

sustained SOD1 delivery on the myocardium. For example, in a related project 

conducted in our laboratory, the deleterious effect of H2O2 to myocardium was found to 

vary depending on the time of onset of cardiac catalase overexpression [255].  

In addition to the delivery of SOD1 with polyketal particles, our laboratory has 

used polyketal particles to deliver other drugs to treat cardiac dysfunctions. For example, 

Sy et al., have used the PCADK polymer to deliver the hydrophobic drug SB239063 (p38 

inhibitor) to the myocardium (PK-p38i) [19]. PK-p38i delivery improved chronic cardiac 

function following ischemia in rat myocardium. Our combination therapy with PKSOD 

and PK-p38i to the myocardium was undertaken based on this observation. This 

combination therapy showed significant improvements in both acute and chronic 

functions compared to IR alone. However, there was no significant difference between 

the chronic functional improvements of PKSOD and PKSOD/PK-p38i group. Adding 

more animals to the groups may help us understand the significance and real benefit of 
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the combination therapy. In addition to delivering drugs to treat chronic inflammatory 

cardiac diseases, polyketals have been used to treat acute inflammatory diseases. 

Yang, et al. delivered imatinib (NF κB inhibitor) using PK3 microspheres to treat acute 

liver failure [115]. PK3 has also been used to deliver SOD to lungs to reduce the fibrosis 

in lungs following bleomycin treatment [178]. Thus, delivery of antioxidants with polyketal 

microparticles may have wider-reaching implications in many diseases. 

As the levels of myocytes apoptosis following IR were modest, other factors were 

analyzed in an attempt to identify alternative causes of the observed improvement in 

acute function. Since the expression of calcium handling proteins, controlling the 

contractility of the heart, is redox mediated [198], we measured the mRNA expression 

levels of major calcium handling proteins. The levels of ryanodine receptors, sodium-

potassium exchanger, phospholamban, and SERCA remained unchanged due to 

PKSOD treatment following IR. However, myocardial contractility is affected by the 

balance of calcium handling proteins and more importantly on the actual transients of 

calcium within the myocardium. Additionally, superoxide is known to affect the calcium 

transients in myocytes [256], and therefore, future studies should be attempted to 

measure calcium transients in the myocardium to establish the role of PKSOD in 

myocardial calcium handling.  

Oxidative stress is known to affect the expression of collagen and MMPs [202]. 

Our zymographic MMP activity result did not show any statistical significance although 

both SOD and PKSOD treatment group had a trend of reduced MMP activity than IR 

group in the ischemic myocaridum. Further continuation of zymographic tests with other 

substrates of MMPs such as gelatin and, type 1 collagen could potentially reveal the role 

of PKSOD delivery on MMP activation. In addition to the role of oxidative stress on 

MMPs, ROS are also known to alter the collagen expression [202]. Additionally, the 

expression level of collagen 1 and collagen 3 subtypes varies in cardiomyopathies [257]. 
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Our preliminary RT-PCR analysis showed that mRNA level of collagen 1A – the most 

abundant subtype (>80%) in the myocardium [258] – decreased significantly following IR 

and SOD1 treatment. However, following PKSOD treatment, the mRNA expression of 

this subtype was not reduced. This could potentially offer a benefit to myocardial 

contractility [258] though more work needs to be done to examine other collagen 

subtypes and temporal changes.  

In addition to remodeling, oxidative stress can potentially alter the oxidation, 

reduction and, degradation of proteins, for example, by causing perturbations in 

endoplasmic reticulum-associated functions [259]. This can be observed in our 

preliminary evidence from our collaborative work with the laboratory of Dr. Barbara 

Boyan (Georgia Tech). RT-PCR analysis of the expression of protein disulfide isomerase 

– an enzyme reductase and chaperone in the endoplasmc reticulum – was increased by 

50% following IR similar to previously observed results [260, 261]. However, this 

increase was prevented by PKSOD addition, which suggests a potential beneficial effect 

of PKSOD to the myocardium. Future studies should be conducted in this area, to 

understand this relatively unstudied aspect of the relationship between oxidative stress 

and endoplasmic reticulum stress on the function of the myocardium. 

Cardiac diseases are complex and multifactorial clinical syndromes, and 

oxidative stress is implicated in all the risk factors of this complex syndrome [13]. In 

addition to the possible targets that we have investigated, oxidative stress also has 

various other targets in the myocardium. For example, it alters energy metabolism, 

protein phosphorylation and signaling cascades, cytokine production and recruitment of 

cells [262] and each one of these will be an interesting arena to explore.  

Antioxidant and apoptotic response of CPCs subjected to oxidative stress 

Our original aim regarding CPCs was initially developed to test whether PKSOD 

delivery to ischemic myocardium could improve CPC transplantation and eventual 
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regeneration of the myocardium. However, during the course of this study, we 

interestingly observed that CPCs were resistant to oxidative stress induced apoptosis 

compared to myocytes. Since SODs are the major first line of defense against oxidative 

stress, basal SOD levels in the CPCs were analyzed and compared with myocytes and 

endothelial cells – the related cell types in the myocardium. Our data demonstrate that 

CPCs have higher SOD levels and are also resistant to oxidative stress induced 

apoptosis than the related cardiac cell types. However, all these observations were 

made in quiesced and ~80% confluent cells. These situations may not exist in the in vivo 

environments. Changes in confluence or the proliferative state of the cells can alter the 

antioxidant metabolism within the cells [263]. Therefore, CPCs may not have the same 

antioxidant status and these cells may be vulnerable to oxidative stress at other phases 

of its cell division. Our preliminary data have shown this interesting possibility. When 40-

50% confluent CPCs in proliferative state were subjected to serum starvation induced 

oxidative stress, we observed significant cell death within 10 hours. It is equally possible 

that the observed death was due to anoikis which is apoptosis induced by inadequate or 

inappropriate cell-matrix interactions [264]. Additional studies in this intriguing aspect will 

potentially reveal interesting properties of CPCs that can be utilized during in vitro 

expansion and transplantation of these cells.  

siRNA results based on duplicated experiments show that, following SOD2 

silencing, CPCs were susceptible to XXO-induced apoptosis. This result suggests that 

enhanced SOD2 expression could be the reason for resistance of CPCs to oxidative 

stress induced apoptosis, when compared to adult cardiac cells. Similar observations 

exist in the literature which show that SOD2, but not SOD1, is critical to protect the cells 

against oxidative stress induced apoptosis [265]. SOD2 is known to maintain 

mitochondrial membrane integrity which when disrupted leads to cytochrome release 

and begin the chain of events leading to apoptosis [266]. Therefore, with this initial 
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evidence, further investigations should be conducted to establish the role of SOD2 in the 

survival of CPCs. In addition to SOD, the oxidative stress induced apoptosis may also 

depend on catalase – one of the major antioxidant enzymes in the cells. This was 

investigated in our laboratory, in a separate project on microRNA mediated CPC 

differentiation induced by H2O2. In those studies, it was observed that although 100 µM 

H2O2 did not induce apoptosis in CPCs, inhibiting the catalase using 3-aminotriazole 

made the CPCs vulnerable to H2O2-induced apoptosis.  

As our studies were conducted in healthy rat CPCs, and human clinical trials are 

underway, we sought to determine the role of SOD in apoptosis of human CPCs 

(hCPCs). Recent studies, from the laboratory of Dr. Piero Anversa (Brigham and 

Women’s Hospital), have identified subpopulations of hCPCs, that demonstrated 

“young” and “senescent” phenotypes, based on the presence or the absence of IGF-1 

receptor [232]. Apoptosis measurements in hCPCs with and without the IGF-1 receptor 

show that IGFR+ hCPCs are more resistant to serum deprivation induced apoptosis 

than IGFR- hCPCs. Additionally, IGFR1+ cells had significantly higher activity of SOD2 

compared with IGFR- hCPCs. Further, following 6 h of XXO treatment, IGFR- hCPCs 

had 40% higher death than control cells. However, this was not statistically significant 

because of high standard deviation. In the light of our evidences from rat CPCs on the 

importance of SOD2 in the survival of CPCs, the studies with human CPCs should be 

continued to help us understand the significance of low SOD2 levels in “senescent” 

phenotype of hCPCs.  

Previous studies have shown that addition of IGF-1 or activation of the 

downstream AKT signaling reduces the apoptosis following serum deprivation induced 

oxidative stress [267, 268]. Additionally, AKT signaling pathway is known to control the 

expression of SOD1 and SOD2 [249, 269]. Further, following oxidative stress AKT is 

known to be activated within 10 minutes [270]. Our preliminary evidences also have 
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demonstrated that AKT is activated with 10 minutes of XXO treatment. Additionally, we 

have observed that by blocking AKT with LY29004, CPCs became vulnerable to 

apoptosis following XXO treatment. These preliminary studies open an interesting 

question of what is the relationship between CPC survival and AKT, IGF1 receptors and 

antioxidant levels, and more research needs to be done to explore this area.  

Since their identification in 2003, the interest in CPC biology has begun to 

increase tremendously, as evidenced by the number of research articles published. 

However, many of the basic behaviors such as the antioxidant and oxidative stress 

response of CPCs is still remaining a less studied area in CPC biology. The interesting 

findings from this study should be a good starting point to explore this exciting area. 

6.3 Concluding remarks 

“The heart . . . is the beginning of life; the sun of the microcosm. . . (heart) is 

indeed the foundation of life, the source of all action” reported William Harvey in 1628. 

Since then, humanity have come a long way after many success and failures to 

understand about this critical pumping machine. Presently, the quality of life following a 

cardiac event is tremendously improved. Pharmacological interventions using agents 

such as anti-coagulants, beta-blockers and ACE inhibitors are still ‘life savers’ in 

emergency situations. However, other than cardiac transplantation, a long term cure for 

heart failure is yet to be identified. In recent years, alternate therapeutic strategies are 

being investigated to identify a permanent cure for the heart. These include bioactive 

agent delivery and cell delivery based regenerative approaches. This dissertation work 

was an attempt to provide some additional information to improve these promising 

treatment options. With recent improvements in science and technology, we will one day 

achieve the goal of finding a permanent cure for heart diseases. But until 

then…prevention is better than cure. 
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APPENDIX A 

LIST OF PRIMERS 

Gene NCBI Nucleotide 
reference 
number 
 

Primer sequences 

 
PLB 

 
NM_022707.1 

 
Forward 

 
CATCGTCGTGAAGGGTCACGATTT 

  Reverse ACTGAGGAAACGGGCAGCTACATT  
  Product size 117 
    
    
NCX1 NM_019268.2 Forward GAATCGGCGTGGCCTGGTCC 
  Reverse TGGCCTCCGCCGATACAGCA  
  Product size 181 
    
    
RYR NM_032078.1 Forward ACAGCACAAGCCATTCTGCAAGAC 
  Reverse ACCCAGACGTTAGCTGGTTCTTGT  
  Product size 139 
    
    
18s M11188 Forward TTCCTTACCTGGTTGATCCTGCCA 
  Reverse AGCGAGCGACCAAAGGAACCATAA 
  Product size 132 
    
    
SOD1 NM_017050.1 Forward GGTGTGGCCAATGTGTCCATTGAA 
  Reverse CAATCCCAATCACACCACAAGCCA 
  Product size 178 
    
    
GPX1 NM_030826 Forward AGTTCGGACATCAGGAGAATGGCA 
  Reverse AGGCATTCCGCAGGAAGGTAAAGA 
  Product size 159 
    
    
Catalase NM_012520.1 Forward TTGACAGAGAGCGGATTCCT   
  Reverse GGCATCCCTGATGAAGAAAA   
  Product size 283 
    
    
SOD2 NM_017051 Forward ACGCGACCTACGTGAACAATCTGA 
  Reverse TCCAGCAACTCTCCTTTGGGTTCT 
  Product size 193 
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SERCA2a NM_058213  Forward TCTGTGTGGCTGTCTGGCTTATCA 
  Reverse CACGATGGCGTTCTTCTTTGCCAT 
  Product size 200 

 
SOD1 
siRNA 

NM_017050.1 5’-3’ GGAAAUGAAGAAAGUACAAAGACTG 

  3’-5’ CACCUUUACUUCUUUCAUGUUUCU
GAC 

    
SOD2 
siRNA 

NM_017051 5’-3’ AGAAUGUUAGCCAAAGAUACAUAGT 

  3’-5’ CCUCUUACAAUCGGUUUCUAUGUAU
CA 

    
Scrambled 
siRNA 

Not applicable 5’-3’ CGUUAAUCGCGUAUAAUACGCGUAT 

  3’-5’ AUACGCGUAUUAUACGCGAUUAACG
AC 
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