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Ẇ power [W] 

R air specific gas constant [J/kg] 

i specific enthalpy [J/kg-K] 

SE specific energy [kWh/kg] 

E energy [J] 

p* dimensionless pressure 

V* dimensionless volume 

t* dimensionless time 

x quality 

P power [kW] 

PV present value [$] 

C annual savings [$] 

i interest rate 

N desired payback period [years] 

n polytropic exponent 

w work per unit volume 



 xvi 

INDICES  

v at constant volume 

G of gas (Ch. 2, 3, 4) or grid (Ch. 7) 

L of liquid (Ch. 2, 3, 4) or load (Ch. 7) 

amb of ambient air 

T of tank walls, or of turbine 

i inner 

o outer 

ave average 

min minimum 

dr of the drop(s) 

ini initial 

spr of the spray 

in inlet or input 

term terminal (velocity) 

trav travel (residence) 



 xvii 

S surface or storage (Ch. 7) 

out outlet or output 

max maximum 

mixed mixture of bulk and spray liquid 

WH waste heat 

ind indicated (i.e. hydraulic or thermodynamic) 

elec electrical (after all component losses) 

Carnot Carnot (efficiency) 

c charging or compression 

pump of pump 

gen generator 

dc discharge 

shaft of shaft 

air air 

0 at time zero 

f liquid (fluid) or final 



 xviii 

sat saturated 

e expansion 

fg of vaporization 

∞ ambient temperature 

cond condensation/condensed 

liq of the liquid 

vap of the vapor 

CO2 of carbon dioxide (liquid and vapor) 

h hydraulic 

s shaft 

atm atmospheric 

uu unused 

u useful 

st storage 

GREEK LETTERS  

ΔT temperature difference 



 xix 

ηelec electric roundtrip efficiency 

ηind indicated efficiency 

ηEx exergetic efficiency 

ρ density [kg/m3] 

τ thermal time constant [s] 

ε heat exchanger effectiveness 

ηshaft shaft-to-electrical efficiency (or shaft-to-shaft) 

τshaft shaft torque [Nm] 

ωshaft shaft speed [rev/s] 

η efficiency 

π dimensionless compression figure of merit 

 

 

 

 

 



 xx 

SUMMARY 

Increasing the penetration of renewable electricity while ensuring grid stability requires 

low-cost, high roundtrip efficiency energy storage solutions. GLIDES (Ground-Level Integrated 

Diverse Energy Storage) is a novel mechanical energy storage concept developed at Oak Ridge 

National Laboratory that hybridizes the existing compressed-air (CAES) and pumped-storage 

(PSH) approaches to energy storage. Energy is stored by pumping a liquid into high pressure 

vessels which are pre-pressurized with a gas, until the gas pressure reaches the maximum system 

operating pressure. Energy is then extracted by allowing the high-pressure gas to expand, pushing 

the high-head water through a hydraulic turbine coupled to an electrical generator dispatching 

electricity. In addition to electrical energy input via the hydraulic pump, the system can also be 

hybridized to receive heat as an input. Low/medium temperature heat can be utilized to further 

boost the gas pressure, increasing roundtrip efficiency (RTE) and energy density (ED). GLIDES 

is scaleable, relatively low cost and de-couples the energy capacity from the power capacity, a 

challenge faced with existing storage solutions. Analyses predict that GLIDES could achieve 

roundtrip efficiencies in the 65-85% range. Analytical, transient, physics-based system models of 

various configurations of GLIDES have been developed and theoretical performance analyses 

completed. A first generation 1.5 kWh prototype has been designed and built, and experimental 

characterizations and model calibration/validation completed. A second generation, 1 kWh 

prototype which is mobile/portable and integrates spray cooling/warming to manage the heat of 

compression and cold of expansion as well as waste-heat has also been designed, built, and 

characterized.  In addition to the above, the use of condensable gases as an alternative working 

fluid to air is explored as a means of improving system efficiency and energy density.  Some 

consideration is given to the choice and design of the energy recovery hydraulic machine. The 



 xxi 

first-generation GLIDES prototype utilizes a Pelton turbine; a few aspects related to the design of 

such machines are explored. The second-generation prototype utilizes a hydraulic axial-piston type 

motor, thus a qualitative discussion of the pros and cons of utilizing an impulse Pelton turbine 

versus a hydraulic motor as the energy recovery turbomachine is given. Finally, cost-analysis of 

the scale-up prospects of GLIDES is conducted via backward and forward analyses. 
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CHAPTER 1. INTRODUCTION 

1.1 Background & Motivation 

In recent years, energy storage has emerged as a growing area of research and technology 

development for several reasons. In the late 1980’s and 1990’s, energy storage as a technology 

was driven by the demands in the areas of mobile devices and personal electronics [1]. In more 

recent years, a critical need to ensure continued stability of aging electrical grids, and facilitate the 

integration of intermittent renewable energies to the grid at large scales has emerged for energy 

storage technologies at much greater power and energy capacities, but lower cost [2]. Historically, 

the power grid has been governed by the constraint that power generation and consumption must 

be matched both temporally, and in capacity; efficient, affordable energy storage comes with the 

potential to relax this constraint  [1]. As economies continue to evolve and become more energy 

intensive, and humans continue to find new ways to consume energy, fluctuations in energy 

demand throughout the day will become more drastic and less predictable, and power quality will 

suffer if energy supply cannot be adjusted accordingly [3]. 

In addition to the important implications that energy storage has for the power grid and 

energy supply/demand management, energy storage will also play a key role in increasing the 

integration of renewable energy technologies with the current grid infrastructure which poses a 

challenge due to their inherent intermittency [4]. Wind and solar energy for example are 

intermittent in supply, but typically available in excess when available.  This presents a large 

challenge in trying to match energy generation with demand when such renewable sources are 

used. There exists an opportunity to store excess renewable energy while available and to be 

dispatched during intermittency, bridging the temporal gap between generation and energy 
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demands. Considering all the above, there is a great need for high-efficiency, highly scalable, cost-

effective storage systems that are environmentally benign, flexible, easily dispatched, and easily 

integrated with renewable sources. To this end, a Ground-Level Integrated Diverse Energy Storage 

(GLIDES) system was recently invented and is under development at Oak Ridge National 

Laboratory [5], which is a hybrid compressed air-hydro energy storage concept. The GLIDES 

technology targets energy storage applications for power capacities under 10 MW, storage times 

of a few minutes to a few (4-6) hours, and response times on the order of seconds. 

GLIDES stores energy by compressing a gas in high-pressure tanks but uses a high 

efficiency hydraulic pump with minimal frictional losses instead of the usual lower efficiency gas 

compressor used in most gas compression schemes. The system is charged by pumping water into 

the tanks, squeezing the gas above from an initial pressure until the pressure reaches the maximum 

design pressure. When electricity is required, the now high pressure gas pushes liquid out of the 

tanks through a hydraulic turbine which is coupled to a high efficiency electrical generator, 

efficiently dispatching electricity. As an option, the system can be hybridized by leveraging any 

available waste heat to heat the gas during discharge, fight the cold of expansion, maintain 

pressure, and boost extractable energy. Even low/medium temperature (40-90 °C) waste heat 

available from solar thermal receivers, turbine or CHP exhaust, geothermal sites, etc., could be 

leveraged. Because the system is charged by pumping water using a high efficiency positive 

displacement pump (typically η>90%) [6] and energy is extracted using a high efficiency hydraulic 

turbomachine (also η>90%) [7], the gas experiences minimal temperature swings (compared with 

conventional gas compression/expansion schemes) which significantly reduces the 

thermodynamic losses due to expansion/compression. Other system losses are due to ancillary 

components (motor and generator). GLIDES is predicted to achieve electric roundtrip efficiency 
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in the 0.60-0.82 range; this coupled with the fact that energy inputs can come in the form of 

electricity or low/medium grade heat, makes it a first-in-kind, unique, high potential energy storage 

solution. Comprehensive, physics-based analytical modeling/simulation of the base (prototype) 

configuration and modified configurations has been completed [8, 9], two working prototypes have 

been developed and demonstrated, experimental characterization has been performed, and thermo-

economic analysis of system scale-up performed. 

1.2 Review of Bulk Energy Storage Technologies & Research 

1.2.1 Existing Bulk Energy Storage Technologies 

To increase the penetration of renewable energy technologies, low-cost, high roundtrip 

efficiency (RTE) energy storage solutions are necessary to avoid grid instability resulting from the 

intermittent nature of renewable sources [4, 10]. About 99% of currently installed electrical energy 

storage capacity worldwide consists of pumped-storage hydroelectricity (PSH) [11, 12], which is 

a large-scale/capacity (MW-GW), high RTE (65–87%), technologically mature solution [12, 13], 

costing up to $100/kWh [12-14]. PSH operates via a simple principle: during charging, water is 

pumped from a lower reservoir to an upper reservoir and during discharging, or energy extraction, 

the water flows from the upper reservoir down to the lower reservoir, through a turbine which 

dispatches electricity via an electrical generator. Site selection for PSH has been difficult because 

it is geographically limited to sites where a large head of water can be developed by large 

differences in height (>500 m ideally) [15]. Additionally, market conditions for large-scale storage 

systems vary and are unfavorable in some countries, which hinders the development of new 

projects. 
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Compressed air energy storage (CAES) is another large-scale/capacity storage technology 

that has been considered where PSH is not feasible. With CAES, off-peak electricity is used to 

compress atmospheric air into underground hard-rock or salt caverns using reversible 

motors/generators turning a chain of gas compressors. An above-ground system of vessels or pipes 

can also be used instead of underground caverns, for smaller scale CAES systems [13, 16]. For 

electricity extraction, the compressed air is released and mixed with natural gas as it expands and 

is burned through a gas turbine. Similarly to PSH, large-scale CAES is limited to suitable 

geographical locations, in this case, locations where the topography allows for naturally occurring 

underground caverns [17]. So far, there are only two commercial CAES plants in operation; they 

are located in Huntorf, Germany, and MacIntosh, Alabama [18]. Conventional CAES suffers from 

low roundtrip efficiency (~40–50%) because of the significant energy losses in gas compressors 

and turbines [13, 19]. These CAES systems are reported to cost up to $120/kWh [13]. CAES as a 

technology is undergoing rapid improvement. It is attracting much research interest [14], and a 

number of more advanced CAES concepts are currently at the research and development stage.  

More recently, advanced adiabatic CAES (AA-CAES) systems have been proposed, and 

the development is ongoing  [20, 21]. This advanced CAES concept produces higher efficiencies 

than conventional CAES configurations by storing the heat of compression for use during 

discharging. Efficiencies around 70% have been reported for AA-CAES [13, 19, 20]. Furthermore, 

technical comparisons among various adiabatic CAES plant configurations have been reported 

[22]. Plans for the world’s first demonstration of an AA-CAES plant were underway in Germany 

[23]; however, development was stopped because of poor economic feasibility.  

A variation of AA-CAES that results in trigeneration (T-CAES) (combined energy storage, 

heating, and cooling) for microscale CAES systems has been proposed [24-26]. Similar to AA-
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CAES, the heat of compression is removed and stored; however, instead of being dispatched 

during expansion at the turbine inlets, it is used to fulfill a heating need. This causes the discharge 

phase air inlet temperature to be low, and cooling energy is obtained at the end of the expansion 

stage which can then be used to fulfill a cooling demand. With such a configuration, a T-CAES 

plant would need to be co-located with the energy, heating, and cooling demands because of the 

technological challenges associated with transferring thermal energy over large distances [25]. 

Hybridization for trigeneration has a moderate effect on cycle efficiency, as peak efficiencies in 

the 30–60% range (depending on ambient conditions, component efficiencies, and other 

configuration specifications) are reported [25, 26]. 

The low-temperature adiabatic CAES (LTA-CAES) is another proposed variant to AA-

CAES [27]. This concept aims to avoid the technical challenges of dealing with the high thermal 

energy storage temperatures and high pressures with AA-CAES [27]. In Ref.  [27], it is shown 

analytically that reducing the maximum process temperature does not incur roundtrip efficiency 

penalties, and a plant design which reduces TES operating temperature to a 90–200°C range from 

the typical 600°C value is presented. Roundtrip efficiencies in the range of 52–60% are reported, 

which is lower than AA-CAES; however, advantages over AA-CAES are reported which include 

fast start-up and superior part-load performance [27]. These advantages are reported to compensate 

for lower cycle efficiency with regard to plant profitability [27]. 

A hybrid energy storage concept that is comprised of an aboveground CAES system 

supplemented with a liquid air energy storage (LAES) system [28] has been proposed [29]. This 

concept attempts to take advantage of the relatively higher roundtrip efficiency of CAES and lower 

cost and high energy density of LAES. The LAES hybridization serves primarily as a capacity 

extension mechanism. If electricity prices are low, or if energy is available from renewable sources 
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while the CAES component of the system is already fully charged, electricity input can still be 

accepted by liquefying some of the compressed air to liquid air. Conversely, when electricity 

dispatch is needed but compressed air reserves are low or exhausted, electricity can still be 

dispatched by converting some liquid air back to compressed air [29]. The key component of this 

concept is a liquefaction subplant, which would have varying efficiency depending on scale. A 

roundtrip efficiency of 53% is reported in Kantharaj et. al. [30]; however, the capacity extension 

achieved through the LAES hybridization offers the possibility for larger-scale aboveground 

CAES, which was previously only possible at smaller scales. 

The pumped heat electricity storage (PHES) concept was recently introduced. This system 

stores energy by pairing a heat pump with a heat engine using thermal storage as the cold and hot 

reservoirs [31]. PHES systems store electrical energy via a heat pump, which pumps thermal 

energy from the cold storage reservoir to the hot storage reservoir. To discharge, or recover the 

stored energy, the heat pump operation is reversed, turning it into a heat engine cycle which spins 

an electrical generator for electricity dispatch. PHES is reported to be cost effective with the 

potential to reach high roundtrip efficiency in the range of 75–80% [32]; however, achieving this 

is dependent on achieving extremely low thermodynamic losses in the compressor and expander 

machines [33]. Such high turbomachine efficiencies for the reciprocating devices presented for 

use have yet to be proven [33]. Due to the thermally activated nature of this technology, it is 

conceivable that heat might potentially be provided directly as an energy input; however, this has 

not been proposed in the literature. A pilot demonstration PHES facility was under development 

as recently as January 2015 [33]; the project was suspended in January 2016 [34]. 

Effective management of heat remains one of the primary challenges associated with 

compression-based energy storage schemes [29]. To this end, a number of concepts have been 
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proposed to address the heat management challenge [35-41]. These concepts include utilizing 

advanced heat transfer via sprayed liquid droplets to achieve isothermal or near-isothermal 

compression [35-37], utilizing dense foams for the same purpose [40], designing under water 

systems [39], and utilizing liquid-piston compression and expansion among other strategies [35, 

41]. As is described in subsequent sections, the GLIDES concept presented here also makes use 

of sprayed liquid droplets to achieve near-isothermal compression and expansion. However, this 

approach is taken one step further in the concept and also provides a medium for waste heat 

integration/storage. 

Currently, batteries are the most widely used energy storage technology in building 

applications [17]. Batteries rely on storing energy in the form of electrochemical energy. In 

batteries, several electrochemical cells are connected in series or parallel to produce electricity at 

a desired voltage. In general, each battery cell contains an anode (negative lead), a cathode 

(positive lead), and an electrolyte, which can be in solid or liquid form. When connected to an 

electrical circuit, chemical reactions in the battery cause electrons to build up at the anode, and 

charge flows through the circuit. The electrolyte serves as a source of ions. During discharging, 

the reverse reaction occurs. Lead-acid batteries are the oldest, most developed, and most widely 

used battery chemistry [13, 15]. They have been implemented in several applications, including 

wind energy, solar energy, and automotive use [13]. Challenges/drawbacks with lead-acid batteries 

include toxicity/environmental hazards [15], challenging scale-up prospects due to limited lifespan 

and higher cost [15], as well as poor deep discharge capabilities, relatively low cycling times, 

energy density, and challenging thermal management [13, 14]. Lithium-ion (Li-ion) technology is 

a newer battery chemistry which has been the focus of significant research and development efforts 

in recent years. Li-ion batteries have been proposed and have emerged in building applications, 
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especially as part of integrated building energy management solutions, including smart grid 

initiatives [17]. More recently, Tesla has announced a 3.3 kW, 6.4 kWh, residential-scale Li-ion 

battery solution with reported roundtrip efficiency of 92.5%, and cost below $500/kWh [42]. Li-

ion technology offers a number of advantages over lead-acid, including, high cycle lifetime, high 

peak power capability, lower environmental impact, higher energy density, and higher cycle 

efficiency [13, 15, 17]. Batteries in general have higher energy capital costs than the previously 

discussed storage technologies, with Li-ion being even more expensive than lead-acid; this can be 

seen in Table 1.1. Furthermore, Li-ion battery chemistries have been associated with a higher risk 

of fire/explosion incidents [43]. With the exception of CAES, other storage solutions are unable 

to exploit the opportunity to use waste heat as an input in addition to electricity. Table 1.1 provides 

a summary of the technical characteristics of the energy storage technologies discussed. There 

remains a need for high-efficiency, cost-effective storage systems that are environmentally 

friendly, flexible, easily dispatched, easily integrated with renewable sources, and scalable across 

various applications from individual buildings (kW) to plant-scale (MW-GW). 
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Table 1.1: Technical characteristics of several energy storage technologies 

Technology Scale[12, 13, 17] RTE [%] 
ED 

[kWh/m3] 

Capital 

Cost* 

[$/kWh] 

Cycle Life 

[cycles] 

Lifetime 

[years] 
Maturity Advantages Disadvantages 

PSH GW 

70-87[13] 

70-80[12] 
65-80[14] 

75-80[44] 

0.5-2[13] 
0.2-0.6[12] 

5-100[12, 13] 
10-80[14] 

10,000-30,000[13] 

15,000+[12] 

20,000-50,000[14] 

30+[13] 

50+[12] 

30-50[14] 

Mature 
High capacity, 

low cost 

Geographically 

limited, poor 
expansion 

prospects 

CAES 

(conventional) 
MW-GW 

42,54[13] 

42[19] 

3-6[13] 

2-6[12] 

2-120[13] 
2-50[12] 

3-80[14] 

8,000-12,000[13] 
10,000+[12] 

10,000-30,000[14] 

20+[13] 
25+[12] 

30,40[14] 

Commercialized 
High capacity, 

heat input 

Geographically 
limited, lower 

efficiency 

CAES (other) kW-MW 

a)60-70[45] 
b)69,[20] 

70[13, 19] 

c)30-60[25, 26] 

d)52-60[27] 

e)53[30] 

a)Higher than 

conventional 
CAES[13] 

a)200-250[13] 

b)30-40% 

higher than 
conventional 

CAES[19] 

a)30,000[13] a)23+[13] 

a,b)R&D, 

Demonstration 
c,d,e)Concept 

a,e)Geographic 

flexibility, 
b)higher RTE 

c)Geographically 

limited, a,c,d,e)lower 
RTE 

Lead-Acid kW-MW 

63-90[13] 

75-90[12] 
70-80[14] 

50-90[13] 

50-80[12] 

200-400[12] 

350-3800[45] 

500-1,000[13] 

250-1,500[12] 
200-1,800[14] 

5-15[13, 

14] 
3-15[12] 

Mature 
High energy 

density 

High cost, 

challenging scale-
up 

Lithium-Ion kW-MW 

75-97[13] 

65-75[12] 
78,88[14] 

150-500[13] 

200-400[12] 

600-3800[13] 

600-2,500[12] 
900-1,300[14] 

1,000-20,000[13] 

600-1,200[12] 
1,500-3,500[14] 

5-16[13] 

14-16[14] 

R&D, 

Demonstration 

High energy 

density, high 
efficiency 

High cost, 

chemical 

recycling, 
challenging scale-

up 
*Capital cost is defined as costs associated with the capital or investment expenditures per unit of energy storage capacity 

a) Aboveground CAES 

b) AA-CAES (advanced-adiabatic) 

c) T-CAES 

d) LTA-CAES (low temperature adiabatic) 

e) LA-CAES (liquid-air) 

 

1.2.2 Similar Hydro-Pneumatic Energy Storage (HyPES) Concepts 

The push to achieve isothermal or near-isothermal compression and expansion has resulted 

in the emergence of a sub-category of I-CAES known as hydro-pneumatic energy storage 

(HyPES). In this category of storage devices, a liquid is utilized to compress the gas. The liquid 

(water or hydraulic oil) is pumped into the storage vessel, serving as a liquid-piston, squeezing the 

gas above, reducing its volume and increasing pressure. To recover the stored energy, the liquid is 

allowed to flow in the reverse direction through a hydraulic turbine which drives an electrical 

generator. The HyPES concept is the general premise of the GLIDES technology presented here. 

A number of these concepts have been presented in the literature [41, 46-50]. These concepts have 

notable similarities and differences to the GLIDES concept. Wang et al. [46] proposed a concept 
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which also utilizes high efficiency hydraulic pump and turbine, and pressure vessels as the storage 

medium.  However, a number of differences were found between their analysis and the present 

one. Constant pump and turbine efficiencies were assumed in the analysis, and variation in the 

performance of these components with varying operating conditions was not considered. In 

addition, the physical model presented assumes the pressure vessels are adiabatic, and expansion 

and compression isothermally, thus not accounting for expansion/compression losses due to non-

isothermal operation which would likely be the case in reality. This study does discuss the potential 

to use liquid spraying during charging and discharging, similarly to GLIDES, however, no system 

roundtrip efficiency is reported. Furthermore, this work is purely theoretical, and no mention of a 

prototype or experimental investigation was made. 

Yao et al. [47] proposed a novel constant-pressure pumped hydro combined with 

compressed air energy storage system which has the advantage of operating at constant pressure 

which allows for operation at the design condition. However, the model presented in this work 

also assumes adiabatic high pressure vessels and constant pump and turbine efficiencies. While 

there is an efficiency advantage due to constant pressure operation, a gas compressor is still 

required and flow controllers are utilized to maintain pressure, causing a hit on efficiency. System 

efficiency between 50-72% and energy density between 0.42-1.06 kWh/m3 were reported. 

Similarly to Wang et al. this study is also purely theoretical. Kim et al. [48] reported on the 

operating characteristics of a constant-pressure compressed air energy storage system combined 

with pumped hydro storage. This concept is a true CAES-PSH hybrid, as it includes the full 

working principles of both technologies, but a column of water is utilized to maintain gas pressure 

on the CAES side, instead of the usual throttling of the gas compressor upstream air to keep the 

inlet pressure constant. This provides a boost in system efficiency and the water column is also 
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passed through a water turbine as it displaces the gas in the CAES side, dispatching additional 

electricity. Unlike the previous two, this study does account for heat transfer between the various 

mediums in the model, but also assumes constant water pump and water turbine efficiencies. 

Similarly to conventional CAES, this concept relies on underground salt formations/caverns for 

use as the storage medium. Lemofouet-Gatsi’s work is the single work found in the literature which 

studied the concept theoretically as well as experimentally at very small scale (15 Whe max) [50]. 

Table 1.2 summarizes the main characteristics of the concepts presented in the 

aforementioned works. All the studies presented above utilize a simple state-by-state 

thermodynamic approach to system modelling, and not a transient model which enables capturing 

real, time-dependent effects such as heat transfer. Furthermore, with the exception of Lemofouet-

Gatsi’s work, no operational prototype or experimental demonstration of these systems has been 

reported, and none have demonstrated the HyPES system with waste-heat integration. To our 

knowledge, GLIDES is largest-scale, end-to-end (electrical-to-electrical) demonstration of a fully 

operational HyPES prototype system. 

 

Table 1.2: Summary of comparison of similar HyPES storage concepts found in the literature 

 System Efficiency 

[%] 

Energy Density 

[MJ/m3] 
Constant Pressure Heat Input Prototype 

Wang et al. not reported 0.42-3.33 no no no 

Yao et al. 50-72 0.42-1.05 yes no no 

Kim et al. 43-76.5 0.14-5.56 yes no* no 

Lemofouet 19-59 0.23-0.5 no no yes 

GLIDES+ 66-82 0.68-1.00 no yes yes 
*no heat input but heat of compression is recovered and used during expansion 
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1.3 Research Contributions 

While the overall research effort discussed herein is aimed at the modelling, design, 

demonstration and optimization of the novel GLIDES system, the fundamental research questions 

being asked are: 

1. Can isothermal or near-isothermal compression and expansion be achieved via the use of 

a liquid-piston? 

2. Is liquid-piston based hydro-pneumatic compressed gas energy storage viable? If so, can it 

achieve comparable or better efficiency and energy density to conventional CAES? 

3. What are the major loss mechanisms in the complete end-to-end energy storage system? 

4. What are the maximum theoretical efficiency/energy density and what innovations can be 

made to meet or approach these? 

5. Going beyond the scientific and engineering questions, can a liquid-piston based hydro-

pneumatic compressed gas storage system be cost-competitive with, or cheaper than 

existing solutions? 

Pursuant to these, four specific research contributions are made. First, the development of an 

analytical, transient, physics-based model of multiple configurations of the GLIDES gas cycle and 

complete energy system going beyond ideal state-by-state point analyses and capturing all loss 

mechanisms is presented. Development of this type of detailed modelling framework is important 

in order to guide system design, provide a test-bed to conduct more nuanced system performance 

analyses that would be difficult to carry-out experimentally, and determine major loss 

mechanisms. Furthermore, the addition of the transient terms to the governing equations provide 

the opportunity to investigate in detail the heat-transfer phenomena at play during gas expansion 
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and compression, and investigate the feasibility/effectiveness of carrying out heat transfer 

enhancement strategies such as spray cooling/warming in order to achieve isothermal or near-

isothermal compression/expansion. Such analysis is difficult to carry-out using the conventional 

state-by-state point modelling techniques used in thermodynamic system evaluations. Second, 

experimental demonstration of the HyPES-based GLIDES concept in multiple configurations is 

demonstrated. This is the largest end-to-end demonstration of the application of liquid-piston gas 

expansion/compression to a compressed-air energy storage device and provides a benchmark for 

its performance and further development. To our knowledge, this is also the first experimental 

demonstration of the HyPES concept integrating waste-heat to improve system performance. 

Additionally, the use of condensable gases as an alternative working fluid to air for the GLIDES 

system to improve performance is explored. Thirdly, the research on Pelton turbines is extended 

to the ultra-high head, ultra-low flow rate application regime, where existing rules-of-thumb for 

key design parameters such as bucket geometry, jet diameter, and jet alignment cannot necessarily 

be applied. Given the high-head, low-flow rate nature of the GLIDES turbine application regime, 

and considering existing knowledge about application regimes of impulse turbomachines, a Pelton 

turbine is one obvious choice of machine. However, this application pushes the envelope of 

pressure head and flow rate regime of Pelton turbine use that have been documented, and so some 

effort to characterize performance of various design aspects in this regime and test the validity of 

existing Pelton turbine design rules and rules-of-thumb in this application regime is necessary. In 

addition, the second-generation GLIDES prototype utilizes an axial-piston type hydraulic motor 

as the energy recovery turbomachine, instead of the Pelton turbine used in the first generation 

prototype, thus, a qualitative discussion on the pros and cons of each of these two types of energy 
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recovery machines for use in HyPES concepts is given. Via these research contributions, the 

fundamental questions asked in the beginning of this section are answered. 

1.4 Dissertation Outline 

The subsequent chapters in this dissertation are organized as follows: Chapter 2 provides 

an overview of the comprehensive physics-based system simulations of various configurations of 

the GLDIES system conducted in support of the prototype design. Chapter 3 presents the design 

and experimental evaluation of the first-generation GLIDES system. The experimental results 

from the first-generation system are also used to calibrate the system model; these results are also 

presented in Chapter 3. In Chapter 4 the research conducted on utilizing condensable gases as an 

alternative working fluid to air in the GLIDES system is presented. First, an initial investigation 

at low pressure is conducted with refrigerant R134a. The success with R134a led to a second effort 

with CO2, which would be the choice condensable gas for a scaled-up system, owing to its high 

saturation pressure. Next, Chapter 5 presents the design and characterization of the second-

generation prototype which features several performance enhancement measures compared with 

the first-gen prototype. In Chapter 6, considerations on the energy recovery (discharge) 

turbomachine is given. Aspects related to the design of the Pelton turbine for this application are 

discussed, and the use of a hydraulic motor instead of a Pelton turbine is also discussed. In Chapter 

7, methods and results of cost-scaling and market value analysis for the prospects of a commercial-

scale GLIDES are given. Finally, a summary of the dissertation is provided in conclusion, and 

remaining “white-spaces” needing to be addressed with future research efforts are revealed. 
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CHAPTER 2. COMPREHENSIVE SYSTEM SIMULATIONS 

Content in this chapter (figures and text) adapted from: 

1. Odukomaiya, A., et al., Thermal analysis of near-isothermal compressed gas energy storage 

system. Applied Energy, 2016. 179: p. 948-960. [51] 

This chapter introduces multiple configurations of the GLIDES concept and explores the 

feasibility of a strategy to integrate waste heat utilization with direct contact heat exchange via 

spray cooling and warming. GLIDES is predicted to achieve electric roundtrip efficiency (ηelec) in 

the 70–82% range (after accounting for non-isothermal compression/expansion and conversion 

losses in pump/motor and turbine/generator) and energy input can come in the form of electricity 

or low- or medium-grade heat. This chapter focuses on the analytical comparison of the 

performance of different GLIDES design configurations for a system with the same size and 

maximum pressure rating as the first-generation proof-of-concept prototype and presents the 

results of energy analyses used to assess and quantify the feasibility of performance enhancement 

strategies. 

2.1 Description of the System Components & Configurations 

 As seen in Figure 2.1, the GLIDES system consists of an atmospheric pressure water 

storage reservoir, a pump, a pressure tank containing a gas (i.e., air, nitrogen, CO2), and a turbine 

and generator used to generate electricity. Positive displacement (PD) pumps are chosen to 

pressurize the tank and are designed for low-flow, high-head applications (e.g., 200–300 bar or 

about 2–3 km water head) in which their mechanical efficiencies do not substantially change over 

a wide pressure head or flow rate range. The mechanical efficiency of PD liquid pumps can be 
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over 90% [6]. High-efficiency PD pumps are commercially available in a wide size range (1–

500 kW). A Pelton turbine was chosen because it is a low-cost hydraulic impulse turbomachine 

suitable for low-flow, high-head applications (greater than 80 m water head). Pelton turbines are 

quite scalable and are available in a range from a few kilowatts to 300 MW. A beneficial feature 

of Pelton turbines is that their peak efficiency is fairly insensitive to flow rate [52]. A typical Pelton 

turbine can have one to five impinging jets; the flow rate and the output power can be adjusted by 

turning each impinging jet on or off without significantly affecting the turbine efficiency. The 

mechanical efficiency of Pelton turbines can exceed 93% [7]. High-pressure gas tanks, chosen as 

the storage reservoir (10–1000 liters), are commercially available for pressures higher than 300 

bar (3 km of water head). 

 

 

Figure 2.1: GLIDES layout during charging (a) and discharging (b) 

 

2.2 Thermodynamic Flexibility 

 The liquid in the GLIDES system is analogous to a gigantic, slow but no-leak piston inside 

a large cylinder (liquid-piston). Due to the large length scale (large-scale system) and long time 
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scale (slow charging/discharging) seen in operation of the GLIDES system, it is possible to closely 

control the gas cycle and the associated heat transfer.  As a result, the gas cycle can be controlled 

to mimic almost any major thermodynamic cycle found in the literature and also introduce 

opportunities for introducing even more complex thermodynamic cycles by controlling the heat 

transfer rate. Individual processes can be controlled to be near isothermal, and heat 

addition/removal can be isobaric or isochoric. Figure 2.2 below shows p-v diagrams for a subset 

of ideal thermodynamic cycles that can be approached with the GLIDES cycle. In the cycle shown 

in Figure 2.2 a), charging occurs isothermally from state 1 to state 2, after which discharging also 

occurs isothermally back to state 1. In the cycle shown in Figure 2.2 b), charging is achieved via 

isothermal compression as the cycle proceeds from state 1 to state 2, then isochoric heat input 

occurs to state 3, after which the gas expands isentropically back to state 1. In Figure 2.2 c), process 

1-2 is isothermal compression, followed by isobaric heat input to state 3, then isothermal expansion 

to state 4, and, finally, the system returns to state 1 as isochoric heat removal occurs. The cycle 

shown in Figure 2.2 d) is similar to Figure 2.2 c), except process 2-3 is an isochoric heat addition. 

Note that Figure 2.2 d) is known as a Stirling cycle. 
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Figure 2.2: Thermodynamic flexibility of the GLIDES concept 

 

Departure from the ideal cycles shown in Figure 2.2 occurs due to real effects such as the 

shell heat losses during standby between charging/discharging, limited heat transfer during 

charging/discharging, and heat transfer enhancement strategies such as spray cooling/heating. 

These will be discussed in further detail in subsequent sections. Particularly, the deviation from 

the ideal cycle seen in Figure 2.2 a) and d) due to real effects will be examined as a starting point 

for operation of the GLIDES system. 

2.3 Studied Configurations 
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 Figure 2.3 depicts the three different GLIDES configurations investigated in this study. 

The image at the left shows the base GLIDES configuration described earlier; specifications and 

performance for this configuration are also reported in Odukomaiya et al. [8]. 

 

 

Figure 2.3: Investigated alternative configurations of GLIDES system 

 

Configuration 2 aims to leverage the orders-of-magnitude difference in thermal 

capacitance between the gas and the liquid in GLIDES by recirculating the GLIDES liquid in a 

secondary loop and spraying it over the gas during charging and discharging. The previous study 

[8] shows that because of the large thermal capacity of the liquid, its temperature experiences a 

very narrow temperature swing during the entire cycle. Therefore, the liquid is cooler than the gas 

during compression and warmer than the gas during expansion. Spraying the liquid into the gas 
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provides a favorable cooling effect during charging and warming effect in discharging. Spraying 

the liquid into the gas can be accomplished by pumping water from the bottom of the vessels into 

the top through a spray nozzle and a low-head pump. This imposes high pressure on the suction 

port of the pump. Pumps that can endure such high suction pressure are commercially available at 

high cost. This is mainly because their applications are limited and their production volume is low. 

In Configuration 3 a heat exchanger is added downstream of the recirculation pump to take 

advantage of any available waste heat to further boost the expansion temperature of the gas. 

2.4 Energy & Heat Transfer Modeling Formulations 

2.4.1 Base Configuration Formulation 

In this section, a detailed overview of the model is presented. A set of coupled differential 

equations representing the three major thermal masses (gas, liquid, tank walls) is developed to 

model the transient thermodynamic response of the GLIDES system. All the equations herein 

presented were implemented in a script written using the MATLAB programming environment. 

The script implementation of the model can be found in Appendix A. Figure 2.4 presents each of 

the control volumes being considered. The tank walls are modeled as two separate control 

volumes. The first is the top portion of the tank walls in contact with the gas (TG). The second is 

the bottom portion of the tank in contact with the liquid (TL). Both control volumes have a dynamic 

mass that changes as the liquid level changes. Several assumptions are used in the development of 

this transient model: no spatial temperature gradients within each medium (lumped capacitance), 

an ambient temperature constant in time, constant thermophysical properties for the tank wall 

material, modeling of the gas inside the tanks as a Redlich-Kwong (RK) fluid using the RK 

equation of state (for better prediction than an ideal gas at high pressures) [53], negligible heat 
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transfer between the tank upper (TG) and tank lower (TL) masses, and all processes occurring at 

quasi-steady state. 

 

 
Figure 2.4: GLIDES base configuration energy formulation 

 

The energy equation for the gas is Eq. (2.1). The term on the left is the time rate of change 

of the energy contained within the gas at time t; the first term on the right is the net rate at which 

energy is transferred in by heat transfer with the liquid; the second term on the right is the net rate 

at which energy is transferred in by heat transfer through the tank walls from the ambient; and the 

last term on the right is the net rate at which energy is transferred out by boundary work. 

 𝑚𝐺𝑐𝑣,𝐺

𝑑𝑇𝐺

𝑑𝑡
= −ℎ𝐺,𝐿𝐴𝐺,𝐿(𝑇𝐺 − 𝑇𝐿) − 𝑈𝐴𝐺(𝑇𝐺 − 𝑇𝑎𝑚𝑏) − 𝑝𝐺

𝑑𝑉𝐺

𝑑𝑡
 (2.1) 
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The energy equation for the liquid is Eq. (2.2). The term on the left is the time rate of change of 

the energy contained within the liquid at time t; the first term on the right is the net rate at which 

energy is transferred in by heat transfer with the gas; the second term on the right is the net rate at 

which energy is transferred in by heat transfer through the tank walls from the ambient; and the 

last term on the right is the net rate of energy transfer into the control volume accompanying mass 

flow. 

 
𝑚𝐿𝑐𝐿

𝑑𝑇𝐿

𝑑𝑡
= ℎ𝐺,𝐿𝐴𝐺,𝐿(𝑇𝐺 − 𝑇𝐿) − 𝑈𝐴𝐿(𝑇𝐿 − 𝑇𝑎𝑚𝑏) + 𝑚̇𝐿𝑐𝐿(𝑇𝑎𝑚𝑏 − 𝑇𝐿) (2.2) 

The energy equation for the tank walls in contact with the gas is Eq. (2.3). The term on the left is 

the time rate of change of the energy contained within the corresponding mass at time t; the first 

term on the right is the net rate at which energy is transferred in by heat transfer with the gas on 

the inside; and the second term on the right is the net rate at which energy is transferred in by heat 

transfer with the ambient air on the outside. 

 
𝑚𝑇,𝐺𝑐𝑇

𝑑𝑇𝑇,𝐺

𝑑𝑡
= ℎ𝑖,𝐺𝐴𝑖,𝐺(𝑇𝐺 − 𝑇𝑇,𝐺) − ℎ𝑜𝐴𝑜,𝐺(𝑇𝑇,𝐺 − 𝑇𝑎𝑚𝑏) (2.3) 

The energy equation for the tank walls in contact with liquid is Eq. (2.4). The term on the left is 

the time rate of change of the energy contained within the corresponding mass at time t; the first 

term on the right is the net rate at which energy is transferred in by heat transfer with the liquid on 

the inside; and the second term on the right is the net rate at which energy is transferred in by heat 

transfer with the ambient air on the outside. 
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𝑚𝑇,𝐿𝑐𝑇

𝑑𝑇𝑇,𝐿

𝑑𝑡
= ℎ𝑖,𝐿𝐴𝑖,𝐿(𝑇𝐿 − 𝑇𝑇,𝐿) − ℎ𝑜𝐴𝑜,𝐿(𝑇𝑇,𝐿 − 𝑇𝑎𝑚𝑏) (2.4) 

The continuity equation for the gas is Eq. (2.5). The term on the left is the time rate of change of 

the volume of the gas at time t, and the term on the right is the volumetric flow rate of liquid 

displacing the gas. 

 𝑑𝑉𝐺

𝑑𝑡
= −

𝑚̇𝐿

𝜌𝐿
 (2.5) 

The continuity equation for the liquid is Eq. (2.6). The term on the left is the time rate of change 

of the mass of liquid contained within the tanks at time t, and the term on the right is the mass flow 

rate of liquid into the tanks. 

 𝑑𝑚𝐿

𝑑𝑡
= 𝑚̇𝐿 (2.6) 

Equations (2.1) through (2.6) are discretized using a finite-difference method and used to solve the 

transient temperature response of the gas and liquid in 1 second time steps. The overall heat 

transfer coefficients UAG and UAL are calculated using an effective thermal resistance network 

with convection on the inner surface, conduction through the tank wall, and convection on the 

outer surface. The resulting expressions are seen in Eqs. (2.7) and (2.8). 

 
𝑈𝐴𝐺 =

1

(
1

ℎ𝑖,𝐺𝐴𝑖,𝐺
) + (

𝑡𝑇

𝑘𝑇𝐴𝑎𝑣𝑒,𝐺
) + (

1
ℎ𝑜𝐴𝑜,𝐺

)
 

(2.7) 
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𝑈𝐴𝐿 =

1

(
1

ℎ𝑖,𝐿𝐴𝑖,𝐿
) + (

𝑡𝑇

𝑘𝑇𝐴𝑎𝑣𝑒,𝐿
) + (

1
ℎ𝑜𝐴𝑜,𝐿

)
 

(2.8) 

The gas-to-liquid heat transfer coefficient hG,L is calculated using correlations by Lloyd and Moran 

(1974) [54] for natural convection over a flat plate. The inner heat transfer coefficients hi,G and hi,L 

are calculated using LeFevre’s [55] correlation by approximating the inside surface of a tank as a 

vertical wall. Finally, the outer heat transfer coefficient ho is modeled assuming forced convection 

over a vertical cylinder with a representative outdoor wind velocity of ~3 m/s using a Churchill 

and Bernstein [56] correlation. 

 The charging process via the PD pump occurs at an approximately constant flow rate of 

liquid and is modeled as such. The discharge liquid flow rate—which is not constant and decreases 

as the gas pressure inside the tanks decreases—is calculated using a flow model that provides the 

instantaneous flow rate given the instantaneous gas pressure in the tanks over a given time step. It 

accounts for frictional piping losses from the tank discharge to the Pelton turbine nozzle discharge. 

The GLIDES model also captures the time-varying heat transfer areas, mass of liquid, mass of the 

two tank control volumes, the temperature- and pressure-dependent thermophysical properties of 

the gas, and the temperature-dependent thermophysical properties of the liquid. The PD pump and 

electric generator efficiency profiles have been incorporated into the model. An 11 kW, 35 L/min 

motor/pump assembly and 6 kW electrical generator are used for simulation. The respective 

efficiency curves can be seen in Figure 2.5 and Figure 2.6. A conventional small-scale Pelton 

turbine efficiency profile is also incorporated [8, 52]. The following sections describe the additions 

to the baseline model [8] that enable the active heating and cooling modeling capabilities required 

for alternative system configurations 2 and 3 shown in Figure 2.3. 
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Figure 2.5: Pump/Motor efficiencies 

 

 

Figure 2.6: Electrical generator efficiency 
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2.4.2 Direct Contact Heat-Exchange Via Sprayed Droplets 

In this section, the formulation used to model the effect of the direct-contact heat exchange 

between the gas and the liquid obtained via spraying is described. Note that at such elevated 

pressures, the evaporation of the liquid is very small; hence, in this study, the liquid-gas mass 

diffusion has been neglected. First, it is assumed that a single droplet falls at constant terminal 

velocity; therefore, the drag and the gravity forces on each droplet are balanced, and the terminal 

velocity can be calculated with Eq. (2.9): 

 

𝑣𝑡𝑒𝑟𝑚 = √
4𝐷𝑑𝑟𝜌𝑑𝑟𝑔

3𝜌𝐺𝐶𝐷
 (2.9) 

Because the droplets do not reach terminal velocity instantaneously, using the terminal velocity is 

a conservative estimate for droplet speed as it relates to heat transfer. In addition, the droplets 

could be falling faster as a result of coagulation of droplets sprayed from the nozzle. Obtaining the 

terminal velocity allows for the calculation of the droplet travel time or residence time in the gas 

using Eq. (2.10) since the distance from the top of the GLIDES tank to the liquid level below, L(t), 

is known. Thus, the droplet travel time can be defined as 

 
𝑡𝑡𝑟𝑎𝑣 =

𝐿(𝑡)

𝑣𝑡𝑒𝑟𝑚
 (2.10) 

The flow rate of the liquid being sprayed is a fixed parameter; therefore, since this value is known, 

the number of droplets being generated per unit time can be calculated with Eq. (2.11): 
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𝑁̇𝑑𝑟 =

6𝑉̇𝑠𝑝𝑟

𝜋𝐷𝑑𝑟
3  (2.11) 

Using the value obtained from Eq. (2.11) and the residence times of droplets, the total number of 

droplets of liquid traveling through the gas at any given instance in time is computed using Eq. 

(2.12). 

 𝑁𝑑𝑟 = 𝑁̇𝑑𝑟 ∙ 𝑡𝑡𝑟𝑎𝑣 (2.12) 

Next, using an expression for the transient temperature profile for a falling droplet [Eq. (2.13)][57], 

the temperature change for a droplet as it travels from the top of the gas to the bottom can be 

calculated. This expression assumes lumped capacitance (Bi<1), which is verified by calculation. 

The temperature of the droplets right before they hit the bulk liquid at the bottom of the tank is 

calculated (Tdr), given the gas temperature and the initial temperature of the drop at the outlet of 

the spray nozzle. Equations (2.11), (2.12), (2.13) were adapted from Ref. [57], which outlines a 

procedure for modeling direct-contact heat exchange between a gas and liquid. 

 𝑇𝑑𝑟,𝑜𝑢𝑡 − 𝑇𝐺

𝑇𝑑𝑟,𝑖𝑛 − 𝑇𝐺
= 𝑒

−
𝑡𝑡𝑟𝑎𝑣
𝜏𝑑𝑟  (2.13) 

Tau (τdr) is interpreted as the thermal time constant of the liquid droplet and can be expressed with 

Eq. (2.14): 

 
𝜏𝑑𝑟 =

𝜌𝑑𝑟𝑉𝑑𝑟𝑐𝑑𝑟

ℎ𝑑𝑟𝐴𝑠,𝑑𝑟
  (2.14) 
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Next, the Nusselt number for the drops is calculated using the Ranz and Marshall correlation [Eq. 

(2.15)] for a falling drop. Development of this Nusselt number correlation is outlined in Ref. [58]. 

 𝑁𝑢𝑑𝑟 = 2 + 0.6𝑅𝑒1/2𝑃𝑟1/3 (2.15) 

The resulting heat transfer coefficient is calculated in Eq. (2.16): 

 
ℎ𝑑𝑟 =

𝑁𝑢 ∙ 𝑘𝑑𝑟

𝐷𝑑𝑟
 (2.16) 

Given the results of these calculations, the heat loss (or gain) from the drops can be calculated 

using Eq. (2.17), given the temperatures of the drops as they enter and leave the gas. Note again 

that the outlet temperature is taken as the temperature of the drop right before it hits the bulk liquid 

at the bottom of the tank, and the inlet temperature is taken as the temperature of the drop upon 

exiting the spray nozzle. 

 𝑄𝑑𝑟 = 𝜌𝑑𝑟𝑉𝑑𝑟𝑐𝑑𝑟(𝑇𝑑𝑟,𝑜𝑢𝑡 − 𝑇𝑑𝑟,𝑖𝑛) (2.17) 

The rate of heat loss from the entire spray is then calculated as follows in Eq. (2.18): 

 𝑄̇𝑠𝑝𝑟 = 𝑁̇𝑑𝑟∙𝑄𝑑𝑟 (2.18) 

A mixing equation [Eq. (2.19)] is then applied to calculate the effect of the droplets on the 

temperature of the bulk liquid at the bottom of the tank. At each time step, the enthalpy of the 

drops plus the enthalpy of the bulk liquid (pre-mixing) must equal the enthalpy of the combined 

liquid mixture (droplets plus bulk liquid): 
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𝑇𝐿,𝑚𝑖𝑥𝑒𝑑 =

𝑚̇𝑠𝑝𝑟 ∆𝑡 𝑐𝑑𝑟𝑇𝑑𝑟 + 𝑚𝐿𝑐𝐿𝑇𝐿

(𝑚̇𝑠𝑝𝑟 ∆𝑡 + 𝑚𝐿)𝑐𝐿
 (2.19) 

This new mixed liquid temperature is then taken as the new bulk liquid temperature for the 

beginning of the next time step (TL=TL,mixed), and Eq. (2.2) is solved with this new value. The effect 

of this heat transfer is included in the energy balance for the gas as follows. The rate of heat loss 

from the spray is added to the right-hand side of Eq. (2.1) to account for heat loss or gain due to 

spray cooling or warming, resulting in Eq. (2.20). 

 
𝑚𝐺𝑐𝑣,𝐺

𝑑𝑇𝐺

𝑑𝑡
= −ℎ𝐺,𝐿𝐴𝐺,𝐿(𝑇𝐺 − 𝑇𝐿) − 𝑈𝐴𝐺(𝑇𝐺 − 𝑇𝑎𝑚𝑏) − 𝑸̇𝒔𝒑𝒓 − 𝑝𝐺

𝑑𝑉𝐺

𝑑𝑡
 (2.20) 

 

2.4.3 Waste-Heat Integration 

To integrate the waste-heat exchanger, the heat exchanger effectiveness method is used 

assuming  a 90% efficient heat exchanger (ε = 0.9)  [59]. Liquid water is modeled as the heat 

transfer fluid on the waste-heat side, and it is analyzed for various waste-heat source temperatures. 

Figure 2.7 and Eqs. (2.21) and (2.22) show the waste-heat exchanger model. 
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Figure 2.7: GLIDES waste-heat exchanger 

 

 
𝜀 =

𝑚̇𝑠𝑝𝑟(𝑇𝑠𝑝𝑟,𝑖𝑛 − 𝑇𝐿)

𝑚̇𝑚𝑖𝑛(𝑇𝑊𝐻 − 𝑇𝐿)
 (2.21) 

 
𝑇𝑠𝑝𝑟,𝑖𝑛 = 𝑇𝐿 + 𝜀

𝑚̇𝑚𝑖𝑛

𝑚̇𝑠𝑝𝑟
(𝑇𝑊𝐻 − 𝑇𝐿) (2.22) 

 

2.4.4 Performance Indicators 

The performance of the GLIDES system is evaluated using four key indicators. The 

indicated efficiency (ηind), which includes only thermodynamic losses from expansion and 

compression; the electric roundtrip efficiency (ηelec), which includes all losses; and the electrical 

energy density (ED) are calculated for all three GLIDES configurations. For configuration 3, since 

a combination of work and heat is fed into the system, the exergetic efficiency (ηEx) is used in 

addition to the other three indicators. The performance indicators are defined as follows in Eqs. 

(2.23)–(2.26): 
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𝜂𝑖𝑛𝑑 =

𝑊𝑖𝑛𝑑,𝑜𝑢𝑡

𝑊𝑖𝑛𝑑,𝑖𝑛
 (2.23) 

 
𝜂𝑒𝑙𝑒𝑐 =

𝑊𝑒𝑙𝑒𝑐,𝑜𝑢𝑡

𝑊𝑒𝑙𝑒𝑐,𝑖𝑛
 (2.24) 

 
𝐸𝐷 =

𝑊𝑒𝑙𝑒𝑐,𝑜𝑢𝑡

𝑉𝑇
 (2.25) 

 
𝜂𝐸𝑥 =

𝑊𝑒𝑙𝑒𝑐,𝑜𝑢𝑡

𝑊𝑒𝑙𝑒𝑐,𝑖𝑛 + 𝜂𝐶𝑎𝑟𝑛𝑜𝑡𝑄𝑊𝐻
 (2.26) 

 

2.5 Results 

2.5.1 Simulation Parameters 

Table 2.1 summarizes the system parameters used in simulating the scenarios presented in 

this section. Optimization of key system design parameters, such as maximum operating pressure, 

is not addressed here. This work focuses on a model of the cycle, using system design parameters 

that were selected for a proof-of-concept base configuration prototype assembled at ORNL. In this 

study, liquid water is taken as the liquid, and air is taken as the gas. 
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Table 2.1: GLIDES system simulation parameters 

Parameter Description Value 

Vgas,ini Gas initial volume 1.98 m3 

numjets Number of Pelton turbine jets 1 

Tamb Ambient temperature 25°C 

pmin Minimum (initial) gas pressure 77 bar 

pmax Maximum (after charging) gas pressure 132 bar 

V̇L Liquid charging flow rate 35 L/minute 

tpause Pause time between charge/discharge 43,200 s (12 hours) 

TG,ini Initial gas (air) temperature 25°C 

TL,ini Initial liquid (water) temperature 25°C 

V̇spr Spraying flow rate* 12 L/minute 

tT Pressure vessel wall thickness 0.02 m 

*Spraying flow rate used only for configurations 2 and 3 

 

2.5.2 Base Cycle (Configuration 1) 

Figure 2.8 through Figure 2.10 show the temperature profiles, a p-V diagram, and an 

energy breakdown of the GLIDES base configuration (configuration at left in Figure 3). These 

assume a usage profile of charging followed by a 12-hour pause, then discharging. In Figure 2.8, 

charging occurs during the first hour. The gas temperature increases as the gas is compressed, and 

some heat is lost via heat transfer to the cooler water and the ambient. The charging process is 

followed by a 12-hour pause period, during which the system temperature is allowed to return to 

equilibrium with the ambient. The pause period is accompanied by a slight reduction in pressure 

due to heat loss to ambient. Note that this pause period is not an operational requirement but was 

added in simulation for performance evaluation purposes as worst-case scenario due to heat loss 

during the pause. Actual operation is flexible. Charging can be followed by pause of any length, 

or no pause at all, and the system can switch from charging to discharging and vice-versa in a 

timescale on the order of seconds. During discharging (hour 12–13), initially the temperature 
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decreases rapidly as the gas expands and cools. However, cooling due to expansion and warming 

due to heat transfer to the gas (from the now warmer ambient) oppose each other. As the gas 

volume increases, and the water level in the tanks goes down, the corresponding heat transfer 

surface area increases, and the heat transfer from the now warmer ambient to the gas begins to 

overcome and reverse the cooling due to expansion. The maximum and minimum gas temperatures 

are 62 and 13°C, respectively, and are marked by the isotherms in the p-V diagram (Figure 2.9). 

The work input needed for compression (the area under the curve from state 1 to state 2 in Figure 

2.9) minus the work output during expansion (the area under the curve from state 2 to state 3) 

represents the lost work due to non-isothermal compression and expansion; this is the area 

enclosed by the four state points. In Figure 2.10, the breakdown of the efficiency and the system 

losses for the base configuration (configuration 1) are given; the largest contribution to losses is 

from non-isothermal expansion and compression. The pump/motor and turbine/generator losses 

are calculated using the respective characteristic efficiency curves for those components [8]; they 

are 6 and 7%, respectively, for the pump/motor and 6 and 5%, respectively, for the 

turbine/generator. An indicated efficiency of ηind = 0.90 is achieved, corresponding to an electrical 

(120 V, 60 Hz) RTE of ηelec = 0.66 and an ED = 0.69 kWh/m3. Note that this energy density 

corresponds to operation with maximum operating pressure around 130 bar, which was selected 

based on the maximum operating pressure of the pressure vessels used in the proof-of-concept 

prototype. Energy density increases as the maximum operating pressure of the pressure vessels 

increases [8]. When operated with a single Pelton turbine jet, this configuration produces a 

maximum power output of 2.4 kW at the beginning of discharging, and a minimum of 1.2 kW at 

the end of discharging. Note that the system is not constrained to the operation described here. If 

the charging process does not occur continuously (such as might be the case if it were tied to 
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intermittent renewable sources), the temperature gain during charge would be decreased, and the 

subsequent pressure/temperature loss immediately following the charging process would also be 

lessened. This would result in lower expansion/compression losses and higher RTE. Furthermore, 

if the discharging process is initiated immediately following the charge (i.e., no pause time), the 

pressure/temperature losses due to standby would be eliminated, also resulting in higher RTE. If 

instead this base configuration is run with no pause time, as opposed to 12 hours of pause time, 

the RTE improves from ηelec = 0.66 to ηelec = 0.69. 

 

 

Figure 2.8: GLIDES base configuration cycle transient temperature and pressure profiles 
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Figure 2.9: GLIDES base configuration cycle pressure-volume diagram 

 

 

Figure 2.10: GLIDES base configuration efficiency and losses summary 
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2.5.3 Near-Isothermal Expansion/Compression (Configuration 2) 

Figure 2.11 shows the transient temperature and pressure profiles for the gas and the 

temperature profile for the liquid for operation of configuration 2 (the middle image in Figure 2.3). 

It can be seen that compared with the base configuration, spraying improves efficiency by reducing 

the maximum gas temperature (from 62 to 32°C) and increasing the minimum gas temperature 

(from 13 to 22°C). 

 

 

Figure 2.11: GLIDES configuration 2 cycle transient temperature and pressure profiles 

 

A p-V representation of the configuration 2 gas cycle can be seen in Figure 2.12. Spraying 

at 12 liters per minute with a nozzle producing an average drop diameter of Ddr = 50 μm results in 

a 6 percentage point boost in ηind, from 0.90 to 0.96, corresponding to an ED = 0.86 kWh/m3 and 

ηelec = 0.70. There is a noticeable decrease in lost work due to expansion and compression, 
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represented in the thinner p-V curve, as the isotherms are brought closer together. When taken 

individually, the compression and expansion p-V curves (state 1 to 2 and state 3 to 4) are very 

nearly isothermal. This is depicted by the small deviation from the 22°C and 32°C isotherms which 

are shown with orange dashed lines. When operated with a single Pelton turbine jet, this 

configuration produces a maximum power output of 2.76 kW at the beginning of discharging, and 

the minimum is 1.25 kW at the end of discharging, a slight improvement over the base 

configuration. 

 

 

Figure 2.12: GLIDES configuration 2 cycle pressure-volume diagram 

 

Accounting for the pumping power required to overcome the spray nozzle pressure drop 

introduces a new category of loss, as seen in Figure 2.13; but it accounts for only a 1% efficiency 

loss.  
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Figure 2.13: GLIDES configuration 2 efficiency and losses summary 

 

The electrical RTE ηelec was studied for various spray flow rates and droplet diameters 

ranging between 50 and 5000 μm. A smaller average droplet diameter results in improved RTE 

due to an increase in the heat transfer surface area between the bulk gas and the sprayed liquid 

droplets. However, the increase in pump energy that would be required to produce smaller droplet 

sizes is not accounted for. The spray flow rate was optimized near 12 liters per minute, as seen in 

Figure 2.14; at a higher flow rate, the benefits of increased RTE are outweighed by the increased 

additional spray nozzle pressure drop and pumping power required. 
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Figure 2.14: RTE vs. spray flow rate for various average droplet diameters 

 

2.5.4 Waste-Heat Integrated (Configuration 3) 

In configuration 3 (the image at the right in Figure 2.3), a heat exchanger is added downstream of 

the spray pump to preheat the spray liquid, using any available waste heat to further enhance the 

effect of spray warming during gas expansion. In this case, waste heat is simulated as a stream of 

water with a source temperature of 70°C. With a 90% efficient waste-heat exchanger, the spray 

stream is introduced into the gas at 65°C. After the sprayed droplets exchange heat with the gas, 

the gas is warmed to a maximum of 59°C, resulting in the temperature and pressure profiles seen 

in Figure 2.15. Immediately after the discharging process begins, a boost in pressure occurs as heat 

is added to the gas. The cooling during expansion (which occurred in configuration 2) is reversed 

to a net warming to 59°C. The thermodynamic cycle becomes very similar to a high efficiency 

Stirling cycle, as seen in Figure 2.16. 
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Figure 2.15: GLIDES configuration 3 cycle transient temperature and pressure profiles (waste-

heat source at 70 °C) 

 

The effect of using the waste-heat exchanger on the GLIDES gas cycle and on the shape 

of the p-V curve can be seen in Figure 2.16. During compression, spray recirculation is used, 

leveraging the orders-of-magnitude difference in thermal capacitance between the gas and the 

liquid to keep the compression near-isothermal. During expansion, the waste-heat exchanger is 

used in addition to spray-recirculation to precondition the spray stream, effectively storing heat. 

Because of the large boost in expansion temperature, the area under the expansion curve (state 3 

to 4) is now larger than the area under the compression curve (state 1 to 2), meaning that more 

hydraulic work is extracted from the system than was stored via the pump; essentially, ηind = 1.07. 

The cycle begins at state 1 with compression to state 2 via the pump while using the spray stream 

to keep the process near-isothermal. During the pause after compression, some heat is lost through 

the tank walls to the cooler ambient (state 2 to 3). As expansion begins, the waste-heat exchanger 
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comes into use, adding heat and boosting the pressure above state 2, providing an increase in the 

electricity extracted. Some of the ancillary losses due to the pump/motor and turbine/generator are 

recovered, resulting in ηelec = 0.78 and ED = 0.95 kWh/m3. Note that this is for a waste-heat input 

temperature of 70°C, and the performance further increases for higher waste-heat temperatures, as 

seen in Table 2.2 and Figure 2.18. If waste-heat input were to begin at state point 2, instead of at 

state point 3, the p-V diagram would approach a high–efficiency Stirling cycle. For reference, an 

ideal Stirling cycle operating between two thermal energy reservoirs at 25°C (ambient 

temperature) and 70°C (waste-heat source temperature) is shown in Figure 2.16 with a green dotted 

line. With the addition of waste-heat input, and operation with a single Pelton turbine jet, maximum 

power output is 2.9 kW, and minimum is 1.5 kW; an increase in power output is achieved due to 

the pressure boost provided by addition of waste heat. 

 

 

Figure 2.16: GLIDES configuration 3 cycle pressure-volume diagram (waste-heat source at 70 

°C) 
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For configuration 3, the sum of the RTE and itemized losses is greater than 100%. In other 

words, some of the losses are recovered by the addition of waste heat. Figure 2.17 shows the 

fraction of exergy inputs (a), as well as the roundtrip efficiency and system losses (b). This 

configuration of the GLIDES system represents a combined energy storage and heat engine cycle, 

with low- or medium-grade heat used to boost electricity production. 

 

 

Figure 2.17: GLIDES configuration 3 performance summary (waste-heat source at 70 °C) 

 

2.6 Summary of Simulation Effort 

Table 2.2 and Figure 2.18 summarize the performance of the three GLIDES configurations 

and of configuration 3 with various waste-heat source temperatures. 
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Table 2.2: Summary of simulated performance of GLIDES configurations 

 Base 

configuration 

(configuration 1) 

Configuration 2* 

Configuration 3* 

 TWH = 50 °C TWH = 70 °C TWH = 90 °C 

ηelec [] 0.66 0.70 0.75 0.78 0.82 

ηind [] 0.90 0.96 1.03 1.07 1.12 

ηEx 0.66 0.70 0.66 0.59 0.52 

ED [kWh/m3] 0.68 0.86 0.91 0.95 1.00 

*with V̇spr = 12 liters per minute 

 

 

 

Figure 2.18: Summary of performance of GLIDES configurations 

 

The simulation and analysis presented in this chapter show that GLIDES has great potential 

as an energy storage technology. The maximum operating pressure simulated in this study was 

limited to not exceed 140 bar due to laboratory pressure system design protocols. A system 

designed for higher allowable operating pressure would achieve higher energy density. This study 

demonstrates that additional efficiency gains can be realized by using heat transfer enhancement 

strategies, such as liquid spraying, to achieve direct-contact heat exchange between gas and liquid 
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and leveraging any available waste heat to counter the expansion cooling and provide a thermal 

boost. Waste heat could be harnessed, for example, from the condensers of air-conditioning 

systems, solar-thermal hot water receivers, combined heat and power systems, geothermal wells, 

or waste heat exhaust from turbines or stacks. Due to promising simulation results and predicted 

performance on par and even surpassing existing energy storage technologies, research efforts 

proceeded with the development of a first-generation proof-of-concept prototype. These efforts 

are discussed in the following chapters. 
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CHAPTER 3. EXPERIMENTS & MODEL CALIBRATION 

Content in this chapter adapted from: 

1. Odukomaiya, A., et al. Preliminary Performance Evaluation of a Ground-Level Integrated 

Diverse Energy Storage (GLIDES) Prototype System. in TechConnect World Innovation 

Conference & Expo. 2017. Washington D.C., United States. [60] 

2. Odukomaiya, A., Experimental and Analytical Evaluation of a Hydro-Pneumatic Compressed-

Air Ground-Level Integrated Diverse Energy Storage (GLIDES) System. 2017: Applied 

Energy (submitted). Manuscript APEN-S-17-12334. [61] 

In the previous chapter, the GLIDES concept was introduced and studied analytically. This 

chapter reports on the experimental performance of the first GLIDES proof-of-concept prototype 

at several operating conditions. Additionally, based on the experimental results, slight 

modifications are made to the simulation model presented in Chapter 2 to better capture the actual 

system performance, resulting in a calibrated/validated model. This model is then used to conduct 

a parametric sweep, capturing the performance of the system across a wide range of operating 

conditions, resulting in the empirical development of a set of simple algebraic equations which can 

be used to predict the performance of such systems as a function of the overall system parameters. 

3.1 First Generation Proof-of-Concept Prototype 

3.1.1 System Description 

A first lab-scale proof-of-concept GLIDES prototype has been built at Oak Ridge National 

Laboratory (ORNL). The system is sized at a nominal 3 kWh; energy is recovered using a Pelton 
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turbine which can operate with two jets, delivering a peak 5.5 kW hydraulic power per jet. Figure 

3.1 shows a schematic of the GLIDES prototype system; it is comprised of a 500-gallon water 

storage tank, four 500-liter carbon steel pressure vessels with maximum allowable working 

pressure of 160 bar, an 11 kW, 42 liter/min positive displacement pump/motor assembly, a custom-

made, 2-jet Pelton turbine, and a 5 kW single phase 120 VAC 60 Hz electrical generator. A custom-

made Pelton turbine was specially designed for GLIDES due to the higher than typical operating 

pressures. The main difference relative to conventional Pelton turbines is that the very high-head 

allows for much lower flow rates, which requires much smaller jet diameter and much smaller 

Pelton buckets. 

 

 

Figure 3.1: GLIDES gen. 1 prototype schematic during a) charging and b) discharging 

 

The system was designed to operate with air as the gas and water as the liquid at pressures from 

minimum of 70 bar to maximum of 130 bar. Maximum pressure is limited to 130 bar in compliance 

with laboratory safety protocol. Figure 3.1 shows the prototype and water flow path during 

charging (left) and discharging (right). Figure 3.2 shows images of the prototype and components 

installed at ORNL. 
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Figure 3.2: GLIDES porotype a) overall system and pressure vessels, b) Pelton turbine, c) IR 

image of pressure vessels during charging, d) charging pump/motor, e) electric generator 

 

3.1.2 Instrumentation, Controls, & Data Acquisition 

Several instruments were installed to capture the performance of the prototype. Eight 

thermocouples and four pressure transducers were installed on the pressure vessels to measure 

air/water temperature and pressure. For each pressure vessel, one thermocouple was installed at 

the top to measure air temperature, and another at the bottom to measure water temperature. A 

pressure transducer was installed at the top of each vessel to measure pressure. A water level 

(pressure-head) transducer was used at the bottom of the water storage reservoir to measure water 

level; this measurement was used to calculate charging/discharging flowrates and pressure vessel 

air volume. Watt transducers were installed on the pump motor and electrical generator to measure 

system electrical power input and output. A torque meter was installed between the turbine and 
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generator shafts to measure torque and shaft speed. Thermocouples were also added to measure 

the ambient air temperature and water temperature inside the water storage reservoir. Table 3.1 

presents a summary of the various instruments used to capture system performance as well as their 

rated instrument uncertainties. 

 

Table 3.1: GLIDES Gen. 1 prototype instrumentation summary 

Measurement Instrument 
Measuring 

Range 

Instrument 

Accuracy 

Air Pressure Omega PXM459 Pressure Transducer 0-350 bar 1% 

Air Temperature Omega Type T Thermocouple 0-350 °C 0.5 °C or 0.4% 

Water Temperature Omega Type T Thermocouple 0-350 °C 0.5 °C or 0.4% 

Turbine/Generator Shaft 

Torque 
Magtrol TM207HS TorqueMaster 0-10 Nm 0.1% 

Turbine/Generator Shaft Speed Magtrol TM207HS TorqueMaster 20-50,000 RPM 10 RPM 

Storage Water Tank Level 
Omega PX709 Submergible Pressure 

Transducer 

250-3500 

mmH2O 
1% 

Storage Water Tank 

Temperature 
Omega Type T Thermocouple 0-350 °C 0.5 °C or 0.4% 

Ambient Air Temperature Omega Type T Thermocouple 0-350 °C 0.5 °C or 0.4% 

Power Input (pump) Ohio Semitronics Compound Transducer 0-40,000 watts 1.5% 

Power Output (generator) Ohio Semitronics Compound Transducer 0-10,000 watts 0.5% 

 

All instrumentation was calibrated across the full expected ranges of measurement per NIST 

traceable calibration procedures. A controls and data acquisition system utilizing National 

Instruments LabVIEW software and hardware was used to control the system and log 

measurements. A screenshot of the LabView user interface can be seen in Figure 3.3. 
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Figure 3.3: National Instruments LabVIEW Control and Data Acquisition System Interface 

 

3.1.3 Data Reduction 

The performance of each GLIDES cycle (charge/discharge) is evaluated using several 

variations of two key indicators, cycle efficiency and energy density. Three efficiency metrics are 

used, ηelec, ηshaft, and ηind. The roundtrip electrical-to-electrical efficiency (ηelec) is defined as the 

ratio of electrical work output to input. The shaft efficiency (ηshaft) is the ratio of output shaft 

mechanical work to input electrical work. The indicated (or thermodynamic) efficiency is defined 

as the ratio of indicated work output to indicated work input. Equations (3.1) through (3.5) are 

used to calculate the respective work inputs and outputs, and Equations (3.6) through (3.8) to 

calculate the electrical, shaft, and indicated efficiencies. 
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𝑊𝑖𝑛,𝑒𝑙𝑒𝑐 = ∫ 𝑊̇𝑝𝑢𝑚𝑝,𝑒𝑙𝑒𝑐𝑑𝑡

𝑡𝑐,𝑓

𝑡𝑐,𝑖

 (3.1) 

 
𝑊𝑜𝑢𝑡,𝑒𝑙𝑒𝑐 = ∫ 𝑊̇𝑔𝑒𝑛,𝑒𝑙𝑒𝑐𝑑𝑡

𝑡𝑑𝑐,𝑓

𝑡𝑑𝑐,𝑖

 (3.2) 

 
𝑊𝑜𝑢𝑡,𝑠ℎ𝑎𝑓𝑡 = ∫ 𝑊̇𝑠ℎ𝑎𝑓𝑡𝑑𝑡

𝑡𝑑𝑐,𝑓

𝑡𝑑𝑐,𝑖

= ∫ 𝜏𝑠ℎ𝑎𝑓𝑡𝜔𝑠ℎ𝑎𝑓𝑡𝑑𝑡
𝑡𝑑𝑐,𝑓

𝑡𝑑𝑐,𝑖

 (3.3) 

 
𝑊𝑖𝑛,𝑖𝑛𝑑 = ∫ 𝑊̇𝑖𝑛,𝑖𝑛𝑑𝑑𝑡

𝑡𝑑𝑐,𝑓

𝑡𝑐,𝑖

= ∫ 𝑝𝑎𝑖𝑟𝑉̇𝑐𝑑𝑡 = ∫ 𝑝𝑎𝑖𝑟𝑑𝑉
𝑉𝑐,𝑓

𝑉𝑐,𝑖

𝑡𝑐,𝑓

𝑡𝑐,𝑖

 (3.4) 

 
𝑊𝑜𝑢𝑡,𝑖𝑛𝑑 = ∫ 𝑊̇𝑜𝑢𝑡,𝑖𝑛𝑑𝑑𝑡

𝑡𝑐,𝑓

𝑡𝑑𝑐,𝑖

= ∫ 𝑝𝑎𝑖𝑟𝑉̇𝑑𝑐𝑑𝑡 = ∫ 𝑝𝑎𝑖𝑟𝑑𝑉
𝑉𝑑𝑐,𝑓

𝑉𝑑𝑐,𝑖

𝑡𝑐,𝑓

𝑡𝑑𝑐,𝑖

 (3.5) 

 
𝜂𝑒𝑙𝑒𝑐 =

𝑊𝑜𝑢𝑡,𝑒𝑙𝑒𝑐

𝑊𝑖𝑛,𝑒𝑙𝑒𝑐
 (3.6) 

 
𝜂𝑠ℎ𝑎𝑓𝑡 =

𝑊𝑜𝑢𝑡,𝑠ℎ𝑎𝑓𝑡

𝑊𝑖𝑛,𝑒𝑙𝑒𝑐
 (3.7) 

 
𝜂𝑖𝑛𝑑 =

𝑊𝑜𝑢𝑡,𝑖𝑛𝑑

𝑊𝑖𝑛,𝑖𝑛𝑑
 (3.8) 

In addition to the efficiencies, the electrical, shaft, and indicated energy densities are also reported. 

These energy densities are defined using Equations (3.9) through (3.11). The electric and indicated 

specific energy is defined by Equations (3.12) and (3.13) respectively. 

 
𝐸𝐷𝑒𝑙𝑒𝑐 =

𝑊𝑜𝑢𝑡,𝑒𝑙𝑒𝑐

𝑉0
 (3.9) 
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𝐸𝐷𝑠ℎ𝑎𝑓𝑡 =

𝑊𝑜𝑢𝑡,𝑠ℎ𝑎𝑓𝑡

𝑉0
 (3.10) 

 
𝐸𝐷𝑖𝑛𝑑 =

𝑊𝑜𝑢𝑡,𝑖𝑛𝑑

𝑉0
 (3.11) 

 
𝑆𝐸𝑒𝑙𝑒𝑐 =

𝐸𝐷𝑒𝑙𝑒𝑐

𝜌𝑖
 (3.12) 

 
𝑆𝐸𝑖𝑛𝑑 =

𝐸𝐷𝑖𝑛𝑑

𝜌𝑖
 (3.13) 

 Full cycle (charge and discharge) tests were conducted to evaluate the performance of the 

GLIDES prototype. A full cycle begins with the pressure vessels containing just air at the initial 

pressure, the system is then charged by pumping water into the vessels until the maximum desired 

pressure is reached. The system is then allowed to standby and equilibrate during a pause period 

lasting about 5 hours. Finally, the discharge cycle begins and continues until the vessels are 

emptied of water. In these tests the energy is recovered using only one of the two Pelton turbine 

jets, to not exceed the torque sensor’s maximum allowable torque. Three tests were run in this 

manner: the first, across the whole range of working pressures (70 bar to 130 bar), the second, in 

the lower end of the range (70 bar to 100 bar), and the third, in the upper end of the range (100 bar 

to 130 bar). A final fourth test similar to the third test but with no standby pause period between 

charging and discharging was also run. The following charts are results from the first test. All tests 

showed similar qualitative trends. The results of all four tests are later summarized in Table 3.2. 

3.1.4 Thermodynamic Performance 
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Figure 3.4 shows the transient air and water temperatures and air pressure through the 

duration of the experiment. Both air and water are initially at 21 °C. As charging begins and water 

is pumped into the pressure vessels, the temperature of the air begins to increase as it is compressed 

by the rising liquid piston. It increases to a maximum of 35 °C when charging is completed, then 

decreases during the pause period as heat is lost to ambient through the vessel walls and to the 

water below. The pressure behaves similarly, increasing from 70 bar to 130 bar, after which some 

pressure is lost during the pause period due to the drop in temperature resulting from heat loss. 

 During discharge, the temperature of the air drops as water is forced out of the pressure 

vessels through the Pelton turbine and the air atop the water inside the vessel expands. The rate of 

change (slope) of the temperature decreases with time during discharge. This can be attributed to 

heat transfer through the vessel walls into the air from the now warmer ambient. This heat transfer 

counteracts and slows the cooling due to expansion. Once the cycle is complete, the system 

temperatures return to equilibrium with ambient. 
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Figure 3.4: Air/water measured transient temperature and pressure profiles during GLIDES 

prototype operation 

 

 The pressure-volume diagram of the air during the test run can be seen in Figure 3.5. 

Beginning at state point 1, charging begins, pressure increases and volume decreases until charging 

is completed at state point 2 when 130 bar pressure is reached. Process 2 to 3 is the standby period; 

the volume remains constant while pressure and temperature drop. The discharge process (3 to 4) 

then occurs. As water is discharged from the vessels, the gas expands resulting in pressure decrease 

and volume increase, until state point 4 when all water is discharged. Lastly, as the air temperature 

returns to equilibrium with ambient, the air returns to the initial state. 

 The area under the pressure-volume curve from state 1 to state 2 represents the indicated 

work input, while the indicated work output is the area under the curve from state 3 to 4. The 

indicated storage efficiency is the ratio of output to input. The area enclosed by the curve is lost 

work due to non-isothermal expansion and compression. 
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Figure 3.5: Pressure-volume diagram of GLIDES air 

 

3.1.5 Energy Storage (Charging) 

 The input indicated (thermodynamic) power and electrical pump power during energy 

storage (charging) are shown in Figure 3.6 versus time (a) and pressure (b). The indicated power 

is the product of the pressure and the water flow rate, while the electric power is the electricity 

consumed by the pump-power as measured by the watt transducer. The difference between the 

curves is the power loss due to inefficiencies in the pump and motor. 

 



 55 

 

Figure 3.6: GLIDES prototype power inputs and charging efficiency versus time (a) and pressure 

(b) 

 

The lost power is also shown in Figure 3.6 as the pump efficiency (ratio of indicated power to 

electric power). The pump efficiency ranges from a minimum of 60% to a maximum of 70%. As 

expected for a positive displacement pump, as the pressure increases during the charging, the pump 

efficiency slightly increases. 

3.1.6 Energy Recovery (Discharging) 

Figure 3.7 shows the indicated, shaft, and electric power outputs from the GLIDES 

prototype during energy recovery versus time (a) and pressure (b). The indicated power is the 

product of pressure and flow rate, the shaft power is the product of turbine shaft torque and speed, 

and the electric power is the electricity generated by the electric generator. The power output 

decays in time due to the decay of pressure in the vessels as the air expands. The difference between 

the indicated power and the shaft power is power loss in the Pelton turbine and any flow friction, 

which is negligible in this case, while the difference between the shaft power and the electrical 

power is due to the inefficiencies in the electric generator. The indicated, shaft, and electrical 



 56 

energy densities are calculated to be 1.18, 0.55, and 0.39 kWh/m3, respectively. The turbine and 

generator efficiencies are also shown in Figure 3.7. The turbine efficiency remains fairly constant 

throughout discharge at an average about 50%. This is because the electrical load on the system is 

controlled to maintain the ratio of Pelton turbine runner speed to water jet speed around 0.46, 

which is an optimal value for Pelton turbine efficiency [52]. The generator efficiency decays 

slightly throughout discharge from a maximum of 75% to a minimum of 68%. 

 

 

Figure 3.7: GLIDES prototype power outputs and discharging efficiencies versus time (a) and 

pressure (b) 

 

By accounting for the energy inputs and outputs, the energy losses incurred throughout 

each energy conversion step can be characterized and itemized, as shown in the pie chart in Figure 

3.8. The electrical roundtrip, shaft and indicated efficiencies are found to be 21%, 30%, and 94% 

respectively. A relatively small fraction (5%) of energy is lost due to non-isothermal 

expansion/compression as heat is transferred to and from the air. The majority of energy losses are 

incurred in the turbine (29%) and pump (36%). The generator is responsible for 8% of the lost 
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energy. This indicates that there is a significant potential to improve the efficiency of the system 

by optimizing, re-scoping these components, particularly at large scales, where hydraulic pumps 

and turbines can have efficiencies in excess of 90%.   

 

 

Figure 3.8: GLIDES roundtrip efficiency and losses 

 

The results of all four GLIDES prototype test runs are summarized in Table 3.2. 

 

Table 3.2: Summary of GLIDES Gen. 1 prototype results 

Test pmin [bar] pmax [bar] Pause [mins] ηelec ηshaft ηind 
EDelec 

[kWh/m3] 

EDshaft 

[kWh/m3] 

EDind 

[kWh/m3] 

Test 1 70 130 352 0.21 0.3 0.94 0.39 0.55 1.11 

Test 2 70 100 344 0.18 0.27 0.97 0.19 0.29 0.63 

Test 3 100 130 339 0.21 0.3 0.96 0.21 0.29 0.62 

Test 4 100 130 0 0.24 0.32 0.97 0.23 0.31 0.62 
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As expected, test 4 achieves the highest electrical and indicated efficiency. This is because there 

is no pause between the end of charging and discharging, so the pressure is not allowed to decay 

as heat is lost from the air. Discharge begins promptly at 130 bar pressure. Also as expected, test 

1 achieves the highest energy densities, which can be explained by test 1 having the largest 

pressure range (largest difference between minimum and maximum pressure. Test 4 has higher 

electrical efficiency than test 2, even though the indicated efficiencies are similar. This is likely 

due to the electrical generator operating in a higher efficiency range due to higher pressure and as 

a result higher RPM. 

3.2 Model Formulation, Calibration & Validation 

3.2.1 Model Formulation 

As a reminder, the formulation of the GLIDES physics-based model is presented again in 

this section. A set of coupled differential equations were developed to model the transient 

thermodynamic response of the three major thermal masses (gas, liquid, tank walls). 
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Figure 3.9: GLIDES physics-based model formulation 

 

Figure 3.9 presents all of the control volumes in consideration. The tank wall is measured as two 

separate control volumes, the top portion in contact with the air, and the bottom portion in contact 

with the water. The mass of both control volumes is varied dynamically as the water level in the 

vessels changes during charging and discharging. The simulation model relies on several 

assumptions: spatial temperature gradients within each medium are not considered (lumped 

capacitance), constant thermophysical properties for the tank wall material, the compressed air is 

assumed to behave as an ideal gas and modeled using the ideal gas equation of state, negligible 

heat transfer between the tank upper and lower masses, and quasi-steady processes. 

 The energy equation for the gas (air) is given by Equation (3.14). The term on the left is 

the time rate of change of the energy contained within the gas at time t; the first term on the right 

is the net rate at which energy is transferred in by heat transfer with the liquid; the second term on 
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the right is the net rate at which energy is transferred in by heat transfer with the tank walls; and 

the last term on the right is the net rate at which energy is transferred out by boundary work due 

to the liquid piston acting on the gas. 

 
𝑚𝐺𝑐𝑣,𝐺

𝑑𝑇𝐺

𝑑𝑡
= −ℎ𝐺,𝐿𝐴𝐺,𝐿(𝑇𝐺 − 𝑇𝐿) − ℎ𝑖,𝐺𝐴𝑖,𝐺(𝑇𝐺 − 𝑇𝑇,𝐺) − 𝑝𝐺

𝑑𝑉𝐺

𝑑𝑡
 (3.14) 

Equation (3.15) is the energy equation for the liquid. The term on the left is the time rate of change 

of the energy contained within the liquid at time t; the first term on the right is the net rate at which 

energy is transferred in by heat transfer with the gas; the second term on the right is the net rate at 

which energy is transferred in by heat transfer with the tank walls; and the last term on the right is 

the net rate of energy transfer into the control volume accompanying mass flow of water. The 

enthalpy of the inflowing water (iL) is given by Equation (3.14), where the first term is the 

saturation enthalpy of the liquid at the ambient temperature, vf(TL) is the specific volume of the 

liquid at the temperature of the liquid, pG is the pressure of the gas and pL,sat(TL,amb) is the saturation 

pressure of the liquid at the ambient temperature. This formulation for the liquid energy equation 

was modified slightly from the version presented in Equation (2.2) in Chapter 2. The term for the 

rate of energy transfer into the control volume accompanying mass flow of water was altered to 

utilize an expression for the enthalpy of the inflowing water instead of using a simple temperature 

difference, which likely causes excessive error. 

 
𝑚𝐿𝑐𝐿

𝑑𝑇𝐿

𝑑𝑡
= ℎ𝐺,𝐿𝐴𝐺,𝐿(𝑇𝐺 − 𝑇𝐿) − ℎ𝑖,𝐿𝐴𝑖,𝐿(𝑇𝐿 − 𝑇𝑇,𝐿) + 𝑚̇𝐿𝑖𝐿 (3.15) 

 𝑖𝐿 = 𝑖𝑓(𝑇𝐿,𝑎𝑚𝑏) + 𝑣𝑓(𝑇𝐿) ∙ (𝑝𝐺 − 𝑝𝐿,𝑠𝑎𝑡(𝑇𝐿,𝑎𝑚𝑏)) (3.16) 
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Equation (3.17) is the energy equation for the portion of the tank walls in contact with the gas. The 

term on the left is the time rate of change of the energy contained within the corresponding mass 

at time t; the first term on the right is the net rate at which energy is transferred in by heat transfer 

with the gas on the inside; and the second term on the right is the net rate at which energy is 

transferred in by heat transfer with the ambient air on the outside. 

 
𝑚𝑇,𝐺𝑐𝑇

𝑑𝑇𝑇,𝐺

𝑑𝑡
= ℎ𝑖,𝐺𝐴𝑖,𝐺(𝑇𝐺 − 𝑇𝑇,𝐺) − ℎ𝑜𝐴𝑜,𝐺(𝑇𝑇,𝐺 − 𝑇𝑎𝑚𝑏) (3.17) 

Equation (3.18) is the energy equation for the portion of the tank walls in contact with the liquid. 

The term on the left is the time rate of change of the energy contained within the corresponding 

mass at time t; the first term on the right is the net rate at which energy is transferred in by heat 

transfer with the liquid on the inside; and the second term on the right is the net rate at which 

energy is transferred in by heat transfer with the ambient air on the outside. 

 
𝑚𝑇,𝐿𝑐𝑇

𝑑𝑇𝑇,𝐿

𝑑𝑡
= ℎ𝑖,𝐿𝐴𝑖,𝐿(𝑇𝐿 − 𝑇𝑇,𝐿) − ℎ𝑜𝐴𝑜,𝐿(𝑇𝑇,𝐿 − 𝑇𝑎𝑚𝑏) (3.18) 

Equation (3.19) is the continuity equation for the gas. The term on the left is the time rate of change 

of the volume of the gas at time t, and the term on the right is the volumetric flow rate of liquid 

displacing the gas. 

 𝑑𝑉𝐺

𝑑𝑡
= −

𝑚̇𝐿

𝜌𝐿
 (3.19) 
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Equation (3.20) shows the liquid continuity equation. The term on the left is the time rate of change 

of the mass of liquid contained within the tanks at time t, and the term on the right is the mass flow 

rate of liquid into the tanks. 

 𝑑𝑚𝐿

𝑑𝑡
= 𝑚̇𝐿 (3.20) 

The air is assumed to behave as an ideal gas obeying the ideal gas equation of state (Equation 

(3.21) which was used to solve for the pressure of the gas at each time step. 

 
𝑝𝐺 =

𝑚𝐺𝑅𝐺𝑇𝐺

𝑉𝐺
 (3.21) 

Equations (3.14)-(3.19) were discretized using a finite difference scheme and used to solve the 

temperature and pressure response of the gas in time increments of one second. The MATLAB 

programming environment was used to implement the model. The implementation of the model is 

similar to the code found in Appendix A, with the appropriate equation modifications described in 

the previous sections. 

3.2.2 Model Calibration & Validation 

The experimental data collected from Test 1 of the GLIDES prototype was utilized to 

calibrate the simulation model described in the previous section. A number of calibration measures 

were taken to improve the extent to which the model reflected experimental results. The charging 

and discharging flow rates through the pump and Pelton turbine measured experimentally were 

correlated with the system pressure and used in the simulation model. To calculate/update the air 

pressure, it was found that the ideal gas equation of state captured the transient system pressure 
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behavior more effectively than the Redlich-Kwong (RK) equation of state initially used in the 

simulation effort in Chapter 2. The model formulation described in the previous section requires 

four heat transfer coefficients, hG,L (gas-to-liquid), hi,G (gas to inner tank wall), hi,L (liquid to inner 

tank wall), and ho (outer tank wall to ambient air). The outer heat transfer coefficient ho is modeled 

assuming forced convection over a vertical cylinder with a representative outdoor wind velocity 

of ~3 m/s using a Churchill and Bernstein correlation [56]. The liquid to inner tank wall heat 

transfer coefficient hi,L is calculated using LeFevre’s correlation [55], approximating the inner wall 

of the tank as a vertical wall. The remaining two heat transfer coefficients, hG,L, and hi,G are 

assumed to be constant values and are the primary parameters used to calibrate the model to 

achieve reasonable agreement between the simulated and experimental results. hG,L is varied 

between 200-500 W/m2*K, and hi,G is varied between 75-100 W/m2*K. 

 

 

Figure 3.10: Experimental versus simulated pressure-volume diagrams for three different test 

conditions 

 

 The calibrated model was then run for the same conditions as Tests 1-3 described in Table 

3.2. Figure 3.10 shows a comparison of the experimental versus simulated pressure-volume 
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diagrams for Tests 1-3. It can be seen visually and qualitatively from Figure 3.10 that there is 

strong agreement between the simulated and experimental test profiles. The primary purpose of 

the model is to predict the indicated efficiency and energy density of the system. Maximum error 

of 5.75% and 3.51% for the efficiency and energy density respectively were achieved. Table 3.3 

below shows the error for the two parameters for all three tests.  

 

Table 3.3: Experimental versus simulated efficiency and energy density percentage errors 

Test ηind error [%] ED error [%] 

Test 1 5.75 1.28 

Test 2 2.34 3.51 

Test 3 0.30 0.42 

 

3.3 Parametric Analysis 

The calibrated model was then used to conduct parametric simulations of the GLIDES 

system. Parameters of interest include the minimum pressure, the maximum pressure, and the 

auxiliary component efficiencies (pump/motor and turbine/generator). In the following sections, 

the combined pump/motor efficiency is referred to as the charging efficiency, and the combined 

turbine/generator efficiency is referred to as the discharging efficiency. These efficiencies are 

assumed to be constant values throughout charging and or discharging. 

 Figure 3.11 shows the relationship between pressure ratio (pmin/pmax) and efficiency as well 

as energy density, for both electrical efficiency and energy density (a) and indicated efficiency and 

energy density (b) for several pmax. The minimum pressure pmin is varied from 40 bar to 90 bar, 

and the maximum pressure pmax is varied from 100 bar to 160 bar. The arrow head on each curve 
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in Figure 3.11 points in the direction of the applicable y-axis (left or right) The electrical data 

assumes state-of-the-art charging (pump/motor) and discharging (turbine/generator) efficiencies 

of 90% [6, 7, 62]. As seen in the Figure, in general, there is a tradeoff between efficiency and 

energy density. As the pressure ratio increases (i.e. the difference between pmin and pmax) decreases, 

the efficiency improves, but the energy density declines. This trend can be attributed to the fact 

that, as the pressure ratio approaches unity, less compression/expansion is required and the 

temperature swing of the air is reduced, so the expansion/compression losses are reduced, 

efficiency improves, but energy density suffers. 

 

 

Figure 3.11: Electrical (a) and indicated (b) efficiency and energy density versus GLIDES 

operating pressure ratio. Note: each curve’s arrowhead points in direction of applicable y-axis 

(left or right). 

 

 To simplify the data contained in Figure 3.11, the efficiencies and energy densities are 

normalized. The efficiencies are normalized by multiplying them by the pressure ratio (pmin/pmax), 

while the energy densities are normalized by dividing them by the initial air density (density at 

pmin), yielding the specific energy in kWh/kg of air. The result of these normalizations is shown in 
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Figure 3.12. The different curves for each value of pmax are reduced to overlapping curves. These 

normalizations and the data shown in Figure 3.12 are valuable because only the pressure ratio and 

system size (mass of air) are needed to predict the efficiency and indicated energy capacity of a 

given GLIDES system. To do so, the curves in Figure 3.12 can be fit to yield equations for the 

efficiency and specific energy. The indicated curves (Figure 3.12 b) are fit and result in Equations 

(3.22) and (3.23). Goodness of fit (R2) values of 1 and 0.99 respectively are achieved for equations 

(3.22) and (3.23). Multipliers for the pump/motor and turbine/generator can be added to obtain the 

electrical efficiency and specific energy. 

 

 

Figure 3.12: Normalized electrical (a) and indicated (b) efficiency and energy density versus 

GLIDES operating pressure ratio. Note: each curve’s arrowhead points in direction of applicable 

y-axis (left or right) 

 𝜂𝑖𝑛𝑑 = 0.9762 − 0.0278 (
𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛
) (3.22) 

 𝑆𝐸𝑖𝑛𝑑 = 0.0231 (
𝑝𝑚𝑖𝑛

𝑝𝑚𝑎𝑥
) − 0.0651 + 0.0419 (

𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛
) (3.23) 
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Next, the charging (pump/motor) efficiency and discharging (turbine/generator) efficiency are 

varied to examine the sensitivity of the system overall electrical roundtrip efficiency (ηelec) and 

energy capacity (energy density and specific energy) to the auxiliary component efficiencies. Both 

the charging and discharging efficiencies are varied from 50% to 100%. For this study, a GLIDES 

system operating between 70 bar and 130 bar is simulated. The resulting data is shown in Figure 

3.13 and Figure 3.14. Figure 3.13 shows ηelec for various values of charging and discharging 

efficiency. Achieving high system efficiency is very reliant on utilizing auxiliary components with 

high individual efficiencies. Individual component efficiencies above 80% are needed to achieve 

overall electrical roundtrip efficiency above 60%. As the charging and discharging efficiencies 

approach unity or 100%, the GLIDES system approaches the indicated efficiency, which can be 

considered as the maximum theoretical efficiency. 

 

 

Figure 3.13: GLIDES electrical roundtrip efficiency as a function of charging and discharging 

component efficiencies 
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Similarly, to Figure 3.12 a), Figure 3.14 shows the normalized electrical roundtrip efficiency and 

normalized energy density (specific energy) for various values of charging (pump/motor) and 

discharging (turbine/generator) efficiencies, as well as the equations for the curve fits. Figure 3.14 

a) is for charging/discharging efficiency of 90%, while b), c) and d) are for charging/discharging 

efficiencies of 80%, 70%, and 60% respectively. With the data in Figure 3.14, the roundtrip 

electrical efficiency and capacity for any size GLIDES system, operating with any pressure ratio, 

for any charging/discharging efficiency between 60% and 90% can be approximated. To do so, 

Equations (3.24) and (3.25) can be used along with the coefficients in Table 3.4. 

 

Figure 3.14: Normalized electrical efficiency and energy density versus GLIDES operating 

pressure ratio for various charging/discharging efficiencies. a) 90%, b) 80%, c) 70%, and d) 

60%. Note: each curve’s arrowhead points in direction of applicable y-axis (left or right) 
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 𝜂𝑒𝑙𝑒𝑐 = a − b (
𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛
) (3.24) 

 𝑆𝐸𝑒𝑙𝑒𝑐 = c (
𝑝𝑚𝑖𝑛

𝑝𝑚𝑎𝑥
) − d + e (

𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛
) (3.25) 

 

Table 3.4: Coefficients for use with Equations 3.24 and 3.25 

ηP/T a b c d e 

0.90 0.7951 0.0227 0.0480 0.0837 0.0423 

0.80 0.6247 0.0178 0.0474 0.0827 0.0418 

0.70 0.4783 0.0136 0.0415 0.0723 0.0366 

0.60 0.3514 0.0100 0.0358 0.0620 0.0314 

 

 

In summary, experimental electrical roundtrip efficiency and indicated efficiency of 24% 

and 97%, and electrical and indicated energy density of 0.23 kWh/m3 and 0.62 kWh/m3 

respectively were achieved for the system with peak pressure limited to 130 bar. Low electrical 

roundtrip efficiency was due to large energy losses in auxiliary components (pump/motor and 

turbine/generator. Auxiliary component efficiencies were relatively low and not optimized for the 

specific application at hand. In addition to the experimental performance results, a comprehensive, 

physics based model of the GLIDES system was developed and also presented. The physics based 

model was calibrated and validated using the experimental data, and good agreement between 

experimental and simulated data was achieved. The validated model was then used to conduct 

parametric analysis of the performance of the GLIDES system. It was found that in general, when 

plotted against pressure ratio, there is a trade-off between system efficiency and energy density. 
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However, the indicated efficiency dependence on pressure ratio is fairly weak. The results show 

that the cycle thermodynamic efficiency is very high and there is not much more room for 

improvement; thus achieving high system efficiency is very dependent on utilizing auxiliary 

components with high individual efficiencies, therefore, proper sizing and optimized selection of 

auxiliary components is critical. Only pressure ratio and system size are needed to accurately 

predict the efficiency and energy capacity of a given GLIDES system. One potential strategy to 

improve auxiliary component operating efficiency is to narrow the range of pressure variation to 

reduce off-design point operation. One way of pursuing this is to try to achieve isobaric (or near-

isobaric) compression and expansion; this can be done by utilizing alternative working fluids to 

air, such as condensable gases. This strategy is investigated in the following chapter. 
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CHAPTER 4. CONDENSABLE GASES AS WORKNG FLUID 

Some content in this chapter (figures and text) adapted from: 

1. Odukomaiya, A., et al., Near-isothermal-isobaric compressed gas energy storage. Journal of 

Energy Storage, 2017. 12: p. 276-287. [63] 

In this chapter, the effectiveness of storing energy by compressing and expanding a 

condensable gas is evaluated. Utilizing heat transfer techniques and replacing the non-condensable 

air with a condensable gas (i.e. CO2, synthetic refrigerants, hydrocarbon refrigerants, etc.) has 

been proposed as methods to improve energy density and roundtrip efficiency of such systems, 

leading to near isothermal and near isobaric charge/discharge processes. In order to investigate the 

effectiveness of the proposed concept, miniature lab-scale experimental setups were designed and 

built to investigate the compression/expansion characteristics and energy storage efficiency of a 

system utilizing condensable gases as the energy storage (primary) working fluid, and mineral 

refrigerant oil as the liquid piston (secondary) working fluid. R134a was initially studied (low 

pressure), followed by carbon dioxide (high pressure). Several tests were carried out to quantify 

energy storage efficiency and energy density. It is found that improving heat transfer rates 

from/into the storage fluid results in increased efficiency and energy density. A heat-transfer 

enhancement strategy to achieve near isothermal, isobaric expansion and compression to a greater 

extent is investigated experimentally on the R134a tests. Some results are generalized and 

presented in non-dimensional form which can be applied to describe and/or design scaled-up 

systems. In addition to the experimental work, a physics-based model is created and used to 

achieve a deeper understanding of the underlying physics of the compression and expansion 

behavior of condensable gases. 
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4.1 Why Condensable Gases? 

Successful use of a condensable gas provides a number of advantages over the current 

system. There are several potential benefits of switching the primary working fluid to be a 

condensable gas. The first such benefit is the potential of operating with constant 

temperature/pressure during compression and expansion. This is possible due to gas/liquid (during 

compression) and liquid/gas (during expansion) phase change. Currently, the system utilizing air 

results in an unsteady power profile due to non-constant pressure expansion during discharge. 

Constant pressure expansion due to phase change would allow for a steady power delivery profile, 

for applications where variable capacity power delivery is not acceptable. These effects can be 

further explained by examining Figure 4.1. Figure 4.1 shows theoretical pressure-volume diagrams 

for an isothermal storage cycle versus an isobaric (and isothermal) storage cycle, the isothermal 

cycle operates between a low and high operating pressure, while the isobaric cycle operates at the 

high operating pressure. For the isothermal cycle, it begins at state point 1, as the liquid piston 

fluid is pumped into pressure vessel(s) the volume of the gas decreases as it is displaced, and the 

pressure increases isothermally until the high pressure is reached at state point 2. After an idle 

period, the pressure remains the same (no pressure is lost to the ambient as the heat of compression 

is lost to the ambient, as would be the case in an actual cycle utilizing air). Energy extraction then 

begins from state 3, as the gas expands, pressure decreases and volume increases back down to 

state point 4, which is also the initial state 1. Now, consider the isobaric system, beginning with 

the condensable gas as a saturated vapor at state point 1. Compression begins as the liquid piston 

fluid is pumped into the pressure vessel(s), the volume decreases as the gas is displaced by the 

liquid piston, however, due to vapor to liquid phase change, the pressure remains constant, until 

only saturated liquid remains at state point 2. After an idle period, the energy extraction process 
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begins from state 3; the saturated liquid expands, as it evaporates back to vapor phase, the pressure 

is maintained constant. The constant pressure during discharge (state 3 to 4) allows for a steady 

power delivery profile. Also, due to constant operation at the higher pressure, the energy density 

is higher; this can be seen by comparing the integral of the isobaric curve (area under the curve), 

to the integral of the isothermal curve. Note that this comparison is only valid for a condensable 

gas having saturated pressure equal or near the high pressure of the non-condensable system. Also 

note that a perfectly isobaric condensable gas system would also be isothermal. Furthermore, 

because the pressure would be constant (or varying within a narrower band) efficiency losses in 

auxiliary components (pump/motor and turbine/generator) due to variable (off-design point) 

operation can be minimized or avoided. In addition to the above, the density change associated 

with compression from a saturated vapor to a saturated liquid means that larger volume 

displacement is achievable and more secondary pumping liquid (liquid piston fluid) is introduced 

into the system. This means that more liquid can be passed through the hydraulic turbine during 

discharge, meaning that the power delivery period is longer and more energy can be extracted. 

 

Figure 4.1: Comparison of ideal isothermal (non-condensable) and isobaric (condensable) 

storage pressure-volume diagrams 
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There have been a few attempts at achieving isobaric compressed-air/gas energy storage in 

the literature. A couple of concepts approach the problem by displacing the air volume during 

charging or discharging using a liquid to maintain constant pressure. Nielsen and Leithner [64] 

displace the air volume by using a brine shuttle pond at the surface which gravity feeds the storage 

cavern and enables near isobaric storage. Because the volume displacement is gravity fed, the 

reverse process cannot be completed during discharge (energy recovery), so this strategy can only 

be leveraged during half of the cycle. Similarly, Mazloum et al. [65] utilized the volume 

displacement technique, however, they utilize a secondary loop to pump water into the storage 

medium during charging. The loop also includes a Pelton turbine to recover energy from the 

pumped water as it is evacuated during discharge. While the system would incur additional energy 

use during charging due to running a high pressure hydraulic pump in addition to a compressor 

during charging, it is not clear how much of this additional energy is recovered via the Pelton 

turbine during discharge. A few concepts attempt to achieve near-isobaric operation by siting the 

storage medium underwater to leverage the hydrostatic pressure exerted by the surrounding water 

during charging and discharging [66-68], however, geographic restrictions remain an issue with 

these concepts, and placing systems underwater introduce a host of new logistical and engineering 

challenges. Lastly, Chen et al. [69] approached the challenge using a combination of the volume 

displacement approach and utilizing condensable (volatile) gases. The storage medium is split into 

two compartments separated by a sliding piston. One side is utilized for air storage, while the other 

side is charged with a condensable gas. During charging or energy storage, the condensable gas 

condenses, providing a sort of pressure relief or buffer against pressure increasing. During 

discharge or energy recovery, the opposite occurs, the condensable gas vaporizes providing a 

pressure boost to maintain pressure during discharge. Although a differen approach than the one 
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presented in this chapter, at the writing of this thesis, this last concept is the only one found in the 

literature which attempts to use condensable or volatile gases to achieve isobaric 

compression/expansion for energy storage. 

4.2 R134a – Experiment Overview 

To assess the feasibility of a proposed system utilizing condensable gas. An experimental 

system was built to investigate the energy storage potential and compression/expansion 

characteristics of utilizing R134a as a condensable gas (primary working fluid) and mineral 

refrigerant oil (secondary pumping liquid). The information gained from this research effort will 

provide insight into the potential of condensable gases for energy storage, and help guide the 

design of a scaled-up system operating at higher pressure, with appropriate selection of working 

fluids. The success of the R134a experiments led to the development of a similar experiment 

utilizing Carbon Dioxide as the condensable gas. This effort is also described in subsequent 

sections in this chapter. 

4.2.1 Initial Configuration 

The purpose of this experiment is to investigate the potential of utilizing a condensable gas 

as the primary working fluid in the GLIDES energy storage system, instead of the non-condensable 

air or nitrogen which have previously been proposed. The storage tank of the system is a clear 

polycarbonate tube 241 cm in length, inner diameter of 1.9 cm, outer diameter of 2.54 cm; inside 

this tube there is a freely traveling, leak-free rubber piston separating the primary working fluid 

from the fluid serving as the liquid piston (mineral oil in this case). Markings were made along the 

tube to measure gas volume throughout the progression of experiments. On the upper side of the 

piston is the chamber containing the condensable fluid, R-134a in this case. R134a is a common 
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refrigerant that condenses at room temperature under relatively low pressures (approximately 6 

bar at 20 °C). R134a was chosen as the condensable gas for these experiments because it is readily 

available and its saturation pressure is low enough for clear tubing to be utilized without the need 

for specialized high pressure pumps or opaque vessels. On the other side of the piston is immiscible 

mineral oil. Mineral oil is used as the coupling fluid to act as the liquid piston. It was chosen 

because it is immiscible with liquid R134a. An experiment hand pump is utilized to pump the 

mineral oil into the storage polycarbonate tube.  Located at the top of the tube is a pressure gauge, 

pressure transducer, and thermocouple. These measurement instruments were used along with a 

National Instrument data acquisition module and LabView program to collect experiment data 

from the system. Data was collected every one second for the duration of each experiment. Located 

at the bottom of the tube is the mineral oil inlet/outlet. This acts as a valve to control charging and 

discharging rates. A schematic of the test rig can be seen in Figure 4.2. The insert shows the rubber 

piston which slides freely up and down inside of the clear tube, with the R134a above, and the 

mineral oil below. 
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Figure 4.2: Schematic of R134a experimental setup 

 

4.2.2 Improved Configuration 

To improve heat transfer performance during experiments, a heat pipe, heat sink, and fan 

arrangement are added to the experimental setup as seen in Figure 4.3. 
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Figure 4.3: Schematic and image of modifications made to R134a experimental setup for 

improved heat transfer 

 

The heat pipe used in the experiment is a 6-mm diameter, 12-inch length copper heat pipe 

with deionized water as the working fluid and a sintered wick. An aluminum heat sink with radial 

fin profile, measuring 109 mm width and height, with 1.52 mm fin thickness and 43 mm base 

thickness is used. A 6-inch, 50 CFM square fan is utilized for forced convection to faster dissipate 

the heat of compression transferred from the refrigerant via the heat pipe and heat sink. The 

majority of the length of the heat pipe is introduced into the vapor refrigerant from the top of the 

storage tube. The top of the heat pipe which is not inside the storage tube is thermally connected 

to a radial heat sink using thermal paste and a fan is used to achieve forced convection. This 

arrangement helps to increase heat transfer from the working fluid refrigerant during compression 

(charging). As the refrigerant is compressed and heat of compression is generated, the heat pipe, 

heat sink, and fan help to remove this heat from the refrigerant, reducing the resulting temperature 
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increase. This allows the compression process to be closer to isothermal, and consequently, closer 

to isobaric. In this design, most of the condensation takes place on the surface of the heat pipe. 

4.2.3 Measurement, Instrumentation and Data Reduction 

Three measurements were used in the experimental setup described in the previous section. 

These measurements were pressure, temperature, and length of the refrigerant column (used to 

calculate volume). Pressure measurements were collected using a Sentra 3100R230PG1G9 

pressure transducer with 0-230 psig range and 0.25% of full scale accuracy. Temperature 

measurements were taken using an Omega T-type 12-inch probe type thermocouple with -250 – 

300 °C range and maximum uncertainty of ±0.5 °C. Refrigerant column length measurements were 

obtained optically using a 50-ft. tape measure with smallest increments of 1/16 inch installed 

alongside the storage tube. Uncertainty of the length measurements is therefore taken as ±1/32 

inch. This length measurement uncertainty results in uncertainty in the calculated volume of 4.5E-

07 m3. 

The experiment procedure consists of two parts, first the charging process (energy storage 

stroke), and second the discharging process (energy recovery stroke). A test begins with the storage 

tube initially containing only R134a as saturated vapor. The initial state is the point at which a 

small amount of R134a is already liquid (to ensure saturation) and if pressurized, more R134a 

would condense immediately. The data collection program is then run. The oil flow valve is opened 

and the hand pump is operated to pressurize the system by pumping oil acting as the liquid piston 

into the storage tube at pre-determined rates. Pressurizing continues until the final state where the 

flow valve is closed. The time at which the gas volume reaches each marking on the tube is 

recorded. The work input is calculated by numerically integrating the charging pressure-volume 
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curve from the initial volume to the end of compression to determine the area underneath, as seen 

in Equation (4.1). After waiting for a long enough pause period to allow for condensation to go to 

completion, and temperature to return to equilibrium with ambient, the discharging process is 

ready to begin. The flow valve is opened. Once again, the volume is recorded incrementally by 

recording the timestamp at which each marking along the tube is reached. When the oil is fully 

evacuated, the flow valve is closed, marking the end of the experiment, and the data-logging 

program is stopped. Again the work extracted from the system is calculated via numerical 

integration of the discharging pressure-volume curve from the volume at the end of compression 

to the volume at the end of expansion, as seen in Equation (4.2). 

 𝑊𝑖𝑛 = ∫ 𝑝𝑓𝑑𝑉𝑓

𝑉𝑐

𝑉0

= ∑ 𝑝𝑓∆𝑉𝑓

𝑉𝑐

𝑉0

 (4.1) 

 𝑊𝑜𝑢𝑡 = ∫ 𝑝𝑓𝑑𝑉𝑓

𝑉𝑒

𝑉𝑐

= ∑ 𝑝𝑓∆𝑉𝑓

𝑉𝑒

𝑉𝑐

 (4.2) 

The system indicated efficiency is then calculated by dividing the work output by the work 

input. The system energy density is also calculated by dividing the work output by the initial 

volume. These calculations are shown in Equations (4.3) and (4.4). 

 𝜂 =
𝑊𝑜𝑢𝑡

𝑊𝑖𝑛
 (4.3) 

 𝐸𝐷 =
𝑊𝑜𝑢𝑡

𝑉0
 (4.4) 
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4.3 R134a – Results & Analysis 

4.3.1 Initial Configuration 

Three tests were conducted under this configuration of the system; each having a varying 

charge and discharge time. The charge time was varied simply by adjusting the pumping rate of 

the oil. The discharge time was adjusted by adjusting the extent to which the flow valve evacuating 

the oil was opened. The test parameters and results are shown in Table 4.1. 

 

Table 4.1: R134a test parameters and results 

Tests 
Figure 

Reference 

Charge 

Time 

(mins) 

Discharge 

Time 

(mins) 

Efficiency 

Energy 

Density 

(kJ/m3) 

Min/Max 

Pressure 

(bar) 

Min/Max 

Volume (m3) 

Test 1 Figure 4.4 5.45 7.13 82.00% 476.39 5.02/7.03 
6.33E-

5/6.78E-4 

Test 2 Figure 4.5 22.08 23.65 86.56% 507.00 5.35/6.90 
5.97E-

5/6.78E-4 

Test 3 Figure 4.6 61.97 63.92 89.97% 515.36 5.53/6.66 
5.97E-

5/6.78E-4 

 

The general trend of an increase in efficiency as charge and discharge time increases due 

to decreasing slopes of the pressure-volume curve is expected and observed. This decrease in slope 

equates to less pressure change for each unit change in volume. Increase in the time allowed for 

charging and discharging allows for improved heat transfer; heat transfer is a relatively slow 

process. In order to achieve truly isothermal and isobaric compression, heat transfer must be good 

enough to sufficiently dissipate the heat of compression generated. Otherwise, the heat remains in 

the system, resulting in an incremental increase in gas temperature, and subsequent increase in 

saturation pressure. This results in a required increase in mechanical work per unit volume required 
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to continue condensation. By increasing the charging time, more time is allowed for heat transfer 

to occur, improving performance. The opposite is true during discharge, adequate heat transfer is 

needed to allow heat to flow into the system, counter-acting the cooling due to expansion. When 

heat transfer is not adequate, gas temperature falls, resulting in associated decrease in saturation 

pressure, which means the amount of work per unit volume that can be extracted from the system 

decreases. In practical energy storage systems designed for application in solar or wind energy, 

the charging/discharging time is typically several hours, depending on the availability of renewable 

resources and/or system size. The transient pressure/temperature profiles and pressure-volume 

diagrams for tests 1-3 can be seen in Figure 4.4, Figure 4.5, and Figure 4.6. For both the 

temperature and pressure transient profiles, the beginning of the charging process (time zero) sees 

temperature and pressure increase until the charging process is complete; this is where the peak 

temperature and pressure occur. The charging process is then followed by an idle period where 

temperature and pressure decrease slowly. The discharge process then sees a decrease in 

temperature and pressure (occurs around 120-minute mark for Test 1), followed by another pause 

period during which the temperature and pressure increase slowly. These four distinct processes 

can be seen in the pressure-volume diagram in Figure 4.5 b). First, charging from state 1 to state 

2, during which volume decreases and pressure increases, then a pause (idle period) during which 

volume remains constant but pressure decreases as heat is lost to the ambient. This is followed by 

discharging from state 3 to state 4, as pressure decreases and volume increases. Finally, another 

pause (idle) period from state 4 back to state 1, as the volume remains constant, but the pressure 

increases due to heat transfer to the gas inside the tube. 
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Figure 4.4: R134a Test 1 transient temperature/pressure profiles and pressure-volume diagram 

 

 

Figure 4.5: R134a Test 2 transient temperature/pressure profiles and pressure-volume diagram 

 

Further increases in efficiency can be achieved by adding passive or active heat transfer 

strategies, which would reduce gas temperature changes (i.e. maintain condensation/evaporation 

pressure constant or near constant). This would make the charging and discharging processes to 

approach isothermal processes and reduce energy loss. One such method is discussed in 

subsequent sections. 
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Figure 4.6: R134a Test 3 transient temperature/pressure profiles and pressure-volume diagram 

 

4.3.2 Improved Configuration 

As previously mentioned, achieving adequate heat transfer during charging and 

discharging is important to maximize system efficiency. Achieving adequate heat transfer rates 

helps to minimize temperature change, which in turn minimizes changes in saturation pressure of 

the working refrigerant. This effect can be further explained by examining the energy equation 

(first law of thermodynamics) for a control volume comprising of the vapor portion of the working 

fluid, as seen in the following equations. 

 
𝑑𝐸𝑣

𝑑𝑡
= 𝑄̇ − 𝑊̇ +

𝑑𝑚𝑣,𝑙

𝑑𝑡
ℎ𝑓𝑔 (4.5) 

The terms in Equation (4.5) can be expanded as seen in Equation (4.6): 



 85 

 𝑚𝑣𝑐𝑣

𝑑𝑇𝑣

𝑑𝑡
= 𝑄̇ − 𝑝𝑣

𝑑𝑉𝑣

𝑑𝑡
+

𝑑𝑚𝑣,𝑙

𝑑𝑡
ℎ𝑓𝑔 (4.6) 

The term on the left-hand side of the equation is the rate of change of the energy contained 

within the control volume, namely, product of the mass of the vapor contained in the control 

volume, the specific heat, and the rate of change of the temperature of the vapor. The first term on 

the right is the net rate at which heat enters the control volume. The second term on the right is the 

net rate at which work (boundary) is done by the control volume. The last term on the right is the 

net rate of energy transfer from the control volume due to gas/liquid phase change. To achieve 

zero increase in temperature (i.e. no change in saturation pressure), it is necessary that the right 

side of Equation (4.6) sum to zero, meaning that the rate of boundary work must equal the sum of 

the other two terms on the right. By assuming a sign convention of heat input and work output 

being positive, and examining the compression processes of tests 1-3 presented in the previous 

section, it can be deduced from the increasing gas temperature that the input power is larger than 

the sum of the other two terms on the side of the equation (in all three cases). Thus, by increasing 

the heat transfer to decrease the sum of the right-hand side to be closer to zero, a near isothermal 

or isothermal condition can be achieved. The same is true of the decreasing fluid temperature 

during expansion, with the signs of the terms on the right-hand side being opposite. This is the 

basis for the hypothesis that by introducing active or passive heat transfer enhancement strategies, 

energy storage efficiency can be improved, and isothermal-isobaric operation can be approached. 

Three additional tests with similar charging and discharging times as test 1-3 are then 

conducted with the improved configuration. As described in the ‘Experiment Overview’ section 

of this chapter, the improved configuration features the addition of a heat pipe, heat sink, and fan, 
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in order to enhance heat transfer to and from the gas inside of the tube. A fourth test was also 

conducted to investigate the effect of significantly longer charging and discharging times, in an 

attempt to match the indicated efficiency of configuration 2 of the air system presented in the 

‘Previous Work’ section of this paper. The test parameters and results can be seen in Table 4.2. 

 

Table 4.2: R134a improved configuration (active HT using heat pipe/heat sink) test parameters 

and results 

Tests 
Figure 

Reference 

Charge 

Time 

(mins) 

Discharge 

Time 

(mins) 

Round 

Trip 

Efficiency 

Energy 

Density 

(kJ/m3) 

Min/Max 

Pressure 

(bar) 

Min/Max 

Volume (m3) 

Test 4 Figure 4.7 4.50 9.92 86.97% 516.50 5.37/6.98 5.6E-5/6.8E-4 

Test 5 Figure 4.8 18.85 21.77 86.52% 521.74 5.53/7.09 6.5E-5/6.8E-4 

Test 6 Figure 4.9 54.58 79.52 94.00% 539.91 5.64/6.59 6.2E-5/6.8E-4 

Test 7 Figure 4.10 178.70 187.32 95.80% 544.33 5.74/6.55 6.4E-5/6.8E-4 

 

It can be seen from the data in Table 4.2 that heat transfer enhancement due to the addition of the 

heat pipe, heat sink, and fan arrangement does result in an improvement in the energy storage 

efficiency and energy density. This can be illustrated by comparing the efficiencies and energy 

densities in Table 4.2 and Table 4.1. Based on the charging and discharging times, test 1 can be 

compared with test 4, test 2 with test 5, and test 3 with test 6. A three-hour (180 min) test was not 

run in the initial configuration without the heat pipe, heat sink, and fan modification. Although the 

charging/discharging times are roughly the same, the efficiencies and energy densities obtained 

with the improved configuration are higher. 
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Figure 4.7:R134a Test 4 transient temperature/pressure profiles and pressure-volume diagram 

 

The improvements resulting from the modifications can also be illustrated graphically. The 

transient pressure/temperature and pressure-volume diagrams for Tests 6-8 can be seen in Figure 

4.7, Figure 4.8, Figure 4.9. 

 

 

Figure 4.8: R134a Test 5 transient temperature/pressure profiles and pressure-volume diagram 
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The improvements due to the modifications made for tests 4-7 can be most easily described by 

comparing the change in pressure due to expansion and compression (ΔPc, ΔPe), of the short (tests 

1,4), medium (tests 2,5), and long (tests 3,6) tests. In each case, the modified system results in a 

reduction in ΔPc and ΔPe. 

 

 

Figure 4.9: R134a Test 6 transient temperature/pressure profiles and pressure-volume diagram 

 

The exact numbers can be seen in  and expansion can be achieved. 
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Table 4.3 along with the percentage reductions. This shows that with adequate enhancement to 

achieve the necessary heat transfer rates, isobaric (and therefore isothermal) compression and 

expansion can be achieved. 

 

 

 

Table 4.3: Improvements in R134a compression and expansion due to heat transfer enhancement 

Test 

Length 
Test HP/HS? ΔPc (bar) 

ΔPc Percent 

Decrease (%) 
ΔPe (bar) 

ΔPe Percent 

Decrease (%) 

Short 
1 No 1.08 

8.96 
1.27 

12.64 
4 Yes 0.98 1.11 

Medium 
2 No 0.93 

13.79 
1.13 

37.09 
5 Yes 0.81 0.71 

Long 
3 No 0.66 

24.39 
0.89 

9.07 
6 Yes 0.50 0.81 

 

The transient pressure/temperature and pressure-volume diagrams for test 7 which had 

significantly longer (180 mins) charging and discharging times are shown in Figure 4.10 a) and b). 

The indicated efficiency of 95.8% achieved here is as good as the highest indicated efficiencies of 

the air system discussed in Chapters 2 and 3. It is likely that a system utilizing a condensable gas 

as is described in this work, with equal indicated efficiency as an equivalent system utilizing air 

would achieve higher roundtrip efficiency and energy density, due to the near isobaric 

characteristic resulting in reduced conversion losses. Efficiency losses due to off-design operation 

of auxiliary machines (pump/motor, turbine/generator) would be reduced due to the narrower 

range of pressures seen with the near isobaric condensable gas system. 
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Figure 4.10: R134a Test 7 transient temperature/pressure profiles and pressure-volume diagram 

 

4.3.3 Dimensionless analysis of storage (compression) process 

In order to generalize some of the results presented above and present them in a format 

more readily useful for future analyses, it is possible to non-dimensionalize the compression 

process by which energy is stored in the working fluid. This analysis yields a new dimensionless 

number, hereby referred to as π, which can be used to describe the extent to which the compression 

of a condensable gas approaches isothermal-isobaric compression. It is particularly useful for 

relative comparisons of different systems. We begin by recognizing that the amount of heat 

removed from a condensing gas over any given period of time is proportional to the mass of vapor 

condensed times the enthalpy of vaporization of said vapor, this is shown in Equation (4.7), where 

UA is the overall heat transfer coefficient, Tsat is the saturation temperature of the working fluid at 

the beginning of charging (compression), T∞ is the ambient or surrounding temperature, mcond is 
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the mass of working fluid condensed within the same time frame, and hfg is the enthalpy of 

vaporization of the working fluid evaluated at the initial temperature and pressure. 

 𝑈𝐴(𝑇𝑠𝑎𝑡 − 𝑇∞)𝑑𝑡 ≈ 𝑚𝑐𝑜𝑛𝑑ℎ𝑓𝑔 (4.7) 

The mass of the condensed gas on the right-hand side can be re-written as the product of the density 

of the saturated vapor and change in volume as seen in Equation (4.8). 

 
𝑈𝐴(𝑇𝑠𝑎𝑡 − 𝑇∞)𝑑𝑡 ≈ 𝜌𝑠𝑎𝑡,𝑣𝑑𝑉ℎ𝑓𝑔 

(4.8) 

Separating variables yields the subsequent expression in Equation (4.9): 

 

𝑑𝑉

𝑑𝑡
≈

𝑈𝐴(𝑇𝑠𝑎𝑡 − 𝑇∞)

𝜌𝑠𝑎𝑡,𝑣ℎ𝑓𝑔
 

(4.9) 

The term on the right-hand side of Equation (4.9) is the basis of the dimensionless number π. By 

defining dimensionless time (t*), volume (V*), and pressure (p*) as follows in Equation (4.10), 

where tcharge is the time spent to charge, V0 is the initial volume at the beginning of charging, and 

psat is the saturation pressure of the working fluid, a fully dimensionless number π is obtained and 

the compression process for a condensable gas can be shown on a dimensionless pressure-volume 

diagram. 

 𝑡∗ =
𝑡

𝑡𝑐ℎ𝑎𝑟𝑔𝑒
  ,   𝑉∗ =

𝑉

𝑉0
 ,   𝑝∗ =

𝑝

𝑝𝑠𝑎𝑡
 (4.10) 
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This results in the following dimensionless number shown in Equation (4.11), which describes the 

entire compression process. The dimensionless number shows the scale of the heat removal rate to 

the heat generation rate. Since the compression rate (tcharge) and the heat transfer effectiveness (UA) 

are the main parameters determining how close to isobaric-isothermal behavior the compression 

process gets, the dimensionless number presented here is a good measure of compression 

performance. The higher the number, the closer the compression process is to isothermal-isobaric 

compression. 

 

𝑑𝑉∗

𝑑𝑡∗
≈

𝑈𝐴(𝑇𝑠𝑎𝑡 − 𝑇∞)𝑡𝑐ℎ𝑎𝑟𝑔𝑒

𝜌𝑠𝑎𝑡,𝑣ℎ𝑓𝑔𝑉0
= 𝜋 

(4.11) 

By inspecting this new dimensionless number, it can be seen that a given compression process can 

be improved (to approach isothermal-isobaric) by enhancing heat transfer (UA) or slowing down 

the compression process (i.e. increasing tcharge). UA is a system dependent parameter, while tcharge 

is an application dependent parameter. Both would need to be considered in system design. 

The above parameterization can be applied to the compression processes of tests 1-7 above. 

In the initial configuration, the system UA is estimated by considering a thermal resistance network 

of convection inside the tube, conduction through the tube, and convection outside the tube. With 

condensation occurring inside the tube, it can be assumed that the inner thermal resistance is much 

less than the conduction and outer thermal resistances, and thus can be neglected. The conduction 

and exterior convection resistances can be easily estimated using the thickness and thermal 

conductivity of the tube, and assuming a representative value for heat transfer coefficient due to 

natural convection at ambient temperature. In the modified configuration, the UA is estimated by 

placing a thermal resistance network comprising of the thermal resistances of the heat pipe, heat 
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sink, and exterior forced convection due to the fan, in parallel with the previous conduction and 

outer thermal resistances. The result of this analysis can be seen in Figure 4.11, with the values of 

the dimensionless number π for each test’s compression process also shown. Note that the cyclic 

pattern seen in the curves is due to the cyclic action of the hand test pump during charging. 

 

 

Figure 4.11: Dimensionless pressure-volume curves for R134a compression 

 

Finally, using the above dimensionless pressure-volume compression curves, it is possible to 

define a compression efficiency as the ratio of the integral of the dimensionless pressure-volume 

compression curve (dimensionless work input), to the integral of the equivalent curve if the 

compression process were to be isobaric. This compression efficiency is defined in Equation 

(4.12). 
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𝜂𝑐𝑜𝑚𝑝 =

𝑖𝑠𝑜𝑏𝑎𝑟𝑖𝑐 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 𝑤𝑜𝑟𝑘 𝑖𝑛𝑝𝑢𝑡

𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 𝑤𝑜𝑟𝑘 𝑖𝑛𝑝𝑢𝑡
=

𝑝0
∗(𝑉𝑐

∗ − 𝑉0
∗)

∫ 𝑝∗𝑑𝑉∗𝑐

0

 (4.12) 

The compression efficiency can then be plotted versus the dimensionless π number, yielding the 

chart in Figure 4.12. It can be seen that there is a general trend of increasing compression efficiency 

with increasing dimensionless π number. This is an expected result, as the closer to isothermal-

isobaric the compression process, the higher the dimensionless π number. This dimensionless 

number is also proportional to a dimensionless energy density, for systems operating between the 

same initial and final pressures. The errors shown with the error bars are obtained by calculating 

the uncertainty propagation in the pressure and height (used for volume) measurements into the 

compression efficiency calculation. 

 

 

Figure 4.12: Compression efficiency versus dimensionless π number for R134a tests 
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4.4 Considerations on use of R134a 

Due to the low saturation pressure of R134a, it would not be a suitable working fluid for 

use in a scaled-up, commercial system, as it such a system would suffer from exceedingly low 

energy density. A system utilizing a condensable gas would require a working condensable gas 

with much higher saturation pressure, in order to store an appreciable amount of energy. One such 

candidate for a working fluid is Carbon Dioxide (CO2). CO2 boasts a saturation pressure of 57 bar, 

and isobaric specific work of 21.77 kJ/kg at room temperature (20 °C), assuming compression 

from saturated vapor to saturated liquid. For such an ideal system operating between saturated 

vapor and saturated liquid at 57 bar pressure, 20 °C temperature, the energy density is estimated 

to be 4290 kJ/m3 (1.19 kWh/m3). As an example, for scale, a system sized at 50 kW, for 2 hours 

of storage (100 kWh) would require about 84 m3 of storage. This could be comprised of several 

smaller pressure vessels (i.e. 168 × 500 liter vessels), or fewer larger vessels (i.e. 42 × 2000 liter 

vessels). Pressure vessels are generally commercially available for a large range of sizes (1-

500,000 liters).  In addition to the high saturation pressure, CO2 is non-toxic, non-flammable, has 

a low global-warming potential, and is readily available. The selection of an appropriate secondary 

fluid (liquid piston fluid) is an important consideration for system design. Water is used as the 

working fluid in the air system, mineral refrigerant oil is used for the experiments using R134a. 

One option for a scaled-up system utilizing CO2 is to utilize water as the secondary fluid, with a 

column of oil as a barrier between the CO2 and the water. When the CO2 is fully condensed into 

liquid form, water is the heaviest of the three fluids and thus would sit at the bottom of a vertical 

vessel/container, with the oil remaining right above it, separating it from the CO2. The CO2 which 

is the lightest of three fluids would remain at the top. This would also prevent any dissolution of 

CO2 into the water. Another option would be to use an oil as the secondary fluid. This would be 
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advantageous in some settings, as there is wider availability of hydraulic turbomachines designed 

for oils, often available at lower cost than water hydraulic turbomachines. 

Based on the success of the R134a experiments, a similar experiment was designed and 

setup, this time to evaluate Carbon Dioxide experimentally. The experimental setup is nearly 

identical to the setup for R134a, with the only differences being that a polycarbonate tube with 

smaller diameter was used to withstand the much higher saturation pressure of CO2. This study is 

presented in the following sections. 

4.5 Carbon Dioxide – Experiment Overview 

As mentioned in the previous paragraph, an almost identical experiment as the R134a 

experiment was designed and setup to evaluate the compression and expansion behavior of Carbon 

Dioxide (CO2) for consideration to be used as a working fluid for the GLIDES system. The 

differences between the two systems are precautions taken for the higher saturation pressure of 

CO2. A clear polycarbonate tube is used again as the test tube, but with slightly different geometry. 

This tube measured 1/2-inch outer diameter with 1/8-inch wall thickness and a length of 8 feet. 

The smaller tube diameter was chosen to withstand the higher pressure. Similarly to the R134a 

setup, a T-type Omega thermocouple, pressure gauge, and pressure transducer were placed at the 

top of the tube. A high-pressure hand cylinder pump with built-in discharge flow control valve 

was used at the bottom to charge and discharge the tube of oil. A larger diameter clear 

polycarbonate tube was installed around the test tube as a precaution to serve as secondary 

containment to protect any personnel or equipment from pressure release in the event of test tube 

failure. Unlike the R134a tube, a rubber piston inside the tube to separate mixing of the liquid 

refrigerant and oil was not needed in the case of CO2 because liquid CO2 is much lighter than oil, 
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and sits atop the oil when condensed without mixing. Once again, the measurement instruments 

were used along with a National Instrument data acquisition module and LabView program to 

collect experiment data from the system. The same parameters and data reduction equations in 

Section 4.2.3 are used to evaluate the performance of CO2. An image of the experiment setup can 

be seen in Figure 4.13. 

 

 

Figure 4.13: Schematic of CO2 experimental setup (storage tube is smaller diameter inner tube 

with red hydraulic oil visible, larger outer diameter tube is used as secondary containment due to 

high pressure system) 

 

4.6 Carbon Dioxide – Results & Analysis 
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Three tests were run with Carbon Dioxide as a working fluid. Similarly to the R134a 

experiments, tests with short, medium, and long charging/discharging times were run. Th results 

are summarized in Table 4.4. In general, it seems the longer the charging/discharging time, the 

closer to isobaric compression/expansion, and the higher the compression efficiency. Test 3 

achieved slightly lower efficiency than Test 2, even though it had longer charging and discharging 

time. This is likely due to having much longer pause (idle) time between charging and discharging. 

Test 3 had 209 minutes of pause compared with 40 minutes and 129 minutes respectively for Test 

1 and Test 2. Even though Test 3 has slightly lower efficiency than Test 2 due to the longer pause 

time, it still achieves higher energy density than Test 2; this can be attributed to the longer 

discharge time which enables the expansion to closer to isobaric. 

 

Table 4.4: CO2 test parameters and results 

Tests 

Charge 

Time 

(mins) 

Discharge 

Time 

(mins) 

Efficiency 

Energy 

Density 

(kJ/m3) 

Min/Max 

Pressure 

(bar) 

Min/Max 

Volume (m3) 

Test 1 9.42 10.93 83.98% 1.17 46.42/68.91 1.24E-5/7.64E-5 

Test 2 17.90 21.28 88.91% 1.21 50.55/64.46 1.29E-5/7.64E-5 

Test 3 32.73 37.32 86.52% 1.25 49.32/66.68 1.17E-5/7.64E-5 

 

Figure 4.14 shows the pressure-volume diagrams of the full charge-pause-discharge-pause 

cycles for Tests 1-3. By inspection, it can be seen that each charge and discharge process is 

progressively closer to isobaric from Test 1 to Test 2 to Test 3. 
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Figure 4.14: CO2 Tests 1-3 pressure-volume diagrams 

 

Like with the R134a experiments, it is possible to plot the compression on dimensionless 

pressure-volume diagram and compute π the dimensionless figure of merit which describes the 

extent to which the compression (energy storage) process is isobaric. As expected, Test 1, the least 

isobaric of the three has the lowest π number and the steepest curve dimensionless pressure-volume 

curve, followed by Test 2, and finally Test 3, which is the closest to isobaric and has the largest π 

number. 
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Figure 4.15: Dimensionless pressure-volume curves for CO2 compression process 

 

 Another interesting exercise is to qualitatively and quantitatively compare Figure 4.15 for 

CO2 to Figure 4.11 for R134a to see if this dimensionless π number effectively captures the 

compression behavior across two different working fluids. This comparison reveals that based on 

the π numbers, CO2 Test 1 and Test 2 should have a dimensionless pressure volume curve which 

is steeper (aka less isobaric) than all the R134a curves, due to their smaller π numbers, which is 

indeed the case. Based on its π number, CO2 Test 3 should fall between R134a Test 1 and Test 4, 

which by inspection, is also indeed the case. The dimensionless π number presented here appears 

to effectively capture the extent to which the compression of a condensable gas is isobaric, even 

across different working fluids; this is a significant result. 

4.7 Carbon Dioxide – Modeling & Simulation 

Owing to its relatively high saturation pressure, carbon dioxide is a good choice of 

condensable gas working fluid for the GLIDES system at larger scales. This circumstance begs for 

a deeper understanding of the physics of the compression and expansion behavior of CO2. 
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Furthermore, extensive experimental investigation beyond that presented in the previous section 

is challenging due to the high-pressure nature of the endeavor. To further complicate matters, 

experiments involving condensation of CO2 can be tricky because if the gas contains trace amounts 

of water vapor, the two hydrogen atoms and oxygen atom can combine with the CO2 molecules in 

the condensed state to form Carbonic Acid (H2CO3) which can compromise the structural integrity 

of the high-pressure storage tube walls, causing it to not be able to withstand high pressure long 

enough to conduct a high number of experiments. The above reasons motivated the development 

of a model to investigate the compression/expansion behavior of CO2 without the need for difficult 

experiments. 

4.7.1 Model Formulation 

To model the energy storage (compression) and energy recovery (expansion) processes 

using CO2 as the working fluid, a set of transient equations were developed and an algorithm 

implemented in MATLAB with the CoolProp [70] opensource thermodynamic properties package 

and its MATLAB wrapper. The algorithm then solves the transient response (pressure, 

temperature, liquid/vapor volume) of the CO2 with specified time step. The temperature is assumed 

to be uniform throughout the CO2 and uniform for the liquid and vapor CO2. A flowchart for the 

algorithm is shown in Figure 4.16. The script implementation of the algorithm can be found in 

Appendix B. 
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Figure 4.16: Carbon Dioxide simulation model algorithm 

 

 The algorithm begins with the inputs and initial conditions being provided by the user. The 

inputs include the volume of the storage medium, the flow rate of oil, the overall heat transfer 

coefficient (UA), the ambient temperature, the initial quality of the CO2, and the pause length for 

the idle periods between charging and discharging and after discharging. Using the ambient 

temperature and/or initial quality, the initial conditions for the simulation, including pressure, 
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volume of CO2 liquid, volume of CO2 vapor, liquid/vapor densities, mass of liquid/vapor, enthalpy 

of vaporization, and liquid/vapor specific heats. 

 The algorithm consists of a series of steps which are taken in each time step to solve the 

response of the CO2. In step 1, the volume of oil and volume of CO2 in the storage tank are updated 

using the oil flow rate. In step 2, the vapor/liquid/bulk CO2 properties are evaluated using the 

temperature in the previous timestep and quality of 0 or 1 for vapor and liquid respectively. In step 

3, the average density is evaluated using the total CO2 mass and the volume obtained in step 1; the 

quality is then updated using the average density and vapor/liquid densities using Equation (4.13). 

 

𝑥 =
𝑣𝑎𝑣𝑒 − 𝑣𝑙𝑖𝑞

𝑣𝑣𝑎𝑝 − 𝑣𝑙𝑖𝑞
=

1
𝜌𝑎𝑣𝑒

−
1

𝜌𝑙𝑖𝑞

1
𝜌𝑣𝑎𝑝

−
1

𝜌𝑙𝑖𝑞

 

  

(4.13) 

 

In step 4, the mass of the vapor and liquid CO2 are updated using the quality and the total CO2 

mass. In step 5, the vapor and liquid volumes are updated using the masses from step 4 and the 

densities from step 2. In step 6, the CO2 temperature is updated using the energy equation for the 

CO2, which is shown in Equation (4.14), 

 
𝑚𝐶𝑂2

[𝑥𝑐𝑣𝑎𝑝 + (1 − 𝑥)𝑐𝑙𝑖𝑞]
𝑑𝑇𝐶𝑂2

𝑑𝑡
= −𝜌𝑣𝑎𝑝

𝑑𝑉𝑣𝑎𝑝

𝑑𝑡
ℎ𝑓𝑔 − 𝑈𝐴(𝑇 − 𝑇∞) − 𝑝𝑉̇𝑜𝑖𝑙 

(4.14) 

where the term on the left-hand side of the equation is the time rate of change of the energy 

contained within the CO2 at time t; the first term on the right side is the rate of energy absorption 

or desorption within the control mass due to vapor-liquid or liquid-vapor phase change, the second 

term on the right is the net rate at which energy is transferred into the CO2 by heat transfer with 



 104 

the surroundings, and the last term on the right is the net rate at which energy is transferred out by 

boundary work. Next, in step 7, the CO2 pressure is updated using the temperature from step 7 and 

the quality from step 3. Finally, the time t is updated by adding the timestep Δt, the iteration number 

is also updated, and the algorithm returns to step 1 and is repeated to solve the response for the 

next timestep. 

4.7.2 Simulation Results 

A system of 1 m3 of CO2, initially saturated vapor (quality 1), at 25 °C is simulated, with 10 L/min 

oil flow rate during charging/discharging and one hour pause between charging/discharging and 

after discharging. Charging occurs until the CO2 is completely saturated liquid (quality 0), and 

discharging occurs until the CO2 volume is recovered (i.e. returns to original volume). To assess 

the ability of the model to describe the physics at play, the simulation is ran for two extreme cases: 

an adiabatic system (UA = 0 W/K) and isothermal/isobaric system (UA → ∞, very large), and the 

results are inspected for qualitative correctness. A third case, with a finite value of heat transfer 

(UA = 200 W/K) is also simulated and inspected for qualitative reasonableness. 

 Figure 4.17 shows the results of the adiabatic simulation. The a), b), c), and d) frames show 

the transient temperature and pressure profiles, pressure-volume diagram, transient volume phase 

profile, and transient quality profile of the CO2 throughout the process. During charging, the 

temperature increases from 25 °C to slightly above 30 °C and then remains constant through the 

one hour pause (no heat is lost to the cooler ambient because system is adiabatic), then decreases 

back down to the initial temperature of 25 °C, and again remains constant throughout the second 

pause period. The pressure follows the same profile, as it increases from just above 64 bar (the 

saturation pressure at 25 °C) to slightly above 72 bar during charging, then remains constant during 
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the pause, and decays back down to the initial pressure during discharging. The symmetric process 

is also shown on a pressure-volume diagram in frame b). Because the process is symmetric, unity 

efficiency is achieved, and an energy density of 1.12 kWh/m3 of CO2 is achieved. Frame c) shows 

the change in the various volumes (total CO2 volume, liquid/vapor CO2 volume, and oil volume). 

The system contains only CO2 vapor at the beginning of charging, then as charging occurs and oil 

is pumped into the system, the oil volume increases, the total CO2 volume decreases as it is 

compressed, the vapor CO2 volume decreases and the liquid CO2 volume increases as condensation 

occurs. By the end of charging, the vapor has completely condensed into liquid and all the CO2 is 

in liquid phase. This can also be seen in frame d) which shows the vapor quality throughout the 

entire process. 
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Figure 4.17: Results of CO2 storage simulation for adiabatic case 

 

 Figure 4.18 shows the results of the isothermal/isobaric simulation. As can be seen in frame 

a) the process is largely isothermal/isobaric, although there is a very small temperature difference 

(0.07 °C) which is the temperature difference needed for the second term on the right-hand side of 

Equation (4.14) to kick in. This has an associated pressure difference of about 0.1 bar. This 

isothermal/isobaric process is also symmetric, as can be seen in the pressure-volume diagram in 

frame b) which shows an essentially flat pressure-volume curve, indicating isothermal/isobaric 

behavior. While this case also achieves efficiency of unity, the energy density is higher than the 

adiabatic case (1.17 kWh/m3). The reason for this is best explained by examining frame c). As oil 
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is pumped into the system and charging occurs, because the temperature of the CO2 remains the 

same, the vapor and liquid densities do not increase and decrease with temperature, as is the case 

in the adiabatic case. This means that the liquid in its condensed state takes up less space, and more 

oil is required to be pumped for all the CO2 to fully condense. The minimum CO2 volume in the 

isothermal case is lower than in the adiabatic case. This larger volume displacement in the 

isothermal case versus the adiabatic case leads to higher energy density. Note that 

isothermal/isobaric behavior can also be achieved by slowing down the charging/discharging flow 

rate (i.e. increasing charge/discharge time), as illustrated by the dimensionless figure of merit in 

Equation (4.11). 
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Figure 4.18: Results of CO2 storage simulation for isothermal/isobaric case 

 

 A third case with a finite value of UA = 200 W/K is also simulated to present a more 

realistic case. These results are shown in Figure 4.19. In this case, the profiles are no longer 

symmetric and the efficiency drops below unity due to heat transfer losses. The efficiency is 0.93 

and the energy density 1.05 kWh/m3. During charging, heat is lost to the surrounding ambient as 

the CO2 temperature increases due to compression. During discharging, heat continues to be lost 

to the surrounding while the CO2 temperature is above the ambient temperature of 25 °C. Once 

the CO2 temperature drops below 25 °C, the heat transfer is reversed and the CO2 starts to gain 

heat from ambient. One notable difference between this case and the adiabatic and 
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isothermal/isobaric cases, is that the system is not static during the pause periods. Heat transfer 

continues throughout the pause periods which causes the CO2 temperature and pressure to decrease 

during the pause after charging, and increase during the pause after discharging. This phenomenon 

drives phase change to continue during the pauses, even though the CO2 is not being compressed 

or expanded. There is a tradeoff at play. During the pause after charging, the temperature decrease 

favors condensation, but the pressure decrease favors vaporization. In this case, the pressure 

decrease dominates and some of the liquid vaporizes. In the pause after discharging, the 

temperature increase favors vaporization, but the pressure increase favors condensation. In this 

case, the temperature increase dominates, and vaporization continues throughout the pause. These 

phenomena were also confirmed during the CO2 experiments. As can be seen in frame c), at the 

end of discharge, there is still liquid CO2 remaining. If another energy storage cycle begins shortly 

after discharge, the system is at risk of hysteresis, as there is already some liquid condensed at the 

beginning of the cycle. This means the amount of liquid left after discharge of the second cycle 

will be even greater than the first. This will lead to the efficiency and energy density being lower 

for the second cycle than the first. This is an important peculiarity to consider in the design of a 

scaled-up system utilizing CO2.  
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Figure 4.19: Results of CO2 storage simulation for UA = 200 W/K case 

 

4.8 Considerations on use of Carbon Dioxide 

Due to the relatively higher saturation pressure of CO2 compared with other pure, non-

toxic, non-flammable refrigerants or working fluids, CO2 is a promising working fluid option for 

use as the primary fluid in a GLIDES system. As demonstrated in the previous sections, it has 

several promising characteristics including that it has relatively high saturation pressures at/around 

room temperatures, achieves near-isothermal and near-isobaric compression and expansion, and 

relatively high storage efficiencies were achieved both experimentally and via physics-based 

simulation. While the use of CO2 has many advantages, it also has some challenges. Some of these 
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challenges include the possibility of hysteresis if the pause between storage cycles is not long 

enough to allow complete vaporization of the liquid CO2, the selection of compatible secondary 

(or liquid piston) fluid, and the need for very pure CO2 to be used due to the risk of trace amounts 

of water vapor combining with the CO2 in condensed state to form Carbonic Acid, which can be 

corrosive to certain pressure vessel materials or other system component materials.  

On the basis of high saturation pressure alone, there are a number of working fluids and 

working fluid blends that fare better than CO2, however, all of these fluids or fluid blends consist 

of some sort of hydrocarbon, all of which are toxic, most of which are flammable and explosive, 

and some of which are carcinogenic. Despite these chemical concerns, some of these working 

fluids or blends may still be considered for certain applications, given that the necessary 

precautions are put in place. Table 4.5 presents the saturation pressure for many fluid blends that 

may be considered for the GLIDES working fluid at 20 °C, 30 °C, and 40 °C system temperature. 

Some of the blends have saturation pressure above 100 bar; use of these fluids in GLIDES would 

improve the system energy density by several-fold. The density ratio (ratio of liquid density to 

vapor density) is also listed in Table 4.5. The density ratio is a secondary consideration for the 

choice of condensable gas because the larger the density ratio, the less likely the occurrence of any 

stability issues, as the liquid refrigerant will likely sink to the bottom of the pressure vessel(s) and 

remain below the vapor fluid, maintaining a stable liquid/vapor interface, even with any physical 

perturbations. Note that some of the blends shown in Table 4.5 are blends containing non-

condensable gases such as nitrogen. These blends will not exhibit fully condensable behavior, and 

completely isobaric behavior cannot be achieved with these fluids. Rather, saturation will occur 

across a glide of pressures centered around the listed saturation pressure. 
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Table 4.5: Saturation (vapor) pressure of various working fluid blends 

 Saturation Pressure, bar 

 (Density Ratio)* 

Fluid Blend T = 20 °C T = 30 °C T = 40 °C 

65% Propane, 35% Nitrogen 
135.0  129.1  130.8  

(18.2) (13.1) (9.5) 

7% n-Pentane, 93% Carbon Dioxide 
50.5  62.0  133.8  

(44.7) (27.1) (20.0) 

98% Carbon Dioxide, 2% n-Heptane 
55.0  68.2  82.6  

(175.0) (94.9) (48.5) 

40% Carbon Dioxide, 60% Propane 
32.5  38.9  45.8  

(18.2) (13.1) (9.3) 

82% Carbon Dioxide, 18% IsoButane 
45.4  55.5  66.2  

(17.8) (12.2) (7.6) 

80% Carbon Dioxide, 20% IsoPentane 
41.7  50.5  60.0  

(88.6) (59.3) (40.0) 

95% Carbon Dioxide, 5% IsoPentane 
52.3  87.9  94.0  

(21.0) (12.9) (7.0) 

60% IsoButane, 40% Nitrogen 
202.8  172.9  147.9  

(49.9) (35.8) (25.8) 

21% n-Butane, 79% Carbon Dioxide 
43.8  53.1  63.2  

(30.6) (20.3) (13.2) 

74% n-Pentane, 26% Nitrogen 
201.4  194.0  187.1  

(319.7) (221.9) (157.8) 

*Density ratio = Density of liquid/Density of vapor 
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CHAPTER 5. DESIGN & EVALUATION OF GEN. 2 PROTOTYPE 

To further advance the technology readiness level of GLIDES, a second-generation 

prototype system was designed and built. Three main objectives were sought after with the 

development of the gen. 2 prototype: reduce costs by consolidating components (using dual-use 

components) and using a different type of pressure vessel, improve efficiency and energy density 

by integrating spray cooling/heating and waste-heat, and improve overall system reliability and 

packaging. This Chapter provides a detailed overview of these features and the gen. 2 prototype, 

as well as initial performance results. 

5.1 Description of Gen. 2 Prototype Design 

A second-generation ~1 kWh proof-of-concept prototype was designed and fabricated. 

This prototype is mobile (on wheels) and measures 3’ × 4’ × 7’. A number of research objectives 

were sought after with the second-generation prototype, mostly centered around improving system 

roundtrip efficiency (RTE) and energy density (ED), and demonstrating configuration 2 and 3 of 

the GLIDES system presented in Figure 2.3 in Chapter 2 which aim to achieve near-isothermal 

compression/expansion and waste heat integration during expansion (energy recovery) 

respectively. A piping and instrumentation diagram of the gen. 2 GLIDES system which shows 

entire system and components is shown in Figure 5.1. Major system components include an 

atmospheric pressure storage reservoir, a reversible hydraulic pump/motor and reversible electric 

motor/generator (PM1), a pressure vessel serving as the air storage medium, and a secondary pump 

(PM2) and heater in a secondary loop for waste heat integration via sprayed droplets (configuration 

3 in Figure 2.3). Other system components include a filter upstream of PM1 to filter water being 

charged into the pressure vessel, a pressure relief valve set to relief at 140 bar pressure, and ½” 
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stainless steel tubing, and a series of several valves (manual valves, solenoid valves, check valve). 

Solenoid valves S1-S5 are used to control the various modes of operation (i.e. 

charging/discharging, charging from top/bottom, charging with waste heat loop). The entire 

system is plumbed together using ½” high pressure stainless steel tubing. Several instruments were 

installed in the system to capture system performance. From left to right in Figure 5.1, a pressure 

transducer (PT2) was placed at the bottom of the water storage tank to measure water level inside 

the tank, thermocouples (TC1, TC5) were installed to measure the water storage tank temperature 

and ambient temperature respectively, a pressure gauge (PG), pressure transducer (PT1), and 

thermocouple (TC2) were installed to measure the air side pressure and temperature inside the 

pressure vessel, thermocouples (TC6, TC7) were installed on the outside of the pressure vessel to 

measure the vessel wall temperatures, a differential pressure transducer (DPT) was installed across 

the spray pump (PM2), and thermocouples (TC3, TC4) were installed before and after the heater 

which simulates waste heat integration. A torque transducer (not shown in Figure 5.1) was also 

installed between the reversible hydraulic pump/motor and reversible electric motor/generator to 

measure the speed and torque during charging and discharging to enable calculation of the shaft 

power. A bidirectional watt transducer was also installed to measure the electrical power 

input/output to/from the reversible electric motor/generator. Table 5.1 summarizes all the 

instrumentation used in the gen. 2 GLIDES prototype and their associated accuracies.  
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Figure 5.1: Schematic of Gen. 2 GLIDES system and components (piping and instrumentation 

diagram) 
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Table 5.1: GLIDES Gen 2. prototype instrumentation summary 

Instrument Measurement Instrument Type 
Measuring 

Range 

Instrument 

Accuracy 

PT1 
Storage Vessel Air 

Pressure 

Westward Pressure Transducer, 

4to20mA 
0-3,000 PSI +/-0.50% 

PT2 Water Tank Level 
Omega PX709 Submergible 

Pressure Transducer 

250-3500 

mmH2O 
1% 

DPT 
Spray Pump (PM2) 

Differential Pressure 

Kobold PAD Differential 

Pressure Transmitter 
1-100 PSIG ±0.075 % 

PG 
Storage Vessel Pressure 

Gauge 

High-Accuracy Corrosion-

Resistant Pressure Gauge 
0-3,000 PSI ±1% of full scale 

TC1 Water Tank Temperature Omega Type T Thermocouple 0-350 °C 0.5 °C or 0.4% 

TC2 
Storage Vessel Air 

Temperature 
Omega Type T Thermocouple 0-350 °C 0.5 °C or 0.4% 

TC3 
Heater Upstream 

Temperature 
Omega Type T Thermocouple 0-350 °C 0.5 °C or 0.4% 

TC4 
Heater Downstream 

Temperature 
Omega Type T Thermocouple 0-350 °C 0.5 °C or 0.4% 

TC5 Ambient Air Temperature Omega Type T Thermocouple 0-350 °C 0.5 °C or 0.4% 

TC6 
Pressure Vessel Lower 

Wall Temperature 
Omega Type T Thermocouple 0-350 °C 0.5 °C or 0.4% 

TC7 
Pressure Vessel Upper 

Wall Temperature 
Omega Type T Thermocouple 0-350 °C 0.5 °C or 0.4% 

TT 
Pump-Motor/Motor-

Generator Shaft Speed 

Magtrol TMB306 Torque 

Transducer 
0-6,000 RPM 1 RPM 

TT 
Pump-Motor/Motor-

Generator Shaft Torque 

Magtrol TMB306 Torque 

Transducer 
0-5 Nm 

±0.1% of full 

scale 

WT 

Motor/Generator 

Electrical Power 

Input/Output 

Ohio Semitronics Compound 

Transducer 
0-10,000 W 0.5% 
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Figure 5.2: Gen. 2 GLIDES prototype 

 

5.1.1 Detailed Description of Gen.2 GLIDES Components 

The major gen. 2 GLIDES system components include a 55-gallon atmospheric water 

storage reservoir, a reversible hydraulic pump/motor which acts as both the charging pump and as 

a hydraulic motor during discharge for energy recovery, an associated reversible electric 

motor/generator, a polymer lined, carbon fiber pressure vessel, and a second pump used in a 

secondary spray loop which includes a heater to simulate waste heat integration. The heater used 

is a 1200-watt wrap-around heat cable which was wrapped around the exterior of the stainless-

steel tubing. 

 For the reversible hydraulic pump/motor, a 1.7 kW, 4 cm3/revolution axial piston hydraulic 

pump was selected which can operate in reverse as a hydraulic motor for energy recovery. For the 

electric motor/generator, a 2 horsepower, 115/208-230 volts, 6 amp, 60 Hz brushless permanent 
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magnet reversible motor/generator was selected. A 3600 PSI, 287-liter polymer-lined carbon fiber 

pressure vessel was utilized as the air storage medium. A secondary loop was added to the system 

to simulate waste-heat integration via sprayed liquid droplets as described in configuration 3 

(Figure 2.3) in chapter 2. The secondary loop includes a high operating pressure (1500 PSI max), 

low head (125 PSI max), 1.82 mL/revolution micropump which pulls water from the bottom of 

the pressure vessel, after which it is heated by the wrap-around cable and then routed to the top of 

the pressure vessel where it is reintroduced (sprayed) into the pressure vessel during discharge. 

5.1.2 Charging (Energy Storage) 

The gen. 2 GLIDES prototype has the capability of charging by pumping water into the 

pressure vessel from the bottom (like gen. 1 prototype), or sprayed into the vessel from the top. 

Figure 5.3 shows the prototype schematic with the flow paths highlighted in red for charging from 

the bottom a), and top via sprayed droplets, b). Solenoid valves S2 and S3 are used to control 

whether charging occurs from the top or bottom. The top charging line includes a spray nozzle at 

the end which is inserted into the pressure vessel. The spray nozzle is a full cone type spray nozzle 

with spray angle of 80-85°, producing droplets with average diameter of 660 μm. The advantage 

of charging from the top via sprayed droplets is that the falling droplets have a cooling effect on 

the warming air, removing heat generated due to compression; this leads to a compression process 

which is nearer to isothermal and leads to higher roundtrip efficiency and energy density. Having 

the option of charging from the top or bottom allows for the quantification of the effect of the 

improved heat transfer achieved via spraying charge from the top, compared to charging 

conventionally from the bottom. In addition to the option of charging from the bottom or top, the 

charging pump PM1 has the capability of operating at variable speeds from a minimum of 700 
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RPM (2 L/min), to 1800 (6.5 L/min) RPM. This allows for the investigation of the effect of 

charging speed on system efficiency and energy density.  

 

 

Figure 5.3: Gen. 2 GLIDES schematic during charging a) from the bottom, b) from the top 

 

5.1.3 Discharging (Energy Recovery) 

As seen in Figure 5.4, the gen. 2 GLIDES prototype has two possible discharge (energy 

recovery modes). In the normal discharge cycle, shown in Figure 5.4 a) with the water flow path 

highlighted in red, solenoid valve S2 is opened and the high-pressure water flows out of the 
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pressure vessel and into PM1 in reverse, spinning the machine backwards as it now acts as a 

hydraulic motor. In this mode, the electric machine now serves as an electric generator being 

driven by PM1, and dispatches electricity to a load bank consisting of a resistive heater connected 

to variable transformer to control the load. 

 Figure 5.4 b) shows the second discharge mode of the GLIDES gen. 2 prototype with the 

water flow path shown in red. In this mode, the secondary loop to simulate the integration of waste 

heat during discharge is activated by opening solenoid valve S4 and running PM2. The wrap 

around heater can deliver up to 1200 watts of heat to the exterior of the stainless-steel tubing which 

can be picked up by the water being circulated inside the tubing. The rope heater is also connected 

to a variable transformer which allows for the control of how much heat is delivered via the heater. 

The spray pump (PM2) motor is connected to a power supply with a PWM (pulse-width 

modulation) device which allows for the control of the motor speed, i.e. the flow rate. Between the 

heater control and the flow rate control, parametric experiments can be run for various waste-heat 

rates to determine the impact on system performance and the second law efficiency. 
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Figure 5.4: Gen. 2 GLIDES schematic during discharging a) normal discharge cycle, b) with 

waste heat integrated loop active 

 

5.2 Gen. 1 to Gen. 2 Design Improvements 

Several deliberate design changes were made between GLIDES gen. 1 and gen. 2 

prototypes. All changes were made to either decrease system cost, or improve roundtrip efficiency 

and/or energy density. Unlike the gen. 1 prototype which utilized conventionally manufactured 

carbon steel pressure vessels, the gen. 2 prototype uses a polymer-lined carbon fiber pressure 

vessel which is rated for higher pressure (248 bar versus 160 bar), but cheaper (thanks to automated 

manufacturing). In addition to being cheaper and having a higher pressure rating than the gen. 1 
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carbon steel vessels, this carbon fiber vessel also resolves the issue of the inside of the steel tanks 

corroding due to oxidation from contact with water because the inside of the carbon fiber vessel is 

lined with a polymer liner which does not react when brought into contact with water. The gen. 1 

prototype uses four separate energy conversion devices, a hydraulic pump/electric motor for 

charging, and hydraulic (Pelton) turbine/electric generator for discharging. These four devices are 

consolidated into two devices in the gen. 2 prototype by utilizing a reversible hydraulic 

turbomachine to serve as the pump/turbine, and a reversible electric machine to serve as the electric 

motor/generator. A positive displacement, axial-piston device is used as the charging pump. In 

charging mode, the low-pressure side is the inlet, and the outlet is the high-pressure side. In 

discharging mode, the pump is run in reverse and operates as a hydraulic motor; the high-pressure 

side becomes the inlet, and the low-pressure side the outlet. This consolidation of the hydraulic 

machines is made possible by utilizing an electric machine which is a brushless permanent magnet 

device which operates as an electric motor when a voltage is applied (during charging), but when 

spun in the reverse direction (during discharging), operates as an electric generator. 

 In addition to the above, the gen. 2 GLIDES prototype was designed to be able to operate 

in all three configurations shown in Figure 2.3, the base configuration, spraying during 

charging/discharging to achieve near-isothermal operation, and waste-heat integration during 

discharging. Furthermore, this system lends itself well to retrofitting to utilize CO2/condensable 

gases as the working fluid as opposed to air. 

5.3 Initial Experimental Performance 

At the time of the writing of this dissertation, one full-cycle (charging, pause, discharging, 

pause) experiment of the gen. 2 GLIDES prototype in the standard configuration (no spray or 
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waste-heat integration) has been conducted. These are the results presented in this section. Many 

additional experiments of the gen. 2 prototype are planned and will be published in a future work. 

Unfortunately, at the time of the full-cycle experiment for which the results are presented here, 

system commissioning/troubleshooting was ongoing, and not all measurement instrumentation 

was fully functional. As such, the electrical power input/output data was not measured, and the 

electrical-to-electrical roundtrip efficiency and electrical energy density is not reported here. 

However, the indicated (thermodynamic) and shaft-to-shaft roundtrip efficiency and indicated and 

shaft energy density are reported here. 

 For this test, the system was charged from a minimum pressure slightly above 60 bar to a 

maximum pressure near 125 bar. The charging pump was run between a minimum of 985 and 

maximum of 990 RPM which resulted in a charging flow rate between 3.93-3.96 L/min. The 

pressure vessel was initially empty of any water and the entire 287 L of volume was charged with 

air at the minimum pressure. The charging process lasted for 38 minutes, after which a 150 minute 

pause was held, following by discharging which lasted for 16 minutes, until the pressure vessel 

was evacuated of all water that was pumped in during charging. Discharging was followed by a 

48 minute pause. During discharge, the now hydraulic motor speed was kept constant at around 

1800 RPM, which resulted in a flow rate of about 7 L/min. The RPM was controlled by using the 

variable transformer to control the load on the electrical generator, keeping the RPM constant. 

 Figure 5.5 presents the pressure-volume diagram of the gen. 2 GLIDES prototype base 

configuration cycle. As with the simulations and the gen. 1 prototype results, the process begins at 

state point 1 with the charging process. The carbon fiber pressure vessel is initially empty of water 

but charged with air at 65 bar pressure. The charging process then begins and water is pumped into 

the vessel via the charging pump, this causes the air pressure to increase and the volume decrease, 
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as the air is compressed by the rising water liquid piston below. This continues until the pressure 

reaches 122 bar at state point 2, after which there is a pause period (process 2-3) during which 

some pressure is lost as the air temperature decreases due to heat loss from the air which heated 

up due to compression. Discharging then begins from a starting pressure of 115 bar as the water 

in the vessels is evacuated through the hydraulic machine which is now rotating in reverse as a 

hydraulic motor. The pressure decreases and the air volume increases as it undergoes expansion 

until all the water is evacuated and discharge is complete at state point 4, pressure of 61 bar. This 

is immediately followed by another pause period (process 4-1), during which the pressure 

increases as the temperature increases to return to equilibrium with the ambient following the 

cooling due to expansion during discharge. This results in an indicated efficiency of 0.96, and 

associated indicated energy density of 1.21 kWh/m3 of air. 

 



 125 

 

Figure 5.5: Pressure-volume diagram of gen. 2 GLIDES prototype base configuration cycle 

 

 Figure 5.6 shows the air temperature and tank wall temperatures throughout the entire 

duration of the cycle. The cycle begins with the air essentially at ambient temperature around 20 

°C, then heats up all the way to a maximum of 46 °C at the end of charging. The temperature then 

begins to drop during the pause period, and reaches 26 °C when discharging begins. During 

discharge, the temperature drops as the air expands, and reaches a minimum of 5 °C. Note the 

trend of the temperature decrease during expansion. The slope of the temperature curve gradually 

decreases throughout the discharge. As noted in Chapter 2, this is due to conflicting effects from 

the air cooling due to expansion, but also receiving heat transfer from the ambient after the air 

temperature drops below the ambient temperature. The slope of the temperature curve during 

discharge begins to decrease once the heat input from the ambient starts to overcome the cooling 

due to expansion. This effect was also observed during operation of the gen. 1 prototype, and was 

also captured accurately by the simulation presented in Chapter 2 of this thesis. 
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 It is interesting that the temperature swings seen during charging and discharging for the 

gen. 2 prototype are markedly larger than those seen for the gen. 1 prototype for similar pressure 

ratio. This is in spite of the charging flow rate being much faster for gen. 2 compared to gen.1, 

even when corrected for system total volume. This result can be attributed to the different heat 

transfer behavior of the composite carbon fiber pressure vessel compared with gen. 1’s carbon 

steel vessel. Even though at the material level, carbon fiber has higher thermal conductivities than 

carbon steel, the composite overall thermal conductance of the combined carbon fiber and inner 

polymer liner, including contact resistances and any air gaps, is apparently lower than that of the 

carbon steel counterpart. 

 

 

Figure 5.6: Transient temperature profile of gen. 2 GLIDES prototype base configuration cycle 
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 In Figure 5.7, infrared thermal images of the carbon fiber pressure vessel are shown during 

charging and discharging. In the base configuration, a significant amount of heating and cooling 

are generated during charging and discharging respectively. This indicates that utilizing the spray 

functions (spray charging from the top during charging and spray waste-heat integration during 

discharging) have the potential to make significant contributions to improving the performance of 

the system. 

 

 

Figure 5.7: Infrared thermal images of gen. 2 GLIDES prototype storage vessel during charging 

(left) and discharging (right) 

 

 The power performance of the system during charging and discharging are shown in Figure 

5.8 and Figure 5.9 respectively. The indicated (hydraulic) power, shaft power, and hydraulic 

machine efficiency (ratio of shaft power to hydraulic power) are plotted versus time and versus 
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pressure. As described in Chapter 3, the indicated power is the product of the pressure and flow 

rate, and the shaft power is the product of shaft speed and torque. During charging, the indicated 

power increases from a minimum of 423 watts to a maximum of 802 watts, which corresponds to 

shaft power increasing from a minimum of 506 watts to 939 watts. The aforementioned values are 

increasing in value as the system pressure increases which in turn causes the hydraulic machine to 

see more torque. This performance corresponds to pump efficiency around 0.85, which is 

essentially constant throughout charging. 

 

 

Figure 5.8: Gen. 2 GLIDES prototype power input and charging efficiency profiles versus time 

(left) and pressure (right) 

 

 During discharge, the indicated power output spikes momentarily to above 3000 watts at 

the beginning. This initial transient is due to the hydraulic motor ramping up to very high 

RPM/flow rate when it was initially exposed to flow from the vessel, before enough time was 

allowed for the electric load applied to the generator to ramp up to a high enough level to maintain 

the RPM at/around 1800 RPM. Following this initial transient, the power quickly drops to around 
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2500 watts, and then slowly ramps down to a minimum of 747 watts at the end of discharge, as 

the pressure falls. The shaft power output reduces from a maximum around 1100 watts, to a 

minimum of 650 watts at the end of discharge. The associated hydraulic motor efficiency varies 

between a maximum of 0.90 to a low near 0.40 at the beginning of discharge, excluding the initial 

transient spike at the beginning of discharge. The Figure 5.9 right-hand side plot showing the 

output data plotted versus pressure. The hydraulic motor efficiency is considerably higher at lower 

operating pressures, despite the RPM being controlled to be constant. This contrasts with the 

Pelton turbine used in the gen. 1 prototype, which displayed quite constant efficiency as a function 

of pressure, when specific speed was controlled to be constant. This yielded shaft energy density 

of 0.78 kWh/m3, and shaft-to-shaft roundtrip efficiency of 0.52. 

 

 

Figure 5.9: Gen. 2 GLIDES prototype power output and discharging efficiency profiles versus 

time (left) and pressure (right) 
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5.4 Summary 

The GLIDES second generation prototype features several design improvements over the 

first-generation prototype, both in terms of system performance and prototype packaging/size, and 

component selection/consolidation. The GLIDES technology readiness level was clearly advanced 

with the development of the gen. 2 prototype. While the prototype was designed with several 

features and the possibility to operate in all three configurations presented in Chapter 2, at the time 

of this dissertation, only test data from operation in the base configuration was collected, which 

resulted in shaft energy density of 0.78 kWh/m3, and shaft-to-shaft roundtrip efficiency of 52%. 

This represents improvements of 14% and 145% respectively from the gen. 1 prototype. Due to 

the large temperature swings seen in operation, there is a significant opportunity to improve system 

performance to approach isothermal operation, when operated with the spray cooling/heating 

integrated configurations. These results will be presented in a future publication. One interesting 

aspect of the gen. 2 prototype is the use of a reversible hydraulic pump/motor instead of separate 

pump and Pelton turbine utilized in the gen. 1 prototype. This allows for a quantitative and 

qualitative discussion of what the preferred energy recovery turbomachine for the GLIDES system 

would be: an impulse machine such as the Pelton turbine utilized in the gen. 1 prototype, or a 

reaction machine such as the hydraulic motor used in the gen. 2 prototype. The following chapter 

is a stab at that discussion in the context of the two GLIDES prototypes created thus far. 
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CHAPTER 6. OPTIONS FOR ENERGY RECOVERY MACHINE 

With the majority of the GLIDES components, there is a clear technology choice for the 

application at hand. Pressure vessels are clearly the storage medium of choice due to the rigidity 

and ability to withstand high pressures. Furthermore, as experienced with the first-generation 

prototype, corrosion of the inside of steel tanks is an issue due to the water use. Consequently, 

vessels with non-metallic inner surfaces are preferred. With the charging pump, high efficiency 

positive displacement pumps are the technology of choice due to their ability to pump across large 

differential pressure, and operate at high efficiency across a wide range of pressures and RPMs. 

With the turbine or energy recovery turbomachine, the choice of ideal technology for the 

application is not as obvious. The conception of GLIDES introduces a new category of application 

for hydraulic turbines due the ultra-high head (>1,000 m), ultra-low flow (<50 L/min) nature of 

the application. One option of hydraulic turbine is Pelton turbines, which are traditionally used for 

high-head, low-flow applications. However, Pelton turbines are typically used in situations where 

the head is developed as a result of elevation difference, and the maximum pressure head seen in 

GLIDES is only limited by the maximum operating pressure of available pressure heads, which is 

orders of magnitude higher than any naturally occurring elevation difference seen in the world. 

There currently exists pressure vessels which can accommodate water pressure head of several 

thousands of meters. At such high heads and low flow-rates, Pelton turbine jet diameter is reduced 

to be on the order of a few millimeters, consequently, Pelton buckets must also be scaled down to 

overall dimensions on the order of millimeters. Because of such high head, these micro-Pelton 

turbines operate at much higher rotational speeds (several thousands of RPMs) than conventional 

Pelton turbines, and runner drag losses become significant. Due to the above-mentioned reasons, 
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conventional Pelton turbine designs are not necessarily well-suited to the GLIDES application. As 

part of the GLIDES research, a few Pelton turbine designs are evaluated, including two Pelton 

turbine designs which were manufactured for use with the gen. 1 GLIDES prototype. Specifically, 

the effect of runner design on rotational drag and the sensitivity of turbine performance to jet 

diameter are examined. The findings of this study will help form a starting point for the design 

optimization of ultra-high head, ultra-low flow Pelton turbines. Another good turbomachine option 

is positive displacement machines, specifically of the axial-piston hydraulic motor type, due to 

their ability to extract work from high pressure hydraulic streams with efficiency fairly insensitive 

to RPM and pressure. Utilizing an axial-piston type machine in GLIDES comes with the added 

advantage of the possibility of using the same machine in reverse as the pump and turbine, 

consolidating components, as was done with the gen. 2 GLIDES prototype. The gen. 2 prototype 

offers a look at how such a machine performs as the turbine in a GLIDES system. Lastly, a high-

level qualitative discussion of the advantages and disadvantages of using a Pelton turbine versus a 

hydraulic motor in a GLIDES system is given. 

6.1 Pelton Turbine 

6.1.1 Pelton turbine design configurations studied via CFD 

Several Pelton turbine configurations were studied via a combination of computational 

fluid dynamics and experiments on the physical machines. CFD simulations on three Pelton 

turbine configurations were conducted by the SimCenter at the University of Tennessee at 

Chattanooga and two of the Pelton turbine configurations were installed on the GLIDES gen. 1 

prototype. These studies looked at two main Pelton turbine design parameters, the design of the 

runner and associated effect on drag and turbine efficiency, and the effect of the water jet diameter 
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(jet diameter to bucket diameter ratio) on the turbine efficiency. The goal of the CFD study was to 

examine the effect of the runner design on the rotational drag, and try to optimize the design 

features to reduce said drag. The goal of the experimental study was to see if varying the jet 

diameter influenced turbine efficiency, and if so, determine what the optimal jet diameter to bucket 

diameter ratio is. 

 The geometry of the baseline (v1) configuration is shown in Figure 6.1. Figure 6.1 middle 

shows the overall geometry including the water nozzles and the casing within which the turbine is 

housed. The buckets are shown in green, while the central axis assembly is shown in red. The 

wheel to which the buckets are bolted on to is shown in blue. The sliding interface which separates 

the rotating and non-rotating parts of the mesh is shown in semi-transparent yellow. Figure 6.1 

right shows a zoomed in view of the buckets. Due to their small size and complex geometric 

features, the Pelton turbine buckets shown in Figure 6.1 were additively manufactured out of a 

stainless-steel bronze matrix. Figure 6.2 shows an image of the Pelton turbine bucket, as well as 

the overall dimensions of the bucket. 

 

Figure 6.1: GLIDES v1 Pelton turbine configuration, left: physical turbine, middle: overall 

geometry, right: zoomed in view showing bucket geometry 
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Figure 6.2: left: 3D printed Pelton turbine bucket, right: bucket dimensions in millimeters 

 

The mesh for this configuration contained approximately 7.43 million nodes, 11.75 million 

tets, and 9.41 million prisms. Even though the water nozzles were present in the mesh generated 

for this geometry, the simulations did not include water jets. A zoomed in view of a bucket with 

the associated surface mesh is shown in Figure 6.3. As can be seen from the figure, a significant 

number of points were placed on the bucket in order to ensure that the impact of the rotation on 

surface forces could be captured accurately. The simulations were carried out by spinning the 

Pelton wheel at a constant RPM of 2,500. A time step corresponding to 360 steps per revolution 

(1 degree angular rotation per time step) was used. 
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Figure 6.3: Zoomed in view showing surface mesh on buckets (baseline configuration) 

  

A detailed view of the buckets and the hardware that affixes it to the wheel is shown in Figure 

6.1 right. From this figure, it is quite clear that the bolt heads protrude a significant height above the 

surface of the wheel. Likewise, the material that is holding up the bucket has a significant height above 

the wheel. It was hypothesized that these two protrusions could result in a significant increase in the 

drag forces, which consequently results in a significant increase in the torque required to turn the wheel. 
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Figure 6.4: GLIDES v2 Pelton turbine configuration (aerodynamic modification), left: overall 

geometry, right: zoomed in view showing bucket geometry 

 

 

Figure 6.5: Zoomed in view showing surface mesh on buckets (aerodynamic modification 

configuration)  

 

This hypothesis was put to the test by modifying the geometry as shown in Figure 6.5 and carrying 

out simulations using the same parameters as the simulation for the baseline configuration. The 

mesh for the v2 configuration contained approximately 5.73 million nodes, 10 million tets and 7 
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million prisms. A detailed view of the surface mesh on the modified buckets is shown in Figure 

6.5. 

 The third configuration analysed, the GLIDES v3 Pelton turbine, is similar to the v2 

configuration, except for the fact that the diameter of the Pelton wheel is significantly smaller for 

the v3 runner. Consequently, this configuration spins at a much higher speed of 4,500 RPM 

compared to the Baseline v1 and aerodynamic modification v2 configurations. Note that that the 

v1 and v3 configurations are the two configurations for which the physical Pelton turbines are 

available and installed on the gen. 1 GLIDES prototype. A view of the v3 runner geometry and a 

close up of the bucket geometry is shown in the right frame of Figure 6.6. The casing is shown in 

grey, while the sliding interface is shown in yellow. The nozzles were not included in this 

simulation. 

 

 

Figure 6.6: GLIDES v3 Pelton turbine configuration, left: physical turbine, middle: overall 

geometry, right: zoomed in view showing bucket geometry 
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The mesh for this configuration contained approximately 4.4 million nodes, 5.4 million tetrahedra, 

and 5.58 million prisms. Additionally, it contained about 320,000 prisms and 430,000 hexadedra. 

A detailed view of the mesh around the buckets is shown in Figure 6.7. 

 

 

Figure 6.7: Mesh around the GLIDES v3 Pelton turbine runner 

 

6.1.2 CFD simulation results 

A comparison of the overall torque for the three configurations is shown in Figure 6.8. As 

can be seen from this figure, it takes the torque for the baseline configuration a lot longer to settle 

down to something resembling a periodic state while the v2 configuration appears to reach this 

state a lot faster. Similarly, the v3 runner configuration settled down a lot faster compared to the 

baseline. Furthermore, the torque for the v2 configuration is almost 40% lower than that of the 

baseline configuration. Likewise, the torque of the v3 runner configuration is a further 60% lower 

than the v2 case. A significant part of this reduction can be attributed to the fact that the diameter 
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of the Pelton wheel for the v3 runner is almost half that of the v2 and baseline cases. Furthermore, 

the number of buckets in the v3 configuration is 48, while the number is 42 for the baseline and 

v2 configurations. The significant difference in diameters between the configurations results in a 

very “dense” configuration for the v3 runner compared to the other two configurations. This has 

an impact on the size of the recirculation zones that form around the buckets (Figure 6.9), which 

could in turn impact the overall torque. This is similar to a situation where race cars are drafting 

behind each other, wherein the cars that are in the wake experience less drag. 

 

 

Figure 6.8: Comparison of overall torque for the baseline (v1), v2, and v3 Pelton turbine 

configurations 
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Figure 6.9: Velocity distributions showing the recirculation zones behind the buckets on a plane 

passing through the center of the buckets a) v2 turbine x-velocity, b) v2 turbine y-velocity, c) v3 

turbine x-velocity, d) v3 turbine y-velocity 

 

A breakdown of the torque for the buckets only is shown in Figure 6.10. For the baseline 

configuration, the buckets only breakdown did not include the bolts that attached the buckets to 

the wheel, while the section shown in green in Figure 6.5 is included in the buckets only breakdown 

for the v2 configuration. The overall trends of the time it takes for the torque of the baseline 

configuration to settle down compared to the v2 configuration persists in this comparison also. It 

can be seen from Figure 6.10 that the bolts have a significant contribution to the overall torque as 

the improvement of the v2 configuration is now down to around 17%. Note that the v3 runner 
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simulations were not run with the buckets “tagged” separately, therefore, a breakdown of the 

torque acting on just the buckets is not included in this figure. 

 

 

Figure 6.10: Comparison of torque (buckets only) for the Baseline and v2 configurations 

 

Based on the results of the CFD simulations, the v2 configuration results in a significant 

reduction in the torque it requires when rotated at 2,500 RPM, compared to the v1 configuration. 

This means that all else equal, under the impulse provided by the water jets, the v2 configuration 

requires a significantly smaller head in order to produce power compared to the Baseline 

configuration. This also means that a GLIDES system utilizing the v2 Pelton turbine configuration 

would achieve higher system roundtrip efficiency. Similarly, the v3 runner configuration requires 

a smaller head to operate, therefore, has higher efficiency and would result in higher roundtrip 

efficiency when used in a GLIDES system compared to the v2 and v1 configurations. 
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6.1.3 Experimental study 

For this very-high head, very-low flow application regime of Pelton turbines, it is not clear 

what the optimal jet diameter to bucket diameter ratio is. Pursuant to this the v3 Pelton turbine on 

the gen. 1 GLIDES prototype was used to study the performance of various jet diameters. This 

turbine has interchangeable nozzles. The nozzles were interchanged to achieve various jet 

diameters. With each different nozzle, performance was tested by discharging GLIDES system 

from 110 bar to 100 bar. As with the gen. 1 GLIDES prototype tests, during the tests, loads were 

controlled to maintain the bucket speed to jet speed ratio near 0.46 by utilizing resistive heaters 

with a variable transformer to adjust the loads. The gen. 1 prototype was used to conduct this 

testing, details about the setup and measurement instruments used can be found in Chapter 3. 

Details about the parametric testing conducted and the various nozzles utilized are shown in Table 

6.1. According to conventional Pelton turbine design rules, jet diameter to bucket diameter ratio 

plays a role in turbine efficiency and can be optimized, with the optimal range being a jet diameter 

between 0.3-0.33 of the bucket diameter or width [71]. Presumably, the turbine efficiency drops 

off rapidly outside of this range. 

 

Table 6.1: Parametric turbine jet diameter tests conducted 

Test 
Orifice Diameter 

(in) 

Orifice Diameter 

(mm) 

Nozzle GPM (@1,000 

PSI) 

Nozzle Diameter to 

Jet Diameter Ratio 

1 0.05 1.27 2.5 0.21 

2 0.06 1.52 3.5 0.25 

3 0.07 1.78 5 0.29 

4 0.08 2.03 6 0.33 

5 0.09 2.29 7.5 0.38 
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For the five tests, four transient parameters were calculated and plotted versus time, the hydraulic 

power, the shaft power, the turbine specific speed, and the turbine efficiency which is the ratio of 

the turbine shaft power to the hydraulic power. The efficiency can be thought of as how efficiently 

the turbine is converting the hydraulic power to shaft power. The equations for the four 

performance parameters respectively can be seen in Equations (6.1)-(6.4) below. 

 𝑊̇ℎ = 𝑝 ∙ 𝑉̇ 
(6.1) 

 𝑊̇𝑠 = 0.105 ∙
1

3
∙ 𝑁 ∙ 𝜏 (6.2) 

 𝑁𝑠 =
𝑁 ∙ 𝑊̇ℎ

1
2

𝜌
1
2 ∙ (

𝑝
𝜌)

5
4

  (6.3) 

 𝜂𝑇 =
𝑊̇𝑠

𝑊̇ℎ

 
(6.4) 

where p is the measured pressure, V̇ is the water flow rate (calculated from measured data), N is 

the measured shaft rotational speed, τ is the measured torque, and ρ is the water density. 

 Figure 6.11 presents the results of the tests, all four performance parameters described in 

the previous paragraph. For both the indicated power and the shaft power, as expected, in moving 

from the smallest nozzle (2.5 GPM nozzle) to the largest nozzle (7.5 GPM) the magnitude of the 

power increases, and the slope of the curve increases, as the rate of change of the pressure as it 

decreases from 110 bar to 100 bar is greater. While increasing the jet diameter (at given pressure) 

results in greater power output due to larger flow rate, Figure 6.11 d) suggests that the turbine 

efficiency is essentially insensitive to the jet diameter, since there are no real differences between 
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the various turbine efficiencies with the different jet diameters. This is contrary to conventional 

Pelton turbine design knowledge. This result suggests that in this ultra-high head, ultra-low flow 

Pelton turbine application regime, jet diameter to bucket diameter ratio is seemingly not an 

important design parameter when it comes to efficiency. This is a significant result because power 

output can then be maximized by increasing jet diameter, without adversely affecting turbine 

efficiency and consequently system roundtrip efficiency. 

 

 

Figure 6.11: Parametric Pelton turbine jet diameter test results, a) indicated power, b) shaft 

power, c) turbine specific speed, d) turbine efficiency  
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6.2 Discussion of Pelton turbine vs. hydraulic motor 

A hydraulic motor differs from a Pelton turbine in that it is a reaction machine as opposed 

to an impulse machine. Impulse turbines change the direction of flow of a high velocity fluid, and 

thus are driven primarily by fluid velocity, whereas, reaction turbines develop torque by reacting 

to the fluids pressure, so are primarily driven by inlet to outlet pressure difference. In impulse 

turbines, as soon as the water jet exits the inlet nozzle, it is at atmospheric pressure and remains so 

as it enters (strikes) and exits the turbine blades. In contrast, with reaction machines, the fluid 

enters the machine at high pressure, enters the blades or pistons still at high pressure, and then exit 

at lower pressure. It requires a fixed volume of water to achieve a complete revolution in an axial-

piston type reaction machine, whereas this is not the case with impulse machines. This means that 

in an axial-piston machine, the flow rate is fully coupled to the RPM, meaning that the RPM sets 

the flow rate. This is in contrast with an impulse machine, where the flow rate is dependent on the 

system pressure and nozzle design, so the RPM and flow rate are somewhat decoupled. Practically, 

this means that in a GLIDES system discharging using a Pelton turbine, if you continue to load the 

system, the turbine speed will gradually slow down until it stalls and eventually stops, but the flow 

rate would not decrease proportionally. Flow would continue for as long as there is positive 

pressure in the pressure vessel(s). Essentially, we would be discharging the system, but not 

extracting any useful work out of it. In a GLIDES system discharging through a hydraulic motor, 

this would not happen. If you continued to load the system, the turbine speed will gradually slow, 

begin to stall, and come to a stop, but as it slowed down, the flow would decrease proportionally 

until the turbine completely stops spinning and the flow rate goes to zero. 

 Figure 6.12 presents a comparison between the operating characteristics of a hydraulic 

motor versus a Pelton turbine. The data shown was collected from the GLIDES gen. 2 and gen. 1 
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prototypes respectively. The top row shows the data for the hydraulic motor, and the bottom row 

shows the data for the Pelton turbine. The first two plots compared on the left show the torque, the 

shaft power, and the operating efficiency for the hydraulic motor versus the Pelton turbine 

respectively. As expected, the measured shaft torque increases for both machines as the pressure 

increases. The same for the shaft power. However, with the efficiency, the efficiency of the 

hydraulic motor decays with increasing pressure, while that of the Pelton turbine remains flat. The 

middle plot show the efficiency plotted versus the torque for both machines. Once again, the Pelton 

turbine curve is flat, while the hydraulic motor sees a decaying efficiency with increasing torque. 

The last two figures on the right show the efficiency plotted versus the RPM. For the hydraulic 

motor, the loads were controlled to keep the RPM at or around 1800 RPM, yet the efficiency varies 

between 0.5 and 0.9. But with the Pelton turbine, once again the efficiency is flat with respect to 

speed. The hydraulic motor on average has higher efficiency, but it is variable, while the Pelton 

turbine efficiency is lower, but very flat. 
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Figure 6.12: Comparison of several operating characteristics for a hydraulic motor (top row) 

versus a Pelton turbine (bottom row) 

 

 In terms of selecting an energy recovery machine of choice for use in s GLIDES system, 

there is no clear choice, and there are advantages and disadvantages of each. Decision should be 

made on a case-by-case basis, and the individual system design characteristics and energy storage 

application at hand should be considered. In the case of the GLIDES gen. 1 and gen. 2 prototypes, 

it was easier to control the Pelton turbine to achieve constant efficiency, however the average 

efficiency was on the lower side. With the hydraulic motor, the average efficiency was higher, but 

saw more variability. In general, with a Pelton turbine, the flow rate is not coupled to the turbine 

RPM, so if the turbine stalls, the system continues to discharge and waste stored energy. However, 

with a hydraulic motor, flow rate and rotation are fully coupled, so if the machine stalls, stored 

energy is not wasted. A Pelton turbine can have 1-7 jets which can be used to modulate power 

capacity of the same machine. Various nozzle sizes can also be used on jets, so between the number 
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of jets and jet nozzle diameter, the system power capacity can be tuned finely. This functionality 

would require multiple hydraulic motors to achieve the same level of flexibility. One big advantage 

of using a hydraulic motor, however, is that it can be used as the charging pump as well, 

consolidating components, and saving cost and space, as was done with the GLIDES gen. 2 

prototype. Because Pelton turbines are typically not used for such high-heads and required 

redesign for use in GLIDES, it is likely that with additional research, efficiencies can be improved 

to reach that of conventional Pelton turbines, this would add another advantage for selection of 

Pelton turbine. 
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CHAPTER 7. COST & MARKET VALUE ANALYSIS 

Peak demand reduction and shifting consumption to daily periods where electricity price 

is lower are two effective ways to reduce the cost of electricity of large consumers. Energy storage 

technologies enable buildings operators to do so. GLIDES is a promising energy storage 

technology that can provide that benefit to buildings. In this chapter, the result of backward 

analysis to determine economical first costs of storage deployment as behind-the-meter resource 

for large commercial buildings is presented. The result of forward analysis to estimate the actual 

material cost of deploying a GLIDES system at various capacities and storage times is also 

presented. In the first section, the economic benefit of GLIDES to a large commercial building in 

Los Angeles, Southern Nevada, Hawaii and Alaska is quantified. The maximum viable initial cost 

target of GLIDES for each location through a payback analysis is also calculated. In the second 

section, crude models for the cost-estimation of a GLIDES system at various system capacities 

and storage times are used to provide cost-scaling curves. The cost of the high-pressure storage 

medium is by far the largest cost component, comprising well over 50% of the total equipment 

costs. Special attention is given to the storage medium. Three storage mediums are investigated: 

conventional carbon-steel pressure vessels, carbon-fiber composite pressure vessels, and high-

pressure pipe segments. 

7.1 Backward Analysis – Value of Storage in Buildings 

7.1.1 Introduction 

One major potential application of large-scale energy storage is behind-the meter as a 

resource for peak demand reduction and time-of-use shifting. Most utility companies charge 
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buildings with high power draws a monthly demand charge. This charge is based on the highest 

draw sustained for a certain length of time, usually 15 minutes. Furthermore, in most jurisdictions, 

the demand charge and energy charge vary throughout the day. They are the highest during peak 

demand periods. Peak demand reduction and shifting consumption to daily periods when the price 

of electricity is lower are two effective ways to reduce the cost of electricity to large consumers 

and to lower their primary energy consumption and carbon footprint. Energy storage technologies 

enable building operators to leverage these strategies. 

In this study, the economic benefit of large-scale energy storage to large commercial 

buildings in Los Angeles, Southern Nevada, Hawaii, and Alaska is quantified. A payback analysis 

is then conducted to calculate the maximum viable initial cost target of GLIDES or any generic 

energy storage solution for each location. An energy storage system deployed as a behind-the-

meter resource for a building can help lower overall energy utility bills by reducing the peak draw 

and shifting the time of electricity draws from the grid. For an acceptable return on investment, 

the savings enabled by the storage system needs to be enough to recover its costs within an 

acceptable payback period. This chapter presents the results of a study to determine a target 

GLIDES system cost based on electric utility bill savings resulting from peak reduction and 

shifting. The Department of Energy (DOE) Large Office reference building was used as a case 

study [72]. 

7.1.2 Methodology 

A model was developed to determine when to charge and discharge GLIDES to maximize the 

reduction of the cost of electricity. GLIDES was modeled as a load, additional to the load of the 
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building, with a power draw that is positive when charging and negative when discharging. Figure 

7.1 illustrates this model. 

 

Figure 7.1: Power flows of the building and the energy storage system 

 

The total draw from the electric grid at any time is then the sum of the energy consumption of 

GLIDES and the energy consumption of the building. This is repeated for each day in the year. 

The cost of electricity is given by Equation (7.1). 

 𝐶𝑜𝑠𝑡 = 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐ℎ𝑎𝑟𝑔𝑒 ×  𝑡𝑜𝑡𝑎𝑙 𝑘𝑊ℎ + 𝑑𝑒𝑚𝑎𝑛𝑑 𝑐ℎ𝑎𝑟𝑔𝑒 × max 𝑝𝑜𝑤𝑒𝑟 𝑑𝑟𝑎𝑤 (7.1) 

Each day is divided into 96 time segments, with each being 15 minutes long. The average power 

draw in each period is the sum of the power draw of the building and the power draw of GLIDES 

energy storage. This is given by Equation (7.2) where η is the storage roundtrip efficiency which 

is taken as 1 when the storage system is charging and assumed to be 0.70 during discharging. A 
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constant value of 0.75 is taken for simplicity and is a representative value of roundtrip efficiency 

for the GLIDES system, from the simulation results in Chapter 2. 

 𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑑𝑟𝑎𝑤 = 𝐺𝐿𝐼𝐷𝐸𝑆 𝑝𝑜𝑤𝑒𝑟 𝑑𝑟𝑎𝑤 ×  𝜂 + 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑝𝑜𝑤𝑒𝑟 𝑑𝑟𝑎𝑤 (7.2) 

The cost function is then fed into an optimization algorithm that decides the operation mode of 

GLIDES at each time step (charge, discharge, or idle) to minimize the cost subject to the following 

three constraints: 

• The total accumulated energy stored in GLIDES at any time cannot exceed its capacity. 

• The total accumulated energy stored in GLIDES at any time is greater than zero. 

• The power discharged from GLIDES at any time cannot exceed the power demand of the 

building. 

The power demand of the Large Office DOE reference building was obtained by simulating the 

energy performance of the building in EnergyPlus [73]. Since the amount of energy that can be 

stored in GLIDES depended on it’s the system size (kW) and storage time (hours), the optimization 

was run parametrically for several sizes and storage times. The optimization is then repeated for 

several locations across the United States. 

7.1.3 Results 

Simulations were run for Los Angeles, Southern Nevada, Alaska, and Hawaii. Table 7.1 

through Table 7.4 present the electricity rate schedule of each location.  
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Table 7.1: Los Angeles, CA electricity rate structure [74] 

Monthly charge, $ 246.33 Tax 8% 

    

 Time of use $/kWh $/kW 

from 1/1 to 5/31 

and 

from 10/1 to 12/31 

from 0:00 to 8:00 0.01676 7.58 

from 8:01 to 21:00 0.01676 7.58 

from 21:01 to 24:00 0.01676 7.58 

from 6/1 to 9/30 

from 0:00 to 8:00 0.01676 7.58 

from 8:01 to 12:00 0.01676 8.34 

from 12:01 to 18:00 0.01676 16.42 

from 18:01 to 23:00 0.01676 8.34 

from 23:01 to 24:00 0.01676 7.58 

All Weekends from 0:00 to 24:00 0.01676 7.58 

 

Table 7.2: Southern Nevada electricity rate structure [75] 

Monthly charge, $ 202.5 Tax 4% 

    

 Time of use $/kWh $/kW 

from 6/1 to 9/30 

From 13:01 to 19:00 0.07575 16.3 

From 19:01 to 22:00 0.05675 2.59 

From 22:01 to 10:00 0.03843 0 

From 10:01 to 13:01 0.05675 2.59 

All other months From 0:00 to 24:00 0.04461 0.55 

 

Table 7.3: Hawaii electricity rate structure [76] 

Monthly charge, $ 410 Tax 4% 

    

 Time of use $/kWh $/kW 

Mon – Fri From 17:01 to 21:00 0.288184 24.5 

Mon – Fri From 7:01 to 17:00 0.268184 19.5 

Sat – Sun From 7:01 to 21:00 0.268184 19.5 

Everyday From 0:01 to 7:00 0.168184 0 

Everyday From 21:01 to 24:00 0.168184 0 
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Table 7.4: Alaska electricity rate structure [77] 

Monthly charge, $ 103.07 Tax 8% 

    

 Time of use $/kWh $/kW 

Nov thru May From 0:00 to 24:00 0.0635 14.85 

Jun thru Oct From 0:00 to 24:00 0.0595 9.46 

 

 The extent to which stand-alone, behind-the-meter energy storage provides value is 

dependent on both the utility rate structure as well as the load profile (peak and diurnal variation) 

of the building in question. The storage provides value by reducing the power draw during periods 

when the rate structure is financially unfavorable, and shifting this use to other periods of the day 

when the rate structure is favorable. This is best illustrated by examining Figure 7.2, which presents 

a sample daily load profile for a building in Los Angeles with and without storage. Note that this 

profile is not the financially optimal size of storage for this building. A much larger than optimal 

size is shown in exaggeration for effect. 
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Figure 7.2: Sample building daily load profile with and without storage 

 

During the time of day when rates are higher (approximately 7 am -9 pm), the peak draw from the 

grid is reduced from about 1150 kW down to under 800 kW, with the balance being met by the 

storage. To compensate, the draw from the grid is increased during other periods of the day when 

the rate structure is more favorable. 

 By running the optimization model parametrically for different storage capacities and 

times, it is possible to identify the financially optimal size (capacity and storage time) for the 

building in question. This was done for all four locations; the results can be seen in Figure 7.3. 
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Figure 7.3: Annual savings divided by kWh of savings for different system sizes and capacities 

in four locations 

 

In general, the value of storage diminishes as the storage size increases. There are some exceptions 

in Hawaii and Southern Nevada due to the intricacies in those particular rate structures. The most 

valuable storage (providing the most savings per kWh of deployed storage) is small capacity, small 

storage time. The optimal capacity and storage time for the four different locations and the 

associated annual savings is shown in Table 7.5. 
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Table 7.5: Optimal building energy storage size and annual savings for four different locations 

Location Capacity [kW] 
Capacity Factor 

[kW/kW] 
Storage Time [hrs] 

Annual Savings 

[$/kWh] 

Los Angeles 100 0.057 2 274.10 

Southern Nevada 100 0.051 1 270.90 

Hawaii 100 0.052 1 123.90 

Alaska 50 0.033 1 57.80 

 

In addition to the optimal storage size and annual savings, Table 7.5 also shows the capacity factor. 

The capacity factor is optimal storage capacity divided by the peak building power draw; this result 

shows that energy storage sized at capacity of 3-5% of peak building power draw provides the 

most value per kWh of deployed energy storage. 

 An important parameter that a building owner/operator would likely consider in deciding 

whether to invest in deploying energy storage is the payback period. Using the annual savings 

determined above, the target cost (present value) for an energy storage system based on the desired 

payback period can be determined by discounting the annual savings by the desired payback period 

in years, using Equation (7.3) and a representative discount rate or interest rate, where PV is the 

present value (i.e. target cost), C is the annual savings, N is the desired payback period, and i is the 

discount or interest rate. 

 
𝑃𝑉 = 𝐶 [

1 − (1 + 𝑖)−𝑁

𝑖
]  (7.3) 

Carrying out this calculation for all four locations, with desired payback periods of 5 years and 10 

years, yields the target costs in Figure 7.4. Building owners/operators can, in some cases, afford 

to spend generous amounts on deploying energy storage. 

 



 158 

 

Figure 7.4: Target energy storage cost for 5 and 10-year payback periods 

 

7.1.4 Summary 

Stand-alone, behind-the-meter energy storage can provide significant value in certain 

markets engaging in demand charges and time-of-use utility rate structures. The size of the value 

opportunity is dependent on how favorable the utility rate structure is to time-of-use shifting, as 

well as the individual building’s load profile. Buildings with large variations between peak and 

average power demand are particularly positioned to extract value from energy storage systems. 

In some cases, a building owner/operator can afford to spend generous amounts on energy storage 

systems, while achieving reasonable payback periods and sustained annual savings. For example, 

in Los Angeles or locations with similar electricity rate structures and building load profiles, 

storage, with a 10-year payback period, can be economically viable at an initial cost of 

$2,000+/kWh. The analysis and results presented here indicate that systems with small storage 

capacity (relative to peak building load) and storage times provide the most value. 
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7.2 Forward Analysis – Cost Analysis of GLIDES Scale-Up Prospects 

7.2.1 Introduction 

In addition to the backward cost analysis to identify cost targets providing favorable 

payback in selected markets, simple cost estimation has also been conducted to determine the cost 

of GLIDES at several scales and for different storage times. These cost estimates are based on the 

cost of the major components comprising a GLIDES system (storage medium, pump, turbine, and 

associated piping and materials). The cost of the high-pressure storage medium is by far the largest 

cost component, comprising well over 50% of the total equipment costs. Special attention is given 

to the storage medium. Due to the large degree of location dependence, labor and installation costs 

are not considered here. 

7.2.2 Methodology 

The cost estimation procedure is centered around the cost of the high-pressure storage 

medium. For this study, three options are considered as the storage medium for GLIDES: 

conventional steel pressure vessels, carbon fiber based pressure cylinders, and high-pressure pipe 

segments. High pressure pipe can be used as the storage medium by manifolding several long pipe 

segments on the ends to provide the necessary storage volume. The cost-estimation procedure for 

GLIDES system utilizing each of the three types of storage medium is generally the same, with a 

few distinct differences. The approach for all three types of storage is outlined in the following 

sections. 

The first step in the cost-estimation process is determining the volume of storage necessary 

for a given system capacity (kW), and storage time (hours). First, a roundtrip efficiency (RTE), 
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maximum operating pressure (pmax), and minimum operating pressure (pmin) are selected for the 

system. The maximum operating pressure is typically dictated by the maximum allowable pressure 

of the specific storage medium in use. The minimum pressure is the lowest pressure at which 

power can reasonably be extracted from the turbine or hydraulic motor. In this study, the RTE is 

taken as 75%, and the minimum pressure is taken as pmin = 70 bar. The energy stored in the 

compressed air is a function of the thermodynamic variables, pressure, volume, temperature, and 

the polytropic exponent (n). In this application, n can range from a minimum of 1 (isothermal 

compression – best case scenario) to 1.4 (adiabatic compression – worst case scenario). Here, n is 

taken as 1.2. The energy contained in the compressed air per unit volume is given by Equation 

(7.4). 

 
𝑤𝑚𝑎𝑥 =

𝑛

𝑛 − 1
𝑝𝑚𝑎𝑥 [1 − (

𝑝𝑎𝑡𝑚

𝑝𝑚𝑎𝑥
)

𝑛−1
𝑛

]  (7.4) 

where patm is the atmospheric pressure on the exterior of the storage medium. As mentioned above, 

no useful work can be efficiently extracted below pmin, so we must subtract this unused work from 

w above. The unused work per unit volume is given by Equation (7.5). 

 
𝑤𝑢𝑢 =

𝑛

𝑛 − 1
𝑝𝑚𝑖𝑛 [1 − (

𝑝𝑎𝑡𝑚

𝑝𝑚𝑖𝑛
)

𝑛−1
𝑛

] 
(7.5) 

Considering Equations (7.4) and (7.5), the actual usable energy per unit volume is given by 

Equation (7.6). 

 𝑤𝑢 = 𝑤𝑚𝑎𝑥 − 𝑤𝑢𝑢 (7.6) 
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Finally, the required storage medium volume can be calculated using Equation (7.7). 

 
𝑉𝑠𝑡 =

𝐸𝑠𝑡

𝑤𝑢 ∙ 𝑅𝑇𝐸
 (7.7) 

where Est is the product of the system capacity and storage time. 

Conventional Steel Pressure Vessels 

The first type of storage medium considered is conventional steel pressure vessels, much 

like those used in the GLIDES proof-of-concept prototype at ORNL, as seen in Figure 7.5. 

 

Figure 7.5: Conventional steel pressure vessels 

 

These types of pressure vessels are typically custom manufactured and require a lot of manual 

labor for welding and forming, consequently, this is the most expensive of the three types of 

storage mediums considered. Once the required storage volume is calculated as described in the 



 162 

previous section, a cost model for the cost and sizing of steel pressure vessels described in Proczka 

et al. [16] is used to optimally size the pressure vessel (including pmax, vessel radius and height-to-

diameter ratio) to minimize total cost of pressure vessels needed to meet the required storage 

volume. The balance of the remaining equipment needed for a working GLIDES system is then 

added, using the assumptions described in Appendix C. 

Carbon Fiber Based Pressure Cylinders 

A promising alternative to the costly steel pressure vessels is carbon fiber based pressure 

cylinders. These cylinders typically consist of aluminum or high-density polymer liners fully 

overwrapped with carbon fiber. The manufacturing of the cylinder liners as well as the carbon 

fiber overwrapping process are fully automated, and so cost savings can be achieved over steel 

vessels. Given the nature of GLIDES requiring the storage vessels to store air as well as water, the 

polymer lined carbon fiber cylinders are an appealing option. Two versions of these carbon fiber 

cylinders can be seen in Figure 7.6. 

 

Figure 7.6: Carbon fiber based pressure cylinders (source: Luxfer Cylinders 

http://www.luxfercylinders.com) 
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For the purposes of cost-estimation, quotes for several of these cylinders of different storage 

volumes were obtained from the manufacturer and can be seen in Table 7.6. The cost model then 

sizes and costs a given GLIDES system using each available carbon fiber cylinder, and the cylinder 

resulting in the lowest total cylinder cost is selected. The balance of the remaining equipment 

needed for a working GLIDES system is then added, using the assumptions described in the 

Appendix C. 

 

Table 7.6: Carbon fiber pressure cylinder cost data 

Diameter Length Water volume Cylinder cost 

[mm] [mm] [liters] [$] 

564 1524 287 3013.5 

564 2184 410 4305 

564 3556 727 7633.5 

673 1524 376 3948 

673 2032 550 5775 

673 2286 638 6699 

673 3048 900 9450 

685 2057 579 6079.5 

673 2743 795 8347.5 

data from Luxfer Cylinders 

 

High Pressure Pipe Segments 

The third option considered for use as the high-pressure storage medium is high pressure 

(schedule 80) carbon steel pipe segments. Pipe segments measuring anywhere from 5 feet and 

above can be manifolded together on the ends, providing the high-pressure storage medium 

required for a functioning GLIDES system. These types of high pressure pipe segments are 

typically used to serve as the mid-section for high-pressure steel cylinders such as the ones shown 

in Figure 7.5, but do not require the additional material and labor associated with manufacturing 



 164 

and welding the end caps on, which is where a significant portion of the cost lies. An example of 

high-pressure carbon steel pipe segments can be seen in Figure 7.7. 

 

 

Figure 7.7: Carbon steel pipe segments 

 

 To estimate the cost of GLIDES utilizing high-pressure pipe as storage medium, a cost 

estimation procedure for carbon steel piping described by McCoy & Rubin [78] was used. Their 

method is part of an overall cost-model developed for the cost-estimation of pipeline infrastructure 

projects for CO2 capture/storage. This method assumes 30-inch diameter pipe with 153 bar 

maximum operating pressure. The balance of the remaining equipment needed for a working 

GLIDES system is then added, using the assumptions described in Appendix C. 

7.2.3 Results 

Conventional Steel Pressure Vessels 
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As expected, systems utilizing steel pressure vessels are found to be the most expensive 

option. The $/kWh cost of said systems is shown in Figure 7.8 for various system sizes and storage 

times. The costs range from a maximum near $13,000/kWh for a 1 kW, 1 hour system (very small) 

to a minimum approximately $1,500/kWh for a 100 MW, 6 hours system (very large). 

 

 

Figure 7.8: Costs of GLIDES system utilizing steel pressure vessels 

 

The number of pressure vessels required for the corresponding system sizes are also shown in 

Figure 7.8. Based on the number of pressure vessels required, it is conceivable to design very large 

(>10,000 kW) GLIDES systems. 

Carbon Fiber Based Pressure Cylinders 

Carbon fiber cylinders are shown to be more cost-effective then their steel-counterparts, as 

shown in Figure 7.9. The cost for the very small system is reduced to about $8,800/kWh, and the 

cost for the very large system is reduced to $860/kWh. 
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Figure 7.9: Costs of GLIDES system utilizing carbon fiber pressure vessels 

 

The number of pressure vessels required for the corresponding system sizes are also shown in 

Figure 7.9. Though the carbon fiber vessels are cheaper than steel, they do require a larger number 

of pressure vessels, consequently, very large system sizes (i.e. >10,000 kW) might not be 

conceivable. 

High Pressure Pipe Segments 

In terms of material costs, the high-pressure pipe segments are found to be the most cost-

effective storage medium option for GLIDES of the three options studied. The costs are shown in 

Figure 7.10. The cost for the very small system are further reduced to $5,800/kWh, and the costs 

for the very large system fall to $380/kWh. 
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Figure 7.10: Costs of GLIDES system utilizing pipe segments 

 

The amount of pipe required in meters is also shown in Figure 7.10 alongside the cost. This gives 

an indication of the footprint required for a given system size. It is important to note that though 

the pipe segment equipment costs are significantly reduced compared to the pressure vessel 

options, they would likely require more labor for installation, and thus this may erode or eliminate 

the cost savings over the other storage mediums. 

7.2.4 Summary 

The equipment capital costs for GLIDES energy storage system is studied at various system 

sizes and storage times, for three different high-pressure storage medium options. It is found that 

utilizing steel pressure vessels as storage medium is the most expensive option of the three studied, 

followed by carbon fiber cylinders, and then high-pressure steel pipe segments. While the steel 

pipe segments are found to be the most cost-effective option of the three in terms of material costs, 

such systems are likely to have a higher labor/installation cost, due to the additional labor required 
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to install/erect pipe segments and manifold them together. These costs are not studied here due to 

the large degree of site dependence of this cost category. 
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CHAPTER 8. SUMMARY & CONCLUSIONS 

The ability to store a large amount of energy efficiently, flexibly, cheaply and on demand 

remains a strong technology need to ensure successful integration of intermittent renewable energy 

resources and facilitate a modern, transactive grid that is able to effectively manage energy 

demand/supply. 

 In the past, the power grid has operated in a fashion where generation and use must be 

matched temporally and in capacity. Affordable bulk energy storage offers the possibility of 

relaxing this constraint, which comes with numerous advantages including creating a more modern 

transactive grid, deferring or completely eliminating new major infrastructure investments, and 

allowing buildings to effectively transact with the grid to drastically improve overall 

demand/supply balancing and management when deployed as a behind-the-meter resource. As 

economies continue to evolve, technologies continue to advance, and humans continue to find new 

ways to consume energy, energy demand profiles will become more and more unpredictable and 

fluctuate more, which will cause power quality to suffer. This is another area where bulk energy 

storage can play a major role. 

 Beyond the transactive power grid and energy demand/supply management implication of 

energy storage, successfully integrating renewable sources which are typically intermittent, but 

available in access when on, will not be possible without being paired with cheap, efficient energy 

storage. Energy storage presents an opportunity to store excess renewable energy while available, 

to be dispatched during intermittency. Pursuant to all the above, a Ground-Level Integrated 

Diverse Energy Storage (GLIDES) technology was invented and continues to be developed at Oak 

Ridge National Laboratory. GLIDES is the topic of this thesis, which has given an in depth 
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description of the technology and development activities to date. In common with compressed air 

energy storage, the GLIDES technology is based on air compression/expansion. However, several 

novel features lead to near-isothermal processes, higher efficiency, greater system scalability, and 

the ability to site a system anywhere. The enabling features are utilization of hydraulic machines 

for expansion/compression, above-ground pressure vessels as the storage medium, spray 

cooling/heating, and waste-heat utilization. To date, comprehensive, physics-based analytical 

modeling/simulation of the base (prototype) configuration and modified configurations has been 

completed, two working prototypes have been developed and demonstrated, experimental 

characterization has been performed, alternative working fluids to improve system performance 

have been investigate, and thermo-economic analysis of system scale-up performed. 

8.1 Summary of contributions 

 In pursuit of the answers to the fundamental research questions posed in section 1.3, several 

scientific and engineering accomplishments were achieved which have advanced the body of 

research on compressed-air energy storage, and more specifically, hydro-pneumatic energy 

storage. To our knowledge, the prototypes created as part of this work are the first end-to-end 

(electrical-to-electrical, comprising all energy conversion steps) and largest 

experimental/prototype demonstrations of the liquid-piston driven, hydro-pneumatic, compressed-

gas energy storage concept. Furthermore, a clear path to achieving near-isothermal 

compression/expansion and successfully integrating the use of waste-heat during expansion to 

boost efficiency and energy density was demonstrated. A clear path to achieving isobaric 

compression/expansion to improve efficiency and energy density via the use of condensable 

volatile working fluids was also demonstrated. A robust, physics-based, transient 

modelling/simulation framework was built to simulate all the GLIDES configurations described. 
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The research supporting the above activities was centered around four main contributions which 

are listed below: 

1. The development of an analytical, transient, physics-based model of multiple 

configurations of the GLIDES cycle and complete energy system. 

2. The experimental demonstration of hydraulically-assisted liquid piston gas 

compression/expansion applied to an energy storage device in multiple configurations. 

3. The treatment of the energy recovery turbomachine to recover work from very high-head, 

very low-flow hydraulic stream (Pelton turbine, axial piston hydraulic motor). 

4. The cost/market value analysis for potential us of GLIDES technology deployed as a 

behind-the-meter resource in buildings. 

A roadmap of the research contributions made is shown in Figure 8.1. The effort began with the 

comprehensive physics-based simulation (Chapter 2), which fed/supported the development of the 

first-generation prototype and associated experiments (Chapter 3). Under the first prototype 

development effort, the prospects of alternative working fluids (condensable gases, R134a, CO2) 

was explored via a combination of experimentation and physics-based simulation (Chapter 4) and 

two options for the energy recovery turbomachine were studied (Chapter 6). Using the first-

generation prototype results, the model developed and presented in Chapter 2 was calibrated and 

validated, this work is also presented in Chapter 3. In Chapter 5, the design of the second-

generation proof-of-concept prototype, which featured several design improvements from the first-

generation, was presented in depth, and initial experimental results presented. Finally, cost/market 

value analysis for one use case (buildings, behind-the-meter) was conducted, and this work 

presented in Chapter 7. 
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Figure 8.1: Roadmap of research contributions 

 

8.2 Future work 

The most immediate research need following the work already completed and presented in 

this thesis, is the complete parametric characterization of the second-generation proof-of-concept 

prototype, including complete characterization of the use of spray for cooling/heating to achieve 

isothermal or near-isothermal compression and expansion and waste-heat integration. Under the 

base configuration, these experiments will allow for the determination of the effect of charging 

speed (flow rate), and charging from the bottom versus spray charging from the top on system 

performance (efficiency and energy density). Furthermore, under the second and third 

configurations, spraying atomized water droplets into the storage vessels comes at additional cost 

due to added pressure drop from the spray nozzles and the use of an additional high operating 

pressure, low head spray pump during discharge. These experiments will allow for the 

characterization of this tradeoff to determine under which operating conditions (pressure ratio, 
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spray flow rate, heat rate, waste-heat input temperature, etc.) the improvement to efficiency and/or 

energy density outweighs the added incurred energy cost. 

 Beyond the above, there are many research activities which could be undertaken to further 

push the technology readiness level of GLIDES. The following are just a few of the more pressing 

research needs that come to mind. In order to achieve a significant, step-sized reduction in system 

costs, the cost of the pressure vessels used in GLIDES systems needs to be reduced dramatically. 

Currently, in conventional carbon steel pressure vessels, the majority of the cost comes from the 

labor, as these vessels are largely custom manufactured in very labor intensive, heat intensive 

processes. Automation provides one opportunity to reduce these costs, while finding a way to 

eliminate the need for heat treatment is another. More advanced carbon-fiber composite pressure 

vessels offer a cheaper alternative. While the material costs are higher, the labor costs are reduced 

by the help of manufacturing automation. By unleashing the potential of advanced manufacturing 

techniques such as additive manufacturing, and tapping into advanced materials such as new metal 

alloys and composites, the cost of manufacturing high pressure vessels can be reduced. One 

roadmap may be to leverage additive manufacturing to integrate complex vessel structures which 

can reduce the necessary wall thicknesses but still achieve high pressure ratings, and automate 

manufacturing. 

 Other relevant research areas which would advance technology development includes 

optimization of the working fluid including simulation and experimentation of higher pressure 

fluids and fluid blends, hydraulic turbomachinery design, and pursuing advanced cycle variations 

including combined cooling/heating and electricity generation/storage. System integration 

activities such as virtual integration of a GLIDES system to simulate response in a real-world grid-
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connected environment would also be valuable. The transient nature of the technology poses some 

integration challenges that this type of simulation would help navigate. 
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APPENDIX A: GLIDES SYSTEM SIMULATION CODES 

Main script 

written in: MATLAB R2016b 

 This script calculates the complete, end-to-end transient response (pressure, temperature, 

volume) of the GLIDES system (water, air, tank walls). It also includes two sub-functions. The 

first is a flow model which calculates the discharge flow rate from the pressure vessel(s), the 

second is a sub-function which includes the characteristic curves of the auxiliary components 

(pump/motor, turbine/generator) and calculates roundtrip efficiency, energy density, itemized 

losses and transient electrical power and current during discharge. Both supporting functions need 

to be placed in the same folder as this script in order to run successfully. The inputs are the system 

parameters (number of vessels, number of Pelton turbine jets, and initial conditions). 

clear 

clc 

 

 

%known constants/parameters: 

%number of tanks 

num_tanks=4; 

%number of pelton turbine jets 

num_jets=1; 

%atmospheric pressure in pascals 

P_atm=101325; 

P_conv=100000; 

%ambient temp in kelvin 

T_amb_C=25; 

T_amb=T_amb_C+273.15; 

%130 bar max pressure converted to pascals 

P_max_bar=130; 

P_max=P_max_bar*P_conv; 

%70 bar initial pressure converted to pascals 

P_min_bar=70; 

P_min=P_min_bar*P_conv; 

%air gas constant in J/kg*K 
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R_air=286.987; 

%universal gas contant 

R_bar=8314; 

%air molar mass 

M_air=28.97; 

%mass of tanks in kg 

m_tank=num_tanks*1720; 

%specific heat of tank material in J/kg*K 

c_tank=470; 

%initial mass of water 

m_w_ini=0.01; 

V_w_ini=m_w_ini/1000; 

%initial volume of air in tanks in m^3 

V_air_ini=num_tanks*0.5-V_w_ini; 

%mass of air using IF equation of state 

m_air=(P_min*V_air_ini)/(R_air*T_amb); 

%gravitational constant in m/s^2 

g=9.8; 

%thermal conductivity of tank material in W/m*K 

%k_tank=15.1; 

k_tank=52; 

%tank inner diameter in m 

D_i=0.57; 

%tank outer diameter in m 

D_o=0.61; 

%exterior air velocity in m/s 

vel_air=3; 

%height of tanks in m 

L=2.5; 

%air to water heat transfer area 

A_aw=num_tanks*pi*D_i^2/4; 

%total interior heat transfer area 

A_i_tot=num_tanks*V_air_ini/D_o+(pi/4)*D_o^2; 

%total exterior heat transfer area 

A_o_tot=num_tanks*V_air_ini/D_i+(pi/4)*D_i^2; 

%tank wall thickness 

th=(D_o-D_i)/2; 

 

%constants for variation of cp of air w/ temperature 

alpha=3.653; 

beta_cv=-1.337*10^-3; 

gamma=3.294*10^-6; 

delta=-1.913*10^-9; 

epsilon=0.2763*10^-12; 

 

%Redlich-Kwong equation of state constants for air 

a=15.989; 

b=0.02541; 

 

%turbomachine parameters 

%pump flow rate 

pump_flow=35; 

V_dot_pump=pump_flow/60*10^-3; 

%static pump efficiency (not used) 
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%eta_pump=0.87; 

%static turbine efficiency 

%eta_turb=0.85; 

 

%simulation length in seconds 

max_time=100*60*60; 

pausetime=12*60*60; 

 

%initialize vectors 

time_vec=zeros(max_time,1); 

V_air=zeros(max_time,1); 

v_bar_air=zeros(max_time,1); 

T_air=zeros(max_time,1); 

P_air=zeros(max_time,1); 

m_w=zeros(max_time,1); 

T_w=zeros(max_time,1); 

T_tank1=zeros(max_time,1); 

T_tank2=zeros(max_time,1); 

m_dot_w_vec=zeros(max_time,1); 

cv_air_vec=zeros(max_time,1); 

cp_air_vec=zeros(max_time,1); 

k_air=zeros(max_time,1); 

mu_air=zeros(max_time,1); 

rho_air=zeros(max_time,1); 

nu_air=zeros(max_time,1); 

alpha_air=zeros(max_time,1); 

Pr_air=zeros(max_time,1); 

mu_air_o=zeros(max_time,1); 

rho_air_o=zeros(max_time,1); 

nu_air_o=zeros(max_time,1); 

k_air_o=zeros(max_time,1); 

cp_air_o=zeros(max_time,1); 

cv_air_o=zeros(max_time,1); 

alpha_air_o=zeros(max_time,1); 

Pr_air_o=zeros(max_time,1); 

Re_air_o=zeros(max_time,1); 

rho_w=zeros(max_time,1); 

c_w=zeros(max_time,1); 

mu_w=zeros(max_time,1); 

k_w=zeros(max_time,1); 

Pr_w=zeros(max_time,1); 

nu_w=zeros(max_time,1); 

alpha_w=zeros(max_time,1); 

L_char_1=zeros(max_time,1); 

L_char_2=zeros(max_time,1); 

m_dot_p=zeros(max_time,1); 

V_dot_w_exp=zeros(max_time,1); 

T_f_aw=zeros(max_time,1); 

T_f_1=zeros(max_time,1); 

T_f_2=zeros(max_time,1); 

T_f_o=zeros(max_time,1); 

beta_aw=zeros(max_time,1); 

beta_1=zeros(max_time,1); 

beta_2=zeros(max_time,1); 
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Ra_aw=zeros(max_time,1); 

Ra_1=zeros(max_time,1); 

Ra_2=zeros(max_time,1); 

Gr_1=zeros(max_time,1); 

Gr_2=zeros(max_time,1); 

g_1=zeros(max_time,1); 

g_2=zeros(max_time,1); 

Nu_aw=zeros(max_time,1); 

Nu_1=zeros(max_time,1); 

Nu_2=zeros(max_time,1); 

Nu_o=zeros(max_time,1); 

h_aw=zeros(max_time,1); 

h_i_1=zeros(max_time,1); 

h_i_2=zeros(max_time,1); 

h_o=zeros(max_time,1); 

UA_1=zeros(max_time,1); 

UA_2=zeros(max_time,1); 

A_i_1=zeros(max_time,1); 

A_i_2=zeros(max_time,1); 

A_o_1=zeros(max_time,1); 

A_o_2=zeros(max_time,1); 

A_ave_1=zeros(max_time,1); 

A_ave_2=zeros(max_time,1); 

R_mt_1=zeros(max_time,1); 

R_mt_2=zeros(max_time,1); 

m_tank1=zeros(max_time,1); 

m_tank2=zeros(max_time,1); 

V_dot_exp_LM=zeros(max_time,1); 

ploss=zeros(max_time,1); 

loss_check=zeros(max_time,1); 

v_term=zeros(max_time,1); 

drop_travel=zeros(max_time,1); 

travel_time=zeros(max_time,1); 

rho_drop=zeros(max_time,1); 

N_droplets=zeros(max_time,1); 

Re_droplet=zeros(max_time,1); 

Pr_drop=zeros(max_time,1); 

mu_drop=zeros(max_time,1); 

nu_drop=zeros(max_time,1); 

k_drop=zeros(max_time,1); 

c_drop=zeros(max_time,1); 

alpha_drop=zeros(max_time,1); 

Nu_droplet=zeros(max_time,1); 

h_droplet=zeros(max_time,1); 

%v_term2=zeros(max_time,1); 

%travel_time2=zeros(max_time,1); 

%N_droplets2=zeros(max_time,1); 

%Re_droplet2=zeros(max_time,1); 

%Nu_droplet2=zeros(max_time,1); 

%h_droplet2=zeros(max_time,1); 

 

m_drops=zeros(max_time,1); 

m_dot_spray_vec=zeros(max_time,1); 

T_drop_SR_in=zeros(max_time,1); 
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T_air_SR=zeros(max_time,1); 

T_drop_SR_out=zeros(max_time,1); 

tau=zeros(max_time,1); 

q_drop=zeros(max_time,1); 

T_w_new=zeros(max_time,1); 

q_dot_drop=zeros(max_time,1); 

T_WH_out=zeros(max_time,1); 

 

 

%initial values of above vectors 

time_vec(1)=0; 

V_air(1)=V_air_ini; 

v_bar_air(1)=(V_air(1)/m_air)*M_air; 

T_air(1)=T_amb; 

P_air(1)=P_min; 

m_w(1)=m_w_ini; 

T_w(1)=T_amb; 

T_tank1(1)=T_amb; 

T_tank2(1)=T_amb; 

T_f_aw(1)=(T_w(1)+T_air(1))/2; 

T_f_1(1)=(T_air(1)+T_tank1(1))/2; 

T_f_2(1)=(T_w(1)+T_tank2(1))/2; 

T_f_o(1)=(T_tank1(1)+T_tank2(1)+T_amb)/3; 

cv_air_vec(1)=R_air*((alpha+beta_cv*T_air(1)+gamma*T_air(1)^2+delta*T_air(1)^3+epsilon*T_air(1)^4

)-1); 

cp_air_vec(1)=cv_air_vec(1)+R_air; 

k_air(1)=0.009748221+5.27354*10^-10*P_air(1)+5.5243*10^-5*T_f_1(1); 

mu_air(1)=6.93093*10^-6+2.35465*10^-13*P_air(1)+3.85177*10^-8*T_f_1(1); 

rho_air(1)=(V_air(1)/m_air)^-1; 

nu_air(1)=mu_air(1)/rho_air(1); 

alpha_air(1)=k_air(1)/(rho_air(1)*cp_air_vec(1)); 

Pr_air(1)=nu_air(1)/alpha_air(1); 

mu_air_o(1)=6.93093*10^-6+2.35465*10^-13*P_atm+3.85177*10^-8*T_f_o(1); 

rho_air_o(1)=P_atm/(R_air*T_f_o(1)); 

nu_air_o(1)=mu_air_o(1)/rho_air_o(1); 

k_air_o(1)=0.009748221+5.27354*10^-10*P_atm+5.5243*10^-5*T_f_o(1); 

cv_air_o(1)=R_air*((alpha+beta_cv*T_f_o(1)+gamma*T_f_o(1)^2+delta*T_f_o(1)^3+epsilon*T_f_o(1)^4)-

1); 

cp_air_o(1)=cv_air_o(1)+R_air; 

alpha_air_o(1)=k_air_o(1)/(rho_air_o(1)*cp_air_o(1)); 

Pr_air_o(1)=nu_air_o(1)/alpha_air_o(1); 

rho_w(1)=-3.9837E-03*T_w(1)^2+2.1274E+00*T_w(1)+7.1666E+02; 

c_w(1)=-3.0788E-04*T_w(1)^3+3.0602E-01*T_w(1)^2-1.0086E+02*T_w(1)+1.5207E+04; 

mu_w(1)=-3.7024E-09*T_w(1)^3+3.7182E-06*T_w(1)^2-1.2513E-03*T_w(1)+1.4156E-01; 

k_w(1)=-7.0674E-06*T_w(1)^2+5.6853E-03*T_w(1)-4.5602E-01; 

nu_w(1)=mu_w(1)/rho_w(1); 

alpha_w(1)=k_w(1)/(rho_w(1)*c_w(1)); 

Pr_w(1)=nu_w(1)/alpha_w(1); 

m_dot_p(1)=rho_w(1)*V_dot_pump; 

m_dot_w_vec(1)=m_dot_p(1); 

[V_dot_w_exp(1),V_dot_exp_LM(1),ploss(1),loss_check(1)]=glides_flow(P_air(1),num_jets,num_tanks,n

u_w(1),rho_w(1)); 

L_char_1(1)=L; 

L_char_2(1)=0.0001; 
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beta_aw(1)=1/T_f_aw(1); 

beta_1(1)=1/T_f_1(1); 

beta_2(1)=1/T_f_2(1); 

Ra_aw(1)=(g*beta_aw(1)*(T_w(1)-T_air(1))*D_i^3)/(nu_air(1)*alpha_air(1)); 

Ra_1(1)=(g*beta_1(1)*(T_tank1(1)-T_air(1))*L_char_1(1)^3)/(nu_air(1)*alpha_air(1)); 

Ra_2(1)=(g*beta_2(1)*(T_tank2(1)-T_w(1))*L_char_2(1)^3)/(nu_w(1)*alpha_w(1)); 

Gr_1(1)=Ra_1(1)/(nu_air(1)/alpha_air(1)); 

Gr_2(1)=Ra_2(1)/Pr_w(1); 

Re_air_o(1)=(rho_air_o(1)*vel_air*D_o)/mu_air_o(1); 

%if statement to determine if water is hotter than air or vice-versa and 

%apply appropriate correlation 

if T_w(1)>T_air(1) 

    %Nu_aw(1)=0.54*Ra_aw(1)^(1/4);           %equation 9.30 in Incropera & DeWitt 

    Nu_aw(1)=0.15*Ra_aw(1)^(1/3); 

elseif T_w(1)<T_air(1) 

    Nu_aw(1)=0.52*Ra_aw(1)^(1/5);           %equation 9.32 in Incropera & DeWitt 

else 

    Nu_aw(1)=(0.54*Ra_aw(1)^(1/4)+0.52*Ra_aw(1)^(1/5))/2; 

end 

g_1(1)=(0.75*(nu_air(1)/alpha_air(1))^(1/2))/(0.609+1.221*(nu_air(1)/alpha_air(1))^(1/2)+1.238*(n

u_air(1)/alpha_air(1)))^(1/4);  %eqn 9.20 I&D 

g_2(1)=(0.75*(Pr_w(1))^(1/2))/(0.609+1.221*(Pr_w(1))^(1/2)+1.238*(Pr_w(1)))^(1/4);  %eqn 9.20 I&D 

Nu_1(1)=(4/3)*(Gr_1(1)/4)^(1/4)*g_1(1);         %eqn 9.21 I&D 

Nu_2(1)=(4/3)*(Gr_2(1)/4)^(1/4)*g_2(1);         %eqn 9.21 I&D 

%Nu_1(1)=(0.825+(0.387*Ra_1(1)^(1/6))/((1+(0.492/Pr_air(1))^(9/16))^(8/27)))^2; %equation 9.27 

from Incropera & DeWitt 

%Nu_2(1)=(0.825+(0.387*Ra_2(1)^(1/6))/((1+(0.492/Pr_w(1))^(9/16))^(8/27)))^2; 

%Nu_1(1)=0.68+(0.67*Ra_1(1)^(1/4))/((1+(0.492/Pr_air(1))^(9/16))^(4/9)); 

%Nu_2(1)=0.68+(0.67*Ra_2(1)^(1/6))/((1+(0.492/Pr_w(1))^(9/16))^(4/9)); 

Nu_o(1)=0.3+(0.62*Re_air_o(1)^(1/2)*Pr_air_o(1)^(1/3))/(1+(0.4/Pr_air_o(1))^(2/3))^(1/4)*(1+(Re_a

ir_o(1)/282000)^(5/8))^(4/5); %eqn 7.54 from I&D 

h_aw(1)=(Nu_aw(1)*k_air(1))/D_i;                    %W/m^2*K 

h_i_1(1)=(Nu_1(1)*k_air(1))/L_char_1(1);                   %W/m^2*K 

h_i_2(1)=(Nu_2(1)*k_w(1))/L_char_2(1);                  %W/m^2*K 

h_o(1)=(Nu_o(1)*k_air_o(1))/D_o;                     %W/m^2*K 

A_i_1(1)=4*V_air(1)/D_o+(pi/4)*D_o^2;        %m^2, inner heat transfer surface area b/w tank air 

and tank 

A_i_2(1)=0.00000001;        %m^2, inner heat transfer surface area b/w water and tank 

A_o_1(1)=4*V_air(1)/D_i+(pi/4)*D_i^2;           %m^2, outer heat transfer surface area b/w tank 

air and tank 

A_o_2(1)=0.000001;           %m^2, outer heat transfer surface area b/w water and tank 

A_ave_1(1)=(A_i_1(1)+A_o_1(1))/2;    %m^2, average of air-tank surface areas for conduction 

resistance 

A_ave_2(1)=(A_i_2(1)+A_o_2(1))/2;    %m^2, average of water-tank surface areas for conduction 

resistance 

UA_1(1)=1/((1/(h_i_1(1)*A_i_1(1)))+(th/(k_tank*A_ave_1(1)))+(1/(h_o(1)*A_o_1(1)))); %W/K, tank 

air to ambient air UA 

UA_2(1)=1/((1/(h_i_2(1)*A_i_2(1)))+(th/(k_tank*A_ave_2(1)))+(1/(h_o(1)*A_o_2(1)))); %W/K, tank 

water to ambient air UA 

R_mt_1(1)=A_i_1(1)/A_i_tot; 

R_mt_2(1)=A_i_2(1)/A_i_tot; 

m_tank1(1)=R_mt_1(1)*m_tank; 

m_tank2(1)=R_mt_2(1)*m_tank; 

%T_WH_out(1)= 
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%sprayed mist parameters 

V_dot_spray_lpm=12; 

V_dot_spray=V_dot_spray_lpm/60*10^-3; %L/min to m^3/s 

%V_dot_spray=50/1000; 

m_dot_spray=V_dot_spray*rho_w(1); 

m_dot_spray_vec(1)=m_dot_spray; 

D_droplet=50*10^-6; 

V_drop=pi*D_droplet^3/6; 

C_D=0.8; 

N_dot=(6*V_dot_spray)/(pi*D_droplet^3); 

A_droplet=pi*D_droplet^2; 

rho_drop(1)=-3.9837E-03*T_w(1)^2+2.1274E+00*T_w(1)+7.1666E+02; 

v_term(1)=sqrt((4*D_droplet*rho_w(1)*g)/(3*rho_air(1)*C_D)); 

drop_travel(1)=L_char_1(1); 

travel_time(1)=drop_travel(1)/v_term(1); 

N_droplets(1)=N_dot*travel_time(1); 

m_drops(1)=N_droplets(1)*(pi*D_droplet^3/6)*rho_w(1); 

Re_droplet(1)=(rho_air(1)*v_term(1)*D_droplet)/mu_air(1); 

Pr_drop(1)=Pr_w(1); 

mu_drop(1)=mu_w(1); 

nu_drop(1)=nu_w(1); 

k_drop(1)=k_w(1); 

c_drop(1)=c_w(1); 

alpha_drop(1)=alpha_w(1); 

Nu_droplet(1)=2+0.6*Re_droplet(1)^(1/2)*Pr_drop(1)^(1/3); 

h_droplet(1)=(Nu_droplet(1)*k_drop(1))/D_droplet; 

 

T_drop_SR_in(1)=T_w(1); 

T_air_SR(1)=T_air(1); 

%T_drop_SR_out(1)=T_drop_SR_in(1)-

((h_droplet(1)*A_droplet*N_droplets(1))/(m_dot_spray*c_w(1)))*(T_drop_SR_in(1)-T_air_SR(1)); 

%T_drop_SR_out(1)=T_drop_SR_in(1)-

((h_droplet(1)*A_droplet*N_droplets(1)*60)/(m_drops(1)*c_w(1)))*(T_drop_SR_in(1)-T_air_SR(1)); 

tau(1)=(rho_w(1)*V_drop*c_w(1))/(h_droplet(1)*A_droplet); 

T_drop_SR_out(1)=T_air_SR(1)+(T_drop_SR_in(1)-T_air_SR(1))*exp(-travel_time(1)/tau(1)); 

q_drop(1)=m_dot_spray_vec(1)*cv_air_vec(1)*(T_drop_SR_out(1)-T_drop_SR_in(1)); 

q_dot_drop(1)=N_dot*q_drop(1); 

T_w_new(1)=T_w(1); 

 

%timestep length & initialization of counter 

deltat=1;                  %seconds, timestep 

time=0;                  %seconds, time progression 

i=2; 

 

%minimum amount of water to leave in tank 

min_water=10;                %kg 

 

%tuning coefficients 

coeff=-1; 

HTE=1; 

%AC=0.000001; 

AC=1; 
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cont=1; 

num_cycles=1; 

maxcont=num_cycles*4; 

beginstoretime=1; 

storetime=99999999; 

end_exp_time=999999999999; 

 

%pulsed charging 

pulsed_charging=0; 

T_pulse_max=10; 

T_pulse_min=2; 

redflag=0; 

 

%sprayed mist 

spray_switch=0; 

spray_switch2=spray_switch; 

 

%recirculating pump power 

 eta_recirc=0.75; 

% if V_dot_spray<=17/60*10^-3 

%     W_dot_recirc=(3.255012E+13*V_dot_spray^3+1.603239E+09*V_dot_spray^2-

2.307698E+05*V_dot_spray+9.805349E+00)/eta_recirc; 

% elseif V_dot_spray>17/60*10^-3 

%     W_dot_recirc=(1.049100E+12*V_dot_spray^3+2.342596E+07*V_dot_spray^2-

1.954453E+04*V_dot_spray+4.798752E+00)/eta_recirc; 

% elseif spray_switch==0 && spray_switch2==0 

%     W_dot_recirc=0; 

% end 

%W_dot_recirc=0; 

 

%large nozzle 

if spray_switch==1 && spray_switch2==1 

    W_dot_recirc=(1.049100E+12*V_dot_spray^3+2.342596E+07*V_dot_spray^2-

1.954453E+04*V_dot_spray+4.798752E+00)/eta_recirc; 

    %W_dot_recirc=(1.483852E+11*V_dot_spray^3-

1.799807E+08*V_dot_spray^2+1.544611E+05*V_dot_spray+1.932680E+02)/eta_recirc; 

else 

    W_dot_recirc=0; 

end 

 

%waste heat utilization 

WH_exp_switch=0; 

V_dot_WH_lpm=15; 

m_dot_WH=V_dot_WH_lpm*rho_w(1)/60*10^-3; %flow rate of waste heat water in L/min convert to kg/s 

m_dot_min=min(m_dot_spray,m_dot_WH); 

T_WH_in_C=70; 

T_WH_in=273.15+T_WH_in_C; 

eta_HX=0.9; 

 

%sprayed mist parameters - discharging 

% N_dot2=(6*V_dot_spray_DC)/(pi*D_droplet^3); 

% v_term2(1)=sqrt((4*D_droplet*rho_w(1)*g)/(3*rho_air(1)*C_D)); 

% travel_time2(1)=drop_travel(1)/v_term2(1); 

% N_droplets2(1)=N_dot2*travel_time2(1); 
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% Re_droplet2(1)=(rho_w(1)*v_term(1)*D_droplet)/mu_w(1); 

% Pr_droplet2=Pr_w(1); 

% Nu_droplet2(1)=2+0.6*Re_droplet2(1)^(1/2)*Pr_droplet2^(1/3); 

% h_droplet2(1)=(Nu_droplet2(1)*k_w(1))/D_droplet; 

 

mode='charge'; 

 

%while (time<max_time-1) 

while cont<=maxcont 

 

    m_dot_p(i)=rho_w(i-1)*V_dot_pump; 

 

    %call subroutine to calculate water discharge flowrate 

    [V_dot_w_exp(i),V_dot_exp_LM(i),ploss(i),loss_check(i)]=glides_flow(real(P_air(i-

1)),num_jets,num_tanks,real(nu_w(i-1)),real(rho_w(i-1))); 

 

    %if statement to check if we should be using sprayed mist during 

    %charging 

    if (spray_switch==1) && (mod(cont,4)==1) 

        spray_coeff=1; 

        m_dot_spray_vec(i)=m_dot_spray; 

    elseif (spray_switch2==1) && (mod(cont,4)==3) 

        spray_coeff=1; 

        m_dot_spray_vec(i)=m_dot_spray; 

    else 

        spray_coeff=0; 

        m_dot_spray_vec(i)=0; 

    end 

 

    %if statement to check if we should be using sprayed mist during 

    %discharging 

%     if (spray_switch2==1) && ((mod(cont,2)==1) && (mod(cont,4)==3)) 

%         spray_coeff2=1; 

%     else 

%         spray_coeff2=0; 

%     end 

 

    %if statement to set water mass flow rate to positive, negative, or 

    %zero based on value of cont 

    if (mod(cont,2)==1) && (mod(cont,4)==1) 

        m_dot_w=m_dot_p(i); 

        if pulsed_charging==1 

            if (T_air(i-1)-T_amb>=T_pulse_max) 

                m_dot_w=0; 

                redflag = 1; 

            end 

            if (redflag==1) & (T_air(i-1)-T_amb>=T_pulse_min) 

                m_dot_w=0; 

            else 

                redflag=0; 

            end 

        end 

    elseif (mod(cont,2)==0) 

        m_dot_w=0; 
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    elseif (mod(cont,2)==1) && (mod(cont,4)==3) 

        %m_dot_w=-m_dot_p(i); 

        m_dot_w=-V_dot_w_exp(i)*rho_w(i-1); 

    end 

 

    %governing physical equations 

    m_dot_w_vec(i)=m_dot_w; 

    time_vec(i)=time_vec(i-1)+deltat; 

    V_air(i)=V_air(i-1)+coeff*(m_dot_w_vec(i)/rho_w(i-1))*deltat; 

    T_air(i)=T_air(i-1)+(deltat/(m_air*cv_air_vec(i-1)))*(AC*-h_aw(i-1)*A_aw*(T_air(i-1)-T_w(i-

1))-HTE*AC*UA_1(i-1)*(T_air(i-1)-T_amb)-spray_coeff*q_dot_drop(i-1)-P_air(i-1)*((V_air(i)-

V_air(i-1))/deltat)); 

    %adiabatic air 

    %T_air(i)=T_air(i-1)+(deltat/(m_air*cv_air_vec(i-1)))*(-P_air(i-1)*((V_air(i)-V_air(i-

1))/deltat)); 

    P_air(i)=(m_air*R_air*T_air(i))/V_air(i); 

    %v_bar_air(i)=(V_air(i)/m_air)*M_air; 

    %P_air(i)=(R_bar*T_air(i))/(v_bar_air(i)-

b)+(a/(v_bar_air(i)*(v_bar_air(i)+b)*T_air(i)^(1/2))); 

    m_w(i)=m_w(i-1)+coeff*-1*m_dot_w_vec(i)*deltat; 

    if m_dot_w>0 

        T_w(i)=T_w(i-1)+(deltat/(m_w(i)*c_w(i-1)))*(AC*h_aw(i-1)*A_aw*(T_air(i-1)-T_w(i-1))-

AC*UA_2(i-1)*(T_w(i-1)-T_amb)+m_dot_w_vec(i)*c_w(i-1)*(T_w(i-1)-T_amb)); 

    elseif m_dot_w<0 

        T_w(i)=T_w(i-1)+(deltat/(m_w(i)*c_w(i-1)))*(AC*h_aw(i-1)*A_aw*(T_air(i-1)-T_w(i-1))-

AC*UA_2(i-1)*(T_w(i-1)-T_amb));%+m_dot_w_vec(i)*c_w(i-1)*(T_w(i-1)-T_amb)); 

    else 

        T_w(i)=T_w(i-1)+(deltat/(m_w(i)*c_w(i-1)))*(AC*h_aw(i-1)*A_aw*(T_air(i-1)-T_w(i-1))-

AC*UA_2(i-1)*(T_w(i-1)-T_amb)); 

    end 

    T_tank1(i)=T_tank1(i-1)+(deltat/(m_tank1(i-1)*c_tank))*(HTE*AC*h_i_1(i-1)*A_i_1(i-

1)*(T_air(i-1)-T_tank1(i-1))-AC*h_o(i-1)*A_o_1(i-1)*(T_tank1(i-1)-T_amb)); 

    T_tank2(i)=T_tank2(i-1)+(deltat/(m_tank2(i-1)*c_tank))*(AC*h_i_2(i-1)*A_i_2(i-1)*(T_w(i-1)-

T_tank2(i-1))-AC*h_o(i-1)*A_o_2(i-1)*(T_tank2(i-1)-T_amb)); 

 

    %update HT areas 

    A_i_1(i)=4*V_air(i)/D_o+(pi/4)*D_o^2;        %m^2, inner heat transfer surface area b/w tank 

air and tank 

    A_i_2(i)=A_i_tot-A_i_1(i);        %m^2, inner heat transfer surface area b/w water and tank 

    A_o_1(i)=4*V_air(i)/D_i+(pi/4)*D_i^2;           %m^2, outer heat transfer surface area b/w 

tank air and tank 

    A_o_2(i)=A_o_tot-A_o_1(i);           %m^2, outer heat transfer surface area b/w water and 

tank 

    A_ave_1(i)=(A_i_1(i)+A_o_1(i))/2;    %m^2, average of air-tank surface areas for conduction 

resistance 

    A_ave_2(i)=(A_i_2(i)+A_o_2(i))/2;    %m^2, average of water-tank surface areas for conduction 

resistance 

 

    T_f_aw(i)=(T_w(i)+T_air(i))/2; 

    T_f_1(i)=(T_air(i)+T_tank1(i))/2; 

    T_f_2(i)=(T_w(i)+T_tank2(i))/2; 

    T_f_o(i)=(T_tank1(i)+T_tank2(i)+T_amb)/3; 

    

cv_air_vec(i)=R_air*((alpha+beta_cv*T_air(i)+gamma*T_air(i)^2+delta*T_air(i)^3+epsilon*T_air(i)^4
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)-1); 

 

    cp_air_vec(i)=cv_air_vec(i)+R_air; 

    k_air(i)=0.009748221+5.27354*10^-10*P_air(i)+5.5243*10^-5*T_f_1(i); 

    %k_air(i) = CoolProp.PropsSI('L','P',P_air(i),'T',T_air(i),'Air'); 

    mu_air(i)=6.93093*10^-6+2.35465*10^-13*P_air(i)+3.85177*10^-8*T_f_1(i); 

    rho_air(i)=(V_air(i)/m_air)^-1; 

    nu_air(i)=mu_air(i)/rho_air(i); 

    alpha_air(i)=k_air(i)/(rho_air(i)*cp_air_vec(i)); 

    Pr_air(i)=nu_air(i)/alpha_air(i); 

 

    mu_air_o(i)=6.93093*10^-6+2.35465*10^-13*P_atm+3.85177*10^-8*T_f_o(i); 

    rho_air_o(i)=P_atm/(R_air*T_f_o(i));               %using IG law 

    nu_air_o(i)=mu_air_o(i)/rho_air_o(i); 

    k_air_o(i)=0.009748221+5.27354*10^-10*P_atm+5.5243*10^-5*T_f_o(i); 

    

cv_air_o(i)=R_air*((alpha+beta_cv*T_f_o(i)+gamma*T_f_o(i)^2+delta*T_f_o(i)^3+epsilon*T_f_o(i)^4)-

1); 

    cp_air_o(i)=cv_air_o(i)+R_air; 

    alpha_air_o(i)=k_air_o(i)/(rho_air_o(i)*cp_air_o(i)); 

    Pr_air_o(i)=nu_air_o(i)/alpha_air_o(i); 

 

    rho_w(i)=-3.9837E-03*T_w(i)^2+2.1274E+00*T_w(i)+7.1666E+02; 

    c_w(i)=-3.0788E-04*T_w(i)^3+3.0602E-01*T_w(i)^2-1.0086E+02*T_w(i)+1.5207E+04; 

    mu_w(i)=-3.7024E-09*T_w(i)^3+3.7182E-06*T_w(i)^2-1.2513E-03*T_w(i)+1.4156E-01; 

    k_w(i)=-7.0674E-06*T_w(i)^2+5.6853E-03*T_w(i)-4.5602E-01; 

    nu_w(i)=mu_w(i)/rho_w(i); 

    alpha_w(i)=k_w(i)/(rho_w(i)*c_w(i)); 

    Pr_w(i)=nu_w(i)/alpha_w(i); 

 

    L_char_1(i)=R_mt_1(i-1)*L; 

    L_char_2(i)=R_mt_2(i-1)*L; 

    beta_aw(i)=1/T_f_aw(i); 

    beta_1(i)=1/T_f_1(i); 

    beta_2(i)=1/T_f_2(i); 

    Ra_aw(i)=(g*beta_aw(i)*(T_w(i)-T_air(i))*D_i^3)/(nu_air(i)*alpha_air(i)); 

    Ra_1(i)=(g*beta_1(i)*(T_tank1(i)-T_air(i))*L_char_1(i)^3)/(nu_air(i)*alpha_air(i)); 

    Ra_2(i)=(g*beta_2(i)*(T_tank2(i)-T_w(i))*L_char_2(i)^3)/(nu_w(i)*alpha_w(i)); 

    Gr_1(i)=Ra_1(i)/(nu_air(i)/alpha_air(i)); 

    Gr_2(i)=Ra_2(i)/Pr_w(i); 

    Re_air_o(i)=(rho_air_o(i)*vel_air*D_o)/mu_air_o(i); 

 

    %if statement to determine if air is hotter than air or vice-versa and 

    %apply appropriate correlation 

    if T_w(i)>T_air(i) 

        %Nu_aw(i)=0.54*Ra_aw(i)^(1/4);           %equation 9.30 in Incropera & DeWitt 

        Nu_aw(i)=0.15*Ra_aw(i)^(1/3); 

    elseif T_w(i)<T_air(i) 

        Nu_aw(i)=0.52*Ra_aw(i)^(1/5);           %equation 9.32 in Incropera & DeWitt 

    else 

        Nu_aw(i)=(0.54*Ra_aw(i)^(1/4)+0.52*Ra_aw(i)^(1/5))/2; 

    end 

%     if T_w(i)>T_air(i) 

%         Nu_aw(i)=0.54*Ra_aw(i)^(1/4);           %equation 9.30 in Incropera & DeWitt 
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%     elseif T_w(i)<T_air(i) 

%         Nu_aw(i)=0.54*Ra_aw(i)^(1/4);           %equation 9.32 in Incropera & DeWitt 

%     else 

%         Nu_aw(i)=0.54*Ra_aw(i)^(1/4); 

%     end 

    

g_1(i)=(0.75*(nu_air(i)/alpha_air(i))^(1/2))/(0.609+1.221*(nu_air(i)/alpha_air(i))^(1/2)+1.238*(n

u_air(i)/alpha_air(i)))^(1/4);   %eqn 9.20 I&D 

    g_2(i)=(0.75*(Pr_w(i))^(1/2))/(0.609+1.221*(Pr_w(i))^(1/2)+1.238*(Pr_w(i)))^(1/4);       %eqn 

9.20 I&D 

    Nu_1(i)=(4/3)*(Gr_1(i)/4)^(1/4)*g_1(i);             %eqn 9.21 I&D 

    Nu_2(i)=(4/3)*(Gr_2(i)/4)^(1/4)*g_2(i);             %eqn 9.21 I&D 

    %Nu_1(i)=(0.825+(0.387*Ra_1(i)^(1/4))/((1+(0.492/Pr_air(i))^(9/16))^(8/27)))^2; %equation 

9.27 from Incropera & DeWitt 

    %Nu_2(i)=(0.825+(0.387*Ra_2(i)^(1/4))/((1+(0.492/Pr_w(i))^(9/16))^(8/27)))^2; 

    %Nu_1(i)=0.68+(0.67*Ra_1(i)^(1/4))/((1+(0.492/Pr_air(i))^(9/16))^(4/9)); 

    %Nu_2(i)=0.68+(0.67*Ra_2(i)^(1/6))/((1+(0.492/Pr_w(i))^(9/16))^(4/9)); 

    

Nu_o(i)=0.3+(0.62*Re_air_o(i)^(1/2)*Pr_air_o(i)^(1/3))/(1+(0.4/Pr_air_o(i))^(2/3))^(1/4)*(1+(Re_a

ir_o(i)/282000)^(5/8))^(4/5); 

    h_aw(i)=(Nu_aw(i)*k_air(i))/D_i;                    %W/m^2*K 

    h_i_1(i)=(Nu_1(i)*k_air(i))/L_char_1(i);                   %W/m^2*K 

    h_i_2(i)=(Nu_2(i)*k_w(i))/L_char_2(i);                  %W/m^2*K 

    h_o(i)=(Nu_o(i)*k_air_o(i))/D_o;                     %W/m^2*K 

    UA_1(i)=1/((1/(h_i_1(i)*A_i_1(i-1)))+(th/(k_tank*A_ave_1(i-1)))+(1/(h_o(i)*A_o_1(i-1)))); 

%W/K, tank air to ambient air UA 

    UA_2(i)=1/((1/(h_i_2(i)*A_i_2(i-1)))+(th/(k_tank*A_ave_2(i-1)))+(1/(h_o(i)*A_o_2(i-1)))); 

%W/K, tank water to ambient air UA 

 

    R_mt_1(i)=A_i_1(i)/A_i_tot; 

    R_mt_2(i)=A_i_2(i)/A_i_tot; 

 

    m_tank1(i)=R_mt_1(i)*m_tank; 

    m_tank2(i)=R_mt_2(i)*m_tank; 

 

    %sprayed mist calculations - charging 

    v_term(i)=sqrt((4*D_droplet*rho_w(i)*g)/(3*rho_air(i)*C_D)); 

    drop_travel(i)=L_char_1(i); 

    travel_time(i)=L_char_1(i)/v_term(i); 

    N_droplets(i)=N_dot*travel_time(i); 

    Re_droplet(i)=(rho_air(i)*v_term(i)*D_droplet)/mu_air(i); 

    rho_drop(i)=-3.9837E-03*((T_drop_SR_in(i-1)+T_drop_SR_out(i-

1))/2)^2+2.1274E+00*((T_drop_SR_in(i-1)+T_drop_SR_out(i-1))/2)+7.1666E+02; 

    mu_drop(i)=-3.7024E-09*((T_drop_SR_in(i-1)+T_drop_SR_out(i-1))/2)^3+3.7182E-

06*((T_drop_SR_in(i-1)+T_drop_SR_out(i-1))/2)^2-1.2513E-03*((T_drop_SR_in(i-1)+T_drop_SR_out(i-

1))/2)+1.4156E-01; 

    nu_drop(i)=mu_drop(i)/rho_drop(i); 

    k_drop(i)=-7.0674E-06*((T_drop_SR_in(i-1)+T_drop_SR_out(i-1))/2)^2+5.6853E-

03*((T_drop_SR_in(i-1)+T_drop_SR_out(i-1))/2)-4.5602E-01; 

    c_drop(i)=-3.0788E-04*((T_drop_SR_in(i-1)+T_drop_SR_out(i-1))/2)^3+3.0602E-

01*((T_drop_SR_in(i-1)+T_drop_SR_out(i-1))/2)^2-1.0086E+02*((T_drop_SR_in(i-1)+T_drop_SR_out(i-

1))/2)+1.5207E+04; 

    alpha_drop(i)=k_drop(i)/(rho_drop(i)*c_drop(i)); 

    Pr_drop(i)=nu_drop(i)/alpha_drop(i); 
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    Nu_droplet(i)=2+0.6*Re_droplet(i)^(1/2)*Pr_drop(i)^(1/3); 

    h_droplet(i)=(Nu_droplet(i)*k_drop(i))/D_droplet; 

 

    %sprayed mist calculations - discharging 

%     v_term2(i)=sqrt((4*D_droplet*rho_w(1)*g)/(3*rho_air(i)*C_D)); 

%     travel_time2(i)=drop_travel(i)/v_term2(i); 

%     N_droplets2(i)=N_dot2*travel_time2(i); 

%     Re_droplet2(i)=(rho_w(1)*v_term(i)*D_droplet)/mu_w(1); 

%     Nu_droplet2(i)=2+0.6*Re_droplet2(i)^(1/2)*Pr_droplet2^(1/3); 

%     h_droplet2(i)=(Nu_droplet2(i)*k_w(1))/D_droplet; 

 

    %subroutine to calculate spray inlet/outlet temp and air temp change 

    %these are guesses 

 

    %subroutine to implement waste heat utilization during expansion 

    if (WH_exp_switch==1) && (mod(cont,4)==3) 

        %j=1; 

        T_drop_SR_in(i)=T_w(i)+eta_HX*(m_dot_min/m_dot_spray)*(T_WH_in-T_w(i)); 

        T_WH_out(i)=T_WH_in-eta_HX*(m_dot_min/m_dot_WH)*(T_WH_in-T_w(i)); 

        %j=j+1; 

    else 

        %j=1; 

        T_drop_SR_in(i)=T_w(i); 

        T_WH_out(i)=T_WH_in; 

        %j=j+1; 

    end 

 

    %T_air_SR(i-1)=T_air(i); 

    if spray_coeff==1 

        %T_air_SR(i)=T_air_SR(i-

1)+((h_droplet(i)*A_droplet*N_droplets(i)*deltat)/(m_air*cv_air_vec(i)))*(T_drop_SR_in(i)-

T_air_SR(i-1)); 

        %T_drop_SR_out(i)=T_drop_SR_in(i)-

((h_droplet(i)*A_droplet*N_droplets(i))/(m_dot_spray_vec(i)*c_w(i)))*(T_drop_SR_in(i)-T_air_SR(i-

1)); 

        tau(i)=(rho_w(i)*V_drop*c_w(i))/(h_droplet(i)*A_droplet); 

        T_drop_SR_out(i)=T_air(i)+(T_drop_SR_in(i)-T_air(i))*exp(-travel_time(i)/tau(i)); 

        %q_drop(i)=m_dot_spray_vec(i)*c_w(i)*(T_drop_SR_out(i)-T_drop_SR_in(i)); 

        q_drop(i)=V_drop*rho_drop(i)*c_drop(i)*(T_drop_SR_out(i)-T_drop_SR_in(i)); 

        %q_dot_drop(i)=N_dot*q_drop(i); 

        q_dot_drop(i)=(N_droplets(i)/travel_time(i))*q_drop(i); 

        %q_dot_drop(i)=(N_droplets(i)/deltat)*q_drop(i); 

        T_air_SR(i)=T_air_SR(i-1)-(q_drop(i)*deltat)/(m_air*cv_air_vec(i)); 

    else 

        tau(i)=(rho_w(i)*V_drop*c_w(i))/(h_droplet(i)*A_droplet); 

        T_drop_SR_out(i)=T_drop_SR_in(i); 

        T_air_SR(i)=T_air_SR(i-1); 

        %q_drop(i)=m_dot_spray_vec(i)*c_w(i)*(T_drop_SR_out(i)-T_drop_SR_in(i)); 

        q_drop(i)=V_drop*rho_drop(i)*c_drop(i)*(T_drop_SR_out(i)-T_drop_SR_in(i)); 

        %q_dot_drop(i)=N_dot*q_drop(i); 

        q_dot_drop(i)=(N_droplets(i)/travel_time(i))*q_drop(i); 

        %q_dot_drop(i)=(N_droplets(i)/deltat)*q_drop(i); 

    end 
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    %calculate new water temperature after mixing 

    

%T_w_new(i)=(m_w(i)*T_w(i)+m_dot_spray_vec(i)*deltat*T_drop_SR_out(i))/(m_w(i)+m_dot_spray_vec(i)

*deltat); 

    

T_w_new(i)=(m_w(i)*c_w(i)*T_w(i)+m_dot_spray_vec(i)*tau(i)*c_drop(i)*T_drop_SR_out(i))/((m_w(i)+m

_dot_spray_vec(i)*tau(i))*c_w(i)); 

    

%T_w_new(i)=(m_w(i)*T_w(i)+m_dot_spray_vec(i)*deltat*T_drop_SR_out(i))/(m_w(i)+m_dot_spray_vec(i)

*travel_time(i)); 

    T_w(i)=T_w_new(i); 

 

    %series of if statement to determine what current process is and update 

    %cont in order to set correct water mass flow rate, also stores time at 

    %which process changes occur 

    if (P_air(i)>P_max) && (mod(cont,4)==1) && (P_air(i)>P_air(i-1)) && (V_air(i)<V_air(i-1))       

%checks to see if in compression mode & pressure has reached max 

        cont=cont+1; 

        storetime=time; 

        mode='pause'; 

    end 

 

    if (time>storetime+pausetime) && (mod(cont,2)==0) %&& (P_air(i)<=P_air(i-1))    %checks to 

see if paused & pause period has expired 

       cont=cont+1; 

       begin_exp_time=time; 

       storetime_2=storetime; 

       storetime=99999999999; 

       mode='discharge'; 

    end 

 

    if (m_w(i)<min_water) && (mod(cont,4)==3) && (P_air(i)<P_air(i-1)) && (V_air(i)>V_air(i-1))           

%checks to see if in expansion mode & water almost out 

        cont=cont+1; 

        end_exp_time=time; 

        end_exp_time_2=end_exp_time; 

        mode='pause'; 

    end 

 

 

    if (time>end_exp_time+pausetime) && (mod(cont,2)==0) %&& (P_air(i)>P_air(i-1))           

%check to see if paused & pause period has expired 

        cont=cont+1; 

        end_exp_pause=time; 

        if maxcont-cont>0 

            beginstoretime=end_exp_pause; 

        end 

        end_exp_time=99999999; 

    end 

 

    %update time and i counter 

    i=i+1; 

    time=time+deltat; 

end 
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Q_w_1=-h_aw.*A_aw.*(T_air-T_w); 

Q_amb_1=-UA_1.*(T_air-T_amb); 

Q_air_net=Q_w_1+Q_amb_1; 

 

spec_vol=V_air/m_air; 

 

%calculate droplet Biot number 

Bi=(h_droplet.*(D_droplet./6))./k_drop; 

 

%calculate heat input during expansion 

heat_period=begin_exp_time+3:end_exp_time_2; 

heat_time=1:length(heat_period); 

heat_input_rate=m_dot_WH.*c_w(1).*(T_WH_in-T_WH_out(heat_period)); 

heat_input=real(trapz(heat_period,heat_input_rate)); 

heat_input_kJ=heat_input/1000; 

 

heat_input_rate2=m_dot_min.*c_w(1).*(T_w(heat_period)-T_drop_SR_in(heat_period)); 

heat_input_2=real(-trapz(heat_time,heat_input_rate2)); 

heat_input_2_kJ=heat_input_2/1000; 

 

heat_input_3=real(-trapz(heat_time,q_dot_drop(heat_period))); 

heat_input_3_kJ=heat_input_3/1000; 

 

%calculate spray heat transfer coefficients 

UA_spray=(h_droplet.*N_droplets.*A_droplet)/1000; 

 

%truncate all vectors 

pr=1:i-1; 

A_ave_1=A_ave_1(pr); 

A_ave_2=A_ave_2(pr); 

A_i_1=A_i_1(pr); 

A_i_2=A_i_2(pr); 

A_o_1=A_o_1(pr); 

A_o_2=A_o_2(pr); 

alpha_air=alpha_air(pr); 

alpha_air_o=alpha_air_o(pr); 

alpha_w=alpha_w(pr); 

beta_1=beta_1(pr); 

beta_2=beta_2(pr); 

beta_aw=beta_aw(pr); 

c_w=c_w(pr); 

cp_air_o=cp_air_o(pr); 

cp_air_vec=cp_air_vec(pr); 

cv_air_o=cv_air_o(pr); 

cv_air_vec=cv_air_vec(pr); 

drop_travel=drop_travel(pr); 

g_1=g_1(pr); 

g_2=g_2(pr); 

Gr_1=Gr_1(pr); 

Gr_2=Gr_2(pr); 

h_aw=h_aw(pr); 

h_droplet=h_droplet(pr); 

%h_droplet2=h_droplet2(pr); 
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h_i_1=h_i_1(pr); 

h_i_2=h_i_2(pr); 

h_o=h_o(pr); 

k_air=k_air(pr); 

k_air_o=k_air_o(pr); 

k_w=k_w(pr); 

L_char_1=L_char_1(pr); 

L_char_2=L_char_2(pr); 

loss_check=loss_check(pr); 

m_dot_p=m_dot_p(pr); 

m_dot_w_vec=m_dot_w_vec(pr); 

m_tank1=m_tank1(pr); 

m_tank2=m_tank2(pr); 

m_w=m_w(pr); 

mu_air=mu_air(pr); 

mu_air_o=mu_air_o(pr); 

mu_w=mu_w(pr); 

N_droplets=N_droplets(pr); 

%N_droplets2=N_droplets2(pr); 

Nu_1=Nu_1(pr); 

Nu_2=Nu_2(pr); 

nu_air=nu_air(pr); 

nu_air_o=nu_air_o(pr); 

Nu_aw=Nu_aw(pr); 

Nu_droplet=Nu_droplet(pr); 

%Nu_droplet2=Nu_droplet2(pr); 

Nu_o=Nu_o(pr); 

nu_w=nu_w(pr); 

P_air=P_air(pr); 

ploss=ploss(pr); 

Pr_air=Pr_air(pr); 

Pr_air_o=Pr_air_o(pr); 

Pr_drop=Pr_drop(pr); 

Pr_w=Pr_w(pr); 

Q_air_net=Q_air_net(pr); 

Q_amb_1=Q_amb_1(pr); 

Q_w_1=Q_w_1(pr); 

R_mt_1=R_mt_1(pr); 

R_mt_2=R_mt_2(pr); 

Ra_1=Ra_1(pr); 

Ra_2=Ra_2(pr); 

Ra_aw=Ra_aw(pr); 

Re_air_o=Re_air_o(pr); 

Re_droplet=Re_droplet(pr); 

%Re_droplet2=Re_droplet2(pr); 

rho_air=rho_air(pr); 

rho_air_o=rho_air_o(pr); 

rho_w=rho_w(pr); 

spec_vol=spec_vol(pr); 

T_air=T_air(pr); 

T_f_1=T_f_1(pr); 

T_f_2=T_f_2(pr); 

T_f_aw=T_f_aw(pr); 

T_f_o=T_f_o(pr); 
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T_tank1=T_tank1(pr); 

T_tank2=T_tank2(pr); 

T_w=T_w(pr); 

time_vec=time_vec(pr); 

travel_time=travel_time(pr); 

%travel_time2=travel_time2(pr); 

UA_1=UA_1(pr); 

UA_2=UA_2(pr); 

V_air=V_air(pr); 

v_bar_air=v_bar_air(pr); 

V_dot_exp_LM=V_dot_exp_LM(pr); 

V_dot_w_exp=V_dot_w_exp(pr); 

v_term=v_term(pr); 

%v_term2=v_term2(pr); 

m_dot_spray_vec=m_dot_spray_vec(pr); 

T_air_SR=T_air_SR(pr); 

T_drop_SR_in=T_drop_SR_in(pr); 

T_drop_SR_out=T_drop_SR_out(pr); 

rho_drop=rho_drop(pr); 

Pr_drop=Pr_drop(pr); 

mu_drop=mu_drop(pr); 

nu_drop=nu_drop(pr); 

k_drop=k_drop(pr); 

c_drop=c_drop(pr); 

alpha_drop=alpha_drop(pr); 

q_drop=q_drop(pr); 

T_w_new=T_w_new(pr); 

tau=tau(pr); 

Bi=Bi(pr); 

q_dot_drop=q_dot_drop(pr); 

T_WH_out=T_WH_out(pr); 

 

 

if cont >= 4 

    charge_time=(storetime_2-beginstoretime)/60; 

    power_time=(end_exp_time_2-begin_exp_time)/60; 

end 

 

%get rid of imaginary parts of results 

P_air=real(P_air); 

T_air=real(T_air); 

T_w=real(T_w); 

T_tank1=real(T_tank1); 

T_tank2=real(T_tank2); 

V_air=real(V_air); 

m_w=real(m_w); 

m_dot_w_vec=real(m_dot_w_vec); 

Q_w_1=real(Q_w_1); 

Q_amb_1=real(Q_amb_1); 

Q_air_net=real(Q_air_net); 

 

% disp(RTE_ind) 

% disp(RTE_act) 

% disp(SE_ind) 
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% disp(SE_act) 

 

%series of plots 

if deltat==1 

    pr2=pr(beginstoretime:end); 

else 

    pr2=pr(1:end); 

end 

subplot(2,2,1) 

plot(time_vec(pr2),P_air(pr2)) 

title('P_a') 

xlabel('time [s]') 

ylabel('Pressure [Pa]') 

 

%time_vec(1:length(time_vec(beginstoretime:end))) 

 

subplot(2,2,2) 

plot(time_vec(pr2),T_air(pr2)-273.15,time_vec(pr2),T_w(pr2)-273.15,time_vec(pr2),T_tank1(pr2)-

273.15,time_vec(pr2),T_tank2(pr2)-273.15) 

title('Temperatures') 

legend('T_a','T_w','T_t_1','T_t_2') 

xlabel('Time [s]') 

ylabel('Temperature [K]') 

 

subplot(2,2,3) 

plot(time_vec(pr2),V_air(pr2)) 

title('Air Volume') 

xlabel('Time [s]') 

ylabel('Volume [m^3]') 

 

subplot(2,2,4) 

plot(time_vec(pr2),m_w(pr2)) 

title('Mass of Water') 

xlabel('Time [s]') 

ylabel('Mass [kg]') 

figure 

% 

% plot(time_vec,m_dot_w_vec) 

% title('Mass Flow Rate of Water') 

% xlabel('Time [s]') 

% ylabel('Mass Flow Rate [kg/s]') 

% figure 

% 

plot(V_air(pr2),P_air(pr2)) 

title('p-V Diagram') 

xlabel('Volume [m^3]') 

ylabel('Pressure [Pa]') 

%figure 

 

% subplot(3,1,1) 

% plot(time_vec(pr2),Q_amb_1(pr2)) 

% title('Air to ambient heat transfer rate') 

% xlabel('time [s]') 

% ylabel('Heat Rate [W]') 



 193 

% 

% subplot(3,1,2) 

% plot(time_vec(pr2),Q_w_1(pr2)) 

% title('Air to water heat transfer rate') 

% xlabel('time [s]') 

% ylabel('Heat Rate [W]') 

% 

% subplot(3,1,3) 

% plot(time_vec(pr2),Q_air_net(pr2)) 

% title('Air net heat transfer rate') 

% xlabel('time [s]') 

% ylabel('Heat Rate [W]') 

 

%calculate efficiencies and specific energies (make sure max time & pause time are set to only 

get through one full cycle) 

%N=5130; 

eta_carnot=1-(T_amb/T_WH_in); 

if cont >= 4 

    if WH_exp_switch==0 

        heat_in=heat_input_kJ; 

    else 

        heat_in=heat_input_3_kJ; 

    end 

    

[RTE_act,RTE_ind,RTE_ex_ind,RTE_ex_elec,SE_act,SE_ind,power,I,exp_comp_loss,pump_losses,motor_los

ses,turb_losses,gen_losses,N_turb,W_ind_in,W_ind_out,W_act_in,W_act_in2,W_act_out,W_act_out2,W_re

circ_total,Q_ex_in]=RTEcalc6(P_air,ploss,V_air,V_dot_w_exp,rho_w,time_vec,beginstoretime,storetim

e_2,begin_exp_time,end_exp_time_2,m_air,W_dot_recirc,heat_in,eta_carnot); 

    sum_check=exp_comp_loss+pump_losses+motor_losses+turb_losses+gen_losses+RTE_act; 

 

    %calculate number for config 3 pie chart 

%     total_in=-W_act_in2+W_recirc_total+Q_ex_in; 

%     heat_in_slice=Q_ex_in/total_in; 

%     elec_in_slice=(-W_act_in2+W_recirc_total)/total_in; 

%     pump_loss_slice=abs((W_act_in-W_ind_in))/total_in; 

%     recirc_pump_loss_slice=W_recirc_total/total_in; 

%     motor_loss_slice=abs((W_act_in2-W_act_in))/total_in; 

%     

in_check=heat_in_slice+elec_in_slice+pump_loss_slice+recirc_pump_loss_slice+motor_loss_slice; 

% 

%     total_out=W_ind_out; 

%     elec_out_slice=W_act_out2/total_in; 

%     turbine_loss_slice=(W_ind_out-W_act_out)/total_in; 

%     generator_loss_slice=(W_act_out-W_act_out2)/total_in; 

%     out_check=elec_out_slice+turbine_loss_slice+generator_loss_slice; 

 

    total_in=-W_act_in2+Q_ex_in; 

    inner_pie=Q_ex_in+(-W_act_in2); 

    elec_in_slice=-W_act_in2/total_in; 

    heat_in_slice=Q_ex_in/total_in; 

 

    PL=abs((W_act_in-W_ind_in)); 

    ML=abs((W_act_in2-W_act_in)); 

    TL=W_ind_out-W_act_out; 
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    GL=W_act_out-W_act_out2; 

    outer_pie=PL+ML+TL+GL+W_act_out2+W_recirc_total; 

    PL_slice=PL/outer_pie; 

    ML_slice=ML/outer_pie; 

    TL_slice=TL/outer_pie; 

    GL_slice=GL/outer_pie; 

    recirc_pie=W_recirc_total/outer_pie; 

    elec_out_slice=W_act_out2/outer_pie; 

 

    %calculate electric fraction of input energy 

    elec_frac=-W_act_in2/heat_input_3; 

 

    %calculate efficiencies 

    eta_electric=RTE_act; 

    eta_ind=RTE_ind; 

 

    circ_pump_loss=1-sum_check; 

    if exp_comp_loss>=0 %&& circ_pump_loss>0.005 

        figure 

        if sum_check<1 

            

RTEdata=[RTE_act,exp_comp_loss,pump_losses,motor_losses,turb_losses,gen_losses,circ_pump_loss]; 

            explode=[1,0,0,0,0,0,0]; 

            RTElabels={'RTE: ';'exp/comp losses: ';'pump losses: ';'motor losses: ';'turb losses: 

';'gen losses: ';'recirc pump losses: '}; 

        elseif sum_check>=1 

            RTEdata=[RTE_act,exp_comp_loss,pump_losses,motor_losses,turb_losses,gen_losses]; 

            explode=[1,0,0,0,0,0]; 

            RTElabels={'RTE: ';'exp/comp losses: ';'pump losses: ';'motor losses: ';'turb losses: 

';'gen losses: '}; 

        end 

        pie=pie(RTEdata,explode); 

        pieText = findobj(pie,'Type','text'); % text object handles 

        percentValues = get(pieText,'String'); % percent values 

        combinedstrings = strcat(RTElabels,percentValues); % strings and percent values 

        set(pieText(1),'String',combinedstrings(1)) 

        set(pieText(2),'String',combinedstrings(2)) 

        set(pieText(3),'String',combinedstrings(3)) 

        set(pieText(4),'String',combinedstrings(4)) 

        set(pieText(5),'String',combinedstrings(5)) 

        set(pieText(6),'String',combinedstrings(6)) 

        if sum_check<1 

            set(pieText(7),'String',combinedstrings(7)) 

        end 

    end 

end 

 

% figure 

% 

% %plot dT_air/dt 

% dT_air=diff(T_air); 

% dt=diff(time_vec); 

% dT_airdt=dT_air./dt; 

% dT_airdt=[0;dT_airdt]; 
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% plot(time_vec,dT_airdt) 

 

% subplot(2,1,1) 

% plot(time_vec,UA_1) 

% title('Air Heat Transfer Coefficient') 

% xlabel('time [s]') 

% ylabel('HTC [W/K]') 

 

% subplot(2,1,2) 

% plot(time_vec,UA_2) 

% title('Water Heat Transfer Coefficient') 

% xlabel('time [s]') 

% ylabel('HTC [W/K]') 

% figure 

 

% subplot(2,2,1) 

% plot(time_vec,A_i_1) 

% title('Air Inner Heat Transfer Area') 

% xlabel('time [s]') 

% ylabel('Area [m^2]') 

% 

% subplot(2,2,2) 

% plot(time_vec,A_o_1) 

% title('Air Outer Heat Transfer Area') 

% xlabel('time [s]') 

% ylabel('Area [m^2]') 

% 

% subplot(2,2,3) 

% plot(time_vec,A_i_2) 

% title('Water Inner Heat Transfer Area') 

% xlabel('time [s]') 

% ylabel('Area [m^2]') 

% 

% subplot(2,2,4) 

% plot(time_vec,A_o_2) 

% title('Water Outer Heat Transfer Area') 

% xlabel('time [s]') 

% ylabel('Area [m^2]') 

 

 

%figure 

 

% % subplot(2,1,1) 

% % plot(time_vec,cv_air*ones(max_time,1),time_vec,cv_air_vec) 

% % title('Evaluation of constant cv assumption') 

% % xlabel('Time [s]') 

% % ylabel('c_v [J/kg*K]') 

% % legend('const c_v','c_v function of T_a') 

% % 

% % subplot(2,1,2) 

% % plot(time_vec,T_air,time_vec,T_air_const_cv) 

% % title('Effect of constant cv assumption on Air Temp') 

% % xlabel('Time [s]') 
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% % ylabel('T_air [K]') 

% % legend('const c_v','c_v function of T_air') 

Published with MATLAB® R2016b 

 

Supporting Function 1 

This function incorporates the characteristic curves and equations of the auxiliary components 

(pump/motor, turbine/generator) in order to calculate the roundtrip electrical efficiency and 

energy density and itemized losses. Inputs from the main script are the air pressure, volume, flow 

rate. Outputs are the electrical, indicated, and exergetic roundtrip efficiency and energy density, 

as well as the power and current profiles, and itemized system losses. 

function 

[RTE_act,RTE_ind,RTE_ex_ind,RTE_ex_elec,SE_act,SE_ind,power,I,exp_comp_loss,pump_losses,motor_los

ses,turb_losses,gen_losses,N_turb,W_ind_in,W_ind_out,W_act_in,W_act_in2,W_act_out,W_act_out2,W_re

circ_total,Q_ex_in]=RTEcalc6(P_air,P_loss,V_air,V_dot_exp_w,rho_w,time_vec,beginstoretime,storeti

me,begin_exp_time,end_exp_time,m_air,W_dot_recirc,heat_input_2_kJ,eta_carnot) 

  

BST=time_vec==beginstoretime; 

ST=time_vec==storetime; 

charge_process=find(time_vec==beginstoretime):find(time_vec==storetime); 

discharge_process=find(time_vec==begin_exp_time):find(time_vec==end_exp_time); 

  

%pump 

eta_pump_vec=(-

0.00071.*(P_air(charge_process)./10.^5).^2+0.15083.*(P_air(charge_process)./10.^5)+85.5)./100; 

eta_motor_vec=(-

0.00023.*(P_air(charge_process)./10.^5).^2+0.08650.*(P_air(charge_process)./10.^5)+85.3)./100; 

  

%turbine 

%x=0.46; 

D_nozzle=0.00143; 

cv_nozzle=0.98; 

PCD=0.4572; 

%PCD=0.3; 

%vel_jet2=V_dot_exp_w(begin_exp_time:end_exp_time)./(pi/4*D_nozzle^2); 

%N=6250; 

%N=4000; 

vel_jet=cv_nozzle*sqrt(2*9.8.*(P_air(discharge_process)-

P_loss(discharge_process).*10^5)./(rho_w(discharge_process).*9.8)); 

%vel_bucket=65; 

vel_bucket=0.46*vel_jet; 

x=vel_bucket./vel_jet; 

N_turb=(vel_jet.*60.*x)./(pi.*PCD); 

pulley_ratio=1; 

N=pulley_ratio*N_turb; 

zeta=0.88; 

gamma=15*pi/180; 

%eta_turb=-(4*(x-0.5)^2-0.9); 

eta_turb=2.*x.*(1-x).*(1+zeta*cos(gamma)); 

%eta_turb=eta_turb(begin_exp_time:end_exp_time); 

  

% %generator 

% eta_gen=0.9*ones(max_time,1); 

% eta_gen=eta_gen(begin_exp_time:end_exp_time); 

  

%compression/expansion losses 

R_air=286.987; 

T_amb=298.15; 

%W_in_iso=-

m_air*P_air(beginstoretime)*spec_vol(beginstoretime)*log(P_air(storetime)/P_air(beginstoretime)); 

http://www.mathworks.com/products/matlab
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%W_out_iso=-

P_air(begin_exp_time)*V_air(begin_exp_time)*log(P_air(end_exp_time)/P_air(begin_exp_time)); 

%W_out_iso=-

m_air*P_air(storetime)*spec_vol(storetime)*log(P_air(beginstoretime)/P_air(storetime)); 

W_in_iso=-m_air*R_air*T_amb*log(P_air(ST)/P_air(BST)); 

W_out_iso=-m_air*R_air*T_amb*log(P_air(BST)/P_air(ST)); 

  

%indicated work/efficiency 

dV_dt=diff(V_air)./diff(time_vec); 

dV_dt=[dV_dt(1); dV_dt]; 

dV_dt_comp=dV_dt(charge_process); 

dV_dt_comp(1:3)=dV_dt_comp(4); 

dV_dt_exp=dV_dt(discharge_process); 

dV_dt_exp(3)=dV_dt_exp(4)+3E-8; 

dV_dt_exp(2)=dV_dt_exp(3)+3E-8; 

dV_dt_exp(1)=dV_dt_exp(2)+3E-8; 

W_dot_ind_in=P_air(charge_process).*dV_dt_comp; 

W_dot_ind_out=P_air(discharge_process).*dV_dt_exp; 

%W_ind_in=trapz(time_vec(charge_process),W_dot_ind_in); 

%W_ind_out=trapz(time_vec(discharge_process),W_dot_ind_out); 

W_ind_in=trapz(V_air(charge_process),P_air(charge_process)); 

W_ind_out=trapz(V_air(discharge_process),P_air(discharge_process)); 

  

%account for pump & turbine efficiency 

W_dot_act_in=W_dot_ind_in./eta_pump_vec; 

W_dot_act_in2=W_dot_act_in./eta_motor_vec; 

W_dot_act_out=W_dot_ind_out.*eta_turb; 

W_act_in=trapz(time_vec(charge_process),W_dot_act_in); 

W_act_in2=trapz(time_vec(charge_process),W_dot_act_in2); 

W_act_out=trapz(time_vec(discharge_process),W_dot_act_out); 

  

%good generator start 

%regression tree 

fn='efficiency_data.xlsx'; 

sn='regression data'; 

range='D8:F104'; 

data=xlsread(fn,sn,range); 

x_reg=data(:,2:3); 

y=data(:,1); 

tree=fitrtree(x_reg,y); 

  

eta_gen_guess=0.85*ones(length(W_dot_act_out),1); 

power=zeros(length(W_dot_act_out),1); 

eta_gen=zeros(length(W_dot_act_out),1); 

stop_crit=0.0001; 

for i=1:length(W_dot_act_out) 

    power(i)=(W_dot_ind_out(i)*eta_turb(i)*eta_gen_guess(i)); 

    eta_gen(i)=predict(tree,[real(power(i)),real(N(i))]); 

    while abs(eta_gen_guess(i)-eta_gen(i))>stop_crit 

        power(i)=(W_dot_ind_out(i)*eta_turb(i)*eta_gen_guess(i)); 

        eta_gen(i)=predict(tree,[real(power(i)),real(N(i))]); 

        eta_gen_guess(i)=eta_gen(i); 

    end 

end 

  

power=real((W_dot_ind_out.*eta_turb.*eta_gen_guess)); 

I=power./120; 

W_dot_act_out2=W_dot_act_out.*eta_gen; 

W_act_out2=trapz(time_vec(discharge_process),W_dot_act_out2); 

%good generator end 

  

% %bad generator start 

% gen_volt=120; 

% eta_gen_guess=0.85*ones(length(W_dot_act_out),1); 

% I=zeros(length(W_dot_act_out),1); 

% eta_gen=zeros(length(W_dot_act_out),1); 

% stop_crit=0.0001; 

% for i=1:length(W_dot_act_out) 

%     I(i)=(W_dot_ind_out(i)*eta_turb(i)*eta_gen_guess(i))/gen_volt; 

%     eta_gen(i)=(71.3931819915863+2.43125564707891*I(i)+-0.0577927509063142*I(i)^2+-

0.00799868154509985*N(i)+-3.16589896506066E-07*N(i)^2+0.000216227680853878*I(i)*N(i))/100; 
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%     while abs(eta_gen_guess(i)-eta_gen(i))>stop_crit 

%         I(i)=(W_dot_ind_out(i)*eta_turb(i)*eta_gen_guess(i))/gen_volt; 

%         eta_gen(i)=(71.3931819915863+2.43125564707891*I(i)+-0.0577927509063142*I(i)^2+-

0.00799868154509985*N(i)+-3.16589896506066E-07*N(i)^2+0.000216227680853878*I(i)*N(i))/100; 

%         eta_gen_guess(i)=eta_gen(i); 

%     end 

% end 

%  

% I=(W_dot_ind_out.*eta_turb.*eta_gen)./120; 

% W_dot_act_out2=W_dot_act_out.*eta_gen; 

% power=W_dot_act_out2; 

% W_act_out2=trapz(time_vec(begin_exp_time:end_exp_time),W_dot_act_out2); 

% %bad generator end 

  

%plot(time_vec(begin_exp_time:end_exp_time),W_dot_act_out.*eta_gen,time_vec(begin_exp_time:end_ex

p_time),120.*I) 

%plot(time_vec(begin_exp_time:end_exp_time),W_dot_act_out2,time_vec(begin_exp_time:end_exp_time),

W_dot_ind_out.*eta_turb.*eta_gen) 

  

%recirculation pump 

W_dot_recirc_charge=W_dot_recirc.*ones(length(charge_process),1); 

W_dot_recirc_discharge=W_dot_recirc.*ones(length(discharge_process),1); 

W_recirc_charge=trapz(time_vec(charge_process),W_dot_recirc_charge); 

W_recirc_discharge=trapz(time_vec(discharge_process),W_dot_recirc_discharge); 

W_recirc_total=W_recirc_charge+W_recirc_discharge; 

  

%make everything real 

W_ind_out=real(W_ind_out); 

W_ind_in=real(W_ind_in); 

W_act_out2=real(W_act_out2); 

W_act_in2=real(W_act_in2); 

W_recirc_total=real(W_recirc_total); 

heat_input=heat_input_2_kJ*1000; 

heat_input=real(heat_input); 

  

%RTE 

%RTE_ind=abs(W_ind_out/W_ind_in); 

%RTE_act=W_act_out2/(-W_act_in2-W_recirc_total); 

%RTE_ex=W_act_out2/((-W_act_in2-W_recirc_total)+eta_carnot*heat_input); 

  

RTE_ind=abs(W_ind_out/W_ind_in); 

RTE_act=abs(W_act_out2/(W_act_in2-W_recirc_total)); 

%RTE_ex=abs(W_act_out2/((W_act_in2-W_recirc_total)-eta_carnot*heat_input)); 

RTE_ex_ind=abs(W_ind_out/(W_ind_in-eta_carnot*heat_input)); 

RTE_ex_elec=abs(W_act_out2/(W_act_in2-eta_carnot*heat_input)); 

Q_ex_in=eta_carnot*heat_input; 

  

%specific energy 

SE_ind=real((W_ind_out/1000)/max(V_air)); 

SE_act=real((W_act_out2/1000)/max(V_air)); 

  

%efficiencies 

eta_iso=abs(W_out_iso/W_in_iso); 

eta_ind=abs(W_ind_out/W_ind_in); 

eta_4=abs(W_ind_out/W_act_in); 

eta_3=abs(W_ind_out/W_act_in2); 

eta_2=abs(W_act_out/W_act_in2); 

eta_1=abs(W_act_out2/W_act_in2); 

  

%losses 

total_eff_loss=eta_iso-eta_1; 

exp_comp_loss=eta_iso-eta_ind; 

pump_losses=eta_ind-eta_4; 

motor_losses=eta_4-eta_3; 

turb_losses=eta_3-eta_2; 

gen_losses=eta_2-eta_1; 

 

Supporting Function 2: 
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This function is a flow model which calculates the discharge flow rate of the GLIDES system 

using the fluid flow equations for a piping network. It calculates the flow rate in liters per min 

and the pressure drop through the piping system. Inputs are the pressure at the inlet, the number 

of jets, number of tanks, the fluid density and viscosity. 

function [total_lit_min_SI,total_lit_min,ploss,loss_check] = 

glides_flow(initial_pressure,num_jets,num_tanks,kinematic_viscosity,rho) 

  

  

%friction factor correlation from (Evangleids, Papaevangelou, Tzimopoulos 

%2010) 

pipe_diameter = 0.78 * 0.0254; % meter 

area = pi * pipe_diameter ^ 2 / 4; 

pipe_1_length = 27 * 0.0254; 

pipe_2_length = 22 * 0.0254; 

pipe_3_length = 83.5 * 0.0254; 

%initial_pressure = 130e5; % N/m2 

flow = 0.00006; % initial guess (flow from each vessel), m3/s 

%kinematic_viscosity = 1e-6; %m2/s 

%rho = 1000; % kg/m3 

roughness = 0.061e-3; 

%knozzle = 0.04; 

nozzle_diameter = 0.00143; % mm 

condition = 0; 

while (condition > 1.02 || condition < 0.98) 

    % Calculate friction coefficient based on flow 

    Re = flow * pipe_diameter / (kinematic_viscosity * area); 

    if Re < 3200 

        f = Re / 64; 

    else 

        f=(0.2479-0.0000947*(7-

log10(Re))^4)/(log10(roughness/(3.615*pipe_diameter)+7.366/Re^0.9142))^2; 

    end 

    p2 = initial_pressure - flow^2 * rho / pi^2 * (24 / pipe_diameter ^ 4 + 8 * f * pipe_1_length 

/ pipe_diameter^5); 

    %p2 = initial_pressure - flow^2 * rho / pi^2 * ((6*num_tanks) / pipe_diameter ^ 4 + 

2*num_tanks * f * pipe_1_length / pipe_diameter^5);     

    Re = (num_tanks/2) * flow * pipe_diameter / (kinematic_viscosity * area); 

    if Re < 3200 

        f = Re / 64; 

    else 

        f=(0.2479-0.0000947*(7-

log10(Re))^4)/(log10(roughness/(3.615*pipe_diameter)+7.366/Re^0.9142))^2; 

    end 

    p3 = p2 - 4 * flow^2 * rho / pi^2 * (12 / pipe_diameter ^ 4 + 8 * f * pipe_2_length / 

pipe_diameter^5); 

    %p3 = p2 - num_tanks * flow^2 * rho / pi^2 * ((3*num_tanks) / pipe_diameter ^ 4 + 2*num_tanks 

* f * pipe_2_length / pipe_diameter^5); 

    %Re = 4 * flow * pipe_diameter / (kinematic_viscosity * area); 

    Re = num_tanks * flow * pipe_diameter / (kinematic_viscosity * area); 

    c_d=0.9900-0.2262*(nozzle_diameter/pipe_diameter)^4.1-

(0.00175*(nozzle_diameter/pipe_diameter)^2-

0.0033*(nozzle_diameter/pipe_diameter)^4.15)*(10^6/Re)^1.15; 

    knozzle=1/c_d^2-1; 

    if Re < 3200 

        f = Re / 64; 

    else 

        f=(0.2479-0.0000947*(7-

log10(Re))^4)/(log10(roughness/(3.615*pipe_diameter)+7.366/Re^0.9142))^2; 

    end 

    flow_check = sqrt(p3 * pi^2 / rho / 16 / ((8 + 8 * knozzle) / nozzle_diameter^4 + 32 / 

pipe_diameter^4 + 8 * f * pipe_3_length / pipe_diameter^5)); 

    %flow_check = sqrt(p3 * pi^2 / rho / (4*num_tanks) / (((2*num_tanks) + (2*num_tanks) * 

knozzle) / nozzle_diameter^4 + (8*num_tanks) / pipe_diameter^4 + (2*num_tanks) * f * 

pipe_3_length / pipe_diameter^5)); 

    condition = flow_check / flow; 

    flow = flow_check; 

end 

% Individual vessel discharge 
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flow_lit_min = flow * 1000 * 60; 

% Total flow to the turbine 

total_lit_min = num_tanks * num_jets * flow_lit_min; 

V_dot_noloss=num_jets*pi*nozzle_diameter^2/4*sqrt(2*initial_pressure/rho); 

total_lit_min_SI=total_lit_min/60*10^-3; 

ploss=(initial_pressure-

(rho/2*((total_lit_min_SI/num_jets)/(c_d*pi/4*nozzle_diameter^2))^2))/10^5; 

loss_check=100*(total_lit_min_SI/V_dot_noloss); 

 

Published with MATLAB® R2016b 
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APPENDIX B: CONDENSABLE GAS SIMULATION CODES 

written in: MATLAB R2016b 

This code simulates the compression and expansion of condensable gases such as R134a 

and carbon dioxide. It requires the CoolProp thermodynamic properties package to run. Outputs 

are the transient pressure, temperature, volume, quality profiles of the working fluid, (liquid and 

vapor). Inputs are the working fluid, the system parameters (storage volume, oil charging flow 

rate, overall heat transfer coefficient, pause lengths), and the initial conditions (temperature). 

clear 

clc 

 

%add CoolProp to path 

addpath('C:\Program Files\MATLAB\R2016b\CoolPropMatlab') 

 

%knowns 

V_tube=2; 

deltat=8; 

V_dot_val=20; 

V_dot_oil=V_dot_val*1.6667e-5; %liters/min converted to m^3/s 

fluid='CarbonDioxide'; %working fluid 

R=(CoolProp.PropsSI('gas_constant','T',0,'Q',0,fluid))/(CoolProp.PropsSI('M','T',0,'Q',0,fluid)); 

UA=100000; 

%UA=0; 

%UA=200; 

T_amb=25+273.15; 

pause_length=1*60*60; 

pause_length2=1*60*60; 

 

%initialize vectors 

c_liq=zeros(5,1); 

c_vap=zeros(5,1); 

V_dot_oil_vec=zeros(5,1); 

dV_dt_liq=zeros(5,1); 

dV_dt_vap=zeros(5,1); 

h_fg=zeros(5,1); 

m_dot_cond=zeros(5,1); 

m_liq=zeros(5,1); 

m_vap=zeros(5,1); 

rho_ave=zeros(5,1); 

P=zeros(5,1); 
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Q=zeros(5,1); 

rho_liq=zeros(5,1); 

rho_rat=zeros(5,1); 

rho_vap=zeros(5,1); 

T=zeros(5,1); 

V_liq=zeros(5,1); 

V_oil=zeros(5,1); 

V_tot=zeros(5,1); 

V_vap=zeros(5,1); 

vol_check=zeros(5,1); 

UA_vec=zeros(5,1); 

 

%initial conditions - saturated vapor 

T(1)=25+273.15; 

P(1)=CoolProp.PropsSI('P','T',T(1),'Q',Q(1),fluid); 

V_oil(1)=0; 

V_vap(1)=V_tube-V_oil(1); %m^3 

V_liq(1)=V_tube-V_vap(1)-V_oil(1); %m^3 

V_tot(1)=V_vap(1)+V_liq(1); 

rho_vap(1)=CoolProp.PropsSI('D','T',T(1),'Q',1,fluid); 

rho_liq(1)=CoolProp.PropsSI('D','T',T(1),'Q',0,fluid); 

m_vap(1)=rho_vap(1)*V_vap(1); 

m_liq(1)=rho_liq(1)*V_liq(1); 

m_tot=m_vap(1)+m_liq(1); 

%Q(1)=m_vap(1)/m_tot; 

rho_ave(1)=m_tot/V_tot(1); 

Q(1)=((1/rho_ave(1))-(1/rho_liq(1)))/(1/(rho_vap(1))-(1/rho_liq(1))); 

rho_rat(1)=rho_vap(1)/rho_liq(1); 

V_dot_oil_vec(1)=V_dot_oil; 

dV_dt_vap(1)=0; 

dV_dt_liq(1)=0; 

vol_check(1)=V_oil(1)+V_vap(1)+V_liq(1); 

m_dot_cond(1)=abs(rho_vap(1)*dV_dt_vap(1)); 

c_liq(1)=CoolProp.PropsSI('C','T',T(1),'Q',1-Q(1),fluid); 

c_vap(1)=CoolProp.PropsSI('C','T',T(1),'Q',Q(1),fluid); 

h_fg(1)=(CoolProp.PropsSI('H','T',T(1),'Q',1,fluid))-

(CoolProp.PropsSI('H','T',T(1),'Q',0,fluid)); 

UA_vec(1)=UA; 

 

%loop to step through time 

time=1; 

i=2; 

while Q(i-1)>0 %time<2*60*60 

    %update rate of oil flow rate vec 

    V_dot_oil_vec(i)=V_dot_oil; 

 

    %update oil volume and co2 volume 

    V_oil(i)=V_oil(i-1)+V_dot_oil_vec(i)*deltat; 

    V_tot(i)=V_tot(i-1)-(V_oil(i)-V_oil(i-1)); 

    %V_tot(i)=V_tot(1)-V_oil(i) 

 

    %evaluate properties 

    rho_vap(i)=CoolProp.PropsSI('D','T',T(i-1),'Q',1,fluid); 

    rho_liq(i)=CoolProp.PropsSI('D','T',T(i-1),'Q',0,fluid); 
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    rho_rat(i)=rho_vap(i)/rho_liq(i); 

    h_fg(i)=(CoolProp.PropsSI('H','T',T(i-1),'Q',1,fluid))-(CoolProp.PropsSI('H','T',T(i-

1),'Q',0,fluid)); 

    c_vap(i)=CoolProp.PropsSI('C','T',T(i-1),'Q',1,fluid); 

    c_liq(i)=CoolProp.PropsSI('C','T',T(i-1),'Q',0,fluid); 

 

    %calculate quality 

    rho_ave(i)=m_tot/V_tot(i); 

    Q(i)=((1/rho_ave(i))-(1/rho_liq(i)))/((1/rho_vap(i))-(1/rho_liq(i))); 

 

    %update masses 

    m_vap(i)=Q(i)*m_tot; 

    m_liq(i)=(1-Q(i))*m_tot; 

 

    %calculate mass rate of condensation 

    m_dot_cond(i)=abs(m_vap(i)-m_vap(i-1))/deltat; 

 

    %update vapor and liquid volumes 

    V_vap(i)=m_vap(i)/rho_vap(i); 

    V_liq(i)=V_tot(i)-V_vap(i); 

    vol_check(i)=(V_oil(i)+V_vap(i)+V_liq(i))-V_tot(1); 

 

    %update rate of change of volumes 

    dV_dt_vap(i)=(V_vap(i)-V_vap(i-1))/deltat; 

    dV_dt_liq(i)=(V_liq(i)-V_liq(i-1))/deltat; 

 

    %update temperature 

    UA_vec(i)=UA; 

    %UA_vec(i)=UA*(V_tot(i)./V_tot(1)); 

    T(i)=T(i-1)+(((-rho_vap(i)*dV_dt_vap(i)*h_fg(i))-UA_vec(i)*(T(i-1)-T_amb)-P(i-

1)*V_dot_oil_vec(i))/(m_tot*(Q(i)*c_vap(i)+(1-Q(i))*c_liq(i))))*deltat; 

 

    %update pressure 

    P(i)=CoolProp.PropsSI('P','T',T(i),'Q',Q(i),fluid); 

 

    time=time+deltat; 

    i=i+1; 

end 

comp_time=time; 

 

%calculate charging pi number 

%T_sat=CoolProp.PropsSI('T','P',P(1),'Q',Q(1),fluid); 

pi_c=(UA*1*time)/(rho_vap(1)*h_fg(1)*V_tot(1)); 

 

%calculate stored energy 

W_dot_in=P.*V_dot_oil; 

W_in=trapz(1:deltat:comp_time,W_dot_in); 

 

%calculate isothermal compression work 

W_iso=m_tot*(CoolProp.PropsSI('H','T',T(1),'Q',Q(1),fluid)-

CoolProp.PropsSI('H','T',T(1),'Q',Q(end),fluid)); 

 

%i=i+1; 

%time=time+deltat; 
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V_dot_oil=0; 

%pause loop 

while time<(comp_time+pause_length) 

    %update rate of oil flow rate vec 

    V_dot_oil_vec(i)=V_dot_oil; 

 

    %update oil volume and co2 volume 

    V_oil(i)=V_oil(i-1)+V_dot_oil_vec(i)*deltat; 

    V_tot(i)=V_tot(i-1)-(V_oil(i)-V_oil(i-1)); 

    %V_tot(i)=V_tot(1)-V_oil(i); 

 

    %evaluate properties 

    rho_vap(i)=CoolProp.PropsSI('D','T',T(i-1),'Q',1,fluid); 

    rho_liq(i)=CoolProp.PropsSI('D','T',T(i-1),'Q',0,fluid); 

    rho_rat(i)=rho_vap(i)/rho_liq(i); 

    h_fg(i)=(CoolProp.PropsSI('H','T',T(i-1),'Q',1,fluid))-(CoolProp.PropsSI('H','T',T(i-

1),'Q',0,fluid)); 

    c_vap(i)=CoolProp.PropsSI('C','T',T(i-1),'Q',1,fluid); 

    c_liq(i)=CoolProp.PropsSI('C','T',T(i-1),'Q',0,fluid); 

 

    %calculate quality 

    rho_ave(i)=m_tot/V_tot(i); 

    Q(i)=((1/rho_ave(i))-(1/rho_liq(i)))/((1/rho_vap(i))-(1/rho_liq(i))); 

 

    %update masses 

    m_vap(i)=Q(i)*m_tot; 

    m_liq(i)=(1-Q(i))*m_tot; 

 

    %calculate mass rate of condensation 

    m_dot_cond(i)=abs(m_vap(i)-m_vap(i-1))/deltat; 

 

    %update vapor and liquid volumes 

    V_vap(i)=m_vap(i)/rho_vap(i); 

    %V_liq(i)=V_tot(i)-V_vap(i); 

    V_liq(i)=m_liq(i)/rho_liq(i); 

    vol_check(i)=(V_oil(i)+V_vap(i)+V_liq(i))-V_tot(1); 

 

    %update rate of change of volumes 

    dV_dt_vap(i)=(V_vap(i)-V_vap(i-1))/deltat; 

    dV_dt_liq(i)=(V_liq(i)-V_liq(i-1))/deltat; 

 

    %update temperature 

    UA_vec(i)=UA; 

    %UA_vec(i)=UA*(V_tot(i)./V_tot(1)); 

    T(i)=T(i-1)+(((-rho_vap(i)*dV_dt_vap(i)*h_fg(i))-UA_vec(i)*(T(i-1)-T_amb)-P(i-

1)*V_dot_oil_vec(i))/(m_tot*(Q(i)*c_vap(i)+(1-Q(i))*c_liq(i))))*deltat; 

 

    %update pressure 

    P(i)=CoolProp.PropsSI('P','T',T(i),'Q',Q(i),fluid); 

 

    time=time+deltat; 

    i=i+1; 

end 

pause_time=time; 
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%expansion loop 

V_dot_oil=-V_dot_val*1.6667e-5; 

while V_tot(i-1)<V_tube %V_oil(i-1)>0.05 

    %update rate of oil flow rate vec 

    V_dot_oil_vec(i)=V_dot_oil; 

 

    %update oil volume and co2 volume 

    V_oil(i)=V_oil(i-1)+V_dot_oil_vec(i)*deltat; 

    V_tot(i)=V_tot(i-1)-(V_oil(i)-V_oil(i-1)); 

    %V_tot(i)=V_tot(1)-V_oil(i); 

 

    %evaluate properties 

    rho_vap(i)=CoolProp.PropsSI('D','T',T(i-1),'Q',1,fluid); 

    rho_liq(i)=CoolProp.PropsSI('D','T',T(i-1),'Q',0,fluid); 

    rho_rat(i)=rho_vap(i)/rho_liq(i); 

    h_fg(i)=(CoolProp.PropsSI('H','T',T(i-1),'Q',1,fluid))-(CoolProp.PropsSI('H','T',T(i-

1),'Q',0,fluid)); 

    c_vap(i)=CoolProp.PropsSI('C','T',T(i-1),'Q',1,fluid); 

    c_liq(i)=CoolProp.PropsSI('C','T',T(i-1),'Q',0,fluid); 

 

    %calculate quality 

    rho_ave(i)=m_tot/V_tot(i); 

    Q(i)=((1/rho_ave(i))-(1/rho_liq(i)))/((1/rho_vap(i))-(1/rho_liq(i))); 

 

    %update masses 

    m_vap(i)=Q(i)*m_tot; 

    m_liq(i)=(1-Q(i))*m_tot; 

 

    %calculate mass rate of condensation 

    m_dot_cond(i)=abs(m_vap(i)-m_vap(i-1))/deltat; 

 

    %update vapor and liquid volumes 

    V_vap(i)=m_vap(i)/rho_vap(i); 

    V_liq(i)=V_tot(i)-V_vap(i); 

    vol_check(i)=(V_oil(i)+V_vap(i)+V_liq(i))-V_tot(1); 

 

    %update rate of change of volumes 

    dV_dt_vap(i)=(V_vap(i)-V_vap(i-1))/deltat; 

    dV_dt_liq(i)=(V_liq(i)-V_liq(i-1))/deltat; 

 

    %update temperature 

    UA_vec(i)=UA; 

    %UA_vec(i)=UA*(V_tot(i)./V_tot(1)); 

    T(i)=T(i-1)+(((-rho_vap(i)*dV_dt_vap(i)*h_fg(i))-UA_vec(i)*(T(i-1)-T_amb)-P(i-

1)*V_dot_oil_vec(i))/(m_tot*(Q(i)*c_vap(i)+(1-Q(i))*c_liq(i))))*deltat; 

 

    %update pressure 

    P(i)=CoolProp.PropsSI('P','T',T(i),'Q',Q(i),fluid); 

 

    time=time+deltat; 

    i=i+1; 

end 

exp_time=time; 
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%calculate recovered energy 

start=(pause_time-1)/deltat; 

through=start+((exp_time-pause_time)/deltat); 

W_dot_out=P(start:through).*-V_dot_oil; 

W_out=trapz(pause_time:deltat:exp_time,W_dot_out); 

 

V_dot_oil=0; 

%second pause loop 

while time<(exp_time+pause_length2) 

    %update rate of oil flow rate vec 

    V_dot_oil_vec(i)=V_dot_oil; 

 

    %update oil volume and co2 volume 

    V_oil(i)=V_oil(i-1)+V_dot_oil_vec(i)*deltat; 

    V_tot(i)=V_tot(i-1)-(V_oil(i)-V_oil(i-1)); 

    %V_tot(i)=V_tot(1)-V_oil(i); 

 

    %evaluate properties 

    rho_vap(i)=CoolProp.PropsSI('D','T',T(i-1),'Q',1,fluid); 

    rho_liq(i)=CoolProp.PropsSI('D','T',T(i-1),'Q',0,fluid); 

    rho_rat(i)=rho_vap(i)/rho_liq(i); 

    h_fg(i)=(CoolProp.PropsSI('H','T',T(i-1),'Q',1,fluid))-(CoolProp.PropsSI('H','T',T(i-

1),'Q',0,fluid)); 

    c_vap(i)=CoolProp.PropsSI('C','T',T(i-1),'Q',1,fluid); 

    c_liq(i)=CoolProp.PropsSI('C','T',T(i-1),'Q',0,fluid); 

 

    %calculate quality 

    rho_ave(i)=m_tot/V_tot(i); 

    Q(i)=((1/rho_ave(i))-(1/rho_liq(i)))/((1/rho_vap(i))-(1/rho_liq(i))); 

 

    %update masses 

    m_vap(i)=Q(i)*m_tot; 

    m_liq(i)=(1-Q(i))*m_tot; 

 

    %calculate mass rate of condensation 

    m_dot_cond(i)=abs(m_vap(i)-m_vap(i-1))/deltat; 

 

    %update vapor and liquid volumes 

    V_vap(i)=m_vap(i)/rho_vap(i); 

    %V_liq(i)=V_tot(i)-V_vap(i); 

    V_liq(i)=m_liq(i)/rho_liq(i); 

    vol_check(i)=(V_oil(i)+V_vap(i)+V_liq(i))-V_tot(1); 

 

    %update rate of change of volumes 

    dV_dt_vap(i)=(V_vap(i)-V_vap(i-1))/deltat; 

    dV_dt_liq(i)=(V_liq(i)-V_liq(i-1))/deltat; 

 

    %update temperature 

    UA_vec(i)=UA; 

    %UA_vec(i)=UA*(V_tot(i)./V_tot(1)); 

    T(i)=T(i-1)+(((-rho_vap(i)*dV_dt_vap(i)*h_fg(i))-UA_vec(i)*(T(i-1)-T_amb)-P(i-

1)*V_dot_oil_vec(i))/(m_tot*(Q(i)*c_vap(i)+(1-Q(i))*c_liq(i))))*deltat; 
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    %update pressure 

    P(i)=CoolProp.PropsSI('P','T',T(i),'Q',Q(i),fluid); 

 

    time=time+deltat; 

    i=i+1; 

end 

 

%calculate efficiency & energy density 

eta_ind=W_out/W_in 

ED_ind=(W_out*2.77778e-7)/V_vap(1) 

 

%time vector in mins 

time_mins=(1:deltat:time)./60; 

 

%plot volumes 

 

%plot masses 

plot(time_mins,V_vap,time_mins,V_liq,time_mins,V_liq+V_vap,time_mins,V_oil,time_mins,V_liq+V_vap+

V_oil); 

set(gca,'FontSize',14) 

legend('Volume of Vapor','Volume of Liquid','Total CO_2 Volume','Volume of Oil','Total Volume') 

xlabel('Time [minutes]','FontSize',16,'FontWeight','bold') 

ylabel('Volume [m^3]','FontSize',16,'FontWeight','bold') 

ylim([0,1.2]) 

 

figure 

plot(time_mins,m_vap,time_mins,m_liq,time_mins,m_vap+m_liq) 

set(gca,'FontSize',14) 

xlabel('Time [minutes]','FontSize',16,'FontWeight','bold') 

ylabel('Mass [kg]','FontSize',16,'FontWeight','bold') 

legend('Mass of Vapor','Mass of Liquid','Total Mass of CO_2') 

ylim([0,250]) 

 

%plot temperature & pressure 

figure 

plot(time_mins,T-273.15) 

set(gca,'FontSize',14) 

xlabel('Time [minutes]','FontSize',16,'FontWeight','bold') 

hold on 

yyaxis right 

plot(time_mins,P./10^5) 

yyaxis left 

ylabel('Temperature [°C]','FontSize',16,'FontWeight','bold') 

yyaxis right 

ylabel('Pressure [bar]','FontSize',16,'FontWeight','bold') 

legend('Temperature','Pressure') 

 

%plot quality 

figure 

plot(time_mins,Q) 

set(gca,'FontSize',14) 

xlabel('Time [minutes]','FontSize',16,'FontWeight','bold') 

ylabel('Quality [-]','FontSize',16,'FontWeight','bold') 

ylim([0,1.2]) 
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%plot p-V 

figure 

plot(V_tot./m_tot,P./100000) 

set(gca,'FontSize',14) 

xlabel('Specific Volume [m^3/kg]','FontSize',16,'FontWeight','bold') 

ylabel('Pressure [bar]','FontSize',16,'FontWeight','bold') 

ylim([55,75]) 

%axis([1.5E-3,4.5E-3,55,75]) 

 

Published with MATLAB® R2016b 
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APPENDIX C: FORWARD COST ANALYSIS ASSUMPTIONS 

Equipment assumptions for steel pressure vessels and carbon fiber cylinders as storage 

• Storage medium 

• Steel pressure vessels 

• Pressure vessel design optimized 

• GLIDES max/min pressure optimized for PV cost 

• Carbon fiber cylinders 

• Cost data for various cylinder volumes from manufacturer 

• Cylinder volume resulting in lowest total cylinder cost chosen 

• Additional piping 

• 10 ft./tank, $15/ft. 

• Fittings (tees, crosses, bends, etc.) 

• 2 fittings/tank, $40/fitting 

• Valves 

• 5 valves plus 2 valves/tank, $250/valve 

• Electromechanical equipment (pump/turbine) 

• The electromechanical equipment, including the pump/motor and 

turbine/generator/governor costs ($/kW), are assumed to scale with installed 

capacity.  Five small hydropower Pelton turbine/generator/governor concept cost 

estimate curves available in the literature [79-83] were average to give a concept 

cost per installed kW. Pump/motor concept cost estimates were developed from a 

cost catalog [84], and concept costs also scaled with installed capacity. 

 

Equipment assumptions for steel pipe segments as storage 

• Storage medium 

• 30 in. diameter pipe, sched. 80 (Pmax=153 bar) 

• GLIDES operates b/w 70 bar and 140 bar 

• Additional piping 

• 10 ft./kWh, $15/ft. 

• Fittings (tees, crosses, bends, etc.) 

• 4 fittings/kWh, $40/fitting 

• Valves 

• 5 valves plus 1 valve/500 m of piping, $250/valve 

• Electromechanical equipment (pump/turbine) 
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• The electromechanical equipment, including the pump/motor and 

turbine/generator/governor costs ($/kW), are assumed to scale with installed 

capacity.  Five small hydropower Pelton turbine/generator/governor concept cost 

estimate curves available in the literature [79-83] were average to give a concept 

cost per installed kW. Pump/motor concept cost estimates were developed from a 

cost catalog [84], and concept costs also scaled with installed capacity. 
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