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SUMMARY

The use of product platforms facilitates product variety and reductions in cost and lead

times, enabling companies to compete in the global marketplace. A common platform

allows companies to generate variety by adding, removing, or substituting modules within

products to target a specific market. The product platform acts as the foundation for the

technology, function, and physical arrangement, common to the entire product family.

Configuration design methods are used to identify product platforms based on a set of

components and their relationships in a product. From a configuration perspective, the

physical locations and spatial requirements of components within a product can influence

the physical layout of other members of the product family. This can lead to difficulty in

obtaining the desired variety and spatial layout of components.

Methods for solving configuration design problems utilizing discrete mathematics and

graph theory to model configuration problems from multiple viewpoints have been

developed. The current viewpoints consider neither desires of the designer in regards to

variety, nor the physical requirements of the product family in later design stages. The

generation of product configurations is a combinatorial and discrete problem, while

physical layout is combinatorial and algebraic. Resulting in a complex problem utilizing

multiple forms of mathematics. The work of this thesis seeks to address this problem

through the consolidation of configuration design and object layout methods to determine

the effects of configuration design decisions on component layout.

The development of a design method to generate a product family with configuration

constraints and the generation of common component layouts based on spatial constraints is

presented in this thesis. This method facilitates product platform selection by determining

if the designers’ desired configurations and layouts are feasible. To demonstrate the use of

the method presented in this thesis, a GUI-based software application was developed. This

software implements the work of this thesis into a user-friendly program. The proposed

xvi



method and the software are demonstrated through a series of examples.
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CHAPTER 1

INTRODUCTION

The overall objective of this thesis is to present a configuration design method for

generating product configurations of a modular product family with designer defined,

configuration and spatial constraints. Within the context of this thesis, configuration

design refers to the issues of 1) which components are or are not in a Product and 2) their

arrangement and relationships. The focus of this work is to identify relationships between

configuration constraints and spatial layout as it pertains to the development of a product

platform and increasing commonality throughout the product family. The main research

contributions of this work are 1) the development of a configuration design space for the

modeling of designer preferences within a feature-based product family, 2) a constraint

grammar and optimization method for the modeling of spatial constraints in product

families and 3) a method for the configuration and spatial-layout of feature-based product

families. A code implementation and a GUI - based software application have been

created to demonstrate the methods presented in this thesis. Example problems are used to

illustrate the application of this research to the development of a product family. The

example problems will develop product configurations and layouts for coffeemaker, car

center console, and car instrument panel product families.

This chapter introduces the problem being addressed in this thesis and the research

objectives. Section 1.1 discusses configuration design/ component layout problem

addressed in this thesis. Section 1.2 presents the research questions addressed in this

thesis. Finally Section 1.3 presents the organization of this thesis.
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1.1 Configuration Design Problems

Product family design is a process of developing a set of products based around a

common product platform. The product platform acts as the foundation for the

technology, function, and physical arrangement common to the entire product family.

Unique products are created by adding, removing, or substituting components or features

within the common product platform. Product development is aided by systematic design

methods during conceptual and embodiment design [1]. In conceptual design, function

structures are used to connect physical components to the functions they perform.

Embodiment design encourages the use of ergonomics and layout as design factors to

meet function and usability requirements. This thesis explores the relationship between

function structures and the physical arrangement of components to help develop product

platforms.

The development of product families is a large problem; this thesis focuses on the

development of configuration design methods that address the issues of which

components are in a product and/or product family, and the physical arrangement and

location of componets within products. Scaling issues in product family design are not

addressed, although scaling is often used. Our work is focused on investigating problems

related to commonality, modularity, and standardization. The questions addressed in this

thesis are concerned with the Platform Commonization (PC) problem (the development of

a reasonable common platform for the product family) and the Platform Supported

Product Variety (PSPV) problem, (the creation of a product family from a common

platform) proposed by Siddique [2]. From a configuration perspective, the physical

locations and spatial requirements of components within a product can influence the

physical layout of other members of the product family.

Configuration design is combinatorial in nature and therefore can be evaluated using

discrete mathematics. Using the platform as a base, product family members are generated
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by selecting different combinations of optional components or modules to achieve the

desired product variety. The development of the platform itself requires the identification

and evaluation of component combinations and relationships. Representations of products

and platforms in configuration design are usually modeled using graphs, sets, and

matroids. Previous research addressing combinatorial problems in configuration design

focused on the objectives of: (1) representation and reasoning of combinatorial design

spaces, (2) modeling constraints and their effects on these spaces,(3) determination of

feasible regions within the design space and enumeration of designs. Previous work

presented discrete design spaces for modeling, functional intent, physical connections,

assembly, and flow of energy and materials viewpoints [2–4]. Due to the combinatorial

nature of configuration design, many of the configurations generated may be infeasible.

To prevent the generation of infeasible configurations, constraints are applied to products,

platforms, and product families such that only feasible configurations are generated.

When configuring product families, the physical arrangement of components can

result in a multitude of alternatives due to the complex nature of 2D and 3D design. When

product family members are arranged individually, the spatial requirements for optional

components may not be taken into account and require unique components during

manufacturing.

The purpose of this thesis is to present a method for configuring product families with

constraints on combinations of configurations and the generation of common component

layouts to aid in platform commonization. The development of this method is beneficial

because it enables the evaluation of the entire product family and changes made to the

product family early on in the design process. Allowing configurations deemed infeasible

by the designer to be discarded. The current viewpoints do not consider product usability

and the desired variety of the designer, nor do they consider the design of the product

family during embodiment design. This results in numerous configurations, deemed

feasible by other viewpoints, that may not meet the physical design requirements decided
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by the designer. The process presented in this thesis allows designers to develop entire

product families and determine whether feasible layouts can be achieved based upon the

functional requirements of components along with the aesthetic and ergonomic desires of

the designer. The work in this thesis is focused on the 2D layout of components within the

user interface of products, but 3D layout of entire products is addressed in future work.

1.2 Research Questions and Hypothesis

The primary goal of this research is the synthesis of a method for the configuration

design of product families with combinatorial and spatial layout constraints. To achieve

this overall goal two research questions are addressed. The first addresses the desire to

express spatial relationships for components prior to embodiment design

Research Question 1

How can spatial relationships within products be simply captured and represented prior

to embodiment design?

Hypothesis 1

A spatial grammar can be used to represent spatial relationships with a mathematical

representation

The second question addresses the effects of configuration design decisions on physical

design and the ability to determine the effects of configuration design decisions.

Research Question 2

How can configuration design methods be augmented to determine the effects of design

decisions during conceptual design on embodiment design?

Hypothesis 2

Constraints and optimization methods using both discrete and continuous mathematics
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can be used to determine the effects of configuration design decisions on physical

design spaces.

The result of this work is a configuration design method that will allow designers to

generate initial component layouts prior to embodiment design and determine configuration

feasibility within the conceptual and embodiment design stages.

1.3 Organization of This Thesis

In the next chapter related research in product family design, configuration design, and

spatial layout is presented. The Configuration-Layout Design problem is formulated and

the mathematical modeling for the constrained generation of configurations and spatial

layout of components is presented in Chapter 3. The presentation of Chapter 3 is aided by

a running example for development of a coffeemaker product family. Chapter 4 presents

the data structures, algorithms, and application built to implement the methods presented

in this thesis. Chapter 4 will also include a detailed demonstration of the application for

the development of the coffeemaker product family present Chapter 3. To demonstrate the

work presented in this thesis, case studies for the development of product families for

Center Console and Instrument Panel car sub-systems are presented in Chapter 5.

Concluding remarks, answers to research questions, and future work are presented in

Chapter 6.
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CHAPTER 2

LITERATURE REVIEW

In this chapter a survey of relevant work in the areas of product family design and object

layout will be presented. This will serve as the groundwork for the research presented in

this thesis. This chapter provides an overview of product family and configuration design

concepts and methods. An overview of spatial layout and packing research is also given.

This will include forms of representation and existing solution methods.

2.1 Product Family Matters

The implementation of a common product platform has been embraced by many

companies to provide product variety while keeping manufacturing costs low. In the

global marketplace companies need to produce a variety of products to reach diverse

customer needs across different market segments. To reach these market segments,

companies could design each product individually to the required specification. However

multiple variations of a product are often designed at the same time based upon a set of

products or a common structure.

A set of products based on a common core structure is known as a product family . The

structure shared by members of the product family is the product platform. These basic

product family terms are common throughout all product family design. In this section

current research in the areas of product family design and configuration design will be

presented. Topics covered include product variety, commonality, product architectures,

and modeling. This will provide the base for the product family research presented in this

thesis.
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2.1.1 Product Variety: Building A Full House

Product variety is developed by the generation of unique product variants based on the

product platform. Ulrich defines product variety as the diversity of products that a

production system provides to the marketplace[5]. The range of variety produced is

dependent on the number of market segments and customer bases being targeted.

Research performed in the areas of Mass Customization, Design for Product Variety,

Designing a Family of Products, etc. has emphasized the development of a common

product platform. A common platform allows for the desired variety to be achieved within

the entire product family. Martin and Ishii [6] recognized commonality, modularity, and

standardization as primary characteristics of product families. When designing a product

family, the identification of modules is required to reach commonality and standardization

goals. Different research groups have introduced methods for the identification of

modules based on the functional descriptions of products [7]. Research has included

emphases on, functions and customer demand [8], brands [9], and life-cycle viewpoints

[10]. Measurements of commonality and standardization from these viewpoints have been

attempted [10–12].

The research presented in product family design and modular architectures does not

systematically search for all feasible product platforms and product family architectures. To

reach this target, the generation of all feasible platforms and product family configurations

based on given a set of constraints is required.

2.1.2 Research in Product Family Reasoning

The platform commonization problem is concerned with determining which

components form the core product and which form the product family core and their

relationship to the platform. Configuration design concerns itself with what components

make up a design and their spatial and logical arrangements. Normally, product

architecture design occurs during configuration design [1]. Product architectures can be
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divided into modules based on component function similarity, organization structure,

manufacturing considerations, or the need for upgrade or add-on modules [13].

Research in general configuration design has focused on the development and

application of heuristic methods for searching combinatorial design spaces [14]. Work has

been performed on developing mathematical operations including language-based

approaches using shapes and graphs [15–17]. This research produced mathematically

elegant algorithms, but resulted in a computational complexity that makes implementation

infeasible. Rosen [13] presents a formal foundation for, configuration design for product

life-cycle that emphasizes product modularity and its influence on life-cycle issues. The

foundation is derived from discrete mathematics (set theory and combinatorics) to

represent and reason with combinatorial design spaces that encompass all combinations of

components, modules and their relationships. Research in combinatorial design spaces has

extended this work and developed mathematical modeling methods for discrete design

spaces to configure product families for component intent, connections, assembly

considerations, and flow of information and material viewpoints [2, 4, 18]. The

combinatorial configuration work in this thesis takes considerations from this work as a

mathematical basis for the methods presented.

2.2 Research in Layout and Packing

In this section object layout and packing research will be presented. Research in

packing problems is immense and because of this, a variety of different optimization

methods have been used to solve various packing problems. Different methods, from

heuristic to stochastic will be presented along with drawbacks to the solution method.

Research in object layout covering various fields will also be presented because the spatial

layout problem being presented in this thesis does not tend to fall within the confines of

regular packing problems. Finally forms of geometric representation will be presented,

since objects and shapes can be mathematically represented in different ways.
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2.2.1 Overview

The component layout or packaging problem involves the placement of components

in a set space such that a set of objectives can be optimized while satisfying spatial or

functional constraints. Cagan et al. [19] discusses the basic parts of a layout problem,

which include: topological connections, objectives, components, and constraints. All of

which are fed into an optimization search algorithm. A number of research groups have

proposed heuristic layout methods to evaluate packing problems [20, 21], while others

have proposed methods using traditional optimization methods such as, branch & bound

[22], tree search [23], and lagrangian relaxation [24] to search the design space for optimal

solutions. Aladahalli et al. [25] proposed the use a sensitivity metric to aide in pattern for

3D component layout. Szykman et al. [26], proposed a method for component placement

by only using objectives to define the goals of the optimization process and using simulated

annealing to solve. Hanna Landry and Cagan [27] proposed the use of Evolutionary Multi-

Agent Systems in 3D object packing problems. While these methods often reach optimal or

near optimal solutions, they are limited by constraint types, object shape, accuracy, and/or

computation time.

Research in more general spatial layout outside of the standard packaging problem

has focused on different objectives. Research has proposed the use of grammar-based

constraints as a means of aiding object layout [28]. Borning et al. [29], suggests that

objects within a computer user interface can be constrained linearly and given lexicographic

solving preference. This allows soft constraints to have a satisfaction priority and a valid

solution to be found without full constraint satisfaction while deciding which constraint is

able to be violated. From this concept Badros et al. [30], proposed a constraint solving

algorithm based on the simplex optimization method making use of constraint preference.

This research was limited to digital user interfaces and objects as single points rather than

multi-dimensional objects. The work presented in this thesis builds upon and adapts this

research for use in the configuration of product families.
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2.2.2 Existing Methods

A review of a variety of object layout approaches is presented in this section, along with

a review of different geometric representations. Cagan discusses the basic parts of a layout

problem, which include: topological connections, objectives, components, and constraints,

all of which are fed into an optimization search algorithm [19]. These may all be defined

differently depending on the method being used.

2.2.2.1 Heuristic Packing Methods

Heuristic methods are rule-based algorithms which use rules to pack objects within

containers. Heuristic methods allow for solutions to be quickly found, since these

algorithms follow a set path in the solution space. Due to their simplicity, many heuristics

have a narrow scope but are easy to follow and will often lead to a good quality solution

for problems within their scope [19]. The largest benefit of heuristic methods is due to

their deterministic nature which will always yield the same final result for the same set of

initial conditions. This consistency is one of the largest advantages of heuristic methods.

At the same time this deterministic nature may not lead to an optimal solution, because the

accuracy of these methods are often impossible to determine.

Many of the heuristic methods start by placing the object with the largest volume, or

height. Such as the “first-fit decreasing height” or “best-fit decreasing height” mentioned

by Ortman et al. [21]. Similarly Grbz [20] presented the “Largest Area First-Fit” (LAFF)

heuristic which falls into the same category of heuristic methods. Most heuristic methods

are limited to the packing of 2D or 3D cuboid objects. Since more variation in geometry

adds more complexity to the problem, a more complicated set of steps would be required

to able to produce a result and this still may not yield an accurate result.
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2.2.2.2 Traditional Optimization Methods

Most traditional optimization methods use a mathematical representation of the

objectives of the optimization process, called an “objective function”, and variables to

represent the objectives. Variables will often appear in equality or inequality constraints

which are required to be satisfied for a solution to be considered feasible. Along with the

constraints, the objectives often are given weighting values which determine the priority

of the objectives. The optimization processes typically search the solution space for the

variable values to minimize the objective function. The methods in this section are

different processes for searching the solution space for the optimal solution.

The bound and branch (B & B) method searches the solution space of the problem for

the optimal solution. This sort of solution method is normally frowned upon due to the

exponential number of possible solutions, but B & B adds bounds to the solution function.

This is done by continuously removing branches from the subspace by determining

whether or not the space can contain the optimal solution by comparing it to the current

best solution [31]. The solution subsets that cannot possibly contain an optimal solution

are then removed, therefore removing a portion of the solution space that has to be

explicitly explored. In [22] the B & B algorithm is combined with heuristics to determine

an optimal solution for the cutting of stock in 1 dimension. The heuristic is a greedy

algorithm which picks the best local optima at a stage of the search with the theory that

this will lead to the global optimal.

The linear optimization model for non-guillotine cutting of square and rectangular

objects in a 2D plane created by Beasley [32] uses a combination of Lagrangian

relaxation, subgradient optimization, and a tree search algorithm to determine the optimal

solution. Lagrangian relaxation simplifies the calculation of an optimization problem by

moving constraints on variables to the objective function, which removes hard constraints

on variables and instead penalizes variable selections that violate the constraints [8]. This

can produce a near optimal solution and sometimes the optimal solution. Subgradient
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optimization is an iterative process that uses the gradient of the previous solution to slowly

converge on an optimal solution. The use of these allows this method to continually work

towards an optimal solution and the tree search algorithm allows for backtracking if an

optimal solution is not being found upon the current path. The use of penalty functions for

constraint violations rather than hard constraints allows for easier movement in the

solutions space. Kim and Gossard [24], proposed a method with an objective function

which is a combination of objective goals to satisfy inequality constraints and penalty

functions which penalize object overlap and the use of a gradient method to search the

solution space.

While these methods are often able to achieve optimal or near optimal solutions, there

are disadvantages to be considered. Since these methods will often search the solution

space in a linear fashion, an excessive amount of time could be required to find the optimal

solution, especially if the search algorithm has a poor initial direction. This is a large

disadvantage of the tree search algorithm if a large amount of back tracking is required.

While B & B is able to remove portions of the solutions space, it is possible that a large and

poorly defined solution space could take more time [19]. Since a Lagrangian relaxation

penalizes the objective function rather than keeping hard constraints it is possible that the

optimal solution may not be found if the penalty functions are not weighted correctly.

The effects of these disadvantages can be minimized with well-defined objective functions,

constraints, and good initial search directions.

2.2.2.3 Stochastic Methods

Stochastic methods use a similar objective function to represent the packing objectives

being optimized, but rather than searching the solution space in an order or pattern, the

variable values are randomly generated to find possible solutions. Simulated Annealing

(SA), is an optimization method which relies on random moves for the generation of

solutions. SA relies on the continuous evaluation of random changes made to the system
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to reach an optimal result. SA methods use a weighted objective function to determine the

quality of a change made to the system. SA methods make random changes to the solution

and evaluate them against the previous best solution. If the new solution is better it is

always accepted, if it is worse there is a chance that it can still be accepted which is

dependent on the temperature of the system which decreases over time. SA escapes local

optima due the random chance of accepting a worse solution. The temperature (taken

from the physical annealing process), represents the randomness in the system. Higher

temperatures have a higher chance of accepting an inferior solution.

Simulated Annealing has been explored and expanded upon over the years by different

authors. Szykman and Cagan [26, 33] presented an SA method for packing objects and

were able to add constraints to the system. They presented a basic objective function

which focused on packing density, component overlap and object containment with in the

container. Their method used a series of moves to change the layout of objects. The used

three different movement types; translate, rotate, and swap, with 15 moves per

temperature. The objective function was checked after every move. The details of the

moves were determined randomly. This method was successful and validated by packing

objects with known solutions. However the scope of their method was limited to

cylindrical and cuboid geometries, and object rotation was limited to 90 degree

increments. Xu developed a SA method that used different objectives for packing

polygons without these constraints but found difficulty reaching known solutions [34].

Genetic algorithms (GA) is another stochastic method and relies on the continuous

evaluation of a weighted fitness function to determine the quality of new solutions. GAs

make changes to a family of possible solutions via mutations which change 1 bit of the

child solution. Which set of solutions is kept and which are discarded is determined by

the evaluation of the fitness function. Large changes are made via crossover by randomly

switching parts of two parent strings into the next generation. The expectation is that after

enough generations the optimal solution will be found.
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The random nature of stochastic methods allows for a wider search of the solution

space, but can possibly miss optimal or feasible solutions due to this. Since these methods

do not search in an ordered fashion the optimal solution may be in an area of the solution

space that was not search by these methods.

2.2.3 Overview Geometric Representation

Geometry was represented in various ways throughout the methods explored. Some

chose to represent objects as solid bodies, boundary representation, Octree, or even by

bounding volume. There are advantages and disadvantages to any representation. Starting

with solid models which will give the greatest amount of detail but are also the most

computational expensive due to the amount of information in a solid model. Boundary

representations are usually an ordered list of vertices connected by straight lines to

represent object geometry. This is a computationally light representation as only position

information of the vertices is required but loses detail due the assumed straight line

connections between vertices.

Octree represents objects by subdividing a cubic volume into eight fully occupied,

partially occupied, or unoccupied octants, where the fully and partially occupied octants

are represented as solid and unoccupied octants are represented as empty space. Partially

occupied octants can re-subdivided to for more detailed representation of the object. This

is a simple way of representing occupied space but the accuracy and computation expense

of this method is dependent on the resolution of the edges. where a higher resolution has

higher accuracy but is more computationally expensive. The use of bounding volumes is

the simplest and least computationally expensive representation but at the expense of

geometric accuracy. While this method works for simple geometries, packing efficiency

decreases as geometric complexity increases.

To represent objects with more complex geometries a partitioning method breaks

down complex geometries and represents them as a series of connected cubes and
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cylinders. Allowing for complex shapes to be represented to a greater accuracy without

the computational expense of complicated curve calculations. Agarwal created product

specific shape grammars to replicate existing products as well as create new products [35].

2.3 Summary

In this Chapter an overview of product family configuration and object packing

methods and concepts were presented. Product family and configuration design research

has introduced a variety of methods for the development of product families and

evaluation of product platforms. A multitude of optimization methods have been applied

to object packing problems. While these methods are able to produce optimal solutions,

most of them have limits in scope or object placement. Object geometry was the most

common limitation discovered in the review with the use simple rectangular or circular

representations of objects. In the next chapter the problem specific to this thesis is

discussed and the problem formulation is modeled.
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CHAPTER 3

DESIGNER PREFERENCE CONFIGURATION-LAYOUT METHOD

The problem being addressed by this thesis is presented in Section 1.1. This chapter

will present the formal problem formulation and the methods developed do address this

problem. The problem being addressed in this thesis is the Configuration-Layout Design

problem. This problem contains the 1) product family configuration and 2) component

layout sub-problems. The sub-problems will be presented and then combined into the

Configuration-Layout Design problem. The Configuration-Layout method, developed to

address the Configuration-Layout Design problem, will be presented and modeled. The

component layout portion of this method currently only refers to the placement of user

interface components in a or fascia. An example for the development of a coffeemaker

product family will be presented throughout the chapter. This example will be used to

illustrate each part of the problem and methods as they are presented in the chapter. The

next section will present the information that is given at the start of the Configuration-

Layout problem.

3.1 Beginnings of a Product Family

This section will introduce terminologies and concepts needed to start presenting the

problem formulation and methods presented in this chapter. This will provide background

for the various parts of the Configuration-Layout problem and the methods presented to

address it. Each concept will be introduced as part of an example for the development of

a coffeemaker product family which will continue throughout the chapter. This will start

with the introduction of ”components”. For this thesis, components are considered objects

that perform a specific function and also have a physical presence in the fascia, or region

in which components can be placed. This means each component must have both physical
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dimensions and a function description. A component can be a sub-assembly of smaller

components as long as it is able to be given a fully defined set of dimensions. Table 3.1

presents the set of components for the coffeemaker product family. While many of the

components likely will not be square or rectangular, the objects are represented by their

bounding boxes.

Table 3.1: Dimensions of Coffeemaker Component

Components Dimensions (mm) Fascia Choice
1 LCD Clock (60,20) Top
2 Power Button (20,20) Bottom
3 Set Hour (10,10) Top
4 Set Minute (10,10) Top
5 AM/PM Set (5,5) Top
6 Brew-Delay Set (10,10) Top
7 Temp Control (10,10) Top
8 Brew Strength Btn (7,7) Top
9 1 - 4 Cup Btn (7,7) Top

Each component is also given a number which will be used for indexing at a later time.

Notice that each component is also given a set of 2D dimensions and a Fascia Choice.

The dimensions are formatted as (Width, Height). Notice that every component required

to make a coffeemaker is not listed in Table 3.1 such as a Burner, Carafe, Water Tank, etc.

This is because many of the components will be common to the product family or will

not have an effect on the component layout process. These were omitted to simplify the

example.

Fascias in the product family are defined as the specific regions of a product in which

the user interface components can be placed. When a fascia is defined it is given a name,

dimensions, and location in the product. The coffeemaker product family has 2 fascias to

choose from. The ”Top” fascia which is right in-front of the filter tray and a ”Bottom” fascia

which is right below the carafe warmer. Table 3.2 presents these fascia, their dimensions,

and global coordinates.
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Table 3.2: Dimensions and Location of Coffeemaker Fascia

Fascia Dimensions (mm) Location (X, Y)
1 Top (150,100) (0,130)
2 Bottom (150,30) (0,0)

The dimensions are formatted as (Width,Height) and the locations are global

coordinates for the lower left corner of the fascia. The last concept to be introduced in this

section are Configuration Categories and Options. Configuration Options are modules,

components, or design features used to create product variety but may not have any

distinct dimensions or play a roll in the component layout process. Configuration options

are part of distinct Configuration Categories which contain all similar Configuration

Options. The categories are required because each product product must select one and

only one Configuration Option from each Configuration Category. Product variety can be

created by selecting different Configuration Options while keeping the same component

composition. Table 3.3 presents the Configuration Options and Categories for the

coffeemaker product family example.

Table 3.3: Configuration Categories and Options for Coffeemaker Product Family

Configuration Category Configurations Options

Bean Grinder
10 w/ Grinder
11 w/o Grinder

Single Cup Module
12 w/ Single Cup
13 w/o Single Cup

There are 2 configuration categories in this example, Bean Grinder and Single Cup. In

this case the options in these categories determine the presence of a feature but in others

there could be multiple feature options. Notice that each configuration option is also

assigned a number that as continued from the component numbering in Table 3.1. This is

because the configuration options can also be used in configuration constraints during the

configuration stage. The information presented in this section provides the background

required to present the problem formulation for the Configuration-Layout problem. The
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next section will present the problem formulation for the Configuration-Layout problem.

3.2 Formulating the Configuration-Layout Problem

The problem addressed in this thesis is complex in nature and can be divided into two

sub-problems: (1) combinatorial configuration of product families, (2) spatial layout of

components. These sub-problems are represented differently mathematically and will be

presented separately. A final combined problem formulation will then be presented. The

overall goal of this process is to determine feasible configurations that satisfy both,

configuration and layout constraints, and evaluate feasible configurations to minimize

unique components.

3.2.1 Combinatorial Configuration

Components and configuration options used to create variety result in a combinatorial

configuration problem. To generate product configurations, one needs to systematically

enumerate elements from the power set of the Components then generate products from

combinations of components and configuration options. This results in a rapidly

increasing number of possible combinations. To resolve this, constraints can be applied to

combinations of components and configuration options to reduce the number generated.

This produces a set of feasible products. From this set, designers can select products to

develop the product family. For this problem, a set of components and configuration

options are given. Constraints are specified for combinations of components and

configuration options. The combinatorial design space is calculated to determine all

feasible combinations. A common platform can then be identified to minimize the number

of unique components.
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3.2.2 Spatial Layout

The spatial layout of user interface components is a vital task, as designers must focus

on both ergonomics and aesthetics on top of other configuration viewpoints. Additionally,

the layout of user interfaces is highly dependent on the product dimensions and target

markets the designers are attempting to reach. This can limit fascias and designers must

ensure that components do not overlap while reaching these goals. To reach these goals,

designers can utilize spatial layout constraints to satisfy the requirements of these

viewpoints and evaluate the layouts for component overlap.

3.2.3 Combined Problem Formulation

The previous sections described the sub-problems this thesis is addressing; the

combined problem utilizes the parts from the individual problems to formalize the entire

Configuration-Layout Design problem. The configuration layout problem takes the

information given from the sub-problems as the starting point. An overview of the steps of

the Configuration Layout Problem is provided here:

A. Identify functions, components and configuration options across the product family.

This set of configuration information will create the base combinatorial space.

Identify target product dimensions to determine the size of the fascia for which

components are being arranged.

B. Specify constraints on combinations of configuration elements. This will aid in the

reduction of the configuration design space. Specify spatial layout constraints

between components being arranged. These constraints maybe aesthetic or

functional constraints required for proper product function. The size of the fascias

should also be specified to provide the bounds for the components.

C. Compute feasible products and configurations for the product family. This step

generates all possible configurations that satisfy the previously defined
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configuration constraints.

D. Select products to form the product family. These products are comprised of

configurations generated in the previous step and should encompass the desired

variety of the product family.

E. Compute the locations of all the components within the selected product family. The

component locations should be calculated to maximize common component

locations across the entire product family.

F. Determine if any of the components being arranged overlap spatially with one another

and ensure that they are fully contained within the fascia.

G. Determine the common product platform by ensuring common component locations

across the entire product family. Utilizing common locations to minimize product

specific components and increase product family commonality.

The steps of the Configuration Layout Problem allow designers to configure product

families and determine feasibility of the configurations produced and of dimensional targets

prior to large-scale design. The word formulation of the Configuration-Layout problem,

given in Figure 3.1 summarizes these steps and organizes them using the same labels.
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Figure 3.1: Constraint Pair Connections.

3.3 The Designer Preference Configuration Design Layout Method

In this section the method presented in this thesis is modeled and related to the steps

of the problem formulation. The configuration design portion of the problem utilizes set-

theory and constraints on combinations. This will address the first research question and

present models for the designer preference viewpoint. In the layout portion of the method

linear programming and a spatial grammar will be presented to represent spatial constraints

and perform constraint satisfaction. This will address the second research question and

allow for spatial representation of products and components during conceptual design. As

the method and its concepts are presented the example of a coffeemaker product family

will be presented as well as the part of the problem formulation being addressed. Step ”A”

of the Configuration-Layout problem was presented previously in Section 3.1.
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3.3.1 Designer Preference Configuration-Design Space

During configuration design the use of constraints on combinations of components is

recommended to reduce the number of possible combinations produced. Previous research

has developed constraints to reduce combinations by component intent, connection,

assembly and flow of information or materials viewpoints [4, 18]. These viewpoints are

able to create large reductions in the number of combinations generated, but are limited in

scope. Often designers may want to constrain a combination of components or features to

create the desired variety, usability, or other functional reasons. The work presented in this

thesis proposes configuration constraints that enable the designer to apply constraints that

do not fall within the viewpoint specific constraints proposed in previous research. This is

defined as the configuration design space, ConfSpc.

3.3.1.1 The Unconstrained Design Space

This section presents the representation of the Unconstrained Configuration design

space. The representation of the unconstrained process has a great impact on how and

when constraints can be applied. This will provide valuable insight to prior to the

application of configuration constraints (steps B and C in the Configuration-Layout

Problem). The set of components is denoted as Compsin = {cin1 , cin2 , . . . , cinm} and

configuration options are denoted as Confs = {Cf 1, Cf 2, . . . Cfn}. Where Confs is a

set of sets where Cfj represents the configuration categories, j, of Confs and αj,k are the

configuration options of Cfj . Where j is the Configuration category and k is are the

configuration options. |Confs| is the number of configuration categories. Each element

across both Compsin and Confs their subsequent subsets is required to be distinct and

well defined. This is because later processes will disrupt the ordering and require each

element to be located by its identifier. The identifier can consist of a distinct name,

number, or symbol. An example for the form Compsin for the coffeemaker product

family is presented in Figure 3.2.
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Compsin = {LCD Clock, Power Button, Set Hour, Set Minute, AM/PM Set,
Brew-Delay Set, Temp Control, Brew Strength Btn,
1 - 4 Cup Btn}

= {1, 2, 3, 4, 5, 6, 7, 8, 9}
= {cin1 , cin2 , cin3 , cin4 , cin5 , cin6 , cin7 , cin8 , cin9 }

Figure 3.2: Compsin example for the coffeemaker product family

In this figure the number and name forms of identifying the components are presented.

Below them is the set, cini , representation is presented. The Confs set for the coffeemaker

product family is presented in Figure 3.3.

Confs = {{ w/ Grinder, w/o Grinder }, {w/ Single Cup, w/o Single Cup}}
= {{10, 11}, {12, 13}}
= {Cf 1, Cf 2}
= {{α1,1, α1,2}, {α2,1, α2,2}}

To Clarify:
Cf 1 = {α1,1, α1,2} = {10, 11}
Cf 2 = {α2,1, α2,2} = {12, 13}

Figure 3.3: Confs example for the coffeemaker product family

Notice that the name and number identifying forms are given as possible set contents.

This is because they are organized to be easily referenced such as from Tables 3.1 and 3.3.

Figure 3.3 also presents how Cf j and αj,k components of the Confs set fit.

All combinations of components can be generated by applying a power set relationship

to Compsin. Using the Cartesian product operation allows for configuration options to be
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properly selected and only one option from each category be selected.

ConfSpc = ℘(Compsin)×
|Confs|∏
j=1

Confsj (3.1)

This definition of the generation process allows for the simple generation of all

combinations of components and configuration options in a single step. While this

definition is technically correct, due to the presence of the power set, constraints can only

applied after all combinations are generated. Resulting in a large number of infeasible

combinations being generated. The power set prevents constraints being applied prior to

generation. To reduce the number of infeasible combinations being generated from the

process, sets of components or configuration options must be able to be manipulated by

the constraints prior to enumeration. This means each component and its absence (null

set) must be present in the formulation prior to the enumaration process. Changes were

made to Equation 3.1 to account for these issues. Equations 3.2, 3.3, and 3.4 present the

modified unconstrained generation process.

Compsbin = Compsin × {{�}}
= {(cin1 , {�}), (cin2 , {�}), . . . , (cinm , {�})}
= {cbin1 , cbin2 , . . . , cbinm }

(3.2)

Equation 3.2 creates Compsbin which consists of subsets containing the components

and a non-empty set containing an empty set. The use of the non-empty set of an empty

set,{�}, establishes the empty set as an element (rather than a subset) and allows for the

absence of a component to be represented and manipulated by set theory operations. The

ability to represent and manipulate the general absence of an object is an important concept

as it provides the ability to show that an object is missing from a set. In this case, {�}

does not represent the absence of a specific component but a general absence of an object.

The set produced by the Cartesian product operation in 3.2, creates subsets containing a

component and its absence. The power set in Equation 3.1 does not have to represent object
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absence because it automatically enumerates all component combinations, but to interact

and apply possible constraints prior to enumeration the general absence of an object needs

to be able to be represented.

Partsall = Compsbin ∪ Confs
= {(cin1 , {�}), (cin2 , {�}), . . . , (cinm , {�}), Cf 1, Cf 2, . . . Cfn }
= {p1, p2, . . . , pm, pm+1, pm+2, . . . , pm+n}

(3.3)

Equation 3.3, combines the sets containing the sets of components and the set

containing the sets of configuration options to create Partsall. This will allow for

constraints to manipulate components and configuration options. This also simplifies the

unconstrained generation process. While the Cartesian Product operation results in an

ordered set, since all objects of concern in this process are distinct, the ordered set can be

changed into a normal (un-ordered) set of objects by removing any duplicate items.

Equation 3.4 then applies a power set operation to all the elements of Partsall to create,

Combinationsall which contains all unconstrained combinations of Components and

configuration options. However, Combinationsall still contains {�} elements.

Combinationsall =

|Partsall|∏
i=1

Partsalli

= {(cin1 , {�})× (cin2 , {�})× (cin3 , {�}), · · · × (cinm , {�})
× Cf 1 × Cf 2 × Cf 3 · · · × Cfn}

= {p1 × p2, · · · × pm × pm+1 × pm+2 · · · × pm+n}
(3.4)

ConfSpc = {β \ {�}|β ∈ Combinationsall} (3.5)

Equation 3.5 removes the empty set, {�}, elements from all of the generated products,

leaving only the components and configuration options in each set with in ConfSpc. This

representation of the unconstrained generation of products allows for constraints to be

easily applied.
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The total number of unconstrained combinations of components and configuration

options can be calculated prior to enumeration. The total number of component

combinations for NComps components across the entire product family is given by the size

of the power set of the |Compsin| components. The process of calculating the maximum

number of possible combinations of components and configuration options, NTotal, is

given below:

NComps =

|Compsin|∑
k=0

|Compsin|!
k! ∗ (|Compsin| − k)!

(3.6)

NConfigOpt =

|Confs|∏
i=1

|Cfi| (3.7)

NTotal = NComps ∗NConfigOpt (3.8)

Where k is the number of components in a product. NComps yields the number of

combinations of components that could be generated from the |Compsin| components.

NConfigOpt is the number of combinations of configuration options produced with no

empty sets, meaning all possible unconstrained combinations. This is calculated by

multiplying the number of configuration options, Confs, available in each of

configuration category from 1 to |Confs|. The calculation is a modification of the

nchoosek calculation that determines the total number of combinations for each set size

and also accounts for configuration options since one option from each configuration

category must be selected for a product to be considered valid. The unconstrained total for

the components and configuration options of the coffeemaker product family is 2,048. The

calculation for this is presented in Figure 3.4.
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NComps =

|Compsin|∑
k=0

|Compsin|!
k! ∗ (|Compsin| − k)!

=

|9|∑
k=0

|9|!
k! ∗ (|Compsin| − k)!

= 1 + 9 + 36 + 84 + 126 + 126 + 84 + 36 + 9 + 1

= 512

NConfigOpt =

|Confs|∏
i=1

|Cfi|

= 2 × 2

= 4

NTotal = NComps ∗NConfigOpt

= 512 × 4

= 2, 048

Figure 3.4: Unconstrained combination calculation for coffeemaker product family
example

This section presented the unconstrained combinatorial generation process. The

purpose of this was to present how the components and configuration options are

represented and discuss how the unconstrained generation process is represented. The way

the unconstrained generation process is formed can greatly effect when and how

constraints can be applied. For the purpose of this thesis it was important to be able to

manipulate components and configuration options prior to enumeration. The next section

will take the unconstrained generation process and modify it so configuration constraints

can be applied.
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3.3.1.2 The Constrained Design Space

This section will present the constrained process for the generation of component and

configuration option combinations. As the constrained process is presented the

coffeemaker product family will also be developed. To start the constrained generation

process, constraints must first be defined. Three constraints are presented in this thesis.

The first constraint, Required Pairs (Eqn 3.9), requires a pair of components/

configurations options to both be present in any combination either are present and is

represented by Cc+. The second constraint, Disallowed Pairs (Eqn 3.10), disallows a pair

of components/ configurations options from being present in any feasible combination,

and represented by Cc−. The third constraint, Required Components (Eqn 3.11), specifies

a component must be in any configuration for it to be feasible and is represented by Cc=.

This allows for components that are required for the product to perform its core function

to be included. These constraints are denoted by the superscript “c”:

Cc+ = {Set of required configuration pairs} (3.9)

Cc− = {Set of disallowed configuration pairs} (3.10)

Cc= = {Set of required components} (3.11)

The Disallowed and Required Pair constraints are in pairs, rather than triplets or

quadruplets because the paired constraints can easily be daisy chained to perform the

same actions of different multiples. Figure 3.5 presents the configuration constraints for

the coffeemaker product family. Notice that the constraints are presented as the names of

the elements. This acceptable during the set theory processes since each object was given

a distinct name. The number identifier given will be used during the layout process.

Notice that Components and Configuration options are able to appear in these constraints.
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Cc+ = {{LCD Clock ,Set Hour}, {LCD Clock ,Set Minute},
{LCD Clock ,AM/PM Set}, {LCD Clock ,Brew-Delay Set}}

Cc− = {{w/ Single Cup, w/ Grinder}, {w/ Single Cup, 1 - 4 Cup Btn}}
Cc= = {Power Button}

Figure 3.5: Configuration Constraints for the coffeemaker product family example

The step of defining configuration constraints refers to step B, in the problem

formulation. These constraints will reduce the number of combinations generated. The

individual effects of these constraints have been characterized individually, but their

combined effects create a complex problem that has yet to be elegantly addressed. The

Cc+ and Cc= constraints have the effect of reducing the number of combinations by 50%

for each set of constraints and the Cc− causes a reduction of 25% for each pair. When

combined, the effect on the number of feasible combinations is difficult to define but these

basic characterizations can serve as a guide (upper bound) for predicting the number of

combinations produced for the given constraints:

MC+ = NComps ∗ 0.5mc+ (3.12)

MC= = NComps ∗ 0.5mc= (3.13)

MC− = NComps ∗ 0.75mc− (3.14)

Equations 3.12, 3.13 and 3.14 characterize the behavior of the constraints. MC+is the

number of combinations produced using the required pairs constraint. MC− is the number

of combinations generated from the disallowed pair constraint. MC= is the number of

combinations generated from required components constraint. mC is the unconstrained

number of combinations. Wheremc+,mc− are the number of required and disallowed pairs

in Cc+ and Cc− respectively (|Cc+| and |Cc−|). Finally mc= is the number of components

in the required components constraint, Cc=.
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The configuration constraints for the generation process were described above. The rest

of this section will present the constrained combinatorial generation process, or step C from

the problem formulation presented in Figure 3.1. The first step in the constrained generation

process is to remove the Required Components from the main set of components. This is to

ensure that they do not appear in the Cartesian product operation in Equation 3.2 since there

is no reason to represent the absence of any required components. The required components

will be added to all of the products generated after constraints have been applied. To

remove the Required Components, a set difference operation is performed with the set

of all components, Compsin, and the set of Required Components, Cc=. Equation 3.15

presents this process.

Compsin = Compsin \ Cc= (3.15)

Compsbin = Compsin × {{�}}

= {(cin1 , {�}), (cin2 , {�}), . . . , (cinm−|Cc=|, {�})}
(3.16)

After this Cc= is set to the side to be used during the final generation process. Compsin

sent to the cartesian product operation for the remaining components to be placed in sets

with {�} elements as seen in Equation 3.16. As stated previously , {�} does not represent

the absence of a specific component but a general absence of an object. Figure 3.6 presents

the processes from Equations 3.15 and 3.16 applied to the coffeemaker product family.
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Compsin = Compsin \ Power Button
= {LCD Clock, Set Hour, Set Minute, AM/PM Set, Brew-Delay Set,

Temp Control, Brew Strength Btn, 1 - 4 Cup Btn}

Compsbin = Compsin × {{�}}

=
{
(LCD Clock, {�}), (Set Hour, {�}), (Set Minute, {�}), (AM/PM Set, {�}),

(Brew-Delay Set, {�}), (Temp Control, {�}), (Brew Strength Btn, {�}),

(1 - 4 Cup Btn, {�})
}

Figure 3.6: Removing Required Components and adding Component absence to Compsin

for the coffeemaker product family example

Notice that Compsbin has all of the components except for the Power Button, which

was removed from Compsin, paired with an {�}. The next steps are to apply the other

constraints. The constraint application process starts with results of Equation 3.3,

Partsall. Which contained individual sets containing components and {�}, and the sets

of configuration options, Confs, where each set represents a different configuration

category. Figure 3.7 presents Equation 3.3 used in the coffeemaker product family

example.

Partsall = Compsbin ∪ Confs

=
{
(LCD Clock, {�}), (Set Hour, {�}), (Set Minute, {�}), (AM/PM Set, {�}),

(Brew-Delay Set, {�}), (Temp Control, {�}), (Brew Strength Btn, {�}),

(1 - 4 Cup Btn, {�}), { w/ Grinder, w/o Grinder }, {w/ Single Cup, w/o Single Cup}
}

Figure 3.7: Combines Compsin and Confs for the coffeemaker product family example

Partsall now contains the components from Compsbin and the sets of configuration

options from Confs. The remaining constraints need to be applied to Partsall as part of
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the generation process. However the objects (components and configuration options) must

first be filtered to determine which objects are connected via constraints and if any objects

appear in multiple constraints. Components in both constraint types must be checked.

Equation 3.17 creates a temporary combined list of constraints in TempList. Equation

3.18 then creates sets of objects in FilteredConstraints that are connected via constraints.

TempList = Cc+ ∪ Cc− (3.17)
= {t1, t2, t3, . . . , t|Cc+|+|Cc−|}

FilteredConstraints = {fi|tj ∈ fi ∧ {tk ∈ fi ⇔ tj ∩ tk = ¬�}} (3.18)
f ∈ FilteredConstraints

Both TempList and FilteredConstraints are small intermediate variables that will

be discarded. Figure 3.8 presents the use of Equations 3.17 and 3.18 to the coffeemaker

product family example.

TempList = Cc+ ∪ Cc−

=
{
{LCD Clock, Set Hour}, {LCD Clock, Set Minute},

{LCD Clock, AM/PM Set}, {LCD Clock, Brew-Delay Set},

{w/ Single Cup, w/ Grinder}, {w/ Single Cup, 1 - 4 Cup Btn}
}

FilteredConstraints = {fi|tj ∈ fi ∧ {tk ∈ fi ⇔ tj ∩ tk = ¬�}}

=
{
{LCD Clock, Set Hour, Set Minute, AM/PM Set ,Brew-Delay Set},

{Single Cup, w/ Grinder, 1 - 4 Cup Btn}
}

Figure 3.8: Filtered Objets for Application of Required Pair and Disallowed Pair constraints
for coffeemaker product family example

Notice that TempList contains the contents of both Cc+ and Cc−. The

FilteredConstraints has 2 elements in the form of sets. Notice that the elements in each
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of the subsets appear in a constraint with atleast one other element in the subset. The

constraints must be applied to the subsets as a whole. Now that all object connections

have been found the sets from Partsall need to be separated into groups by whether or not

they contain objects connected by constraints. Equations 3.19 and 3.20 separate the

components connected via constraints into groups and remove them from Partsall.

i : 1→ |FilteredConstraints|
ObjectGroups = {oGi |pj ∈ oGi ⇔ An element of pj ∈ fi} (3.19)

Partsall = Partsall \ObjectGroups (3.20)

Equation 3.19 is important because it allows for constraints to be applied to a smaller set

of objects rather than the combinations of every object in the product family. To illustrate

the results of these equations, Figure 3.9 presents the the coffeemaker product family result

of these equations.

ObjectGroups = {oG1 , oG2 }

=

{{
(LCD Clock, {�}), (Set Hour, {�}), (Set Minute, {�}),

(AM/PM Set, {�}), (Brew-Delay Set}, {�})
}
,
{
(1 - 4 Cup Btn, {�}),

{ w/ Grinder, w/o Grinder }, {w/ Single Cup, w/o Single Cup}
}}

Partsall = Partsall \ObjectGroups

=
{
(Temp Control, {�}), (Brew Strength Btn, {�})

}

Figure 3.9: Separation of objects connected via constraints into groups for coffeemaker
product family

Notice that the objects in the sets in ObjectGroups match the contents of

FilteredConstraints. Once the objects from ObjectGroups are removed, only the
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unconstrained components remain in Partsall. The next step of this process is to apply a

Cartesian Product operation to the elements of the subsets of ObjectGroups and Partsall.

A Cartesian Product performed between them to generate all combinations of the

elements of these sets, to allow invalid sets may be removed. While this does generate

invalid sets, it is more efficient as it generates fewer invalid sets. This generation process

is presented in Equation 3.21.

si ∈ SetCombinations

i : 1→ |ObjectGroups|

si =
∏

oGi (3.21)

Figures 3.10 and 3.11 present the results of Equation 3.21 for the example for the

coffeemaker product family. Notice that each subset of s1 and s2 is a combination of the

produced from the Cartesian product of the elements of oG1 and oG2 . Also notice that {�}

is only listed once in each subset even if more than one component is absent. This is

because these are not ordered sets so each element can only appear once in a set. s1 has 32

subsets and s2 has 8, many of which will be deemed invalid when constraints are applied.

This does result in a few invalid combinations being generated. However fewer invalid

sets will be generated compared to generating the 2048 unconstrained combinations and

removing invalid sets from there.
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SetCombinations = {s1, s2}

s1 =
{
{LCD Clock,Set Hour,Set Minute,AM PM Set,Brew-Delay Set}

{LCD Clock,Set Hour,Set Minute,AM PM Set, {�}}
{LCD Clock,Set Hour,Set Minute, {�},Brew-Delay Set}
{LCD Clock,Set Hour,Set Minute, {�}}
{LCD Clock,Set Hour, {�},AM PM Set,Brew-Delay Set}
{LCD Clock,Set Hour, {�},AM PM Set}
{LCD Clock,Set Hour, {�},Brew-Delay Set}
{LCD Clock,Set Hour, {�}}
{LCD Clock, {�},Set Minute,AM PM Set,Brew-Delay Set}
{LCD Clock, {�},Set Minute,AM PM Set}
{LCD Clock, {�},Set Minute,Brew-Delay Set}
{LCD Clock, {�},Set Minute}
{LCD Clock, {�},AM PM Set,Brew-Delay Set}
{LCD Clock, {�},AM PM Set}
{LCD Clock, {�},Brew-Delay Set}
{LCD Clock}
{{�},Set Hour,Set Minute,AM PM Set,Brew-Delay Set}
{{�},Set Hour,Set Minute,AM PM Set}
{{�},Set Hour,Set Minute,Brew-Delay Set}
{{�},Set Hour,Set Minute}
{{�},Set Hour,AM PM Set,Brew-Delay Set}
{{�},Set Hour,AM PM Set}
{{�},Set Hour,Brew-Delay Set}
{{�},Set Hour}
{{�},Set Minute,AM PM Set,Brew-Delay Set}
{{�},Set Minute,AM PM Set}
{{�},Set Minute,Brew-Delay Set}
{{�},Set Minute}
{{�},AM PM Set,Brew-Delay Set}
{{�},AM PM Set}
{{�},Brew-Delay Set}

{{�}}
}

Figure 3.10: Results from the Cartesian Product of the Elements of oG1
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s2 =
{
{1-4 Cup Btn,Single Cup,w/ Grinder}

{1-4 Cup Btn,Single Cup,w/o Grinder}
{1-4 Cup Btn,No Single Cup,w/ Grinder}
{1-4 Cup Btn,No Single Cup,w/o Grinder}
{�,Single Cup,w/ Grinder}
{�,Single Cup,w/o Grinder}
{�,No Single Cup,w/ Grinder}

{�,No Single Cup,w/o Grinder}
}

Figure 3.11: Results from the Cartesian Product of the Elements of oG2

Now that the components and configuration options are separated into sets of objects

connected by constraints, the remaining constraints can be applied to the sets of

SetCombinations. Both the Dissallowed Pairs and Required Pairs constraints can be

broken down to represent basic logical operations. Where Required Pairs is a XNOR

operation and Disallowed Pairs a NAND. The truth tables for these is presented in Figure

3.12.

Figure 3.12: XNOR and NAND truth tables

The set builder notation representation for the XNOR and NAND operations are the ”If

and Only If”,⇔, and the ”NOT AND”, ¬∧, statements. To apply these constraints in the

generation process, set builder notation must be used to specify valid sets of objects. This

required that components and configuration options are be able to be manipulated prior
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to full generation. Equation 3.22 presents the constraint application of the Required Pairs

constraint. This functions by checking the elements of each constraint against the elements

of each set within si.

rs ∈ ConstrainedSets
tj ∈ si
i : 1→ |SetCombinations|
j : 1→ |si|
k : 1→ |Cc+|
{tj ∈ rsi |Cc+

k,1 ∈ tj ⇔ Cc+
k,2 ∈ tj} (3.22)

Figure 3.13 presents the results of applying the Required Pair constraints to the s1 set

of combinations for the coffeemaker product family. The constraints being applied were

presented in Figure 3.5. This results in a reduction from 32 to 2 combination. This means

30 out of 32 original combinations were removed. This reduction is because the

combination of Required Pair constraints on the

{LCD Clock,Set Hour,Set Minute,AM PM Set,Brew-Delay Set} caused either all of the

components to be present or none of them to be present for a product to be valid. This

leaves the only options as the set of components and the null set.

i = 1

j : 1→ 32

k : 1→ 4

rs1 =
{
{LCD Clock,Set Hour,Set Minute,AM PM Set,Brew-Delay Set}

{{�}}
}

Figure 3.13: Results from the Required Pair constraint the Elements of s1

The last constraint to be applied is the Disallowed Pair constraint which disallows

components from appearing in a combination together. Equation 3.23 presents process for
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applying the Disallowed Pairs constraint to a set of components and configuration options.

rs ∈ ConstrainedSets
i : 1→ |SetCombinations|
j : 1→ |si|
k : 1→ |Cc−|
{tj ∈ rsi |Cc−

k,1 ∈ tj¬ ∧ C
c−
k,2 ∈ tj} (3.23)

Figure 3.14 presents the results of applying the Disallowed Pair constraint to the sets

of combinations of s2. While each disallowed pair constraint does not have as great of an

impact as the Required Pairs they allow for the designer to make smaller changes to the

desired product family.

i = 2

j : 1→ 8

k : 1→ 2

rs2 =
{
{1-4 Cup Btn,No Single Cup,w/ Grinder}

{1-4 Cup Btn,No Single Cup,w/o Grinder}
{{�},Single Cup,w/o Grinder}
{{�},No Single Cup,w/ Grinder}

{{�},No Single Cup,w/o Grinder}
}

Figure 3.14: Results from the Required Pair constraint the Elements of s2

The effects of the constraints are clear in the equation and example applications

presented. The final step of the constrained generation process is to generate the full set of

products. To do this, all combinations of the unconstrained (ConstrainedSets),

constrained (Partsall), and required components (Cc=) must be generated. The set of
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Equations 3.24 and 3.25 present this final combination process.

GeneratedSet =

|ConstrainedSets|∏
i=1

{rsi } ×
|Partsall|∏

j=1

{pj} (3.24)

Combinationsall = {g ∪ Cc=|g ∈ GeneratedSet} (3.25)

Equation 3.24 generates the combinations of the combinations of the constrained

objects in ConstrainedSets and unconstrained objects in Partsall. Equation 3.25 adds

the required components to every set of GeneratedSet, where g is an element of

GeneratedSet and a set of components and configuration options. The demonstration of

Equation 3.24 onto the coffeemaker product family is presented by Figure 3.15.

GeneratedSet = {rs1 × rs2} × {p1 × p2}

Figure 3.15: Equation 3.24 applied to the coffeemaker product family

Notice That all of the sets from ConstrainedSets and Partsall are included in the

Cartesian product operation. Figure 3.16 presents the application of Equation 3.25 to the

coffeemaker product family example. Notice that after constraints have been applied there

are 40 combinations of components and configuration options remaining. This is a a large

reduction from the unconstrained total (2048) and a much more manageable number to sort

through to build the product family. Notice that most of the sets have a {�} except for the

sets that have all of the components possible in the list.

40



Combinationsall =
{{
{�}, Pwr Button,Single Cup,w/o Grinder

}
{
{�},AM PM Set,Brew-Delay Set,LCD Clock,Set Hour,Set Minute,Pwr Button,Single Cup,w/o Grinder

}{
{�},Temp Control Dial,Pwr Button,Single Cup,w/o Grinder

}{
{�},AM PM Set,Brew-Delay Set,LCD Clock,Set Hour,Set Minute,Temp Control Dial,Pwr Button,Single Cup,w/o Grinder

}{
{�},Brew Strength Btn,Pwr Button,Single Cup,w/o Grinder

}{
{�},AM PM Set,Brew-Delay Set,LCD Clock,Set Hour,Set Minute,Brew Strength Btn,Pwr Button,Single Cup,w/o Grinder

}{
{�},Temp Control Dial,Brew Strength Btn,Pwr Button,Single Cup,w/o Grinder

}{
{�},AM PM Set,Brew-Delay Set,LCD Clock,Set Hour,Set Minute,Temp Control Dial,Brew Strength Btn,Pwr Button,Single Cup,w/o Grinder

}{
{�}, Pwr Button,No Single Cup,w/o Grinder

}{
{�},AM PM Set,Brew-Delay Set,LCD Clock,Set Hour,Set Minute,Pwr Button,No Single Cup,w/o Grinder

}{
{�},Temp Control Dial,Pwr Button,No Single Cup,w/o Grinder

}{
{�},AM PM Set,Brew-Delay Set,LCD Clock,Set Hour,Set Minute,Temp Control Dial,Pwr Button,No Single Cup,w/o Grinder

}{
{�},Brew Strength Btn,Pwr Button,No Single Cup,w/o Grinder

}{
{�},AM PM Set,Brew-Delay Set,LCD Clock,Set Hour,Set Minute,Brew Strength Btn,Pwr Button,No Single Cup,w/o Grinder

}{
{�},Temp Control Dial,Brew Strength Btn,Pwr Button,No Single Cup,w/o Grinder

}{
{�},AM PM Set,Brew-Delay Set,LCD Clock,Set Hour,Set Minute,Temp Control Dial,Brew Strength Btn,Pwr Button,No Single Cup,w/o Grinder

}{
{�}, Pwr Button,No Single Cup,w/ Grinder

}{
{�},AM PM Set,Brew-Delay Set,LCD Clock,Set Hour,Set Minute,Pwr Button,No Single Cup,w/ Grinder

}{
{�},Temp Control Dial,Pwr Button,No Single Cup,w/ Grinder

}{
{�},AM PM Set,Brew-Delay Set,LCD Clock,Set Hour,Set Minute,Temp Control Dial,Pwr Button,No Single Cup,w/ Grinder

}{
{�},Brew Strength Btn,Pwr Button,No Single Cup,w/ Grinder

}{
{�},AM PM Set,Brew-Delay Set,LCD Clock,Set Hour,Set Minute,Brew Strength Btn,Pwr Button,No Single Cup,w/ Grinder

}{
{�},Temp Control Dial,Brew Strength Btn,Pwr Button,No Single Cup,w/ Grinder

}{
{�},AM PM Set,Brew-Delay Set,LCD Clock,Set Hour,Set Minute,Temp Control Dial,Brew Strength Btn,Pwr Button,No Single Cup,w/ Grinder

}{
{�}, Pwr Button,1-4 Cup Btn,No Single Cup,w/o Grinder

}{
{�},AM PM Set,Brew-Delay Set,LCD Clock,Set Hour,Set Minute,Pwr Button,1-4 Cup Btn,No Single Cup,w/o Grinder

}{
{�},Temp Control Dial,Pwr Button,1-4 Cup Btn,No Single Cup,w/o Grinder

}{
{�},AM PM Set,Brew-Delay Set,LCD Clock,Set Hour,Set Minute,Temp Control Dial,Pwr Button,1-4 Cup Btn,No Single Cup,w/o Grinder

}{
{�},Brew Strength Btn,Pwr Button,1-4 Cup Btn,No Single Cup,w/o Grinder

}{
{�},AM PM Set,Brew-Delay Set,LCD Clock,Set Hour,Set Minute,Brew Strength Btn,Pwr Button,1-4 Cup Btn,No Single Cup,w/o Grinder

}{
{�},Temp Control Dial,Brew Strength Btn,Pwr Button,1-4 Cup Btn,No Single Cup,w/o Grinder

}{
AM PM Set,Brew-Delay Set,LCD Clock,Set Hour,Set Minute,Temp Control Dial,Brew Strength Btn,Pwr Button,1-4 Cup Btn,No Single Cup,w/o Grinder

}{
{�}, Pwr Button,1-4 Cup Btn,No Single Cup,w/ Grinder

}{
{�},AM PM Set,Brew-Delay Set,LCD Clock,Set Hour,Set Minute,Pwr Button,1-4 Cup Btn,No Single Cup,w/ Grinder

}{
{�},Temp Control Dial,Pwr Button,1-4 Cup Btn,No Single Cup,w/ Grinder

}{
{�},AM PM Set,Brew-Delay Set,LCD Clock,Set Hour,Set Minute,Temp Control Dial,Pwr Button,1-4 Cup Btn,No Single Cup,w/ Grinder

}{
{�},Brew Strength Btn,Pwr Button,1-4 Cup Btn,No Single Cup,w/ Grinder

}{
{�},AM PM Set,Brew-Delay Set,LCD Clock,Set Hour,Set Minute,Brew Strength Btn,Pwr Button,1-4 Cup Btn,No Single Cup,w/ Grinder

}{
{�},Temp Control Dial,Brew Strength Btn,Pwr Button,1-4 Cup Btn,No Single Cup,w/ Grinder

}
{

AM PM Set,Brew-Delay Set,LCD Clock,Set Hour,Set Minute,Temp Control Dial,Brew Strength Btn,Pwr Button,1-4 Cup Btn,No Single Cup,w/ Grinder
}}

Figure 3.16: Results from Combinatorial Generation Process for the Coffeemaker Product
Family

The final action in the generation of the product family is to remove the {�} elements

from the sets of Combinationsall. The {�} elements can be removed because {�} as a
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whole is being treated as a unique object that can be manipulated by set theory operations.

The process to remove these elements is presented in Equation 3.26.

ConfSpc = Combinationsall \ {�} (3.26)

For the coffeemaker product family the sets in Figure 3.16 would be the same except

{�} would be removed. While the constrained generation process takes a few more steps,

it is necessary to reduce the amount of invalid combinations generated by the process.

This generation process accounts for step C in the problem formulation presented in Figure

3.1. This constrained generation process is expanded on in Chapter 4, when the software

implementation of the generation process is discussed.

3.3.2 Transition From Configuration Design Space to Layout Space

The layout process is the next step. However prior to laying out components, step D

from the problem formulation in Figure 3.1 must be performed. This step is to ”Select

Products and Configurations to form a product family”. To do this products will be

selected from the set of component and configuration option combinations that remain

after constraints have been applied. This list of possible combinations appears in Figure

3.16. The configurations for the coffeemaker product family were selected for this

example to simulate a product family being used to reach different market segments and

price points. The configurations and products can be selected and defined at the designers

discretion. The selected component combinations for the coffeemaker product family

example are presented in Table 3.4 along with the names given to the products.
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Table 3.4: Coffeemaker Product Definition

Component Ba
sic

Sp
ec

ia
l

U
lti

m
at

e

LCD Clock X X
Power Button X X X

Set Hour X X
Set Minute X X

AM PM Set X X
Brew-Delay Set X X

Temp Control Dial X X
Brew Strength Btn X

1-4 Cup Btn X

There were 3 sets of components decided upon to become products. The named

products are the ”Basic”, ”Special”, and ”Ultimate” models. Each of these has a unique

set of components selected. The configuration options for each product also need to be

selected. Table 3.5 displays the selected configurations available for each product.

Table 3.5: Coffeemaker Product Configuration Selection

Configuration Options Ba
sic

Sp
ec

ia
l

U
lti

m
at

e

No Single Cup - w/ Grinder X
No Single Cup - w/o Grinder X X

Single Cup - w/ Grinder
Single Cup - w/o Grinder X

While some of the configuration options are selected for multiple products since each

product as a unique component combination, this makes each product completely unique.

The selected configuration options show that 4 distinct products have been created. While

there are only 3 models of product, since the ”Special” model is available in 2

configurations this means there are 2 unique products under the ”Special” model. Only 3

component layouts need to be produced because the configuration options do not effect

the layout of the user interface components being placed.

To aid the transition from the discrete process to the semi-continuous layout process, a
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matrix of the selected combinations generated by the combinatorial process is formed:

Cij = Component i in product j

i = 1 → m components

j = 1 to n products

(3.27)

The constrained combinatorial process creates an [n × m] matrix where m is the number

of components being laid out and n is the number of products produced. The i and j

indices are permanent labels connected to specific components and products throughout

the entire product family design process. Cij is a binary variable to indicate the presence

or absence of components within a product, where 1 indicates that a component is present

in a product and 0 indicates it is absent. For the Coffeemaker product family, i is the set

of identifying numbers given to each component when defined in Table 3.1. This matrix is

built by creating a zeros matrix and changing the zeros to once when an object is present in

a product.
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C =

Ba
sic

Sp
ec

ia
l

U
lti

m
at

e





LCD Clock 0 1 1

Power Button 1 1 1

Set Hour 0 1 1

Set Minute 0 1 1

AM PM Set 0 1 1

Brew-Delay Set 0 1 1

Temp Control Dial 0 1 1

Brew Strength Btn 0 0 1

1-4 Cup Btn 0 1 0

,

Figure 3.17: C - Matrix for coffeemaker product family exmaple

Once all of the models in the product family are created the common architectures are

identified along with the components common to the architectures. The available fascia

for each product must also be defined. Fascias are areas within products in which

components can be placed. This effectively adds bounds to component locations,

simplifying the optimization process discussed later on. The fascias for the coffeemaker

product family were defined in Table 3.2 and the fascia selection for each component

defined in Table 3.1.

Some products can have a single fascia for all UI components (ie ATM, Movie Ticket

Machines, Train Ticket Machines) and others have multiple fascia for component layout

(ie. Coffeemakers, Cars, Arcade Machines). To have a well-defined, modular product

family, common components should be placed in the same location in all products in

which the components are present. For products with multiple user interface fascias, this

limits common components to specific layout locations, with the advantage of increasing
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overall commonality across the product family. One of the motivations for commonizing

component layouts is to reduce manufacturing costs, since each unique layout within a

product family would required a different injection mold or additional unique mounting

components. While not having common component placement does not create an

infeasible product family, it greatly reduces the commonality and advantage of having a

modular product family. For this process if no common fascia is available for a

component, the designer should go back to redesign the fascias. In this process it is upto

the designer to decide the fascia selection for each component. This will provide a

designer greater control over the design process.

3.3.3 Designer Preference Component Layout

For the 2D layout process, a positive X-Y coordinate system is used, with the origin

being the bottom left corner of the fascia. The coordinate origin location for the objects

being placed is the bottom-left corner for square and rectangular objects or the closest

equivalent to the bottom-left for non-rectangular objects. In Table 3.6 the spatial layout

grammar is defined and the mathematical formulations are given. These definitions are for

the 2D layout of objects. 3D layout would utilize a similar grammar and include

mathematical definitions for the Z-axis. Objects “A” and “B” will be used in the table for

the representation of the terms. The following variables will also be used as well:

• Xi : X coordinate of object i

• Yi : Y coordinate of object i

• Hj : Height (Y axis length) of object j

• Wj : Width (X axis length) of object j
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Table 3.6: Spatial Constraint Grammar

Grammar Term Math Equivalence

A Left-of B XA +WA ≤ XB

A Right-of B XA ≥ XB +WB

A Below B YA +HA ≤ YB

A Above B Y A ≥ YB +HB

A Top-Aligned B YA +HA = YB +HB

A Bottom-Aligned B YA = YB

A Left-Aligned B XA = XB

A Right-Aligned B XA +WA = XB +WB

A Horizontal Center-Aligned B XA + 1
2
∗WA = XB + 1

2
∗WB

A Vertical Center-Aligned B YA + 1
2
∗HA = YB + 1

2
∗HB

A at (X,Y) (XA = X, YA = Y )

A H. Center at X XA = X − 1
2
∗WA

A V. Center at Y YA = Y − 1
2
∗HA

A H. Center in Fascia XA + 1
2
∗WA = XF + 1

2
∗WF

A V. Center in Fascia YA + 1
2
∗HA = YB + 1

2
∗HB

A set of constraints were created to demonstrate the application of the grammar

presented in Table 3.6 for the coffeemaker product family. These constraints are presented

in Table 3.7. For the 9 components defined for the coffeemaker product it took 26

constraints to reach the desired layout. When defining these types of constraints it is the

responsibility of the designer to fully define the set of constraints.

Table 3.7: Cpffeemaker Layout Constraints

Object A Constraint Object B/ Location
LCD Clock - X centered in fascia -

Table Continued on Next Page
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Continuation of Table 3.7
Object A Constraint Object B/ Location

LCD Clock - Y centered in fascia -
Set Hour - below - LCD Clock

Set Minute - below - LCD Clock
Set Minute - right-of - Set Hour
Set Minute - bottom-aligned - Set Hour

Set Hour - Vertical Center at Y - 130 mm
AM PM Set - Y-center aligned - Set Hour
AM PM Set - right-aligned - LCD Clock
Set Minute - left-of - AM PM Set

Brew-Delay Set - left-aligned - LCD Clock
Brew-Delay Set - left-of - Set Hour
Brew-Delay Set - Y-center aligned - Set Hour

1-4 Cup Btn - right-of - LCD Clock
1-4 Cup Btn - Y-center aligned - LCD Clock
Pwr Button - X centered in fascia -
Pwr Button - Y centered in fascia -

1-4 Cup Btn - Horizontal Center at X - 150 mm
Brew Strength Btn - left-of - LCD Clock
Brew Strength Btn - Y-center aligned - LCD Clock

Set Hour - Horizontal Center at X - 95 mm
Set Minute - Horizontal Center at X - 110 mm

Brew Strength Btn - Horizontal Center at X - 65 mm
Temp Control Dial - X-center aligned - LCD Clock
Temp Control Dial - above - LCD Clock
Temp Control Dial - Vertical Center at Y - 170 mm

End of Table

Linear programming is a method of optimization for a mathematical model that is

represented by linear relationships. Dantzig’s Simplex algorithm [36] is one of the most

popular linear programming methods. The Simplex method is a linear optimization

method used to minimize or maximize the value of an objective function based upon a

series of linear equality and inequality constraints. Simplex uses a set of n real variables,

constrained to be non-negative. For m constraints and n variables, Simplex follows the
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standard form of:

Minimize f (x1, x2, . . . , xn) = c1x1 + cnx2 + · · ·+ cnxn

Subject to :

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2

a3,1x1 + a3,2x2 + · · ·+ a3,nxn = b3

...

am,1x1 + am,2x2 + · · ·+ am,nxn = bm

x1, x2, . . . , xn ≥ 0

(3.28)

Variables for the component locations and dimensions need to be defined. The location

and dimension variables are defined using the same i indexes created in the combinatorial

process. The location variables are defined with:

Xi = X location of component i (3.29)

Yi = Y location of component i (3.30)

i = 1 to m components

This creates two m length vectors that define the x and y positions of each component.

This allows for easy indexing for final layout of components. For example the location of

component 2 have the location vector of (X2, Y2).

The dimensions of the components are defined in a similar fashion to the location
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variables. Component dimensions are defined by:

Wi = X dimension of component i (3.31)

Hi = Y dimension of component i (3.32)

i = 1 to m components

This defines two m length vectors where Wi contains the component widths and Hi

contain the component heights. These column vectors will be used in the component layout

calculations.

Information about the fascias must also be defined. Similar notation is used to define

the dimensions and locations of the fascias, except the fascia locations and dimensions will

be fully defined prior to components being placed within them. Since there may be multiple

fascias for components to be placed in, it is important to have a notation that clearly defines

all of the separate fascias. The locations of the fascias are defined by:

FXk = X location of fascia k (3.33)

FYk = Y location of fascia k (3.34)

k = 1 → p fascias

Similar to the component locations, the fascia locations are modeled using two [n × p]

matrices containing the x and y locations of the fascias. The dimensions of the fascia

have a very similar notation applied. The fascia dimensions are used in the definition of

the bounds of the fascias to define bounds for the components being arranged. The fascia
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notation is

FWk = X dimension of fascia k (3.35)

FHk = Y dimension of fascia k (3.36)

k = 1 → p fascias

Similar to the component dimensions, two [p × 1] column vectors represent the dimensions

of the various fascias. All of these definitions are defined in such a way to aid in the

calculation of the component locations.

The constraints for the entire product family are defined according to the constraint

grammar and a series of equations is produced. For the purpose of solving the equations

using the simplex method the constraints from Eqn. 3.28 must be converted to the matrix

form of:

Ax = b (3.37)

or

Ax ≤ b (3.38)

where A is the variable coefficient and b contains the constants for the constraints. Eqn.

3.37 can be expanded as:


A1,1 . . . A1,v

... . . . ...

Acn,1 · · · Acn,v



x1
...

xv

 =


b1
...

bcn

 (3.39)

v = (2 ∗m) (3.40)

where v is the total number of variables in the product family and cn is the number of

constraints defined. If the product family contains variations of the same component (i.e.
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credit card slots, receipt printers, keypads), each of these must also be fully defined within

the product family. Since variations of the same component will never appear in the same

model it is advised that the constraints for all of these components be the same, such that

they can be nearly interchangeable depending on the model being produced and to

minimize the impact of the layout throughout the product family.

Some of the variable matrices defined in previous steps will need to be concatenated

to create the matrix to represent the x variable from Eqn. 3.37 and 3.38 and combine the

constraints in the X and Y axis. This is because the matrices were created from the terms

introduced in Eqns. 3.29, 3.30, 3.33, and 3.34. The matrix manipulations are shown below:

x =

 Xvars

Yvars

 (3.41)

Xvars = (diag (C∀i,j) ∗X∀i, j)T (3.42)

Yvars = (diag (C∀i,j) ∗ Y∀i, j)T (3.43)

This produces a column vector that contains the variables for all of the components

contained within the product being laid out. While the calculation for x will zero the

variables for components not contained within the product, it will not remove the

constraints. If the constraints are removed along with the variables the optimization

process can result in no common layout being found.

The final part required to start the optimization process is an objective function. Since

the goal of this process is feasibility, the objective of the optimization process is to

minimize constraint error. Constraint error is the deviation between the constraint value

and its target value. For an equality constraint this can be a positive or negative deviation,

while for inequality the constraint error is either positive or negative. This allows for the

measurement of error in the optimization process. The objective function for this is
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defined as:

min f =
c∑

i=1

|ei| (3.44)

where ei is the error of constraint i. This sums the absolute value of all of the errors from

the constraints for a general minimization problem with a known global minimum of zero

(0). This means a completely feasible product family will have an objective function value

of zero, and all of the constraints would be satisfied. Since simplex is a linear optimization

process an absolute value cannot be used in the objective function. A quasi-linear

adaptation based upon the Cassowary algorithm [30] is used. The error must be measured

by a pair of deviation variables that are zero when the constraint is satisfied and a non-zero

real number when a constraint is not satisfied. The deviation variables δ+i and δ−i are

added to the end of each constraint to calculate deviation:

Axi + δ+i − δ−i = b (3.45)

Since each deviation variable only appears in a single constraint they will remain zero

unless the constraint cannot be satisfied. Finally a constraint needs to be added that bounds

components to only be placed within the fascia. The general form of this constraint is

For i = 1→ m where n = #of layout components in fascia k

Xi ≥ FXk

Xi ≤ FXk + FW k − Wi

Yi ≥ FY k

Yi ≤ FWk + FHk −Hi

(3.46)

However even if all the constraints are satisfied a layout may not be feasible if the

system is under constrained and there are components that overlap. Along those lines, a

layout may not be completely infeasible if the components do not overlap and are within
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the specified fascia. Since the Simplex method is a linear optimization method, it is not

possible to add a constraint to minimize component overlap since the overlap calculation

involves non-linear relationships. Determination of overlap must occur after the use of

the Simplex method. Overlap is check for each product in the product family. Overlap is

only a problem if two components occur within the same product. Otherwise components

may occupy the same space in the overall product family since overlap would not occur

in a product. This ensures components are able to maintain the same location in every

product they are present in, but not force blank spaces to be present in products that do not

contain the component. To determine component overlap, the calculated component X and

Y locations along with the component dimensions are utilized to create a polygon map and

search for intersection of components. The polygon map places components in the fascia.

The intersection is determined by checking the polygon map to check if any area is fully or

partially occupied by the same components.

Algorithm 3.1 Overlap Calculation
1: n← Number of Products Defined
2: for i← 1, n do
3: m← Number of Components in product i
4: for j ← 1,m do
5: for k ← i− 1 do
6: if intersection (componentj, componentk) > 0 then
7: display component overlap message for j and k inproducti
8: end if
9: end for

10: end for
11: end for

This process determines which components overlap and states which components will

overlap. If none of the components overlap and all constraints are satisfied, the entire

developed product family is valid. If component overlap is detected from the optimization

process the current product is infeasible. Utilizing this information the designer can

re-evaluate decisions made to either the configuration of the product family or the

constraints in component layout and re-solve the problem to achieve feasibility. It will be
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up to the designer to decide on which changes should be made to reach feasibility, but the

information provided by this method informs them of the problems they may encounter.

The full mathematical problem formulation for the component layout process creates a

specialized simplex problem for the layout of components with the goal of feasibility. This

formulation is:

Minimize f (x1, x2, . . . , xn) = δ+1 −δ−1 + δ+2 −δ−2 . . . .+ δ+c − δ−c

Subject to :

a1,1x1 + a1,2x2 + · · ·+ a1,nxv + δ+1 −δ−1 = b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxv + δ+2 −δ−2 = b2

a3,1x1 + a3,2x2 + · · ·+ a3,nxv + δ+3 −δ−3 = b3

...

acn,1x1 + acn,2x2 + · · ·+ acn,nxv + δ+cn−δ
−
cn = bcn

x1, x2, . . ., xn, δ
+
1 , δ

−
1 , . . ., δ

+
c , δ

−
c ≥ 0

(3.47)

where cn is the number of defined constraints. v is the total number of location variables

for the components as calculated in Eqn. 3.40, along with the bounding constraints defined

in Eqn. 3.46. The constraint equations can be rewritten in matrix form for calculation.

Ac,mx = bc (3.48)

Where x is defined in Eqns. 3.41, 3.42, and 3.43. The Ac,m and bc coefficients are defined
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by the constraints for each axis but need to be concatenated for optimization:

Ac,m =

 Ax zero (Cx, m)

zero (Cy, m) Ay

 (3.49)

bc =

 bx

by

 (3.50)

Figure 3.19, at the end of the chapter presents the A matrix and the b vector with the

constraints defined for the coffeemaker product family. Notice that the A does not have

any of the δ+c or δ−c listed. This is because there are would be 52 additional columns in

the table and it is too large to fit on a single page. However the Objective function for the

coffeemaker product family example is presented in Figure 3.18.

Minimize f (x1, x2, . . . , xm) =δ
+
1 + δ−1 + δ+2 + δ−2 + δ+3 + δ−3 + δ+4 + δ−4 + δ+5 + δ−5 + δ+6 + δ−6

+δ+7 + δ−7 + δ+8 + δ−8 + δ+9 + δ−9 + δ+10 + δ−10 + δ+11 + δ−11 + δ+12 + δ−12
+δ+13 + δ−13 + δ+14 + δ−14 + δ+15 + δ−15 + δ+16 + δ−16 + δ+17 + δ−17 + δ+18 + δ−18
+δ+19 + δ−19 + δ+20 + δ−20 + δ+21 + δ−21 + δ+22 + δ−22 + δ+23 + δ−23 + δ+24 + δ−24
+δ+25 + δ−25 + δ+26 + δ−26

Figure 3.18: Confs example for the coffeemaker product family

Figures 3.18 and 3.19 present the inputs into the simplex optimization process. The

components for the coffeemaker product family can now be laid out. The constraints and

objective function produce a set of coordinates for the components. These results are

presented in Table 3.8. Note that the coordinates are from the lower left corner of the

bounding box of the components.
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Table 3.8: Coffeemaker Product Layout results

Components Width Height X Y
LCD Clock 60 20 70 140
Pwr Button 20 20 90 5

Set Hour 10 10 90 125
Set Minute 10 10 105 125

AM PM Set 5 5 125 127.5
Brew-Delay Set 10 10 70 125

Temp Control Dial 10 10 95 165
Brew Strength Btn 7 7 61.5 146.5

1-4 Cup Btn 7 7 146.5 146.5

Laying out the components completes step E of the problem formulation presented in

Figure 3.1. The next step is to determine if any of the components overlap spatially, Step

F from Figure 3.1. Following the procedure presented in Algorithm 3.1, it was determined

that none of the components overlap. This was determined by taking the component

compositions of each product and check each component against the others for overlap.

Overlap can be checked in a variety of ways from sketching out the components to ’see’ if

there is overlap to performing a calculation to mathematically determine if there is overlap

present. The last step of minimizing the number of unique components, Part G. This step

can performed in a variety of ways. The simplest is eliminating unique fascias and

mounting components for the components in the user interface. This is the final step and

concludes the coffeemaker product family example. This aided in the explanation of the

various parts of the Configuration-Layout Method presented in this chapter.

3.4 Summary

This chapter presented the Configuration-Layout Design Problem and the method

developed for this thesis to address it. To aid in the demonstration of the methods this

chapter presents, an example for the development of a coffeemaker product family was

presented. The methods presented provide adequate detail for use with other product

families. This fully defines the optimization process for easy implementation into an
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automated process.

These concepts work to address the research questions presented in Chapter 1. The

first research question on capturing spatial relationships and its hypothesis are addressed in

this chapter. The set of layout constraints provided in Table 3.6 presents a layout grammar

used to describe basic layout constraints and also provides their mathematical equivalence.

This shows that a spatial grammar is feasible for determining component Layouts. The

second research question of determining the effects of design decisions and its hypothesis

addressed throughout the whole chapter. The hypothesis is a addressed in the development

of the constrained combintorial generation process and the simplex layout method. The

combined combinatoric and linear processes show how removing of infeasible products

and defining a full product family at the same time can simplify the layout of components.

The next chapter will present the software developed to present the methods presented

in this chapter. The same coffeemaker product family example is presented in the next

chapter to demonstrate the software implementation.
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CHAPTER 4

CONFIGURATION-LAYOUT METHODS IMPLEMENTATION

To properly present the advantage of the methods introduced in this thesis an example

of its implementation into code and the product family design workflow is required along

with case studies. The implementation produced for this thesis is a GUI based program

built using Matlabs App Designer add-on. In this chapter an overview of the developed

software, its data structures, capabilities, and workflow are discussed.

This software is capable of actively displaying the effects of the addition and removal

of constraints on both combinations of components and desired layout of components

within a product. This allows for designers to determine the effects of desired

characteristics of the product family in development and go back and make changes

on-the-fly to achieve the desired results. The configuration constraints used The code

written for this software is capable of configuring product families with large numbers of

components and constraints while maintaining efficient use of memory by not requiring

full enumeration to determine the effects of constraints on the product family. The system

also allows designers to determine locations for components common to multiple

members of the product family and find locations for unique component while

determining if the layout desires of the designer are feasible allowing for conceptual

design to be completed and the early stages of embodiment design to be initiated.

This chapter presents the software developed for this thesis and provides background on

its development. In section 4.1 the data structures and overall organization of information

for the program is presented. Section 4.2 provides an overview of the functions written

for the program and describes their behavior. The full GUI and operation of the program

is presented in section 4.3 to display its capabilities. Section 4.4 presents a demonstration

of the software for the example of the coffeemaker product family. Finally section 4.5

presents an overview of the chapter.

60



4.1 Data Structures

When implementing algorithms and methods into code it is important to develop logical

and coherent data structures. This allows data to be easily indexed and segregates data as

to remove complexity of indexing. The methods and algorithms presented in this thesis

encompass a large number of data types, which are addressed at different times during the

process. Since one of the advantages of a software implementation of these methods is to

actively display the effects of changes made to the product family, all inputs and results

must be stored. This means the data structures must be readily available for indexing

and not highly impact memory using on the computer. To address these the data in this

implementation is divided in to in to five main structures. These structures are sorted by

processes they pertain to and the data type. The structures are listed below along with their

dot notation reference in parenthesis:

• Components and Configurations ( comp )

• Fascias ( fascia )

• Constrained Configuration ( confcons )

• Defined Products ( confprod )

• Component Layout ( lay )

The following subsections will detail the contents of the structures and reasons for their

organization. This will provide an initial insight into the organization and function of the

code.

4.1.1 Components and Configurations

This structure contains all the input and output information for all the components and

configuration possibilities. In this case components are considered unique objects that

have volume and are involved in both the constrained configuration and the product layout.

Configurations mostly exist in concept, while they are able to impact the physical design of

61



products they do not take a singular 2D/3D form. This definition is required because some

of the fields of this structure refer to size and location. Both types of objects are included

in this structure since they are both involved in the constrained combinatoric process are

easier to call for calculation when from a single structure. To account for this, there is a

field used to indicate whether an object is a component or configuration. Table 4.1 shows

all of the available fields, their data type, and what they represent. The structures would be

referenced by calling comp.F in the code where F is the name of the field.
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Table 4.1: Fields within Comp Structure

Field Data Type Description

.name String

This field contains the name of the object being defined.
No duplicate names are allowed because the name of the
object is used during indexing to pull data about a
particular object. Names cannot be changed after object
creation.

.type Integer

This defines the type of object being created. This is either
a 1 or a 2. A 1 indicates a component and 2 a
configuration. When indexing this field can be used to call
only components or configurations. This is defined at
object creation and cannot be changed.

.category String
This field defines the category or type of configuration a
configuration falls into. This is defined during object
creation.

.width Double
This field contains the width or x dimension of a
component. This is initially zero but can be changed at
anytime throughout the process.

.height Double
This field contains the height or y dimension of a
component. This is initially zero but can be changed at
anytime throughout the process.

.x Double

This is the x-location of an object from the origin to its
lower left corner. This can be fully defined during the
layout stage, but is set to zero until fully constrained or
defined during the layout operation.

.y Double

This is the y-location of an object from the origin to its
lower left corner. This can be fully defined during the
layout stage, but is set to zero until fully constrained or
defined during the layout operation.

.fasCh String

This field contains the designer chosen fascia for each
component. This field must be defined for all components
or the layout process cannot proceed. This can be changed
at any time.

While all of the fields in the structure do not apply to either type of object enter-able into

the structure, the ability to call all objects used in the combinatoric configuration portion

of the application from a single structure provides the advantage of easier access. Since

the unused fields of the structure remain empty when unused the impact on memory is low.

Since this structure utilizes an element-by-element organization and all of the objects have
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a unique name, the name portion of the structure can be used to find the index location of a

component to access the data connected to it. When the indexing location of a component

is known, all the information connected to that component can be accessed with comp(n)

where n is the index location. The information entered into this structure is used through

out the entire process. Figure4.1 is a visual representation of the structure used.

Figure 4.1: comp Structure Visualization

4.1.2 Fascias

The data in this structure is the information relating to the fascias of the product family

being developed.Since the fascias are set prior to the layout process, only information

relating to the layout process is required. This structure is similar to the comp structure but

all fields must be filled prior to the layout process as they effect the fascias are the bounds

on the simplex operation. For the structure fascia the existing fields appear in Table 4.2.
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Table 4.2: Fields within Fascia Structure

Field Data Type Description

.name String

This field contains the name of the object being defined.
No duplicate names are allowed because the name of the
object is used during indexing to pull data about a
particular object. Names cannot be changed after object
creation.

.width Double
This field contains the width or x dimension of a
component. This is initially zero and must be changed
prior to the layout process.

.height Double
This field contains the height or y dimension of a
component. This is initially zero and must be changed
prior to the layout process.

.x Double
This is the x-location of an object from the origin to its
lower left corner. This is initially zero and must be
changed prior to the layout process.

.y Double
This is the y-location of an object from the origin to its
lower left corner. This is initially zero and must be
changed prior to the layout process.

Similarly to the comp structure the information relating to a particular fascia by

determining the index based on the name of the fascia. The fascias must be defined prior

to the layout process because the components require an initial spatial envelope for which

the components can be placed. These bounds can later be changed but must be initially

present for the components to properly be placed. However, due to the fluid nature of the

software changes to the size and location of the fascia can be changed between layout

operations as the designer determines the effects of design choices. There is no wasted

memory since all fields must be used. Figure 4.2 displays the organization of this

structure.
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Figure 4.2: fascia Structure Visualization

4.1.3 Constrained Configuration

The constrained configuration ( confcons ) structure contains all of the information

relating to the process of generating product configurations based on combinatoric

constraints. This structure contains both user input and data generated by the code. The

results of each step in the generation process is kept as the designer may not require the

full enumeration of all possible products based on the constraints. The fields of his

structure take advantage of the dot notation structures ability to handle multiple types of

data containers. The fields in this structure consist of a mixture of matrices, cell arrays,

vectors, and string arrays. This structure utilizes a mixture of plane and

element-by-element organizations.
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Table 4.3: Fields within Confcons Structure

Field Data Type Description

.ReqComps
Cell of
Strings

This field contains the names of all components the
designer decides are required for any product to be
feasible. This is a single cell containing multiple entries.

.ReqPairs
Cell Array
of Strings

This field contains contains all of the required pair
constraints. Each cell contains the names of two
components consisting of the required pair.

.DisPairs
Cell Array
of Strings

This field contains contains all of the disallowed pair
constraints. Each cell contains the names of two
components consisting of the disallowed pair.

.availconf
Cell Array
of Strings

This is is all possible combinations of configurations based
upon the constraints on combinations, where each cell in
the array represents a feasible configuration. Each cell
contains one configuration option from each configuration
category.

.cnftabl
Table of

Mixed Data
This table contains the available configurations after
constraints are applied and is organized for use in the GUI

.NumProd Integer
This field contains the calculated number of feasible
products after configuration constraints are applied.

.objlbls
Cell Array
of Strings

Contains all component and configuration names

.allttbls
Binary

Matrices
These are the binary matrices of the constrained products
divided by sets of components connected via constraints.

.seplbls
Cell Arrays
of Strings

These are the name of all components and configurations
divided into cells of objects connected by constraints

.septbls
Cell Arrays
of Strings

This contains the combined allttbles and seplbls fields.
This is equivalent to the ConstrainedSets variable
presented in Eqation 3.22.

.P roGen
Cell Arrays
of Strings

This contains the full enumeration of all possible products
with constraints applied. The enumeration only exists if
the designer chooses to generate it.

As different as this structure is from the previous ones it is because it contain different

types of information including the inputs to the combinatoric and intermediate results.

While the product enumeration will consume the largest amount of data in this structure,

the enumeration field will remain empty unless the user explicitly decides to view the full

enumeration. The details of this will be outlined in section 4.2 when the code is discussed.

This structure attempts to conserve data by only fill fields when required. Figure 4.3
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visualizes this structure. Notice that this structure contains a mixture of structure

organization types. Where some parts of the structures contain singular elements and

others are ordered.

Figure 4.3: ConfCons Structure Visualization

4.1.4 Defined Products

This portion of the data structure contains the information connected to all products

specified by the designer. Each product only requires a small amount of information to

be defined since other structures contain the details of the individual components. This

structure is organized element-by-element so that every index location (confprod(x).F), so

the pertinent information for every product is easily accessible. Table 4.4 details the fields

of this structure.
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Table 4.4: Fields within Confprod Structure

Field Data Type Description

.SpecName String

This field contains the name of the object being defined.
No duplicate names are allowed because the name of the
object is used during indexing to pull data about a
particular object. Names cannot be changed after object
creation.

.P rodDef
Cell Array
of Strings

This contains all of the components the designer has
decided belong in a specified product.

.ConfgList
Cell Array
of Strings

This contains all of the possible configurations a product
will be available in as defined by the designer.

.Cnnctns
Cell Array
of Strings

This field contains any specified connections that occur
between components.

As the table shows, this structure is quite small, but contains the products the designer

decides will make up the product family. Figure 4.4 shows an example of how a product

would be defined in the data structure. Notice how it follows a similar structure to the comp

and fascia structure.

Figure 4.4: ConfProd Structure Visualization

4.1.5 Component Layout

The final data structure contains all the relevant information for the component layout

process. Since the the layout process utilizes the simplex method, all of the components to

set up the optimization process as well as components used in the GUI of the program. One
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difference between this structure and the rest is one of the fields contains a substructure.

The constraints field contains a substructure because the constraint names need to be held

in separate fields for when the parts of the simplex method are created so the individual

dimensions and equations needed to create each constraint can be taken from the proper

index. Table 4.5 shows the basic structure of the layout structure.

Table 4.5: Fields within Lay Structure

Field Data Type Description
.Constraints Substructure This is the substructure for the layout constraints.

.Aeq
Matrix of
Numbers

This is the matrix containing the equality constrain
coefficients.

.Aneq
Matrix of
Numbers

This matrix contains the coefficients for the inequality
constraints.

.ObjectiveFcn
Vector of
Numbers

This vector represents the variable coefficients of the
objective function. As described in Chapter 3 all
coefficients except the deviation coefficients will be zero.

.beq
Vector of
Numbers

This vector contains the numbers on the right side of the
equations for the equality constraints

.bneq
Vector of
Numbers

This vector contains the numbers on the right side of the
equations for the inequality constraints.

.lb
Vector of
Numbers

These are the lower bounds for all variables in the
simplex operation. For components this is determined by
the fascia chosen, for deviation it is zero.

.ub
Vector of
Numbers

These are the upper bounds for all variables in the
simplex operation. For components this is determined by
the fascia chosen, for deviation it is infinity.

.results Substructure
These are the results of the simplex optimization.
Including the final objective function value and variable
values.

.overlap Cell Array
This contains information on whether any components
overlap since the simplex method is incapable for
determining it.

Almost no strings or cell arrays are required in this structure because the indexing

within the matricies is set based on the index locations of the components in the GUI.

Since this cannot be changed the order has already been set. Table4.6 provides information

on the Constraints substructure.
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Table 4.6: Fields within Constraints Sub-Structure

Field Data Type Description
.F irstComp String Name of the first component in the constraint.

.SecondComp
String or
Double

Name of the second component in the constraint or a
location.

.Constraint Strings
This is the the name of the constraint being defined for
these components. This is used along with a switch case to
create the proper elements of the simplex operation.

Since most of the data in this structure is in the form of matrices and vectors of numbers

there should be a low impact on memory. Especially considering that the sized of the

matrices is directly tied to the number of components. Figure 4.5 presents the fields of the

structure in a visualization of their organization. Notice how each of the .Constraint fields

has a substructure containing three fields to represent the layout constraints.

Figure 4.5: Lay Structure Visualization
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4.1.6 Summary

Due to the number of data types this software handles through out its operation the

data structures had to be well thought out and designed for ease of indexing. This lead to

the structures presented in this section being developed; allowing for quick indexing and

the ability for the user to go back and make changes at any step of the process. In the

next section an overview of the code developed to accomplish the main goals (Constrained

Configuration and Component Layout) of this software is given. This will show why the

data structures for this program were developed in the fashion shown here.

4.2 Code Overview

The previous section described how the data was organized for this software, in this

section will provide an overview of the main processes this code uses to both configure

product families and layout components. Since this software was written in Matlab code, a

more general description of the processes are provided for easier implementation into other

languages. These will be described with a combination of written explanations, pseudo-

code, and explain where the math methods presented in the previous are implemented. The

written explanations will also include the reasoning behind some design decisions and the

pseudo-code will provide a better insight into the implementation.

4.2.1 Combinatoric Generation Process

The code for the combinatoric process was developed to quickly and memory efficiently

number and generate feasible products. This code was written based upon the Equations

and methods presented in Section 3.3.1.2. To achieve this performance a set of objectives

for the code were defined:

• Simplify generation process

• Not require full enumeration
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• Minimize number of steps to determine feasibility of a product

The code was developed using these objectives as a guide. The initial step in the

development of the algorithms for the generation of feasible products was to breakdown

the main problem down into a series of steps to simplify the process. The purpose of these

steps is to take the knowledge gained from the study of this problem and the effects of

constraints to create a simple process. The generation process was divided into the

following steps:

1. Organize constraints into groups based on the type of constraints, objects and

possible interactions between constraints

2. Evaluate groups of constraints and generate groups of feasible components

3. Calculate the number of feasible products based on the smaller groups of

components

4. Generate sets of feasible combinations of components to create products

These steps allowed for simplification of the larger task during algorithm development

and code implementation. The following sections will present the the methods developed

to complete each step. A small example is used to better demonstrate the actions of each

step. The objects and constraints presented in Figure 4.6 are the inputs for this example.

Figure 4.6: Inputs for Combinatoric Example
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4.2.1.1 Organize Constraints

In order to fully identify the the interaction between combinatoric constraints and their

overall effect on the system, it is necessary to group together sets of constraints which will

interact with each other. This process is code implementation of the processes that take

place in Equations 3.15 to 3.20. Where Required Components and Components connected

via constraints are removed from the main set of components and put into separate sets. It

was observed during development that objects which appear in multiple constraints effect

the behavior of the generation process. all objects directly or indirectly connected by

constraints must be grouped together for evaluation. While this is a simple task it becomes

more complicated when objects may not be directly connected by the same component.

This leads to possible chains of constraints that need to be grouped together. The other

grouping is any object or set of objects that are connected to a configuration by constraints

must be grouped together with all configurations since configurations are internally

constrained as well.

Figure 4.7: Input Variables Defined.

Algorithm 4.1 provides pseudocode to show how this task was completed via the code.

The inputs of this algorithm are the list of Components (Compin), list of Configuration

Options (Confs), list of Constraint Pairs (TempList), and list of Required Components

(C=). These input variables are the same as those presented in Chapter 3. At the end of

this process constraint groups and singular constraints containing only components will be

in the MultiConstraint List represented by Mc in the algorithm. Each element of Mc

represents a single constraint or group of constraints that are connected. Groups of
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constraints that contain a mixture of both components and configuration options are

placed into in the MixedConstraint,Mx in the algorithm. This is because configurations

are already internally constrained to prevent two or more configurations of the same type

from appearing in a product, thus any constraint containing a configuration effects all

other configurations. Finally the list of components that don’t appear in any constraint is

put into the Unconstrained Component list Uc. Finally any constraint defined as required

is put into the C= list. The data for Mc, Mx, Uc and C=, is in the form of cell array

containing component names so for Mc(x) contains the names of a set of components

connected by constraints. The union of Mc and Mx (Mc ∪Mx) would be equivalent to

ObjectGroups from Chapter 3. Uc is equivalent to Compsin with the components that

appear in constraints have been removed.The variables Mc, Mx, Uc and C= will be used

in the other algorithms in this section.Figure 4.7 displays the contents of the inputs of

Algorithm 4.1, Compsin, Confs, TempList, and C= for the running example

presented in Figure 4.6.
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Algorithm 4.1 Constraint Organization Procedure
1: TempList← Set of all Constraint Pairs (Required Pairs and Disallowed Pairs)
2: Compsin ← Set of all Components
3: Confs← Set of all Configurations
4: C=← Set of Required Components
5: Uc← {}
6: Mc← {}
7: Mx← {}
8: procedure CONSTRAINT ORGANIZATION

9: for i← 1 to number of elements of Compsin do
10: if Compsin(i) /∈ TempList then
11: Uc← Compsin(i)∪ Uc
12: end if
13: end for
14: p← 1 . p is the current cell of MultiConstraint List (mc)
15: for j← 1 to number of elements of TempList do
16: Mc(p)← TempList(j)
17: repeat
18: for all TempList(k) | k 6= j ∧ TempList(k) 6= � do
19: if Mc(p) ∩ TempList(k) then . search for any constraints that contain

any component with in Mc(p)
20: Mc(p)←Mc(p)∪ TempList(k)
21: TempList(k)← �
22: end if
23: end for
24: until Mc(p) no longer changes
25: p← p+ 1
26: end for
27: for m← 1 to number of elements in Mc do
28: if ∀ Confs ∈Mc(m) then
29: Mx←Mx ∪Mc(m)
30: Mc(m)← �
31: end if
32: end for
33: Remove Duplicate Components and Configurations from Mc and Mx
34: end procedure
35: return {Uc,Mc,Mx,C= }

The j for-loop on line 15 performs a large portion of the sorting action where j is 1 to

the number of constraint pairs. On the previous line p is defined as 1 create the space for the

first element of Mc. On line 15 Mc(p) is defined for the current j value and adding the first

components to Mc(p). The following lines search all TempList except for TempList(j)
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for components contained inMc(p). This process is repeared for the currentMc(p) until no

more elements are added. It is important to note on line 20 Constraints added to Mc(p) are

removed from the main constraint list TempList preventing infinite loops from occuring

by finding repeat elements. After this process each element of Mc is search to determine if

it contains a configuration option. If an element does contain a constraint option that group

of components/configuration options is removed from Mc and move to Mx. The variables

Uc, Mc, and Mx along with C= earlier were defined to represent the four different lists.

These variables will be used in the other algorithms in this section.

Figure 4.8: Mc, Mx, Uc, and Rc Defined.

Figure 4.8 presents the results of the constraint organization process. This shows which

components and configuration options are connected by constraints. The objects in brackets

are connected via constraints and below them shows which list each one is contained in.

4.2.1.2 Evaluate Groups

The next step in the generation process is to evaluate the constraint groups created in

the previous step. This step represents Equations 3.21 to 3.23 and the methods related to

them. This is where each individual set of object types, whether it be unconstrained,

constrained, or required are evaluated and any relevant constraints are applied. The

constraints in each group need to be evaluated to determine feasible combinations of the

components each group contains. This process involves applying the constraints to

smaller groups of components and enumerating feasible combinations from the smaller

groups. This reduces computational load by evaluating constraints only on the groups of
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components which they apply. This method generates all combinations of the smaller

groups and then applies the constraints to the smaller groups. This avoids the

combinatorial explosion that occurs with large set sizes. For this all combinations of the

objects in each group are created and then reduced by applying the constraints within each

group. This will result in a set of smaller truth tables that can be used to create the full

enumeration of feasible products if required. Truth tables are used for these because the

constraints can be defined in the form of basic boolean operations that can be applied to

entire sets. The Required Pairs is a XNOR and the Dissallowed Pairs is a NAND.

Figure 3.12 from Chapter 3 displays the truth tables for these operations, where A

and B members of the constraints and F is the feasibiliy based on the presence of and

B. Pseudocode for this process is shown in Algorithm 4.2 to provide a simple overview

of the evaluation process. Figure 4.8 presented the outputs of the previous algorithm for

the on going example. Notice that each variable utilizes cell arrays to store the data. For

Algorithm 4.2 the inputs are Mc, Mx, and Uc; the outputs are Mct, Mxt, and Uct. The

outputs will contain the feasible combinations of each set of connected components. Figure

4.9 shows the output of the algorithm.

Figure 4.9: Individual feasible sets.

Notice thatMct,Mxt, and Uct are still in Cell array form but each cell has multiple sub

cells containing the feasible combinations of the components in each cell of Mc, Mx, and

Uc. The union of Mct and Mxt would be equivalent to ConstrainedSets. Uc would be

equivalent to Partsall with constrained components removed. These feasible combinations
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will also be used in the next step to count the number of feasible solutions Algorithm 4.2

presents the process it takes to determine the outputs.

Algorithm 4.2 Constraint Evaluation Procedure
1: Uct← {} . unconstrained components in tables
2: Mct← {} . Set of component only constraints tables
3: Mxt← {} . Set if Mixed constraint tables
4: procedure EVALUATE CONSTRAINTS(Uc,Mx,Mc)
5: for i← 1 to length of Uc do
6: Uct(i)← { Uc(i),�}
7: end for
8: for j ← 1 to number of cells in Mc do
9: Mct(j)← ℘ of the contents of Mc(j)

10: for k ← 1 to number of constraints connected to the contents of Mc(j) do
11: Apply constraint Mc(j, k) to Mct(j)
12: end for
13: end for
14: Mxt← ℘ of the contents of Mx
15: for m← 1 to number of constraints connected to the contents of Mx do
16: Apply constraint Mx(m) to Mxt
17: end forreturn {Uct,Mct,Mxt}
18: end procedure

Algorithm 4.2 provides a brief overview of the process of constraint evaluation. To

apply constraints first the combinations of the contents of Mc(j) and Mx must be created.

Lines 9 and 14 create the powerset of Mc(j) and Mx respectively to create Mct and

Mxt. Then lines 11 and 16 apply relevant constrains to Mct and Mxt. Both Mct and

Mxt are changed and invalid combinations of components and/or configuration options

are removed. This is a simplified version of the evaluation process compared to the version

implemented in the software. While it may seem unnecessary to have objects with and

without constraints containing configurations in separate variables, but constraints between

only configurations must be applied first to prevent more than one configuration of the

same type from being present in a product. This step completes the bulk of the processes

required for the generation process. The next steps will take the results of the evaluation

process to determine the effects of the combinatoric constraints and generate all feasible
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products if desired.

4.2.1.3 Calculate Products

The calculation of the total number of feasible products is a simple calculation as it just

counts the number of rows left in each truth table and multiplies them all together. While a

significant amount of work is required to determine the effects of the constraints, it is fairly

computationally light because the constraint effects are compartmentalized and truth tables

only need to be generated for the number of components in each group of components

connected via constraints. This also provides the benefit of not having to generate all

possible products to determine constraint effects, greatly reducing impact on computer

memory. This calculation is similar to the calculation for the unconstrained number of

products presented in Equation 3.8 but is modified to reflect the processes presented in

the previous steps to apply constraints. The following Equations present the process of

calculating the number of feasible products with combinatoric constraints applied.

Nuc = 2Nu (4.1)

Nmc =

|Mct|∏
i=1

|Mcti| (4.2)

Ncn = Ucn ∗Nmc ∗ |Mxt| (4.3)

Where Nu is the number of unconstrained components.|Mct| is the number of

elements in Mct, |Mcti| is the number of elements in Mcti and |Mxt| is the number

elements in Mxt. Since Mct consists of subsets of multiple elements, an additional

operation is required to determine the size of the subsets This calculation allows for the

effects of constraints to quickly and easily be seen giving the user instant feedback on

design decisions. The final step of the process is to generate the full set of all feasible

products. This step is optional and in the software developed it is not used. Feasible

product are developed by only allowing combinations of products in Uct, Mct and Mxt.
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Figure 4.10 shows the process of calculating the number off possible products that are

able to be produced from the running example. Notice that C= is not included because the

required components are required for every product to be feasible and there are no other

options for them. This results in 54 possible products available, which is considerably

smaller than the unconstrained number of 4,096.

Figure 4.10: Number of possible combinations

4.2.1.4 Generate

The process of generating all feasible products is also quite simple since much of the

work was performed during the evaluation stage. This final step of the generation process

implements Equations 3.24 and 3.26 and their related methods into code. Where the

combinations are found for the elements of the different sets of objects are found and

formatted for proper presentation. In this step products are created by taking one element

from each sets (subset in the case of Mct), Uct,Mct and Mxt then combining with the

required elements of C= to develop a product. All possible combinations of these

generates the full set of feasible products. The math of this process relies of the set theory

operation, Cartesian Products which creates a set containing subsets containing the

combinations of the elements of 2 or more sets. Once the Cartesian product operation is

complete a union operation is used to combine the generated products with the required

components. Algorithm 4.3 presents the generation process:
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Algorithm 4.3 Product Generation Procedure
1: EProducts ← {} . Enumeration of all possible products
2: procedure PRODUCT GENERATION AND ENUMERATION

3: EProducts ←
[∏|Mct|

i=1 Mcti ×Mxt× Uct
]
∪ C=

4: end procedure
5: return {Uc,Mc,Mx,C= }

Where |Mct| is the number of subsets of Mct. This simple process utilizes set theory

operations to generate all feasible products. This process is simple because the Evaluation

step of the generation process eliminated any possible infeasible combinations of

component or configuration options. Line 3 in the algorithm is the same computation that

occurs in Equation 3.24. There is no need for the removal of the empty set elements that

occurs in Equation 3.26 because the use of cell arrays in the implementation allows for

empty sets to be represented and not effect the result.

Figure 4.11: Full Generation Visual

Figure 4.11 provides a simple illustration of the full enumeration process for the running
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example presented in Figure 4.6. Each column in the figure represents a set of components

connected via constraints. A feasible product is generated by selecting one set from each

column. All of these, except for the last column, are combined using the Cartesian Product

operation. The last column represents components with the ”Required” constraint. These

are added to the set since all elements of C= are required. The constraints and components

from Figure 4.11 could generate 54 products. While this seems like a large number of

products it is considerably smaller than the 4,096 unconstrained combinations. Figure 4.12

presents a Tree Diagram of the example product family showing how quickly it expands.

Notice how Mct(1) and Mct(2) are specified since both subsets need to be addressed.
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Figure 4.12: Generation Tree Diagram

These steps provide an overview of the approach used to implement the method for

constrained combinatoric generation of products presented in this thesis. This quick and

efficient implementation allows for fast results and the user to easily flow through the

software. In the next section an overview of the implementation of the component layout
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portion of this thesis is presented.

4.2.2 Component Layout Process

The layout process is the final step in the product family generation method presented

in this thesis. The implementation of this method is simple since it is based on linear

programming and the simplex method. This portion of the software very much follows

the steps presented in Section 3.3.3. This section will provide a brief summary of how the

different parts of the simplex algorithm were setup and any required post processing.

4.2.2.1 Simplex Setup

Matrices and vectors are used for the inputs of the process. For the constraint matrix

the locations of the variables are based on the order of the components stored in the comp

structure, allowing for ease of indexing and creating constraints in the proper locations. The

layout constraints in this software are the same ones presented in Table 3.6. The elements

of the Simplex operation at this state are in the form that appears in Equation ??. Once

all the constraints are assembled the deviation variables δ are appended to the end of each

constraint since the total number of δ variables is twice the total number of constraints.

The deviation variables are defined in Equation 3.45. Since the objective function for this

method contains only the deviation variables from the constraints, the objective function

can not be defined in the code until all the constraints defined. The objective function and

constraints defined with the deviation variables is the implementation of Equation 3.47. For

the variables that represent the coordinates of the various components the upper and lower

bounds are applied based on the chosen fascia.
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Figure 4.13: Example of Simplex Algorithm Setup

Equation 3.46 shows the process of defining the bounds on component locations, where

the fascia for each component is chosen by the designer. The bounds for the deviation

variables must also be defined, since the values of the deviations can only be zero or a

positive number, the bounds for all deviation variables is defined as all number from zero

to infinity, [0,+∞]. Figure 4.13 presents an example of the how each aspect of the simplex

method is implemented for a set of general constraints. Notice how the coefficient of

the location variables are zero in the objective function since only the deviation from the

desired is meant to effect the optimization process. This allows for layout constraints to be

violated and a feasible solution found even if the designer the desired layout is infeasible.

4.2.2.2 Overlap Check

However even if no layout constraints are violated a layout may be infeasible if

components overlap. Since the simple algorithm is a linear method it is not possible to

apply a constraint to eliminate overlap. The components must be properly constrained.

The final step of the layout process is to determine if there is any over lap between

components in products. It is very possible that when every component is place

components may appear to overlap, but the layout is only infeasible of the components

that overlap appear in the same product. To ensure there are no overlaps the list of
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components from every defined product is checked for overlap based on the procedure in

Algorithm 3.1. If there is no overlap in any product the product family is feasible, but

anytime any change is made to that may effect component location overlap must be

rechecked.

4.2.3 Comments

This section presented an overview of the algorithms and processes used to implement

the work of this thesis into code. The code for combinatoric generation implementation

demonstrates the ability to determine the consequences of design decisions on product

families without generating all valid products. The layout implementation provides the

ability to complete initial design based on a basic constraint grammar and determine

whether the desired layout is feasible. Both of these represent the backbone of the

GUI-based software presented in the next section.

4.3 Software Workflow

In this section the software developed for this thesis is presented. This program

implements the methods presented in Chapter 3 into an fast GUI-based program that

allows designers to both generate a product family based on combinatoric constraints and

determine common component layouts across the entire product family. This step allows

the designer to determine the effects of design choices and make changes at any point in

the process to achieve the desired result. This software is divided into seven tabs (Menu,

Define, Constrain, Hierarchy, Specify, Layout, Results) and a constantly updating

statistics region. The goals of these regions was to create a simple and intuitive GUI to

allow users to quickly learn and include in their design process. Each of these will be

presented and information about their function explained.
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4.3.1 Menu

The ”Menu” tab is the screen any user will see when starting up the program. This

will allow uses to open any previous save files or close the program if it was accidentally

opened. Figure 4.14 presents the application where the upper portion of the application set

on the ”Menu” tab is the Main region and the strip at the bottom is the Statistics region.

The contents of the Main region changes as different tabs are selected while the Statistics

always contains the same items.

Figure 4.14: Menu Tab of Product Family Configuration Layout Application

Notice in the Menu portion there are four labeled buttons (”New Product Family”,

”Open”, ”Save”, ”Close”) used to perform all of the primary functions of this tab. The

basic functions of these buttons are outlined below.
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”New Product Family” - This allows the user to clear then entire workspace currently in

use by the programand resets all user interface components. Allowing the user to

either scrap an unsaved project or start a new project after saving another.

”Open” - Allows the user to open previously product family projects created by this

program. Allowing the user to make changes or continue developing an incomplete

product family.

”Save” - Allows the user to save the data currently input and output from the program

into a save file that the user is able to name. The specific data being saved is all of the

data within the structures presented in Section 4.1. This also allows Users to develop

multiple versions of the same product family and save them for comparison.

”Close” - Allows the user to close the program and performs the same function as

clicking the ”X” button on the top-right of the window. When clicked, a dialog box

pops up to confirm that the user would like to exit the program.

While minor in the overall program, these functions provide essential functions to the

user with the ability, to save, open, and create new projects in a quick and effienient manner

as well as allow the user to only purposely close the program to prevent lost of data and

changes made.

4.3.2 Statistics Panel

Mentioned in the Menu section, the statistics region is panel of fields containing current

statistics, calculations and results. These fields are actively updated as changes are made

throughout the product family development process. Figure 4.15 presents the stats panel.
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Figure 4.15: Statistics Panel of Product Family Configuration Layout Application

The panel has 8 fields, each representing a different statistic, calculation, or other

indicator. These provide the user with information about the product family at all times.

Below is a brief description each of the fields present in the panel.

Components - The number of components defined in this product family.

Config Options - The number of configuration options defined.

Fascia - Number of Defined Fascia.

Unconstrained # - Unconstrained number of possible products based on the number of

defined components and configuration options.

Constrained # - The reduced number of possible feasible products based upon

configuration constraints.

Current Reduction - Calculation of the reduction from Unconstrained to Constrained.

Products - The number of defined products.

Layouts - Displays whether the layouts for the defined products are feasible based on

whether there is component overlap.
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The fields in this panel each update as changes are made to the product family, allowing

designers to instantly see the effects of decisions. The Constrained # statistic is calculated

from the Equations presented in Section 4.2.1.3.

4.3.3 Define

In the ”Define” tab the user defines the components, configurations, and fascias that

will appear in the product family. Along with naming the components and fascia, physical

information use in the layout process is also defined here. The ”Define” tab is presented in

Figure 4.16. The boxes and arrows name and simply explain the various parts of the tab.

Figure 4.16: Define Tab of Product Family Configuration Layout Application

Each of the parts of this tab are used to define different parts of the product family.

Below, the various aspects of the tab are explained, to provide a more detailed description.
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An important note that applies to this area is that the program will not allow the user to

assign 2 components/configurations/fascias the same name. This is because this program

indexes data using the names of objects, requiring each object to have a unique name.

A. This edit field is used to name new components to be added to the product family.

Once a name is entered the user can either press “Enter” on the keyboard, or Press the

Green Checkmark below. This name is then added to the appropriate data structure

and will appear at the end of the listbox in B.

B. This are is used to enter and edit information about each individual component. When

a component is initially created its Height and Width will be set to zero and there will

be no chosen fascia. When an item in the listbox is highlighted the Width, Height,

and Fascia fields will display the information relating to the highlighted component.

To change the component dimensions: (1) Highlight the desired component. (2)

change the dimension information in each field, pressing “Enter” on the keyboard

after each change. To Change the fascia choice, click on the drop down menu and

click on the desired fascia. It should be noted that while the layout information for

each component is not required for the configuration process. The layout process

cannot proceed without it.

To delete a component, highlight the component desired for deletion and click on

the Red ”X” button next to the list box. This will remove the component from the list

box and delete it from the appropriate data structure.

C. This area is used to define new categories of configuration options. The Categories

are different types of configuration possibilities such loading type for a coffee

maker and the options are the different possible configurations for the particular

category. For the coffeemaker example loading types could be Front, Top, or Side.

While these configuration options affect available product variety and may effect the

physical design of a product, configuration options do not always exist in the form
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of individual components or necessarily represent particular physical objects. There

is also the requirement that each product must have one and only one option

selected from each category to be valid. Due to these differences, they are defined

separately from components and are not given physical shape information.

How ever the use of this area in the program is similar to the Component definition

area, where once the name is entered the user can either press ”Enter” or (in this case)

click on the Green ”Down Arrow”. This will add the new configuration Category to

the drop-down list. The options for a particular configuration Category can be viewed

by changing the selection of the drop-down list.

To delete a configuration Category, select the chosen Category from the drop-

down and click the Red ”X”. An important note is that when configuration Category

is deleted, all configuration Options associated with that Category are also deleted.

D. This area allows for the addition or removal of configuration Options from the Category

selected in the Category drop-down. A configuration option is added by typing the

name into the New Option field and pressing ”Enter” on the keyboard.

An option can be deleted by highlighting, the option and clicking on the Red ”X”.

Since the configuration options for the product family do not necessarily represent a

particular physical object no other information is required.

E. This edit field is used to add new fascias for the product family. This process is exactly

the same as defining components as shown in A.

F. This area allows the user to view and edit fascia data. Similar to components the

dimensions of each fascia must be entered. In addition to dimensions, the location

of the fascias must also be defined. The location of fascias are defined from the

bottom-left corner of the object to the global zero of the 2D design area.

Fascia data can be edited the same way as with components by highlighting the
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fascia requiring changes and edit the numbers in the fields, pressing ”Enter” on the

keyboard after every change. The procedure for fascia deletion is also the same as

components.

G. The add (checkmark) and delete (x) buttons will be seen any other tabs across this

program and perform the same action.

While its required that objects be created at the beginning of the process, the flexibilty

of this program allows users to go back, make changes, or create new objects at any time

during the process. Allowing for the effects of new components or features to be seen on

the product family and layout feasibility. The information about Fascia size and location

will be used to determine the bounds of components for the layout processes.

4.3.4 Constrain

This tab is used to define the configuration constraints of the product family. These

constraints enable the designer to dramatically reduce the number of possible product

from a set of components and decide which combination of features or components are

disallowed or required. This tab allows user to select component(s) and configuration

option(s) and define configuration constraints. The configuration constraints, defined in

section 3.3, are Required Components, Required Pairs, and Disallowed Pairs. Required

Components are listed individually, and the Required and Disallowed Pairs are listed in

object pairs. The ”Constrain” tab presented in Figure 4.17 has the following features.

A. The drop-down menus allow the user to select objects by category, where the categories

are “Components” and the names of the various configuration categories. Allowing

users to easily find specific objects.

B. A delete button used to delete the constraint highlighted in the constraint list.

C. A drop-down menu used to view constraints by type. When a different constraint is

selected in the menu, the list box below will display all constraints of that type.

94



Figure 4.17 shows the simple interface used to define configuration constraints. Where

objects for constraint are listed in the boxes to the left. The constraint being defined can

be selected and then viewed in a list box on the right. Every time a constraint is added

or removed the processes in Algorithms 4.1 and 4.2 are performed to create the groups of

feasible component combinations. These are used to determine the effects of the current

constraints by calculating the constrained number as presented in Section 4.2.1.3. The

dashed boxes in the figure provide a basic instructions for constraint creation.

Figure 4.17: Constrain Tab of Product Family Configuration Layout Application

Below the instructions from the Figure are expanded upon in more detail.

1. Select objects to be constrained by highlighting the desired items in the list box(es).

The user can change the category of the list to find items from different categories.

The Required Pairs and Disallowed pairs require the user to highlight an object from
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both Object 1 and 2 list boxes. The “Required Components” constraint requires only

1 object per constraint and when selected the Object 2 list box is disabled establishing

to the user that the object highlighted in the Object 1 list box is the object to be

constrained.

2. Select the constraint from the list and click “Add Constraint”. When the constraint

is changed in the “Select Constraint” box, the list box to the right will also change

to display the constraints of that type that already exist. When ”Add Constraint” is

clicked, the corresponding constraint is added to the list.

3. This list box display already defined constraints. Changing the item in the drop-

down menu allows the user to choose the type of constraints previously defined.

Constraints can be deleted by highlighting a constraint and clicking the delete button

(B).

The goal of this tab was to provide users with as much control as possible in defining

configuration constraints but disallowing invalid combinations of constraints. An object

that appears in a Required Component constraint is not allowed to appear in any other

constraint because it may disallow a component from appearing in any product. An

additional feature of this tab is that as constraints are add/removed, the “Constrained #”

in the Statistics panel is constantly updated to reflect the effects of the current set of

constraints. Testing this feature with a product family containing 22 components and 8

configuration options resulted in 0.75 second computation time to determine the effects of

the constraints. This time may vary depending on the number of components,

configuration options and constraints defined. This provides the user with instant feedback

on design decisions.
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4.3.5 Hierarchy

The ”Hierarchy” tab performs the simple task of allowing the user to choose a

hierarchical order for the configuration categories and plot the hierarchy after constraints

on combinations have been applied. Figure 4.18 shows the Hierarchy tab with a hierarchy

plotted. Whenever configuration constraints are changed that involve configuration

options, the Hierarchy must be replotted to display the correct hierarchy as well as any

time the hierarchy is changed. Algorithms 4.1 and 4.2 are also performed to reflect the

new ordering of the configuration categories.

Figure 4.18: Hierarchy Tab of Product Family Configuration Layout Application

This tab only has a few components since a large portion of it is used to display the plot.

It is important to note that any time the hierarchy is regorganized, product configurations

will have to be re-selected. This will be addressed further in section 4.3.6. It’s basic features
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are:

A. The list of configuration categories in their hierarchy order, where the hierarchy is in

descending order. The hierarchy can be plotted by clicking the ”Plot Hierarchy”

button.

B. This is the plot of the configuration hierarchy. The plot in this figure is a hierarchy that

has had constraints applied to the configuration options.

C. These up and down arrows are used to re-order the hierarchy if the designer desires.

To re-order, highlight a Category and click the up or down arrow until the desired

position is reached.

While this tab is simple it provides with the ability to assign levels of importance to

configuration categories and the plot provides a good visual aide to see the affects of

constraints.

4.3.6 Specify

The ”Specify” tab is the user is able to start defining the products that will make up the

product family and full effects of the configuration constraints. The user is able to name a

product and decide what configurations the product is produced in and which components

and features the product contains. This tab also allows users to define connections between

components which can be noted by the designer during the physical design process. Figure

4.19 presents the interface for this part of the program.
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Figure 4.19: Specify Tab of Product Family Configuration Layout Application

There is a number of parts to this and for the most part there is no proper order as

products can be in multiple steps of development. The features will be presented in the

basic order of defining a product and component connections.

A. This Field allows users to create a product and define is name. Once the name is entered

the user may press ”Enter” on the keyboard or click the Green ”Check Mark”. A

product can be deleted by selecting the product from the Drop down menu in (B) and

clicking the Red ”X”.

B. This drop-down menu allows the user to select the product being configured and view

its current configuration. When a new product is created in (A) the new product is

automatically added to the list.

C. This table contains the available configurations to the product and allows the user to
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select which configurations each individual product will be available in. If a

configuration is not allowed to be selected based on the products selected

components the program will disallow selection. It should also be noted that the

number of products in the Statistics panel is the sum of the number of configurations

each product is available in.

D. These arrow buttons are used to add and remove components from a product

definition. The right arrow takes the highlighted component from the Available

Components list and Adds it to the Selected Component list. The Left Arrow

removes the highlighted component from the Selected components list and adds it to

the Available components list.

E. The Available Components list shows the components available to add to a product

after constraints have been applied. Any time a configuration selected or a component

is added or removed from a product the configuration of the product is checked versus

the constraints and the Available component list is adjusted so that only components

that will make a feasible product can be added. Additionally components connected

via Required Pairs are automatically added to the selected components. This ensures

the user is only able to create feasible products from the configuration constraints.

F. The Selected Components list is the list of components the product currently contains.

Components can be added or removed using the Add/Remove component buttons

from D. Every a new product is created the selected components for the product

will automatically contain any and all components from the ”Required Components”

constraint

G. This plot displays the components the product being defined contains. This plot adjusts

as changes are made to the product.

H. This area allows the user to define constraints between components. While these
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connections apply to the entire product family, they only exist in a product the two

components being connected appear in the same product. These will allow the user

to note connections for detail design. Table 4.7 presents the available Types and

connections available in the program.

The Available Components list and Configurations list are adjust to remove components

and configurations that would create infeasible products based on the Algorithm 4.3 and the

methods presented in Section 4.2.1.4. Where everytime a component is added, the relevant

group of objects is checked to determine whether components are required to be added with

it and objects that may not appear with that object in a product.

Table 4.7: Connection Type in Product Family Configuration Layout Application

Type Connection

Rigid

Bolt
Weld

Adhesive
Rivet
Strap

Kinematic

Pin
Hinge
Slider

Cylindrical

Soft

Electrical
Fluid

Thermal
Information

Since the program constantly tracks the number of products made the user is able to

create the number of products desired. The ability to change product definitions and add

more products at any time will greatly aide designers when attempting to develop multiple

products initially and to later go back and expand the product family by adding more

products. While the user is able to go back and make changes at any time to the

configuration constraints, any time a constraint is added/deleted or a new configuration

category is defined the product configurations and selected products must be redone. This
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is because changes in constraints can radically change product feasibility and make a

feasible product, infeasible. When a new configuration option or category is added more

options are available, but the previous options no longer exist since one option from each

configuration category must be chosen. This ensures there is no possibility for an

infeasible product to be defined.

4.3.7 Layout

The Layout tab is the final step of the product family generation process. In this tab

the user is able to define layout constraints from Table 3.6 to the components of a product

family and determine whether the layout desired by the user is feasible. Figure 4.20

presents the Layout tab. When the desired constraints are added the will click the

”Layout” button and the operation for setting up the Simplex calculation from Section

4.2.2.1 is performed.
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Figure 4.20: Layout Tab of Product Family Configuration Layout Application

The interface of this tab allows the user to easily define layout constraints on

components, both relative and global constraints. Users can view the defined constraints

and delete constraints that create an undesirable layout. A basic overview of the parts of

the tab is provided below.

A. This portion of the tab allows the user to define layout constraints for components

within the product family. The constraints available are defined in Table 3.6. Some

constraints require one component for the input and other require two. To guide the

user the ”Component B” , ”X”, and ”Y” fields are disabled or enabled based on the

requirements of the selected constraints to ensure easy constraint definition.

Constraints can then be added with the Green ”Checkmark” button.

B. This list box contains the all of the currently defined constraints. Constraints can
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deleted by highlighting the chosen constraint in the Constraint list in B and clicking

the Red ”X” from A.

C. This button is used to compile the constraints, perform the simplex optimization

process, and plot the component layout. Component overlap is also checked at this

stage and is indicated in the Statistics panel (E). However the program will show an

error and not proceed to the optimization process if a fascia has not been chosen for

each component. Computation times on the layout process are often less than a

second. Testing on layouts of 22 components has had computation times in the 0.15

to 0.25 second range.

D. This plot contains the layout of the components in the product family after constraints

have been applied. In Figure 4.20 the layout is just an example for the layout for a

series of components between 2 fascias.

E. This field displays the results of the overlap check between the components in the

product family. It is important to note that overlap is checked for each individual

product rather than all components in the product family which is shown in the plot

(D). This is because components can occupy the same location in the product family

as long as they do not appear in the same product. This ensures that components are

able to have the same location in every product they are present in but not require

empty spaces to be present in products they do not.

F. The white region in which the yellow components are laid out is the fascia of the

product.

The overlap process in the program follows the process presented in Algorithm 3.1. The

”Layout” field in the Statistics panel has 3 states (Test Required, All Feasible, Overlaps

Found). The ”Test Required” state is the default state and only changes when the ”Layout”

button is clicked in the Layout tab and the layouts are generated and overlap checked.
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When checked if overlap is detected the field will display ”Overlaps Found” if not, it will

display ”All Feasible”. From these states if a change is made to the components, fascias, or

constraints the field will revert back to ”Test Required”. Figure 4.21 displays a flow chart

of the basic overlap check process.

Figure 4.21: Flow Chart of Overlap Check

Additionally when overlaps are detected a dialog box pops up and displays the products

in which the overlaps occur. An example of this window is presented in Figure 4.22.

Knowing which products the overlap occurs allows the user to look at the products in the

next tab, Results, and determine which components are overlapping.
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Figure 4.22: Overlap Notification Window

4.3.8 Results

The Results tab is the final tab in the program and allows the user to review the products

that have been defined in the product family generation process. The user is shown the

components each product contains, products dimensions and locations, the configurations

selected for the product, and which, if any, components overlap. This final tab is presented

in Figure 4.23. Since this tab is only for the user to view products and layouts, there is only

a single object for the user to interact with. Below is a brief overview of the elements in

this tab.

A. This drop down list is used to select between the products defined by the user. When

a product is selected the rest of the objects in the tab are refreshed to reflect the

definition of the product.

B. This area displays the components contained within the selected product, their

dimensions and location in the product layout. This provides the details of the

layout process.

C. This list box contains the configurations that the user decided the product will be

available in. Since the statistics bar does not indicate the number of configurations

for each product.

D. This lists the components that overlap within this particular product. The product in

this figure contains an overlap between components ”Comp3” and ”Comp1”.
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E. This is the plot of the layout for the product selected. Only components this product

contains appear on this plot providing user with an understanding of the the layout

of each particular product.

Figure 4.23: Results Tab of Product Family Configuration Layout Application

Since the plot in the Layout tab contains all components in the product family it can be

difficult to understand the layouts of the individual products. Since this product contains a

pair of overlapped components a short overview of the overlap checking process is provided

in the dashed boxes. Once the overlapped components have been identified the user can

follow the procedure outline in the flowchart from Figure 4.21.

4.3.9 Summary

In this section the software developed for this thesis was presented and and overview

provided for each part of the program. This provided the general order and work flow of
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the program for ease of integration into the work flow of the user. The figures for this

section only contained general inputs to demonstrate the different parts, in the next section

the software is used to demonstrate the generation of a coffeemaker product family.

4.4 Coffeemaker Example

In this section an example of this programs application to the generation of a

coffeemaker product family will be presented. This is the same coffeemaker product

family example from Chapter 3. This will show how each part for the previous

coffeemaker example carries over into this application. The example will present the

step-by-step process for the generation of this product family. In this example each of the

individual tabs of the program will be worked through and the final results shared. It

should be noted that this Example does not define all the components that comprise a

coffeemaker such as housings, water tank, heater, filter tray, etc. These components do not

effect the product configuration process because they are common to every coffeemaker

model. Including these components would clutter the tabs of the user interface and

artificially inflate the unconstrained number of combinations.

4.4.1 Define Parts of Product Family

In the define tab all of the information about the different components, configurations

and fascia is defined. The information for the components, configurations, and fascia is

displayed in Tables 4.8, 4.9, and 4.10.
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Table 4.8: Dimensions of Coffeemaker Component

Components Dimensions (mm) Fascia Choice
LCD Clock (60,20) Top

Power Button (20,20) Bottom
Set Hour (10,10) Top

Set Minute (10,10) Top
AM/PM Set (5,5) Top

Brew-Delay Set (10,10) Top
Temp Control (10,10) Top

Brew Strength Btn (7,7) Top
1 - 4 Cup Btn (7,7) Top

Table 4.9: Configuration Options for Coffeemaker Product Family

Configuration Category Configurations Options

Bean Grinder
w/ Grinder
w/o Grinder

Single Cup Module
w/ Single Cup

w/o Single Cup

Table 4.10: Dimensions and Location of Coffeemaker Fascia

Fascias Dimensions (mm) Location (X, Y)
Top (150,100) (0,130)

Bottom (150,30) (0,0)

The data for these was entered into the program using the information for adding objects

to the product family presented in Section 4.3. This resulted in a defined tab with the

following fields and available options in the dropdown menus presented in Figure 4.24.

This shows what all the fields will look like. Notice the Statistics fields have updated with

the addition of these to the program.
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Figure 4.24: Define Tab for Example

The next step is to define constraints on component combinations.

4.4.2 Constrain Component and Configuration Combinations

Going on to the the Constrain tab to create the configuration constraints on the product

family. The basic procedure for the creation of configuration constraints from Section

4.3 is followed. Figure 4.25 shows how the process for the creation of the disallowed pair

constraint of (Single Cup, 1−4CupBtn). Also notice how with the addition of constraints

the ”Constrained # ” in the statistics panel has updated.
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Figure 4.25: Constrain Tab for Example

This same procedure for constraint creation in the program was used for all constraints

in the product family. Figure 4.26 displays all of the configurations created for the product

family. The statistics panel in Figure 4.25 represents the results of all of these.
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Figure 4.26: Configuration constraints added: (a) Required Components, (b) Required
Pairs, (c) Disallowed Pairs

This tab showed the ease of adding configuration constraints through this program. The

next step is to view the hierarchy of the configurations.

4.4.3 View Hierarchy

The Configuration hierarchy is defined in this tab. For this product family it was decided

that the Single Cup option would be the higher Category in the hierarchy. Figure 4.27

presents the Hierarchy tab for the coffeemaker product family. Notice how the ordering

in the list box matches the ordering of the categories in the plot. Since the order that the

configuration categories were entered in the Define tab as the desired hierarchy order, no

other changes need to be made before clicking plot.
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Figure 4.27: Hierarchy Example

4.4.4 Specify Products

It is now time to star defining products for this product family. The designer in this case

chose to have three levels of products. To start with the designer decided to have a bare

minimum coffeemaker. This resulted in no components besides the required components

being added, and the selection from the possible configurations being the minimum. Figure

4.28 presents the specification for the ”Basic” product developed.
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Figure 4.28: ”Basic” Coffeemaker Specification

Figure 4.28 points out the main parts of the product and also highlights connections that

have been defined for the product family. Two more products have also been developed

and are shown in Figure 4.29. These are the ”Special” (top half of figure) and ”Ultimate”

(bottom half of figure) products. where the designer decided they wanted to attempt to

create more variety in the ”Special” than the ”Ultimate” and has chosen 2 configurations

for production. This could be a subjective decision or it could be a decision to attempt to

reach a market section that had previously not been reached.
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Figure 4.29: ”Special” and ”Ultimate” Coffeemaker Specification
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This tab configured the products to be made in this product family. Out of the 40

possible products, 4 were chosen for production. Also notice that the connections box in

each screen capture from Figures 4.28 and 4.29 contains the same contents regardless of

the components each product contains. This is used to show all connections in the product

family for the user to reference during later design stages. The next step is to determine the

layouts of these products.

4.4.5 Layout Components

Now is time to layout the components within this product family. The layout decisions

are a combination of the designers judgment on desired layout and usability of the product.

While this won’t result in a necessarily aesthetically pleasing layout it would allow the

designer to see whether or not the the desired layout of components is feasible. Figure 4.30

lists the layout constraints defined for this product family.

Figure 4.30: Layout Constraints
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These constraints result in a basic layout which appears in Figure 4.31. This shows that

the designers basic layout is feasible. The figure also shows how a constraint appears prior

to to be added and when a constraint is added to the list of constraints. Arrows are used

to point out the labels on the plot as they may be difficult to read on the plot. Notice that

both the Top and Bottom fascia are plotted in this figure. Showing the locations for every

component in the product family. The ”Pwr Button” is the only component in the bottom

fascia because it is the only component that as to be specified to be present in the bottom

fascia. This means the ”Basic” model only makes use of the Bottom fascia and will not

require components needed to configure a Top fascia.

Figure 4.31: Coffeemaker Product Family Layout

This layout represents the locations of components for any product which they appear

in. Determining common locations of components throughout the product family. Since all
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products are defined and the layouts are feasible, the product family has been successfully

developed the final step is to review the products and their layouts.

4.4.6 Review Results of Generation

The final step of the product family generation process is to review the products which

have been defined and their layouts. Figure 4.32 presents the result for the generation of

the ”Basic” coffeemaker. Note that the overlap box is empty since there are no overlaps in

this product or the product family as a whole.

Figure 4.32: ”Basic” Coffeemaker Results

Now that the results for a single product in the coffeemaker product family has been

explored. an understanding of the results for the other two products can be seen. Figure

4.33 shows the results for the (a) ”Special” and (b) ”Ultimate” products. Notice the

differences in the components each product contains, and their plots.
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Figure 4.33: (a) ”Special” and (b) ”Ultimate” Coffeemaker Results

This final step in the product family generation presents the results of the previous tabs
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and allows the designer to see the individual products that have been designed and decided

if any changes should be made.

4.5 Summary

In this section the software developed for this thesis was presented along with its

background, data structures, processes, work flow, and an example of its use. The data

structures provide insight into how the data flows throughout the program and which data

should organized for ease of access. The processes provide background as to how the set

theory and linear programming portions of the methods presented in this thesis can be

implemented into code. Pseudo code was provided to provide insight into the

implementation. An overview of the GUI of the program was presented to show the

capabilities and instruction to its use. Finally the example demonstrated the steps for the

generation of a simple coffeemaker product family. This helped provide instructions for

the use of the program on a simple product family.

The work of this chapter helps to back up the research questions and hypotheses

presented in Chapter 1. This first research question on capturing spatial relationships prior

to embodiment design is greatly aided in this chapter. The spatial grammar presented in

Table 3.6 is used in the software created to present the work of this thesis. The use of

these layout constraints in the software allow the user to automatically generate

component layouts from a small number of simple constraints. This shows the feasibility

of the desired layout prior to full on physical design. The users ability to create grammar

based constraints and instantly see the results of the constraints allows for faster

conceptual design.

The second research question of determining the effects of design decisions early on

and its hypothesis is also addressed by the software as well. The software developed

shows the effects of configuration constraints on the number of available products

instantly. This feedback allows designers to better understand how each constraint effects
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the overall product family. The ability to create only feasible products is a great aid in

allowing the designer to shape product families. In the area of component layout, the

ability for the designer to create layout constraints and automatically see the results on

both the overall product family but the individual products provides insight into the effects

of desired layout and physical design during the conceptual design stage.

The work of this chapter presented how the methods presented in Chapter 3 could be

implemented into a software application. This software helps to address the research

questions proposed in 1. The next chapter presents case studies of the methods presented

in this thesis using the software presented in this chapter. This chapter should provide

insight into how the larger product families in the next chapter are set up and configured.
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CHAPTER 5

CASE STUDIES: AUTOMOTIVE INTERFACES

The previous chapter presented the method and an example of the application. In this

chapter a case study for the user interface of a car. A car provides sufficient configuration

design space and tight spatial constraints to demonstrate the advantage of this method and

address the second research question. This will show the effects of configuration design

decisions on spatial layout as a matter of product family design. A car has multiple user

interface areas, but for this case study the focus will be on the layout of indicators, dials,

lights, buttons, and displays within the instrument panel and center console of the vehicle.

Car manufacturers usually release multiple versions of the same vehicle with varying

features and options to reach a different market sects. These case studies will provide

demonstrate the generation process for a large number of possible combinations, which

will be constrained to achieve the desired variety. This chapter will also demonstrate the

methods presented in this thesis applied to different ends of the configuration design

spectrum. Where the Center Console is often able to have larger amounts of variety since

very few of its elements are crucial for vehicle operation and are more likely to vary to

meet the desires of the user. While the Instrument panel is much more constrained in the

elements that must be present in each form of the vehicle and their layout for the user to

quickly and easily determine the information being displayed. To complement these case

studies, reasons and explanations from the viewpoint of a theoretical designer are also

included. This will proved examples of how the different constraints and user inputs can

be used and possible reasons as to why particular decisions were made.
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5.1 Center Console

The center console of a car usually houses elements for both the radio/stereo system and

climate control of the vehicle. There can be a large amount of variation in the center console

to allow the manufacturer to reach different priced points and create multiple variations of

the same car model. There are often many components in each of center consoles but may

also be few depending on the variety the designer is attempting to create within the product

family. The stereo system and the climate controls are important aspects of the vehicle

because they’re only purpose is user comfort and enjoyment. This means the layout of

these systems are important to allow the user to change settings with little effort and effect

of the drivers ability to safely navigate the road. This case study presents the layout of the

center console for multiple versions of the same automobile in the form factor of a 2-door

sports car. In the later stages of the configuration process some of the decisions are made

based on attempting to reach different types of consumer for this vehicle category. This

case study will be presented in the flow of the software presented in the previous chapter.

Starting with definition of the components and configuration options in the next section.

5.1.1 Define Components and Configuration options

In this section the components and configuration options for the center console

product family is presented. For the layout portion of this product family there are two

layout locations, the Entertainment Region and the Climate Control Region. In this

product family there are 22 components between the entertainment and climate control

regions of the center console. The components are defined along with their dimensions

and fascia selection in Table 5.1.
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Table 5.1: Dimensions of Center Console Components

Components Dimensions (mm) Fascia Choice
Volume Dial (30,30) Entertainment Region
Channel Dial (30,30) Entertainment Region
AM/FM Btn (40,20) Entertainment Region
Sound Btn (40,20) Entertainment Region
CD Slot (125,7) Entertainment Region

Insert/Eject Btn (15,7) Entertainment Region
Touch LCD w/ Integrated CD Slot (150,85) Entertainment Region

Favorite Stations Btns (150,15) Entertainment Region
CD Btn (40,20) Entertainment Region

Temperature Dial (30,30) Climate Control Region
A/C on/off (40,20) Climate Control Region

A/C Vent Selector (40,20) Climate Control Region
Rear Window Defroster Btn (40,20) Climate Control Region

Recirculate Air Btn (40,20) Climate Control Region
Max A/C Btn (40,20) Climate Control Region
Display Btn (40,20) Entertainment Region

Seek Btn (20,20) Entertainment Region
Track Btn (20,20) Entertainment Region

Basic Radio LCD (150,40) Entertainment Region
A/C Power Dial (30,30) Climate Control Region

Auxilary Audio Port (5,5) Entertainment Region
Menu Btn (40,20) Entertainment Region

Most of the Components are self explanatory but a couple require further explanation.

The Sound Btn is used to access the menu to adjust audio settings such as bass, treble,

fade, and balance. The Menu Btn allows the user to access other radio settings such as

Bluetooth, Backup Camera or other Vehicle information. The Basic Radio LCD is the

standard monochrome LCD that displays time, station and other basic information, while

the LCD w/ Integrated slot is a full color touch screen LCD screen.

This product family also has 3 configuration categories which have atleast 2

configuration options. Table 5.2 defines the configuration category and options present in

this product family. These represent different types of features that are desirable and

maybe used to create variety among different versions of the same car.
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Table 5.2: Configuration Options for Center Console Product Family

Configuration Category Configurations Options

Backup Camera
w/ Backup Cam

w/o Backup Cam

Auto Climate Control
w/ Thermostat

w/o Thermostat

Auto Climate Control

w/ Sat Radio
w/o Sat Radio

w/ Sat Radio +Bluetooth
w/o Sat Radio + Bluetooth

For clarification the inclusion of the ”Thermostat” provides the ability for the user to set

a desired temperature rather than having to balance the A/C Power with the Temperature

control dial and cannot be set to a specific temperature. Finally the the different regions of

the fascia are defined. As mentioned previously this family has 2 different layout region,

Entertainment and Climate Control. The Fascia regions, along with their Dimensions and

Global coordinates from the lower left corner are presented in Table 5.3.

Table 5.3: Dimensions and Location of Center Console Fascia

Fascias Dimensions (mm) Location (X, Y)
Climate Control Region (200,70) (0,0)
Entertainment Region (200,150) (0,70)

The component, configuration, and fascia elements have been defined and are able to

be entered into the Define tab of the software presented in the previous chapter. This is

presented in Figure 5.1.
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Figure 5.1: Define Tab for the Car Center Console Case Study

Notice that most of the elements defined in the previous tables are able to be seen the

number of components, configuration options and fascia’s listed in the Statistics panel

reflect this. The number of Unconstrained combinations in the statistics panel, 67 million,

should also be noted as this is a large number of possible combinations that will be

reduced when configuration constraints are defined. This section defined the components

and configurations that will make up the product family. In the next section constraints are

defined to reduce the number of possible combinations of components and configurations

to a more manageable number.

5.1.2 Constrain Center Console Combinations

In the previous section the different aspects of the center console were defined and the

scale of the configuration problem was revealed in the number of unconstrained

combinations of components and configuration options. In this section, configuration
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constraints are defined to reduce the total number of possible combinations. These

constraints are based on designer preference and Requirements for the product family to

perform its basic functions. The constraints, Required Components, Required Pairs, and

Disallowesd Pairs, were presented in previous chapters. To aid in understanding the use of

these constraints, explanations and reasonings for some of the constraints will be

provided. The first defined constraint is the Required Components. These components are

defined as universal to all models and sometimes required to perform the base functions of

the product. Table 5.4 presents the Required Components.

Table 5.4: Center Console Required Components

Required Components
A/C Vent selector

A/C on/off
Channel Dial

Rear Window Defroster Btn
Recirculate Air Btn

Volume Dial

For this product family, 6, components were designated as mandatory. The designer

decided that the user should easily be able to change the station or radio volume without

having to take their eyes of the road in all models. This requires a tactile input mechanism.

The designer chose to make the Volume dial and Channel dial mandatory to accomplish

this. These provide a tactile input that the user can find without looking. While these

may not be necessary if the Automobile has the LCD Touch Screen, the designer believes

having physical dials will improve the user experience. The designer required the A/C

Vent Selector, on/off, and Recirculate Air Button to provide all models some form of A/C.

The Rear Window Defroster Btn was included as a functional requirement as the designer

would like all models to be able to defrost the rear window. The reasons for requiring these

components varies from Safety to Comfort to Ease-of-use. These are all factors a designer

may consider when configuring the product family.

The next constraint to be addressed is the Required Pairs constraint. These required
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components to always appear together in a product and the reasons behind them can vary.

Table 5.5 presents the Required Pair constraints. Where each row contains a pair of

components/configuration options.

Table 5.5: Center Console Required Pairs

Required Pairs
AM/FM Btn - Basic Radio LCD

CD Slot - Basic Radio LCD
Sound Button - Basic Radio LCD

Seek Btn - TrackBtn
TrackBtn - Basic Radio LCD

w/ Backup Cam - Touch LCD w/ Integrated CD slot
Touch LCD w/ Integrated CD slot - w/ Thermostat

Basic Radio LCD - Menu Button
w/ Backup Cam - w/ Thermostat

Temperature Dial - A/C Power Dial
Insert/Eject Button - CD Slot

In this product family, 11 Required pairs were defined. Since the Basic Radio LCD

can only display information, it requires other components to perform its basic functions

as a radio. To ensure that Basic Radio LCD meets its minimal functional requirements

the designer decided that the AM/FM Btn, CD Slot, Sound Button, Track, Seek and Menu

Button need to be included with the Basic LCD. To create value in the models that may

contain the Touch LCD the designer decided that Every model that contains the Touch LCD

will have a Backup Camera and a Thermostat for temperature control. The constraints not

discussed will have similar reasonings.

The final configuration constraint is the Disallowed Pairs which are pairs of objects that

may not be present within the same product. Table 5.6 presents the Disallowed Pairs where

each row represents a pair of objects.
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Table 5.6: Center Console Disallowed Pairs

Disallowed Pairs
Favorite Stations Btns - Touch LCD w/ Integrated CD slot

AM/FM Btn - Touch LCD w/ Integrated CD slot
Insert/Eject Button - Touch LCD w/ Integrated CD slot
Basic Radio LCD - Touch LCD w/ Integrated CD slot

Display Btn - Touch LCD w/ Integrated CD slot
Temperature Dial - Touch LCD w/ Integrated CD slot

CD Btn - Touch LCD w/ Integrated CD slot
CD Slot - Touch LCD w/ Integrated CD slot

w/ Backup Cam - w/o Thermostat
w/o Backup Cam - w/ Thermostat

w/ Backup Cam - w/o Sat Radio
w/ Backup Cam - w/o Sat Radio + Bluetooth

Menu Button - LCD w/ Integrated CD slot
Touch LCD w/ Integrated CD slot - Max AC Btn

w/ Thermostat - Temperature Dial
w/ Thermostat - A/C Power Dial

The 16 Disallowed Pairs help to reduce the number of combinations. The Touch LCD

does not require as many secondary input devices as the Basic LCD since the user is able

to interact with the touch screen directly. For this reason the Touch LCD is listed with a

number of components that the LCD will be able to just display buttons for. This will free

up room in the Entertainment Region of the Fascia since the Touch LCD has a larger foot

print than the Basic LCD. Also notice there are a number of constraints containing only

configuration options. These are created by the designer to achieve desired levels of

features when the products are defined. This creates a great reduction in possible

combinations and allows the designer to better defined the desired variety.

The results of the constraints defined for the product family reveal a large reduction in

the total number of combinations. Figure 5.2 displays the statistics panel after the

application of the constraints presented above.
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Figure 5.2: Statistics after Configuration Constraints have been defined for the Center

Console product family

The reduction from 67,000,00 to 516 combination is the result. This results in a much

more manageable set of possible products and only allows products that meet the

designers requirements to be produced. This section presented the configuration

constraints defined for the product family, the reasons behind them and their effects on the

total number of possible combinations available. This show the users ability to greatly

reduce a large number of combinations with basic constraints. The next section will

present the configuration hierarchy for the product family.

5.1.3 Center Console Hierarchy

This section will present the Hierarchy for the Configuration Categories for the Center

Console product family. The hierarchy will be presented and the designers possible reason

discussed. The hierarchy for this product family has 3 levels and while the hierarchy order

may not greatly effect the outcome of the product family it may allow the designer to

better organize the developed products and better illustrate the constrained variety in

configuration options. The different Configuration Categories were presented in Table 5.2.

Figure 5.3 presents the hierarchy that was defined for the Center Console product family.
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Figure 5.3: Hierarchy of Configuration options for Center Console Product Family

Notice that while the Backup Camera and Thermostat Category have the same effect

on the plot of the hierarchy there was a reason behind the ordering. In this case a designer

may have decided that the Backup Camera will rank higher than the thermostat because

the inclusion of the backup camera means that the Touch LCD must be included in a

product and will have a larger effect on the Entertainment region than the Climate Control

Region. The lowest level of the hierarchy could have been decided because the

configuration options at this level will not effect the overall user interface and have little

effect on the physical design. While the hierarchy for these configuration categories only

contains 3 levels there can be very specific reasons for their ordering. The next section

will define feasible products from the components and configuration options based on the

defined constraints.
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5.1.4 Define Products

In this section a set of products will be defined from the components and

configurations remaining after constraints are applied. The product definition process will

include the Name of the product, its components and its available configurations. Each

product will also be given a brief summary to explain where it fits into the product family

from the perspective of a theoretical Designer. The designers decisions will be based on

defining products to reach different different levels of drivers of a 2-door sports car as

previously mentioned. For this product family 6 total products were defined and 4 base

sets of components. The products are named ”Basic”, ”Premium”, ”Grand Touring”, and

”Speed” models. The ”Basic” and ”Grand Touring” models were given 2 configurations.

Table 5.7 presents components lists for the products and Table 5.8 presents the selected

configurations for each model, fully defining all 6 products. the columns of each Table

represent a product and the rows represent a component or configuration.
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Table 5.7: Center Console Product Definition
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Volume Dial X X X X
Channel Dial X X X X
AM/FM Btn X X X

Sound Btn X X X
CD Slot X X X

Insert/Eject Btn X X X
LCD w/ Integrated CD Slot X

Favorite Stations Btns X
CD Btn X X

Temperature Dial X X
A/C on/off X X X X

A/C Vent Selector X X X X
Rear Window Defroster Btn X X X X

Recirculate Air Btn X X X X
Max A/C Btn X

Display Btn X
Seek Btn X X X

Track Btn X X X
Basic Radio LCD X X X

A/C Power Dial X X
Auxilary Audio Port X X

Menu Btn X X X

Notice in the tables 5.7 that each model has a unique combination of components.

Each model was used to reach a different type of user and driver to fit in with different

overall vehicle configurations. The ”Basic” Model would be fitted into the base version

of a vehicle, with the goal to reach a lower price point by minimizing the Radio and A/C

features. This model would likely also feature a basic cloth interior, less powerful engine,

and basic exterior trim. The ”Premium” model would be a slightly upgraded version of

the ”Basic” model, aimed at consumers with a slightly larger budget and has more Radio

and A/C features. This model would likely include a leather interior and additional exterior

trim, but the same engine as the ”Basic” model. The ”Grand Touring” model would be a
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fully upgraded version of the car, featuring the most advanced radio and climate control

features. This model would likely include a better looking leather interior, upgraded sound

system, more powerful engine, and ”faster” looking exterior trim. Providing the user with a

more comfortable and exciting drive. Finally the ”Speed” model would likely be a stripped

down version of the car meant for speed and the track. The purpose of this model is to

minimize weight to maximize speed. This means removing as many non-necessary features

as possible. This would include light racing seats, a nearly bare interior, the most powerful

engine in the line, and exterior trim designed for the best aerodynamics. Each of the models

developed in this product family is meant to reach distinct market sects and ideal users,

from the budget concerned to the comfort and ride concerned to drivers concerned about

the cars track day performance. The different component combinations are parts of the

entire vehicle that allow the manufacturer reach specific markets.

Table 5.8: Product Configuration Selection

Configurations Ba
sic

Pr
em
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w/ Backup Cam - w/ Thermostat - w/ Sat Radio X
w/ Backup Cam - w/ Thermostat - w/Sat Radio + Bluetooth X

w/o Backup Cam - w/o Thermostat - w/ Sat Radio X
w/o Backup Cam - w/o Thermostat - w/o Sat Radio X

w/o Backup Cam - w/o Thermostat - w/Sat Radio + Bluetooth
w/o Backup Cam - w/o Thermostat - w/o Sat Radio + Bluetooth X X

Table 5.8 shows the selected configurations for each model. Notice that the ”Grand

Touring” model is the only model with a backup camera because it is the only model with

the LCD Touch Screen. Notice that the rest of the models have selected configurations

based on the different market described above. The products defined here will make up the

entire product family. The next step of the process is to define layout constraints for the

products and layout the components.
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5.1.5 Center Console Component Layout

In this section constraints for the layout of the components for the center console

product family. The fascia each component will appear in was defined in the Define stage.

The constraints are defined from the set of layout constraints defined in Table 3.6. Since

this is for the layout of user interface components for a vehicle much of the layout will be

for user to easily interact with the desired systems while minimizing distraction from the

road. This means a logical component layout must be created so the user can easily find

components. To provide a basic layout for all components in the product family 60

constraints were defined. These are presented in Table 5.9. Each constraint cannot be

discussed individually due to the large number of them. However, a few of the constraints

will be discussed to provide insight into the reasons behind some of the layout constraints.

Table 5.9: Center Console Layout Constraints

Object A Constraint Object B/ Location
Basic Radio LCD - X centered in fascia -

LCD w/ Integrated CD slot - X centered in fascia -
Volume Dial - below - LCD w/ Integrated CD slot
Volume Dial - below - Basic Radio LCD
Channel Dial - below - Basic Radio LCD
Channel Dial - below - LCD w/ Integrated CD slot
Channel Dial - right-aligned - LCD w/ Integrated CD slot
Volume Dial - left-aligned - LCD w/ Integrated CD slot
Volume Dial - left-aligned - Basic Radio LCD
Channel Dial - right-aligned - Basic Radio LCD

Basic Radio LCD - Y-center aligned - LCD w/ Integrated CD slot
CD Slot - above - Basic Radio LCD
CD Slot - left-aligned - Basic Radio LCD
CD Slot - Y-center aligned - Insert/Eject Button
CD Slot - left-of - Insert/Eject Button

Basic Radio LCD - right-aligned - Insert/Eject Button
Favorite Stations Btns - X-center aligned - Basic Radio LCD
Favorite Stations Btns - above - Volume Dial
Favorite Stations Btns - above - Channel Dial
Favorite Stations Btns - below - Basic Radio LCD

Table Continued on Next Page
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Continuation of Table 5.9
Object A Constraint Object B/ Location

AM/FM Btn - right-of - Volume Dial
AM/FM Btn - left-of - Channel Dial
AM/FM Btn - below - Favorite Stations Btns
Soundbutton - below - Favorite Stations Btns
Soundbutton - right-of - AM/FM Btn
Soundbutton - left-of - Channel Dial
Soundbutton - right-of - Volume Dial
Display Btn - right-aligned - Soundbutton
Display Btn - below - Soundbutton

CD Btn - left-aligned - AM/FM Btn
CD Btn - below - AM/FM Btn

LCD w/ Integrated CD slot - Vertical Center at Y - 170 mm
A/C Power Dial - left-aligned - Volume Dial

Temperature Dial - right-aligned - Channel Dial
Temperature Dial - Y-center aligned - A/C Power Dial
Temperature Dial - Y centered in fascia -

Max AC Btn - right-of - A/C Power Dial
Recirculate Air Btn - above - Max AC Btn
Recirculate Air Btn - right-aligned - Max AC Btn
Recirculate Air Btn - right-of - A/C Power Dial

Rear Window Defroster Btn - left-of - Max AC Btn
Rear Window Defroster Btn - right-of - A/C Power Dial

AC Vent selector - above - Rear Window Defroster Btn
AC Vent selector - left-aligned - Rear Window Defroster Btn
A/C Power Dial - bottom-aligned - Rear Window Defroster Btn
A/C Power Dial - bottom-aligned - Max AC Btn

AC on/off - X centered in fascia -
AC on/off - below - Rear Window Defroster Btn
AC on/off - below - Max AC Btn
Seek Btn - left-aligned - Soundbutton
TrackBtn - right-aligned - AM/FM Btn
TrackBtn - above - Favorite Stations Btns
Seek Btn - above - Favorite Stations Btns
TrackBtn - below - Basic Radio LCD
Seek Btn - below - Basic Radio LCD

Auxiliary Audio Port - top-aligned - Basic Radio LCD
Menu Button - right-of - Seek Btn
Menu Button - below - Basic Radio LCD
Menu Button - above - Favorite Stations Btns
Menu Button - right-aligned - Favorite Stations Btns

End of Table
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With there being 22 components and 60 constraints, that is about more than enough to

well constrain each component since most constraints have 2 components that is 4-5

constraints per component. This is enough to constrain each component in all four

directions and provide some additional fine tuning to the layout. Notice that LCD types

being centered in the X direction axis of the fascia. This is to keep the layout symmetrical

and provide a more aesthetically pleasing layout. The Channel and Volume dials are

Directly below the LCD with the Volume dial to the left of the Channel dial. This is to

provide an easy to understand interface and follow trends of other radio component

layouts so the user can easily learn the layout of this interface. The next step is to layout

the components based on the constraints. The software presented in the previous chapter

was used to layout the components. Figure 5.4 presents the layout of all of the

components in the product family. Notice the Entertainment Region on the top and the

Climate Control Region below. While there are components that overlap in this plot, the

overlapping components will never appear in the same product together. The next section

will look at each product individually.
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Figure 5.4: Center Console Product Family Full Layout

In this section layout constraints were defined and the components laid out. From this

the location of each component for the entire product family was found. The overlap check

found that this product family is feasible. The next section will examine the individual

products and their layouts.
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5.1.6 Review Products

In this section the products and their final layouts will be presented. The previous

sections of this case review have been the steps to create these products. This section will

just present the results. Tables 5.7 and 5.8 have already presented the product compositions

and product definitions. This review will present the component layouts and a table of the

final component locations. Figure 5.5 presents the layout of components for the ”Base”

model of the product family.

Figure 5.5: Center Console ”Base” Product Layout

Notice that all of the components listed for the product are included in the plot and that
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all of the constraints are satisfied. Figure 5.6 presents the ”Premium” model layout. Figure

5.7 presents the ”Grand Touring” model and Figure 5.8 presents the ”Speed” model. These

layouts reflect the component composition of the products and layout constraints of all of

the components in the product family. They also reflect the market each model is aimed

towards.

Figure 5.6: Center Console ”Premium” Product Layout
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Figure 5.7: Center Console ”Grand Touring” Product Layout
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Figure 5.8: Center Console ”Speed” Product Layout

These plots show the layouts of each of the final products. Notice that for each product

a component appears in, it is in the same location. This will allow for a simplified desight

process with fewer unique components since components can easily be interchanged or

not used. Finally Table 5.10 presents the calculated final X and Y coordinates for the

components along with their height and width.
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Table 5.10: Center Console Product Results

Component Width Height X Y
mm mm mm mm

Volume Dial 30 30 25 70
Channel Dial 30 30 145 70
AM/FM Btn 40 20 55 90
Soundbutton 40 20 95 90

CD Slot 125 7 25 190
Insert/Eject Button 15 7 160 190

LCD w/ Integrated CD slot 150 85 25 127.5
Favorite Stations Btns 150 15 25 110

CD Btn 40 20 55 70
Temperature Dial 30 30 145 20

AC on/off 40 20 80 0
AC Vent selector 40 20 55 50

Rear Window Defroster Btn 40 20 55 20
Recirculate Air Btn 40 20 95 50

Max AC Btn 40 20 95 20
Display Btn 40 20 95 70

Seek Btn 20 20 95 125
TrackBtn 20 20 75 125

Basic Radio LCD 150 40 25 150
A/C Power Dial 30 30 25 20

Auxiliary Audio Port 5 5 0 185
Menu Button 40 20 135 125

These coordinates would allow the user to take the coordinates from the software and

either directly into a their CAD program of choice or edit them to fit more detailed

aesthetic requirements. This case study allowed for the creation of 6 products and their

component layouts. The products were produced from a large number of components and

an even larger number of unconstrained components. From the other available component

combinations more products could possibly be created without having to re determine

component layouts.

This case study has presented the configuration and layout process for a user interface

that relies heavily on aesthetics and the users ability to interact with it, without causing a

major distraction. Most of the components could have been defined as optional since most

143



of the components are features to aid in the users comfort and enjoyment of the vehicle.

This allowed for more variation in the layout of the components. For the next case study

most of the components will be required and the layout will be more strict as the Instrument

panel is used to display critical vehicle information to the driver and must be able to be read

and understood at a glance.

5.2 Instrument Panel

In this case study the Instrument panel for a family of vehicles will be configured and

laid out. The Instrument panel houses a large number of components that provide the

driver with vital vehicle information, including vehicles speed and diagnostic information.

Due to the type of information and the amount of information the dashboard displays, it is

important that the driver be able to easily see and comprehend the information being

displayed. Variety in the instrument panel product family is created mostly through

configuration options. Instrument panels also pack a fairly large number of components

into a tight space creating an interesting layout challenge as well. The first step of the

configuration process is to define the components and configuration options for the

product family.

5.2.1 Define Instrument Panel

For this case, a basic list of common instrument panel components and configuration

types have been listed. This component list is based on observations from a few different

instrument panels and observations of current trends. Table 5.11 presents the set of

components for this product family. Notice that all of the components that commonly

appear in Instrument panel including various gauges and indicator lights. This results in a

total of 20 components. The measurements of these were averages based on the observed

instrument panels. A couple things to note are that the Multifunction LCD is a small LCD

screen that displays the Odometer, Trip information, mpg, and gear selected. While the
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Odometer, Trip Odometer, and Gear Indicator are only seven-segment displays. This can

replace the regular odometer, trip odometer and gear selection components in a product.

Table 5.11: Dimensions of Instrument Panel Components

Component Dimensions (mm) Fascia Choice
Speedometer (100,100) Primary
Tachometer (100,100) Primary
Odometer (25 ,7) Primary

Trip Odometer (15 ,7) Primary
Fuel Gauge (40 ,40) Primary

Left Turn Signal (10 ,10) Primary
Right Turn Signal (10 ,10) Primary

Engine Temp Guage (40 ,40) Primary
Battery Gauge (40 ,40) Primary
Gear Indicator (15 ,15) Primary

Low Fuel Indicator (10 ,7) Primary
High Beam Indicator (10 ,10) Primary
Seat Belt Indicator (7 ,10) Primary
Door Ajar Indicator (10 ,7) Primary
Oil Warning light (10 ,7) Primary

Battery Warning Light (10 ,7) Primary
Parking Break Light (10 ,10) Primary
Check Engine Light (10 ,9) Primary

ABS Light (10 ,10) Primary
Multifunction LCD (60 ,30) Primary

Since the instrument panel is used to display such important information there is little

room for variety in the form of components but variety can be created through the

configuration options selected. For this product family 2 configuration categories were

created. Table 5.12 presents the configuration categories and options. The ’Backlight’

category is used to select the type of backlight the Instrument panel will have for night

driving. The ”White” option is just a plain white light. The ”RGB LED” option gives the

user the ability to customize the backlight color and ”None” is no backlight. The

”Gauges” category is for the selection for the type gauges used in the products. The

Analog gauges are the standard needle gauges, and the Digital gauges are LCD versions of

the gauges. This will allow for a level of variety and customization even in the Instrument
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panel.

Table 5.12: Configuration Options for Instrument Panel Product Family

Configuration Category Configurations Options

Backlight
White

RGB LED
None

Gauges
Analog
Digital

The last required definition is the fascia for the product family. For this set of products

there will only be a single defined layout region. This is just labeled as ”Primary”. Table

5.13 presents the fascia for the insturment panel.

Table 5.13: Dimensions and Location of Instrument Panel Fascia

Fascias Dimensions (mm) Location (X, Y)
Primary (350,100) (0,0)

In this section the different components, configurations, and the fascia were defined for

the instrument panel product family. This helped show the various aspects that make up an

Instrument panel and how variety can be developed.

5.2.2 Constrain Instrument Panel Configurations

The next step of the configuration-layout process is to define constraints on

combinations of components and configurations. Instrument Panels present an interesting

case because many of the components in the product family will be required. This creates

difficulty in creating variety across different models. However, Configuration options and

some components have been added to create variety in this product family. The first

constraint is the Required Components constraint. This constraint has the most entries

because since many of the components are required for functional or safety reasons. Table

5.14 presents the required components for this product family.
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Table 5.14: Instrument Panel Required Components

Required Components
ABS Light

Battery Gauge
Battery Warning Light
Check Engine Light
Door Ajar Indicator
Engine Temp Gauge

Fuel Gauge
High Beam Indicator

Left Turn Signal
Low Fuel Indicator
Oil Warning Light

Parking Brake Light
Right Turn Signal
Seat Belt Indicator

Speedometer
Tachometer

Each of the required components are either required to fulfill the basic functional

requirement or provide vital safety or vehicle information to the driver. The next

constraint is the Required Pairs constraint. These will be used to meet the designers

requirements for components that must appear in a product together. These provide the

designer with the ability to better define some of the variety within this small product

family. Table 5.15 presents the Required Pair constraints.

Table 5.15: Instrument Panel Required Pairs

Required Pairs
Odometer - Trip Odometer

Gear Indicator - Odometer
None - Digital

Notice that the Odometer, Trip Odometer, and Gear Indicator are required to appear

together. This is because each performs a specific function required for the Instrument

Panel to function properly. However the set of them can also be replaced by the

Multifunction LCD. The Digital Gauges are required to go with None since the digital

gauges are LCD screens and will have built in backlights and can already be customized.
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The final constraint to be defined is the disallowed pairs constraint. Table 5.16 presents

the Disallowed Pairs for the instrument panel product family.

Table 5.16: Instrument Panel Disallowed Pairs

Disallowed Pairs
Odometer - Multifunction LCD

Gear Indicator - Multifunction LCD
None - Analog

Notice that The Odometer and Multifunction LCD are disallowed. This is because these

components will perform the same in whatever product they appear in. Also notice that the

Analog gauges are disallowed with None for the backlight. This is because the gauges

must have a backlight of some form. While the Digital gauges will not require a backlight,

the Analog gauges do. All of the constraints applied create a large effect on the number

of constrained configurations available. The reduction is from 6.2 million to 9 possible

products. While much of this reduction is due to the Required constraints the Required and

Disallowed pairs still played a significant role. Figure 5.9 presents the statistics panel for

of the product family after constraints have been applied.

Figure 5.9: Statistics after Configuration Constraints have been defined for the Instruements

Panel product family

This section presented the configuration constraints for this product family. While the

Required constraint create the largest effect on the possible products, the other constraints

help the designer create the desired variety within the product family. The next section will

examine the configuration hierarchy and explain the hierarchy ordering.
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5.2.3 Instrument Panel Hierarchy

In this section the hierarchy for the Instrument Panel. There are only 2 configuration

categories for this product family but the order of them can produce very different results.

Figure 5.10 presents the hierarchy.

Figure 5.10: Hierarchy of Configuration options for Instrument Product Family

Notice that for this hierarchy the gauge types were given priority over the backlight.

This decisions was made because the Gauge types directly effect what type of backlights

are available to the instrument panel. For this case, the difference between the Digital and

Analog gauges was large enough that it should be given priority over the backlights. This

section presented the configuration hierarchy for the Instrument Panel product family. This

provides insight into how the designer would like to organize the products with in this

family and aids in visualizing the differences in the products within the family.

149



5.2.4 Instrument Panel Product Definitions

In this section the products for the instrument panel product family will be be defined.

Since most of the components were defined as Required, there will be little difference

between the component composition of the products. The only difference in the

component composition will be whether a product has the Odometer, Trip Odometer, and

Gear indicator or the Multifunction LCD. Table 5.17 presents the products defined for this

case.

Table 5.17: Instrument Panel Product Definition

Component Ba
sic
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Speedometer X X X
Tachometer X X X

Odometer X
Trip Odometer X

Fuel Gauge X X X
Left Turn Signal X X X

Right Turn Signal X X X
Engine Temp Guage X X X

Battery Gauge X X X
Gear Indicator X

Low Fuel Indicator X X X
High Beam Indicator X X X

Seat Belt Indicator X X X
Door Ajar Indicator X X X

Oil Warning light X X X
Battery Warning Light X X X

Parking Break Light X X X
Check Engine Light X X X

ABS Light X X X
Multifunction LCD X X

Notice that the ”Base” product has the Odometer, Trip Odometer, and Gear Indicator

trifecta. While the ”Premium” and ”Grand Touring” models have the Multifunction LCD

instead. These differences along with the differences in Configuration Options selcted in
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Table 5.18, allow the designer to create variety among the products.

Table 5.18: Instrument Panel Product Configuration Selection

Configurations Ba
sic

Pr
em
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Analog - White X
Analog - RGB LED X

Digital - None X

Notice in Table 5.18 that each product has a unique set of configuration options selected.

The ”Base” model has the simplest options from each configuration category. This creates

a unique product with the lowest cost. Where the ”Premium” and ”Grand Touring” models

have increasing features to create variety and models to different market sects. The ”Grand

Touring” being able to fit into the ’luxury’ form of a vehicle. The product defined in this

section will make up the Instrument Panel product family. This ended up with 3 distinct

products being developed. The next section will present the component layout process for

the instrument panels.

5.2.5 Instrument Panel Layout

The layout of components in the fascia is the next step of the configuration-layout

process. While the product configuration process was restricted by the requirement that

many components be required to exist in every product, the layout process is much less

restricted and has a large number components being fit into a single fascia. Even though

there are less components in this product than the Center Console it ended up taking more,

61 in total, constraints to achieve the desired layout. Table 5.19 presents the layout

constraints defined for the set of components in the Instrument Panel.
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Table 5.19: Instrument Panel Layout Constraints

Object A Constraint Object B/ Location
Speedometer - left-of - Tachometer

Multifunction LCD - X centered in fascia -
Odometer - X centered in fascia -

Trip Odometer - X centered in fascia -
Trip Odometer - above - Odometer

Fuel Gauge - right-of - Speedometer
Engine Temp Gauge - right-of - Speedometer

Battery Gauge - right-of - Speedometer
Battery Gauge - right-of - Fuel Gauge
Battery Gauge - left-of - Tachometer
Battery Gauge - above - Odometer

Engine Temp Gauge - right-of - Battery Gauge
Engine Temp Gauge - left-of - Tachometer

Fuel Gauge - left-of - Multifunction LCD
Fuel Gauge - above - Multifunction LCD

Engine Temp Gauge - above - Multifunction LCD
Trip Odometer - below - Fuel Gauge
Battery Gauge - X centered in fascia -

Left Turn Signal - left-of - Right Turn Signal
Left Turn Signal - left-of - Multifunction LCD

Right Turn Signal - right-of - Multifunction LCD
Right Turn Signal - bottom-aligned - Left Turn Signal
Right Turn Signal - bottom-aligned - Multifunction LCD
Right Turn Signal - left-of - Tachometer

Left Turn Signal - right-of - Speedometer
Right Turn Signal - right-aligned - Engine Temp Gauge

Gear Indicator - X-center aligned - Odometer
Gear Indicator - above - Trip Odometer
Gear Indicator - below - Battery Gauge

Engine Temp Gauge - right-of - Multifunction LCD
Low Fuel Indicator - above - Left Turn Signal
Low Fuel Indicator - below - Fuel Gauge
Low Fuel Indicator - above - Multifunction LCD
Oil Warning Light - right-aligned - Engine Temp Gauge
Oil Warning Light - below - Engine Temp Gauge
Oil Warning Light - above - Right Turn Signal
Oil Warning Light - above - Multifunction LCD

High Beam Indicator - left-aligned - Battery Gauge
High Beam Indicator - above - Multifunction LCD

Table Continued on Next Page
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Continuation of Table 5.19
Object A Constraint Object B/ Location

High Beam Indicator - below - Battery Gauge
Seat Belt Indicator - X centered in fascia -

Door Ajar Indicator - bottom-aligned - Seat Belt Indicator
Door Ajar Indicator - right-of - Seat Belt Indicator
Door Ajar Indicator - bottom-aligned - High Beam Indicator
Door Ajar Indicator - left-of - Oil Warning Light

Battery Warning Light - X centered in fascia -
Battery Warning Light - below - Battery Gauge
Battery Warning Light - above - Seat Belt Indicator

Check Engine Light - left-of - Multifunction LCD
Check Engine Light - right-of - Left Turn Signal

ABS Light - right-of - Multifunction LCD
ABS Light - above - Multifunction LCD
ABS Light - bottom-aligned - Oil Warning Light
ABS Light - below - Engine Temp Gauge

Parking Brake Light - right-of - Multifunction LCD
Parking Brake Light - left-of - Tachometer
Check Engine Light - Y-center aligned - Multifunction LCD
Parking Brake Light - Y-center aligned - Multifunction LCD
Low Fuel Indicator - X-center aligned - Fuel Gauge
Low Fuel Indicator - above - Battery Warning Light

ABS Light - left-of - Tachometer
End of Table

The 61 constraints to layout the 20 components into a single layout region help illustrate

how complex the layout process can be. Partial ordering was used on various components

to aid in positioning them within the fascia and achieve the desired layout. The use of

the layout grammar constraints defined in Chapter 3 allows for the layout to quickly be

generated based on a small set of constraints. Figure 5.11 presents the layout for all of the

components in the Instrument Panel.

Notice that the Speedometer and the Tachometer are on the extremes of the fascia. This

is because it was observed that this is often a design choice in instrument panels. The

Speedometer is on the left because it has been observed that a Speedometer is commonly

on the Left. The Multifunction Display and the Odometer occupy the same space because

they will never appear in the same product and perform identical tasks. This standardizes
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the layout of similar components,to make different models appear similar and easier to find

the desired information.

This section presented the constraints and plot of the layout of all components in the

product family. While this product family had less variety in components among the

products, a large number of constraints were still required to layout all of the components.

5.2.6 Review Instrument Panel Products

The final step in the Configuration Layout process is to review the results of the

process. Tables 5.17 and 5.18 have already presented the Component adn Configurations

selected for each product. Figure 5.11 presented the layout of all of the components in the

product family. However the individual product layouts have yet to be reviewed. Figure

5.12 presents the layout for the ”Base” model of the product family. Notice that the

Odometer, Trip Odometer and, the Gear Indicator are present in the center of the layout.

The same location that the Multifunction LCD is also placed. Since the ”Premium” and

”Grand Touring” versions of the instrument panel have the same component composition

Figure 5.13 presents the layout for both of these models. Notice that the Multifunction

LCD takes the place of the Odometer and its other associated components, while the rest

of the layout is identical to the ”Basic” model.
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Table 5.20: Instrument Panel Layout Results

Component Width Height X Y
mm mm mm mm

Speedometer 100 100 0 0
Tachometer 100 100 250 0

Odometer 25 7 162.5 0
Trip Odometer 15 7 167.5 7

Fuel Gauge 40 40 100 60
Left Turn Signal 10 10 100 0

Right Turn Signal 10 10 235 0
Engine Temp Gauge 40 40 205 60

Battery Gauge 40 40 155 60
Gear Indicator 15 15 167.5 14

Low Fuel Indicator 10 7 115 47
High Beam Indicator 10 10 155 30

Seat Belt Indicator 7 10 171.5 30
Door Ajar Indicator 10 7 178.5 30

Oil Warning Light 10 7 235 30
Battery Warning Light 10 7 170 40

Parking Brake Light 10 10 205 10
Check Engine Light 10 9 110 10.5

ABS Light 10 10 205 30
Multifunction LCD 60 30 145 0

Finally the numerical results of the layout process must be reviewed. Table 5.20

presents the coordinates for each of the components in the product family. The software

ensured there were no component overlaps. Making the product family entirely feasible.

5.3 Summary

This chapter presented 2 case studies for the application of the Configuration-Layout

process presented in this thesis. These case studies presented two different sub-systems of

a vehicle, the complexity of these design spaces, and the ease of configuring these design

spaces with the aid of the Configuration-Layout process presented in this thesis. While each

of these case studies only produced a handful of products, as a set of subsystems different

combinations of the products could create more variety to the overall vehicle. The end
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results of these case studies is two sets of products and a basic physical layout of their user

interface components. Through the use of the software presented in the previous chapter

each case study was able to be completed within an hour. While this seems like a long

time, this process includes the conceptual development of multiple products, feasibility

calculations and the start of the embodiement design process. The next chapter will present

the answers to the research questions of this thesis and the closing statements.
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CHAPTER 6

CLOSURE

The Primary goal of this thesis is to present a method for developing product families

with constraints of the layout of components. Specifically, to constrain the combintorial

generation of products and layout components of the user interface. The research as

presented this was thesis focused on 1) the modeling of spatial relationships of

components prior to embodiment design and 2) the determination of design decisions

during conceptual design on later design stages. These research developments were

supported by formulas, algorithms, and a software implementation. This chapter

summarizes the findings presented in this thesis. Section 6.1 presents the answers to the

initial research questions presented in Section 1.2. The contributions made in this thesis

are presented in Section 6.2. Section 6.4 discusses the limitations of the work presented in

this thesis and avenues of future work. Final remarks are given in Section 6.5.

6.1 Answers to Research Questions

The research questions for this thesis presented in Section 1.2 are revisited and the

hypotheses tested in this section.

Research Question 1

How can spatial relationships within products be simply captured and represented prior

to embodiment design?

Hypothesis 1

A spatial grammar can be used to represent spatial relationships with a mathematical

representation

Testing Hypothesis 1: The first research question is addressed by the development of
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the spatial layout grammar presented in 3.3.3. The layout grammar allows for basic

component arrangements to be defined with only basic physical design information about

the product family. The use of linear relationships for spatial constraints allows for simple

translations from the layout grammar to mathematical representations. The Coffeemaker

example presented in Chapter 3 and 4, along with the automobile user interface examples

presented in chapter 5 illustrate the application of these layout constraints into the

development of the user interface for product family. The constraints allow for the

designer to start initial physical design and determine if their desired physical layout is

feasible. The software application presented in Chapter 4 demonstrates the ease of

implementing the layout grammar and constraints into an easy to a quick and simple

application. Allowing designers to quickly produce basic layouts and check for overlap

and feasibility.

Research Question 2

How can configuration design methods be augmented to determine the effects of design

decisions during conceptual design on embodiment design?

Hypothesis 2

Constraints and optimization methods using both discrete and continuous mathematics

can be used to determine the effects of configuration design decisions on physical

design spaces.

Testing Hypothesis 2: The Configuration-Layout method presented in Section 3.3 uses

a combination of discrete and continuous mathematics to generate feasible products in

configuration design and create component layouts. The discrete methods allow for

products to be developed by combinatorially generating combinations of components and

configuration options. Section 3.3.1 presented the Configuration-Design space which

introduced a set of constraints on the combinatorial generation process, allowing for the

designer to shape the possible combinations to reach market sects or create a desired
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variety. The examples presented throughout this thesis showed that these combinatorial

constraints allowed for a large effect on the number of available combinations. The effects

of these constraints can be calculated prior to full enumeration of possible products.

The transition from discrete to continuous mathematics utilized matrices to properly

index and keep track of components. This allowed for the layout constraints and simplex

optimization method to easily be run and transition back and forth from configuration and

layout methods. The effects of the layout constraints are able to be easily determined by

performing the optimization process. The linear optimization method provides a quick and

simple method. These methods allow for designers to easily determine the feasibility of

the desired product family, in both product composition and component layout.

6.2 Contributions

The areas of product family configuration and object packing have been researched

extensively. However research on the combined configuration-layout problem has not been

found. The primary contribution of this work is the method for addressing the combined

Configuration-Layout Design problem. The method allows the designer to plan out and

develop a full family of products starting from only a set of components and configuration

options. The combinatorial constraints developed allow for the designer to shape the variety

of the product family to meet their needs. The layout grammar and constraints allow for

the designer to quickly and easily place components relative to other components or the

designated fascia.

A secondary contribution of this research is the algorithms and data structures

developed for implementing the Configuration-Design method. The software presented in

Chapter 4 demonstrates these. The algorithms for Constraining and generating feasible

component combinations account for a large portion of the Configuration-Layout method

implementation. The ability to transition back and forth between the configuration and

layout phases of the process allow designers to continually make changes and easily
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determine the effects of changes on the product family.

6.3 Limitations

The methods and implementation presented in this thesis can be applied to a wide

variety of product families but does have limitations. The layout process of the

Configuration-Layout method currently has a couple of main limitations. The first of

which is the shape of the objects used. The layout process is currently limited to square

and rectangular bounding boxes. This is due to the linear simplex algorithm being used to

layout components. The current layout constraints do not consider non-rectangular

objects. Changes would need to made to the layout constraints and simplex optimization

method to account for non-rectangular components. Along with the shape limitations, the

methods do not currently allow for the rotation of components. Future work will discuss

the addition of rotational degrees of freedom in the expansion from 2D to 3D.

There are also currently software limitations. The limits on the number of

components, configuration options, and fascias before the software crashes are currently

unknown. However test cases with upto 25 components, 3 configuration categories with 3

configuration options each, and 3 fascias have been tested without software crashes. The

limits on constraints are also unknown, but tests with upto 10 required, 18 required pairs,

and 18 disallowed pairs has been tested. The limits on configuration constraints will

depend on the number of components connected via constraints. This will effect the size

of the smaller sets of combinations being generated during the process. Early iterations of

the software found that generating sets of combinations greater than 221 starts taking up to

much of the computers memory and can cause the computers to crash. In the current

version of the software that would mean sets of components connected by constraints

containing more than 20 elements may cause the program and computer to crash.
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6.4 Future Work

While the research presented in this thesis enables new forms of configuration design

problems to be addressed, there are opportunities for future research. One direction for

future research is for the inclusion of configuration hierarchies in the evaluation of the

developed product family and possible extension of combinatorial constraints to provide

designers with more control over the configuration process. The final area of future work

is expanding the layout process from 2D to 3D and increase the number layout constraints

and the inclusion of connections between components in the layout of components and

evaluation of feasibility.

Configuration hierarchies and component connections were included as sections of the

software presented in Chapter 4, but these elements are not used as factors in the

determining product feasibility or evaluating results of the product family development

process. A configuration hierarchy allows the designer to select which configuration

category is more important. Augmenting the methods presented in this thesis with the

ability to take configuration hierarchy into account would allow the designer to better

judge the results of the combinatorial generation process and evaluate the product family

to determine if the desired variety has been met.

The combinatorial generation process introduced three configuration constraints

(Required, Required Pairs, Disallowed Pairs) and their effects were characterized. These

constraints are able to effectively reduce the unconstrained number of combinations but do

not provide the designer with a large number of ways to shape the variety of the product

family. Developing additional configuration constraints would provide the designer more

control in the type of product varieties that are able to be developed.

The layout methods in this research was limited to 2D layout and presented a limited

number of constraint. Expanding the layout process into 3D space would require

modification of the current simplex model to account for the additional dimension. Other
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optimization methods may also require consideration since the additional dimension start

to create a more complex problem. 3D projection is a possible method to expand from 2D

to 3D. The additional axis would also require the development of more layout constraints

would likely need to account for the additional axis of movement but also start

considering rotational degrees of freedom. Additional constraints could also provide the

designer to develop more detailed layouts to achieve their desired design.

Component connections were presented in the software in Chapter 4 but are not used

to evaluate the feasibility of the product family. Expanding the layout process to consider

the effects of connections between components would provide the designer with more

feasibility information based on any requirements the connections may have. Other

avenues for expansion include the detection of collision between components, and

providing a warning if the total area of the components is larger than the space they are to

be laid out in. Additional future work would include adding weights or hierarchies to the

layout constraints. This would allow designers to give priority to constraints and provide

greater control over the layout process.

6.5 Closing Remarks

Product family design research is aimed at providing designers and engineering

methods to more effectively and efficiently develop product families. The work of this

thesis intends to augment current product family design methods by providing designers

the ability to combinatorially generate entire families of products and determine the

effects of design decisions at an early stage. The development of both configuration and

layout constraints will allow designers shape product families to their desire and

determine if their desired variety is feasible. While the methods presented in this these

will aid designers in the development of product families, it does not replace a designer.

These methods still require a knowledgeable designer to supervise the process and results,

just like any method. It is the goal for designers to embrace this method as a means for
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determining product feasibility and increasing the speed of the product development

cycle.
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Rectangular Box Packing Placed,” in Applied Automatic Systems: Proceedings of
Selected AAS 2009 Papers, Ohrid, 2009, pp. 131 –134, ISBN: 5054834699.

[21] F. G. Ortmann, N. Ntene, and J. H. van Vuuren, “New and improved level heuristics
for the rectangular strip packing and variable-sized bin packing problems,” European
Journal of Operational Research, vol. 203, no. 2, pp. 306–315, 2010.

[22] G Scheithauer and J Terno, “A branch-and-bound algorithm for solving
one-dimensional cutting stock problems exactly,” Applicationes Mathematicae, vol.
23, no. 2, pp. 151–167, 1995.

168



[23] T. Fanslau and A. Bortfeldt, “A Tree Search Algorithm for Solving the Container
Loading Problem,” INFORMS Journal on Computing, vol. 22, no. 2, pp. 222–235,
2010.

[24] J. J. Kim and D. C. Gossard, “Reasoning on the Location of Components for
Assembly Packaging,” Journal of Mechanical Design, vol. 113, no. 4, pp. 402–407,
1991.

[25] C. Aladahalli, J. Cagan, and K. Shimada, “Objective Function Effect Based Pattern
SearchAn Implementation for 3D Component Layout,” Journal of Mechanical
Design, vol. 129, no. 3, p. 255, 2007.

[26] S. Szykman and J. Cagan, “Constrained Three-Dimensional Component Layout
Using Simulated Annealing,” Journal of Mechanical Design, vol. 119, no. March
1997, p. 28, 1997.

[27] L. Hanna Landry and J. Cagan, “Search Strategies in Evolutionary Multi-Agent
Systems: The Effect of Cooperation and Reward on Solution Quality,” Journal of
Mechanical Design, vol. 133, no. 6, p. 061 005, 2011.

[28] L. M. Weitzman and K. Wittenburg, “Grammar-based articulation for multimedia
document design,” Multimedia Systems, vol. 4, no. 3, pp. 99–111, 1996.

[29] A. Borning, R. Lin, and K. Marriott, “Constraints for the web,” in Proceedings of the
fifth ACM international conference on Multimedia - MULTIMEDIA ’97, New York,
New York, USA: ACM Press, 1997, pp. 173–182, ISBN: 0897919912.

[30] G. J. Badros, A. Borning, and P. J. Stuckey, “The Cassowary linear arithmetic
constraint solving algorithm,” ACM Transactions on Computer-Human Interaction,
vol. 8, no. 4, pp. 267–306, 2001.

[31] J. Clausen, “Branch and bound algorithms-principles and examples,” Department of
Computer Science, University of Copenhagen, pp. 1–30, 1999.

[32] J. E. Beasley, “An Exact Two-Dimensional Non-Guillotine Cutting Tree Search
Procedure,” Operations Research, vol. 33, no. 1, pp. 49–64, 1985. arXiv:
opre.33.1.49 [10.1287].

[33] S. Szykman and J. Cagan, “A Simulated Annealing-Based Approach to
Three-Dimensional Component Packing,” vol. 117, no. June 1995, pp. 308–314,
1995.

[34] Y.-C. Xu, R.-B. Xiao, and M. Amos, “Simulated annealing for weighted polygon
packing,” 2008. arXiv: 0809.5005.

169

http://arxiv.org/abs/opre.33.1.49
http://arxiv.org/abs/0809.5005


[35] M. Agarwal and J. Cagan, “A Blend of Different Tastes: The Language of
Coffeemakers,” Environment and Planning B: Planning and Design, vol. 25, no. 2,
pp. 205–226, 1998.

[36] G. B. Dantzig, Linear programming and extensions. Princeton, N.J.: Princeton
University Press, 1998, ISBN: 0691059136.

170


	Title Page
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Nomenclature
	Summary
	Introduction
	Configuration Design Problems
	Research Questions and Hypothesis
	Organization of This Thesis

	Literature Review
	Product Family Matters
	Product Variety: Building A Full House
	Research in Product Family Reasoning

	Research in Layout and Packing
	Overview
	Existing Methods
	Heuristic Packing Methods
	Traditional Optimization Methods
	Stochastic Methods

	Overview Geometric Representation

	Summary

	Designer Preference Configuration-Layout Method
	Beginnings of a Product Family
	Formulating the Configuration-Layout Problem
	Combinatorial Configuration
	Spatial Layout
	Combined Problem Formulation

	The Designer Preference Configuration Design Layout Method
	Designer Preference Configuration-Design Space
	The Unconstrained Design Space
	The Constrained Design Space

	Transition From Configuration Design Space to Layout Space
	Designer Preference Component Layout

	Summary

	Configuration-Layout Methods Implementation
	Data Structures
	Components and Configurations
	Fascias
	Constrained Configuration
	Defined Products
	Component Layout
	Summary

	Code Overview
	Combinatoric Generation Process
	Organize Constraints
	Evaluate Groups
	Calculate Products
	Generate

	Component Layout Process
	Simplex Setup
	Overlap Check

	Comments

	Software Workflow
	Menu
	Statistics Panel
	Define
	Constrain
	Hierarchy
	Specify
	Layout
	Results
	Summary

	Coffeemaker Example
	Define Parts of Product Family
	Constrain Component and Configuration Combinations
	View Hierarchy
	Specify Products
	Layout Components
	Review Results of Generation

	Summary

	Case Studies: Automotive Interfaces
	Center Console
	Define Components and Configuration options
	Constrain Center Console Combinations
	Center Console Hierarchy
	Define Products
	Center Console Component Layout
	Review Products

	Instrument Panel
	Define Instrument Panel
	Constrain Instrument Panel Configurations
	Instrument Panel Hierarchy
	Instrument Panel Product Definitions
	Instrument Panel Layout
	Review Instrument Panel Products

	Summary

	Closure
	Answers to Research Questions
	Contributions
	Limitations
	Future Work
	Closing Remarks

	REFERENCES

