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Molecular Dynamics (MD) simulation is a computationally intensive application used in 

multiple fields. It can exploit a distributed environment due to inherent computational 

parallelism. However, most of the existing implementations focus on performance 

enhancement. They may not provide fault-tolerance for every time-step.  

MapReduce is a framework first proposed by Google for processing huge amounts of 

data in a distributed environment. The simplicity of the programming model and fault-

tolerance for node failure during run-time make it very popular not only for commercial 

applications but also in scientific computing.  

In this thesis, we develop a novel communication-free and each time-step fault-

tolerant solution for MD simulation based on Hadoop MapReduce (MDMR). Through 

emulation of Hadoop MapReduce and introduction of a run-time program monitor, we 

can predict the execution time of a given size MD simulation system. We also 

demonstrate the performance and energy consumption improvement from implementing 

MDMR in a hybrid MapReduce environment with GPU hardware (MDMR-G). 

To evaluate MDMR, we construct a 32 node MapReduce cluster and a run-time 

MapReduce program monitor. We emulate MDMR and propose a prediction formula of 

MDMR execution time for Map and Reduce stages. The emulation results demonstrate 

our formula can predict MDMR execution time within 9.1% variance. Our run-time 

monitor shows that MDMR can obtain high computational power efficiency for large MD 

simulation systems. We also build a hybrid MapReduce cluster with GPGPU. MDMR in 

this environment obtains 20 times speedup and reduces energy consumption 95% 

compared with the same size cluster without GPU accelerators.
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Chapter  1 

Introduction 

MapReduce [1] is a framework for processing huge amounts of data on distributable 

problems employing large numbers of computers. The simplicity of its programming 

model and its fault-tolerance attracts not only commercial companies but also scientists 

to apply MapReduce to multiple applications. 

MapReduce is inspired by the map and reduce functions from functional 

programming. The MapReduce programming model is a data-centric model which 

moves the computation to data. This is different from classical distributed methods that 

focus on available computation resources. MapReduce has already been used in 

scientific computation for data-intensive applications like web page crawling, 

documents processing, log analysis, and so on. In this thesis, we will focus on designing 

and implementing Molecular Dynamics simulation [15], which is a kind of 

computation-intensive application, based on Hadoop MapReduce [17]. 

MD simulation is using computers to simulate the physical movements of atoms and 

molecules based on statistical mechanics. It is a kind of computation-intensive 

application that can be parallelized in distributed environments. Dr. Sumanth [27] has 

parallelized MD simulation based on Condor [37] in computing Grids [38]. However, 

compared with a MapReduce cluster, a computing Grid has its limitations. These 

limitations, to some extent, restrict MD simulation‟s reliability, security, and scalability. 

  For reliability, in the computing Grid environment used by Dr. Sumanth, 

computation resources may not be guaranteed. Any computing node can leave the 

computing Grid at any time. This problem will result in uncertainty in the execution 
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environment, because a computing node leaving will cause a failure of program 

execution. This is an inevitable property of opportunistic computing Grids. 

Programmers have to handle node failure by themselves in certain scenarios (eg. 

programs running on opportunistic computing Grid nodes have close dependency). 

Furthermore, there is no global file system support, and the programmer also needs to 

maintain a non-standard middleware to start Condor first before doing the computation. 

At the same time, this middleware also needs the authorization of computing nodes to 

create connections in the Grid. However, the MapReduce framework overcomes these 

problems. MapReduce has guaranteed worker nodes in a relatively closed environment 

(MapReduce cluster). Nodes contribute their resources barring nodes‟ failure. The 

MapReduce framework handles node failure by running replicated work on the fastest 

node. With the global distributed file system between nodes based on dedicated 

networks, the data transfer overhead can be reduced. We can expect that the MD 

simulation based on the MapReduce framework will be more reliable compared with 

opportunistic computing Grids. 

For security, the opportunistic computing Grid does not have highest priority to 

control the computing nodes in the Grid. The computing nodes owners can monitor, 

interrupt, or even hack the running programs of Grid jobs. For example, if a MD 

simulation program is doing a highly confidentional simulation, the computing Grid 

cannot guarantee this program will not run on potential enemies‟ computers in the Grid. 

However, we can create a MapReduce cluster in a relatively closed environment to 

satisfy different security levels. 

Finally, Administrative concerns, Hadoop clusters are straightforward to create and 

maintain. However, the Grid-based MD simulation needs middleware to initialize the 

computation environment. This middleware needs authorization from computing nodes. 

If these nodes refuse to let the middleware connect to them, the MD simulation cannot 

scale to these nodes. To administer those nodes, the Grid scheduler has limited priority 

unless the owners of computing nodes agree to follow the Grid scheduler‟s 
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administration. In a MapReduce cluster, we can easily add new nodes to a cluster not 

only in one data center but also across different data centers (probably not optimal but it 

is possible). Most importantly, Hadoop is a high profile open source project supported 

by an international community, while Dr. Sumanth's grid framework remains an in-

house, custom effort.  In this sense, MD simulation on a MapReduce cluster is easier to 

maintain and scale than on a computing grid.  

In this thesis, we develop MDMR which parallelizes MD simulation on a 

MapReduce cluster. It is a communication-free and every time-step fault-tolerant 

implementation by employing MapReduce properties [16]. We present formulas to 

estimate the execution time of a given MD simulation system through MDMR. 

Furthermore, we create a run-time monitor which can watch the execution of 

MapReduce programs. This monitor can help programmers find bottlenecks in their 

MapReduce programs. Finally, we create MDMR-G that extends MDMR to utilize 

GPGPU on a MapReduce cluster. The MDMR-G obtained 20 times speedup compared 

to MDMR for the same MD simulation system; at the same time, we reduced energy 

consumption 95% compared with the same size cluster without GPU accelerators. 

The rest of this thesis is organized as follows. In Chapter 2, we provide background 

knowledge about Hadoop MapReduce framework [17], HDFS [18], MD simulation, 

and CUDA [19]. In Chapter 3, we present the MDMR algorithm and its time 

complexity. Then we describe how we configured six main Hadoop MapReduce 

parameters that are closely related to MapReduce program performance. In the 

following section of Chapter 3, we demonstrate the MapReduce program run-time 

monitor mechanism and the MDMR-G algorithm.  In Chapter 4, we evaluate MDMR 

based on twelve simulation systems containing from 1000 to 64000 atoms, and we give 

the coefficients of the MDMR execution time prediction formula. Furthermore, for the 

run-time monitor, we evaluate its overhead and estimate the MDMR computation power 

overhead of three MD systems. At the end of this Chapter, we show the MDMR-G 

evaluation based on five MD systems on a smaller hybrid MapReduce cluster with 
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GPGPUs embedded. In Chapter 5 and Chapter 6, we conclude with the contribution of 

this thesis and propose future work.   
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Chapter  2  

Background and Related Work 

MapReduce has become a standard open source parallel platform not only for the 

commercial Cloud but also for scientific computing. In this chapter, we first describe 

the Hadoop MapReduce and HDFS framework that are the platforms for our MDMR. 

Then we describe the background for MD simulation. Finally, our MDMR-G (MDMR 

with GPU accelerator) is using CUDA (Compute Unified Device Architecture) which is 

a parallel programming architecture based on GPU. CUDA is presented at the end of 

this chapter. 

2.1  Hadoop MapReduce 

Hadoop MapReduce is an open source project mainly supported by Yahoo! and Apache. 

Hadoop is a widely used cloud computing platform which contains eight subprojects 

including HDFS, MapReduce, HBase, Pig, ZooKeeper, Chukwa, Hive, and 

Common[17]. 

 

The Hadoop MapReduce structure is illustrated in Figure 2.1: 
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Figure 2.1: MapReduce Framework  

Hadoop works as follow: 

1) At the beginning, the user submits a job to the JobTracker which acts as a master. 

The JobTracker will divide the job‟s input data on HDFS into tasks when it obtains the 

job. After this process, the JobTracker will let the scheduler handle this submitted job. 

The scheduler will deploy this job into a corresponding queue (or pool if using fair 

sharing scheduler) according to its submission time, priority, user group or other 

schedulable parameters. This submitted job‟s tasks will be assigned to TaskTrackers 

when they give a heatbeat to the JobTracker if those tasks satisfy the scheduler‟s policy. 

2) Map stage. A job enters the Map-Stage when its first map task has been assigned to a 

TaskTracker which will issue a new JVM to run this map task. The newly generated 

JVM process will read the input data in a key/value manner from HDFS and employ the 

map() function which is defined in the Mapper class. The map()  function, is defined by 

programmers, will take the key/value pairs and produce intermediate key/value pairs 

which are inputs for the Reduce stage. After the map() function is accomplished,  the 

intermediate key-value pairs will first be stored in TaskTracker‟s local memory or local 
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disk if memory is not enough. A system administrator can configure the size of memory 

that can be used to store the intermediate results considering the hardware specification 

and the load of clusters. In the Map stage, there is not communication between 

TaskTrackers; each TaskTracker does not necessarily know the existence of other 

TaskTrackers. Thus, there is no communication and synchronization overhead in the 

Map stage. 

3) Reduce stage. The Reduce stage will start once the first group of map tasks finishes 

(the programmer can also configure the number of finished map tasks before the job 

will enter the Reduce-Stage). The MapReduce framework will generate one reduce task 

for each key of the Map stage‟s intermediate results by default. If necessary, the 

programmer can configure the reduce task number to get best performance.  The reduce 

task is a child JVM propagated by TaskTracker. It has three phases: Shuffle, Sort and 

Reduce.  The Shuffle phase will retrieve all the map tasks‟ outputs with the same key 

from each mapper. The Sort phase starts at the end of the Shuffle phase. It sorts the 

key/value pairs according to their value and send the sorted key/value pairs to the 

Reduce phase. At last, the user defined reduce() function (if not defined, the framework 

will run the default reduce function)  will process those key/value pairs and output 

results to HDFS.   

    The MapReduce framework guarantees fault-tolerance through re-execution. In the 

Map stage or the Reduce stage, a failed task will be re-executed by the first available 

TaskTracker.  

2.2  Hadoop Distributed File System 

We will introduce HDFS in this section, because it is the carrier of MapReduce jobs 

input and output data. It is an inevitable component of the MapReduce framework.  

   Hadoop Distributed File System (HDFS) is designed as a highly fault-tolerant, high 

throughput, and high capacity distributed file system. It is ideal for storing terabytes or 

even petabytes of data on clusters that may be comprised of non-commodity hardware 
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like personal computers. The significant differences between HDFS and other 

distributed file systems are HDFS's write-once-read-many and streaming access models 

that make HDFS efficient in distributing and processing data, reliably storing and 

scaling large amounts of data, robustly in heterogeneous hardware and operating system 

environments. 

2.2.1  HDFS Architecture 

HDFS follows the master/slave architecture. The master node in a HDFS cluster is 

called the Namenode which manages the file system namespace and regulates client 

accesses to files. There are a number of slave nodes, called Datanodes, which store 

actual data in units of blocks.  

The Namenode maintains a mapping table which maps data blocks to Datanodes in 

order to process write and read requests from HDFS clients; at the same time, the 

Namenode is also in charge of file system namespace operations like closing, renaming, 

and opening files and directories.  

The Datanode stores the blocks of files in its local disk and executes the instructions 

like replace, create, delete, and replicate from the Namenode. Figure 2 (adopted from 

Apache Hadoop Project [17]) illustrates the HDFS architecture.  

A Datanode periodically reports its status through a heartbeat and asks the 

Namenode for instructions. Every Datanode maintains an open server socket so that 

other Datanodes can request read and write operations; at the same time, clients access 

actual data on the Datanode through this channel. The heartbeat can also help the 

Namenode to detect connectivity with its Datanode and then replicates the blocks on a 

dead Datanode. In order to keep the contents of the Namenode in case of unavoidable 

failures, HDFS allows a secondary Namenode to periodically save a copy of data of the 

Namenode.    
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Figure 2.2: HDFS Structure[17] 

2.2.2  Data Replication 

HDFS can be deployed on a cluster composed of thousands of nodes. The probability of 

failure becomes non-negligible. This means HDFS has to handle the scenario in which 

some components are non-functional.  

Data redundancy is a way to solve this problem. HDFS employs an intelligent 

replication placement policy to guarantee reliability and performance. For example, the 

default replication number of HDFS is 3 and HDFS will place the first replica block in a 

certain node. The second replica will be placed in a node that is located in the same rack 

of nodes where the first replica is located. Because nodes within a rack tend to connect 

to the same switch, the last replica will be placed in another rack to guarantee data 

availability even in the event that an entire rack is down. This is called rack-awareness. 
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2.3  Molecular Dynamics Simulation 

2.3.1  Computational Aspects of MD Simulations 

An MD simulation [21] performs the time integration of the differential equation 2.1 

with given initial atom position and velocities. It is based on Newton‟s 2
nd

 Law 

( amF  ). Assume we have position p


and velocity v  vectors 

},...,2,1|)(),({ Nisvsp ii 


 before starting the simulation; we want to obtain velocities 

and positions },...,2,1|)(),({ Nitsvtsp ii 


 in a later time.  
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is the Kronecker delta function and )(ru is the potential function. 

Forces posed on two atoms can be computed as the negative gradient of the potential 

in three dimensions because we simulate our system in three dimensional space. 
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 . Compared with ab initio electronic 

structure calculations [22] which need to solve the Schrodinger‟s equation at each time-

step, the Classical MD simulation is less computationally intensive. 
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2.3.2  Potential Functions 

Potential functions can be categorized as two-body potential functions if we only 

consider any two atoms‟ interaction. Similarly, the three-body potential functions will 

take every triplet of atoms‟ interaction into account.  The potential energy P(r) is 

defined as the energy required moving two atoms from infinite separation to a distance r 

apart. In this thesis, we only consider two-body interactions in our simulation system. 

The two body potential that we employed is the Lennard-Jones (LJ) potential (Figure 

2.3). It is commonly accepted to model liquids such as argon and neon. This potential is 

mildly attractive when two atoms are far apart, while it becomes stronger when the two 

atoms are close together. We list the LJ potential and its force equations below.  

                         

12 6( ) 4 ( ) ( )V p
r r

 

 

  
                              (2.4) 

                      )
1

(])()(2[24 612

rrr
Fk 


                    (2.5) 

The parameter   is defined as the depth of the energy well and  is determined by 

the atom‟s diameter. The potential energy becomes zero if the separation distance 

between atoms equals  . The   describes the strength of the interaction, freezing point 

and many other properties. The  effects the structure of the material‟s solid state. 

From equation 2.4 and 2.5, we can clearly see two terms: one is 12)(
r


which represents 

the short-range repulsion, the other is 6)(
r


that models the long-range attraction. The 

attraction is caused by the polarization of the electron cloud of atoms. For example, if 

atoms are placed close to each other, the charge density fluctuations in one of the 

atom‟s electron cloud may induce the other atom‟s electron cloud polarization. For the 

non-polar neutral atoms like Nobel gases that have symmetric electron cloud structure, 

the attractive term is obtained from the exact quantum-mechanical solution. The 



 

 

12 

repulsion is formulated as the square of the attractive part. This makes the computation 

simple. 

 

Figure 2.3: The Lennard-Jones Potential 

If an atom is uncharged, its electron cloud has a unique spherical and symmetrical 

structure. Because of this structure, there is no charge concentrated in any particular 

direction. The dipole moment does not exist.  An atom‟s electron cloud can still keep 

symmetrical structure, if two atoms are far enough apart. This scenario is illustrated in 

Figure 2.4. 

 

Figure 2.4: Symmetric Electron Cloud Structure 

This symmetrical structure may change if the atoms distance becomes closer and 

closer. In liquids, atoms move constantly and may collide with each other. The electron 

clouds of atoms lose their symmetric structure and acquire an induced dipole moment 
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which lasts for a very short period of time. During this time, the atoms electron clouds 

may exist like Figure 2.5 because the oppositely charged electron clouds result in two 

atoms that attract each other.  

 

Figure 2.5: Polarization of Electron Clouds 

We list the LJ reduced units for Argon in Table X. It will make the MD computation 

simple if we use the normalized units. For example, the unit  can be used to normalize 

inter-atomic separation and   to normalize the energy. It is very common to use 

1  and 1   to simplify the computation. 

It is not possible for the LJ model to model all kinds of scenarios like chemical 

reactions. However, it is still an important potential even with these drawbacks. The LJ 

model occurred in multifarious simulations where these researchers are focusing on 

fundamental issues rather than properties of specific materials. In this thesis, we still 

model our potential through the LJ method as Sumanth did in [27].  

Table 2.1: LJ Reduced Units for Argon 
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2.3.3 Boundary Conditions 

It is common to use periodic boundary condition to minimize a bulk material. The 

periodic box replicates the simulation box in all directions [23] through creating an 

infinite lattice. It is reasonable to decide how to deal with the situation that an atom 

reaches a boundary, because atoms lying at the same surface are very common. For 

instance, a 2744 atoms system can be arranged in a 14x14x14 cubic structure; there are 

624 atoms at the outside surface of the cube.  

Each atom from the simulation box has a periodic image in all other boxes. In order 

to explain the periodic box mechanism clearly, we employ a 2-dimensional version in 

Figure 2.6.  

 

Figure 2.6: Periodic Images of a Central Simulation Box 
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Figure 2.7: Periodic Boundary Conditions during Atoms Crossing Over 

The shadow border box represents the simulation box with at least 6  for a LJ 

potential. The box size should be carefully chosen for particular potential function. 

Since the wavelengths of the fluctuations are macroscopic, long range wavelength M (it 

is the simulation box length on one size) or greater can be suppressed. Then we cannot 

simulate a liquid near the gas-liquid critical point. However, the periodic boundary is 

very common and accurate if the simulation is not about liquid phase transitions (but 

rather equilibrium thermodynamic properties). In the periodic box, the atom number is 

constant, because when one atom leaves the box, another will enter from the opposite 

wall. Figure 2.6 and 2.7 demonstrate this process. Figure 2.7 gives some illustration on 

how to implement the periodic box. Mx is the length of simulation box in x direction; x 

is the x-coordinate of certain atom. These five lines code in Figure 2.8 can guarantee x 

is always in the range )
2

,
2

( xx MM
. 

 

Figure 2.8: Periodic Boundary Condition Code [27] 
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2.3.4 Minimum Image Convention 

There are two constraints we need to keep if we use the periodic boundary conditions. 

One is the cut-off range of the potential must be no greater than the half of the 

simulation box length (or width, because they equals each other). The other is that 

atoms in the simulation box also need to interact with the periodic images of all other 

atoms. The first constraint guarantees that each atom interacts only with the nearest 

images of other atoms. It is known as the minimum image convention [22].  

 

Figure 2.9: Minimum Image Convention Interactions 

The white atom in the center dot circle (cut-off radius cycle) is the atom i.  

2.3.5 Integration Algorithm 

Assume the MD simulation starts at time-step t. What the integration algorithm does is 

to obtain the position of all N atoms at tt  , where the t  is the time step length. 

There is not an analytical solution because of the complexity of the equations being 

integrated. We have to numerically solve the integration. A good integration algorithm 

should have five properties: computational efficiency, near optimal energy conservation, 

low hardware requirement, easy implementation, and accuracy of following classical 

trajectories [27].  
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The time-step t  is the crucial factor for all integration algorithms. If it is too large, 

the total energy is hard to keep conserved and the simulation result loses its accuracy. 

On the other hand, the simulation may take extraordinary long time if it is too small. We 

will introduce two famous integration algorithms. 

2.3.5.1 Verlet Intergration 

This algorithm was first created by L.Verlet[24]. The position after one time-step t  

may be found from equation 2.6: 

                  

21
( ) ( ) ( ) ( )

2
p t t p t v t a t t      

                     (2.6) 

Substituting t  for t gives 

                  

21
( ) ( ) ( ) ( )

2
p t t p t v t a t t      

            (2.7) 

If we add the equations 2.6 and 2.7, we then obtain the next time step position in 

equation 2.8 

            
2( ) 2 ( ) ( ) ( )p t t p t a t t p t t                    (2.8) 

in which )(ta is the acceleration at t time and )(tv is the velocity at t time. 

The verlet algorithm uses no explicit velocities during the integration. It can be 

easily implemented with modest memory requirements. 

2.3.5.2  Velocity Verlet Intergration 

The velocity verlet algorithm is an improved version based on the verlet algorithm. The 

velocity verlet algorithm can produce next time-step position and velocity only by 

current information. The position and velocity formulas are listed in equation 2.9 and 

2.10.  
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21
( ) ( ) ( ) ( ) ( )

2
p t t p t v t t a t t       

        (2.9) 

              

1
( ) ( ) [ ( ) ( )]

2
v r t v t a t a t t t      

          (2.10) 

In this thesis, our MD implementation is based on the velocity-verlet integration 

algorithm.  

2.4  CUDA 

CUDA [19] (Compute Unified Device Architecture) is a parallel computing architecture 

designed for GPUs. It enables programmers to write C (C-CUDA) code to utilize GPUs 

for processing non-graphical data. C-CUDA programs are compiled using a specialized 

PathScale Open64 C compiler. CUDA shares the same purpose as Microsoft 

DirectComput and OpenCL. CUDA has been widely used to accelerate computations 

which otherwise take much longer time or are intractable with the current technology, 

e.g., molecular dynamics simulation, electronic design automation, accelerated 

rendering of 3D graphics, speech indexing, and physical simulations. 

With a design principle different from traditional CPUs, GPUs are based on a 

parallel throughput architecture that is aimed at executing a large number of concurrent 

threads slowly, as opposed to executing a single thread very fast. CUDA provides APIs 

for multiple operating systems, including Windows, Linux, and recently Mac OS X. 

Moreover, CUDA is supported by all GPUs recently designed and manufactured by 

nVIDIA [25], i.e., from the G8X series onwards, including GeForce, Quadro and the 

Tesla product lines. nVIDIA maintains binary compatibility among different 

generations of their GPUs such that CUDA programs developed for the GeForce 8 

series will also work without modification on all future nVIDIA graphics cards. 

With a radically different design, CUDA is superior over traditional GPGPU 

solutions with graphics APIs. For example, CUDA supports Scattered Reads, i.e., 
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programs can access memory at arbitrary addresses on both the host and device. 

Moreover, CUDA allows the different hardware threads on the GPUs to access a shared 

memory region. Lastly, CUDA has a solid hardware implementation of the floating 

point arithmetic, which is essential for scientific computations.  

Admittedly, CUDA also suffers several drawbacks at the current stage. For instance, 

C-CUDA disallows the uses of recursion and function pointers, which might place a 

burden on programmers while developing CUDA programs in some scenarios. 

Although equipped with very fast internal cache memories, the GPU might suffer from 

the bus bandwidth and latency bottlenecks along the data-path to the CPU. Furthermore, 

the deep memory hierarchy and intricate internal mechanisms might have huge 

performance implications if CUDA programs are written without accounting for such 

complexities in the design. Nevertheless, we believe the advantages of massive-

parallelization offered by CUDA surely outweigh the drawbacks as mentioned above in 

real world applications. 

Besides C, CUDA has bindings for most mainstream programming languages, 

including C++, Java, .NET, Perl, Python, Ruby, Lua, FORTRAN, and Matlab. In this 

work, we focus on jCuda [26], which is the CUDA binding for the Java language, which 

is being actively developed with support for the most recent CUDA API. Moreover, 

jCuda is fully interoperable among different CUDA based libraries. Since Hadoop is 

implemented entirely in Java, jCuda provides a solid foundation for bringing CUDA 

technology into Java applications, including the Hadoop framework. 

2.4.1 CPU+GPU structure 

The CPU+GPU architecture is shown in Figure 2.10. We demonstrate a very simple 

array summation example to explain how they work. In order to distinguish arrays in 

main memory from GPU‟s global memory, we use “dev” (short for device) plus capital 

character to identify three arrays on GPU‟s global memory. First of all, the CPU 

allocates three arrays in the main memory, array “a” and “b” contains elements we want 
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to sum where array “c” is used to store the results. Correspondingly, the CPU also needs 

to allocate three arrays on GPU‟s global memory which is the blue square in the GPU. 

The Main memory will copy the array “a” and “b” contents into GPU‟s global memory 

following the CPU‟s order. On the GPU side, the green squares are computation 

elements and the purplish red squares are shared memory for certain amount of the 

computation elements. Communication between shared memories should employ global 

memory. The computation element needs to load array “devA” and “devB” into shared 

memory before launching the summation.  

After the summation operation, array “devC” will be stored to global memory from 

shared memory. The next step is to copy array “devC” to array “c” from global memory 

to main memory. Finally, all memory space in main memory and global memory will be 

recycled. 

C P UMain Mem

BUS

G P G P U

3.copy a[],b[] 

To devA[].devB[]

7.Copy devC[] to c[]

1.Malloc a[],b[],c[] 

5.devC[]=devA[]+devB[]

2.cudaMalloc

(devA[],

devB[],

devC[])

8.recycle(devA[],

devB[],devC[])

4.load6.store

Figure 2.9: CPU+GPU Architecture 

2.5  Related Work 

MapReduce has been used in scientific computation in many fields. Kelvin Cardona [2] 

implemented MapReduce to analyze Probabilistic Neural Network data. Jaliya 
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Ekanayake[3] introduced MapReduce to High Energy Physics data analyses and Kmean 

clustering. Michael C. Schatz [4] developed BlastReduce based on MapReduce for 

processing DNA sequences and obtained 250x speedup compared with single processor 

BLAST. Weiying Shang [5] used MapReduce for mining Software Repositories. Jinguo 

You [6] parallelized the Close Cube Computation process with MapReduce.   

MapReduce was first focused on data-intensive applications. It has been extended to 

some computation-intensive applications because of its fault-tolerance, simplicity of 

programming mode, and scalability. Bin Wu [7] proposed a general All Maximal Clique 

enumeration process in a distributed manner on a cluster with the help of MapReduce. 

Chao Jin [8] created an automatically parallelizing Genetic Algorithm platform called 

MRPGA built on MapReduce. 

MapReduce programs debugging and profiling has grown in prominence with the 

increasing number of applications using MapReduce. There are some companies that 

have published white papers and presented their methods [9, 10]. Xu [11] and Jiaqi Tan 

[12] provide Log-based analysis and a debugging tool for MapReduce respectively. A 

real-time tracing tool for MapReduce has been created by Dachuan Huang [13].  

In order to improve clusters‟ performance, accelerators have become the common 

devices to enhance CPUs‟ performance, to reduce energy consumption, and to speed up 

programs‟ execution. There are some MapReduce variants that can utilize accelerators 

to improve original MapReduce program performance. Bingsheng He [36] proposed 

“Mars” which is a MapReduce framework on graphics processors. Yolanda Becerra [34] 

has introduced an approach for exploiting the heterogeneity of a Cell BE cluster by 

linking an existing MapReduce runtime implementation for distributed clusters and 

another to exploit the parallelism of the Cell BE nodes. Jorda Polo [14] created an 

adaptive task scheduler which provides dynamic job allocation on hybrid MapReduce 

clusters consisting of nodes with accelerators.  
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Chapter  3  

Design and Implementation 

3.1 MD Simulation based on MapReduce 

In this section, we will introduce how we designed and implemented MDMR. First of 

all, we will list challenges and constraints when we designed MDMR. They come from 

two aspects.  

On one hand is the MapReduce specification. The MapReduce framework can easily 

handle Terabytes of data that have little dependency. The MapReduce framework does 

not allow communication among TaskTrackers in the Map stage. All data flows are in 

the form of key/value pairs. 

On the other hand, the MD simulation data have dependency because atoms interact 

with their neighbors.  Synchronization is needed because atoms‟ positions in the next 

time-step are decided by their current position, acceleration and velocity. Fault-

tolerance should be guaranteed. The whole time-step computation result will be invalid 

if there is an error in processors which run in parallel. In the end, we have to verify the 

correctness of our MD simulation program. 

  We satisfied previous constraints one by one through carefully designing MDMR.  

1) Data dependency.  In this thesis, we disassembled the simulation system by using 

the atom-decomposition method [28] to satisfy data dependency. We first place a 

file containing all atoms‟ position into DistributedCache, which is a public area on 
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HDFS that every TaskTracker can access. Before starting a Map task, the 

TaskTracker has to first load the position file into its memory. In this way, no 

matter how we divide the atoms in a simulation system, every worker node has a 

copy of all atoms‟ positions. We also eliminated the communication between 

TaskTrackers in the Map stage. 

2) Synchronization. In MD simulation, the next time-step atoms‟ positions, velocities, 

and accelerations are decided by the current time-step potential and kinetic energy. 

We regard one time-step computation as one MapReduce program; at the same 

time, we put all computation in the Map stage and let the Reduce stage do the 

synchronization, because the Shuffle phase can handle synchronization.  

3) Fault-tolerance. MDMR guarantees fault-tolerance for each time-step because each 

time-step is a MapReduce program which can deal with node failure in run-time. 

Most of the current MD simulation programs‟ fault-tolerance mechanism is to 

periodically output a restart file for several time-steps. Assume a MD simulation 

program saves a restart file every 5 time-steps. It has to redo the previous 4 correct 

time-step simulations if failure happens in the 5
th

 time-step. It wastes computation 

resources. However, MDMR will not move to the next time-step until it obtains the 

correct result for the current time-step. 

4) Correctness verification. We verified our MD programs‟ correctness through 

energy conservation. That‟s to say, the current time-step system energy should 

equal the system energy in the next time-step. We first wrote a serial MD program 

and verified its correctness through energy conservation. We then compared the 

MDMR‟s result with this serial MD program‟s result. MDMR is considered correct 

if there is no difference between its result and the serial program‟s result. 

We will detail MDMR‟s design and implementation in this chapter.  
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3.1.1 Atom decomposition method 

Scientists parallelize MD simulation through atom decomposition, spatial 

decomposition and force decomposition methods [39, 40, 41]. The atom decomposition 

method can be used to parallelize MD simulation through dividing the input atoms‟ 

coordinates file. It does not need to know simulation system‟s spatial and force 

information. This method is easy to parallelize through the JobTracker which is the 

master node in MapReduce framework according. 

  The atom decomposition method first divides the input data to small parts and 

allocates them to worker nodes without considering data dependency. However, every 

worker node keeps a copy of all input data to satisfy data independency. 

In MDMR, we place the input file in the DistributedCache which is a public cache 

for all TaskTrackers in Hadoop MapReduce. This guarantees every TaskTracker has a 

copy of the input file; at the same time, the JobTracker will divide input file evenly to 

inputsplits and allocate them to TaskTrackers. From the TaskTrackers point of view, 

each TaskTracker receives an inputsplit. If necessary, it can obtain other inputsplits 

information by accessing DistributedCache. 

  In our MD simulation, we use the Velocity-Verlet method for particle velocity 

computation [24], the Leonard-Jones method for potential computation among particles 

and the atom decomposition method for the parallelization of MD. We choose the 

Argon atom as the object for the MD simulation. The long-range interaction (non-

bonded) is the only interaction between every two atoms.  

    Every Argon atom has a unique ID number and can be located by three-dimensional 

coordinates in the simulation system. To simulate atoms behavior in a given period of 

time, we have to know their initial velocity and acceleration, which are both three-

dimension vectors. We store these atom position, velocity, and acceleration vectors in a 

text file in which each line records one atom‟s information.  Every line starts with an 
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atom ID number. The atom element symbol follows with the ID; and then, atom 

position vector, velocity vector, and acceleration vector. This is shown in Figure 3.1.  

1     Ar    Px   Py   Pz   Vx   Vy   Vz   Ax  Ay  Az 

Figure 3.1: Simulation Coordinate file 

 The atom-decomposition method parallelizes the MD simulation through a “divide 

and conquer” algorithm. For example, if we use 3 processors to simultaneously simulate 

a 300 atom system, each processor will be assigned 100 atoms without considering the 

interaction dependency among atoms. However, each processor should keep all 300 

atoms‟ information in memory to maintain data independency. The serial atom-

decomposition algorithm is shown in Table 3.1.  

Table 3.1: Serial MD algorithm 

for ith atom in the system(i from 0 to n) 

    obtain last time-step information  

    for jth atom in the system (j from 0 to n) 

  compute ijD  which is the distance between atom i and atom j 

  if ijD <= cutoffR (distance between atom i and atom j is not bigger than potential 

cut-off radius) 

         compute Lennard-Jones potential energy, interactive force posed on ith atom 

from jth atom. Write the force vector into [ ]F j . 

    Loop 

    for kth element in []F  (k from 0 to n) 
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      Add force vector [ ]F k into vector
if  

Loop 

According to 
if , compute the acceleration, obtain the velocity through Velocit-Verlet 

algorithm, and the position for current time-step. Store all of them for next time-step 

computation. 

Loop 

 

We can easily get its time-complexity: 

                             ( ) ( )T n n a bn cn d                       (3.1) 

where n  is the number of atoms in our simulation system. a , b , c and d  are 

constants. They refer to time to load one atom information, computation of potential 

energy and force, operation of adding [ ]F k  to if , and next time-step data‟s computation 

time. We simplify the formula into equation 3.2. 

                                      2

2 1 0( )T n p n p n p                            (3.2) 

Based on the serial algorithm, the MDMR algorithm is shown in the Table 3.2. 

Table 3.2: MDMR algorithm 

Load all atoms information to DistributedCache before starting Mapper 

Mapper: 

        Input (Key, Value): (xyz file‟s line number, single atom last time-step 

information) 

       Map method: 
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               Read all atoms information from DistributedCache, for each input k-v pair 

(one atom), implement the Serial algorithm, but we only need to simulate portion of 

atoms in the system.  

       Output Key: atom sequential number; Output Value: single atom current time-

step information 

Reducer: 

       Input (Key, Value): (atom sequential number, single atom current time-step 

information) 

       Reduce method: 

              Collect all key-value pairs and store them into HDFS 

Through MapReduce parallelization, we can see the time complexity reduce to  

                       )()( 1

2

2 m
m

npnp
nT 


                    (3.3) 

m  is the number of mappers that can simultaneously execute in our MDMR. 21, pp are 

coefficients. )(m  is composed of two parts. One is the possible overhead caused by 

increasing the number of mappers. It is a function of m (in this thesis, we assume it is a 

linear function of m ). The other is MapReduce framework overhead which is a 

constant (we find out this constant through experiments in Chapter 4) like job 

initialization and recycling, JVM creation, and garbage collection, etc.  

  MDMR guarantees fault-tolerance for each time-step because each time-step is a 

MapReduce program which can deal with node failure in run-time. Most of current MD 

simulation programs‟ fault-tolerance mechanism is to periodically output a restart file 

for several time steps. Assume a MD simulation program saves a restart file every 5 

time-steps. It has to redo the previous 4 correct time-step simulations if failure happens 
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in the 5
th

 time-step. It wastes computation resources. However, MDMR will not move 

to the next time-step until it obtains correct result of current time-step.  

3.2 Tuning of MDMR  

Program performance depends on multiple factors, not only hardware but also software 

configuration. In this section, we explore 10 factors that have influence on our 

MDMR‟s performance. 

3.2.1 Hadoop Parameters  

Hadoop MapReduce has abundant configurable parameters that are closely related to 

the program‟s performance. Impetus [9] and Cloudera [10] published their case studies 

on tuning a Hadoop MapReduce cluster. These parameters concern compression of 

intermediate output, speculative execution, JVM reuse, replication of data, logging, 

mapper/reducer number, temporary space allocation, block size, and so on. We refer to 

these configurations that may contribute to MDMR‟s performance and examine three 

important parameters that are the number of mappers, the number of reducers and the 

block replication in our evaluation.  We detail 8 Hadoop MapReduce configuration 

parameters in this work; others follow the default setting of Hadoop 0.20.3. 

mapred.job.reuse.jvm.num.tasks This parameter is in charge of the number of tasks 

that can be executed by a jvm. The default value is “1” which means one jvm can only 

run one task. However, the cost of initializing and recycling a jvm is not neglegable if 

one TaskTracker needs to process a large number of tasks.  In order to reduce overhead, 

we configure this parameter to be “-1” which means a jvm can be reused by a job in a 

TaskTracker no matter how many tasks this job has. 

mapred.child.java.opts  This is the java options for a TaskTracker‟s child processes. 

The administrator can adjust according to the hardware properties and application 

requirement. In our clusters, each node has two single-core CPU and 4GB RAM. 
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Because a map task of MDMR is computation-intensive and needs to keep all atom 

information in memory, we configure this parameter as 1GB.   

mapred.task.timeout It is the maximum time in milliseconds before a task will be 

terminated if it stops reporting its status, reading the input or writing output. We need to 

increase this limit because MDMR is a kind of computation-intensive application. The 

default value, which is 10 minutes, is not adequate. For example, a 27000-atom system 

needs more than 10 minutes to run its map tasks without any data I/O and status change.  

It is large enough for MDMR if we set this parameter as 1000 minutes. 

mapred.output.compress This parameter is very important for a data-intensive 

application. It allows Hadoop to reduce I/O data size between memory and disk by 

compressing MapReduce job output. For example, at the end of the Map stage, mapper 

output data is first stored in memory before it has been dumped into disk due to the 

memory size limitation. The reducers do not need to access mappers disk if the mappers 

output can be stored in memory by compression. Nevertheless, MDMR is a kind of 

computation-intensive application. We do not need to waste CPU time which can be 

used to do MDMR simulation, compressing the job output, because its job output is 

smaller than the memory capacity.  

mapred.task.cache.levels This defines the max level of task cache for a node. A node 

will cache tasks not only at node level but also at rack level if this parameter is 2. 

Similarly, if it is 1, the tasks cached are only at node level. It is important for data-

intensive MapReduce programs to maintain the data locality. To facilitate nodes 

processing corresponding tasks using local data can reduce the network traffic and 

decrease the processing time. We assume disk access is faster than network data 

transferring. In our experiments, we leave this parameter as 2 which is the default 

setting.   

mapred.map/reduce.tasks.speculative.execution These are Boolean parameters that 

have “TRUE” or “FALSE” options. “TRUE” means multiple instances of some “slow” 

map/reduce tasks may be simultaneously executed (in order to avoid exhausting 
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computation resources, there are two copies actually running in parallel including the 

original one). This is a fault-tolerance policy of the MapReduce framework. It can re-

execute tasks if there are TaskTracker failures. Thus, we set these two parameters to be 

“TRUE”. 

mapred.TaskTracker.map/reduce.tasks.maximum These limit the maximum number 

of map/reduce tasks that will be run simultaneously by a TaskTracker. According to the 

MDMR specification and our cluster‟s hardware, we set this parameter as 2 for map 

tasks and 2 for reduce tasks. While MDMR is a computation-intensive application, at 

the same time, each node has 2 single-core CPUs. If there are more than 2 map tasks 

running on one node, they will compete for the CPU resource. For the reduce tasks, we 

keep it the same as map tasks‟ setting. 

dfs.replication We can set the replication for each block in HDFS through this 

parameter. It is 3 by default. The actual number of replications can be specified when a 

certain file is created. The replication number is 2 in our experiment and the 

relationship between replication number and the MDMR execution time will be 

evaluated in Chapter 4.  

In this thesis, we will evaluate MDMR performance based on three parameters: 

mapred.TaskTracker.reduce.tasks.maximum, mapred.TaskTracker.map.tasks.maximum, 

and dfs.replication. 

3.2.2 Other factors 

In the distributed environment, the slowest processor determines the execution time of 

entire parallel program. We need to balance the work load among the cluster and aim 

our best to let all nodes finish their work at the same time [27]. That means we should 

assign slower processors a smaller number of tasks and the powerful processors a larger 

number of tasks. 
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Hadoop MapReduce is based on a Master/Slave structure. Worker nodes will ask the 

master node for tasks once they have free slots or finish their current tasks. In a 

heterogeneous environment, for a given job, we can achieve the balance of slave nodes 

by decreasing a job‟s granularity to generate larger amounts of tasks. In this way, faster 

nodes will ask for more tasks and slower nodes may take fewer tasks. To some extent, 

this method has a positive effect on balancing the cluster. However, this method may 

introduce extra overhead if the number of tasks is arbitrarily large. We call this method 

“more tasks”. In section 3.4, we develop a runtime monitor for this method to 

demonstrate its influence on our MDMR.  

There is another way to achieve load balancing. We do not change the task number 

but assign different sizes of tasks to TaskTrackers according to their performance. It 

needs a dynamic adaptive load balancer for the current MapReduce framework; we will 

implement this in our future work. 

3.3 Evaluation of MDMR 

In this section, we evaluate MDMR as a MapReduce application composed of a Map 

stage and a Reduce stage. Because the Reduce stage includes data transferring in the 

cluster, we separate the Reduce stage into two phases: shuffle and Reduce phase. The 

Shuffle phase transfers the mappers‟ outputs to the reducer as inputs. It starts from the 

end of the Map stage and finishes at the beginning of the Reduce stage. MDMR‟s 

Reduce stage is different from the original MapReduce Reduce stage which consists of 

three phases: Shuffle, Sort and Reduce. Since the key is the atom ID and the value is 

this atom‟s coordinate information, mapping from key to value is one to one.  The 

Classical MapReduce Sort phase which sorts all key-value pairs with the same key in 

order does nothing in MDMR. We can neglect this phase. Figure 3.2 shows why we 

divide MDMR like this. It illustrates the timeline in which MDMR simulates a 64000 

atoms system using 16 mappers and 1 reducer in 1 time-step. The x-axis is time and the 

y-axis is the name of nodes that run the program. The blue bar means that node04 runs 
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setup (initialization) for this job. Because MapReduce will use a map task (or reduce 

task, depending on which type of task has a free slot) to setup the job, we regard setup 

as part of the Map stage. After the setup phase, all tasks enter the job queue and the 

JobTracker will schedule them to TaskTrackers. We can clearly see that mapper process 

time (yellow bar) on different nodes is different even though every node has been 

assigned one task with the same size. There are many reasons, for example, data locality, 

status of each node, etc. In a heterogeneous environment, the difference among yellow 

bars might be more significant. Work load balancing is needed if all worker nodes have 

different computation capability. In this thesis, we only take the homogeneous 

environment into account and will implement the balancer in the future.  

The red bar is the Shuffle phase which starts after the Map stage. The Reduce phase 

is the light blue bar following the Shuffle phase. The green bar is the cleanup process 

which is related to job recycling. Between the Reduce phase and cleanup, there is also a 

gap. This is a kind of system overhead. Because once a job finished, it will enter a 

committing queue. The JobTracker will move a job from RUNNING queue to 

COMMIT queue. Before job committing, JobTracker has to report the job counter and 

finalize the job monitor called JobInProgress.  
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Figure 3.2: Hadoop Timeline of MDMR for 64000 atoms  

3.3.1 MDMR Speedup 

Speedup helps us quantify how much MDMR is faster than a corresponding sequential 

algorithm. It is defined as the following formula 

                                     
parallel

serial

T

T
S                                         (3.4) 

where serialT  is the execution time of a serial program and parallelT is the execution time of 

a parallelized program. In this thesis, we have two serialT , one is the execution time of 

MDMR with one mapper and one reducer, the other is a totally serial MD simulation 

without using MapReduce framework. We can objectively evaluate MDMR in this way. 
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We also provide the speedup of MDMR-G (with GPGPU as accelerator) and MDMR-G 

vs. MDMR. 

3.3.2 Karp-Flatt Metric 

The speedup does not consider the parallel overhead with increasing processor number. 

It may overestimate speedup or scale speedup. The Karp-Flatt metric, also called 

experimentally determined serial fraction can provide some insights [20]. We introduce 

the following equation to describe the execution time spent in a parallel program. 

( , ) ( ) ( ) / ( , )T n p n n p n p               (3.5) 

where n is the problem size and p is the number of processors. )(n is the serial portion 

of computation that cannot be parallelized. )(n  is the portion of the computation that 

can be executed in parallel. ),( pn is the overhead that comes from the increasing 

processor number. The serial execution of the program does not have this part. It is 

simply: 

( ,1) ( ) ( )T n n n                (3.6) 

The experimentally determined serial fraction e is defined as follow 

( ) ( , )

( ,1)

n n p
e

T n

 


                      (3.7) 

We can use speedup to describe e and get another form of equation 3.7 

1 1

1
1

p
e

p








                             (3.8) 

where   is the speedup on p processors. 
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By evaluating MDMR with the Karp-Flatt metric, we can clearly understand the 

parallel overhead which will contribute for formulating the MDMR execution time 

model. And then, we can tell whether MDMR is suitable for large MD simulation 

systems or not. 

3.3.3 Minimum MapReduce Overhead 

From the equation 3.5, we want to figure out what is the minimum of )(n . It is the 

time of system overhead even when there is no computation in MapReduce program. 

We employ “loadgen” which is a test example of Hadoop MapReduce framework [17]. 

It loads the input data and outputs them without any change. The user can specify the 

output data size through configuring the output data as a percentage of the input data. In 

order to get the minimum MapReduce overhead, we let the output data equal the input 

data.  

3.3.4 Time Complexity 

MDMR encapsulates the main computation into the Map stage. The Map stage 

execution time is quadratic with the number of atoms in the simulation system. Thus, 

the Map stage execution time is ),( mnT , 

                               )(),( 1

2

2 m
m

ncnc
mnTmap 


                         (3.9) 

in which n is the number of atom in the simulation system and m is the number of 

mappers used in execution. We use 21 ,cc to represent coefficients to avoid confusion 

from coefficients of equation (3.3). )(m is the possible overhead but only in Map stage. 

In this thesis, we take this as constant. We will explain it in the evaluation chapter. 

    The Reduce stage of MDMR is in charge of data synchronization. It includes the 

Shuffle phase the Reduce phase. We formulate the Reduce stage as a linear process. It is 

a function of simulation system size.  
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                                     rr

reduce cncT 01                                     (3.10) 

Similarly, rr cc 10 , are coefficients and n is the number of atoms in the simulation 

system. 

In general, we add up equation 3.9 and equation 3.10. The total execution time 

formula for a given number of mappers (m is a constant number) is:  

                                      01

2

2)( dndndnT                               (3.11) 

in which 
m

c
d 2

2  , rc
m

c
d 1

1
1  , and )(00 mcd r  . 

3.4 Run-time Monitor for MDMR 

In order to clearly understand MapReduce programs‟ execution, we create a run-time 

program monitor. It can monitor execution of any part of MapReduce programs, help a 

programmer to find out their programs bottleneck, and estimate the overhead of a new 

scheduler. It can also verify the correctness of MapReduce programs. In this thesis, we 

use this run-time monitor to “more tasks” method which balances the cluster through 

increasing the number of tasks.  

    As we discussed in section 3.2, it is necessary to evaluate the “more tasks” method 

not only in performance but also in efficiency. Therefore we create a run-time monitor 

for MapReduce programs. It can detect the computation-power of MapReduce 

programs. Its data collection and presentation processes are independent from the 

MapReduce framework, which can correspondingly reduce the interference on the 

original MapReduce program running on the same clusters. 
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3.4.1 Class specification 

Our runtime monitor focuses on two main objects: Mapper and Reducer. We acquire 

the Map stage and Reduce stage computation power by inspecting the execution of 

Mapper and Reducer‟s primary methods map() and reduce().  

Table 3.3: Java API of Mapper Interface 
Method Description 

void configure() Initializes a new instance from a JobConf 

void map() Maps a single input key-value pair into an intermediate 

key-value pair 

void close() Closes this stream and release any system resource 

associated with it 

 

From Table 3.3, Mapper implementations can access the JobConf via the 

JobConfigurable.configure(JobConf) and initialize themselves. Similarly, they can use 

the Closeable.close() method for recycling. The framework then calls map() 

(Object,Object, OutputCollector, Reporter) for each key value pair in the InputSplit for 

that task. From the above desription, we conclude that map() will be called once for 

every key-value pair input. The following are the Java-MOP [29,30] FSM (Finite State 

Machine) codes: 

fsm : 

start [ 

        configureEvent -> running 

] 

running [ 

        mapEvent -> running 

        closeEvent -> end  

] 

end [] 

 

The run-time monitor counts the number of map() and reduce() methods being called 

and monitors their execution time. According to the introduction of the MapReduce 

framework, we can confirm that the map() method counter must be the number of the 

Mapper class input. And the reduce() counter must be the number of the Mapper class 

output.  By comparing the corresponding counter number with the input and output 

number of key-value pairs, we can confirm MapReduce programs‟ correctness. To get 
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the overhead of the run-time monitor, we can compare the program‟s execution with 

and without AspectJ code. The run-time data will be sent to the head node and the head 

node will load the data to its web page. In Figure 3.3, monitoring related processes have 

been marked with a bold line. 

Users

Mapper

JobTrackerAssign

PropertiesMonitor

Buffered Uploader

Mapper

…… 

Assign

Reducer

PropertiesMonitor

Reducer

PropertiesMonitor

PropertiesMonitor…… 

Monitor Reduce() Method

Intermediate Results

MR program Results

Submit jobs

Return Monitoring Results through web page

Monitor Reduce() method

Monitor Map() method Monitor Map() method

Update web page

Buffered Uploader

Buffered Uploader

Buffered Uploader

 

Figure 3.3:   Run-time MapReduce program monitor data flow 

3.4.2 Buffered Uploader 

Once the monitor gets the results from the program it monitored, we need to report the 

data in real time. However, according to our experience, the head node may be flooded 

by worker nodes‟ requests if they report their results immediately. In order to obtain the 

smallest overhead, we explore 3 monitoring intermediate storage solutions: HDFS, NFS, 

and local file system with daemon.  
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Local file system with daemon has been used in this thesis (Buffered Uploader). The 

monitor stores intermediate results into a local file system on every worker node. The 

daemon on worker nodes periodically sends accumulated intermediate results to the 

head node through TCP connections. The other two methods have their limitations. First 

of all, it will introduce extra overhead into the original MapReduce program data flow if 

HDFS is used as storage for the monitor. For example, when we store the monitor‟s 

results to certain block on HDFS, the original MapReduce program has an I/O request 

on the same node. The original MapReduce program‟s request may be delayed. 

 

For NFS, we can save some effort dealing with extra communications between 

worker nodes and the head node if every worker node can write to NFS. However, this 

method has its limitation. The NFS partition is mounted on a certain node which will be 

flooded if all other nodes simultaneously send a large number of requests to it.  

 

Table 3.4 illustrates the relation between input file size and execution time of 

MapReduce program in both NFS and local file system. The execution time of program 

with run-time monitor increases significantly if we use NFS. However, the execution 

time with a local file system does not increase as fast as in NFS. 

Table 3.4: NFS vs. Local File System Execution time 
NFS as medium  

Input File size No Monitoring Model With Monitoring Model 

1000 Atoms(61KB) 27.1s 29s 

27000 Atoms(1.7MB) 29s 134s 

Local File System as medium 

1000 Atoms(61KB) 27.1s 28s 

27000 Atoms(1.7MB) 29s 29s 

 

We can clearly understand the reason through the observation of clusters 

performance from Figure 3.4. 
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Figure 3.4: Statistical CPU time  

 

Figure 3.4 shows processes on a MapReduce cluster obtained through Ganglia[31] 

which is cluster monitoring software. The red area is the system CPU time. It means 

CPUs do not really do user computation; on the contrary, they spent half their power to 

deal with system calls, such as context switch, process synchronization, etc. The system 

CPU time in Figure 3.4 is caused by the nfsd requests which were issued by our run-

time monitor from worker nodes. The reason why they simultaneously occured is that 

the NFS partition is located on the head node of the cluster. Worker nodes make 

requests of the head node when there is a write or read request on NFS. The 25% CPU 

time is used by worker nodes‟ monitors NFS requests. NFS becomes a bottleneck for 

the monitor program. 

 

 In the MapReduce program monitor, we use a Buffered Uploader. In this manner, 

the worker nodes first store their monitoring result in local disk. At the same time, we 



 

 

41 

employ crond which is Linux system daemon which runs periodically to report data to 

the head node.  

 

On the head node side, we may not update the web page for every worker node 

request. Because the head node is hosting the NameNode and the JobTracker 

simultaneously, memory overflow may occur if we use a large amount of memory to 

respond to worker nodes requests and frequently update the web page. The monitor‟s 

web page is updated in every one minute by crond. 

3.4.3 Monitor Metrics 

Because we collect each map() and reduce() methods‟ execution time, the computation 

power of the map() method is the summation of all map() execution time from all 

TaskTrackers, the same for to reduce() methods.  In this thesis, we regard the time spent 

on all other parts (except map() and reduce() functions) of the MapReduce framework 

as overhead, like communication, synchronization, etc. Therefore, the efficiency of 

computation power is the ratio of map() and reduce() methods computation power and 

the computation power of whole MapReduce program. The formulas are listed below: 

                     TTM Moverhead                    (3.12) 

 

overheadM  is the monitor‟s overhead imposed on system. It equals the execution time 

of a given job with the monitor minus its execution time without the monitor.

 

ii

n

i

i

tpc

cC




1               (3.13)

 
C is the cluster total computation power. It is the summation of computation power 

spends in every node in cluster. The i th node computation power ic equals the 

processor number p multiplied by time it  for those processors used for the computation. 
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total
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    (3.14) 

 

Computation power efficiency C  is the ratio of computation which has been used in 

a user defined “useful” portion to the total computation power consumed by whole 

program in the cluster. We regard the time spent on map() and reduce() methods as our 

useful computation power. High computation power efficiency means the cluster spends 

a larger portion of computation power to process the user defined “useful” computation.   

3.5 MDMR in hybrid environment 

The MapReduce cluster is composed of PC nodes. They provide a high 

computation/cost ratio. In the past ten years, an accelerator has been accepted into 

clusters to improve their performance and power efficiency. In the Top 500 [32] 

supercomputers, Top-1, Top-3 and Top-4 supercomputers are CPU+accelerator 

architecture. At the same time, in the Green Top 500 [33], eight of the top 10 rated 

supercomputers are equipped with accelerators. In order to fully improve MDMR 

performance on a MapReduce cluster, we build a hybrid MapReduce cluster which has 

deployed GPGPU in every TaskTracker.  

3.5.1 Hybrid Hadoop 

We employ GPGPU to the Map stage because the most computation is in this stage. The 

data flow in our hybrid Hadoop MapReduce framework is shown in Figure 3.5.  
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Figure 3.5: Hybrid Hadoop MapReduce structure 

Section 2.4.1 illustrates that GPGPU needs a CPU to process its I/O. The hybrid 

MapReduce framework follows this rule. In Figure 3.5, our mapper is a CPU process in 

charge of data input, the GPGPU will help the mapper to parallelize the computation 

intensive map() method. After that, the GPGPU will ship the processed data to the CPU 

and the CPU will pass them to the reducer. 

3.5.2 MDMR-G algorithm and time complexity 

Before we introduce GPGPU into MDMR, we need to understand some specifications 

of the GPU. The GPGPU graphics adapter we used is Geforce 9400GT which allows 

one grid to run at a time. Each grid contains at most 65,535 blocks and each block can 

simultaneously execute a maximum of 512 threads. This means we can concurrently 
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have 65,535*512=33,553,920 threads. The MDMR‟s algorithm time complexity is  

)( 2nO . We can employ GPU to parallelize the outer loop in the map() method in Table 

3.1 and reduce the time complexity from )( 2nO  to )(nO  if n isalways smaller than 33 

million. The MDMD-G algorithm is shown in Table 3.5. 
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Table 3.5: MDMR-G algorithm 

Load all atoms information to DistributedCache before starting Mapper 

Mapper: 

        Input (Key, Value): (coordinates file‟s line number, current input atom ia  last time-step 

coordinates, velocity, and acceleration) 

      Map method: 

      {      Read all atoms information from DistributedCache to array Total[] ; 

            Send ia  and  array Total[] into GPU global memory; 

            On GPGPU:{ 

                 Use length(Total[]) GPU threads to concurrently obtain force array F[] ;  

                 Sum force array F[]  through vector summation to variable f  ; 

                 Return   f   to main memory;                 

                } 

             Compute next time step acceleration, position, and velocity through equations 2.9 and 2.10; 

      Output intermediate key-value; 

    } 

       Output Key: atom sequential number; Output Value: single atom current time-step information 

Reducer: 

       Input (Key, Value): (atom sequential number, single atom current time-step information) 

       Reduce method: 

              Collect all key-value pairs and store them into Distributed File System 



 

 

46 

 

Chapter  4  

Evaluation 

Our experiments are based on a MapReduce cluster, called BugeaterII, composed of 30 

worker nodes. Each node has 2 single-core AMD Operon64 2.2GHz CPUs, 4GB DDR 

RAM, and is connected by 1 Gbps Ethernet. The capacity of HDFS on BugeaterII is 

about 10 TB. The replication factor on HDFS is configured as 2. The head node 

hardware configuration is the same as the worker node except it has 8G RAM and 2TB 

disk space. The Namenode and JobTracker are simultaneously running on it. BugeaterII 

is based on Hadoop 0.20.2 using the default First Come First Serve (FCFS) scheduler.  

4.1 Hadoop Parameter tuning for MDMR 

In Chapter 3, we predicted that two parameters have limited influence on MDMR, they 

are „reduce.tasks.maximum’ and „dfs.replication’. We will verify their influence on 

MDMR in this section.  

4.1.1 Reducer number  

In MDMR, the Reduce stage takes intermediate results from the Map stage and 

generates the final output. The number of reducers can contribute either a positive or 

negative effect to the performance of the Reduce stage. An example may shed some 

light on this point. Assume the Reduce stage follows a slow start, no one reducer will 

start until the Map stage finishes. In other words, the Reduce stage does not overlap 

with the Map stage. Consider a data-intensive application with 1TB intermediate results 
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from 5 mappers. The cluster is composed of 5 homogeneous worker nodes, each of 

which has one network adapter. The head node only runs the master process: Namenode 

and JobTracker. According to the Hadoop default configuration, it will start 5 reducers 

to handle this 1TB data. That‟s to say, each node will process 204.8GB data. If we use 

more than 5 reducers, for example 10, each reducer will be assigned 102.4GB data. But 

these extra 5 reducers may compete with the original 5 reducers for the network 

bandwidth if the cluster allows 10 reducers to simultaneously retrieve data from the 

mappers. It is hard to say if the 10 reducer solution is better than the 5 reducer‟ one. To 

avoid competition, we can divide 10 reducers into two waves and only allow 5 reducers 

to run at the same time. However, this is not optimal either. The reducer processes need 

to be initialized at the beginning and recycled in the end. We introduce initialization and 

recycle overhead twice if there are two waves. On the other hand, from the 

administration point of view, the system resource is underutilized if the reducer number 

is smaller than the actual number of network adapters in the cluster.  

  Regardless, for CPU-intensive applications, the reducer number has limited effect 

on the performance because most of the execution time is spent not in I/O but in 

computation. We evaluated the effect of the reducer number on the MDMR‟s 

performance. Experimental results are shown in Figure 4.1.  
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Figure 4.1: Effect of Reducer Number 
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From Figure 4.1, the fluctuation caused by the reducer number converges with the 

increasing simulation size. This verified our expectation. We will set the reducer 

number to 1 in our following MDMR simulations to reduce the disturbance probability 

caused by failure of a reducer if multiple reducers are used.   

4.1.2 Replication 

As we introduced in Chapter 2, HDFS has a replication mechanism to improve its data 

availability, load balancing and MapReduce program performance. In production 

clusters, some popular data may be the bottleneck of the whole distributed computing 

system. Multiple replications of popular data can balance the load among the system 

and reduce the risk of losing data. For data-intensive applications, replication can 

reduce the data transferring and execution time. However, MDMR is a computation-

intensive application. The replication number has limited effect on it. In a 35,937 atom 

system, the input file is about 2.2MB. To transfer a 2.2MB file through a 1Gbps 

network will take 17.2ms. This is negligible compared to one time-step of simulation 

time which is about 12 minutes. Figure 4.2 lists the execution time of MDMR with 

different replication factors. 
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Figure 4.2: Effect of Replication number 

The fluctuation trend of block replication number is similar to the situation we met in 

exploring reducer number effect. The replication number has limited effect on the 

execution time. Thus, we will set the block replication number as “2” in our following 

experiments to satisfy data redundancy and save disk space.   
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4.2 MDMR Evaluation 

In this section, we evaluate MDMR with 12 MD simulation systems with atoms from 

1000 to 64000. For each simulation system, we run it with 13 different numbers of 

mappers from 1 to a maximum of the actual CPU number in the cluster. And then, for a 

given simulation system with a given number of mappers, we run MDMR 3 times on a 

cluster and take the arithmetic average of these as our final result. The method helps us 

to avoid disturbance from cluster node failure or other random events.   

We first obtained the speedup of MDMR and then evaluated MDMR performance 

through Karp-Flatt metrics. The parallelization overhead is not the critical factor 

affecting MDMR performance. We want to know what the minimum MapReduce 

system overhead is.     

In Table 4.1, we show our simulation system size and the number of mappers used 

for evaluating MDMR. The first column demonstrates the atom number of 12 systems 

and the second column shows the 13 groups mapper numbers evaluated for each.  

Table 4.1: Evaluation Data Configuration 

We used the Matlab curve fitting tool [35] which allows its user to use regression, 

interpolation, and smoothing modeling techniques to obtain the coefficients of a given 

Atoms in Simulation System Mapper used by MDMR 

1000 

509 

1 

0.10 

2744 

44 

539 

5 

0.03 

3375 

606 

10 

0.10 

4913 

88 

695 

15 

0.08 

5832 

110 

737 

20 

0.07 

8000 

22 

1011 

25 

0.09 

10648 

44 

1023 

30 

0.09 

27000 

66 

1124 

35 
35937 

88 

1122 

40 
42875 

110 

1239 

45 
54872 

22 

3770 

50 
64000 

44 

3966 

55 
  

66 

3619 

60 
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expression. We fit our time complexity formula with 95% confidence bounds. In order 

to estimate the accuracy of extrapolated results, we use the first 9 systems that contain 

atom numbers from 1000 to 35937 as our base line to get corresponding coefficients. 

We then use them to predict execution times of the 42875 atom system. Furthermore, 

we use the first 10 systems from 1000 to 42875 to estimate the 54872 atom system. 

Finally, we introduce 54872 atoms system into base groups and use these 11 systems to 

estimate the 64000 atom system time. The variance between the predicted time and 

actual execution time should decrease. In Table 4.2, we list three systems‟ maximum 

variance. m

pt is the predicted time for MDMR with m  mappers. m

at is the actual 

execution time of MDMR with m  mappers. The variance decreases as we expected. 

Table 4.2 Max Variance between Prediction and Actual Time 

 

4.2.1 Speedup 

In Figure 4.3, the base line is the MDMR execution time with one mapper and one 

reducer. We can see that if we use 60 mappers to simulate a 64000-atom system, the 

speedup is 43.7 in maximum. Another trend concerns the relation between the speedup 

and the simulation system size. We can see that if we use a larger system, we can get a 

larger speedup.  

Max Variance   \ System Size 42875 54872 64000 

)max(
m

a

m

a

m

p

t

tt 
 

7.74% 

 

7.07% 

 

6.69% 

 

60,55,50,45,40,35,30,25,20,15,10,5,1m  
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Figure 4.3 MDMR Speedup 

However, we have to compare MDMR with the serial MD simulation to entirely 

understand MDMR performance.  From Figure 4.4, the reason that we cannot obtain 

speedup as large as 43.7 is due to the MapReduce overhead. The overhead comes from 

MapReduce framework, communication, synchronization, etc. We employ the Karp-

Flatt metric to reveal the parallelization overhead of MDMR in the next section. 
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Figure 4.4 MDMR Speedup compared with Serial MD 

4.2.2 MDMR Karp-Flatt Metric 

The Karp-Flatt metric can help us to figure out the relation between the experimentally 

determined serial fraction and number of mappers in different simulation systems. In 

Figure 4.5, we can see that the serial percentage decreases with an increasing number of 

mappers and an increasing simulation system size. For a given size of simulation system, 

if e increases with the number of processors, this means this application performance 

decreases with the increasing number of processors due to parallel overhead. However, 

we can see that MDMR is a good implementation of MD simulation. In Figure 4.5, we 

can also see there are fluctuations. The e value increases in points in the curve of 8000 

atom system using 35 and 55 mappers, 10648 atom system using 30 mappers, and 

35937 atom system using 50 mappers. This is because the probability of node failure or 

error increases if we use more worker nodes. If a node is slow, it will be speculatively 
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executed and this will increase the execution time and thus speedup decreases. The e 

value becomes larger than the case without node failure or slow node due to impractical 

parallel overhead.  

 

Figure 4.5 MDMR Karp-Flat Metric 

4.2.3 Minimum MapReduce Overhead 

In order to obtain the minimum MapReduce overhead, we employ “loadgen” to load the 

atom coordinates input file and output them without any change. In Table 4.3, we 

measure the time in seconds. An input file containing only one atom is 57 bytes. The 

Map stage takes 3 seconds. The Shuffle phase and Reduce phase take 7 and 10 seconds 

respectively. For a 64000 atoms input file (4.1MB), the overhead is the same. This is 

because the difference to load 57 bytes and 4.1MB data is in the millisecond level. At 

the time unit of seconds, we cannot find a significant difference.  Next, the Shuffle 

phase involves multiple to multiple communications. To transfer 4.1MB data through 

1Gbps Ethernet will not take 7 seconds. These 7 seconds are the system overhead. We 

will leave the question of why it takes this long to do the sort phase for future research.  
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Table 4.3 Minimum MapReduce Overhead 

System 1 1000 8000 27000 64000 

Size(Byte) 57 61K 498k 1.7M 4.1M 

Map(sec) 3 3 3 3 3 

Shuffle(sec) 7 7 7 7 7 

Reduce(sec) 10 10 10 10 10 

Total(sec) 20 20 20 20 20 

 

4.2.3 Prediction 

As we mentioned in equation 3.9 (Map stage‟s execution time), 

    )(),( 1

2

2 m
m

ncnc
mnTmap 


                    (4.3) 

 equation 3.10 (Reduce stage execution time),  

                    rr

reduce cncT 01                             (4.4) 

and equation 3.11 (Total execution time with given number of mappers), total execution 

time prediction formula for a given number of mappers is  

                    01

2

2)( dndndnT                     (4.5) 

in which 
m

c
d 2

2  , rc
m

c
d 1

1
1  , and )(00 mcd r  . 

     In our experiments, we find that the curve of execution time is a perfect function of 

1m .( 0

1

1 bmbT  

 , 1b and 0b  are constants) if we fix n which is the simulation 

system size except n=1000. When n=1000, the execution time fluctuates between six 

seconds and twelve seconds. This is because the overhead is a relatively large constant. 

However, the computation time for 1000 atoms or less is not comparable with this 

overhead. From the above facts, we then deduce )(m  is a constant or linear function of 
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m but with very small coefficient. We do not evaluate the coefficient of  )(m  and take  

)(m  as a constant in this thesis. 

    In the equation 4.5, we combine the linear coefficients and get rc
m

c
d 1

1
1  . Through 

MDMR‟s algorithm, we can see that the Map stage dominates the total execution time 

of MDMR. The execution time of Reduce stage is related to the total data it collected 

during its execution. However, the MDMR simulation data size is relatively small. For 

64,000 atoms system, the size of input or output file (input file and output file are the 

same size) is about 4.1MB. In this thesis, we firstly use rc
m

c
d 1

1
1   to simplify our 

evaluation and will estimate 1c  and 2c in following paragraph. 

In the 42,875 atom system, the execution time prediction formula for 1 mapper is  

34.904785.00000031698.0)( 2  nnnT            (4.6) 

Figure 4.6 shows the predicted time as a dot-line and actual time as a solid line. The 

maximum variance between actual and predict time is less than 7.74% of actual time.  
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Figure 4.6: Prediction vs. Actual time 

In the 54,872 and 64,000 atoms system, their execution time formulas for 1 mapper 

are  

    7.1704914.000000311.0)( 2  nnnT                       (4.7) 

   34.1005270.0000003.0)( 2  nnnT                     (4.8) 

Figure 4.7 and Figure 4.8 demonstrates the predict time in dot-line and actual time in 

solid line respectively for 54,872 and 64,000 atoms system. The maximum variance 

between actual and predicted time for 54,872 is less than 7.07% of actual time and for 

64,000 is less than 6.69% of actual time.  
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Figure 4.7: Prediction vs. Actual time-2 
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Figure 4.8: Prediction vs. Actual time-3 

Because the time spent in the Map stage is a function of number of mappers and 

number of atoms and it dominates the total programs execution time, we will give a 

detailed function of execution time in the Map stage with two variables. The formula is 

shown below: 

                                  )(),( 1

2

2 m
m

nc

m

nc
mnT                                     (4.9) 

We use the same method as estimating coefficient d  and obtained three estimated 1c  

and 2c . Table 4.4 shows the coefficient estimation results in the Map and the Reduce 

stage: 
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Table 4.4 Estimation of the Map stage 

The maximum variance is the difference between actual value and value obtained 

from formula with estimated coefficients divided by actual value. It is larger than our 

whole program estimation because we do the curve fitting twice. One is in 

coefficient d ‟s estimation. The other is in 1c  and 2c estimation based on d ‟s estimation. 

It involves extra error. In the Reduce stage, execution time is linear with the number of 

atoms. rc1  and rc0  are the estimation of coefficients in equation 4.4.  We take the 

average of three times estimation and use the average as our final coefficients.  

         06.13)000295.0
0299.0

(
00000304.0

),(
2

 n
mm

n
mnT                   (4.10) 

For any given number of atoms in simulation system, we can obtain MDMR‟s total 

execution time by equation 4.10 within variance of 11%. 

4.3 Run-time Program Monitor 

The platform we used to do these experiments is composed of 11 worker nodes. Since 

we have 22 CPUs in evaluating our run-time monitor, the number of mappers in our test 

cases is the integer times 22. We chose three simulation systems that respectively 

contain 1000, 8000 and 27,000 particles.  

The MD simulation is computation-intensive. MDMR‟s map() method may take 

more time than the reduce() method. In the MD simulation, the counter of map() and 

reduce() are the same as the number of input particles. Thus we do not include this 

result. 

No. particles  
1c  2c  )(m  rc1  

rc0  Variance 

42875 3.19E-06 0.02536 8 3.02E-4         4.98 17% 

54872 2.93E-06 0.0338 8 2.93E-4       5.18   15% 
64000 3.01E-06 0.0306 8 2.89E-4 5.04 11% 

Average  3.04E-06 0.0299 8 2.95E-04 5.06  
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Table 4.5: Monitor Overhead of MD simulation 

 

In Table 4.5, we obtain that with an increasing simulation system size, the overhead 

goes up correspondingly. The reason is that the monitoring times rise if the number of 

particles in the simulation system increases. If we fix the simulation system size but 

increase the number of mappers, the execution time also becomes longer. This is caused 

by the MD simulation program itself. For every mapper, the program needs to load all 

atoms information into memory, and then do the assigned atoms‟ simulation. Increasing 

the number of mappers is equivalent to increasing the time of loading the information of 

all atoms.   

 

 

No. 

particles  

No. of 

Mappers 

T   
overheadM  Overhead/total 

time 

1000 22 509 52 0.10 

  44 539 18 0.03 
 66 606 63 0.10 
  88 695 58 0.08 
  110 737 52 0.07 

8000 22 1011 93 0.09 
  44 1023 91 0.09 
  66 1124 38 0.03 
  88 1122 60 0.05 
  110 1239 38 0.03 

27000 22 3770 466 0.12 
  44 3966 190 0.05 
  66 3619 654 0.18 
  88 3639 556 0.15 
  110 3963 299 0.08 
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Table 4.6: MD simulation Efficiency 

 

 

Table 4.6 shows the computation power efficiency we defined in equations 3.13 and 

3.14. With the help of AspectJ, we can easily get the computation power of the map() 

and reduce() functions. This is very useful for a programmer to profile and tune their 

MapReduce program. And the efficiency of the MapReduce program presents the trend 

of the best performance program. For example, in our MD simulation, the efficiency 

increases with the size of simulation system. That means if a programmer does not want 

to waste cluster‟s computation power, the larger system is the first choice.  

No. 

atoms 

No. of 

Mappers 

reducemap CC 

 
totalC  

total

reducemap

C
C

CC 


 
1000 22 7.88 77.52 0.10 

 44 8.8 85.08 0.10 

 66 9.32 113.0

3 

0.08 

 88 9.72 137.0

3 

0.07 

 110 9.92 153.5

8 

0.06 

8000 22 108.22 207.0

8 

0.52 

 44 112.47 231.5

5 

0.49 

 66 116.92 261.3

8 

0.45 

 88 123.85 273.8 0.45 

 110 119.43 301.9

2 

0.40 

27000 22 857.8 925.3

7 

0.93 

 44 889.57 1089.

12 

0.82 

 66 907.9 1139.

82 

0.80 

 88 920.28 1203.

38 

0.76 

 110 923.23 1241.

43 

0.74 
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In Figure 4.9, we can clearly get another useful fact.  It is the relation between the 

number of mappers and the efficiency. With an increasing number of mappers, the 

efficiency goes down gradually. As we explained before, it is caused by the overhead of 

loading the input file. From Figure 4.9, we conclude using a smaller number of mappers 

to simulate a large system can obtain better computation power efficiency. 

 

Figure 4.9: Computation Power Efficiency 

4.4 MDMR-G performance on Hybrid MapReduce Cluster 

In the MDMR-G (MDMR with GPU) performance evaluation, we construct a new 

Hadoop MapReduce cluster which contains three PCs because previous clusters nodes 

are old and do not have a PCI-Express slot for GPU cards. The hybrid cluster detailed 

information is listed below: 

• Head node: 2 AMD 2.2GHz CPU, 4GB DDR RAM, 800GB HD, 1Gbps 

Ethernet. 
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• Worker node: AMD 2.3GHz CPU, 2GB DDR2 RAM, 400GB HD, 1Gbps 

Ethernet 

• Graphic Card: NVIDIA 9400GT 64bit 512Mb GDDR3 RAM ($20) 

• Operating System: CentOS 5.5 (Linux 2.6.18, x86 64, SMP) 

• Hadoop: 0.20.3 (stable) 

• CUDA: Tookit 3.2 and x86 64-260.19.21 graphics driver 

• Power monitor: ServerTech CWG-CDU power distribution unit 

We chose five simulation systems in different sizes for our MDMR-G evaluation; 

each simulation system was executed 3 times to avoid randomness. In order to make the 

energy consumption easy to measure, we simulate every system for 10 time steps. Table 

4.7 shows the execution time and energy consumption in CPU only and CPU+GPU 

environments.   

Table 4.7: MDMR-G results 

Metrics\Size 1000  2744  5832  8000  10648  

ExeTime\second(CPU) 209  617  1689  2561  3787  

ExeTime\second(hybrid)  130  154  167  170  195  

Energy \Kwh(Kwh) 0.0096  0.0309  0.0857  0.1305  0.1947  

Energy \Kwh(hybrid)  0.0067  0.0072  0.008  0.085  0.096  

The worker node energy consumption will increase if we add an extra graphics card 

on the motherboard. However, the energy consumption has been reduced 95% in the 

simulation system with 10648 atoms because the execution time has been significantly 

decreased. The energy consumption Figure 4.10a verified our explanation. The Figure 

4.10b is the MDMR power consumption, the lowest point in this figure is about 60 

watts, which is the idle energy consumption. In the Figure 4.10c, the idle power 

consumption is about 70 watts; these 10 watts are caused by the newly added Geforce 

9400GT graphics card.  
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a 
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b 

 

c 

Figure 4.10: MDMR-G Energy and Power consumption 



 

 

68 

 

 The Figure 4.11satisfied our time complexity expectations. 

 

Figure 4.11: MDMR-G Execution time 

The blue line is the MDMR program‟s execution time with quadratic trend. The red 

line is the MDMR-G program‟s execution time in linear manner. 

Compared with MDMR, MDMR-G achieves promising speedup. In order to 

objectively evaluate MDMR-G‟s performance, we also obtain MDMR-G‟s speedup in a 

different simulation system. We take one mapper and one reducer on the same node 

with one GPGPU as our serial baseline. Figure 4.12 shows the speedup of using 3 

worker nodes in our hybrid MapReduce framework. 
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Figure 4.12: MDMR-G Speedup 

And Figure 4.13 demonstrates MDMR-G‟s Karp-Flatt Metric value. 

 

Figure 4.13: MDMR-G Karp-Flatt Metric 

The Karp-Flatt Metric is also called experimentally determined serial fraction. We 

can conclude from Figure 4.13 that our MDMR-G is good at larger simulation system. 
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Because with the increasing simulation system size, the serial portion which includes 

the  program‟s serial execution percentage and the parallelization overhead is 

decreasing.  
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Chapter  5  

Conclusion 

In this thesis, we parallelized a MD simulation called MDMR using the MapReduce 

programming model; at the same time, we predict the MDMR execution time by 

evaluating its execution based on its time complexity. We obtain 30.5 times speedup in 

maximum comparing with serial MD simulation using 60 mappers. Furthermore, we 

improve MDMR performance by introducing it into a hybrid MapReduce cluster with 

GPGPU. A run-time MapReduce program monitor has been developed to verify the 

computation energy efficiency of MDMR. We evaluate our work in previous chapters. 

In this chapter, we summarize our major contributions of this thesis.  

The major contributions of our work are listed as follows: 

1. We create MDMR which is a communication-free and every time-step fault-

tolerant parallel implementation of MD simulation based on Hadoop 

MapReduce. We emulate the execution of MDMR and provide and evaluate the 

prediction formula of its execution time. Compared with serial MD simulation, 

MDMR achieves 30.5 times speedup in maximum using 60 mappers. 

2. We create a run-time MapReduce program monitor which can monitor the 

execution time of map() and reduce() function, and then obtain the 

computational energy efficiency of a given MapReduce program. This can help 

a MapReduce programmer find the bottleneck of their MapReduce programs 

and give some hints for the improvement of their algorithm.  
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3. We develop MDMR-G which introduces CUDA and jCUDA to accelerate the 

program execution on a hybrid MapReduce cluster where each node has CUDA 

ready GPGPU.  We achieve at most 20 times speedup comparing with the 

MapReduce cluster without any accelerator. MapReduce cluster energy 

consumption is reduced by 95%, and the speedup can be larger if larger systems 

are included.  
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Chapter  6  

Future Work 

As we mentioned in Chapter 3, we will develop a scheduler which can adjust the work 

load to make all TaskTrackers finish the tasks of a given job nearly at the same time.  

MDMR-G presents its superiority not only in the execution time, but also in the 

energy consumption. We will focus on accelerator embedded MapReduce clusters in the 

future. The first step is to balance the tasks among the heterogeneous MapReduce 

cluster which is composed of non-GPGPU nodes and nodes with GPGPU. Secondly, 

GPGPU scheduling is challenging if nodes have GPGPUs with different computational 

power.     
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