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It was only about a 10-minute ride.

He said, “What are you doing out here?”

I said, “I’m an actor.”

So he said, “A lot of competition in your business.”

I said, “Yeah.”

He said, “Just like mine.”

And we kicked it around a little bit, and then he said, “Just keep in mind,

there’s always room for one more good one.”

That was very helpful.

- Excerpt from an interview with Leonard Nimoy

on a conversation with John F. Kennedy
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SUMMARY

Driver assistance systems show the potential to increase the fuel economy and

optimize the range of standard and electric vehicles. Eco-driving focused systems

optimize velocity trajectories with respect to energy consumption and suggest these

optimized speeds to drivers with the goal of reducing overall energy consumption.

Because the systems have no direct control over vehicle behavior, the driver’s inclina-

tion to follow the commands is important to their e↵ectiveness. This can be improved

by personalizing the velocity commands to suit an individual’s driving behavior, re-

quiring a model capable of accurately predicting styles of individual drivers.

Two methods for identifying, modeling, and predicting driver behavior using driv-

ing data time-series are investigated. The first, pattern recognition-based approach

breaks down the data into homogeneous segments using heuristic, dynamic program-

ming, and bottom-up methods. Segments are grouped based on acceleration behavior

and used, in conjunction with function-fit regression and system identification meth-

ods, to construct models describing driving behavior. Contrary to the first approach,

the second, machine learning based method constructs a model using an entire time-

series by analyzing relationships between multiple variables. Finally, each method is

evaluated in it’s ability to accurately predict driver acceleration and velocity behavior.
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CHAPTER 1

INTRODUCTION

Since the birth of the automobile over one hundred years ago, cars have become one of

the most common means of transportation on the planet. The car is a modern luxury

that allows the masses to travel between destinations independently, e�ciently, and

comfortably. Over the last 40 years, the average car ownership in developed and

developing countries has been on the rise [23].

Unfortunately, this rise in the popularity has also had several negative impacts.

Examples include significant contributions from motor tra�c to the air concentra-

tions of pollutants like CO, NOx, PM10, and CO2 [13], the destruction of land and

toxic pollution in extraction areas for fossil fuels consumed primarily by the auto-

motive industry [20], and an increasing number of human fatalities every year from

automotive accidents [50].

Since the 1970’s, driver assistance systems have become an increasingly popular

method of addressing these problems. By supporting drivers in changing road con-

ditions, popular systems like anti-lock braking and newer, more advanced systems

(like adaptive cruise control, lane keeping, and range extension systems) can improve

driving safety, comfort, and sustainability. These systems are, however, limited by

the amount of information they have on the intent and style of the driver operating

the vehicle. For example, a novice driver would appreciate the early intervention of

a safety system whereas an experienced driver might become frustrated in the same

situation where they have stable control of the vehicle [68]. Knowledge about the

specific driver could be used to increase general system acceptance.

In this work, we explore adaptive driver behavior modeling methods, including

pattern recognition and machine learning approaches, that could be used in conjunc-

tion with a range extension driver assistance system to increase driver acceptance and

trust. First, an overview of fundamental topics such as driver assistance systems and

driver behavior modeling are introduced.

1.1 Driver Assistance Systems

Driver assistance systems (DAS) aid human drivers in the act of piloting an auto-

mobile. These systems can be characterized into two main categories: conventional,

which work in parallel to the driver without considering them as a part of the control
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Figure 1.1: Total number of road accidents and fatalities per total distance traveled
[19].

loop; and human centered adaptive systems, which directly take driver characteristics

into account when making decisions [54].

In 1978, Daimler AG introduced the first production car, the Mercedes-Benz

W116, to have an anti-lock braking system (ABS). This was the first conventional

driver assistance system to be introduced to the market and since it’s debut, other

systems like electronic stability control (ESC) and traction control have followed.

Their introduction, coupled with more passive safety systems like airbags and crum-

ple zones, has led to a steady decline in automotive fatalities [10, 40]. Figure 1.1

shows the total number of road accidents per total distance traveled as a result of the

introduction of passive and active safety systems [19].

Following the success of the conventional safety systems, systems focused on de-

creasing emissions and fuel consumption began to appear in the literature. This type

of system is desirable because it uses driving style or energy management to create

an optimal driving mode without the need to develop new components for the car

itself. In fact, how a car is driven can have a large impact on fuel consumption and

significant energy savings can be made by changing the way a driver accelerates and

decelerates during a driving cycle [8, 17, 46, 58] (and references therein). Lin conducts

research on the energy optimization of speed profiles for electric vehicles (EV’s) using

a dynamic programming approach that avoids driving at high speeds to reduce drag

[43]. Karmakar took this idea a step further and optimized the energy consumption

3



of an EV by giving speed commands to the driver [35]. Similar approaches were taken

to optimize the fuel consumption of conventional cars in [49] and [44]. In a di↵erent

approach, energy system management in vehicles with hybrid energy storage systems

is conducted in [1].

Human centered adaptive systems are becoming more popular as well. Here, a

driver model is identified and used to improve the functionality of a DAS by incor-

porating the style and intent of a specific driver into the system control loop. The

modeling process is reviewed in Section 1.2. Within the realm of human centered

systems, convenience applications are the most common. Here, the systems perform

tasks for the driver like adaptive cruise control or vehicle stability control [16, 51,

63] (and references therein). Driver behavior is taken into account to confirm that

system actions are necessary and make them as comfortable for the passengers as pos-

sible. Recently, driver behavior has begun to appear in eco-based driving systems,

which analyze driver behavior in combination with a fuel consumption optimization

algorithm [47]. Further improvements to such systems can be made by incorporat-

ing personalized driving styles into systems that seek to reduce fuel consumption by

influencing driver behavior.

1.2 Driver Characteristic Recognition

As mentioned in Section 1.1, driver-specific behavior and characteristic recognition is

becoming relevant in driver assistance systems. According to the survey conducted in

[2], advanced driver modeling also has applications in driving training and coaching,

crowd sourcing for detecting road conditions, and improving energy e�ciency.

One method for driving behavior recognition is the detection of driving modes

with respect to road conditions. [21, 33, 41] use a six mode classification system for

detecting di↵erent road types ranging from highways to steep, rural roads. Being

able to automatically detect the road type using only driving data allows the car to

make adjustments to components like the suspension, brakes, and power-train that

cause the vehicle to drive in a more e�cient or safe manner. Driver classification

based on aggressiveness is another popular modeling technique [42] (and references

therein). Drivers are rated on a scale ranging from conservative to aggressive based

on acceleration and braking behavior.

Personalization is another popular topic relating to the benefit of driver charac-

teristic recognition. The idea that a consumer is more likely to buy a personalized

product is a fundamental concept of business strategies like market segmentation and

4



targeting tracing back to the 1950’s [37]. This same logic can also be applied to

DAS’s. Systems that tailor their actions to fit an individual’s driving style are more

likely to be accepted than those that act against a driver’s intent or judgment.

There are various methods that can be used to identify individual driving behavior,

with the majority of the methods in the literature using velocity and acceleration data

to classify exactly how a driver behaves. The most basic method uses a heuristic

approach to identify key features of the driving data. In [48], individual sections

of a velocity trajectory are defined as the points in time between stationary periods.

Then, values like the maximum acceleration, acceleration time, peak velocity, average

velocity, etc. are identified and used in conjunction with principle component analysis

to find similarities between the di↵erent trajectories. Methods like this have the

advantage of being simple to use, but are often too broad or simplistic to identify

unique features of the velocity data due to their use of thresholds. If, for example,

there exists an acceleration mode with a single value less than the threshold, this

algorithm will fail to identify it.

Statistical methods o↵er a more intelligent solution. Fuzzy logic clustering meth-

ods are present in the literature [14] and use statistically optimal measures to group

similar data into clusters. This type of pattern recognition is unique, however, in

the way that the boundaries between the clusters are fuzzy rather than well defined,

which allows the technique to be used on data that is not distinctly di↵erent [7]. In

this approach, an objective function based on the mean, variance, and standard devi-

ation is minimized to group points of multivariate data into unique segments [27, 28]

(and references therein). A statistical approach has the advantage over the heuristic

approach because the algorithm creates segments of data that are optimized to be as

similar as the cost function allows, theoretically eliminating the threshold problem

described above.

Several statistical approaches are applied specifically in this work for the iden-

tification of acceleration phases during driving. Characteristics are taken from this

information to build a model using methods that will be discussed in detail in Chapter

3.

1.3 Machine Learning

Over the past three decades, the phrase “Machine Learning” has, alongside other con-

versation starters like “Big Data” and “The Internet of Things”, become a buzzword.

Machine Learning is a method for pattern recognition with two main modern appli-
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cations: data classification and regression. Classification is identifying similarities in

data and grouping them based on these similarities whereas regression is recognizing

patterns in the relationships between variables. Achieving this pattern recognition

involves two steps: training and testing. One feeds the algorithm training data with

known characteristics so that the algorithm can learn the patterns and relationships

between the variables. Then, once the training phase is completed, the trained al-

gorithm can be used to recognize similar patterns or relationships in a test data set

with unknown characteristics.

The early roots of Machine Learning began with the classification problem and

stem from discoveries like Markov Chains and Rosenblatt’s Perceptron in 1957 [56],

which took an idea from neurophysiology and described it in a way that could be used

by computers. Simply put, Perceptron uses a linear method to separate two types of

data from one another and according to Vapnik, this, in conjunction with the proof

of Perceptron Theorem by Noviko↵ in 1962, was the true birth of the field of machine

learning [61]. Neural Networks, which are the combination of multiple Perceptrons,

were the next logical step.

Today, Machine Learning is being used in a variety of ways with numerous al-

gorithms. Decision tree learning [32], artificial neural networks [57] [38], and sup-

port vector machines [61] are examples of the more fundamental learning algorithms.

Smola and Vishwanathan [59] give an excellent summary of the modern applications

of machine learning, including topics like page ranking for search engines [55], collab-

orative filtering for sites like Netflix or Amazon [5], and also for automatic language

translation [66].

In Chapter 4, machine learning will be used for the prediction of velocity trajec-

tories. A discussion of the methods and the specific algorithms used will be presented

at the beginning of that chapter.

1.4 Outline

Driver assistance systems that optimize the fuel consumption and extend the range

of vehicles are presented in [35, 44, 49, 47] and references therein. These systems use

road data like curvature and grade to create an energy-optimal driving trajectory that

is proposed to the driver via suggested speed commands. Unlike the safety systems

presented in Section 1.1, these systems have no direct control over the vehicle and

their performance is entirely dependent on the driver’s ability and desire to follow the

commands. Therefore, this work investigates individual driver behavior identification
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that can be used in conjunction with these systems to personalize velocity suggestions

and increase driver acceptance of the system.

This work has two approaches with respect to recognizing and modeling driver

behavior. Given a test driving data set, the first uses a pattern recognition algorithm

to break the data down into homogeneous segments, and classification to group seg-

ments based on acceleration behaviors. Then, both a function fit regression and a

system identification approach are used to build models from the classified groups and

predict future behaviors. Unlike the first method, the second, machine learning based

approach, utilizes the entire driving cycle to automatically recognize behaviors and

generate a function capable of predicting future ones. Because driver model accuracy

is absolutely vital to the success of a potential driver assistance system, the results of

both modeling approaches will be evaluated and by comparing model-predicted data

with real-world driving data.

Chapter 2 presents background information necessary for the calculation and eval-

uation of the driving modeling methods. First, we discuss a vehicle model used to

calculate the energy consumption of existing and modeled velocity trajectories as well

as the fundamentals of regressions and system identification to be used in Chapter 3.

Chapter 3 presents the pattern recognition based driving behavior identification

method. Section 3.1 discusses the pattern recognition and data classification ap-

proaches including one heuristic and three statistical techniques. In Sections 3.2 and

3.3, we present the use of the classified data to build two models using function fit

regression and system identification approaches, respectively. Both models are used

to predict driving behavior and evaluated in their ability to recreate real velocity

trajectories in Section 3.4.

Chapter 4 presents velocity trajectory prediction using a machine learning ap-

proach. Section 4.1 discusses the machine learning algorithm used in this work: sup-

port vector machines. In Section 4.2 we present and compare the results of several

machine learning trials against real-world test data.

In Chapter 5, the contributions and results of this work are summarized, conclu-

sions are discussed, and possibilities for future work are presented.
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CHAPTER 2

BACKGROUND

This chapter presents and develops three fundamental topics utilized in this work,

leaving space in the following chapters to discuss the methods and results. First, a

vehicle model, used in Chapters 3 and 4 to calculate the energy consumption of an

electric vehicle over defined velocity trajectories is presented. Second, the fundamen-

tals of a constrained, nonlinear regression, used in Section 3.2 for the identification

of driving behaviors, are presented and discussed. Finally, an introduction to system

identification, as used in Section 3.3, is discussed.

2.1 Vehicle Model

The passenger vehicle considered in this work is the 250e electric B-Class produced

by Daimler AG and has a completely electric power train composed of an electric

motor (EM), gearbox, and Lithium-ion battery as shown in Figure 2.1. The EM is

capable of generating 132kW and the batteries have a maximum storage capacity of

28kWh. Because the gearbox is single speed and engaged at all times, any power

losses due to shifting or clutch slip will not be considered here.

A quasi-static longitudinal vehicle model, as first proposed in [22], will be used to

model the resistance forces acting on the vehicle during driving. Any lateral dynamics

or e↵ects are not considered because the scope of this work focuses only on the energy

consumption. Road and vehicle data are recorded via the on board CAN data system

and has been provided for this thesis by the Daimler AG. Vehicle velocity v(t), speed

limit vSL(t), and road grade �(t) as functions of time are given from the CAN.

2.1.1 Longitudinal Vehicle Model

As presented in [47] and shown further in Figure 2.1, the power train of an electric

vehicle consists of four main components: the battery pack, auxiliary electrical com-

ponents, electric motor, and gearbox. Because the electrical vehicle considered in this

work has only a single speed transmission, a speed and torque dependent loss map

is used to account for any losses that occur. Taking these losses into account, the

8



Figure 2.1: Power train diagram displaying the di↵erent components in the Mercedes
250e electric B-Class [26].

torque required to propel the electric vehicle is:

Twhl = (TEM · iSTU + Tloss,STU) + Tbrk, (2.1)

where TEM is the torque generated by the electric motor, iSTU is the fixed transmission

gear ratio, Tloss,STU are the losses that occur within the transmission unit, and Tbrk

is any torque applied by the disk brakes present on the vehicle. It is important to

note that the value of the losses can be either positive or negative depending on the

value of the electric motor torque, TEM. Positive values would indicate that the EM is

acting as a power source and negative ones would imply that it is instead recovering

energy.

In addition to the torque generated by the electric motor, there are several resis-

tance torques acting on the vehicle during operation including rolling resistance Troll,

aerodynamic drag Tair, and the resistance due to gravitational forces on an incline Tg.

These torques are calculated using:
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Figure 2.2: The longitudinal vehicle model showing propulsion moment and resistance
forces acting on the vehicle [47].

Tres = Troll + Tair + Tg + Tacc, (2.2)

Troll = �rwhlcrmg cos �(t) = �rwhlFroll, (2.3)

Tair = �1

2
⇢airAfcw ⇤ v(t)2 = �rwhlFair, (2.4)

Tg = �rwhlmg sin �(t) = �rwhlFg (2.5)

where rwhl is the vehicle wheel radius, cr is the coe�cient of rolling friction, m is

the vehicle mass, g is the gravitational acceleration constant, ⇢air is the ambient air

density, Af is the vehicle frontal area, �(t) is the road grade as a function of time, cw

is the drag coe�cient, and v(t) is the velocity. These forces are shown acting on the

vehicle in Figure 2.2.

This gives us the vehicle longitudinal equation of motion:

d

dt
v = a =

Twhl � Tres

me↵rwhl
(2.6)

where me↵ is the e↵ective mass of the vehicle calculated by taking the inertia of

spinning drive train components, Je↵, into account.

me↵ = m+
Je↵
r2whl

(2.7)
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Figure 2.3: Equivalent circuit model of the lithium-ion battery [25].

From this equation of motion, we calculate the total power needed to propel the

car by calculating the power required to overcome the resistive forces as a function

of velocity:

Pres = v ⇤ (Fair + Froll + Fg), (2.8)

with the addition of the power needed to propel the car with a certain acceleration:

Ptot = Pres +
1

2
m
�v

�t
= Pres + Pacc, (2.9)

where �v is the change in velocity over time step �t. Using this total power, in

combination with a lookup table, we can calculate the torque required by the electric

motor to propel the vehicle as a function of velocity and acceleration. Using the

model presented in Section 2.1.2, we can then calculate the energy consumed from

this torque. Equation (2.10) presents the calculation of the EM torque, where !EM

is the angular velocity of the electric motor calculated using !EM = viratio
rwhl

. The fixed

gear ratio of the power transmission unit is represented as iratio.

TEM = max

✓
Ptot

!EM
, TEM,table(!EM)

◆
(2.10)

2.1.2 Battery and Electric Motor Model

The lithium-ion battery present in the B-Class is modeled according to [25] using the

equivalent circuit model shown in Figure 2.3. Here, Uo is the open circuit voltage, and

Ri is the battery resistance used to account for any losses that occur during charging

and discharging. Using these terms, we can calculate the outgoing current from the

battery as a function of the electric power demand Pel. Also note that temperature

e↵ects on the discharging e�ciency of the battery are also disregarded, as they fall

beyond the scope of this work.
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Ibat =
Uo �

p
U2
o � 4RiPel

2Ri
, (2.11)

Pbat = IbatUo (2.12)

The total electric power demand on the battery is defined as the power required

to maintain the driving torque calculated in Section 2.1.1 summed with the auxiliary

vehicle power consumption. The power demand on the battery, PEM,el, is calculated

from a two-dimensional look up table as a function of motor speed and torque. The

auxiliary power is used to power secondary systems on the car like battery cool-

ing, passenger cabin heating and cooling, information display and will be considered

constant.

Pel = PEM,el + Paux (2.13)

Using Pel from Equation (2.13) to calculate the equivalent discharging current

produced by the battery, we calculate the total power consumption of the battery as

a function of torque demand using (2.12). Energy consumption follows naturally from

power, as energy is power multiplied by the time duration in which the power was

produced. Here, the time duration will be the same �t defined in Equation (2.14).

Ebat = Pbat�t (2.14)

This section has defined both a vehicle and battery model that, in conjunction

with vehicle data like velocity, acceleration, and road grade, can be used to calculate

energy consumption as a function of time. This model is used further in Chapter 3

to quantify the energy e�ciency of di↵erent driver behavior modeling methods.

2.2 Regression and Curve Fitting

In the field of mathematics, it is often desirable to obtain a inter-variable relationships

framed as the dependence of one variable on the other. In some cases the dependence

is obvious like, in a positive correlation example, that higher fuel consumption is

directly correlated to high engine RPMs or that, in a negative one, high spending

leads to lower bank account balances. One does not need to resort to mathematics

in order to understand the basic trend in these examples but there are many cases

where the relationship between variables is not clear. One would therefore like to
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find and accurately represent the correlation mathematically for prediction purposes.

Examples of this include abstract relationships like weather patterns in a large city

or, in this work, the relationship between velocity and acceleration behavior while

driving.

Regressions have exactly this purpose: modeling and understanding the relation-

ship between variables to predict the outcome when only one variable is known. Over

the last several decades, methods have been developed to perform regressions over

multi-variable relationships that display linear or nonlinear behavior. In this section,

we will present the fundamentals behind, first, a simple linear regression and then

a more complex, bounded, nonlinear regression between two variables that will be

utilized later in this work.

2.2.1 Introduction to Least Squares Linear Regression

A regression is an equation that explains the relationship between a random variable

Y , referred to here as the response, and a quantity X, the predictor, that is variable

but not necessarily randomly variable [15]. In the most basic form, the regression

equation takes a linear form. While it is true that many relationships exhibited

in nature do not display linear correlations, linear regressions are useful for charac-

terizing general relationships with an extremely low computational cost. A linear

regression line between the variables can be written as:

Y = �0 + �1X + ✏. (2.15)

For a given predictor X, there exists a corresponding response Y with the value of

�0 + �1X plus a small variation ✏.

From Equation (2.15), there are three unknowns: �0, �1, and ✏. Because ✏ is the

error between each individual response data point and the regression line, there is a

unique ✏ value for each value of Y , making it di�cult to solve. Thankfully, �0 and

�1 are constants in this equation and are therefore, straightforward to solve for by

analyzing each predictor-response pair. To begin the solution process, we will define

estimation variables for the response variables, Ŷ , and the regression coe�cients, �̂0

and �̂1.

Ŷ = �̂1X + �̂0 (2.16)

To calculate our estimated values, we use the least squares function form of (2.15),
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where the estimated regression coe�cients can be found such that (2.17) is minimized.

S =
nX

i=1

✏2
i
=

nX

i=1

(Yi � �0 � �1Xi)
2, (2.17)

This is done in the linear case by taking the derivative of (2.17) with respect to both

of the estimated regression coe�cients and solving for them algebraically, resulting

in:

@S

@b0
= �2

nX

i=1

(Yi � �0 � �1Xi) (2.18)

@S

@b1
= �2

nX

i=1

Xi(Yi � �0 � �1Xi) (2.19)

(2.20)

By solving these two equations simultaneously, we achieve the results:

b1 =

P
(Xi � X̄)(Yi � Ȳ )P

(Xi � X̄)2
(2.21)

b0 = Ȳ � b1X̄ (2.22)

There are several methods available for evaluating the accuracy of a regression

equation. For the purposes of this work, we will focus on the residual sum of squares:

the sum of the squared residual errors between the predicted regression line formed

by the coe�cients found in (2.22), Ŷi, and the actual predictor data Yi. A low residual

error implies that the regression line is a good fit to the training data and a good

indicator that the fit will be able to accurately predict response data in the future.

We now move forward to the more complex, nonlinear least squares regression utilized

in Chapter 3.

2.2.2 Constrained Nonlinear Regression Problems

Similarly to the linear least squares regression problem, a nonlinear regression problem

seeks to minimize the residual errors between the regression function and the response

data. The two-variable, nonlinear, constrained case problem considered in this work

takes the form:
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min
x

kf(x)� yk22 =min
x

X

i

(f(xi)� yi)
2 (2.23)

s.t. [xl]i  [x]i  [xu]i for i = 1...n (2.24)

where the residual error is defined as the di↵erence between the nonlinear fit function

f evaluated at point xi and the value of the response variable yi, [xl]i is the i’th

lower bound on [x]i, [xu]i is the i’th upper bound [x]i, and n is the total number of

optimization variables in the vector x. Of the numerous methods that exist to solve

the constrained, nonlinear least optimization problems, we will consider the “Trust

Region Reflexive” algorithm used by the Optimization Toolbox and the lsqcurvefit

function in Matlab.

In order to explain the more complex, constrained optimization problem, we will

begin by discussing the unconstrained version of the basic trust region algorithm as

defined in [11]. The trust region algorithm is an iterative method to solve an objective

function minimization problem, in which we seek the local or even global minimum for

some function f(x) shown in (2.25). The algorithm starts by defining an initial point

on the objective function for which the value and possibly the slope and curvature are

known. We then define an arbitrary space around that point for which a model of the

objective function can be calculated. The shape/radius of this space is unimportant

so long as it is a “good” representation of the objective function in this region. This

region is commonly referred to as the “Trust Region” because it is a window in which

we can trust our model to accurately represent the objective function.

min
x

f(x) (2.25)

Once the space is defined, we calculate a step away from the initial guess that

minimizes the model in that region while also maintaining a position inside. Then,

the objective function is evaluated at this new point and compared with the value of

the model. If the model and objective function exhibit similar reductions from the

initial guess, we accept the new point and iterate further using this algorithm until

the local minimum of the objective function is found. If the model and objective

function disagree, then we must accept that our model is not trustworthy in this

region, reject the new point, reduce the radius of our “Trust Region” and start the

algorithm over. A formal explanation of this algorithm follows.

• Initialization. Definition of initial point x0 and the algorithm parameters, ⌘1,
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⌘2, �1, and �2, subject to the constraints: 0  ⌘1  ⌘2 < 1 and 0  �1  �2 < 1

Set k equal to 0.

• Step 1: Model Definition. Define Trust Region with radius �k for iteration

k such that: Bk = {x 2 Rn|kx � xkkk  �k} and define the model mk within

that region.

• Step 2: Step Calculation and Definition. Compute a step sk that reduces

model “su�ciently” while satisfying xk + sk 2 Bk.

• Step 3: Acceptance of trial point. Compute f(xk + sk) and define

⇢k =
f(xk)� f(xk + sk)

mk(xk)�mk(xk + sk)
. (2.26)

If ⇢k � ⌘1, then accept trial point and define xk+1 = xk + sk. Otherwise

xk+1 = xk.

• Step 4: Update Trust Region. Set the new radius to be

�k+1 =

8
>>><

>>>:

[�k,1) if ⇢k � ⌘2

[�2�k,�k] if ⇢k 2 [⌘1, ⌘2)

[�1�k, �2�k] if ⇢k  ⌘1.

(2.27)

Increment the value of k by 1 and repeat sequence starting at Step 1.

The selection of the step size and direction sk is found by following the steepest

descent within our Trust Region. This method is achieved by calculating the minimum

of the model along the Cauchy Arc, whose definition can be found in [11]. In a

situation where we want to solve a constrained nonlinear optimization problem, like

the one discussed in this work, we solve a slightly di↵erent version of (2.25) shown

in (2.29). Here the upper and lower bounds on the optimization variable x form the

closed set C.

min
x

f(x) (2.28)

s.t. [xl]i  [x]i  [xu]i for i = 1...n (2.29)

In order to solve the constrained optimization problem, we can no longer assume

that the step calculated by the Cauchy Arc steepest descent method will guarantee
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that the solution stays within the set C. Therefore, we adjust our “su�cient reduc-

tion” definition as can be found in Chapter 12 of [11]. Step 1 is changed to “Define

a model on the objective function in the set C \ Bk” and step 2 becomes “Com-

pute a step sk that reduces model “su�ciently” (according to the adjusted definition)

xk + sk 2 C \ Bk”. The remaining steps are the same as in the unconstrained case.

2.3 System Identification

System identification and modeling is a fundamental tool in scientific fields like en-

gineering, biology, and physics. The theory is based on the idea that any system

can be modeled mathematically within a certain degree of accuracy by observing the

system’s behavior, conducting an experiment on the system to induce a certain re-

sponse, measuring that response, and devising a model that exhibits a similar one.

In regard to this work, we use system identification to model driver acceleration be-

havior in Section 3.3. This section presents brief introduction and background on the

fundamentals of system identification.

One method often used in the field of system identification is the measurement and

modeling of a system’s step response. As shown in Figure 2.4, a system’s step response

is the reaction of the output to an input of a step function. The response possibilities

vary as much as dynamic systems themselves with some of the most common response

types including over-damped, under-damped, and critically-damped. In the field

of linear controls, a transfer function is the most common way to mathematically

describe a systems dynamic response to a step input.
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Figure 2.4: Examples of over-damped, critically-damped, under-damped, and unsta-
ble second order step responses.

Stemming from the field of classical controls, the transfer function describes the

response of a system to some input u(t) in the Laplace domain. The transformation

to the Laplace domain, or the Laplace transform, is a method used to analyze linear,

time-invariant systems and their behavior. The Laplace transformation of a real time

function, f(t), on the interval [0,1] is defined as:

F (s) =

Z 1

0

f(t)e�stdt, (2.30)

or,

F (s) = L[f(t)], (2.31)

where s is the Laplace operator, L is the symbol for the Laplace transform, and

f(t) is the original, real-time function. Derived from the definition of the Laplace

transformation, there also exists an inverse Laplace transformation L�1[F (s)]:

f(t) =
1

2⇡j

Z
c+j1

c�j1
F (s)estdt, (2.32)

where c is a large positive number, and j is the imaginary operator. As previously

stated, a common equation for the system input, u(t), is the step function, defined
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to be:

f(t) =

8
<

:
U for t � 0

0 for t < 0
(2.33)

The step magnitude is often takes the value of 1, giving the unit step function 1(t).

The Laplace transformation of the step function is shown in (2.34).

L[1(t)] =
Z 1

0

1(t)e�stdt =

Z 1

0

e�stdt =
1

s
(2.34)

The Laplace transformation has the following properties:

• Linearity: L[c1ft(t) = c2fc(t)] = c1L[f1(t)] + c2L[f2(t)] = c1F1(s) + c2F2(s)

• Di↵erential Property: L[df(t)
dt

] = sF (s)� f(0)

• Final Value Theorem: f(1) = limt!1 f(t) = lim s ! 0F (s)

The primary benefit of the Laplace transformation is that di↵erentiation and

integration in the time domain become multiplication and division in the Laplace

domain. Therefore, the complex di↵erential equations representing systems can be

transformed into the Laplace domain, solved easily as a polynomial, and transformed

back with varying degrees of di�culty. For example, a linear dynamic system can

take the form:

y(n)(t) + a1y
(n�1)(t) + · · ·+ an�1y

(1)(t) + any(t) =

b1u
(n�1)(t) + b2u

(n�2)(t) + · · ·+ bn�1u
(1)(t) + bnu(t), (2.35)

where y(t) and u(t) are the system outputs and inputs, respectively, and y(i)(t) and

u(i)(t) are the ith derivative of y(t) and u(t). The Laplace transformation of the

system is shown in (2.36).

(sn + a1s
n�1 + · · · + an�1s + an)Y (s) = (b1s

n�1 + b2s
n�2 + · · · + bn�1s + bn)U(s)

(2.36)

The transfer function of the system is defined as the ratio of the output variable to

the input:

G(s) =
Y (s)

U(s)
=

sn + a1sn�1 + · · ·+ an�1s+ an
b1sn�1 + b2sn�2 + · · ·+ bn�1s+ bn

, (2.37)
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but can also be written as:

G(s) =
Y (s)

U(s)
=

K(Tn+1s+ 1)(Tn+2s+ 1) . . . (T2n�1s+ 1)

(T1s+ 1)(T2s+ 1) . . . (Tns+ 1)
, (2.38)

where K is the ratio an
bn

and the Ti’s are known as time constants. In this form, we

can define the stability of the system as a function of the values of the time constants.

Positive values indicate that the system will exhibit a stable response to an input as

shown in the over-, critically, and under-damped cases in Figure 2.4 and negative

ones lead to unstable behavior. The application of transfer functions in the Laplace

domain to the identification and modeling of driver acceleration behavior is presented

in Chapter 3.
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CHAPTER 3

MODELING THROUGH PATTERN RECOGNITION

Identifying driving behavior using a pattern recognition is a data analysis problem

combined with a modeling problem. First, one must analyze a set of data by classify-

ing the di↵erent behaviors that occur and, once this has been accomplished, use this

classified data to build a model that describes the behavior. After model construction,

it can be evaluated in it’s ability to predict similar, future behaviors.

Data classification is achieved in this work using a single heuristic method and

three statistical time-series segmentation approaches. These methods are compared

and the most e↵ective is subjected to a post processing algorithm to improve the

results. Finally, models are constructed from the classified test-data set using two

di↵erent methods: function fitting via a regression and system identification.

In the final section of the chapter, we test the potential e↵ectiveness of each

method to a driver assistance system by building models and testing them using real-

world driving data. Training data sets are used to build each respective model and

both are tested on their ability to accurately predict the driving behavior present in

a final, testing data set.

3.1 Data Classification Methods

Data classification is the identification and grouping of similar patterns in a set of

data. Given an unclassified data-set, one applies the data classification algorithm

and receives groups containing similar segments. In this work, segments are defined

as groups of adjacent data points with homogeneous characteristics. A model can be

constructed using common behaviors present in the groups of segments. Figure 3.1

shows a simple classification example that identifies segments with positive, negative,

and zero valued slopes. This type of classification has applications in fields ranging

from data mining of medical data to human interaction classification on social network

sites [3].

While classification has many applications in the field of data analysis, we focus

on the classification of time-series data, as the data we use to classify driver acceler-

ation behavior is given as a function of time. In order to achieve classification of a

times-series, several di↵erent approaches can be utilized. One can, for example, use

a heuristic method, where groups are first defined based on desired characteristics
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Figure 3.1: Example of a simple data classification problem.

and place data segments with corresponding properties of those groups or one can

perform a segmentation on the time-series by statistically measuring the similarity of

neighboring points and then forming based on these measurements.

In this section, one heuristic and three di↵erent statistical methods are discussed.

A description of each algorithm and a unique set of results is presented using an

example data set. Following the presentation of the di↵erent methods, we choose the

most e↵ective and discuss three potential post-processing methods for improving the

classification results further.

3.1.1 Heuristic Method

The simplest data classification method, and thus also the most widely used, is the

heuristic method. This algorithm begins by forming rudimentary segments from

adjacent points in the time-series using a basic characteristic like, for example, positive

or negative slope. Then, unique classification groups are defined based on the desired

properties. Following this initial segmentation, segments are edited and placed in

the predefined classification groups with corresponding characteristics. The detailed

steps are shown in Algorithm 1.

Example. Here we apply the heuristic classification method to an example velocity

trajectory. Because the goal of this work is the identification of driver acceleration

behaviors, we form the initial segments based on any change in the sign of the deriva-

tive: acceleration. Segments are created from adjacent points with positive, negative,
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Data: Time-Series Data, T (t)
Result: Heuristic Classification Method Segments
Initialize: Desired Classification Group Parameters: p1...pn for groups G1...Gn

Form: Rudimentary Segments formed based on single defining characteristic
(change in sign, slope, etc.)
for 1 to end(T (t)) do

Check if point belongs to a group
if point satisfies conditions p1 then

place point in group G1

else if point satisfies conditions p2 then
place point in group G2

...
else if point satisfies conditions pn then

place point in group Gn

end
end
Reform: Edited segments from adjacent points in same groups.

Algorithm 1: Heuristic Classification Method

Table 3.1: Heuristic Velocity Classification Group Parameters

Characteristic Constant v Acceleration Braking

1 |a| < 0.3m

s2
a > 0 a < 0

2 v > 30km

h
a � 0.3m

s2
a  �0.3m

s2

or constant acceleration values. Figure 3.2 shows the raw velocity data and the initial

segmentation.

After completing the initial segmentation, we run a loop over all points in each

of the segments and check if the properties of each individual point correspond to

one of the groups defined in Table 3.1. During this process, the segment lengths

themselves are edited so that only points that belong to a certain group are placed in

that group. The table properties check if the trajectory is in an acceleration, braking,

or constant velocity phase and the constant velocity threshold, aconst,thresh, was chosen

to be 0.3m

s2
to cut out negligible noise in the data that would otherwise imply the

driver is accelerating.

The results of the classification loop are shown in Figure 3.3. The heuristic method

has the benefit of being able to clearly define the classification groups and receive seg-

ments that fulfill all desired criteria. However, the method also has the disadvantage

that because the algorithm only searches for segments that fit exactly within the
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Figure 3.2: The velocity trajectory after the first, rudimentary segmentation. Seg-
ments are formed from adjacent points with acceleration values of the same sign.

Figure 3.3: The final classification result using the heuristic method.

predefined groups, useful data is often lost.

3.1.2 Dynamic Programming Segmentation

This sections presents a background on dynamic programming as well as it’s applica-

tion to data classification. Then, the dynamic programming classification algorithm

is applied to a small, example velocity trajectory.

Fundamentals

Dynamic Programming (DP) is a technique for solving discrete optimization problems

developed by Richard Bellman in 1957 [6]. The technique is based on the principle

of optimization which, directly quoted from Bellman, states:
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“An optimal policy has the property that whatever the initial state and initial

decision are, the remaining decisions must constitute an optimal policy with regard to

the state resulting from the first decision.”

Here, a policy is defined as a sequence of decisions that are made with respect to

fulfilling a goal. This could be directions for traveling from point A to point B or the

display color for pixels in order to show an image. In short, the principle of optimality

states that an optimal solution can be broken down into a series of optimal decisions.

If some solution has a sub solution that is not optimal, the entire solution could be

improved by replacing the non-optimal sub-solution with an optimal one.

Following from [39], we will now present the general theory behind using DP to

solve a sequential decision process. Formally, a sequential decision process can be

written to d2�H(d) where d is a decision chosen from an eligible set of decisions

� and H is the objective function that has some cost associated with the decision.

In almost all cases, we seek the optimal value H⇤ = H(d⇤) where d⇤ is the optimal

decision and can be found by solving arg opt
d
{H(d)}. This optimal solution can be

defined as a maximum, minimum, or something else entirely related to the objective

function that suits the user’s needs.

To generalize, we will assume that d contains multiple decisions {d1, d2, . . . , dn},
that, when solved optimally, will yield an optimal value of H. One solution to this

method is commonly referred to as the “brute force” method where every possible

decision combination is calculated and the minimum is found. While this method

always results in an optimal solution, it is extremely computationally expensive, re-

quires a very long time to compute, and is therefore not practical in most applications.

Thankfully, DP o↵ers a more e�cient solution.

DP assumes that the decisions in the sequential decision process must be made in

a certain order, or sequentially: d1 must be completed before d2 can be made and so

on. This decision sequence is solved such that:

H⇤ = opt(d1,...,dn)2�{h(d1, d2, . . . , dn)} (3.1)

= opt
d12D1

{opt
d22D2

{. . . {opt
dn2Dn

{h(d1, . . . , dn)}} . . . }}, (3.2)

where the sequential decisions (d1, d2, . . . , dn) 2 � = D1 ⇥ D2 ⇥ · · · ⇥ Dn. It is

important to note that the available decisions at step i are influenced by all other

steps leading up to it, meaning that for di 2 Di, Di is a function of (d1, d2, . . . , di�1).
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Plugging this fact into (3.2) results in:

H⇤ = opt(d1,...,dn)2�{h(d1, d2, . . . , dn)} (3.3)

= opt
d12D1

{opt
d22D2(d1){. . . {optdn2Dn(d1,...,dn){h(d1, . . . , dn)}} . . . }}, (3.4)

To solve this decision problem, we start at the inside and move outwards. The

solution to the innermost problem yields an optimal decision dn = d⇤
n
as a function of

the other decisions d⇤
n
(d1, . . . , dn�1) and solving the outermost problem yields d1 = d⇤1

as a function of d1 and the other optimal decisions: d⇤1 = opt
d12D1

{h(d1, d⇤2, . . . , d⇤n)}.
Note, we can also reach a solution by reversing the order in which the decisions are

made starting with the solution for d⇤1 and ending with d⇤
n
. The di↵erent solution

order must still result in the optimal solution, but because the method of reaching it

was di↵erent the solution e�ciency may vary.

Moving forward, we arbitrarily start by solving for d⇤
n
first and d⇤1 last. This choice

results in solving for each decision step sequentially, leaving the final step to solve for

d⇤1 as a function of d1 and the optimal choices for each of the other decisions as shown

in (3.5).

H⇤ = opt
d12D1

{h(d1, d⇤2(d1), . . . , d⇤n(d1))}, (3.5)

The solution to this last step requires evaluating the objective function for all possible

values of d1 and choosing the optimal one. In this respect, the optimal choices for the

other sequence decisions are constants and the optimization problem can be rewritten

as just a function of d1: optd12D1{H 0(d1)}. Following this logic, we suppose that the

objective function is weakly separable with respect to each decision in the sequence:

h(d1, . . . , dn) = C1(d1|;) � C2(d2|d1) � · · · � Cn(dn|d1) (3.6)

where � is the associative binary operator (multiplication or addition). Assuming

that our objective function h is weakly separable with respect to the decision steps,

we can then write (3.2) as the following:

optsd12D1{C1(d1|;) � optd22D2(d1){C2(d2|d1) � · · · � {optdn2Dn{Cn(dn|d1, . . . , d1)}} . . . }}
(3.7)

Using the weakly separable relationship between the sequence decisions, we can show

the recursive relationship between any arbitrary step and the prior step to that. We

start by defining f(d1, . . . , dn) as the function describing the optimal decision process
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where steps (1�i�1) have been completed and steps (i�n) have yet to be computed.

f(d1, . . . , dn) = opt
di
{optdi+1{. . . {optdn{Ci(di|d1, . . . , di�1)�Ci+1(di+1|d1, . . . , di)�. . .

� Cn(dn|d1, . . . , dn�1)}} . . . }} (3.8)

which simplifies to:

f(;) = opt
d1
{opt

d2
{. . . {opt

dn
{C1(d1|;) � C2(d2|d1) � . . .

� Cn(dn|d1, . . . , dn�1)}} . . . }},
(3.9)

= opt
d1
{C1(d1|;) � optd2{C2(d2|d1) � . . .

� {opt
dn
{Cn(dn|d1, . . . , dn�1)}} . . . }},

(3.10)

= opt
d1
{C1(d1|;) � f(d1)}, (3.11)

and can be generalized to the form:

f(d1, . . . , di�1) = opt
di2Di(d1,...,di�1){Ci(di|d1, . . . , di+1) � f(d1, . . . , di)} (3.12)

Equation (3.12) is referred to as the dynamic programming function equation (DPFE),

where the unknown is the recursive function f . This equation forms the foundation

of DP because solving for step i depends on the solutions for steps (1� i�1). Written

more generally, the equation has the form:

f(S) = opt
di2Di(S){Ci(di|S) � f(S 0)} (3.13)

where the steps d1, . . . , di�1 have been replaced by the set S and S 0 represents the

next step in the solution. This equation allows us to recursively find the optimal

solution to a sequential decision process by solving each step as a smaller subproblem

and using the results from the previous steps to solve the next ones. In the next

section we will apply this equation to the k-Segmentation problem.

Bellman k-Segmentation

The goal of the k-segmentation problem is to create k segments from a time-series

consisting of sequential data points, where each segment consists of adjacent samples

with homogeneous characteristics. Following from [29], we formally define the k-

segmentation problem and explain how dynamic programming is applied to solve it

in the context of this work.
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Definition. A time-series s contains N data samples x(1), x(2), . . . , x(N), where

each sample has d dimensions. A segment of the time-series on the interval from

points a to b is defined here as s(a, b) and contains samples x(a), x(a+ 1), x(a+ 2),

. . . , x(b), where a  b. For k segments, there exist k + 1 segment boundaries c0 <

c1 < c2 < · · · < ck, where c0 is the first sample in the time-series and ck is the last.

To achieve k segments that are internally uniform, we define a cost function H that

measures the homogeneity of some segment:

costH(s(a, b)) = H(x;n|x 2 s(a, b)), (3.14)

where the total cost of the time-series segmentation is the sum of the individual

segment costs.

costH(s1s2 . . . sk) =
kX

i=1

costH(si) (3.15)

The optimal cost H⇤ would therefore lead to an optimal segmentation of time-series

s with respect to cost function H.

Dynamic Programming is based on solving subproblems as a smaller part of a

larger problem. The idea that optimal solution to smaller subproblems lead to a total

solution to the larger one allows us to solve the k-segmentation problem optimally

and e�ciently. To apply DP to the k-segmentation problem on a time-series s with

N , d-dimensional samples, we start by defining the recursive relationship between

segmentation subproblems by considering solving problems with 1  k0  k desired

segments [65].

Let Es[i, k0] represent the value of the arbitrary cost function for a segmentation of

samples {x1, . . . , xi} using k0 segments and let E[i, j] be the value of the cost function

for a single segment on samples {xi, . . . , xj}.
To start, we examine k0 = 1 where a single segment is fit across all data points in

the time-series. Here, Es[N, 1] is simply E[1, N ]. Increasing k0 to 2 is more compli-

cated. Now the problem is to find the sample i where the boundary between the two

segments should be placed. The cost of our segmentation becomes:

Es[i, 1] = E[1, i], (3.16)

Es[i, 2] = min
1ji

(Es[j � 1, 1] + E[j, i]) (3.17)
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Table 3.2: Table containing single segment costs for a k = 5 segmentation problem.

RHB
1 2 3 4 5

L
H
B

1 1 ! 1 1 ! 2 1 ! 3 1 ! 4 1 ! 5
2 2 ! 2 2 ! 3 2 ! 4 2 ! 5
3 3 ! 3 3 ! 4 3 ! 5
4 4 ! 4 4 ! 5
5 5 ! 5

This can be further generalized for any value of k0:

Es[i, k
0] = min

1ji

(Es[j � 1, k0 � 1] + E[j, i]) (3.18)

which has a form remarkably similar to the recursive (3.13). The solution to the

k0-segmentation problem can only be solved once the solution to the k0 � 1 segment

problem has been solved.

Now that the k-segmentation problem and a solution method have been defined,

we present the specific algorithm used to find the optimal solution. Equation (3.18)

requires the cost function value for any segment containing samples {xi, . . . , xj} and

it is therefore useful to compute the cost values for a single segment between any two

points in the time-series before solving the DP problem. These values are stored in

a matrix similar to that shown in Table 3.2. In this five segment example case, the

left-hand segment bounds, LHB, are represented by rows and the right hand ones,

RHB, by columns. The cost for a segment with the corresponding bounds is placed

in the appropriate cell. Note that the diagonal contains only single sample segments

and that RHB must be greater than LHB.

This table has the additional characteristic that each diagonal represents segments

of equal length; i.e., the central diagonal contains segments of length one, the first

upper diagonal contains segments of length two, and so on. Therefore, we can easily

bound the minimum segment length by penalizing such segments with an infinitely

high cost. If we wanted, for example, only segments with a length greater than three,

we can manually change the cost value in each cell of the central, first, and second

upper diagonals to 1. This makes the cost for these segments non-optimal and will

never be chosen by the DP solver.

With the pre-computation completed, we define two additional tables essential to

the DP algorithm. In Table 3.3, we depict the recursive nature of the DP solution by

showing the possible number of segments in the rows, the adjusted segment length in
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the columns, and the optimal segmentation in the cells. The term “adjusted length” is

used because a single column has been added to the left side of the table, representing

the possibility that a single segment over all samples could have a lower cost than the

previously calculated segmentations. To start the algorithm, we solve for the optimal

solutions to each case in the first row. Because all segmentations here contain only

one segment, there is one possible solution for each cell and we simply fill all cells

(starting at column two) with the first row from Table 3.2. The extra column is

initialized with a value of zero and the arrow notation i ! j signifies a segment

between samples i and j.

After initializing the first row with the trivial values, we begin to solve the op-

timization problems in the second row. For example in cell (2, 3), we need to find

cost-optimal combination between 1 ! 2 and 1 ! 1 + 2 ! 2. Similar problems exist

in the cells further to the right, with complexity increasing as the number of possible

segment combinations increases. In the third row the recursive nature of the solution

emerges and we are able to use the solutions found in our previous cells to solve

current problems. In cell (3, 4) we have four possible segment combinations: 1 ! 3,

1 ! 1 + 2 ! 3, 1 ! 2 + 3 ! 3, and finally 1 ! 1 + 2 ! 2 + 3 ! 3. Note that

in the last two possibilities, the optimal solution between 1 ! 2 and 1 ! 1 + 2 ! 2

has already been found in cell (2, 3) and can be applied to cell (3, 4), simplifying the

possible combinations. Simplifications made possible by the recursive nature of DP

are shown in the table as red. The optimal solution to the k-segmentation problem

over the entire time-series is solved by completing the remaining cells in this manner

until we reach the lower-right most corner.

Algorithm 2 shows pseudo-code for the DP k-segmentation algorithm and begins

with the initialization of the desired number of segments, k, and the cost function H.

Next, we pre-compute the cost for all possible single-segment combination of points.

These costs are stored in the CostMatrix. Following the pre-computation, we begin

the dynamic programming algorithm by initializing and solving the SolMatrix which

corresponds exactly to Table 3.3. Note, however, that only the costs for the optimal

solutions are stored in the SolMatrix. Therefore, it is necessary to also store index

corresponding to the optimal solution so that once the DP is complete, we can trace

our solution back through matrix containing the solutions to each of the subproblems.

Example. An application of the dynamic programming k-segmentation algorithm

on an example velocity trajectory is presented using the Z-Scale cost function found
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Table 3.3: Table displaying the recursive DP solution to the k-segmentation problem.
Length �1

1 2 3 4 5 6 . . .

1 1 ! 1 1 ! 2 1 ! 3 1 ! 4 1 ! 5 1 ! 6
#

of
S
eg
m
en

ts

2 1 ! 2 or
1 ! 1 + 2 ! 2

1 ! 3 or
1 ! 1 + 2 ! 3
or
1 ! 2 + 3 ! 3

1 ! 4 or
1 ! 1 + 2 ! 4
or
1 ! 2 + 3 ! 4
or
1 ! 3 + 4 ! 4

. . . . . .

3 1 ! 3 or
1 ! 1 + 2 ! 3
or
(2, 3) + 3 ! 3

1 ! 4 or
1 ! 1 + 2 ! 4
or
(2, 3) + 3 ! 4
or
(2, 4) + 4 ! 4

. . . . . .

4
...

. . . . . .

...
...

. . .

in [28]:

H =
mX

i=1

nX

j=1

wi|xij � x̄i|
Si

, (3.19)

Si =

sP
n

j=1(xij � x̄i)2

n� 1
(3.20)

where xij is the jth sample of variable i in a given segment, x̄i is the mean of the

segment with respect to variable j, Si is the standard deviation of the segment with

respect to variable i, m is the total number of variables, n is the number of samples in

the segment, and wi is a weight assigned to variable i. Our cost function is capable of

handling multivariate time-series and we therefore use both velocity and acceleration

of the segments to calculate the cost. Velocity data is filtered using a Hanning filter

and acceleration is calculated by di↵erentiating the velocity as shown in (3.21).

a(t) =
dv

dt
=

vk+1 � vk
tk+1 � tk

(3.21)

We process the acceleration data one step further by setting any point with a

value less than a threshold acceleration, in this case athresh = 0.4m

s2
, to a value of zero.
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Data: Time-Series Data, s(t)
Result: k-Segment Time-Series Segmentation
Inputs: # of desired segments k, cost function H
Define: N = length(s(t)) Initialize Diagonal to Zero: diag(CostMatrix) = 0
Pre-compute single segment costs as shown in Table 3.2
for l = 1 to N do

for r = l + 1 to N do
Pull segment data: SegmentData = s(l : r)
Calculate segment cost: SegmentCost = H(SegmentData)
Store cost: CostMatrix(l, r) = SegmentCost

end
end
Dynamic Programming Algorithm
Define first row of solution matrix: SolMatrix(1, 2 : N) = CostMatrix(1, :)
Pre-Allocate first row of solution path: SolPath(1, :) = 0
Define diagonal of solution path: SolPath(1 : k, 1 : k) = (1 : k)� 1
Loop through remaining sub-cases for p = 2 to k do

for n = p to N do
Pull segmentation choices: Choices =
SolMatrix(p� 1, 1 : n) + CostMatrix(1 : n, n)0

Calculate best choice: [bestchoice, bestindex] = min(Choices)
Store solution: SolPath = bestindex � 1
Store solution cost: SolMatrix(p, n+ 1) = bestchoice

end
end
Read Solution from SolPath Matrix

Algorithm 2: Dynamic Programming k-Segmentation

This classification removes unwanted noise from the acceleration data, emphasizes

when the acceleration is small, and allows the algorithm to better recognize constant

velocity phases. An example of the velocity trajectory, acceleration data, and filtered

acceleration data is shown in Figure 3.4.

After pre-processing, the data is given to the algorithm and the optimal segmenta-

tion is computed. Figures 3.5 and 3.6 shows the results of two solutions with velocity

and acceleration weight values of 1.8 and 1 respectively, a minimum segment length

of 5, and k = 20 and 40. On one hand, this method has the benefit that optimally

homogeneous are calculated by taking all data into account. On the other, a long pre-

computation time for the single segment cost matrix and the fact that the algorithm

tends to choose shorter segments are less desirable. Because shorter segments tend to

have lower costs, this normally results in many small segments and several extremely
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Figure 3.4: The example velocity trajectory (top) and the original and classified
acceleration data (bottom).
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Figure 3.5: The DP k-segmentation results with k = 20.

long ones. The DP method is also limited by the requirement that one must choose

a desired number of segments before running the algorithm. In most segmentation

problems, the desired number of segments is an unknown and the user must tune the

parameter k until the results look satisfactory.

3.1.3 The Bottom-Up Method

In addition to the heuristic and more formal dynamic programming approaches to

data segmentation described in the previous sections, another algorithm known as the

“Bottom-Up” method is utilized in this work. This method begins by creating the

finest segmentation possible over the time-series, meaning that each sample is it’s own

segment and resulting in N segments from a time-series of length N . Then, the cost

of merging each possible adjacent segment combination is calculated with respect to

some cost function H. The algorithm sequentially combines the segment pairs with

the lowest respective costs and continues until the stopping criteria is met. Stopping

criteria examples include maximum total cost of all segments, maximum cost for a

single segment, or a minimum/maximum number of segments. Note computational

cost is low because after the initial step, the algorithm is only required to calculate the
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Figure 3.6: The DP k-segmentation results with k = 40.

costs associated with newly formed segments. Table 3.4 shows a practical example of

the several iterations of the BU method. In the first row of the example table, the

initial, fine segmentation of that data is shown where each sample is it’s own segment.

From here, the cost of each possible combination, 1 ! 2, 2 ! 3, etc., are computed

and the first combination is found to have the lowest cost. Moving to the second line,

we replace the old components of the newly formed segment and the process proceeds

to the next rows.

Algorithm 3 shows the pseudo-code for the Bottom-Up segmentation method. The

Table 3.4: Bottom-Up Algorithm Demonstration with 8 samples.

Segment Combination #
1 2 3 4 5 6 7 8

It
er
at
io
n

1 1 2 3 4 5 6 7 8
2 1 ! 2 3 4 5 6 7 8 –
3 1 ! 2 3 4 ! 5 6 7 8 – –
4 1 ! 2 3 ! 5 6 7 8 – – –
5 1 ! 5 6 7 8 – – – –

6
...

...
...

... – – – –
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initialization steps define the time-series s(t), the error threshold ethresh, and the cost

function H. Next, we initialize the fine segmentation vector (as shown in Table 3.4),

the possible combinations vector, and initialize the costs of these combinations in a

for loop. After the initialization steps, we set the running cost Costrun to 0 and the

BU method begins. The algorithm finds the index of the segment with the lowest

cost, updates the segments, combinations, and cost vectors, and continues until the

highest single segment cost in the segmentation is larger than the error threshold.

The final segmentation can be found in the segments vector.

Data: Time-Series Data, s(t)
Result: Bottom-Up segmentation
Inputs: error threshold ethresh, cost function H
Initialize first row of Fine Segmentation Vector: SegmentVec
Initialize first row Possible Combinations Vector: CombiVec
Initialize Combination Cost Vector
for i = 1 to length(CombiVec) do

Pull segment data: SegmentData = s(CombiVec(i))
Calculate segment cost: SegmentCost = H(SegmentData)
Store cost: CostVec(i) = SegmentCost

end
Costrun = 0
BU Segmentation Algorithm
while Costrun  ethresh do

Find optimal segment: [bestchoice, bestindex] = min(CostVec)
Update Segment, Combination, and Cost Vectors
SegmentVec = remove(SegmentVec, bestindex)
CombiVec = remove(CombiVec, bestindex)
CostVec = calc and remove(CostVec, bestindex)
Costrun = max(CostVec)

end

Algorithm 3: Bottom-Up Segmentation Algorithm

The Sliding Window and Bottom-Up Method

The sliding window is a simple time-series segmentation method popularized by the

fact that is can be used online and a very low computational complexity. To start the

sliding window algorithm, one takes the first sample in a given time-series and creates

a window by concatenating adjacent points to the right of the initial one to it. When

each additional point is added, the cost of the new segment window is calculated. At
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some sample i, the cost of the segment becomes greater than some maximum specified

value and a segment is created from points (1 : i � 1). Then, point i is treated as

the first point in the new window and the process is repeated until the end of the

time-series is reached. Unfortunately, the sliding window algorithm is limited by its

ability to utilize points present only in the current segment.

Because the sliding window method alone produces segments with relatively low

homogeneity, we investigate a segmentation method that combines both the Bottom-

Up (BU) and Sliding Window approaches: Sliding Window and Bottom-Up (SWAB)

as presented by Keogh et al. [36]. This method combines the online capability of

the sliding window with the improved results of the BU method. The SWAB method

maintains a window of size w that is initially chosen to be 5-6 segment lengths and

begins at the first sample in the time-series. To start, the normal BU Algorithm is

applied to this window. Once the stopping criteria for this BU is reached, the left-

most segment in this solution is taken and the left edge of the window is shifted to

left, removing the segment. In order to maintain the relative size of the window, new

points are added to the right side, chosen using the normal sliding windows algorithm

where new points are added to the window until the segment formed by the new

points reaches the maximum allowable cost. In the o✏ine case, this process continues

until the end of the time-series is reached and the results from the final BU algorithm

are accepted for the last window. Pseudo-code for the o✏ine SWAB algorithm is

provided in Algorithm 4.

Example. An example of both the Bottom-Up and SWAB methods is now presented

using a sample velocity trajectory. Similarly to the DP k-segmentation, velocity

and acceleration are used as the time-series variables but the cost function has been

slightly modified as shown in (3.22). In this case, we divide by the segment length,

l, instead of the standard deviation. This change serves to normalize the cost with

respect to segment length and also encourage segments of longer lengths.

H =
mX

i=1

nX

j=1

wi|xij � x̄i|
l

(3.22)

Acceleration is calculated by di↵erentiating filtered velocity data (as shown in

(3.21)) and has been further classified using the same method shown in Figure 3.4.

After the pre-processing, the data is subjected to both the generic BU and SWAB

algorithms using (3.22) as a cost function. The resulting segmentations are shown

in Figures 3.7 and 3.8. Here, the window length in the SWAB algorithm is w =
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Data: Time-Series Data, s(t)
Result: SWAB segmentation
Inputs: error threshold ethresh, cost function H, window size w
Define: N = length(s(t))
Dataremain = N
Points = [1 : 1 : w]
while Dataremain do

Update remaining data: Dataremain = Dataremain � length(Points)
Pull data from time-series: Datain = s(Points)
Calculate BU over window: SegBU = Bottom Up(Datain, ethresh)
Extract first segment: Snew = SegBU(1)
Remove new segment from window: Points = remove(Points, Snew)
d = 1
error = 0
while error < ethresh do

Add new points to window: SegSWAB = Concat(Points, d)
Calculate cost of segment: error = H(SegSWAB)
Increment: d = d+ 1

end
Add new points to window Points = Concat(Points, SegSWAB)

end

Algorithm 4: SWAB Segmentation Algorithm

100 samples, the error threshold is 0.4, and the weights on v and a are 1.8 and 1

respectively.

Note that the results for the BU and SWAB methods are similar, with the excep-

tion that the segment length for the SWAB method is limited by the width of the

window. This results in the SWAB segmentation containing generally shorter seg-

ment lengths and while the SWAB method does contain the same segment boundaries

as the BU, there is a finer segmentation within these bounds that better captures the

acceleration behavior. Both of these algorithms have the advantage that they are not

computationally complex, do not require the user to define a desired number of seg-

ments, and create segments that are homogeneous with respect to the cost function.

3.1.4 Selection of a Segmentation Method

Five individual velocity and acceleration trajectories are segmented using each of the

three formal possible segmentations presented in this work. These results are com-

pared and analyzed using several di↵erent metrics to judge the e↵ectiveness of each

segmentation method. Constructing an accurate behavioral model requires training
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Figure 3.7: The final classification result using the BU method.

Figure 3.8: The final classification result using the SWAB method.
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data that captures real-world behavior as closely as possible. Therefore, the chosen

metrics serve to measure the accuracy of each segmentation method in their ability

to capture homogeneous acceleration behavior in individual segments:

• The average length of the segments in the segmentation: l̄.

• The standard deviation on the mean of the segment lengths: Sl.

• The percentage of the acceleration phases that are positive: +%.

• The percentage of the braking phases that are negative: �%.

• The normalized running time on a Dell Precision T7610 desktop with an In-

tel Xeon 8 core processor and 64 GB of memory: t. The first 3000 samples

of each trajectory are taken in order to preserve the accuracy of the timing

measurement.

Acceleration phases typically last between 5-20 seconds and the length and stan-

dard deviation metrics measure the ability of the algorithm to capture this behavior.

Long segments lengths imply that more than one type of behavior has been cap-

tured. In the +% and �% metrics, segments are first classified as acceleration and

braking phases by analyzing the points contained in a segment. Segments consisting

of 50% or more positive acceleration values are classified as acceleration phases and

vice versa for segments consisting of 50% or more negative accelerations. The actual

percentage of positive acceleration values in the acceleration phases (and the oppo-

site for braking ones) is measured and used as the metric. Low values indicate that

“acceleration” segments capture multiple types of behaviors whereas higher ones in-

dicate homogeneous segments. Finally, the time-based metric serves to measure how

computationally feasible each segmentation method is for a real-world application.

Table 3.5: Statistical segmentation result comparison.

DP BU SWAB

Trip l̄ Sl +% �% t (s) l̄ Sl +% �% t (s) l̄ Sl +% �% t (s)
1 63 145 74 76.6 260.7 103 265 61.6 100 225.3 39 50 77.7 84.0 24.3
2 38 70 82.8 78.5 260.4 28 69 86.3 87.8 221.9 25 36 85.3 89.9 33.8
3 38 59 84.6 89.1 259.4 86 146 71.6 76.7 223.8 42 49 81.5 88.4 27.5
4 51 141 69.1 77.0 257.3 64 83 70.0 68.0 224.9 45 46 77.7 71.5 20.2
5 38 92 80.9 67.3 261.0 45 162 79, 2 58.8 226.9 27 42 78.1 78.0 36.8

Avg. 46 102 78.3 77.5 257.8 66 146 73.6 78.3 224.6 36 45 80.1 82.3 28.5
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Table 3.5 shows the results of the comparison conducted between the three seg-

mentation methods. Here, the error threshold for the BU and SWAB methods is

ethresh = 0.2, the weights for v and a are equal to 1.8 and 1 respectively, and the

desired number of segments for the DP is equal to 80. The rows show the di↵erent

velocity trajectories with the bottom most row being an average of the data presented

above it. The columns show the characteristics of the results from each of the three

methods: DP, BU, and SWAB. The first important di↵erence between the methods

is that the SWAB method requires significantly less run time, taking, on average,

nearly a tenth of the time of the other two. Otherwise, the mean segment lengths are

similar for each method, but the standard deviation on these means di↵ers greatly.

Both the DP and BU methods had standard deviations of over 100 meaning that the

segments were either very long (containing 150 - 200 samples) or extremely small.

The SWAB method, on the other hand, has relatively low segment lengths with an

appropriately sized standard deviation. Finally, the positive and negative percentages

of the acceleration and braking phases are similar for each method with the SWAB

method being a handful of percentage points above than the others.

In summary, the SWAB method demonstrates a high accuracy in driving phase

recognition, has appropriately sized, homogeneous segments, and requires little com-

putation time when compared to the other two methods. Therefore, the SWAB

algorithm is selected as the final method to be used in conjunction with the post pro-

cessing methods and the function fit regression presented in the following sections.

3.1.5 Post Processing Methods

The three statistical methods yield segmentation results that are optimal with respect

to the respective algorithms and cost functions. The dynamic programming approach

yields a segmentation where the sum of the cost segments is minimally optimal and

both the Bottom-Up and SWAB approaches yield segmentations that have optimal

segments formed from combining other optimal segments within their respective win-

dows. Furthermore, the SWAB method is able to produce similar results to the other

two methods while requiring nearly a tenth the computation time. However, upon

visual inspection of these segmentation results, the algorithms are able to identify

acceleration, braking, and constant velocity phases, but with a finer degree of ac-

curacy than the modeling processes require. For example, in an acceleration phase,

acceleration is consistently variable with three typical phases: a beginning where a is

initially zero and begins to increase, the constant acceleration period where the driver

holds consistent behavior, and the final phase where the acceleration tapers o↵. As
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Figure 3.9: An example acceleration phase divided into multiple segments by the
SWAB algorithm.

shown in Figure 3.9, the SWAB algorithm divides each phase of an acceleration as

a di↵erent segment, whereas we seek to distinguish only the general acceleration be-

havior during such a phase. Therefore, it is necessary to perform a post-processing

procedure on the segmentations with the goal of combining adjacent segments with

similar acceleration behaviors. In this section, we explore three similarity measures

and their application to combining adjacent segments from the SWAB segmentation

results.

Mean Comparison

The first similarity measure is a generic comparison of the segment characteristics like

sign, average, and magnitude. As shown in Algorithm 5, to compare the similarity of

two adjacent segments, we first calculate the sign and the average. If the segments

have the same sign, we compare the magnitudes by checking if the means both lie

above or below a threshold acceleration. In the case that this second condition also

holds, we compare the magnitudes further and check if the segment means are within

a certain threshold of each other.
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Data: Adjacent Segments si and sj
Result: Yes or no combination result.
Inputs: magnitude threshold 1 mthresh,1, magnitude threshold 2 mthresh,2

flagsign = 0 % Initialize flags
flagmag,1 = 0
flagmag,2 = 0
flagcombine = 0
s̄i = mean(si) % Calculate segment means
s̄j = mean(sj)
signi = signum(si) % Calculate segment signs
signj = signum(sj)
if signi = signj then

flagsign = 1
end
if |s̄i|  mthresh,1 and |s̄j|  mthresh,2 then

flagmag,1 = 1
else if |s̄i| � mthresh,1 and |s̄j| � mthresh,2 then

flagmag,1 = 1
end
if |s̄i � s̄j|  mthresh,2 then

flagmag,2 = 1
end
if flagsign and flagmag,1 and flagmag,2 then

flagcombine = 1
end

Algorithm 5: Mean-Comparison Similarity Measure

l-Association Interval Measurement

Where the first similarity measure is heuristic in nature, the second method utilizes

the statistical l-association interval measurement, I l
X
, of a data set X. Following

from [18], Gavilan states that according to Chebychev’s inequality there is at least a

(1�1/l2) proportion of samples xi in the l-association interval and thus, we can define

a similarity measure between two data sets, X and Y using the distance between their

respective l-association measurements. The resulting similarity measure, J1(X, Y ), is

then defined as a function of the cardinalities (#), unions, intervals, and association
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intervals of the respective data sets as shown in (3.24).

I l
X
= (X̄ � lSX , X̄ + lSX) (3.23)

J(X, Y ) =
#((X [ Y ) \ (I l

X
\ I l

Y
))

#(X [ Y )

1

1 + dW (I l
X
, I l

Y
)

(3.24)

Where dW (I1, I2) is defined as the distance between two intervals

dW (I1, I2) =

s

(�c,�r)W

✓
�c

�r

◆
, (3.25)

and c and r are defined based on the di↵erence between the data set means and the

di↵erence between the standard deviations multiplied by the parameter l. Once the

similarity of the two data sets, or segments in this case, has been calculated, the

value is compared against some similarity threshold Jthresh and if the value is above

the threshold, the segments are combined.

Percentile Measurement

Found in the same resource as the l-association similarity measurement ([18]), this

method compares to data sets using their percentiles. A percentile is defined as a

value in a data set, under which a certain percentage of the data points can be found.

For example, the 50th percentile is the value under which 50% of values in a data set

can be found. Given a vector of q percentiles of a data set, QX = {p1X , p2X , . . . , pqX},
where piX is the ith percentile, we calculate the similarity, J2 between two data sets,

X and Y , using the following equation:

J2(X, Y ) =
1

1 + 1
q�1

P
q�1
i=1 dW (IiX , IiY )

(3.26)

where dW (IiX , IiY ) is defined as

dW (IiX , IiY ) =

r
1

2
((p(i+1)X � p(i+1)Y )2 + (piX � piY )2) (3.27)

Like the l-association method, this approach also uses a similarity threshold to

decide if the segments should be combined. If the similarity measure is above the

threshold, the adjacent segments are combined.
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Post Processing Method Selection

To choose the best similarity measurement between mean-comparison, l-association

interval, and percentile approaches, we present a comparison on an example velocity

trajectory. A SWAB segmentation is conducted using the same algorithm parameters

presented Section 3.1.4, the three similarity-based segment combination methods are

applied to the segmentation results, and the resulting segmentations are visually

inspected to determine the best method.

Figure 3.10 shows the results of the mean-comparison (MC), l-association interval

(LAI), and percentile approaches, respectively. The similarity thresholds are 0.005

and 0.64 for the LAI and percentile methods, respectively, and the two threshold

values for the MC method are 0.4m

s2
and 0.55m

s2
. Three di↵erent sections from the

combination approaches have been highlighted to demonstrate the e↵ectiveness of

each method: an acceleration phase (⇠ 1�7s), a gradual braking phase (⇠ 11�19s),

and finally a gradual acceleration phase containing many di↵erent accelerations (⇠
62 � 88s). In the first phase, we see that both the MC and the percentile methods

are e↵ective at combining the segments into a single phase but the LAI is not able

to distinguish similarity between the segments. In fact, the LAI method is unable to

combine a single pair of segments and will therefore be disregarded in this example.

Similar to the first segment, the combination results from the MC and percentile

methods are identical in the second. In the third segement however, we notice that

the percentile approach is able to recognize that the segments make up one longer

acceleration phase, whereas the MC method leaves them as individual segments.

These and other, similar results from further case studies show that the percentile

method is the most capable at combining segments with similar behavior and is be

used alongside the SWAB algorithm in the function fit regression.

3.2 Function Fit Regression

In the previous sections, we defined one heuristic and three formal methods for the

segmentation of a time-series, compared these three methods analytically to find

the best one for application in the context of this work, and discussed three post-

processing methods for combining similar segments after the segmentation process.

After comparing the formal segmentation and the post-processing segment combi-

nation methods, we arrived at the conclusion that the SWAB algorithm and the

percentile based similarity method are the most e↵ective with respect to constructing

an accurate driver acceleration behavior model. In this section, the process for mod-
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Figure 3.10: Plot comparing the segmentation post processing methods with unpro-
cessed data (top), Mean-Comparison (top-middle), l-Association Interval (bottom-
middle), and Percentile (bottom).
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eling driving acceleration behavior using a function fitting technique will be presented

before discussing the modeling results in Section 3.4.

The SWAB segmentation algorithm and the percentile based combination method

divide a training velocity trajectory into segments that display similar behavior with

respect to both acceleration and velocity. Following the segmentation, the next step

in the behavior identification process is to classify the di↵erent segments into the three

phases (acceleration, braking, and constant velocity) by calculating and reviewing the

velocity and acceleration characteristics of each segment. The following characteristics

define the three phases in our driver modeling process:

• Acceleration Phases: A minimum of 50% of the acceleration values in the

segment must be greater than athresh (similar to the +% metric in Section 3.1.4)

• Braking Phases: A minimum of 50% of the acceleration values in the segment

must be less than �athresh (similar to the �% metric in Section 3.1.4)

• Constant Velocity Phases:

1. Segment cannot consist of more than 10% of acceleration values with a

magnitude greater than athresh

2. Segment must be longer than tmin

3. Segment must have an average velocity greater than vmin

In addition to classifying the segments, it is also necessary to ensure that the

behavior of our driver is not being influenced by a leader car. This is achieved by

analyzing the frontal-radar data present in the test-data and comparing it with the

current velocity of our vehicle. In this work, a leader car is defined to influence the

behavior of our driver when the distance between the leader and follower cars is under

five times the current velocity in m/s, or dtheoretical as shown in (3.28).

dtheoretical = 5 ⇤ vvehicle (3.28)

Figure 3.11 shows the results of the original segmentation, the classification, and

finally the removal of the segments a↵ected by a leader vehicle on a training velocity

trajectory. The classification algorithm does an e↵ective job at identifying the correct

behaviors with the acceleration phases shown in green, braking in red, and constant

velocity in blue. The blacked out sections in the third plot are segments where the

driver was influenced by a leader car.
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Figure 3.11: Results of SWAB segmentation (top), Results of the acceleration classi-
fication (middle), Removal of leader-a↵ected segments (bottom).
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Table 3.6: Function Fit Regression Residual Errors

Regression
Inverse Exponential

D
at
a Average 117.9 79.1

All 3.09e3 1.76e3

Figure 3.12: Function fit results using the inverse function. Average velocity vs.
acceleration (left) and All velocity vs. acceleration data (right) are shown.

The next step in the function fit process is to calculate the mean velocity and

acceleration of each segment in like groups, and plot acceleration as a function of

velocity. Using a constrained nonlinear regression method, as presented in Chapter

2.2.2, we fit a curve to the data that accurately models the driver’s acceleration

behavior, a(t), as a function of velocity, v(t).

As an example, the positive acceleration phase function fit regressions using two

di↵erent nonlinear regression equations over data from 265 individual training ac-

celeration phases are shown in Figures 3.12 and 3.13. The regression equations

a(t) = 1/(p1v(t) + p2) and a(t) = e�p1v(t) + p2 are shown in the inverse and ex-

ponential plots, respectively. The residual errors for the two regressions, shown in

Table 3.6, show that the exponential function demonstrates a more accurate fit of the

data than the inverse in the average case and the opposite is true in the case where

all of the data is used. However, very little correlation is present in the plots using

all velocity and acceleration data and will be disregarded. Therefore, because of the

higher accuracy of the fit, the inverse regression function will be used in the final

evaluation of the driver acceleration behavior predicted presented in Section 3.4.

The model resulting from the function fit method is acceleration, a(t), as a function

of velocity, v(t), where p1,2 are the model coe�cients given by the regression. In order
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Figure 3.13: Function fit results using the exponential function. Average velocity vs.
acceleration (left) and All velocity vs. acceleration data (right) are shown.

to use this model for velocity trajectory prediction as a function of time, we solve for

v(t). Rewriting acceleration as the time derivative of velocity, we have a first order

di↵erential equation shown in (3.29).

a(t) =
dv(t)

dt
=

1

p1v(t) + p2
(3.29)

Using separation of variables, we solve the ordinary di↵erential equation resulting in

a quadratic,
p1
2
v2(t) + p2v(t) + c = t, (3.30)

for which the positive root can be taken,

v(t) =
�p2 +

p
p22 � 2p1c+ 2p1t

p1
. (3.31)

The integration constant, c, is found by solving the original quadratic at t = 0,

resulting in c = �p1

2 v
2(0) � p2v(0) where v(0) is the initial velocity. In conclusion,

the prediction function requires only a desired v(0) and time duration to predict a

velocity curve.

3.3 System Identification

In addition to the function fit regression method presented in Section 3.2, a system

identification approach is used to construct a driver acceleration behavior model using

classified data from the pattern recognition methods presented in Section 3.1. The
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fundamentals of system identification processes, including step responses and transfer

functions in the Laplace domain, are presented in Chapter 2. With regard to this

work, we notice that the typical velocity trajectory in an acceleration phase most

closely resembles the critically-damped response type shown in Figure 2.4 in a positive

acceleration case. The inverse is true in the negative case. Therefore, we model the

driver behavior using a system with critically-damped properties.

3.3.1 Velocity Trajectory Modeling

A typical positive acceleration phase in a velocity trajectory exhibits similar behavior

to a step response from an (n > 1) order system. In this section, we explore two

methods for identifying the time constants, Tc1 and Tc2 or Tc, and the gain K for the

(n > 1) - order systems shown in (3.33). The first method, known as the Transition-

Point method, fits an (n > 1)-order response to the velocity curve cased on parameters

like the dwell and compensation times. The second, the Rise-Time method, fits an

(n = 2) - order system to the curve using the rise time. Both of the methods are

explained in detail and an example comparison is given at the end of the section.

While the focus of this section is the modeling of positive acceleration behavior, all

presented methods are applicable to the negative case by observing the behavior in

reverse time.

Y (s) =
K

(Tcs+ 1)n
U(s) (3.32)

Y (s) =
K

(Tc1s+ 1)(Tc2s+ 1)
U(s) (3.33)

Note that in both of the methods, the input function U(s) is taken to be the unit

step function: 1
s
in the Laplace domain.

The Transition-Point Method

Of the system identification methods presented in this section, the Transition-Point

is the more complex of the two. The resulting system can be either second order with

two di↵erent time constants or an (n > 1)-order system with identical time constants

[4]. The identification process begins by calculating three characteristics of the curve

in question: the gain or amplitude K, the e↵ective dead-time TU, and the build up or

compensation time TG. Calculating the gain value is a simple matter of finding the

maximum value, or amplitude, of the trajectory. The two time constants are found by

finding the Transition-Point, or point of maximum slope, in the response and laying
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Figure 3.14: Response characteristics essential to the Transition-Point system identi-
fication method.

a tangent line on that point in the curve. The e↵ective dead-time is found at the

point where this tangent line meets the x-axis and the compensation time is found

by subtracting TU from the point in time where the tangent line meets the desired

input value. These values and the Transition-Point are shown in Figure 3.14.

Once the characteristics are found, we use the ratio TU
TG

to define the type of system

and the time constant(s) associated with it. In the case that TU
TG

< 0.1036, then our

system will be second order with two unique time constants, as shown in (3.34).

Y (s) =
K

(Tc1s+ 1)(Tc2s+ 1)
(3.34)

These time constants, Tc1 and Tc2, are found using the ratio between them, ↵ =
Tc2
Tc1

, and the following equation:

TU

TG
=

 
↵

↵
1�↵ (↵ ln(↵) + ↵2 � 1)

↵� 1
� 1

!
(3.35)

The variable ↵ is found by solving (3.35), then Tc1 is found using (3.36), leaving a

simple calculation for finding Tc2.

TG = Tc1↵
↵

↵�1 (3.36)
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In the case that the ratio between the e↵ective dead and compensation times is

greater than 0.1036, then the system order is n > 1 with identical time constants.

The order is calculated using Table 3.7 and the time constant value is found using

(3.37).

Table 3.7: Table used for selecting system order using the relationship between TU

and TG using the Transition-Point Method.

n 2 3 4 5 6 7 8

TU
TG

0.1036 0.2180 0.3194 0.4103 0.4933 0.5700 0.6417

TG
TU

9.6489 4.5868 3.1313 2.4372 2.0272 1.7543 1.5583

Tc =
TG

(n�2)!
(n�1)n�2 en�1

(3.37)

After identifying the system order, amplitude, and time constant(s), it is still

necessary to transform the system back to the time domain so that the system can be

simulated and validated against test data. In the second order case with two unique

time constants shown in (3.34), the inverse Laplace transform is:

L�1


K

(Tc1s+ 1)(Tc2s+ 1)

�
= K

✓
1 +

Tc1

Tc2 � Tc1
e�

t
Tc1 +

Tc2

Tc1 � Tc2
e�

t
Tc2

◆
, (3.38)

and in the (n > 1)-order case with identical time constants, the result is:

L�1


K

(Tcs+ 1)n

�
= K

 
1�

nX

i=1

ti�1

(i� 1)!T i�1
c

e�
t
Tc

!
(3.39)

Both (3.38) and (3.39) can be used to predict velocity trajectories given an initial

velocity, v(0), and a time duration, resulting in:

v(t) = K

✓
1 +

Tc1

Tc2 � Tc1
e�

t
Tc1 +

Tc2

Tc1 � Tc2
e�

t
Tc2

◆
+ v(0), (3.40)

v(t) = K

 
1�

nX

i=1

ti�1

(i� 1)!T i�1
c

e�
t
Tc

!
+ v(0) (3.41)

The next section presents the less complex Rise-Time system identification method

followed by a comparison and evaluation.
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The Rise-Time Method

The Rise-Time system identification method fits a second order transfer function of

the form shown in equation (3.42) using the rise time. Traditionally, the rise time of

a response equals the time required by the system to reach 95% of the desired input

value; however, due to the shape of the velocity trajectories used in this identification

process, we assume that 95% value is the final value in the velocity curve, making the

rise time, tr, the total time duration of the curve itself.

Y (s) =
K

(Tcs+ 1)2
(3.42)

The second order transfer function has two unknowns: the gain or amplitude value

K and the time constant Tc. K is defined as the maximum value in the velocity curve

and the time constant Tc is calculated using:

Tc =
1

5
tr (3.43)

Finally, the second order transfer function is transformed back to the time domain,

where it can be used to predict velocity trajectories given a desired initial velocity

and time duration.

v(t) = L�1


K

(Tcs+ 1)2

�
+ v(0) = K

✓
1� e�

t
Tc � t

Tc
e�

t
Tc

◆
+ v(0) (3.44)

Selection of a System Identification Method

We now present a comparison between the Transition-Point and Rise-Time system

identification approaches. The modeling methods have been presented for use with a

single velocity curve, but we are interested in modeling generalized behaviors. There-

fore, it is necessary to take the single curve system identification results and combine

them into a unified model. Because the data o↵ers a broad variety of velocity curves

with di↵erent starting and ending velocities, we classify each individual curve into

groups for which unique models can be built. Classification groups are defined based

on starting and ending velocities using the values that lie between either 0 � 50,

50� 100, or 100� 300km

h
resulting in a total of nine groups as shown in Table 3.8.
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Table 3.8: System identification classification groups.

vinitial (
km

h
)

0� 50 50� 100 100� 300

v f
i
n
a
l
(k

m h
)

0� 50 - - -

50� 100 - - -

100� 300 - - -

Using a su�ciently large training data set, we build models for each specific group

using both identification methods. The Rise-Time method involves calculating the

time constant for each individual curve, taking it’s average, and using the result in the

final model. The Transition-Point, however, introduces another degree of freedom: a

non-constant system order. To compensate for this, we find the most common order

in the classification group, set this as the final model order, and use only the time

constants associated with that order to calculate the final group constants. In the case

that the most common order is 2, we calculate if there are more second order systems

with unique or identical time constants and use only the corresponding results to

calculate the constant(s) for the final model. To compare the system identification

approaches, acceleration phases are taken from a test data set, classified in the groups

shown in Table 3.8, and predicted using the corresponding model. Figure 3.15 shows

a case where both approaches show similar velocity curve predictions. Here, the

Transition-Point method matches the test data almost perfectly for the first half

of the curve and then falls below towards the end. The Rise-Time method shows

opposite behavior, being above the test data until the very end where the curves align.

Disregarding the small error, both approaches simulate the test data relatively well

and demonstrate similar overall curvature. Figure 3.16 shows a di↵erent case where

due to the erratic driving behavior, neither simulated curve captures the general shape

of the test data.

The strengths of the system identification approaches are that the initial and final

velocities are often simulated very well by the models, but at the risk of possibly losing

the mid-phase behavior. In order to test the e↵ectiveness of the system identification

methods, the same modeling and simulation process was performed on 89 individual

velocity curves selected from the data using the heuristic data classification method

detailed in Section 3.1.1 and the sum-squared error between the test data and the two

system identification methods was calculated. The results, as shown in Figure 3.17,

show that, on average, the Transition-Point and Rise-Time methods show very similar

results with the error between the actual and simulated curves being low in most cases.
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Figure 3.15: The system identification results of the Transition-Point and Rise-Time
methods exhibiting similar behavior to a test trajectory.

Figure 3.16: The system identification results of the Transition-Point and Rise-Time
methods exhibiting dissimilar behavior to a test trajectory.
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Figure 3.17: Sum-squared error results from the modeling and simulation of 89 test
velocity trajectories. Transition-Point (top) and Rise-Time (bottom).

Because the results of each methods are comparable, we choose a prediction method

based on real-world practicality. With this in mind, transition-Point identification

method often creates situations where test data is not used in final model creation

due to the fact that all predicted models do not necessarily have the same order. This

unnecessary wastefulness is unpractical and ine�cient in situations where test-data is

limited. Therefore, in the sense of e�ciency, the Rise-Time method is more e↵ective

than the Transition-Point and will be used in the prediction of driver acceleration

behavior in Section 3.4.

The final section of this chapter will focus on the modeling of driver acceleration

behaviors using both the system identification approach discussed in this section and

the regression based method discussed in Section 3.2.

3.4 Evaluation of Driver Modeling Methods

The previous sections of this chapter discussed two methods used in predictive model

building. In Section 3.2, three formal statistical time-series segmentation methods

are presented, compared, and the most e↵ective of the three, the SWAB method, is
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used in conjunction with an inverse function fit regression to create a model. Section

3.3 presents two system identification based modeling approaches. Both methods are

used with training data to build a model, their ability to predict new trajectories is

compared, and the more e�cient of the two, the Rise-Time method, is selected to be

used in the prediction of velocity trajectories. This section presents the application of

the segmentation and system identification modeling approaches to the focus of this

work: the modeling of driver behavior with a specific focus on positive acceleration

behaviors.

The data used in this work comes from twelve test drives conducted with the same

driver using the electric B-Class presented in Chapter 2. As previously mentioned,

each modeling technique requires training data to build a model and testing data to

evaluate it. In order to utilize the test drive data as e�ciently as possible, each data-

set will serve eleven times as training data and once as testing data. For example, if

data set 1 is the current testing data-set, then data sets [2, . . . , 12] are used as training

sets to build a model that will be used to predict behaviors present in data-set 1. The

process continues sequentially through the series until all data sets have been used

to build and evaluate models. This type of model building and evaluation allows the

assessment of not only the model qualities, but also the e↵ectiveness and reliability

of the model building methods. A method capable of reliably constructing accurate

models is perfect for a driver assistance system application.

Prior to modeling, the following processing operations are conducted on the train-

ing and testing data-sets. First, the required data, namely velocity, is extracted from

the data set, re-sampled at a frequency of 10Hz, and filtered using a Hanning filter

with a length of 5 samples. Acceleration is calculated from the velocity data using

the di↵erentiation method described in Equation (3.21) and the acceleration phases

are found using the heuristic data classification method. Note that only acceleration

phases that are not influenced by a leader car, as described in Figure 3.11, are ac-

cepted. After the initial data processing procedure, the training data sets are used in

combination with the regression and system identification based modeling methods to

create two driver acceleration models as a function of time which are used to predict

the velocity trajectories present in the test data set. The entire modeling method

is repeated in a loop for all twelve data sets, resulting in 12 regression models, of

the form shown in Equation (3.31), and 12 system identification ones, of the form

shown in (3.44). Velocity trajectories from the corresponding testing data sets are

predicted using each model by plugging in the initial velocities and time durations to

each respective model for each respective curve.
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Figure 3.18: Demonstration of the band error evaluation measure.

The predicted velocity trajectories are evaluated with respect to their similarity

to the original test trajectory using three metrics: energy consumption, sum-squared

error, and the velocity band error. Energy consumption is used because of its di-

rect relationship to acceleration during driving. Similar energy consumptions imply

similar driving cycles. Economical behavior is also a desirable trait for use in a

range-extension system like the ones the driver models would be applied to. The

sum-squared error and the velocity band error are also chosen as comparison metrics

because they directly measure similarity between real and predicted curves. The band

error is defined as the percentage of the trajectory time duration that the predicted

curve falls within an x km

h
- wide-band around the test curve. An example is shown in

Figure 3.18 using a band width of 3km

h
where the samples of the predicted trajectory

that fall within the band are shown in green and the ones that do not are shown in

red.

The results displayed in the following figures are calculated using the SWAB and

segment combination parameters shown in Sections 3.1.3 and 3.1.5 for the function fit

method. For the System Identification method, the heuristic classification parameters

shown in 3.1.1 and the classification groups shown in Table 3.8 are used.

Using the longitudinal vehicle model presented in Chapter 2, the energy consump-

tion of the predicted trajectories is calculated and compared in Figure 3.19. Energy

consumption has a direct mathematical relationship to driving velocity and accel-

eration and is, therefore, an ideal metric to measure curve similarities. Economical

behavior is also desirable in a model that has a potential use in a range-extension
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Figure 3.19: Energy consumption comparison between test data (top), function-fit
(middle), and system identification (bottom) predictions.

driver assistance system. The first figure shows the total energy consumption for all

curves for the test data and curves predicted using the function fit and system identi-

fication methods. While the general shape of the plots is similar, with the majority of

the data located around the 0.02MJ mark, it is important to note that the function

fit method energy consumption is much more consistent and has almost no cases with

a consumption over 0.04MJ whereas the system identification predictions and test

data show similar energy consumptions spread out over a wider range. This is con-

firmed in Figure 3.20, which shows the di↵erences between the energy consumptions

of the test data and the two respective prediction methods. Here, positive �E values

represent instances where the predicted curve consumed less energy than the test

data and vice versa. With an average consumption di↵erence of �3.01e� 7MJ , the

system ID predictions consumed slightly more than the test data whereas the function

fit method, with an average consumption di↵erence of 9.3e�3MJ , consumed slightly

less. Because the magnitudes here are small and represent only a small fraction of a

gallon of fuel (1 gallon = 132MJ), each method demonstrates a su�cient level of

accuracy with respect to fuel consumption.

Figure 3.21 shows the velocity band error percentage between the prediction meth-
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Figure 3.20: Di↵erence in energy consumption comparison between test data (top),
function-fit (middle), and system identification (bottom) predictions.

ods and the test data. Here, the general shape of the histogram plots are similar

between the function fit and system identification methods with the average error

being 44.3% and 48.8% for each approach. The plots show two concentrations in the

band error data: one near zero and another grouping around the 60�70% mark. This

means that both methods are either almost entirely accurate or relatively inaccurate

in predicting the exact shape of the test data curves.

The sum-squared error normalized by curve length is shown in Figure 3.22 with

the average errors being 0.6 and 0.54km/h ⇤ sample for each respective method.

Similarly to the velocity band error percentage, the sum squared errors have averages

and histogram shapes that are similar to one another with the highest concentration

of points occurring around the 0.5 mark meaning that both methods have a relatively

low overall error when compared directly to the test data. The length of the curves

used range between 50 and 300 samples, meaning that over the entire length, the

error is acceptably low.

Finally, Figures 3.23 and 3.24 show all test data curves compared with the pre-

dicted curves from the function fit and system identification methods. Test data

curves are depicted in solid lines and predicted curves are shown with dotted lines.

While a visual comparison is di�cult in this case, a few trends in the data are recog-

nizable. The function fit method, for example, tends to predict curves with consistent

slopes that do not always reach the final velocity value of the test data. In contrast,
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Figure 3.21: Percent band error results comparison between the function-fit (top) and
system identification (bottom) prediction methods.

Figure 3.22: Sum-squared error results comparison between the function-fit (top) and
system identification (bottom) prediction methods.
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Figure 3.23: Velocity trajectory prediction results using the function-fit method.

the system identification method predictions have a higher acceleration variation and

nearly always reach the final test data velocity value.

When evaluated and directly compared to the real-world test data, both the func-

tion fit and system identification based approaches to modeling and predicition of

velocity behavior demonstrate accurate, e�cient approaches. The overall energy con-

sumption of each method is similar, with the system identification method requiring

slightly more energy in most cases, the velocity band error demonstrates an accurate

prediction with a probability of around 50%, and sum-squared average between the

test and predicted curves is, on average, relatively low. In conclusion, both methods

can be used to accurately model and predict driver acceleration behavior. The system

identification approach in particular is able to reliably achieve desired accelerations

with curve shapes similar to those observed in the test data.

In this chapter we have investigated and evaluated two driver behavior modeling

methods based on pattern recognition. A training data trajectory is broken down

into homogeneous segments and the behavior in these segments is used to build a

model that exhibits similar behavior. In the next chapter we investigate an approach

that does not require breaking down a trajectory before a model can be built: the

prediction of entire velocity curves using a machine learning approach.
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Figure 3.24: Velocity trajectory prediction results using the system identification
method.
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CHAPTER 4

MODELING USING MACHINE LEARNING

Machine learning is a broad tool capable of classifying and building regression models

from large data sets. A brief background of the subject can be found in Chapter 2.

In the specific application to analyzing driving behavior, machine learning has been

used to classify driver aggressiveness using pattern recognition [64], identify unique

drivers from a group [53], identify aggressive driving events for insurance purposes

[34], and identify driver characteristics like drowsiness, inattentiveness, or sobriety

[45]. Where the literature is focused on the identification of certain driving behaviors

and events, this work focuses on using machine learning for constructing a model

capable of behavior prediction. Specifically, we use machine learning to build a model

by analyzing an entire velocity trajectory at once, eliminating the pattern recognition

and data analysis procedures required in Chapter 3.

In this chapter, support vector machine algorithms available in the Matlab Ma-

chine Learning toolbox are used to build a driving cycle model capable of predicting

accurate velocity behavior with respect to a specific driver with a potential application

in building driver acceptance of a DAS. A short introduction to machine learning,

support vector machines, and their application to regression-type problems is pre-

sented before discussing their specific use in this work. The results of the several

machine learning training algorithms are presented and evaluated in the final section

of this chapter.

4.1 Machine Learning Fundamentals

There are two main problem categories in the field of machine learning known com-

monly as classification and regression. Classification problems can be thought of as

pattern recognition with the goal of grouping similar data into homogeneous cat-

egories. Regression problems instead have the goal of recognizing patterns in the

relationships between variables in order to construct a function capable of mimicking

and predicting behavior. The prediction of driving velocities can, in this sense, be

classified as a regression type machine learning problem and will therefore be the

focus in this work.

Similar to the model building process discussed in Chapter 3, machine learning

regression problems typically have two phases: training and testing. As the name
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implies, the first phase consists of using a machine learning algorithm to construct, or

train, a model using data with known behavior. The algorithm is fed predictor and

response data, which is used to identify patterns within the predictor variables that

result in the given responses. Once the algorithm has constructed a su�cient model,

it’s ability to predict response behavior using new predictor data can be tested and

evaluated against the real responses. If the constructed algorithm accurately predicts

the response data, the process is complete. If not, the training phase must be repeated

using either more training data, di↵erent prediction variables, or a combination of the

two.

There exist a number of possible training algorithms suited to regression-type

problems including regression trees, neural networks, and support vector machines.

Of the available algorithms, support vector machines (SVM’s) are utilized in this

work due to their relative ease of use [30]. This section presents a brief background

and introduction to support vector machine learning algorithms and training them

in both the linear and nonlinear cases. These are then tested for velocity trajectory

prediction in Section 4.2.

4.1.1 Support Vector Machines

Support vector machines are based on statistical learning theory pioneered in the late

1960’s, the 70’s, and the 80’s by Vapnik and Chervonenkis in [60] and [62]. In short,

SVM’s build optimally located hyperplanes that serve as divisions between various

types of data and the name “Support Vector Machines” stems from the vectors that

make up the dividing hyperplanes. In the most basic form, the goal is to construct

learning algorithms for pattern recognition in a classification sense by creating a

hyper plane to serve as a divide between two types of data. This section provides an

overview of the fundamentals of support vector machine classification beginning with

the linear separable case. More in depth explanations of the theory can be found in

both [61] and [31].

Given n training data (x1, y1), . . . , (xn, yn) samples with inputs x 2 Rm and output

y 2 {1,�1}, we assume that the data can be linearly separated by hyperplanes, d,

with normal vector to that hyperplane, w, and coe�cient b,

d = (w · x)� b (4.1)
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Figure 4.1: Two possible separating hyperplanes in the two-dimensional case [31].
The fit on the right is considered a better fit than on the left due to the larger margin
of separation.

The hyperplane is said to have separated the training data vectors if they are suc-

cessfully classified without error and the distance to the closest vector is maximized.

Two examples with varying quality are shown in Figure 4.1. In the case that the data

is strictly separable, di can be defined to have a value greater than +1 if yi = 1 and a

value less than �1 for yi = �1, defined here as yi [(xi · w)� b] � 1. The hyperplane

generation problem can be constructed as an quadratic programming (QP) problem

with the goal is minimizing the norm of the plane normal vector:

 (w) =
1

2
(w · w), (4.2)

subject to the yi [(xi · w)� b] � 1 constraint. This optimization problem can be

solved by finding the saddle point of the Lagrangian, shown in (4.3), with respect to

the KKT conditions.

L(w, b,↵) =
1

2
(w · w)�

nX

i=1

↵i{[(xi · w)� b] yi � 1} (4.3)

From the KKT conditions, we derive that the optimal hyperplane is a linear combi-

nation of the ith training data components and Lagrange multiplier, ↵i. The vectors

for which the Lagrange multiplier is nonzero are the ones that form the “support”

vectors.

w =
nX

i=1

yi↵ixi (4.4)

Plugging this result into (4.3), we arrive at the optimization problem, (4.5), only

dependent on the various ↵i’s that can be solved using a constrained optimization
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solver.

min
↵

P (↵) = min
↵

1

2

nX

i=1

nX

j=1

↵i↵jyiyj(xi � xj)�
nX

i=1

↵i (4.5)

subject to the constraints:

↵i � 0 8i (4.6)

and
nX

i=1

↵iyi = 0 (4.7)

However, it is often the case that the training data in question is not linearly

separable. Vapnik, et al. proposed a solution by introducing the slack variables, ⇠i,

to both the cost function and constraints shown in (4.2) allowing a “soft” separating

margin between the training data classes ([12, 52]) resulting in:

 (w, ⇠) =
1

2
(w · w) + C

 
nX

i=1

⇠i

!
(4.8)

subject to

yi [(xi · w)� b] � 1� ⇠i, 8i (4.9)

where the constant C is a trade o↵ variable between a larger margin and a small

number training samples that breach it. Similarly to the purely separable case, this

optimization problem can be solved using the Lagrangian subject to the corresponding

KKT conditions, resulting in the same quadratic programming problem shown in (4.5)

with a slightly modified constraint that creates an upper bound C on the Lagrange

multipliers shown in (4.10).

0  ↵i  C, 8i (4.10)

Furthermore, SVM’s can be generalized to use non-linear classification functions

that must be linear with respect to parameters like w and b, but are not required to

have a linear relationship to the training data [9]. Following from the result shown

in (4.4), the nonlinear classification functions are defined directly as a function of the

Lagrange multipliers. Shown in (4.11), K is the kernel function that compares the

training data vector xj with some input vector xi. In the original publication, Boser

proposes kernels like a potential or radial basis function but other functions, like

those available in the Matlab Machine Learning toolbox, include quadratic, cubic,
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and Gaussian functions.

d =
nX

j=1

yj↵jK(xi, xj)� b (4.11)

By plugging this in to the original QP, we arrive at the final, non-linear, non-

separable SVM quadratic programming problem, (4.12), as function of the Lagrange

multipliers alpha. Note that if the kernel function K is simply the linear di↵erence

between vectors xi and xj, we arrive back at the linear case in (4.5).

min
↵

P (↵) = min
↵

1

2

nX

i=1

nX

j=1

↵i↵jyiyjK(xi, xj)�
nX

i=1

↵i (4.12)

subject to the box constraint

0  ↵i  C, 8i (4.13)

and the linear constraint
nX

i=1

↵iyi = 0 (4.14)

When solved, the optimization problem and corresponding constraints presented in

(4.12) yield a trained algorithm capable of solving classification-type problems. In

the next section, these results are generalized to the regression-type machine learning

problem.

4.1.2 Support Vector Machine Regression

Vapnik generalizes the classification approaches to regression-type problems for the

linear and nonlinear-type loss functions in [61]. According to the reference, a linear

SVM regression will take place if, first, the regression estimation is defined as a set

of linear functions f(x,↵) = (w · x) + b, similar to those shown in (4.1), that seek

to mimic the response variables y as a function of the predictors x. Second, the

problem must be defined as one of risk minimization with respect to an "-intensive

loss function | · |", where

|y � f(x,↵)|" =

8
<

:
0 if |y � f(x,↵)|  "

|y � f(x,↵)|� " otherwise
(4.15)
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A graphic depiction of the loss function is presented in Figure 4.2. Finally, risk must

be minimized according to the SRM principle which guarantees a sequence of risks

converges asymptotically to the smallest risk. The theorem and proof can be found

in Chapter 4.2 of [61].

Figure 4.2: The "-intensive loss function.

Provided training data (x1, y1), . . . , (xn, yn), where xi are predictors and yi are

responses, and satisfied preconditions defined above, we can solve the empirical risk

minimization problem with respect to a linear "-intensive loss function,

Remp(w, b) =
1

n

nX

i=1

|y � (w · x)� b|", (4.16)

by treating it as a QP optimization by minimizing both the vector product of w and

the C-weighted sums of the slack variables ⇠i and ⇠⇤
i
shown in (4.17).

 (w, ⇠⇤, ⇠) =
1

2
(w · w) + C

 
nX

i=1

⇠⇤
i
+

nX

i=1

⇠i

!
(4.17)

subject to the constraints,

yi � (w · xi)� b  "+ ⇠⇤
i
, 8i,

(w · xi) + b� yi  "+ ⇠i, 8i,

⇠⇤
i

� 0, 8i,

⇠i � 0, 8i
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Similarly to the classification problems in Section 4.1.1, the QP can be solved using

the Lagrangian and the corresponding KKT conditions, resulting in the regression

coe�cients as a function of Lagrange multipliers ↵ and ↵⇤:

w =
nX

i=1

(↵⇤
i
� ↵i)xi, (4.18)

where the multipliers can be found by solving the constrained optimization problem

shown in (4.19).

min
↵,↵⇤

P (↵,↵⇤) = min
↵,↵⇤

"
nX

i=1

(↵⇤
i
+↵i)�

nX

i=1

yi(↵
⇤
i
�↵i)+

1

2

nX

i,j=1

(↵⇤
i
�↵i)(↵

⇤
j
�↵j)(xi · xj)

(4.19)

subject to the constraints,
nX

i=1

↵⇤
i
=

nX

i=1

↵i,

0  ↵⇤
i
 C, 8i,

0  ↵i  C, 8i

The results for the linear case can be further generalized to use a kernel-based

regression equation, where, instead of the linear function, f(x,↵) = (w · x) + b, we

have functions of the form:

f(x; v, �) =
nX

i=1

�iK(x, vi) = b (4.20)

where �i is a constant defined as ↵⇤
i
�↵i, 8i, vi is a vector, and K is a kernel function

as defined in Section 4.1.1. Using the same quadratic optimization approach in (4.17),

we arrive at the kernel function based optimization problem shown in (4.21).

min
↵,↵⇤

P (↵,↵⇤) = min
↵,↵⇤

"
nX

i=1

(↵⇤
i
+↵i)�

nX

i=1

yi(↵
⇤
i
�↵i)+

1

2

nX

i,j=1

(↵⇤
i
�↵i)(↵

⇤
j
�↵j)K(xi, xj)

(4.21)

subject to
nX

i=1

↵⇤
i
=

nX

i=1

↵i,
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0  ↵⇤
i
 C, 8i,

0  ↵i  C, 8i

Solving this optimization problem is equivalent to training a machine learning

algorithm. The resulting solution is a regression equation capable of mimicking and

predicting response data. Note that in the Matlab toolbox, validation methods like k-

fold cross-validation and hold out are used to improve the regression function. These

methods break up training data, solve the SVM optimization for some parts, and use

the others to test the fit of the model. More information can be found in [24], [67],

and references therein.

In the next section, the results of several trained SVM algorithms are presented

and tested in their ability to predict velocity trajectories.

4.2 Trajectory Prediction

The training phase of the machine learning process involves the selection of predictor

and response variables followed by training a SVM algorithm as presented in Section

4.1.2. This involves solving an optimization problem that results in a function that

predicts the response variables with respect to the predictors. Once training is com-

pleted, the testing phase evaluates the capability of the regression function to predict

the response associated with the same predictor variables from a new data set and

compares the predicted response with a known one. The e↵ectiveness of a machine

learning algorithm is highly dependent on the selection of predictor variables used in

the training phase and finding the “correct” predictors is rarely straightforward. In

this section, we present five di↵erent sets of predictor variables, create models using

a machine learning SVM algorithm, and compare their abilities to accurately predict

driving cycle data. As in the pattern recognition models discussed in Chapter 3, the

success of our model will be based on how accurately it can predict velocity behavior,

as accuracy is vital to building driver trust in a DAS application.

4.2.1 Prediction Algorithm Training

The focus of this chapter is the modeling and prediction of individual driver velocity

behavior. Therefore the selection of our machine learning response variable is obvi-

ous: velocity as a function of time v(t). The predictor variables are chosen to most

generally represent driving behavior. The first, speed limit vSL(t), is because it is
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a variable that is easily measured and plays a significant role in driving behavior.

Speed limit changes characterize how drivers accelerate (or decelerate) and constant

speed limits characterize constant velocity behavior. The second predictor, distance

traveled d(t), is used as a measure to place a driver within speed limit zones.

When considering driving velocity as a function of the speed limit, there are two

types of behavior to consider. First, how a driver behaves when the speed limit is

constant and, second, when there is either a positive or negative change. In order for

a machine learning training algorithm to distinguish these relationships, the predic-

tor variables must provide the correct information. We structure our predictors by

considering the relationships between driving velocity and speed limit in these two

cases. In the first case, the relationship is simple; velocity behavior with respect to a

constant speed limit requires only knowledge of the current velocity, speed limit, and

the di↵erence between the two. The second, however, is more complicated because

velocity changes are now a function of the changing speed limit. More specifically,

we need to know how, if the driver begins to accelerate/brake before a limit change

or after, that behavior is unique to a specific change, and the nature of the specific

acceleration/deceleration.

With this information in mind, we present five successive prediction variable struc-

tures used in conjunction with velocity as the response. Each prediction variable

structure is used to train a model that is tested, visually inspected, and used as feed-

back to improve the results in the next trial. A formal evaluation and comparison of

all methods is presented in the final subsection.

Trial 1

The predictors in the first trial are structured to inform the machine learning algo-

rithm where the vehicle is located at every point in time with regard to the past and

future speed limits. Typically, each response variable sample in a training set has a

corresponding set of predictor variables. Because our data was recorded as a function

of time, we have a response-predictor pair for every time sample. As such, for each

vi, i = 1, . . . , n, in the n-length training set we introduce five specific predictors:

• viSL : current speed limit

• viSL,next : next-nearest, di↵erent speed limit

• viSL,prev : first-previous, di↵erent speed limit

• diSL,next : distance to next-nearest, di↵erent speed limit
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• diSL,prev : distance to first-previous, di↵erent speed limit

and further shown in Figure 4.3.

Figure 4.3: The predictor variables used in the first trial training..

In this trial, the algorithm has direct knowledge of the distance to past and future

changes in speed limit, as well as magnitudes of the speed limit changes themselves.

Additionally, the speed limit values have been set to zero when the vehicle velocity

is zero to compensate for stoplights, crosswalks, etc. in areas where the speed limit

would otherwise be higher. A training phase using this predictor-response structure

was completed on the data shown in Figure 4.4 using a linear support vector machine

(LSVM) kernel algorithm combined with a hold out validation. The LSVM algorithm

with a hold-out validation was chosen for relative simplicity and ease of use. Another

algorithm is tested in Trial 3. The 16, 000 time-sample training data set was con-

ducted by the same driver as the data in Chapter 3 with the same electric B-Class.

The trajectory contains a variety of driving situations including multiple accelera-

tion, deceleration, constant velocity, and stand-still phases over varying speed limits,

making it an ideal set with which to train the SVM algorithm.

Figure 4.4: Velocity trajectory used to train the machine learning regression function.
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The trained SVM algorithm results in a function f , capable of predicting the

responses, ~Y , as a function of the predictors, ~X. In this case, ~Y is a 1⇥m vector of

predicted velocity values and ~X is a 5 ⇥m matrix of predictor variables where m is

the length of the testing data set.

~Y = f( ~X) (4.22)

Figure 4.5 shows the results of the testing phase. Similar to the training data, the

testing set contains a variety of di↵erent velocity and acceleration behaviors and was

recorded using the same driver and car as the training set. A visual inspection reveals

that while this algorithm is able to predict the relative magnitude of the velocity

trajectory, the realistic shape is not present. A possible cause for this discrepancy

is that the predictor variables are environment based and contain no information on

how the driver performs, causing the predicted trajectory to jump at the same time as

the speed limit changes. Another is that the predictor variables provide the training

algorithm with information that is possibly too in the past or future to be relevant

in current decision making. For example, if a driver is at the halfway point of a

50km speed limit zone, the previous and next speed limit zones have no influence on

how he/she drives. Therefore, the predictors in this situation may cause the training

algorithm to build relationships between variables that have no current correlation.

In the next trial, we chose new predictors in an attempt to improve the fit accuracy.

Figure 4.5: Machine learning Trial 1 velocity prediction results.

Trial 2

The Trial 1 results make it obvious that the machine learning training algorithm

needs more information than just the relative location of the vehicle to the nearest

past and future speed limit changes to predict velocity behavior. Therefore, we discard
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the previous predictors and introduce new ones to improve the prediction accuracy:

the previous velocity sample, to provide the algorithm with exact driver behavior

information, and what we refer to as a speed limit window as shown in Figure 4.6.

Figure 4.6: Several plotted examples of the speed limit window predictor variable
with a 10s width.

The speed limit window is an l-second length time window spanning the vehicle’s

current time position and containing past and future speed limit information. Used as

a predictor, this gives the training algorithm speed limit information for each velocity

response, while ensuring that the data belongs only to a relevant time frame. With

these two predictors, we have (1/ts) ⇤ l + 1 variables instead of the five used in Trial

1, where ts is the data sampling rate.

Note that the use of a previous velocity value as a predictor value complicates the

prediction process by creating a recursive loop. Each future velocity value predicted

by the algorithm is dependent on the previously predicted one. Therefore, once

the regression function has been trained by the machine learning algorithm, a loop

is required to generate the predicted velocity trajectory, with an example step for

calculating the kth velocity value shown in (4.23).

vk = f(vkSL,window, v
k�1) (4.23)

Using the same LSVM training algorithm in Trial 1, the same training data set,

the same testing set, and the loop described above, a new model was trained with the

velocity prediction results shown in 4.7. This algorithm shows a slight improvement

over the Trial 1 results, demonstrating more smooth transitions between di↵erent

velocities in contrast to the harsh jumps present in Trial 1. However, the predicted

curve does not match the curvature or relative magnitude of the real data and requires

further improvement to accurately predict the test trajectory.
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Figure 4.7: Machine learning Trial 2 velocity prediction results.

Trial 3

The result of Trial 2 show an improvement over Trial 1 but fail to accurately predict

the curvature, or acceleration behavior, of the test data. In the previous trials, the

training algorithm was given information in terms of velocity, in order to predict

velocities. Therefore, we introduce driver acceleration behavior to the training data

by using a di↵erent response variable entirely: �vk = vk�vk�1. Because the sampling

rate of the test data is constant, the term �v e↵ectively depicts acceleration behavior.

Otherwise, the predictor variables consist of the same speed limit window used in Trial

2 and j previous velocity values instead of the single one. By using multiple past

velocity values, we provide the training algorithm with more velocity acceleration.

As a result of the new predictor-response structure, our training algorithm constructs

a function of the form:

�vk = f(vkSL,window, v
k�1, . . . , vk�j) (4.24)

where vk is calculated by adding �vk to vk�1. Used in the same loop fashion as in

Trial 2, we predict the test data velocity trajectory using again an LSVM training

algorithm. The results are shown in Figure 4.8.
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Figure 4.8: Machine learning Trial 3 velocity prediction results.

The results of Trial 3 show another improvement over the previous two attempts.

While there are large discrepancies between the relative magnitudes of the real and

predicted curves, the SVM algorithm is able to generate curvature that matches the

test data reasonably well. Two additional case studies are conducted using the same

predictor-response variable structures but with slightly di↵erent training methods.

First, a quadratic support vector machine (QSVM) training algorithm was chosen

to test if a more advanced kernel would be more capable of replicating the complex

curvatures and magnitudes present in the test data. The results, shown in Figure

4.9, demonstrate visually that the QSVM is capable of more sporadic behavior and

a lower magnitude prediction accuracy than the LSVM.

Figure 4.9: Machine learning Trial 4 velocity prediction results.

The second case study uses an LSVM with standardized prediction data. In this

work, standardization of data is normalizing scale of the training data in order to make

relationships between training data variables more or less pronounced to the machine

learning algorithm. A standardized example of the training data shown in Figure 4.4
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on the scale [�1, 1] is presented in Figure 4.10. Note that the full curvature of the

trajectory is preserved, despite having a smaller scale and negative vertical shift.

Figure 4.10: Standardized velocity trajectory used to train the machine learning
regression equation in Trial 5.

Because the training data is standardized, it follows naturally that the testing

data must be similarly scaled to allow the SVM algorithm to predict the data. Figure

4.11 shows predicted testing data that was standardized, used in the SVM algorithm,

and rescaled back to the original values. The standardized training algorithm shows

similar prediction results to the original LSVM case, but with slightly smoother cur-

vature. A formal evaluation of each trial is presented and discussed in the final section

of this chapter.

Figure 4.11: Machine learning Trial 5 velocity prediction results.

4.2.2 Prediction Algorithm Evaluation

The five trials presented in Section 4.2.1 are now evaluated in their capability to

accurately predict velocity trajectories. Similar to the pattern recognition modeling,

predicting behavior using machine learning to build driver trust in a DAS requires
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a high level of predicted velocity accuracy. Therefore, we choose evaluation metrics

like fuel consumption, which generally reflects velocity behavior during driving, to

measure general curve prediction accuracy and compare energy use. To directly

measure accuracy with respect to the test-data curves, we select the length-normalized

sum-squared error (SSE) on both velocity and acceleration in addition to the velocity

band error presented in Section 3.4. The evaluation metrics of each trial are shown

in Table 4.1 using a velocity band with a width of 5km/h.

Table 4.1: Results and comparison of the machine learning velocity prediction trials.

Trial# E (MJ) �E (MJ) SSE-v ( km

h⇤sample
) SSE-a ( m

s2⇤sample
) Band-Error (%)

1 0.807 0.064 0.471 0.078 95.5
2 0.682 0.118 0.6113 0.022 97.0
3 0.790 0.080 0.356 0.016 77.92
4 0.773 0.097 0.576 0.035 85.4
5 0.657 0.214 0.528 0.017 85.9

First and foremost, we see that are large discrepancies present between the pre-

dicted and test trajectories. Where, Trial 5 has the lowest fuel consumption of

0.657MJ , each trial required less energy than the test data with percent di↵erences

ranging between 8 and 33%. Furthermore, we see velocity and acceleration SSE val-

ues between 0.4 � 0.61km/s ⇤ sample and 0.16 � 0.78m/s2 ⇤ sample, respectively.

Note that while each trial demonstrates similar velocity SSE values to the pattern

recognition case, the pattern recognition curves have lengths ranging between 50 and

300 samples in contrast to the 10, 000+ samples from this test curve. An average er-

ror of 0.5km/h ⇤ sample over 10, 000 samples results in significant discrepancies and

the same holds true for the acceleration data. The band error measurement shows

similar inaccuracies with the lowest error percentage at nearly 78%. While Trial 3

demonstrates the most similar behavior to the test curve, the errors present in the fuel

consumption, SSE, and velocity band metrics are too large to consider this method

for use in a driver assistance system. Achieving acceptable SSE and velocity band

error values of 0.05m/s2⇤sample and 95% require further development of the training

data and algorithms.
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CHAPTER 5

CONCLUSION

Range extension driver assistance systems have the potential to improve the fuel

consumption of road vehicles by suggesting energy optimized speeds to the driver.

However, because the systems have no direct control over the vehicle itself, they

are completely dependent on driver trust and acceptance. In this work, we have

explored two methods for modeling and predicting driver behavior that could be used

to personalize speed commands to suit individual driving styles.

The first method is pattern recognition based and involves the segmentation of

a driver’s velocity trajectory and drawing information about the behavior from in-

dividual segments. Four di↵erent time-series segmentation techniques were investi-

gated and the most time-e�cient and e↵ective, the SWAB, was selected. Using both

function-fit regression and system identification techniques, in conjunction with the

SWAB segments, we built and tested velocity models in their ability to predict driv-

ing behavior. When compared to predicted trajectories, both methods exhibited high

levels of accuracy with regard to the energy consumption and curve shape. Each

model shows great potential for improving a driver assistance system.

Where the first method requires breaking down a time-series to analyze behavior

and build a model, the second method is able to process the entire trajectory at

once. Using an SVM based machine learning approach, we explored five di↵erent

training and testing techniques to model and predict driver behavior using velocity

as a function of the speed limit. While the approach shows promise, the results are not

able to su�ciently predict velocity trajectories of a specific driver. More development

is required to achieve an algorithm capable of predicting driver behavior with a degree

of accuracy suitable to a DAS.

5.1 Future Work

The focus of this work was the identification and prediction of individual driver behav-

iors, with a specific focus on positive acceleration phases. Future case studies could

be conducted using the same techniques to model and predict deceleration, constant

velocity, as well as general behavior when driving behind a leader car. Furthermore,

both methods presented here exhibit di↵erent approaches suitable for generally ana-

lyzing, modeling, and predicting behavior in multivariate time-series data. While the
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machine learning algorithm shows only potential at this point, the pattern recognition

based approach can be used “out of the box” to analyze any time-series.

Implementing the identified driver models in a driver assistance system was beyond

the scope of this work. However, an implementation of both pattern recognition based

models in a simulation environment to test the potential for building driver acceptance

and improving fuel economy would be an excellent subject for future work. Positive

simulation results would merit the use of the models in a real-world test using the

electric B-Class.
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[14] D. Dörr, D. Grabengiesser, and F. Gauterin, “Online driving style recognition
using fuzzy logic,” in 2014 IEEE 17th International Conference on Intelligent
Transportation Systems (ITSC), Qingdao, China, 2014.

[15] N. R. Draper and H. Smith, Applied Regression Analysis. John Wiley & Sons,
Inc., 1998.

[16] P. Fancher, Z. Bareket, and R. Ervin, “Human-centered design of an acc-with-
braking and forward-crash-warning system,” Vehicle System Dynamics, vol. 36,
no. 2-3, pp. 203–223, 2001.

[17] J. C. Ferreira, J. de Almeida, and A. R. da Silva, “The impact of driving
styles on fuel consumption: A data-warehouse-and-data-mining-based discovery
process,” IEEE Transactions on Intelligent Transportation Systems, vol. 16,
pp. 2653 –2662, 2015.

[18] J. M. Gavilan and F. V. Morente, “Three similarity measures between one-
dimensional data sets,” in Revista Colombiana de Estadstica, vol. 37, 2014,
pp. 79–94.

[19] O. Gietelink, “Design and validation of advanced driver assistance systems,”
PhD thesis, The Netherlands TRAIL Research School, 2007.

[20] S. Giljum, F. Hinterberger, M. Bruckner, E. Burger, J. Frhmann, S. Lutter, E.
Pirgmaier, C. Polzin, H. Waxwender, L. Kernegger, and M. Warhurst, “Over-
consumption? our use of the worlds natural resources,” Friends of the Earth
Europe, Tech. Rep., 2009.

[21] B. Gu and G. Rizzoni, “An adaptive algorithm for hybrid electric vehicle energy
management based on driving pattern recognition,” in ASME International
Mechanical Engineering Congress and Exposition, Chicago, Illinois, USA, 2006.

[22] L. Guzzella and A. Sciarretta, Vehicle Propulsion Systems. Springer, 2013.

[23] W. Harrington and V. McConnell, “Motor vehicles and the environment,” Re-
sources for the Future, Tech. Rep., 2003.

[24] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning.
Springer, 2008.

[25] G. Heppeler, M. Sonntag, and O. Sawodny, “Fuel e�ciency analysis for simul-
taneous optimization of the velocity trajectory and the energy management in

84



hybrid electric vehicles,” in Preprints of the 19th World Congress The Interna-
tional Federation of Automatic Control, Cape Town, South Africa, 2014.

[26] D. Herron. (2013). Teslas technology inside the mercedes-benz b-class electric
drive, The Long Tail Pipe.

[27] B. Higgs and M. Abbas, “A two step segmentation algorithm for behavioral
clustering of naturalistic driving styles,” in Proceedings of the 16th International
IEEE Annual Conference on TuA2.4 Intelligent Transportation Systems (ITSC
2013), The Hague, The Netherlands, 2013.

[28] ——, “Segmentation and clustering of car-following behavior: Recognition of
driving patterns,” IEEE Transactions on Intelligent Transport Systems, vol.
16, no. 1, 2016.

[29] J. Himberg, K. Korpiaho, H. Mannila, J. Tikanmaki, and H. Toivonen, “Time
series segmentation for context recognition in mobile devices,” in Data Mining,
2001. ICDM 2001, Proceedings IEEE International Conference on, San Jose,
CA, USA, 2001.

[30] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A practical guide to support vector
classifcation,” 2016.

[31] T.-M. Huang, V. Kecman, and I. Kopriva, Kernel Based Algorithms for Mining
Huge Data Sets. Springer, 2006.

[32] I. Jenhani, N. B. Amor, and Z. Elouedi, “Decision trees as possibilistic classi-
fiers,” International Journal of Approximate Reasoning, vol. 48, 2007.

[33] S. il Jeon, S. tae Jo, Y. il Park, and J. moo Lee, “Multi-mode driving control
of a parallel hybrid electric vehicle using driving pattern recognition,” Journal
of Dynamic Systems, Measurement, and Control, 2002.

[34] J. F. Junior, E. Carvalho, B. V. Ferreira, C. de Souza, Y. Suhara, A. Pent-
land, and G. Pessin, “Driver behavior profiling: An investigation with di↵erent
smartphone sensors and machine learning,” PLOS ONE, 2017.

[35] M. Karmakar and A. K. Nandi, “Driving assistance for energy management in
electric vehicle,” in Power Electronics, Drives and Energy Systems (PEDES),
2016 IEEE International Conference on, Trivandrum, India, 2016.

[36] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “Segmenting time series: A survey
and novel approach,” in In an Edited Volume, Data mining in Time Series
Databases. Published by World Scientific, 1993, pp. 1–22.

85



[37] A. Kumar, “From mass customization to mass personalization: A strategic
transformation,” International Journal of Flexible Manufacturing Systems, vol.
19, pp. 533–547, 2007.

[38] Y. LeCun, “Learning process in an asymmetric threshold network,” Disordered
systems and biological organization, 1986.

[39] A. Lew and H. Mauch, Dynamic Programming A Computational Tool. Springer,
2007.

[40] A. Lie, C. Tingvall, M. Kra↵t, and A. Kullgren, “The e↵ectiveness of esp (elec-
tronic stability program) in reducing real life accidents,” Tra�c Injury Preven-
tion, vol. 1, pp. 37–41, 2004.

[41] C.-C. Lin, H. Peng, S. Jeon, and J. M. Lee, “An adaptive longitudinal driving
assistance system based on driver characteristics,” in Proceedings of the 2002
Advanced Vehicle Control Conference, Hiroshima, Japan, 2002.

[42] N. Lin, C. Zong, M. Tomizuka, P. Song, Z. Zhang, and G. Li, “An overview on
study of identification of driver behavior characteristics for automotive control,”
Mathematical Problems in Engineering, 2014.

[43] X. Lin, D. Grges, and S. Liu, “Eco-driving assistance system for electric ve-
hicles based on speed profile optimization,” in IEEE Conference on Control
Applications (CCA), Antibes, France, 2014.

[44] H. T. Luu, L. Nouveliere, and S. Mammar, “Dynamic programming for fuel
consumption optimization on light vehicle,” in 6th IFAC Symposium Advances
in Automotive Control, Munich, Germany, 2010.

[45] G. A. M. Meiring and H. C. Myburgh, “A review of intelligent driving style
analysis systems and related artificial intelligence algorithms,” MDPI, 2015.

[46] J. E. Meseguer, C. T. Calafate, J. C. Cano, and P. Manzoni, “Assessing the
impact of driving behavior on instantaneous fuel consumption,” in IEEE Con-
sumer Communications and Networking Conference (CCNC), vol. 12, 2015.

[47] F. Morlock, G. Heppeler, U. Wohlhaupter, and O. Sawodny, “Range extension
for electric vehicles by optimal velocity planning considering di↵erent driver
types,” in To appear in: 2017 IEEE Conference on Control Technology and
Applications, Kohala Coast, Hawaii, 2017.

[48] Y. G. N. Dembski and A. Soliman, “Analysis and experimental refinement of
real-world driving cycles,” SAE Technical Paper Series, 2002.

86



[49] L. Nouveliere, S. Mammar, and H.-T Luu, “Energy saving and safe driving assis-
tance system for light vehicles: Experimentation and analysis,” in Networking,
Sensing and Control (ICNSC), 2012 9th IEEE International Conference on,
IEEE, 2012.

[50] M. Peden, R. Scurfield, D. Sleet, D. Mohan, A. A. Hyder, E. Jarawan, and
C. Mathers, “World report on road tra�c injury prevention,” World Health
Organization, Tech. Rep., 2004.

[51] H. Peng, “Evaluation of driver assistance systemsa human centered approach,”
University of Michigan,

[52] J. C. Platt, “Sequential minimal optimization: A fast algorithm for training
support vector machines,” Microsoft Research, Technical Report MSR-TR-98-
14, 1998.

[53] Z. F. Quek and E. Ng, “Driver identification by driving style,” 2013.

[54] E. Rendon-Velez, “Classification and overview of advanced driver assistance
systems according to the driving process,” in ASME 2010 International Design
Engineering Technical Conferences and Computers and Information in Engi-
neering Conference, ASME, vol. 30, Quebec, Canada, 2010.

[55] M. Richardson, A. Prakash, and E. Brill, “Beyond pagerank: Machine learning
for static ranking,” in Proceedings of the 15th international conference on World
Wide Web, WWW, L. Carr, D. D. Roure, A. Iyengar, C. Goble, and M. Dahlin,
Eds., 2006.

[56] F. Rosenblatt, “The perceptron–a perceiving and recognizing automaton,” Cor-
nell Aeronautical Laboratory - Cornell University, Tech. Rep., 1957.

[57] D. E. Rumelhart, G. E. Hinton, and R. J. Willams, “Learning representations
by back-propagating errors,” Nature, vol. 323, 1986.

[58] B. Shi, L. Xu, H. Jiang, and W. Meng, “Comparing fuel consumption based
on normalised driving behaviour: A case study on major cities in china,” IET
Intelligent Transport Systems, vol. 11, no. 4, pp. 189–195, 2017.

[59] A. Smola and S. Vishwanathan, Introduction to Machine Learning. Cambridge
University Press, 2008.

[60] V. Vapnik and A. Chervonenkis, Theorie der Zeidenerkennung. Akademia-
Verlag, 1979.

[61] V. N. Vapnik, The Nature of Statistical Learning Theory. Springer, 1999.

87



[62] V. Vapnik, Estimation of Dependencies Based on Empirical Data. Spring, 1982.

[63] J. Wang, L. Zhang, D. Zhang, and K. Li, “An adaptive longitudinal driving
assistance system based on driver characteristics,” in IEEE Transactions on
Intelligent Transport Systems, 2013.

[64] W. Wang and J. Xi, “A rapid pattern-recognition method for driving styles us-
ing clustering-based support vector machines,” in American Control Conference
(ACC), 2016.

[65] J. Willmert, Bellman k-segmentation algorithm, http://homepages.spa.umn.
edu/~willmert/science/ksegments/, 2014.

[66] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, and M. Norouzi, Googles neural machine
translation system: Bridging the gap between human and machine translation,
Cornell University Library, 2016.

[67] S. Yadav and S. Shukla, “Analysis of k-fold cross-validation over hold-out vali-
dation on colossal datasets for quality classification,” in IEEE 6th International
Conference on Advanced Computing, 2016.

[68] Y. Zhang, W. C. Lin, and Y.-K. S. Chin, “A pattern-recognition approach for
driving skill characterization,” IEEE Transactions on Intelligent Transportation
Systems, vol. 11, no. 4, pp. 905 –916, 2010.

88

http://homepages.spa.umn.edu/~willmert/science/ksegments/
http://homepages.spa.umn.edu/~willmert/science/ksegments/


PART 2:

REALIZING SIMULTANEOUS LANE KEEPING AND ADAPTIVE
SPEED REGULATION ON ACCESSIBLE MOBILE ROBOT

TESTBEDS



TABLE OF CONTENTS

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2:Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Nonlinear Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Analytical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 The Unicycle Robot Model . . . . . . . . . . . . . . . . . . . . 8

2.3 Experimental Testbeds . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Khepera Robot Testbed . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 The Robotarium . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 3:Control Methods . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Control Barrier Functions . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Control Lyapunov Functions . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 CBF-CLF-based Quadratic Programs . . . . . . . . . . . . . . . . . . 16

ii



Chapter 4:Experimental Implementation . . . . . . . . . . . . . . . . . 17

4.1 Controller Implementation . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Experiments on Khepera Robots . . . . . . . . . . . . . . . . 20

4.2.2 Experiments on the Robotarium . . . . . . . . . . . . . . . . . 25

Chapter 5:Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iii



LIST OF TABLES

4.1 Experiment Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iv



LIST OF FIGURES

2.1 (left) States of the unicycle robot. (right) Modified point of interest. . 10

2.2 (left) Khepera III robot, (right) GRITSBot from the Robotarium. . . 10

4.1 Flowchart describing the control generation loop in the experimental
implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 The value of CBFs in the on/o↵ experiment and simulation on Khepera
robots. (top) Value of the CBF hlk where positiveness implies that the
robot is within the boundary. (bottom) Value of the CBF hasr where
non-negativeness implies the specification D � ⌧vf is satisfied. . . . 21

4.3 The value of CLFs in the experiment and simulation on Khepera
robots. (top) Value of V1 and V3. (bottom) Value of V2. . . . . . . . 22

4.4 Trajectories of the Khepera robots during the on/o↵ path tracking
experiment. During the “o↵mode” between 20 seconds and 45 seconds,
the following robot remains within the lane boundary because of the
lane keeping CBF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Time-lapse images of the Khepera robot during the “o↵” mode. The
Khepera robot can be kept inside the lane due to the lane keeping
CBF. (left) The following robot approaches the lane boundary. (right)
The following robot is repelled from the lane boundary. . . . . . . . . 23

4.6 Barrier function values during the decaying path tracking experiment
with Khepera robots. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.7 Khepera robots’ trajectories during the decaying path tracking exper-
iment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.8 Time-lapse images during Decay Khepera Experiment. (left) The robot
approaches edge of the lane. (right) The robot is turned away from
lane edge by CBF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

v



4.9 The value of CBFs in the experiment and simulation on Robotarium
with on/o↵ path tracking CLF. (top) Value of the CBF hlk where
positiveness implies satisfaction. (bottom) Value of the CBF hasr where
non-negativeness implies satisfaction. . . . . . . . . . . . . . . . . . . 26

4.10 Trajectories of the following robots on Robotarium during the on/o↵
path tracking experiment. . . . . . . . . . . . . . . . . . . . . . . . . 27

4.11 Time-lapse images of the Robotarium during the o↵ mode. (left) The
following robot approaches the lane boundary. (right) The following
robot is repelled from the lane boundary. . . . . . . . . . . . . . . . . 27

4.12 Robots’ trajectories in Robotarium experiment with the decaying path
tracking CLF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.13 The value of CBFs hasr and hlk in the experiment and simulation on
Robotarium with the decaying path tracking CLF. . . . . . . . . . . . 29

4.14 The value of CBF hasr in the Robotarium experiment and simula-
tion when the path tracking controller is turned on for all time. Non-
negativeness of hasr means satisfaction of the adaptive speed regulation
specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.15 Time lapse of the adaptive speed regulation experiment in Robotar-
ium. (left) Minimum headway is not reached after a quarter revolution
around the path. (right) Minimum headway maintained eventually. . 30

vi



SUMMARY

Enforcing multiple, sometimes conflicting control objectives is a challenge present

in modern advanced driver assistance systems. Drivers are capable of activating mul-

tiple modules simultaneously where safety must be guaranteed at all times. Examples

includes adaptive speed regulation, where the vehicle must achieve a desired speed

while maintaining a safe distance to any preceding vehicle, and lane keeping, where

a vehicle is kept safely within the bounds of a lane.

Provably safe algorithms for both adaptive speed regulation and lane keeping

are introduced and used to run experiments on two robotic testbeds. The underlying

algorithms are based on control Lyapunov functions for performance, a control barrier

functions for safety, and a real-time quadratic program for mediating the conflicting

demands between the two. The Robotarium, a robotic testbed that allows students,

as well as researchers less experienced with hardware, to experiment with advanced

control concepts in a safe and standardized environment, is compared with a more

expensive OptiTrack based Khepera robot testbed.
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CHAPTER 1

INTRODUCTION

Designing controllers that enforce di↵erent and sometimes conflicting objectives is

a recurring challenge in many real systems. This is especially crucial for robotic or

automotive systems, in which stringent safety-critical specifications must be guar-

anteed at all times, while also providing the performance expected by a user [12].

Advanced Driver Assistance Systems (ADAS) are a prime example, where passen-

ger and commercial vehicles are outfitted with multiple safety or comfort modules [6].

Lane keeping, for example, controls a vehicle’s steering to maintain position in a lane,

while adaptive cruise control regulates a vehicle’s speed to a driver-set value when

there is no preceding vehicle in the lane, and maintains a safe following distance when

a leader vehicle is detected [23, 24]. Because ADAS control modules can be activated

concurrently in today’s vehicles, designing provably correct control software for the

simultaneous operation of two or more control modules is crucial and has attracted

considerable attention (see [15, 27, 7] and references therein).

Set invariance is a popular method to specify and prove safety properties [4], which

are often established through the use of barrier functions (also known as certificates).

The barrier function has proved popular because it provides a certificate of set invari-

ance without the di�cult task of computing a system’s reachable set [21, 20]. Inspired

by the automotive safety-control problems, a control barrier function (CBF) is pro-

posed in [2], which extends the normal barrier function condition to only requiring

a single sub-level set to be controlled invariant, and extends barrier functions from

ODEs to control systems. When CBFs are combined with control Lyapunov func-

tions (CLFs) representing a control objective through a quadratic programming (QP)

framework, families of control policies that guarantee safety can be designed. Simply

put, the controller mediates the control objectives whenever safety and performance

are in conflict.

In this work, we use both the Khepera robot testbed [13] and the Robotarium

testbed [19] to explore the real-time hardware implementation of adaptive speed reg-

ulation and lane keeping simultaneously using the CBF-CLF-QP approach. Explor-

ing a hardware implementation of CBF-CLF-QPs on two di↵erent testbeds allows

us to check for potential challenges that arise due to modeling errors, sensor sam-

pling rates, or accuracy limitations of real systems, paving the way for future testing
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of the algorithms in full-sized vehicles. Furthermore, the implementation serves as

an educational example to show how the Robotarium allows students to work with

a reasonably sophisticated safety-critical control problem in a (personally) safe and

relatively inexpensive setting. For comparison purposes, the Khepera testbed, which

uses a costly OptiTrack camera system and Khepera robots, is also used to implement

the CBF-CLF-QP algorithms.

1.1 Outline

The work is organized as follows. Chapter 2 presents an introduction to nonlinear

control techniques, the analytic model used to represent the Khepera and Robotar-

ium robots, and a brief introduction to the two robotic testbeds used to conduct

experiments.

Chapter 3 presents the control methods. In Section 3.1, the control barrier func-

tions used to guarantee safe driving behaviors are discussed. Similarly, Section 3.2

presents the control Lyapunov functions used to achieve control objectives. The two

concepts are then formulated as constraints to a quadratic programming problem in

Section 3.3.

In Chapter 4, we present the experimental implementation methods for the exper-

iments in Section 4.1 and the experimental results are shown and discussed in Section

4.2.

Finally, a conclusion of the methods and experiments discussed in this work is

presented in Chapter 5
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CHAPTER 2

BACKGROUND

This chapter presents, first, an introduction to the nonlinear control methods used to

develop the controllers discussed in Chapter 3, followed by the unicycle model used to

represent the robots in testbed experiments, and, finally, a description of the robotic

testbeds themselves.

2.1 Nonlinear Controls

The field of controls involves the mathematical modeling and control of real world

systems. In the classical approach, systems are represented using a straightforward,

linear model that simplifies the system dynamics and controllers. While this approach

is mathematically and computationally appealing, the simplified dynamics are often

unable to replicate real world behavior of more complex systems like a robot or an au-

tomobile [25]. Nonlinear control methods have, therefore, gained steady attention and

popularity. This section introduces the fundamentals of nonlinear control methods

used to develop the QP-based controller presented in Chapter 3. Excellent resources

for a more in depth explanation of the concepts described here can be found in [11,

25].

A linear system, in its simplest form, is a di↵erential equation:

ẋ = Ax (2.1)

with some initial condition x0 = x(t0). In the case that A is a square constant matrix,

the solution to the linear system is shown in (2.2).

x(t) = eA(t�t0)x0 (2.2)

The solution to the states, x, as functions of time always have closed forms. This

means the system’s behavior can always be controlled with the addition of a Bu input

term, and stability can be calculated using the values in A; a stable system requires

that any bounded input to the system produces a bounded output. However, these

linear dynamics cannot be used to describe most real world systems, requiring a more
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complex model: the nonlinear system.

ẋ = f(x) + g(x)u (2.3)

The system shown in (2.3) is in what is referred to as “a�ne” form, meaning that the

states, x, have a linear relationship to the control input, u. Unlike the linear case, this

system has no closed form solution for x(t), because the functions f(x) and g(x) are no

longer constant matrices, but any nonlinear (or linear) functions with varying stability

properties. So the question becomes, how do we control the behavior and stability

of such a vague system? To start, stability is defined to have three classes: normal,

asymptotic, and exponential where each case describes a systems behavior when near

a stable, or equilibrium, point. Normal stability guarantees that if a system starts

close to an equilibrium point, then it will always stay within an arbitrary bound of

that point [11]. The other two cases guarantee not only that the system will stay near

the equilibrium point, but will converge to it at either an asymptotic or exponential

rate [11]. The stability of a system can be checked using a Lyapunov function, which

proven by Lyapunov, is a positive definite function, like the energy of a system,

whose derivative can be used to determine the stability of a system. For example,

the derivative of a Lyapunov function, V (x), is defined as:

V̇ (x) =
nX

i=1

@V

@xi
ẋi =

@V

@x
f(x) (2.4)

where n is the number of system states and negative semi-definite and definite deriva-

tives imply stability and asymptotic stability respectively. Exponential stability is

given by a Lyapunov function bounded by two positive definite functions, whose

derivative is bounded by a negative definite function [11].

Having established stability, we introduce feedback linearization: a popular method

used for controlling nonlinear systems using a vector of outputs y, functions of the

state that should be driven to zero, and the a�ne nonlinear system. To feedback

linearize a single output, single input system, the derivative of the output is taken

� times with respect to x until the control input appears, where � is known as the

relative degree. The original outputs and the all derivatives up to degree � � 1, form

5



a new state vector ⌘:

⌘(x) =

2

66664

y(x)

Lfy(x)
...

L(��1)
f y(x)

3

77775
(2.5)

where L is the Lie derivative with respect to the function f and the final derivative

of degree � is y(�)(x) = L�
fy(x) + LgL

(��1)
f y(x)u. The input, u(x), can be solved as a

function of the output and its derivatives:

u(x) =
1

LgL
(��1)
f y(x)

�
�L�

fy(x) + y(x)(�)
�

(2.6)

resulting in a feedback control law as a function of the state, that when plugged back

into the system, e↵ectively linearizes the dynamics. Note that the controlled outputs

states, ⌘(x), in addition to the uncontrolled states, z(x) represent the feedback lin-

earized normal form of the system, as shown in equation (2.7). The total number

of controlled states and uncontrolled ones, or zero dynamics, must be equal to the

original number of states in the system as explained in [11].

⌘̇ = f(⌘, z) + g(⌘, z)u,

ż = q(x, z) (2.7)

where u 2 U , ⌘ 2 X, and z 2 Z.

This feedback linearized normal form can be taken another step further using

control Lyapunov ([22]) and control barrier functions ([5]) together in a quadratic

programming based control approach [16, 17]. Assuming that f(0, z) = 0, meaning

that the system will not leave the set Z for zero-valued output states, a CLF is

defined:

Definition 1. [2] A continuously di↵erentiable function V : X ! R is an exponen-

tially stabilizing control Lyapunov function if there exist positive constants c1,c2,c3 > 0

such that

c1||⌘||2  V (⌘)  c2||⌘||2 (2.8)

inf
u2U

[LfV (⌘, z) + LgV (⌘, z)u]  �c3V (⌘) (2.9)

The existence of V results in a family of control values, shown in (2.10), that

guarantee stable, exponential convergence of an output to zero as long as the second

6



constraint is satisfied [2] (and references therein).

Kclf(⌘, z) = {u 2 U : LfV (⌘, z) + LgV (⌘, z)u+ c3V (⌘)  0} (2.10)

A controller (2.11) than minimizes the control input, while still satisfying the CLF

constraint can be derived from this family of feasible control values using a minimiza-

tion technique.

u⇤ = argmin{||u|| : u 2 Kclf(⌘, z)} (2.11)

Furthermore, V (⌘(x)) can be calculated using the vector ⌘ and the matrix P from

solving the algebraic Ricatti equation.

V (x) = ⌘(x)TP⌘(x) (2.12)

Following from the CLF result, we review some basic results regarding control

barrier functions in [28]. Given a continuously di↵erentiable function h : Rn ! R, a
closed set C is defined by

C = {x 2 Rn : h(x) � 0}. (2.13)

Assuming that C is nonempty and has no isolated points, namely, Int(C) 6= ; and

Int(C) = C.
Consider an a�ne control system of the form shown in (2.3) with f and g locally

Lipschitz continuous, x 2 Rn, and u 2 U ⇢ Rm.

Definition 2. [28] Given a set C ⇢ Rn defined by (2.13), the continuously di↵eren-

tiable function h : Rn ! R is called a (zeroing) control barrier function defined on

set D with C ✓ D ⇢ Rn, if there exists a constant � > 0 such that

sup
u2U

[Lfh(x) + Lgh(x)u+ �h(x)] � 0, 8x 2 D. (2.14)

Given a CBF h, for all x 2 D, define the set

Kzcbf(x) = {u 2 U : Lfh(x) + Lgh(x)u+ �h(x) � 0}. (2.15)

The following result guarantees the forward invariance of C when inputs are selected

from Kzcbf(x).

Theorem 1. [28] Let C ⇢ Rn be a set defined by (2.13) for a continuously di↵eren-

tiable function h. If h is a CBF on D, then any locally Lipschitz continuous controller

7



u : C ! U satisfying 8x 2 D, u(x) 2 Kzcbf(x), will render the set C forward invariant.

This is an important result because, similarly to the CLFs, a min-norm controller

for CBFs can be defined as

u⇤ = argmin{||u|| : u 2 Kzcbf(x} (2.16)

meaning that when both CLF and CBF constraints are obeyed, a controller can be

found that satisfies both control objectives. In the closed form, the controller is found

by solving a quadratic programming problem [9]. An example QP with one CLF and

one CBF is shown in (??).

u⇤(x) = argmin
u

uTHu (2.17)

s.t. LfV (⌘, z) + LgV (⌘, z)u  �↵V (⌘) + �,

Lfh(x) + Lgh(x)u  �h(x)

where � are slack variables to soften the CLF constraint, and ↵ and � are positive

constants. The QP-based control input generation method introduced here is used

furtherin Chapter 3 to construct a controller capable of achieving the ADAS control

objectives of this work.

2.2 Analytical Model

In this section, the robot model used in conjunction with the CBF-CLF-QP control

algorithm and the experimental implementations is presented. Both experimental test

beds, as explained in Section 2.3, use two-wheeled, di↵erential drive robots, leaving

the unicycle robot model as an ideal modeling choice.

2.2.1 The Unicycle Robot Model

The standard unicycle model has three states and is given in (2.18) as

2

64
ẋ

ẏ

 ̇

3

75 =

2

64
v cos( )

v sin( )

!

3

75 . (2.18)
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Figure 2.1 shows the coordinates (x, y), , v,! representing the 2D position, the ori-

entation, and the longitudinal and angular velocities of the robot, respectively.

When the longitudinal force and the angular torque are taken as inputs to the

model, there are two additional states

v̇ =
ul

m
(2.19)

!̇ =
ua

Iz
, (2.20)

where ul and ua are the force and torque control inputs, respectively, Iz is the moment

of inertia about the z-axis, and m is the mass of the robot. Note that the relative

degree, or number of times the states must be di↵erentiated before the input term

appears, of the x and y states for ul and ua are not equal, which is inconvenient for

the input-output feedback linearization explained in Section 3. To overcome this, we

choose a point of interest located a distance a > 0 forward of the wheel axis, as done

in [8], [14] and references therein. This point is shown in Figure 2.1. Noting that the

change of coordinates modifies the derivative of the longitudinal velocity term, with

the addition of a centripetal acceleration term represented by a!2, the final unicycle

model used in this work is:

2

6666664

ẋ

ẏ

v̇

 ̇

!̇

3

7777775
=

2

6666664

v cos( )� a! sin( )

v sin( ) + a! cos( )
ul
m � a!2

!
ua
Iz

3

7777775
. (2.21)

Our state vector is defined moving forward as x = [x, y, v, ,!]>.

The angular position of the robot with respect to the origin is denoted by � (see

Figure 2.1) and is useful for the polar coordinate based path tracking algorithm used

in the experiments. Clearly, � = atan(y/x) and its time derivative is

�̇ =

p
(a! cos(��  )� v sin(��  ))2p

x2 + y2
. (2.22)

As explained in the experimental implementation section, the robots follow a path

defined in polar coordinates:

Rpath = R + b sin(n�). (2.23)
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Figure 2.1: (left) States of the unicycle robot. (right) Modified point of interest.

where R is the mean radius of the path, b is the amplitude of the sinusoidal variation

of the path, and n is the number of periods in the path.

2.3 Experimental Testbeds

This subsection introduces the two testbeds that are used for the experiments con-

ducted in Chapter 4: the Khepera robots and the Robotarium.

2.3.1 Khepera Robot Testbed

The Khepera robot testbed was provided by the GRITS lab at the Georgia Institute

of Technology [13]. A Khepera robot is shown in Figure 2.2.

Figure 2.2: (left) Khepera III robot, (right) GRITSBot from the Robotarium.

Sensing. A model-based solution to the speed regulation and lane keeping control

problems requires knowledge of each robot’s position, orientation, and velocity. In

the Khepera robot testbed, the position and orientation data are collected using 10

OptiTrack S250e motion capture cameras.
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Actuation. The Khepera III robot uses two DC motors, where each motor actu-

ates a single wheel in the di↵erential drive system. The two motors are powered by a

shared 7.4V, 1350mah LiPo battery. The input signal to each motor corresponds to

shaft speed and is transmitted to the motor via pulse-width modulation (PWM). For

later use, it is important to note that the PWM signal, because it commands motor

shaft speed, does not correspond to either the force or torque control input used in

the model. The force and torque inputs from the adaptive speed regulation and lane

keeping controllers will be integrated through the model to produce equivalent motor

speeds, which will then be converted to a PWM-command signal for use in the control

loop and the embedded electronics.

Embedded Computing. Each Khepera III robot is equipped with a 600MHz

ARM processor and 128Mb RAM, embedded Linux, and a WiFi module for commu-

nicating via a wireless router. Control inputs are computed on a centralized computer

and sent to the robot via WiFi.

2.3.2 The Robotarium

The Robotarium was conceived because multi-robot testbeds constitute an integral

and essential part of the multi-robot research cycle, yet they can be prohibitively

expensive, complex, and time-consuming to develop, operate, and maintain. As a

swarm-robotic testbed that can be accessed remotely through a web interface (www.

robotarium.org, the Robotarium gives users the flexibility to test a variety of multi-

robot algorithms (see [19],[26]). In particular the Robotarium tackles the challenge of

robust, long-term, and safe operation of large groups of robots with minimal operator

intervention and maintenance.

The Robotarium utilized in this work contains 20 miniature ground robots, the

GRITSBots (see [18]). These inexpensive, di↵erential-drive robots simplify the oper-

ation and maintenance of the Robotarium through features such as: (i) automated

registration with a server and overhead tracking system, (ii) automatic battery charg-

ing, and (iii) wireless (re)programming.

Unlike the Khepera testbed, the Robotarium also o↵ers a MATLAB-based simula-

tor that closely approximates the behavior of the GRITSBots through a parameterized

unicycle model and a model of measurement latency. Therefore, controls code devel-

oped using the Robotariums simulator can be deployed onto the Robotarium with

little to no modifications. This simulator gives users the ability to rapidly iterate

through simulation and testing phases, allowing for a straightforward implentation

process.

11
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Sensing. Similar to the Khepera testbed, the Robotarium relies on centralized

overhead tracking. Instead of an OptiTrack system, however, the Robotarium employs

a web camera-based setup that uses a single Microsoft Lifecam HD camera running

at an update rate of 30 Hz and a resolution of 1280x720 pixels. ArUco tags (ArUco

is an OpenCV-based library for Augmented Reality applications) attached to each

GRITSBot allows the system to determine the robot’s position and orientation.

Actuation. A GRITSBot is equipped with two miniature stepper motors, each

actuating a single wheel. The advantage of stepper motors is that their velocity can

be determined without encoders by simply counting the number of steps a motor

has moved. The additional complexity of controlling stepper motors is handled via

a custom motor board that houses an Atmega168 microcontroller and executes a

velocity controller onboard. Each GRITSBot is powered by a single 3.7V, 400 mAh

LiPo battery resulting in a runtime of up to 40 minutes on a single charge.

Embedded Computing. A GRITSBot is equipped with an ESP8266, a WiFi-

enabled microcontroller equipped with 160 KB of RAM running at 160 MHz. Given

these specifications, a GRITSBot is not capable of hosting an operating system, yet

it is powerful enough to handle wireless communication, pose estimation, low-level

control, as well as high-level behaviors. Similar to the Khepera-based setup, control

inputs are computed on a centralized computer and sent to the robot via WiFi.
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CHAPTER 3

CONTROL METHODS

The approach to simultaneously achieve adaptive speed regulation and lane keeping

is introduced in this chapter, using the fundamentals covered in Section 2.1. By

encoding the safety specifications as CBF conditions and the performance objectives

as CLF conditions with relaxation parameters, the control policy is generated online

by solving a QP that combines CBFs and CLFs as constraints.

3.1 Control Barrier Functions

Following from the definition of CBFs in Section 2.1, we present the applications to

adaptive speed regulation and lane keeping.

Adaptive Speed Regulation. Similar to the adaptive cruise control on ve-

hicles, adaptive speed regulation in mobile robots requires the following robot to

always maintain a safe time-headway with the lead robot, and achieve a user-defined

longitudinal velocity whenever possible.

While achieving the user-set speed is a soft constraint that will be discussed in the

next subsection, maintaining a safe time-headway is a hard constraint, which can be

expressed as D � ⌧vf where D is the distance between the lead and following robots,

vf is the speed of the following robot, and ⌧ is the minimum allowable time headway,

in seconds, between the two robots. Therefore, the following CBF is chosen for this

speed regulation safety specification:

hasr = D � ⌧vf . (3.1)

Lane Keeping. The objective of lane keeping is to keep the robots within its lane

boundary. Therefore, the lane keeping specification for the robot can be expressed

as |ylat|  dmax where ylat represents the lateral displacement of the robot w.r.t. the

desired path in road fixed coordinates, and dmax is the width of the path. Di↵erent

CBFs can be used, such as the one introduced in [3]:

hlk = dmax � sgn(vlat)ylat �
1

2

v2lat
amax

, (3.2)

where sgn(·) is the sign function, amax is the maximum allowable lateral acceleration
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and vlat is the lateral velocity of the robot in road-fixed coordinates, or the following

CBF:

hlk = 1� y2lat
d2max

� 1

2
v2lat. (3.3)

Both (3.2) and (3.3) ensure that hlk � 0 implies |ylat|  dmax.

3.2 Control Lyapunov Functions

While the safety specifications need to be respected at all times, there are three

performance objectives that should be achieved whenever possible. First, v ! vd,

where vd is the desired longitudinal velocity of the following robot. Second, ! !
0, which serves to reduce jittering in the robots angular movement and create a

smoother behavior with respect to angular velocity along the course. Finally, (x, y) !
(Rpath cos(�), Rpath sin(�)) where the right hand side is the tracking point in the de-

sired path. To implement these performance objectives, the following three outputs

must be driven to zero:

⌘1 = v � vd,

⌘2 = !,

⌘3 =

"
x�Rpath cos(�)

y �Rpath sin(�)

#
.

It is interesting to point out that driving ⌘2 and ⌘3 to zero are contradictory

objectives, since ⌘2 being zero requires the robot to move in a straight line while ⌘3

being zero requires the robot to track the desired path with a curved trajectory. We

show how these conflicting objectives are considered as “soft constraints” and are

balanced in a QP framework by some relaxation variables in Subsection 3.3, as well

as simulation and experiment results in Section 4.2.

As defined in Chapter 2, for i = 1, 2, 3, to achieve exponential convergence of ⌘i to

zero (without regard to other outputs), a special class of control Lyapunov functions

V (x) termed exponentially stabilizing control Lyapunov function (ES-CLF) [1] are

used. For the outputs ⌘1, ⌘2, the control Lyapunov functions are taken as

V1(x) = (v � vd)
2, (3.4)

V2(x) = !2. (3.5)
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For the output ⌘3, because

⌘̇3 =

"
ẋ� Ṙpath cos(�) + �̇Rpath sin(�)

ẏ � Ṙpath sin(�)� �̇Rpath cos(�)

#
,

where Ṙpath = nb�̇ cos(n�) and �̇ is given in (2.22), the output ⌘3 has relative de-

gree 2. Implementing input-output linearization defined in Section 2.1 and using the

technique in [1] yields the following CLF:

V3(x) = [⌘>3 , ⌘̇
>
3 ]P [⌘>3 , ⌘̇

>
3 ]

>,

where

P =

2

66664

p
3 0 1 0

0
p
3 0 1

1 0
p
3 0

0 1 0
p
3

3

77775
.

For each Vi, i = 1, 2, 3, the set of control inputs that exponentially stabilizes ⌘i is

given as

Ki(x) = {u|LfVi(x) + LgVi(x)u+ ciVi(x)  0} (3.6)

where ci(i = 1, 2, 3) is a positive constant, which is a tunable parameter specifying

the convergence rate.

Note that it is impossible to input/output linearize the robot system (2.21) for

the output [⌘1, ⌘2, ⌘>3 ]
>, because there are only two inputs. However, the total length

of the output vector is 6, or three times the number of outputs, meaning that the

system can be feedback linearized three times simultaneously using the inputs and

outputs.
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3.3 CBF-CLF-based Quadratic Programs

The CLFs and CBFs developed in the preceding subsections can be unified in a QP

to generate a min-norm controller as follows:

u⇤(x) = argmin
u=[ul,ua,�1,�2,�3]>

uTHu (3.7)

s.t. Ai
clf(x)u  biclf(x), i = 1, 2, 3,

Aasr(x)u  basr(x),

Alk(x)u  blk(x),

where

A1
clf(x) = [LgV1(x),�1, 0, 0] ,

b1clf(x) = �LfV1(x)� c1V1(x),

A2
clf(x) = [LgV2(x), 0,�1, 0] ,

b2clf(x) = �LfV2(x)� c2V2(x),

A3
clf(x) = [LgV3(x), 0, 0,�1] ,

b3clf(x) = �LfV3(x)� c3V3(x),

Aasr(x) = [Lghasr(x), 0, 0, 0] ,

basr(x) = �Lghasr(x)� �1hasr(x),

Alk(x) = [Lghlk(x), 0, 0, 0] ,

blk(x) = �Lghlk(x)� �2hlk(x),

H := diag{p1, ..., p5} 2 R5⇥5 are the weight matrix with penalty weight pi > 0,

�1, �2 are given positive constants, and �i � 0(i = 1, 2, 3) are relaxation parameters.

These relaxation variables enable us to have controllers with di↵erent, potentially

conflicting, objectives, whose priority can be changed by tuning pi, i = 3, 4, 5, with

larger value implying more priority on that objective.

The optimization problem (3.7) can be solved by QP solvers such as the quadprog

function in MATLAB. The inputs ul, ua generated are applied to the robot (2.21),

which ensure that it always satisfies the safety specifications and achieves the perfor-

mance objectives when �i are su�ciently small.
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CHAPTER 4

EXPERIMENTAL IMPLEMENTATION

The controller developed in Chapter 3 is now used in an experimental application

on both the Khepera and Robotarium testbeds. First, the implementation of the

controller is discussed followed by the experimental results.

4.1 Controller Implementation

This section explains the implementation of the adaptive speed regulation and lane

keeping control algorithms on the Khepera and Robotarium testbeds. For detailed

information on both testbeds, please refer to Section 2.3. The implementation di↵ers

from that of a standard vehicle because the actuators are not “force-torque-based”,

but rather, “speed-based”. The implementations methods for both the Khepera

robots and the Robotarium follow the same general steps shown in Figure 4.1, with

the exception of a few noted di↵erences.

To start, pose data on both the Khepera testbed and the Robotarium are acquired

through an overhead tracking system and include the 2D position and orientation of

each robot. While the Khepera testbed relies on the proprietary OptiTrack motion

capture system to provide pose data using reflective infrared markers (at 50 Hz), the

Robotarium uses a single web camera and an OpenCV-based tag tracker in conjunc-

tion with ArUco tags (at 30 Hz). The Robotarium’s tracker uses open-source software

packages and is also freely available at https://github.com/robotarium.

The acquired 2D position data represent the center position of the robot and these

values must be shifted in order to coincide with the modified unicycle model described

in Section 2.2. This shift is done according to

xshift = x+ a cos( ), yshift = y + a sin( ).

Following the shift of coordinates, the states for each robot are assembled in the

order shown in (2.21). The 2D position states, x and y, are taken from the shift

calculation in the previous step, while  is drawn directly from the data acquisition

hardware and � is calculated from the position data using the atan2() function in

MATLAB. Longitudinal velocity v and angular rate ! are taken from the velocity

and angular velocity control inputs sent to the robots in the previous loop. In order
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Figure 4.1: Flowchart describing the control generation loop in the experimental
implementation.

to avoid a singularity in the CLF based controller on the first loop, the longitudinal

velocities of both robots are set to their desired values, vdl and vdf , and the angular

velocities are set to zero. This initialization causes the robots to have a nonzero

positive velocity before the QP-based controller takes full control.

The assembled states x are used to calculate the matrices Ai
clf , b

i
clf , Aasr, basr, Alk, blk

for the QP (3.7) in Section 3. MATLAB’s quadprog function is used to solve the QP

(3.7) for the force and torque inputs ul, ua in real time. Because both the Khepera and

Robotarium robots receive longitudinal and angular velocities as inputs, the force and

torque control inputs are integrated using the model’s kinematics and a fourth-order

Runge-Kutta integration method.
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Linear and angular velocity inputs computed by solving the CBF-CLF-QP (3.7)

are converted to wheel velocities and sent to the robots via WiFi. As noted, in the

initial loop, constant velocity commands are sent to avoid a controller singularity.

Both the Khepera-based testbed and the Robotarium rely on Matlab-based APIs to

send wheel velocity commands via UDP sockets to the robots. While velocity updates

are sent to the Khepera robots at 50 Hz, the Robotarium’s robots receive updates at

30 Hz , which is the update rate limitation imposed by the web camera.

4.2 Experimental Results

In this section, we demonstrate the e↵ectiveness of the CBF-CLF-QP controller

through experiments on Khepera robots and the Robotarium.

In the experiments, two di↵erent scenarios are created to demonstrate that the QP

framework is capable of handling di↵erent control objectives while always ensuring

safety specifications. In the first, the path tracking controller is turned o↵ for a period

of time during the experiments. Specifically, the constraint with V3 is removed from

the QP (3.7) when the “o↵” mode is conducted, and added to the QP (3.7) again

when the “on” mode is conducted, with all the other constraints kept the same. By

doing this, a scenario where the robot attempts to leave the lane is simulated.

The second type are referred to as “Decaying Path Tracker” experiments. Specif-

ically, the path tracking controller decays when the “decaying mode” is conducted,

by changing the variable c3 in the CLF constraint (3.6) and its corresponding weight

entry p3 in the matrix H in (3.7) as follows:

c3(t) = cdes3 + (c3(0)� cdes3 )e�(t�tdecay), (4.1)

p3(t) = pdes3 + (p3(0)� pdes3 )e�(t�tdecay). (4.2)

As c3, p3 decreases, the QP prioritizes the path tracking objective less; when p3 ⇡ 0,

the path tracking constraint can be considered to be removed from the QP (i.e., the

“o↵” mode), in which case the resulting controller has no intention to track the desired

path. This creates another scenario where the follower robot attempts to leave the

safety of the lane on multiple occasions.

The parameters for all experiments are shown in Table 4.1, where R, b, n are the

parameters of the desired path defined by (2.23), dmax is the width of the lane in

(3.2), ⌧ is the time-headway in (3.1) and vdf and vdl are the desired velocities for the

following and lead robots, respectively. For each experiment, the initial conditions

are the same: the following robot starts at the position (x, y) = (R, 0), with the
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lead robot positioned ahead by 25% to 50% of a path revolution, and the robots are

oriented tangent to the path at their starting positions with a small longitudinal and

zero angular velocity.

Table 4.1: Experiment Parameters

Para. R b n dmax ⌧ vdf vdl
Fig.4.5 and Fig.4.8 0.9 0.23 3 0.15 1.8 0.2 0.1

Fig.4.15 0.25 0.1 2 0.15 1.8 0.2 0.1
Fig.4.11 0.25 0.06 3 0.04 3 0.075 0.05
Unit m m - m s m/s m/s

4.2.1 Experiments on Khepera Robots

This subsection summarizes the execution of both the on/o↵ and decaying path track-

ing experiments on the Khepera robot testbed, where CBFs hasr in (3.1) and hlk in

(3.3) are used.

Figure 4.2 shows the values of the following robot CBFs hasr and hlk during

the on/o↵ experiment, with the simulation results, run under the same conditions,

displayed as well. Here, the path tracking controller turns o↵ at t = 20s and resumes

at t = 45s. As can be seen from Figures 4.2, both CBFs are positive for all time,

which means that the safety specifications are always satisfied.
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Figure 4.2: The value of CBFs in the on/o↵ experiment and simulation on Khepera
robots. (top) Value of the CBF hlk where positiveness implies that the robot is within
the boundary. (bottom) Value of the CBF hasr where non-negativeness implies the
specification D � ⌧vf is satisfied.

Figure 4.3 shows the value of CLFs V1, V2, V3 for the same on/o↵ experiment and

simulation, where penalty weights p3 = 105, p4 = 1, and p5 = 103 are used such

that the controller put more emphasis on V1 (achieving the desired speed) and V3

(tracking the path) while less on V2 (reducing the angular velocity). As can be seen

from Figure 4.3, before 20 seconds, the values of V1, V2, V3 are quite smooth; when

the tracking controller turns o↵ at t = 20, the value of V2, V3 fluctuates quite a bit

since the penalty weight on V2 is small and removing the constraint of V3 from the

QP poses no restriction on V3 during this period; when the tracking controller turns

on again, the value of V1, V2, V3 become smooth again. The mismatch between the

experimental and simulation data in Figure 4.2 and Figure 4.3 can be attributed to

calibration and modeling errors.
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Figure 4.3: The value of CLFs in the experiment and simulation on Khepera robots.
(top) Value of V1 and V3. (bottom) Value of V2.

Figure 4.4 shows the following Khepera robot’s trajectories based on the on/o↵

experimental data. The time-lapse images in Figure 4.5 show a point during the

period when the tracking controller turns o↵. It can be seen that even when the

tracking objective is removed at that point, the robot is repelled back to the lane

when it attempts to leave due to the constraint of the lane keeping CBF.
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Figure 4.4: Trajectories of the Khepera robots during the on/o↵ path tracking ex-
periment. During the “o↵ mode” between 20 seconds and 45 seconds, the following
robot remains within the lane boundary because of the lane keeping CBF.

Figure 4.5: Time-lapse images of the Khepera robot during the “o↵” mode. The
Khepera robot can be kept inside the lane due to the lane keeping CBF. (left) The
following robot approaches the lane boundary. (right) The following robot is repelled
from the lane boundary.

The values of the lane keeping and adaptive speed regulation barrier functions

in the decaying path tracker experiment and simulation with the Khepera robots

is shown in Figure 4.6. Here, the path tracking CLF begins to decay just after

the 10s mark, leaving the robot free to attempt to leave the lane as shown by the

fluctuating barrier function values. Despite the absence of the path tracker, the both
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barriers in both the experiment and simulation cases remains positive, meaning that

the safety constraints are always obeyed. The discrepancy between the simulation

and experimental values can be attributed to measurement inaccuracies and modeling

errors.

Figure 4.6: Barrier function values during the decaying path tracking experiment
with Khepera robots.

Figures 4.7 shows the plotted trajectory of the follower robot , accompanied by

time lapse images in 4.8, during the decaying path tracker experiment. Note how

the robot is successfully repelled away from the edge of the lane in the bottom right

corner of the images.
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Figure 4.7: Khepera robots’ trajectories during the decaying path tracking experi-
ment.

Figure 4.8: Time-lapse images during Decay Khepera Experiment. (left) The robot
approaches edge of the lane. (right) The robot is turned away from lane edge by
CBF.

4.2.2 Experiments on the Robotarium

This subsection summarizes the execution of the on/o↵ and decaying path tracking

experiments on the Robotarium testbed, where CBFs hasr in (3.1) and hlk in (3.2)

are used. Another experiment, where is path tracking controller is on for the entire

duration, is also presented.

25



Figure 4.9 shows the value of CBFs hasr and hlk of the following robots during

the on/o↵ experiment on the Robotarium, with the corresponding simulation results

depicted as well. The path tracking controller turns o↵ at t = 10s and resumes at

t = 42s. As shown in Figure 4.9, both CBFs are positive for all time, which means

that the lane keeping and adaptive speed regulation specifications are always satisfied.

Compared with the results on the Khepera robots in Figure 4.2, the value of hasr and

hlk here are both noisier. This di↵erence is likely due to the size di↵erences between

the two testbeds and the fact that the Robotarium runs at a lower update rate (30Hz)

than the Khepera testbed (50Hz).

Figure 4.9: The value of CBFs in the experiment and simulation on Robotarium
with on/o↵ path tracking CLF. (top) Value of the CBF hlk where positiveness im-
plies satisfaction. (bottom) Value of the CBF hasr where non-negativeness implies
satisfaction.

Figure 4.10 shows the following robots’ trajectories based on the experimental data

on Robotarium. Figure 4.11 shows two time-lapse images during the “o↵” mode of
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the experiment. It can be seen that the following robot approaches the lane boundary

and is repelled from the boundary because of the lane keeping CBF.

Figure 4.10: Trajectories of the following robots on Robotarium during the on/o↵
path tracking experiment.

Figure 4.11: Time-lapse images of the Robotarium during the o↵ mode. (left) The
following robot approaches the lane boundary. (right) The following robot is repelled
from the lane boundary.

Figure 4.12 shows the trajectories of the following robot during the decaying path

tracker experiment. It can be seen that the robots are kept within the lane boundary,

despite the decaying tracking CLF. Figure 4.13 shows the value of CBFs hasr and

hlk during the experiment along with the corresponding simulation results, which

indicate that the safety specifications are satisfied for all time.
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Figure 4.12: Robots’ trajectories in Robotarium experiment with the decaying path
tracking CLF.
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Figure 4.13: The value of CBFs hasr and hlk in the experiment and simulation on
Robotarium with the decaying path tracking CLF.

As a comparison, Figure 4.14 shows the value of CBF hasr when the path tracking

controller is turned on for the entire Robotarium experiment, with the corresponding

simulation results depicted as well. Taking given model and calibration errors into

account, hasr remains predominantly positive for all time, meaning that the adaptive

speed regulation specification is always satisfied. Particularly, when hasr is close to

0, the minimum allowable time headway ⌧ is achieved. Figure 4.15 shows two time

lapse images of the experiment, where the following robot approaches and maintains

a safe headway to the leader.
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Figure 4.14: The value of CBF hasr in the Robotarium experiment and simulation
when the path tracking controller is turned on for all time. Non-negativeness of hasr

means satisfaction of the adaptive speed regulation specification.

Figure 4.15: Time lapse of the adaptive speed regulation experiment in Robotarium.
(left) Minimum headway is not reached after a quarter revolution around the path.
(right) Minimum headway maintained eventually.

Video results for the on/o↵ and decaying experiments on the Khepera robots and

Robotarium, in addition to the pure path tracking Robotarium experiment, can be

found at [10].
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CHAPTER 5

CONCLUSION

In this work, the real-time implementation of lane keeping and adaptive speed regu-

lation was experimentally evaluated on two robot testbeds, based on a CBF-CLF-QP

approach. Our results showed the e↵ectiveness of the CBF-CLF-QP framework for

multi-objective controller design with safety constraints, and its potential for im-

plementation on ADAS control software. These results were achieved on accessible

mobile testbeds—a key advantage of this approach is that it provides students hands-

on experience with rather sophisticated control software where safety, in the sense of

formal methods, is a primary factor. Additional advantages include the low cost of

the experiments, and in the case of the Robotarium, the fact that multiple groups of

faculty and students can compare results on a common platform. The hope is that

this will allow for the rapid prototyping and deployment of safety-critical controllers

among a wide audience of researchers.

With regard to the potential for future work, the control algorithms developed

here, were done so with an automotive application in mind. Therefore, the next

logical step would be use both the lane keeping and adaptive cruise control CLFs

and CBFs on a test vehicle. This advancement would require modeling the complex

dynamics of an automobile as well as a test bed capable of measuring and applying

the required inputs and outputs.
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