
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

Summer 7-25-2011

MOLECULAR DYNAMICS SIMULATION
BASED ON HADOOP MAPREDUCE
Chen He
University of Nebraska-Lincoln, che@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

He, Chen, "MOLECULAR DYNAMICS SIMULATION BASED ON HADOOP MAPREDUCE" (2011). Computer Science and
Engineering: Theses, Dissertations, and Student Research. 28.
http://digitalcommons.unl.edu/computerscidiss/28

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/28?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages

MOLECULAR DYNAMICS SIMULATION BASED ON HADOOP MAPREDUCE

by

Chen He

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor David Swanson and Professor Ying Lu

Lincoln, Nebraska

May, 2011

MOLECULAR DYNAMICS SIMULATION BASED ON HADOOP MAPREDUCE

Chen He, M.S.

University of Nebraska, 2011

Adviser: David Swanson and Ying Lu

Molecular Dynamics (MD) simulation is a computationally intensive application used in

multiple fields. It can exploit a distributed environment due to inherent computational

parallelism. However, most of the existing implementations focus on performance

enhancement. They may not provide fault-tolerance for every time-step.

MapReduce is a framework first proposed by Google for processing huge amounts of

data in a distributed environment. The simplicity of the programming model and fault-

tolerance for node failure during run-time make it very popular not only for commercial

applications but also in scientific computing.

In this thesis, we develop a novel communication-free and each time-step fault-

tolerant solution for MD simulation based on Hadoop MapReduce (MDMR). Through

emulation of Hadoop MapReduce and introduction of a run-time program monitor, we

can predict the execution time of a given size MD simulation system. We also

demonstrate the performance and energy consumption improvement from implementing

MDMR in a hybrid MapReduce environment with GPU hardware (MDMR-G).

To evaluate MDMR, we construct a 32 node MapReduce cluster and a run-time

MapReduce program monitor. We emulate MDMR and propose a prediction formula of

MDMR execution time for Map and Reduce stages. The emulation results demonstrate

our formula can predict MDMR execution time within 9.1% variance. Our run-time

monitor shows that MDMR can obtain high computational power efficiency for large MD

simulation systems. We also build a hybrid MapReduce cluster with GPGPU. MDMR in

this environment obtains 20 times speedup and reduces energy consumption 95%

compared with the same size cluster without GPU accelerators.

iii

ACKNOWLEDGMENTS

I am very grateful to my advisor Dr. David Swanson for leading me to the

supercomputing research area and support not only from financial aspect, but also from

life, heart and courage. He is like elder brother. He can always help me to find a

reasonable and satisfied answer no matter what kinds of questions in research and life.

His encouragements and supervision have made this work possible.

I want to thank my advisor Dr. Ying Lu. Her patient, careful and earnest attitude on

research work establishes a role model for me.

I still want to say thank you for all administrators from Holland Computing Center,

they are accommodating and I cannot build cluster for research without their kindly help.

I am very thankful to my colleagues, Derek Weitzel and Brian Bockelman. Without

Derek‟s help, I may not adapt life in Lincoln quickly. Brian‟s rational mind and strong

mathematical background deeply affect me. You guys give me inspiration, happiness, and

helps in need. I like to work with you.

Last but not least, I owe my parents, my wife and daughter all my life for their love,

trust, and encouragement. This thesis is dedicated to them.

iv

Contents

List of Figures .. vi

List of Tables ... viii

1 Introduction ... 1

2 Background and Related Work ... 5

2.1 Hadoop MapReduce ... 5

2.2 Hadoop Distributed File System .. 7

2.2.1 HDFS Architecture.. 8

2.2.2 Data Replication .. 9

2.3 Molecular Dynamics Simulation.. 10

2.3.1 Computational Aspects of MD Simulations ... 10

2.3.2 Potential Functions .. 11

2.3.3 Boundary Conditions .. 14

2.3.4 Minimum Image Convention .. 16

2.3.5 Integration Algorithm ... 16

2.3.5.1 Verlet Intergration .. 17

2.3.5.2 Velocity Verlet Intergration .. 17

2.4 CUDA .. 18

2.4.1 CPU+GPU structure .. 19

2.5 Related Works .. 18

3 Design and Implementation .. 22

3.1 MD Simulation based on MapReduce ... 22

3.1.1 Atom decomposition method .. 24

3.2 Tuning of MDMR .. 28

3.2.1 Hadoop Parameters ... 28

3.2.2 Other factors .. 30

v

3.3 Evaluation of MDMR .. 31

3.3.1 Speedup ... 33

3.3.2 Karp-Flatt metric ... 33

3.3.3 Minimum MapReduce Overhead .. 33

3.3.4 Time Complexity .. 33

3.4 Run-time Monitor for MDMR ... 36

3.4.1 Class specification ... 37

3.4.2 Buffered Negotiator .. 38

3.4.3 Monitor Metrics .. 41

3.5 MDMR in hybrid environment .. 42

3.5.1 Hybrid Hadoop .. 42

3.5.2 MDMR-G algorithm and time complexity ... 43

4 Evaluation .. 46

4.1 Hadoop Parameter tuning for MDMR ... 46

4.1.1 Reducer number .. 46

4.1.2 Replication .. 49

4.2 MDMR Evaluation ... 51

4.2.1 MDMR Speedup ... 52

4.2.2 MDMR Karp-Flatt Metric ... 50

4.2.3 Minimum MapReduce Overhead .. 52

4.2.4 Preduction ... 54

4.3 Run-time Program Monitor .. 61

4.4 MDMR Speedup .. 64

4.5 MDMR-G performance on Hybrid MapReduce Cluster 64

5 Conclusion .. 71

6 Future Work .. 73

Bibliography ... 74

vi

List of Figures

2.1 MapReduce Framework ... 5

2.2 HDFS Structure .. 8

2.3 The Lennard-Jones Potential.. 11

2.4 Symmetric Electron Cloud Structure ... 11

2.5 Polarization of Electron Clouds ... 12

2.6 Periodic Images of a Central Simulation Box.. 13

2.7 Periodic Boundary Conditions during Atoms Crossing Over.................................... 14

2.8 Periodic Boundary Condition Code ... 15

2.9 Minimum Image Convention Interactions ... 19

2.10 CPU+GPU Architecture .. 19

3.1 Simulation Coordinate file ... 21

3.2 Hadoop Timeline on cluster ... 29

3.3 Run-time MapReduce program monitor data flow .. 33

3.4 Statistical CPU time Framework .. 35

3.5 Hybrid Hadoop MapReduce structure ... 38

4.1 Effect of Reducer Number ... 43

4.2 Effect of Replication number ... 44

4.3 MDMR Speedup .. 50

4.4 MDMR Speedup compared with Serial MD ... 51

4.5 MDMR Karp-Flatt Metric.. 52

vii

4.6 Prediction vs. Actual Time .. 55

4.7 Prediction vs. Actual Time-2 ... 56

4.8 Prediction vs. Actual Time-3 ... 57

4.9 Computation Power Efficiency .. 62

4.10 MDMR-G Energy and Power consumption .. 65

4.11 MDMR-G Execution time ... 66

4.12 MDMR-G Speedup .. 67

4.13 MDMR-G Karp-Flatt Metric ... 67

viii

List of Tables

2.1 LJ Reduced Units for Argon ... 12

3.1 Serial MD algorithm .. 22

3.2 MDMR algorithm .. 23

3.3 Java API of Mapper Interface .. 32

3.4 NFS vs. Local File System Execution Time .. 34

3.5 MDMR-G algorithm .. 39

4.1 Emulation Data .. 46

4.2 Max Variance between Prediction and Actual Time .. 48

4.3 Minimum MapReduce Overhead ... 56

4.4 Estimation of the Map stage .. 61

4.5 Monitor Overhead of MD simulation .. 62

4.6 MD simulation Efficiency.. 63

4.7 MDMR-G results ... 65

1

Chapter 1

Introduction

MapReduce [1] is a framework for processing huge amounts of data on distributable

problems employing large numbers of computers. The simplicity of its programming

model and its fault-tolerance attracts not only commercial companies but also scientists

to apply MapReduce to multiple applications.

MapReduce is inspired by the map and reduce functions from functional

programming. The MapReduce programming model is a data-centric model which

moves the computation to data. This is different from classical distributed methods that

focus on available computation resources. MapReduce has already been used in

scientific computation for data-intensive applications like web page crawling,

documents processing, log analysis, and so on. In this thesis, we will focus on designing

and implementing Molecular Dynamics simulation [15], which is a kind of

computation-intensive application, based on Hadoop MapReduce [17].

MD simulation is using computers to simulate the physical movements of atoms and

molecules based on statistical mechanics. It is a kind of computation-intensive

application that can be parallelized in distributed environments. Dr. Sumanth [27] has

parallelized MD simulation based on Condor [37] in computing Grids [38]. However,

compared with a MapReduce cluster, a computing Grid has its limitations. These

limitations, to some extent, restrict MD simulation‟s reliability, security, and scalability.

 For reliability, in the computing Grid environment used by Dr. Sumanth,

computation resources may not be guaranteed. Any computing node can leave the

computing Grid at any time. This problem will result in uncertainty in the execution

2

environment, because a computing node leaving will cause a failure of program

execution. This is an inevitable property of opportunistic computing Grids.

Programmers have to handle node failure by themselves in certain scenarios (eg.

programs running on opportunistic computing Grid nodes have close dependency).

Furthermore, there is no global file system support, and the programmer also needs to

maintain a non-standard middleware to start Condor first before doing the computation.

At the same time, this middleware also needs the authorization of computing nodes to

create connections in the Grid. However, the MapReduce framework overcomes these

problems. MapReduce has guaranteed worker nodes in a relatively closed environment

(MapReduce cluster). Nodes contribute their resources barring nodes‟ failure. The

MapReduce framework handles node failure by running replicated work on the fastest

node. With the global distributed file system between nodes based on dedicated

networks, the data transfer overhead can be reduced. We can expect that the MD

simulation based on the MapReduce framework will be more reliable compared with

opportunistic computing Grids.

For security, the opportunistic computing Grid does not have highest priority to

control the computing nodes in the Grid. The computing nodes owners can monitor,

interrupt, or even hack the running programs of Grid jobs. For example, if a MD

simulation program is doing a highly confidentional simulation, the computing Grid

cannot guarantee this program will not run on potential enemies‟ computers in the Grid.

However, we can create a MapReduce cluster in a relatively closed environment to

satisfy different security levels.

Finally, Administrative concerns, Hadoop clusters are straightforward to create and

maintain. However, the Grid-based MD simulation needs middleware to initialize the

computation environment. This middleware needs authorization from computing nodes.

If these nodes refuse to let the middleware connect to them, the MD simulation cannot

scale to these nodes. To administer those nodes, the Grid scheduler has limited priority

unless the owners of computing nodes agree to follow the Grid scheduler‟s

3

administration. In a MapReduce cluster, we can easily add new nodes to a cluster not

only in one data center but also across different data centers (probably not optimal but it

is possible). Most importantly, Hadoop is a high profile open source project supported

by an international community, while Dr. Sumanth's grid framework remains an in-

house, custom effort. In this sense, MD simulation on a MapReduce cluster is easier to

maintain and scale than on a computing grid.

In this thesis, we develop MDMR which parallelizes MD simulation on a

MapReduce cluster. It is a communication-free and every time-step fault-tolerant

implementation by employing MapReduce properties [16]. We present formulas to

estimate the execution time of a given MD simulation system through MDMR.

Furthermore, we create a run-time monitor which can watch the execution of

MapReduce programs. This monitor can help programmers find bottlenecks in their

MapReduce programs. Finally, we create MDMR-G that extends MDMR to utilize

GPGPU on a MapReduce cluster. The MDMR-G obtained 20 times speedup compared

to MDMR for the same MD simulation system; at the same time, we reduced energy

consumption 95% compared with the same size cluster without GPU accelerators.

The rest of this thesis is organized as follows. In Chapter 2, we provide background

knowledge about Hadoop MapReduce framework [17], HDFS [18], MD simulation,

and CUDA [19]. In Chapter 3, we present the MDMR algorithm and its time

complexity. Then we describe how we configured six main Hadoop MapReduce

parameters that are closely related to MapReduce program performance. In the

following section of Chapter 3, we demonstrate the MapReduce program run-time

monitor mechanism and the MDMR-G algorithm. In Chapter 4, we evaluate MDMR

based on twelve simulation systems containing from 1000 to 64000 atoms, and we give

the coefficients of the MDMR execution time prediction formula. Furthermore, for the

run-time monitor, we evaluate its overhead and estimate the MDMR computation power

overhead of three MD systems. At the end of this Chapter, we show the MDMR-G

evaluation based on five MD systems on a smaller hybrid MapReduce cluster with

4

GPGPUs embedded. In Chapter 5 and Chapter 6, we conclude with the contribution of

this thesis and propose future work.

5

Chapter 2

Background and Related Work

MapReduce has become a standard open source parallel platform not only for the

commercial Cloud but also for scientific computing. In this chapter, we first describe

the Hadoop MapReduce and HDFS framework that are the platforms for our MDMR.

Then we describe the background for MD simulation. Finally, our MDMR-G (MDMR

with GPU accelerator) is using CUDA (Compute Unified Device Architecture) which is

a parallel programming architecture based on GPU. CUDA is presented at the end of

this chapter.

2.1 Hadoop MapReduce

Hadoop MapReduce is an open source project mainly supported by Yahoo! and Apache.

Hadoop is a widely used cloud computing platform which contains eight subprojects

including HDFS, MapReduce, HBase, Pig, ZooKeeper, Chukwa, Hive, and

Common[17].

The Hadoop MapReduce structure is illustrated in Figure 2.1:

6

Figure 2.1: MapReduce Framework

Hadoop works as follow:

1) At the beginning, the user submits a job to the JobTracker which acts as a master.

The JobTracker will divide the job‟s input data on HDFS into tasks when it obtains the

job. After this process, the JobTracker will let the scheduler handle this submitted job.

The scheduler will deploy this job into a corresponding queue (or pool if using fair

sharing scheduler) according to its submission time, priority, user group or other

schedulable parameters. This submitted job‟s tasks will be assigned to TaskTrackers

when they give a heatbeat to the JobTracker if those tasks satisfy the scheduler‟s policy.

2) Map stage. A job enters the Map-Stage when its first map task has been assigned to a

TaskTracker which will issue a new JVM to run this map task. The newly generated

JVM process will read the input data in a key/value manner from HDFS and employ the

map() function which is defined in the Mapper class. The map() function, is defined by

programmers, will take the key/value pairs and produce intermediate key/value pairs

which are inputs for the Reduce stage. After the map() function is accomplished, the

intermediate key-value pairs will first be stored in TaskTracker‟s local memory or local

7

disk if memory is not enough. A system administrator can configure the size of memory

that can be used to store the intermediate results considering the hardware specification

and the load of clusters. In the Map stage, there is not communication between

TaskTrackers; each TaskTracker does not necessarily know the existence of other

TaskTrackers. Thus, there is no communication and synchronization overhead in the

Map stage.

3) Reduce stage. The Reduce stage will start once the first group of map tasks finishes

(the programmer can also configure the number of finished map tasks before the job

will enter the Reduce-Stage). The MapReduce framework will generate one reduce task

for each key of the Map stage‟s intermediate results by default. If necessary, the

programmer can configure the reduce task number to get best performance. The reduce

task is a child JVM propagated by TaskTracker. It has three phases: Shuffle, Sort and

Reduce. The Shuffle phase will retrieve all the map tasks‟ outputs with the same key

from each mapper. The Sort phase starts at the end of the Shuffle phase. It sorts the

key/value pairs according to their value and send the sorted key/value pairs to the

Reduce phase. At last, the user defined reduce() function (if not defined, the framework

will run the default reduce function) will process those key/value pairs and output

results to HDFS.

 The MapReduce framework guarantees fault-tolerance through re-execution. In the

Map stage or the Reduce stage, a failed task will be re-executed by the first available

TaskTracker.

2.2 Hadoop Distributed File System

We will introduce HDFS in this section, because it is the carrier of MapReduce jobs

input and output data. It is an inevitable component of the MapReduce framework.

 Hadoop Distributed File System (HDFS) is designed as a highly fault-tolerant, high

throughput, and high capacity distributed file system. It is ideal for storing terabytes or

even petabytes of data on clusters that may be comprised of non-commodity hardware

8

like personal computers. The significant differences between HDFS and other

distributed file systems are HDFS's write-once-read-many and streaming access models

that make HDFS efficient in distributing and processing data, reliably storing and

scaling large amounts of data, robustly in heterogeneous hardware and operating system

environments.

2.2.1 HDFS Architecture

HDFS follows the master/slave architecture. The master node in a HDFS cluster is

called the Namenode which manages the file system namespace and regulates client

accesses to files. There are a number of slave nodes, called Datanodes, which store

actual data in units of blocks.

The Namenode maintains a mapping table which maps data blocks to Datanodes in

order to process write and read requests from HDFS clients; at the same time, the

Namenode is also in charge of file system namespace operations like closing, renaming,

and opening files and directories.

The Datanode stores the blocks of files in its local disk and executes the instructions

like replace, create, delete, and replicate from the Namenode. Figure 2 (adopted from

Apache Hadoop Project [17]) illustrates the HDFS architecture.

A Datanode periodically reports its status through a heartbeat and asks the

Namenode for instructions. Every Datanode maintains an open server socket so that

other Datanodes can request read and write operations; at the same time, clients access

actual data on the Datanode through this channel. The heartbeat can also help the

Namenode to detect connectivity with its Datanode and then replicates the blocks on a

dead Datanode. In order to keep the contents of the Namenode in case of unavoidable

failures, HDFS allows a secondary Namenode to periodically save a copy of data of the

Namenode.

9

Figure 2.2: HDFS Structure[17]

2.2.2 Data Replication

HDFS can be deployed on a cluster composed of thousands of nodes. The probability of

failure becomes non-negligible. This means HDFS has to handle the scenario in which

some components are non-functional.

Data redundancy is a way to solve this problem. HDFS employs an intelligent

replication placement policy to guarantee reliability and performance. For example, the

default replication number of HDFS is 3 and HDFS will place the first replica block in a

certain node. The second replica will be placed in a node that is located in the same rack

of nodes where the first replica is located. Because nodes within a rack tend to connect

to the same switch, the last replica will be placed in another rack to guarantee data

availability even in the event that an entire rack is down. This is called rack-awareness.

10

2.3 Molecular Dynamics Simulation

2.3.1 Computational Aspects of MD Simulations

An MD simulation [21] performs the time integration of the differential equation 2.1

with given initial atom position and velocities. It is based on Newton‟s 2
nd

 Law

(amF). Assume we have position p

and velocity v vectors

},...,2,1|)(),({ Nisvsp ii

 before starting the simulation; we want to obtain velocities

and positions },...,2,1|)(),({ Nitsvtsp ii

 in a later time.

2

()2

() 1 ()
() ()() | ()

ij

k
k ij p p t ik jk

i j

p t u r
a t p t

t p r

 (2.1)

Where,

1,

0,
ik

i k

i k

 (2.2)

is the Kronecker delta function and)(ru is the potential function.

Forces posed on two atoms can be computed as the negative gradient of the potential

in three dimensions because we simulate our system in three dimensional space.

()
(, ,)

N

k

k k k k

V p V V V
F

p x y z

 (2.3)

In which

ji

ijk pupV)()(

 and jiij ppp

 . Compared with ab initio electronic

structure calculations [22] which need to solve the Schrodinger‟s equation at each time-

step, the Classical MD simulation is less computationally intensive.

11

2.3.2 Potential Functions

Potential functions can be categorized as two-body potential functions if we only

consider any two atoms‟ interaction. Similarly, the three-body potential functions will

take every triplet of atoms‟ interaction into account. The potential energy P(r) is

defined as the energy required moving two atoms from infinite separation to a distance r

apart. In this thesis, we only consider two-body interactions in our simulation system.

The two body potential that we employed is the Lennard-Jones (LJ) potential (Figure

2.3). It is commonly accepted to model liquids such as argon and neon. This potential is

mildly attractive when two atoms are far apart, while it becomes stronger when the two

atoms are close together. We list the LJ potential and its force equations below.

12 6() 4 () ()V p
r r

 (2.4)

)
1

(])()(2[24 612

rrr
Fk

 (2.5)

The parameter is defined as the depth of the energy well and is determined by

the atom‟s diameter. The potential energy becomes zero if the separation distance

between atoms equals . The describes the strength of the interaction, freezing point

and many other properties. The effects the structure of the material‟s solid state.

From equation 2.4 and 2.5, we can clearly see two terms: one is 12)(
r

which represents

the short-range repulsion, the other is 6)(
r

that models the long-range attraction. The

attraction is caused by the polarization of the electron cloud of atoms. For example, if

atoms are placed close to each other, the charge density fluctuations in one of the

atom‟s electron cloud may induce the other atom‟s electron cloud polarization. For the

non-polar neutral atoms like Nobel gases that have symmetric electron cloud structure,

the attractive term is obtained from the exact quantum-mechanical solution. The

12

repulsion is formulated as the square of the attractive part. This makes the computation

simple.

Figure 2.3: The Lennard-Jones Potential

If an atom is uncharged, its electron cloud has a unique spherical and symmetrical

structure. Because of this structure, there is no charge concentrated in any particular

direction. The dipole moment does not exist. An atom‟s electron cloud can still keep

symmetrical structure, if two atoms are far enough apart. This scenario is illustrated in

Figure 2.4.

Figure 2.4: Symmetric Electron Cloud Structure

This symmetrical structure may change if the atoms distance becomes closer and

closer. In liquids, atoms move constantly and may collide with each other. The electron

clouds of atoms lose their symmetric structure and acquire an induced dipole moment

13

which lasts for a very short period of time. During this time, the atoms electron clouds

may exist like Figure 2.5 because the oppositely charged electron clouds result in two

atoms that attract each other.

Figure 2.5: Polarization of Electron Clouds

We list the LJ reduced units for Argon in Table X. It will make the MD computation

simple if we use the normalized units. For example, the unit can be used to normalize

inter-atomic separation and to normalize the energy. It is very common to use

1 and 1 to simplify the computation.

It is not possible for the LJ model to model all kinds of scenarios like chemical

reactions. However, it is still an important potential even with these drawbacks. The LJ

model occurred in multifarious simulations where these researchers are focusing on

fundamental issues rather than properties of specific materials. In this thesis, we still

model our potential through the LJ method as Sumanth did in [27].

Table 2.1: LJ Reduced Units for Argon

14

2.3.3 Boundary Conditions

It is common to use periodic boundary condition to minimize a bulk material. The

periodic box replicates the simulation box in all directions [23] through creating an

infinite lattice. It is reasonable to decide how to deal with the situation that an atom

reaches a boundary, because atoms lying at the same surface are very common. For

instance, a 2744 atoms system can be arranged in a 14x14x14 cubic structure; there are

624 atoms at the outside surface of the cube.

Each atom from the simulation box has a periodic image in all other boxes. In order

to explain the periodic box mechanism clearly, we employ a 2-dimensional version in

Figure 2.6.

Figure 2.6: Periodic Images of a Central Simulation Box

15

Figure 2.7: Periodic Boundary Conditions during Atoms Crossing Over

The shadow border box represents the simulation box with at least 6 for a LJ

potential. The box size should be carefully chosen for particular potential function.

Since the wavelengths of the fluctuations are macroscopic, long range wavelength M (it

is the simulation box length on one size) or greater can be suppressed. Then we cannot

simulate a liquid near the gas-liquid critical point. However, the periodic boundary is

very common and accurate if the simulation is not about liquid phase transitions (but

rather equilibrium thermodynamic properties). In the periodic box, the atom number is

constant, because when one atom leaves the box, another will enter from the opposite

wall. Figure 2.6 and 2.7 demonstrate this process. Figure 2.7 gives some illustration on

how to implement the periodic box. Mx is the length of simulation box in x direction; x

is the x-coordinate of certain atom. These five lines code in Figure 2.8 can guarantee x

is always in the range)
2

,
2

(xx MM
.

Figure 2.8: Periodic Boundary Condition Code [27]

16

2.3.4 Minimum Image Convention

There are two constraints we need to keep if we use the periodic boundary conditions.

One is the cut-off range of the potential must be no greater than the half of the

simulation box length (or width, because they equals each other). The other is that

atoms in the simulation box also need to interact with the periodic images of all other

atoms. The first constraint guarantees that each atom interacts only with the nearest

images of other atoms. It is known as the minimum image convention [22].

Figure 2.9: Minimum Image Convention Interactions

The white atom in the center dot circle (cut-off radius cycle) is the atom i.

2.3.5 Integration Algorithm

Assume the MD simulation starts at time-step t. What the integration algorithm does is

to obtain the position of all N atoms at tt , where the t is the time step length.

There is not an analytical solution because of the complexity of the equations being

integrated. We have to numerically solve the integration. A good integration algorithm

should have five properties: computational efficiency, near optimal energy conservation,

low hardware requirement, easy implementation, and accuracy of following classical

trajectories [27].

17

The time-step t is the crucial factor for all integration algorithms. If it is too large,

the total energy is hard to keep conserved and the simulation result loses its accuracy.

On the other hand, the simulation may take extraordinary long time if it is too small. We

will introduce two famous integration algorithms.

2.3.5.1 Verlet Intergration

This algorithm was first created by L.Verlet[24]. The position after one time-step t

may be found from equation 2.6:

21
() () () ()

2
p t t p t v t a t t

 (2.6)

Substituting t for t gives

21
() () () ()

2
p t t p t v t a t t

 (2.7)

If we add the equations 2.6 and 2.7, we then obtain the next time step position in

equation 2.8

2() 2 () () ()p t t p t a t t p t t (2.8)

in which)(ta is the acceleration at t time and)(tv is the velocity at t time.

The verlet algorithm uses no explicit velocities during the integration. It can be

easily implemented with modest memory requirements.

2.3.5.2 Velocity Verlet Intergration

The velocity verlet algorithm is an improved version based on the verlet algorithm. The

velocity verlet algorithm can produce next time-step position and velocity only by

current information. The position and velocity formulas are listed in equation 2.9 and

2.10.

18

21
() () () () ()

2
p t t p t v t t a t t

 (2.9)

1
() () [() ()]

2
v r t v t a t a t t t

 (2.10)

In this thesis, our MD implementation is based on the velocity-verlet integration

algorithm.

2.4 CUDA

CUDA [19] (Compute Unified Device Architecture) is a parallel computing architecture

designed for GPUs. It enables programmers to write C (C-CUDA) code to utilize GPUs

for processing non-graphical data. C-CUDA programs are compiled using a specialized

PathScale Open64 C compiler. CUDA shares the same purpose as Microsoft

DirectComput and OpenCL. CUDA has been widely used to accelerate computations

which otherwise take much longer time or are intractable with the current technology,

e.g., molecular dynamics simulation, electronic design automation, accelerated

rendering of 3D graphics, speech indexing, and physical simulations.

With a design principle different from traditional CPUs, GPUs are based on a

parallel throughput architecture that is aimed at executing a large number of concurrent

threads slowly, as opposed to executing a single thread very fast. CUDA provides APIs

for multiple operating systems, including Windows, Linux, and recently Mac OS X.

Moreover, CUDA is supported by all GPUs recently designed and manufactured by

nVIDIA [25], i.e., from the G8X series onwards, including GeForce, Quadro and the

Tesla product lines. nVIDIA maintains binary compatibility among different

generations of their GPUs such that CUDA programs developed for the GeForce 8

series will also work without modification on all future nVIDIA graphics cards.

With a radically different design, CUDA is superior over traditional GPGPU

solutions with graphics APIs. For example, CUDA supports Scattered Reads, i.e.,

19

programs can access memory at arbitrary addresses on both the host and device.

Moreover, CUDA allows the different hardware threads on the GPUs to access a shared

memory region. Lastly, CUDA has a solid hardware implementation of the floating

point arithmetic, which is essential for scientific computations.

Admittedly, CUDA also suffers several drawbacks at the current stage. For instance,

C-CUDA disallows the uses of recursion and function pointers, which might place a

burden on programmers while developing CUDA programs in some scenarios.

Although equipped with very fast internal cache memories, the GPU might suffer from

the bus bandwidth and latency bottlenecks along the data-path to the CPU. Furthermore,

the deep memory hierarchy and intricate internal mechanisms might have huge

performance implications if CUDA programs are written without accounting for such

complexities in the design. Nevertheless, we believe the advantages of massive-

parallelization offered by CUDA surely outweigh the drawbacks as mentioned above in

real world applications.

Besides C, CUDA has bindings for most mainstream programming languages,

including C++, Java, .NET, Perl, Python, Ruby, Lua, FORTRAN, and Matlab. In this

work, we focus on jCuda [26], which is the CUDA binding for the Java language, which

is being actively developed with support for the most recent CUDA API. Moreover,

jCuda is fully interoperable among different CUDA based libraries. Since Hadoop is

implemented entirely in Java, jCuda provides a solid foundation for bringing CUDA

technology into Java applications, including the Hadoop framework.

2.4.1 CPU+GPU structure

The CPU+GPU architecture is shown in Figure 2.10. We demonstrate a very simple

array summation example to explain how they work. In order to distinguish arrays in

main memory from GPU‟s global memory, we use “dev” (short for device) plus capital

character to identify three arrays on GPU‟s global memory. First of all, the CPU

allocates three arrays in the main memory, array “a” and “b” contains elements we want

20

to sum where array “c” is used to store the results. Correspondingly, the CPU also needs

to allocate three arrays on GPU‟s global memory which is the blue square in the GPU.

The Main memory will copy the array “a” and “b” contents into GPU‟s global memory

following the CPU‟s order. On the GPU side, the green squares are computation

elements and the purplish red squares are shared memory for certain amount of the

computation elements. Communication between shared memories should employ global

memory. The computation element needs to load array “devA” and “devB” into shared

memory before launching the summation.

After the summation operation, array “devC” will be stored to global memory from

shared memory. The next step is to copy array “devC” to array “c” from global memory

to main memory. Finally, all memory space in main memory and global memory will be

recycled.

C P UMain Mem

BUS

G P G P U

3.copy a[],b[]

To devA[].devB[]

7.Copy devC[] to c[]

1.Malloc a[],b[],c[]

5.devC[]=devA[]+devB[]

2.cudaMalloc

(devA[],

devB[],

devC[])

8.recycle(devA[],

devB[],devC[])

4.load6.store

Figure 2.9: CPU+GPU Architecture

2.5 Related Work

MapReduce has been used in scientific computation in many fields. Kelvin Cardona [2]

implemented MapReduce to analyze Probabilistic Neural Network data. Jaliya

21

Ekanayake[3] introduced MapReduce to High Energy Physics data analyses and Kmean

clustering. Michael C. Schatz [4] developed BlastReduce based on MapReduce for

processing DNA sequences and obtained 250x speedup compared with single processor

BLAST. Weiying Shang [5] used MapReduce for mining Software Repositories. Jinguo

You [6] parallelized the Close Cube Computation process with MapReduce.

MapReduce was first focused on data-intensive applications. It has been extended to

some computation-intensive applications because of its fault-tolerance, simplicity of

programming mode, and scalability. Bin Wu [7] proposed a general All Maximal Clique

enumeration process in a distributed manner on a cluster with the help of MapReduce.

Chao Jin [8] created an automatically parallelizing Genetic Algorithm platform called

MRPGA built on MapReduce.

MapReduce programs debugging and profiling has grown in prominence with the

increasing number of applications using MapReduce. There are some companies that

have published white papers and presented their methods [9, 10]. Xu [11] and Jiaqi Tan

[12] provide Log-based analysis and a debugging tool for MapReduce respectively. A

real-time tracing tool for MapReduce has been created by Dachuan Huang [13].

In order to improve clusters‟ performance, accelerators have become the common

devices to enhance CPUs‟ performance, to reduce energy consumption, and to speed up

programs‟ execution. There are some MapReduce variants that can utilize accelerators

to improve original MapReduce program performance. Bingsheng He [36] proposed

“Mars” which is a MapReduce framework on graphics processors. Yolanda Becerra [34]

has introduced an approach for exploiting the heterogeneity of a Cell BE cluster by

linking an existing MapReduce runtime implementation for distributed clusters and

another to exploit the parallelism of the Cell BE nodes. Jorda Polo [14] created an

adaptive task scheduler which provides dynamic job allocation on hybrid MapReduce

clusters consisting of nodes with accelerators.

22

Chapter 3

Design and Implementation

3.1 MD Simulation based on MapReduce

In this section, we will introduce how we designed and implemented MDMR. First of

all, we will list challenges and constraints when we designed MDMR. They come from

two aspects.

On one hand is the MapReduce specification. The MapReduce framework can easily

handle Terabytes of data that have little dependency. The MapReduce framework does

not allow communication among TaskTrackers in the Map stage. All data flows are in

the form of key/value pairs.

On the other hand, the MD simulation data have dependency because atoms interact

with their neighbors. Synchronization is needed because atoms‟ positions in the next

time-step are decided by their current position, acceleration and velocity. Fault-

tolerance should be guaranteed. The whole time-step computation result will be invalid

if there is an error in processors which run in parallel. In the end, we have to verify the

correctness of our MD simulation program.

 We satisfied previous constraints one by one through carefully designing MDMR.

1) Data dependency. In this thesis, we disassembled the simulation system by using

the atom-decomposition method [28] to satisfy data dependency. We first place a

file containing all atoms‟ position into DistributedCache, which is a public area on

23

HDFS that every TaskTracker can access. Before starting a Map task, the

TaskTracker has to first load the position file into its memory. In this way, no

matter how we divide the atoms in a simulation system, every worker node has a

copy of all atoms‟ positions. We also eliminated the communication between

TaskTrackers in the Map stage.

2) Synchronization. In MD simulation, the next time-step atoms‟ positions, velocities,

and accelerations are decided by the current time-step potential and kinetic energy.

We regard one time-step computation as one MapReduce program; at the same

time, we put all computation in the Map stage and let the Reduce stage do the

synchronization, because the Shuffle phase can handle synchronization.

3) Fault-tolerance. MDMR guarantees fault-tolerance for each time-step because each

time-step is a MapReduce program which can deal with node failure in run-time.

Most of the current MD simulation programs‟ fault-tolerance mechanism is to

periodically output a restart file for several time-steps. Assume a MD simulation

program saves a restart file every 5 time-steps. It has to redo the previous 4 correct

time-step simulations if failure happens in the 5
th

 time-step. It wastes computation

resources. However, MDMR will not move to the next time-step until it obtains the

correct result for the current time-step.

4) Correctness verification. We verified our MD programs‟ correctness through

energy conservation. That‟s to say, the current time-step system energy should

equal the system energy in the next time-step. We first wrote a serial MD program

and verified its correctness through energy conservation. We then compared the

MDMR‟s result with this serial MD program‟s result. MDMR is considered correct

if there is no difference between its result and the serial program‟s result.

We will detail MDMR‟s design and implementation in this chapter.

24

3.1.1 Atom decomposition method

Scientists parallelize MD simulation through atom decomposition, spatial

decomposition and force decomposition methods [39, 40, 41]. The atom decomposition

method can be used to parallelize MD simulation through dividing the input atoms‟

coordinates file. It does not need to know simulation system‟s spatial and force

information. This method is easy to parallelize through the JobTracker which is the

master node in MapReduce framework according.

 The atom decomposition method first divides the input data to small parts and

allocates them to worker nodes without considering data dependency. However, every

worker node keeps a copy of all input data to satisfy data independency.

In MDMR, we place the input file in the DistributedCache which is a public cache

for all TaskTrackers in Hadoop MapReduce. This guarantees every TaskTracker has a

copy of the input file; at the same time, the JobTracker will divide input file evenly to

inputsplits and allocate them to TaskTrackers. From the TaskTrackers point of view,

each TaskTracker receives an inputsplit. If necessary, it can obtain other inputsplits

information by accessing DistributedCache.

 In our MD simulation, we use the Velocity-Verlet method for particle velocity

computation [24], the Leonard-Jones method for potential computation among particles

and the atom decomposition method for the parallelization of MD. We choose the

Argon atom as the object for the MD simulation. The long-range interaction (non-

bonded) is the only interaction between every two atoms.

 Every Argon atom has a unique ID number and can be located by three-dimensional

coordinates in the simulation system. To simulate atoms behavior in a given period of

time, we have to know their initial velocity and acceleration, which are both three-

dimension vectors. We store these atom position, velocity, and acceleration vectors in a

text file in which each line records one atom‟s information. Every line starts with an

25

atom ID number. The atom element symbol follows with the ID; and then, atom

position vector, velocity vector, and acceleration vector. This is shown in Figure 3.1.

1 Ar Px Py Pz Vx Vy Vz Ax Ay Az

Figure 3.1: Simulation Coordinate file

 The atom-decomposition method parallelizes the MD simulation through a “divide

and conquer” algorithm. For example, if we use 3 processors to simultaneously simulate

a 300 atom system, each processor will be assigned 100 atoms without considering the

interaction dependency among atoms. However, each processor should keep all 300

atoms‟ information in memory to maintain data independency. The serial atom-

decomposition algorithm is shown in Table 3.1.

Table 3.1: Serial MD algorithm

for ith atom in the system(i from 0 to n)

 obtain last time-step information

 for jth atom in the system (j from 0 to n)

 compute ijD which is the distance between atom i and atom j

 if ijD <= cutoffR (distance between atom i and atom j is not bigger than potential

cut-off radius)

 compute Lennard-Jones potential energy, interactive force posed on ith atom

from jth atom. Write the force vector into []F j .

 Loop

 for kth element in []F (k from 0 to n)

26

 Add force vector []F k into vector
if

Loop

According to
if , compute the acceleration, obtain the velocity through Velocit-Verlet

algorithm, and the position for current time-step. Store all of them for next time-step

computation.

Loop

We can easily get its time-complexity:

 () ()T n n a bn cn d (3.1)

where n is the number of atoms in our simulation system. a , b , c and d are

constants. They refer to time to load one atom information, computation of potential

energy and force, operation of adding []F k to if , and next time-step data‟s computation

time. We simplify the formula into equation 3.2.

 2

2 1 0()T n p n p n p (3.2)

Based on the serial algorithm, the MDMR algorithm is shown in the Table 3.2.

Table 3.2: MDMR algorithm

Load all atoms information to DistributedCache before starting Mapper

Mapper:

 Input (Key, Value): (xyz file‟s line number, single atom last time-step

information)

 Map method:

27

 Read all atoms information from DistributedCache, for each input k-v pair

(one atom), implement the Serial algorithm, but we only need to simulate portion of

atoms in the system.

 Output Key: atom sequential number; Output Value: single atom current time-

step information

Reducer:

 Input (Key, Value): (atom sequential number, single atom current time-step

information)

 Reduce method:

 Collect all key-value pairs and store them into HDFS

Through MapReduce parallelization, we can see the time complexity reduce to

)()(1

2

2 m
m

npnp
nT

 (3.3)

m is the number of mappers that can simultaneously execute in our MDMR. 21, pp are

coefficients.)(m is composed of two parts. One is the possible overhead caused by

increasing the number of mappers. It is a function of m (in this thesis, we assume it is a

linear function of m). The other is MapReduce framework overhead which is a

constant (we find out this constant through experiments in Chapter 4) like job

initialization and recycling, JVM creation, and garbage collection, etc.

 MDMR guarantees fault-tolerance for each time-step because each time-step is a

MapReduce program which can deal with node failure in run-time. Most of current MD

simulation programs‟ fault-tolerance mechanism is to periodically output a restart file

for several time steps. Assume a MD simulation program saves a restart file every 5

time-steps. It has to redo the previous 4 correct time-step simulations if failure happens

28

in the 5
th

 time-step. It wastes computation resources. However, MDMR will not move

to the next time-step until it obtains correct result of current time-step.

3.2 Tuning of MDMR

Program performance depends on multiple factors, not only hardware but also software

configuration. In this section, we explore 10 factors that have influence on our

MDMR‟s performance.

3.2.1 Hadoop Parameters

Hadoop MapReduce has abundant configurable parameters that are closely related to

the program‟s performance. Impetus [9] and Cloudera [10] published their case studies

on tuning a Hadoop MapReduce cluster. These parameters concern compression of

intermediate output, speculative execution, JVM reuse, replication of data, logging,

mapper/reducer number, temporary space allocation, block size, and so on. We refer to

these configurations that may contribute to MDMR‟s performance and examine three

important parameters that are the number of mappers, the number of reducers and the

block replication in our evaluation. We detail 8 Hadoop MapReduce configuration

parameters in this work; others follow the default setting of Hadoop 0.20.3.

mapred.job.reuse.jvm.num.tasks This parameter is in charge of the number of tasks

that can be executed by a jvm. The default value is “1” which means one jvm can only

run one task. However, the cost of initializing and recycling a jvm is not neglegable if

one TaskTracker needs to process a large number of tasks. In order to reduce overhead,

we configure this parameter to be “-1” which means a jvm can be reused by a job in a

TaskTracker no matter how many tasks this job has.

mapred.child.java.opts This is the java options for a TaskTracker‟s child processes.

The administrator can adjust according to the hardware properties and application

requirement. In our clusters, each node has two single-core CPU and 4GB RAM.

29

Because a map task of MDMR is computation-intensive and needs to keep all atom

information in memory, we configure this parameter as 1GB.

mapred.task.timeout It is the maximum time in milliseconds before a task will be

terminated if it stops reporting its status, reading the input or writing output. We need to

increase this limit because MDMR is a kind of computation-intensive application. The

default value, which is 10 minutes, is not adequate. For example, a 27000-atom system

needs more than 10 minutes to run its map tasks without any data I/O and status change.

It is large enough for MDMR if we set this parameter as 1000 minutes.

mapred.output.compress This parameter is very important for a data-intensive

application. It allows Hadoop to reduce I/O data size between memory and disk by

compressing MapReduce job output. For example, at the end of the Map stage, mapper

output data is first stored in memory before it has been dumped into disk due to the

memory size limitation. The reducers do not need to access mappers disk if the mappers

output can be stored in memory by compression. Nevertheless, MDMR is a kind of

computation-intensive application. We do not need to waste CPU time which can be

used to do MDMR simulation, compressing the job output, because its job output is

smaller than the memory capacity.

mapred.task.cache.levels This defines the max level of task cache for a node. A node

will cache tasks not only at node level but also at rack level if this parameter is 2.

Similarly, if it is 1, the tasks cached are only at node level. It is important for data-

intensive MapReduce programs to maintain the data locality. To facilitate nodes

processing corresponding tasks using local data can reduce the network traffic and

decrease the processing time. We assume disk access is faster than network data

transferring. In our experiments, we leave this parameter as 2 which is the default

setting.

mapred.map/reduce.tasks.speculative.execution These are Boolean parameters that

have “TRUE” or “FALSE” options. “TRUE” means multiple instances of some “slow”

map/reduce tasks may be simultaneously executed (in order to avoid exhausting

30

computation resources, there are two copies actually running in parallel including the

original one). This is a fault-tolerance policy of the MapReduce framework. It can re-

execute tasks if there are TaskTracker failures. Thus, we set these two parameters to be

“TRUE”.

mapred.TaskTracker.map/reduce.tasks.maximum These limit the maximum number

of map/reduce tasks that will be run simultaneously by a TaskTracker. According to the

MDMR specification and our cluster‟s hardware, we set this parameter as 2 for map

tasks and 2 for reduce tasks. While MDMR is a computation-intensive application, at

the same time, each node has 2 single-core CPUs. If there are more than 2 map tasks

running on one node, they will compete for the CPU resource. For the reduce tasks, we

keep it the same as map tasks‟ setting.

dfs.replication We can set the replication for each block in HDFS through this

parameter. It is 3 by default. The actual number of replications can be specified when a

certain file is created. The replication number is 2 in our experiment and the

relationship between replication number and the MDMR execution time will be

evaluated in Chapter 4.

In this thesis, we will evaluate MDMR performance based on three parameters:

mapred.TaskTracker.reduce.tasks.maximum, mapred.TaskTracker.map.tasks.maximum,

and dfs.replication.

3.2.2 Other factors

In the distributed environment, the slowest processor determines the execution time of

entire parallel program. We need to balance the work load among the cluster and aim

our best to let all nodes finish their work at the same time [27]. That means we should

assign slower processors a smaller number of tasks and the powerful processors a larger

number of tasks.

31

Hadoop MapReduce is based on a Master/Slave structure. Worker nodes will ask the

master node for tasks once they have free slots or finish their current tasks. In a

heterogeneous environment, for a given job, we can achieve the balance of slave nodes

by decreasing a job‟s granularity to generate larger amounts of tasks. In this way, faster

nodes will ask for more tasks and slower nodes may take fewer tasks. To some extent,

this method has a positive effect on balancing the cluster. However, this method may

introduce extra overhead if the number of tasks is arbitrarily large. We call this method

“more tasks”. In section 3.4, we develop a runtime monitor for this method to

demonstrate its influence on our MDMR.

There is another way to achieve load balancing. We do not change the task number

but assign different sizes of tasks to TaskTrackers according to their performance. It

needs a dynamic adaptive load balancer for the current MapReduce framework; we will

implement this in our future work.

3.3 Evaluation of MDMR

In this section, we evaluate MDMR as a MapReduce application composed of a Map

stage and a Reduce stage. Because the Reduce stage includes data transferring in the

cluster, we separate the Reduce stage into two phases: shuffle and Reduce phase. The

Shuffle phase transfers the mappers‟ outputs to the reducer as inputs. It starts from the

end of the Map stage and finishes at the beginning of the Reduce stage. MDMR‟s

Reduce stage is different from the original MapReduce Reduce stage which consists of

three phases: Shuffle, Sort and Reduce. Since the key is the atom ID and the value is

this atom‟s coordinate information, mapping from key to value is one to one. The

Classical MapReduce Sort phase which sorts all key-value pairs with the same key in

order does nothing in MDMR. We can neglect this phase. Figure 3.2 shows why we

divide MDMR like this. It illustrates the timeline in which MDMR simulates a 64000

atoms system using 16 mappers and 1 reducer in 1 time-step. The x-axis is time and the

y-axis is the name of nodes that run the program. The blue bar means that node04 runs

32

setup (initialization) for this job. Because MapReduce will use a map task (or reduce

task, depending on which type of task has a free slot) to setup the job, we regard setup

as part of the Map stage. After the setup phase, all tasks enter the job queue and the

JobTracker will schedule them to TaskTrackers. We can clearly see that mapper process

time (yellow bar) on different nodes is different even though every node has been

assigned one task with the same size. There are many reasons, for example, data locality,

status of each node, etc. In a heterogeneous environment, the difference among yellow

bars might be more significant. Work load balancing is needed if all worker nodes have

different computation capability. In this thesis, we only take the homogeneous

environment into account and will implement the balancer in the future.

The red bar is the Shuffle phase which starts after the Map stage. The Reduce phase

is the light blue bar following the Shuffle phase. The green bar is the cleanup process

which is related to job recycling. Between the Reduce phase and cleanup, there is also a

gap. This is a kind of system overhead. Because once a job finished, it will enter a

committing queue. The JobTracker will move a job from RUNNING queue to

COMMIT queue. Before job committing, JobTracker has to report the job counter and

finalize the job monitor called JobInProgress.

33

Figure 3.2: Hadoop Timeline of MDMR for 64000 atoms

3.3.1 MDMR Speedup

Speedup helps us quantify how much MDMR is faster than a corresponding sequential

algorithm. It is defined as the following formula

parallel

serial

T

T
S (3.4)

where serialT is the execution time of a serial program and parallelT is the execution time of

a parallelized program. In this thesis, we have two serialT , one is the execution time of

MDMR with one mapper and one reducer, the other is a totally serial MD simulation

without using MapReduce framework. We can objectively evaluate MDMR in this way.

34

We also provide the speedup of MDMR-G (with GPGPU as accelerator) and MDMR-G

vs. MDMR.

3.3.2 Karp-Flatt Metric

The speedup does not consider the parallel overhead with increasing processor number.

It may overestimate speedup or scale speedup. The Karp-Flatt metric, also called

experimentally determined serial fraction can provide some insights [20]. We introduce

the following equation to describe the execution time spent in a parallel program.

(,) () () / (,)T n p n n p n p (3.5)

where n is the problem size and p is the number of processors.)(n is the serial portion

of computation that cannot be parallelized.)(n is the portion of the computation that

can be executed in parallel.),(pn is the overhead that comes from the increasing

processor number. The serial execution of the program does not have this part. It is

simply:

(,1) () ()T n n n (3.6)

The experimentally determined serial fraction e is defined as follow

() (,)

(,1)

n n p
e

T n

 (3.7)

We can use speedup to describe e and get another form of equation 3.7

1 1

1
1

p
e

p

 (3.8)

where is the speedup on p processors.

35

By evaluating MDMR with the Karp-Flatt metric, we can clearly understand the

parallel overhead which will contribute for formulating the MDMR execution time

model. And then, we can tell whether MDMR is suitable for large MD simulation

systems or not.

3.3.3 Minimum MapReduce Overhead

From the equation 3.5, we want to figure out what is the minimum of)(n . It is the

time of system overhead even when there is no computation in MapReduce program.

We employ “loadgen” which is a test example of Hadoop MapReduce framework [17].

It loads the input data and outputs them without any change. The user can specify the

output data size through configuring the output data as a percentage of the input data. In

order to get the minimum MapReduce overhead, we let the output data equal the input

data.

3.3.4 Time Complexity

MDMR encapsulates the main computation into the Map stage. The Map stage

execution time is quadratic with the number of atoms in the simulation system. Thus,

the Map stage execution time is),(mnT ,

)(),(1

2

2 m
m

ncnc
mnTmap

 (3.9)

in which n is the number of atom in the simulation system and m is the number of

mappers used in execution. We use 21 ,cc to represent coefficients to avoid confusion

from coefficients of equation (3.3).)(m is the possible overhead but only in Map stage.

In this thesis, we take this as constant. We will explain it in the evaluation chapter.

 The Reduce stage of MDMR is in charge of data synchronization. It includes the

Shuffle phase the Reduce phase. We formulate the Reduce stage as a linear process. It is

a function of simulation system size.

36

 rr

reduce cncT 01 (3.10)

Similarly, rr cc 10 , are coefficients and n is the number of atoms in the simulation

system.

In general, we add up equation 3.9 and equation 3.10. The total execution time

formula for a given number of mappers (m is a constant number) is:

 01

2

2)(dndndnT (3.11)

in which
m

c
d 2

2 , rc
m

c
d 1

1
1 , and)(00 mcd r .

3.4 Run-time Monitor for MDMR

In order to clearly understand MapReduce programs‟ execution, we create a run-time

program monitor. It can monitor execution of any part of MapReduce programs, help a

programmer to find out their programs bottleneck, and estimate the overhead of a new

scheduler. It can also verify the correctness of MapReduce programs. In this thesis, we

use this run-time monitor to “more tasks” method which balances the cluster through

increasing the number of tasks.

 As we discussed in section 3.2, it is necessary to evaluate the “more tasks” method

not only in performance but also in efficiency. Therefore we create a run-time monitor

for MapReduce programs. It can detect the computation-power of MapReduce

programs. Its data collection and presentation processes are independent from the

MapReduce framework, which can correspondingly reduce the interference on the

original MapReduce program running on the same clusters.

37

3.4.1 Class specification

Our runtime monitor focuses on two main objects: Mapper and Reducer. We acquire

the Map stage and Reduce stage computation power by inspecting the execution of

Mapper and Reducer‟s primary methods map() and reduce().

Table 3.3: Java API of Mapper Interface
Method Description

void configure() Initializes a new instance from a JobConf

void map() Maps a single input key-value pair into an intermediate

key-value pair

void close() Closes this stream and release any system resource

associated with it

From Table 3.3, Mapper implementations can access the JobConf via the

JobConfigurable.configure(JobConf) and initialize themselves. Similarly, they can use

the Closeable.close() method for recycling. The framework then calls map()

(Object,Object, OutputCollector, Reporter) for each key value pair in the InputSplit for

that task. From the above desription, we conclude that map() will be called once for

every key-value pair input. The following are the Java-MOP [29,30] FSM (Finite State

Machine) codes:

fsm :

start [

 configureEvent -> running

]

running [

 mapEvent -> running

 closeEvent -> end

]

end []

The run-time monitor counts the number of map() and reduce() methods being called

and monitors their execution time. According to the introduction of the MapReduce

framework, we can confirm that the map() method counter must be the number of the

Mapper class input. And the reduce() counter must be the number of the Mapper class

output. By comparing the corresponding counter number with the input and output

number of key-value pairs, we can confirm MapReduce programs‟ correctness. To get

38

the overhead of the run-time monitor, we can compare the program‟s execution with

and without AspectJ code. The run-time data will be sent to the head node and the head

node will load the data to its web page. In Figure 3.3, monitoring related processes have

been marked with a bold line.

Users

Mapper

JobTrackerAssign

PropertiesMonitor

Buffered Uploader

Mapper

……

Assign

Reducer

PropertiesMonitor

Reducer

PropertiesMonitor

PropertiesMonitor……

Monitor Reduce() Method

Intermediate Results

MR program Results

Submit jobs

Return Monitoring Results through web page

Monitor Reduce() method

Monitor Map() method Monitor Map() method

Update web page

Buffered Uploader

Buffered Uploader

Buffered Uploader

Figure 3.3: Run-time MapReduce program monitor data flow

3.4.2 Buffered Uploader

Once the monitor gets the results from the program it monitored, we need to report the

data in real time. However, according to our experience, the head node may be flooded

by worker nodes‟ requests if they report their results immediately. In order to obtain the

smallest overhead, we explore 3 monitoring intermediate storage solutions: HDFS, NFS,

and local file system with daemon.

39

Local file system with daemon has been used in this thesis (Buffered Uploader). The

monitor stores intermediate results into a local file system on every worker node. The

daemon on worker nodes periodically sends accumulated intermediate results to the

head node through TCP connections. The other two methods have their limitations. First

of all, it will introduce extra overhead into the original MapReduce program data flow if

HDFS is used as storage for the monitor. For example, when we store the monitor‟s

results to certain block on HDFS, the original MapReduce program has an I/O request

on the same node. The original MapReduce program‟s request may be delayed.

For NFS, we can save some effort dealing with extra communications between

worker nodes and the head node if every worker node can write to NFS. However, this

method has its limitation. The NFS partition is mounted on a certain node which will be

flooded if all other nodes simultaneously send a large number of requests to it.

Table 3.4 illustrates the relation between input file size and execution time of

MapReduce program in both NFS and local file system. The execution time of program

with run-time monitor increases significantly if we use NFS. However, the execution

time with a local file system does not increase as fast as in NFS.

Table 3.4: NFS vs. Local File System Execution time
NFS as medium

Input File size No Monitoring Model With Monitoring Model

1000 Atoms(61KB) 27.1s 29s

27000 Atoms(1.7MB) 29s 134s

Local File System as medium

1000 Atoms(61KB) 27.1s 28s

27000 Atoms(1.7MB) 29s 29s

We can clearly understand the reason through the observation of clusters

performance from Figure 3.4.

40

Figure 3.4: Statistical CPU time

Figure 3.4 shows processes on a MapReduce cluster obtained through Ganglia[31]

which is cluster monitoring software. The red area is the system CPU time. It means

CPUs do not really do user computation; on the contrary, they spent half their power to

deal with system calls, such as context switch, process synchronization, etc. The system

CPU time in Figure 3.4 is caused by the nfsd requests which were issued by our run-

time monitor from worker nodes. The reason why they simultaneously occured is that

the NFS partition is located on the head node of the cluster. Worker nodes make

requests of the head node when there is a write or read request on NFS. The 25% CPU

time is used by worker nodes‟ monitors NFS requests. NFS becomes a bottleneck for

the monitor program.

 In the MapReduce program monitor, we use a Buffered Uploader. In this manner,

the worker nodes first store their monitoring result in local disk. At the same time, we

41

employ crond which is Linux system daemon which runs periodically to report data to

the head node.

On the head node side, we may not update the web page for every worker node

request. Because the head node is hosting the NameNode and the JobTracker

simultaneously, memory overflow may occur if we use a large amount of memory to

respond to worker nodes requests and frequently update the web page. The monitor‟s

web page is updated in every one minute by crond.

3.4.3 Monitor Metrics

Because we collect each map() and reduce() methods‟ execution time, the computation

power of the map() method is the summation of all map() execution time from all

TaskTrackers, the same for to reduce() methods. In this thesis, we regard the time spent

on all other parts (except map() and reduce() functions) of the MapReduce framework

as overhead, like communication, synchronization, etc. Therefore, the efficiency of

computation power is the ratio of map() and reduce() methods computation power and

the computation power of whole MapReduce program. The formulas are listed below:

 TTM Moverhead (3.12)

overheadM is the monitor‟s overhead imposed on system. It equals the execution time

of a given job with the monitor minus its execution time without the monitor.

ii

n

i

i

tpc

cC

1 (3.13)

C is the cluster total computation power. It is the summation of computation power

spends in every node in cluster. The i th node computation power ic equals the

processor number p multiplied by time it for those processors used for the computation.

42

total

reducemap

C
C

CC

 (3.14)

Computation power efficiency C is the ratio of computation which has been used in

a user defined “useful” portion to the total computation power consumed by whole

program in the cluster. We regard the time spent on map() and reduce() methods as our

useful computation power. High computation power efficiency means the cluster spends

a larger portion of computation power to process the user defined “useful” computation.

3.5 MDMR in hybrid environment

The MapReduce cluster is composed of PC nodes. They provide a high

computation/cost ratio. In the past ten years, an accelerator has been accepted into

clusters to improve their performance and power efficiency. In the Top 500 [32]

supercomputers, Top-1, Top-3 and Top-4 supercomputers are CPU+accelerator

architecture. At the same time, in the Green Top 500 [33], eight of the top 10 rated

supercomputers are equipped with accelerators. In order to fully improve MDMR

performance on a MapReduce cluster, we build a hybrid MapReduce cluster which has

deployed GPGPU in every TaskTracker.

3.5.1 Hybrid Hadoop

We employ GPGPU to the Map stage because the most computation is in this stage. The

data flow in our hybrid Hadoop MapReduce framework is shown in Figure 3.5.

43

Figure 3.5: Hybrid Hadoop MapReduce structure

Section 2.4.1 illustrates that GPGPU needs a CPU to process its I/O. The hybrid

MapReduce framework follows this rule. In Figure 3.5, our mapper is a CPU process in

charge of data input, the GPGPU will help the mapper to parallelize the computation

intensive map() method. After that, the GPGPU will ship the processed data to the CPU

and the CPU will pass them to the reducer.

3.5.2 MDMR-G algorithm and time complexity

Before we introduce GPGPU into MDMR, we need to understand some specifications

of the GPU. The GPGPU graphics adapter we used is Geforce 9400GT which allows

one grid to run at a time. Each grid contains at most 65,535 blocks and each block can

simultaneously execute a maximum of 512 threads. This means we can concurrently

44

have 65,535*512=33,553,920 threads. The MDMR‟s algorithm time complexity is

)(2nO . We can employ GPU to parallelize the outer loop in the map() method in Table

3.1 and reduce the time complexity from)(2nO to)(nO if n isalways smaller than 33

million. The MDMD-G algorithm is shown in Table 3.5.

45

Table 3.5: MDMR-G algorithm

Load all atoms information to DistributedCache before starting Mapper

Mapper:

 Input (Key, Value): (coordinates file‟s line number, current input atom ia last time-step

coordinates, velocity, and acceleration)

 Map method:

 { Read all atoms information from DistributedCache to array Total[] ;

 Send ia and array Total[] into GPU global memory;

 On GPGPU:{

 Use length(Total[]) GPU threads to concurrently obtain force array F[] ;

 Sum force array F[] through vector summation to variable f ;

 Return f to main memory;

 }

 Compute next time step acceleration, position, and velocity through equations 2.9 and 2.10;

 Output intermediate key-value;

 }

 Output Key: atom sequential number; Output Value: single atom current time-step information

Reducer:

 Input (Key, Value): (atom sequential number, single atom current time-step information)

 Reduce method:

 Collect all key-value pairs and store them into Distributed File System

46

Chapter 4

Evaluation

Our experiments are based on a MapReduce cluster, called BugeaterII, composed of 30

worker nodes. Each node has 2 single-core AMD Operon64 2.2GHz CPUs, 4GB DDR

RAM, and is connected by 1 Gbps Ethernet. The capacity of HDFS on BugeaterII is

about 10 TB. The replication factor on HDFS is configured as 2. The head node

hardware configuration is the same as the worker node except it has 8G RAM and 2TB

disk space. The Namenode and JobTracker are simultaneously running on it. BugeaterII

is based on Hadoop 0.20.2 using the default First Come First Serve (FCFS) scheduler.

4.1 Hadoop Parameter tuning for MDMR

In Chapter 3, we predicted that two parameters have limited influence on MDMR, they

are „reduce.tasks.maximum’ and „dfs.replication’. We will verify their influence on

MDMR in this section.

4.1.1 Reducer number

In MDMR, the Reduce stage takes intermediate results from the Map stage and

generates the final output. The number of reducers can contribute either a positive or

negative effect to the performance of the Reduce stage. An example may shed some

light on this point. Assume the Reduce stage follows a slow start, no one reducer will

start until the Map stage finishes. In other words, the Reduce stage does not overlap

with the Map stage. Consider a data-intensive application with 1TB intermediate results

47

from 5 mappers. The cluster is composed of 5 homogeneous worker nodes, each of

which has one network adapter. The head node only runs the master process: Namenode

and JobTracker. According to the Hadoop default configuration, it will start 5 reducers

to handle this 1TB data. That‟s to say, each node will process 204.8GB data. If we use

more than 5 reducers, for example 10, each reducer will be assigned 102.4GB data. But

these extra 5 reducers may compete with the original 5 reducers for the network

bandwidth if the cluster allows 10 reducers to simultaneously retrieve data from the

mappers. It is hard to say if the 10 reducer solution is better than the 5 reducer‟ one. To

avoid competition, we can divide 10 reducers into two waves and only allow 5 reducers

to run at the same time. However, this is not optimal either. The reducer processes need

to be initialized at the beginning and recycled in the end. We introduce initialization and

recycle overhead twice if there are two waves. On the other hand, from the

administration point of view, the system resource is underutilized if the reducer number

is smaller than the actual number of network adapters in the cluster.

 Regardless, for CPU-intensive applications, the reducer number has limited effect

on the performance because most of the execution time is spent not in I/O but in

computation. We evaluated the effect of the reducer number on the MDMR‟s

performance. Experimental results are shown in Figure 4.1.

48

Figure 4.1: Effect of Reducer Number

49

From Figure 4.1, the fluctuation caused by the reducer number converges with the

increasing simulation size. This verified our expectation. We will set the reducer

number to 1 in our following MDMR simulations to reduce the disturbance probability

caused by failure of a reducer if multiple reducers are used.

4.1.2 Replication

As we introduced in Chapter 2, HDFS has a replication mechanism to improve its data

availability, load balancing and MapReduce program performance. In production

clusters, some popular data may be the bottleneck of the whole distributed computing

system. Multiple replications of popular data can balance the load among the system

and reduce the risk of losing data. For data-intensive applications, replication can

reduce the data transferring and execution time. However, MDMR is a computation-

intensive application. The replication number has limited effect on it. In a 35,937 atom

system, the input file is about 2.2MB. To transfer a 2.2MB file through a 1Gbps

network will take 17.2ms. This is negligible compared to one time-step of simulation

time which is about 12 minutes. Figure 4.2 lists the execution time of MDMR with

different replication factors.

50

Figure 4.2: Effect of Replication number

The fluctuation trend of block replication number is similar to the situation we met in

exploring reducer number effect. The replication number has limited effect on the

execution time. Thus, we will set the block replication number as “2” in our following

experiments to satisfy data redundancy and save disk space.

51

4.2 MDMR Evaluation

In this section, we evaluate MDMR with 12 MD simulation systems with atoms from

1000 to 64000. For each simulation system, we run it with 13 different numbers of

mappers from 1 to a maximum of the actual CPU number in the cluster. And then, for a

given simulation system with a given number of mappers, we run MDMR 3 times on a

cluster and take the arithmetic average of these as our final result. The method helps us

to avoid disturbance from cluster node failure or other random events.

We first obtained the speedup of MDMR and then evaluated MDMR performance

through Karp-Flatt metrics. The parallelization overhead is not the critical factor

affecting MDMR performance. We want to know what the minimum MapReduce

system overhead is.

In Table 4.1, we show our simulation system size and the number of mappers used

for evaluating MDMR. The first column demonstrates the atom number of 12 systems

and the second column shows the 13 groups mapper numbers evaluated for each.

Table 4.1: Evaluation Data Configuration

We used the Matlab curve fitting tool [35] which allows its user to use regression,

interpolation, and smoothing modeling techniques to obtain the coefficients of a given

Atoms in Simulation System Mapper used by MDMR

1000

509

1

0.10

2744

44

539

5

0.03

3375

606

10

0.10

4913

88

695

15

0.08

5832

110

737

20

0.07

8000

22

1011

25

0.09

10648

44

1023

30

0.09

27000

66

1124

35
35937

88

1122

40
42875

110

1239

45
54872

22

3770

50
64000

44

3966

55

66

3619

60

52

expression. We fit our time complexity formula with 95% confidence bounds. In order

to estimate the accuracy of extrapolated results, we use the first 9 systems that contain

atom numbers from 1000 to 35937 as our base line to get corresponding coefficients.

We then use them to predict execution times of the 42875 atom system. Furthermore,

we use the first 10 systems from 1000 to 42875 to estimate the 54872 atom system.

Finally, we introduce 54872 atoms system into base groups and use these 11 systems to

estimate the 64000 atom system time. The variance between the predicted time and

actual execution time should decrease. In Table 4.2, we list three systems‟ maximum

variance. m

pt is the predicted time for MDMR with m mappers. m

at is the actual

execution time of MDMR with m mappers. The variance decreases as we expected.

Table 4.2 Max Variance between Prediction and Actual Time

4.2.1 Speedup

In Figure 4.3, the base line is the MDMR execution time with one mapper and one

reducer. We can see that if we use 60 mappers to simulate a 64000-atom system, the

speedup is 43.7 in maximum. Another trend concerns the relation between the speedup

and the simulation system size. We can see that if we use a larger system, we can get a

larger speedup.

Max Variance \ System Size 42875 54872 64000

)max(
m

a

m

a

m

p

t

tt

7.74%

7.07%

6.69%

60,55,50,45,40,35,30,25,20,15,10,5,1m

53

Figure 4.3 MDMR Speedup

However, we have to compare MDMR with the serial MD simulation to entirely

understand MDMR performance. From Figure 4.4, the reason that we cannot obtain

speedup as large as 43.7 is due to the MapReduce overhead. The overhead comes from

MapReduce framework, communication, synchronization, etc. We employ the Karp-

Flatt metric to reveal the parallelization overhead of MDMR in the next section.

54

Figure 4.4 MDMR Speedup compared with Serial MD

4.2.2 MDMR Karp-Flatt Metric

The Karp-Flatt metric can help us to figure out the relation between the experimentally

determined serial fraction and number of mappers in different simulation systems. In

Figure 4.5, we can see that the serial percentage decreases with an increasing number of

mappers and an increasing simulation system size. For a given size of simulation system,

if e increases with the number of processors, this means this application performance

decreases with the increasing number of processors due to parallel overhead. However,

we can see that MDMR is a good implementation of MD simulation. In Figure 4.5, we

can also see there are fluctuations. The e value increases in points in the curve of 8000

atom system using 35 and 55 mappers, 10648 atom system using 30 mappers, and

35937 atom system using 50 mappers. This is because the probability of node failure or

error increases if we use more worker nodes. If a node is slow, it will be speculatively

55

executed and this will increase the execution time and thus speedup decreases. The e

value becomes larger than the case without node failure or slow node due to impractical

parallel overhead.

Figure 4.5 MDMR Karp-Flat Metric

4.2.3 Minimum MapReduce Overhead

In order to obtain the minimum MapReduce overhead, we employ “loadgen” to load the

atom coordinates input file and output them without any change. In Table 4.3, we

measure the time in seconds. An input file containing only one atom is 57 bytes. The

Map stage takes 3 seconds. The Shuffle phase and Reduce phase take 7 and 10 seconds

respectively. For a 64000 atoms input file (4.1MB), the overhead is the same. This is

because the difference to load 57 bytes and 4.1MB data is in the millisecond level. At

the time unit of seconds, we cannot find a significant difference. Next, the Shuffle

phase involves multiple to multiple communications. To transfer 4.1MB data through

1Gbps Ethernet will not take 7 seconds. These 7 seconds are the system overhead. We

will leave the question of why it takes this long to do the sort phase for future research.

56

Table 4.3 Minimum MapReduce Overhead

System 1 1000 8000 27000 64000

Size(Byte) 57 61K 498k 1.7M 4.1M

Map(sec) 3 3 3 3 3

Shuffle(sec) 7 7 7 7 7

Reduce(sec) 10 10 10 10 10

Total(sec) 20 20 20 20 20

4.2.3 Prediction

As we mentioned in equation 3.9 (Map stage‟s execution time),

)(),(1

2

2 m
m

ncnc
mnTmap

 (4.3)

 equation 3.10 (Reduce stage execution time),

 rr

reduce cncT 01 (4.4)

and equation 3.11 (Total execution time with given number of mappers), total execution

time prediction formula for a given number of mappers is

 01

2

2)(dndndnT (4.5)

in which
m

c
d 2

2 , rc
m

c
d 1

1
1 , and)(00 mcd r .

 In our experiments, we find that the curve of execution time is a perfect function of

1m .(0

1

1 bmbT

 , 1b and 0b are constants) if we fix n which is the simulation

system size except n=1000. When n=1000, the execution time fluctuates between six

seconds and twelve seconds. This is because the overhead is a relatively large constant.

However, the computation time for 1000 atoms or less is not comparable with this

overhead. From the above facts, we then deduce)(m is a constant or linear function of

57

m but with very small coefficient. We do not evaluate the coefficient of)(m and take

)(m as a constant in this thesis.

 In the equation 4.5, we combine the linear coefficients and get rc
m

c
d 1

1
1 . Through

MDMR‟s algorithm, we can see that the Map stage dominates the total execution time

of MDMR. The execution time of Reduce stage is related to the total data it collected

during its execution. However, the MDMR simulation data size is relatively small. For

64,000 atoms system, the size of input or output file (input file and output file are the

same size) is about 4.1MB. In this thesis, we firstly use rc
m

c
d 1

1
1 to simplify our

evaluation and will estimate 1c and 2c in following paragraph.

In the 42,875 atom system, the execution time prediction formula for 1 mapper is

34.904785.00000031698.0)(2 nnnT (4.6)

Figure 4.6 shows the predicted time as a dot-line and actual time as a solid line. The

maximum variance between actual and predict time is less than 7.74% of actual time.

58

Figure 4.6: Prediction vs. Actual time

In the 54,872 and 64,000 atoms system, their execution time formulas for 1 mapper

are

 7.1704914.000000311.0)(2 nnnT (4.7)

 34.1005270.0000003.0)(2 nnnT (4.8)

Figure 4.7 and Figure 4.8 demonstrates the predict time in dot-line and actual time in

solid line respectively for 54,872 and 64,000 atoms system. The maximum variance

between actual and predicted time for 54,872 is less than 7.07% of actual time and for

64,000 is less than 6.69% of actual time.

59

Figure 4.7: Prediction vs. Actual time-2

60

Figure 4.8: Prediction vs. Actual time-3

Because the time spent in the Map stage is a function of number of mappers and

number of atoms and it dominates the total programs execution time, we will give a

detailed function of execution time in the Map stage with two variables. The formula is

shown below:

)(),(1

2

2 m
m

nc

m

nc
mnT (4.9)

We use the same method as estimating coefficient d and obtained three estimated 1c

and 2c . Table 4.4 shows the coefficient estimation results in the Map and the Reduce

stage:

61

Table 4.4 Estimation of the Map stage

The maximum variance is the difference between actual value and value obtained

from formula with estimated coefficients divided by actual value. It is larger than our

whole program estimation because we do the curve fitting twice. One is in

coefficient d ‟s estimation. The other is in 1c and 2c estimation based on d ‟s estimation.

It involves extra error. In the Reduce stage, execution time is linear with the number of

atoms. rc1 and rc0 are the estimation of coefficients in equation 4.4. We take the

average of three times estimation and use the average as our final coefficients.

 06.13)000295.0
0299.0

(
00000304.0

),(
2

 n
mm

n
mnT (4.10)

For any given number of atoms in simulation system, we can obtain MDMR‟s total

execution time by equation 4.10 within variance of 11%.

4.3 Run-time Program Monitor

The platform we used to do these experiments is composed of 11 worker nodes. Since

we have 22 CPUs in evaluating our run-time monitor, the number of mappers in our test

cases is the integer times 22. We chose three simulation systems that respectively

contain 1000, 8000 and 27,000 particles.

The MD simulation is computation-intensive. MDMR‟s map() method may take

more time than the reduce() method. In the MD simulation, the counter of map() and

reduce() are the same as the number of input particles. Thus we do not include this

result.

No. particles
1c 2c)(m rc1

rc0 Variance

42875 3.19E-06 0.02536 8 3.02E-4 4.98 17%

54872 2.93E-06 0.0338 8 2.93E-4 5.18 15%
64000 3.01E-06 0.0306 8 2.89E-4 5.04 11%

Average 3.04E-06 0.0299 8 2.95E-04 5.06

62

Table 4.5: Monitor Overhead of MD simulation

In Table 4.5, we obtain that with an increasing simulation system size, the overhead

goes up correspondingly. The reason is that the monitoring times rise if the number of

particles in the simulation system increases. If we fix the simulation system size but

increase the number of mappers, the execution time also becomes longer. This is caused

by the MD simulation program itself. For every mapper, the program needs to load all

atoms information into memory, and then do the assigned atoms‟ simulation. Increasing

the number of mappers is equivalent to increasing the time of loading the information of

all atoms.

No.

particles

No. of

Mappers

T
overheadM Overhead/total

time

1000 22 509 52 0.10

 44 539 18 0.03
 66 606 63 0.10
 88 695 58 0.08
 110 737 52 0.07

8000 22 1011 93 0.09
 44 1023 91 0.09
 66 1124 38 0.03
 88 1122 60 0.05
 110 1239 38 0.03

27000 22 3770 466 0.12
 44 3966 190 0.05
 66 3619 654 0.18
 88 3639 556 0.15
 110 3963 299 0.08

63

Table 4.6: MD simulation Efficiency

Table 4.6 shows the computation power efficiency we defined in equations 3.13 and

3.14. With the help of AspectJ, we can easily get the computation power of the map()

and reduce() functions. This is very useful for a programmer to profile and tune their

MapReduce program. And the efficiency of the MapReduce program presents the trend

of the best performance program. For example, in our MD simulation, the efficiency

increases with the size of simulation system. That means if a programmer does not want

to waste cluster‟s computation power, the larger system is the first choice.

No.

atoms

No. of

Mappers

reducemap CC

totalC

total

reducemap

C
C

CC

1000 22 7.88 77.52 0.10

 44 8.8 85.08 0.10

 66 9.32 113.0

3

0.08

 88 9.72 137.0

3

0.07

 110 9.92 153.5

8

0.06

8000 22 108.22 207.0

8

0.52

 44 112.47 231.5

5

0.49

 66 116.92 261.3

8

0.45

 88 123.85 273.8 0.45

 110 119.43 301.9

2

0.40

27000 22 857.8 925.3

7

0.93

 44 889.57 1089.

12

0.82

 66 907.9 1139.

82

0.80

 88 920.28 1203.

38

0.76

 110 923.23 1241.

43

0.74

64

In Figure 4.9, we can clearly get another useful fact. It is the relation between the

number of mappers and the efficiency. With an increasing number of mappers, the

efficiency goes down gradually. As we explained before, it is caused by the overhead of

loading the input file. From Figure 4.9, we conclude using a smaller number of mappers

to simulate a large system can obtain better computation power efficiency.

Figure 4.9: Computation Power Efficiency

4.4 MDMR-G performance on Hybrid MapReduce Cluster

In the MDMR-G (MDMR with GPU) performance evaluation, we construct a new

Hadoop MapReduce cluster which contains three PCs because previous clusters nodes

are old and do not have a PCI-Express slot for GPU cards. The hybrid cluster detailed

information is listed below:

• Head node: 2 AMD 2.2GHz CPU, 4GB DDR RAM, 800GB HD, 1Gbps

Ethernet.

65

• Worker node: AMD 2.3GHz CPU, 2GB DDR2 RAM, 400GB HD, 1Gbps

Ethernet

• Graphic Card: NVIDIA 9400GT 64bit 512Mb GDDR3 RAM ($20)

• Operating System: CentOS 5.5 (Linux 2.6.18, x86 64, SMP)

• Hadoop: 0.20.3 (stable)

• CUDA: Tookit 3.2 and x86 64-260.19.21 graphics driver

• Power monitor: ServerTech CWG-CDU power distribution unit

We chose five simulation systems in different sizes for our MDMR-G evaluation;

each simulation system was executed 3 times to avoid randomness. In order to make the

energy consumption easy to measure, we simulate every system for 10 time steps. Table

4.7 shows the execution time and energy consumption in CPU only and CPU+GPU

environments.

Table 4.7: MDMR-G results

Metrics\Size 1000 2744 5832 8000 10648

ExeTime\second(CPU) 209 617 1689 2561 3787

ExeTime\second(hybrid) 130 154 167 170 195

Energy \Kwh(Kwh) 0.0096 0.0309 0.0857 0.1305 0.1947

Energy \Kwh(hybrid) 0.0067 0.0072 0.008 0.085 0.096

The worker node energy consumption will increase if we add an extra graphics card

on the motherboard. However, the energy consumption has been reduced 95% in the

simulation system with 10648 atoms because the execution time has been significantly

decreased. The energy consumption Figure 4.10a verified our explanation. The Figure

4.10b is the MDMR power consumption, the lowest point in this figure is about 60

watts, which is the idle energy consumption. In the Figure 4.10c, the idle power

consumption is about 70 watts; these 10 watts are caused by the newly added Geforce

9400GT graphics card.

66

a

67

b

c

Figure 4.10: MDMR-G Energy and Power consumption

68

 The Figure 4.11satisfied our time complexity expectations.

Figure 4.11: MDMR-G Execution time

The blue line is the MDMR program‟s execution time with quadratic trend. The red

line is the MDMR-G program‟s execution time in linear manner.

Compared with MDMR, MDMR-G achieves promising speedup. In order to

objectively evaluate MDMR-G‟s performance, we also obtain MDMR-G‟s speedup in a

different simulation system. We take one mapper and one reducer on the same node

with one GPGPU as our serial baseline. Figure 4.12 shows the speedup of using 3

worker nodes in our hybrid MapReduce framework.

69

Figure 4.12: MDMR-G Speedup

And Figure 4.13 demonstrates MDMR-G‟s Karp-Flatt Metric value.

Figure 4.13: MDMR-G Karp-Flatt Metric

The Karp-Flatt Metric is also called experimentally determined serial fraction. We

can conclude from Figure 4.13 that our MDMR-G is good at larger simulation system.

70

Because with the increasing simulation system size, the serial portion which includes

the program‟s serial execution percentage and the parallelization overhead is

decreasing.

71

Chapter 5

Conclusion

In this thesis, we parallelized a MD simulation called MDMR using the MapReduce

programming model; at the same time, we predict the MDMR execution time by

evaluating its execution based on its time complexity. We obtain 30.5 times speedup in

maximum comparing with serial MD simulation using 60 mappers. Furthermore, we

improve MDMR performance by introducing it into a hybrid MapReduce cluster with

GPGPU. A run-time MapReduce program monitor has been developed to verify the

computation energy efficiency of MDMR. We evaluate our work in previous chapters.

In this chapter, we summarize our major contributions of this thesis.

The major contributions of our work are listed as follows:

1. We create MDMR which is a communication-free and every time-step fault-

tolerant parallel implementation of MD simulation based on Hadoop

MapReduce. We emulate the execution of MDMR and provide and evaluate the

prediction formula of its execution time. Compared with serial MD simulation,

MDMR achieves 30.5 times speedup in maximum using 60 mappers.

2. We create a run-time MapReduce program monitor which can monitor the

execution time of map() and reduce() function, and then obtain the

computational energy efficiency of a given MapReduce program. This can help

a MapReduce programmer find the bottleneck of their MapReduce programs

and give some hints for the improvement of their algorithm.

72

3. We develop MDMR-G which introduces CUDA and jCUDA to accelerate the

program execution on a hybrid MapReduce cluster where each node has CUDA

ready GPGPU. We achieve at most 20 times speedup comparing with the

MapReduce cluster without any accelerator. MapReduce cluster energy

consumption is reduced by 95%, and the speedup can be larger if larger systems

are included.

73

Chapter 6

Future Work

As we mentioned in Chapter 3, we will develop a scheduler which can adjust the work

load to make all TaskTrackers finish the tasks of a given job nearly at the same time.

MDMR-G presents its superiority not only in the execution time, but also in the

energy consumption. We will focus on accelerator embedded MapReduce clusters in the

future. The first step is to balance the tasks among the heterogeneous MapReduce

cluster which is composed of non-GPGPU nodes and nodes with GPGPU. Secondly,

GPGPU scheduling is challenging if nodes have GPGPUs with different computational

power.

74

Bibliography

[1] D. Jeffrey, and G. Sanjay, MapReduce: simplified data processing on large clusters.

Commun. ACM, 51(1), (2008), 107-113.

[2] K. Cardona, J. Secretan, M. Georgiopoulos, and G. Anagnostopoulos, A grid based

system for data mining using MapReduce. Technical Report TR-2007-

02,AMALTHEA, (2007).

[3] J. Ekanayake, A. Balkir, et. al. MapReduce for Data Intensive Scientific Analyses,

2008 4th IEEE International Conference on eScience, (2008).

[4] M.C. Schatz, BlastReduce: high performance short read mapping with MapReduce.

http://www.cbcb.umd.edu/software/blastreduce/.

[5] W. Shang, Z. M. Jiang, B. Adams, and A. E. Hassan. Mapreduce as a general

framework to support research in mining software repositories (MSR). In MSR ‟09:

Proceedings of 6th IEEE International Working Conference on Mining Software

Repositories, (2009) 21–30.

[6] J. You, J. Xi, P. Zhang, and H. Chen. A Parallel Algorithm for Closed Cube

Computation. ICIS, (2008).

[7] B. Wu, S. Yang, H. Zhao, B. Wang, A Distributed Algorithm to Enumerate All

Maximal Cliques, MapReducFrontier of Computer Science and Technology, 2009.

FCST '09, (2009).

[8] C. Jin, C. Vecchiola, R. Buyya, MRPGA: An extension of mapreduce for

parallelizing genetic algorithms. In: Press, I. (ed.) IEEE Fouth International

Conference on eScience (2008), 214–221.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Bin%20Wu.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Shengqi%20Yang.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Haizhou%20Zhao.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Bai%20Wang.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5392746
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5392746
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5392746

75

[9] Impetus http://www.impetus.com.

[10] Cloudera http://www.cloudera.com.

[11] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, Mining Console Logs for

Large-scale System Problem Detection. In SysML, (2008).

[12] J. Tan, X. Pan, S. Kauvlya, et al., Mochi: Visual Log-Analysis Based Tools for

Debugging Hadoop, HotCloud‟ (2009).

[13] D. Huang, et al. MR-Scope:A Real-Time Tracing Tool for MapReduce, HPDC 2010.

(2010).

[14] J. Polo, D. Carrera, Y. Becerra, V. Beltran, J. Torres and E. Ayguadé Performance

Management of Accelerated MapReduce Workloads in Heterogeneous Clusters,

ICPP2010, (2010), 654-662.

[15] J.M. Haile, Molecular Dynamics Simulation: Elementary Methods, 1st edition,

ISBN:0471819662, (1992).

[16] C. He, D. Swanson. Molecular Dynamics simulation based on MapReduce, poster

section, LCI 2010, (2010).

[17] Hadoop, http://www.hadoop.com.

[18] HDFS, http://hadoop.apache.org/hdfs/.

[19] nVIDIA CUDA http://developer.nvidia.com/object/cuda-3.2/downloads.html.

[20] M. J. Quinn., Parallel Programming in C with MPI and OpenMP, ISBN 0-07-

282256-2, (2004)

[21] S. Gupta. Computing aspects of molecular dynamics simulations. In

J.Comp.Phys.Comm., volume 70, (1992), 243-270.

http://www.hadoop.com/

76

[22] K. Balusubramanian and K. Pitzer. Ab Initio Methods in Quantum Chemistry,

chapter Part I. Wiley and Sons Ltd., New York, (1987).

[23] M. P. Allen and D. J. Tildesley, Computer simulation of liquids. Oxford University

Press, (1987).

[24] L. Verlet, Computer experiments on classical fluids i. thermodynamical properties

of lennard-jones molecules. In Phys. Rev., vol. 159, (1967), 98-103.

[25] nVIDIA http://www.nvidia.com.

[26] JCUDA http://jcuda.org.

[27] J.V., Sumanth, dissertation, Adaptive Scheduling of MD Simulations in Parallel

and Distributed Environments. (2007).

[28] B. Hendrickson and S. Plimpton. Parallel many-body simulations without all-to-all

communication. J. Parallel Distrib. Comput., 27(1), (1995), 15–25.

[29] G. Chen, U Ros, MOP: An Efficient and Generic Runtime Verification Framework,

Object- Oriented Programming, Systems, Languages and Applications (OOPSLA’07),

(2007), 569-588.

[30] JavaMOP,http://fsl.cs.uiuc.edu/index.php/MOP.

[31] Ganglia http://ganglia.org.

[32] Top 500 http://www.top500.org/.

[33] Green Top 500 http://www.green500.org/lists/2010/11/top/list.php.

[34] Y. Becerra, V. Beltran, D. Carrera, M. Gonz´alez, J. Torres, and E. Ayguad´e,

Speeding up distributed mapreduce applications using hardware accelerators, in

38th International Conference on Parallel Processing (ICPP), (2009).

77

[35] Matlab curve fitting tool,

http://www.mathworks.com/help/toolbox/curvefit/cftool.html.

[36] Bingsheng He, Wenbin Fang Mars: a MapReduce framework on graphics

processors. PACT ,2008

[37] Condor Project, http://www.cs.wisc.edu/condor/

[38] Grid Computing, http://en.wikipedia.org/wiki/Grid_computing

[39]T. W. Clark, R. v. Hanxleden, J. A. McCammon, and L. R. Scott. Parallelizing

molecular dynamics using spatial decomposition. In Proceedings of the Scalable High–

Performance Computing Conference, pages 95–102. IEEE Computer Soc. Press, 1994.

[40]Jianhui Li, Zhongwu Zhou, and Richard J. Sadus. A cyclic force decomposition

algorithm for parallelising three-body interactions in molecular dynamics simulations.

In Ni and Dongarra , pages 338–343.

[41]Steve Plimpton, Bruce Hendrickson, and Grant Heffelfinger. A new decomposition

strategy for parallel bonded molecular dynamics. In PPSC, pages 178–182,1993.

http://www.mathworks.com/help/toolbox/curvefit/cftool.html
http://portal.acm.org/author_page.cfm?id=81409593610&coll=DL&dl=ACM&trk=0&cfid=15464726&cftoken=27355065
http://portal.acm.org/author_page.cfm?id=81339498691&coll=DL&dl=ACM&trk=0&cfid=15464726&cftoken=27355065
http://www.cs.wisc.edu/condor/
http://en.wikipedia.org/wiki/Grid_computing

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Summer 7-25-2011

	MOLECULAR DYNAMICS SIMULATION BASED ON HADOOP MAPREDUCE
	Chen He

	MOLECULAR DYNAMICS SIMULATION BASED ON HADOOP MAPREDUCE

