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SUMMARY

This thesis presents a mathematical framework and methods to coordinate

motion control and image processing in a fast moving robotic system. The human

eye has two representative movements, a saccade and smooth pursuit. Saccade is one

of the fastest and most accurate movements in the human eye. However, the human

visual system receives blurry environmental information due to a finite integration

time when a saccade takes place. Smooth pursuit is another eye movement that

continuously follows an object with relatively slow velocity.

This thesis presents dynamics-based image processing methods for a fast-moving

robotic camera system, inspired by the observation of the physiological evidences.

Real-time panoramic image stitching is presented with simultaneous motion de-blurring

in a dynamic vision system, allowing for generic image sensors with a standard frame

rate and significantly less computational load, and requiring no motion sensors. The

proposed methods are based on the dynamic model of the robotic eye and move-

ments induced by the control system while conventional methods analyze inherent

image properties. In the neuromotor system, the movements are generated by muscles

that are essentially quantized, compliant actuators. To reproduce smooth pursuit-like

movements, an open-loop discrete switching controller accounts for dynamics is in-

troduced to generate an arbitrary velocity profiles for a robotic eye system driven by

quantized, compliant actuators, while avoiding high-frequency switching in individ-

ual motor units. The effectiveness of the dynamics-based methods and the discrete

switching controller are presented and validated on a fast-moving robotic orientation

system.

xix



CHAPTER I

INTRODUCTION

1.1 Motivation

The human visual system is an important contributor to human perception provid-

ing a large part of environmental cognition. Because the eye has a limited field of

view (FOV), the human visual system scans the environment or changes the region

of interest (ROI) by changing the direction of the person’s gaze. The human eye

has a total of three degrees of freedom (DOF), each generated by antagonistic pairs

of extraocular muscles. Therefore, the human gaze is controlled by a total of six

extraocular muscles, including four recti muscles and two oblique muscles [13].

It is known that the human eyes have two representative movement patterns:

saccade and smooth pursuit [24]. A saccade is known to be the fast and rapid eye

movements, enabling quick scanning the field of view and high-resolution fovea at the

region of interest. Several physiology studies have shown that the movement time is

within 50 ms for the 10 degree saccade or 100 ms for the 30 degree saccade and the

velocity is ranged 250 - 500 degree per second [40, 5, 7].

Saccades occur much more rapidly than proprioceptive, vestibular, or visual feed-

back that can be returned to the brain [91]. This indicates that saccades are performed

in an open-loop manner and may be implemented as feedforward control based on

the oculomotor dynamics. Inversely, motion control of the image acquisition device

must be planned to ease this masking process.

Figure 1 shows a conceptual illustration of the saccade and saccadic eye movements

captured by a high-speed camera. Due to a finite integration time in the visual system

and rapid point-to-point motion, the visual system may perceive blurry information;
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Figure 1: Saccades (a) Conceptual drawing of motion blur due to saccades (b) Eye
movements captured by a high-speed camera.

the equivalent frame rate of the human eye is reported to be below 24 frame per

second (fps) or 42ms/frame, which varies depending on situation [42].

Despite of saccadic eye motion, we are almost unaware of potentially blurry visual

input. The neural system blocks images with substantial motion blur in the course

of the eye motion, termed saccadic masking [46, 70]. Saccadic masking plays a key

role when the motion of the eye is not negligible in visual perception.

Instead of saccadic masking, the visual information is recovered in the course of

motion. Other Evidences indicate that this blurred information, called motion smear,

is partially compensated by neural processes [8, 11, 17]. The human brain predicts

or uses information on eye movements to reduce blurring [114, 92].
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Smooth pursuit is another known eye movement. Unlike saccades, the eye con-

tinuously follows an object with relatively slow velocity. Smooth pursuit is the key

component for tracking and takes place when no discontinuity exists in the position

of the target [91].

Several camera positioning devices inspired by the human ocular system have

been introduced [61, 109, 58]. Mechanisms of prior studies are actuated by various

means and successfully generated a fast motion that is comparable with saccade

[60, 119, 95, 97]. However, existing studies on camera positioning systems are limited

to mechanical design and control, without image processing, although a vision sensor

provides the richest information in various robotic applications. In addition, they

have focused only on generation of saccade-like rapid movements. Since many prior

studies have employed electromagnetic servomotors as a primary actuation system,

it may be fairly easy to generate slowly moving profiles like smooth pursuit.

One might think that such velocity control of the eye is fairly easy in an engineering

standpoint. However, this is not the case in the neuromotor system primarily due to

recruitment, or discrete activation of muscle bundles [22, 47]. Muscles are essentially

quantized actuators hence cannot produce continuous force. Despite of quantized

force production, it has not yet been discovered this discrete actuation in the eye

and able to perceive the features of a moving object. Although possible neuromotor

mechanisms in smooth-pursuit are debatable, from an engineering point of view, this

problem can be seen as velocity matching control of an impulsive dynamical system.

In a robotic vision system, a camera may receive blurry images when a saccade-like

rapid motion takes place unless a high-speed camera system is employed [86, 110].

Blurry images are lack of substantial information in particular on the high frequencies

which makes it difficult to analyze their properties or features. Therefore, motion of

the robotic system is often limited by a frame rate of the vision sensors to avoid blurry

images for post-processing. If rapid motion is necessary, the vision system may block
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or abandon degraded images as if saccadic masking [70] plays a key role when the

motion of the eye is not negligible in visual perception. An alternative approach

would be to recover blurry images in real-time and make use of them, which could

benefit performance or productivity.

1.2 Overview

This research aims to apply principles of the ocular physiology to the control of a

robotic vision system. The concept behind this research is to merge the system dy-

namics area and image processing area for a robotic camera positioner while previous

studies have focused solely on either mechanical design and control or image pro-

cessing. Although detailed neural mechanisms behind saccadic masking and smooth-

pursuit are not known, it is a natural consequence that motion control and image

processing must be tightly synchronized. Image processing methods in coordination

with inherently discrete and rapid ocular movements will reproduce saccades and

smooth-pursuit in a robotic vision system.

This thesis will establish dynamics-based motion de-blurring for a camera orien-

tation mechanism exhibiting quantization and compliance. The developed systems

will be capable of recovering degraded blurry images and stitching them to create

a panoramic image using a robotic vision system. The robotic vision system used

in this study is able to generate rapid motion comparable with saccades. Image de-

blurring will be accomplished by dynamics-based estimation of the blur kernel. A

parallel system architecture will be designed and parallel computing will be exploited

to achieve real-time processing of the image de-blurring algorithm. In general, image

stitching is computationally easy when a set of clean static images is given. For a

set of blurry images, however, image stitching is a extremely challenging task due to

lack of high-frequency information. This problem will be solved by a dynamics-based

homography estimation method using the robotic vision system.
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To generate biologically inspired movements using the camera orientation system

that is quantized and compliant, an open-loop discrete switching controller will be

designed. It will generate an arbitrary velocity profile to reproduce smooth pursuit-

like movements and track objects of interest. A feedback controller with PWM (Pulse-

Width Modulation) method may be effective to generate desired tracking profiles.

However, this causes high-frequency switching in individual motor units, which could

lead to damage in flexible mechanisms. The proposed controller will be designed

to generate velocity profiles for tracking an object of interest only during exposure

windows of a camera. Additional discrete switching commands will be generated to

suppress residual vibrations after acquiring images, which contributes to reduce the

number of switching. To generate a saccade-like motion, existing minimum switching

discrete switching vibration suppression (MSDSVS) controller will be used [96].

1.3 Dynamics-based Visual Processing

Eye movements are primarily self-induced, i.e., generated by the extraocular muscles

receiving commands from the oculomotor system. It may be hypothesized that there

is a neural mechanism that makes a prediction of such self-induced eye movements

based on the dynamic model of the eye, enabling effective image de-blurring and

panoramic image stitching, or dynamics-based visual processing.

Physiological evidences indicate visual processing and motor control are tightly

coordinated in the human visual system. It has been reported that visual stimuli even

before the saccade is masked, which indicates saccades are planned by the central sys-

tem. [46]. Others have reported that the human brain predicts or uses information on

eye movements to reduce blurring when saccades take place [114, 92]. The suppression

of motion smear also occurs during smooth pursuit [8].

This possible mechanism is the key enabler of real-time panoramic image stitching

with simultaneous motion de-blurring in a robotic vision system, allowing for generic
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Figure 2: Robotic vision system

image sensors with a standard frame rate and significantly less computational load,

and requiring no motion sensors. Similarly, the dynamic model allows for inverse

calculation of a smooth velocity profile.

1.4 Testbed Device: Camera Orientation System

The methods and algorithms developed in this study will be tested and validated on

the robotic vision system shown in Figure 2.

1.4.1 Mechanical Design

The camera orientation system inspired by the human ocular system has a single

DOF (degree of freedom) and is orientated by an antagonistic pair of cellular actua-

tors located on both sides as shown in Figure 3 [98]. The moving platen is connected

to a rod that transmits the force from the antagonistic pair of the cellular actuators.
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Figure 3: Piezoelectrically driven camera positioner system. The orientation of the
camera mounted on the moving platen is controlled by a total of 32 PZT actuators.
A tilting motion is generated when the rod is positioned by the antagonistic pair of
the cellular actuators.

Each cellular actuator consists of 16 Lead Zirconate Titanate (PZT) stack actua-

tors with deformable amplification mechanisms [1, 116]. Since no gears or sliding

mechanisms are used in the structures, this mechanism exhibits zero backlash and

noise-less operation while extremely fast movement is achieved. The axis of the rod

is positioned perpendicular but not orthogonal to the pivot axis. Therefore, when the

rod is pushed or pulled by the antagonistic pair of the cellular actuators, a moment is

applied to the moving platen, resulting in a tilting motion of the camera positioning

system.

The robotic vision system employ two different cameras in this research: Ximea

subminiature camera MU9PC-MH and Logitech C270 HD webcam. The plastic cas-

ings of the cameras are removed and only a board-level camera is installed on a mov-

ing platen. The rubber shielding of a USB cable is also removed to avoid introducing
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Figure 4: Motor unit recruitment. Each motor unit is operated in a binary manner
and the action is generated by recruitment of individual units activated. (a) The
cellular actuator consists of a total of 16 PZT actuators. A total of 16 PZT actuators
is nested in a multi-layer fashion and the thin layers allow amplification. (b) The
muscle consists of individual motor units.

mechanical resistance to the camera orientation system.

1.4.2 Quantization and Compliance in Actuation

A total of 32 APA50XS (Cedrat corporation) PZT actuators are used to position

the camera. The cellular actuator can be controlled continuously by adjusting the
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input voltage from 0V to 150V. The PZT actuator has a hysteresis response requiring

additional sensors to estimate the position or to control the system. In this study,

each PZT actuator is operated in an on-off manner to avoid hysteresis. In this way,

the actuation system exhibits quantization.

A PZT actuator has an extremely fast response and high accuracy on the nano-

meter scale with a low energy consumption. However, its small strain and small stroke

distance limit the application to robotics. To overcome these limitations, the PZT

actuators are nested in a multi-layer structure as shown in Figure 4(a). The multi-

layered strain amplification structure creates a larger displacement at the output

point when forces are generated by the PZT stacks at the input [98]. The thin layers

in the mechanism introduce flexibility and allow amplification at the output point.

These approaches share principles with the biological muscle system. Muscles are

quantized system consisting of individual motor units activated in a binary manner

as shown in Figure 4(b): each motor unit is either ‘On’ for contraction or ‘Off’ for

relaxation [69, 59]. The cellular actuators and constituent PZT actuators mimic

human muscle physiology where whole muscle activity is a summation of motor unit

activity, respectively [97]. The binary operation in the individual PZT actuators is

similar to physiological bang-bang type of inputs given in the human saccadic eye

movement [26].

1.4.3 Range of Motion

The range of motion of the camera orientation system is ± 16 PZT inputs or a tilting

angle of approximately ± 13 degrees. Since each cellular actuator has a total of 16

PZT actuators, the camera positioner can create 32 discrete angles. The discretized

desired angle can be achieved by defining the number of activated PZT actuators.

Figure 5 shows the operation range of the camera orientation system.
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Figure 5: Single-DOF motion of the camera orientation system: (a) camera at ex-
treme left (b) camera at extreme right (c) camera at extreme left (d) camera at
extreme right
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CHAPTER II

LITERATURE SURVEY

This chapter summarizes the contributions from prior studies that provide principles

relevant to the work conducted in this study. To apply principles of the human

ocular system, contributions of this study are related to image processing for images

obtained in the course of motion of a quantized, complaint actuation system. A

review of robotic vision systems is conducted with respect to motion control and

visual processing areas. Part of the survey includes resources on control methods for

a quantized and flexible actuation system. In addition, representative studies from

motion de-blurring and generation of panoramic images are included with discussions

on image processing in the human ocular system.

2.1 Camera Positioning Systems

There have been various approaches using compliant actuators or soft materials to

design camera positioning systems, which are inspired by the human ocular system.

A pan-tilt orienting mechanism using flexible beams is designed by Lee et al. [58]. A

camera is connected to thin elastic-plastics beams driven by servo motors. Robotic

eyes using cable-driven mechanisms connected to servo motors are proposed by Can-

nata et al. and Schulz et al. [12, 100]. A robotic eye that emulated vestibulo-ocular

reflex (VOR) using Pneumatic Artificial Muscles (PAMs) is developed by Lenz et al.

[60]. Although soft actuators are not used, a 3 DOF camera-orientation system driven

by piezoelectric actuators via rigid push rods is designed by Villgrattner and Ulbrich

[118]. However, actuation systems in the existing studies have little in common with
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biological muscle actuation because traditional servo motors have a marked discrep-

ancy from contractile, compliant extraocular muscles. Although forces were transmit-

ted through flexible mechanisms in some studies, their actuation systems still have

discrepancy from the biological muscle system whose action is generated by motor

recruitment. In addition, mechanisms in prior studies [58, 109, 119, 60] are controlled

in a closed-loop manner, whereas it is reported that the saccade is completed in an

open-loop manner [48, 124, 91]. Schultz and Ueda developed a single DOF camera

positioner oriented by an antagonistic pair of quantized, compliant actuators that are

controlled in an open-loop manner [98, 97].

These robotic eyes have proposed notable mechanisms and generated a fast motion

that is comparable to saccades. However, smooth pursuit, which is the other repre-

sentative mode of operation in the human ocular system, has not been addressed.

This is because an electromagnetic servomotor is employed in most of the studies

[58, 109, 119, 60, 12, 100]. In addition, prior studies on robotic camera positioners

are limited to mechanical design and control. Image processing was not studied.

2.2 Control of a Quantized or Complaint Actuation System

In contrast to the conventional servomotor systems, the biological system is known

to be controlled in an impulsive manner. Observations indicate that its compliant

actuation system is operated in a binary manner. To control such a system, from an

engineering point of view, an open-loop discrete switching controller that accounts

for flexible mechanisms is required.

2.2.1 Compliant Actuation System

Compliant actuators have shown potentials in various applications [37, 56, 115]. Soft

actuators posses safety, high energy efficiency, zero backlash, and power density [37,

102, 57], and hence they have been studied for various applications such as human-

robot interaction (HRI) system, and medical and biomimetic robotic systems [20,
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68, 75, 115]. However, the control of soft actuators may be challenging because

they are inherently flexible and have a physical configuration different from that of

stiff actuation system [108, 80]. In fact, stiff actuators are preferred in traditional

applications for precision and repeatability. While notable actuators fabricated using

soft materials have been introduced in studies, most of these studies lack results on

precise motion control. Some studies utilized sliding mode control, but focused only

on point-to-point movements. In addition, their controllers used feedback information

which has a little common with the biological system. A closed-loop controller may

be effective to generate an arbitrary velocity profile, but may cause high-frequency

switching in the actuation system used in this study which could possibly damage

the flexible mechanism.

Several command shaping methods have been proposed to suppress residual vibra-

tions in a flexible system in an open-loop manner [43, 107]. A set of input commands

are given to the system with different timings that are determined by the natural fre-

quencies of the system. The commands induce residual vibrations to the system with

different phases to suppress the resonant modes. However, prior studies [43, 107] have

focused on point-to-point movements; there has been little discussions of generating

arbitrary velocity profiles. An arbitrary velocity profile may be achieved by closing

the control loop, but it may damage the compliant actuation mechanism due to high-

frequency switching in the individual control units. In addition, shaping commands

are generated for a system employing servo motors, which are suitable for generating

continuously variable movements. Thus, existing approaches [43, 107] for controlling

a flexible mechanism are not applicable to the quantized, compliant mechanism used

in this study.
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2.2.2 Quantized Actuation System

Various efforts have been made to control a quantized actuation system. A discrete

switching vibration suppression (DSVS) controller is proposed by Schultz and Ueda

to suppress residual vibrations for a quantized system [96]. An algorithm consisting

of iterative nested loops is developed to determined commands from a set of nonlin-

ear equations. Katoch and Ueda investigate an evolutionary optimization approach

to control shape memory alloy (SMA)-driven, quantized actuator system [49]. A

non-uniform array distribution with motor variability is determined by an floating

point quantization (FPQ) schema. Richter et al. investigate the absolute stability of

a discrete linear system with a full-state quantized feedback controller using a dis-

crete positive-realness (DPR) [90]. Although these quantized controllers have shown

notable results for generating point-to-point movements, smooth pursuit-like move-

ments cannot be achieved for the camera orientation system to track an object of

interest.

A discrete switching controller to achieve an arbitrary trajectory have been stud-

ied. Ueda et al. propose an FPQ method demonstrating variability using complaint,

quantized actuator arrays [117]. This study shows a quantized control can replace

the signal dependent noise (SDN) approach for replacing motor noise reported in

neuromotor systems. Schultz and Ueda propose a controller that can continuously

adjust the outputs for a quantized, flexible system [99]. A candidate control func-

tion is chosen from a PWM signal and timing of switching commands is modified by

an inter-sampling strategy. These approaches demonstrate promising results but the

controller include a feedback loop and its implementation is not addressed.
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2.3 Image De-blurring

2.3.1 Image-based Approaches

A camera system perceives blurry information when rapid motion takes place during

the exposure window due to a finite integration time. There are various approaches

in the computer vision field to restore blurry degraded images due to motion blur. To

restore an image that is degraded by motion blur, the motion path must be estimated.

The estimated path can be represented as a point spread function (PSF). The PSF

is a blur kernel that describes the camera motion during an exposure window. If the

motion blur is shift invariant, an un-blurred or latent image can be estimated with a

deconvolution algorithm, given the estimated PSF and blurry image. Some studies

propose the estimation of the blur kernel from a single image [27, 44, 105], while other

studies use multiple images for blur kernel estimation [63, 88].

Fergus et al. propose a method to estimate the blur kernel by maximizing the

probability in the image gradient domain [27]. Using the mixture of zero-mean

Gaussians as the prior and given the measured image gradient, the posterior dis-

tribution can be defined. The method approximates the full posterior distribution

and then estimates the blur kernel with maximum marginal probability, which is the

maximum a-posteriori (MAP) solution. The approximation is made by a variation

method, proposed by Miskin and MacKay [74]. The cost function, which is the dif-

ference between the approximating distribution and the true posterior, is minimized

iteratively by the variation method.

Shan et al. observe that the majority of ringing artifacts in the latent image are

caused by image noise and errors in kernel estimation [105]. Hence, they propose a

unified probabilistic model for both blur kernel estimation and latent image estimation

to avoid ringing artifacts. Both estimations are unified into a single MAP problem.

Xu and Jia observe that strong edges do not necessarily benefit kernel estimation,

but could deteriorate kernel estimation under certain conditions. They propose a
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two-phase blur kernel estimation to avoid this issue [121]. In the first phase, critical

edges are defined by using Gaussian filtering and solving the shock filtering PDF

problem. Then, the cost function, which is a function of noise, spatial prior, and

Gaussian regularization weight, is optimized to find a coarse blur kernel. In the

second phase, a refined blur kernel is defined by iterative support detection (ISD)

method to minimize a non-convex cost function.

Goldstein and Fattal propose a method to estimate a blur kernel from the irreg-

ularities in the statistics of blurry images [33]. A power-law model is introduced

to describe the power spectrum of original images. After several processes such

as filtering, approximation and whitening are performed, the one-dimensional auto-

correlation function of the differentiated projections of the blurry image is computed.

Then, the blur kernel is iteratively estimated by a phase-retrieval algorithm given the

minimized full 2D power spectrum function.

Whyte et al. propose an estimation of a non-uniform blur kernel that accounts

for camera motion [120]. The non-uniform blur kernel includes a geometric model of

camera motions: translation and rotation. Then, the algorithm proposed by Fergus

et al. [27] is adopted and the algorithm proposed by Miskin and MacKay [74] is

used to approximate the posterior distributions. A cost function is optimized by

optimization of the Kullback-Leibler (KL) divergence between the posterior and the

approximating distribution [10]. Since this method assumes that the rotational

motion is a dominant factor in motion blur.

Cho and Lee propose a de-blurring method that estimates both latent image and

kernel in an iterative manner. A kernel is estimated by searching image derivatives to

predict strong edges. Therefore, the estimation process is dependent on local features

to enhance processing times. This method assumes that a latent image contains

strong edges to estimate a kernel. After a kernel is estimated, an input image is

estimated by a deconvolution process. The de-blurred image is given to the kernel
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estimation process again to refine the estimated kernels, and this process is repeated.

These image-based approaches successfully estimate the latent image; however

much computation time is required [27, 44, 105, 106, 4, 33, 18, 120]. It takes at

least 10 seconds to de-blur a VGA-size image [55], which is not preferable for a

robotic vision system. In particular, the computation time greatly increases as the

image size increases or as the blur kernel size increases for image-based methods. To

avoid this problem, part of the image could be analyzed to estimate the PSF, but

it may be inaccurate. The key parameters such as the kernel dimension need to be

manually determined by users, which is not suitable for a fast-scanning robotic vision

system. Thus, prior studies are limited to a hand-held camera system. In addition, the

image-based approaches generally require an image having strong contrast between

the foreground and background [44, 104].

2.3.2 Sensor-based Approaches

There are different approaches that do not analyze inherent properties of a blurry

image but use external devices to estimate the motion blur. One study use an addi-

tional high-speed camera with a low resolution to track camera motion [9]. However,

this approach also requires much computation time for post-image processing with

the secondary camera. Another study use a gyro sensor and an accelerometer to track

camera shake or motion [45]. However, it involves computations that estimate the

path of a camera shake from noisy gyro and accelerometer signals.

Apparatus-based methods are also proposed [36, 87, 82]. Raskar et al. propose

a fluttered shutter approach for controlling the exposure time and preserving high-

frequency information. Park et al. extend this coded exposure technique [87] to image

streams for a mobile system [82]. However, the coded exposure inevitably lowers the

frame rate and image brightness. In addition, this fluttering does not occur in the

human vision system and is not applicable to a standard camera.
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2.4 Generation of Panoramic View

The field of view of a generic camera is smaller than that of a human [84]. Therefore,

so there has been a major interest in panoramic image generation. A panoramic

image is generated by quick scanning the environment using the fast-moving camera

orientation system.

To relate neighbor images to each other, a homography matrix should be obtained

to warp images on the same plane. In general, existing stitching methods successfully

produce notable results by first extracting feature points by Scale-invariant Feature

Transform (SIFT) or other feature detection algorithms [66, 39]. Some studies utilize

Speeded Up Robust Features (SURF) to enhance the computational speed [6]. After

the feature points are extracted, they are matched by Random Sample Consensus

(RANSAC) [28] or other means [31]. Additional processes can be performed such as

color adjustment to refine the final images.

Lopez et al. use a mobile phone to generate a panoramic image where the obtained

images may be blurry [64]. However, degraded blurry images are simply abandoned.

Yang et al. show promising results by incorporating inertial sensors embedded in a

mobile phone. However, the degree of blurriness is required to be minor, and the

resultant images still exhibit artifacts [123].

Existing methods for panoramic image generation are developed for clean images

exhibiting no motion blur. Therefore, existing methods are not robust to blurry

images due to a lack of information on high frequencies, while, in this study, images

are obtained in the course of rapid motion.

In contrast with software-based approaches, camera platforms specialized in panoramic

image generation are introduced. Various multi-camera systems are developed to gen-

erate a wider FOV than a single camera [41, 85]. A motorized stage is utilized to

slowly scan the environment using a generic camera [32]. These platforms also re-

quire clean images to generate panoramic image. In addition, they are limited to a
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single function and the motorized systems are simply used to position the camera at

different angles and obtain images at rest, while this study aims to reproduce two

representative modes of the human ocular system. An omnidirectional camera that

consists of a single sensor and a mirror system can achieve a 360-degree FOV in the

horizontal plane, but the entire image is distroted [72].

2.5 Human Ocular System

The human eye represents a good platform for demonstrating engineering challenges

inherent in the neuromotor system. Physiological evidences indicate that the visual

perception in the brain is tightly synchronized to eye movements [114, 92, 46]. In

the biological system, it is known from various neuroscience studies that 50% - 80%

of the human brain’s processing power is dedicated to visual perception [30]. The

human brain processes the vast visual information in a parallel manner [93] and it

takes at least 100 ms - 150 ms to process a complex natural image [113, 23]. Sim-

ilarly in robotic studies, image processing requires a large amount of computational

effort to process images. In particular, de-blurring algorithms that rely on inherent

information are known to be computationally expensive.

Little engineering study has been made on the oculomotor control for fast dynamic

vision. Inspired by the observation of the human visual system, the use of dynamics

information may benefit the computation time in a fast moving robotic system. In

addition, it become possible to accelerate computation times for complex or heavy

algorithms by means of parallel computing such as GPU (Graphics Processing Unit)

or FPGA (Field Programmable Gate Array) as reported in various studies [2, 19].

Therefore, in this study, these aspects will be addressed and utilized for the camera

orientation system to achieve real-time performance.
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CHAPTER III

DYNAMICS-BASED IMAGE DE-BLURRING

This chapter presents a method for removing motion blur from images captured by a

fast-moving robot eye. Existing image techniques focused on recovering blurry images

due to camera shake with long exposure time. In addition, previous studies relied

solely on properties of the images or used external sensors to estimate a blur kernel,

or point spread function (PSF).

This study focuses on estimating a latent image from the blur images taken by

the robotic camera orientation system. A PZT-driven, compliant camera orientation

system was employed to demonstrate the effectiveness of this approach. Discrete

switching commands were given to the robotic system to create a rapid point-to-

point motion while suppressing the vibration with a faster response. The blurry

images were obtained when the robotic system created a rapid point-to-point motion,

like human saccadic motion.

This chater presents proposes a method for estimating the PSF in knowledge of

system dynamics and input commands, resulting in a faster estimation. The proposed

method will be investigated under various motion conditions using the single degree-

of-freedom camera orientation system to verify the effectiveness and be compared to

other approaches quantitatively and qualitatively.

3.1 Saccade-like Motion in a Robotic Eye

Human saccadic eye motions are rapid eye movements within 50 ms settling time at

the maximum angular velocity of 250 - 500 deg/sec. In order for the camera ori-

entation system to generate the saccade-like motion, discrete switching commands
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(a) (b)

Figure 6: A saccade-like motion with an open loop vibration suppression input. (a)
Time response of a rapid point-to-point motion of the camera orientation system. (b)
Discrete switching commands to suppress vibration.

must be given. The quantized discrete input commands can be determined by un-

derstanding the mechanical properties of the actuation system such as the natural

frequency and the damping ratio. Figure 6(b) shows the discrete switching commands

given to the system at appropriates time with appropriate amplitudes by applying a

phase-vector analysis of mechanism control [96]. Figure 6(a) shows the time response

of the camera orientation system as a result of the discretized switching commands.

The results show that the vibration has been successfully suppressed and the settling

time is within 55ms. If inappropriate commands or a step command are given to

the system, however, the time response shows considerable oscillation resulting in a

longer settling time.

To apply principles of the human ocular system, the robotic vision system em-

ployed a camera whose frame rate was set to 30 fps that is comparable with the

equivalent frame rate of the human eye. Table 1 demonstrates comparison of mo-

tion and visual systems between the biological eye and the camera orientation system

used in this study. It can be checked that both specifications are comparable and the

camera may perceive blurry images in the course of rapid motion.
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Table 1: Comparison between the biological system and the robotic vision system
Biological Eye Robotic Vision System

Settling Time of
Point-to-Point Movements

50 - 100 ms 55 - 65 ms

Velocity 250 - 500 deg/sec 200 - 350 deg/sec

Frame Rate
24 fps

(equivalent)
30 fps

3.1.1 Discrete Switching Input and Step Input

Figures 7(a) and 7(b) show the time responses of the camera orientation system given

the vibration suppression input and the step input, respectively. When saccade takes

place, the brain blocks images with substantial motion blur in the course of eye motion

which is called saccadic masking [70]. Therefore, the image frame of interest is the

image obtained in the settling region. The image of interest from the time response

with vibration suppression input is the third frame after the commands are given, as

shown in Figure 7(a). For comparison, the same image frame was selected from the

time response with step input, or vibration uncompensated input, as shown in Figure

7(b). The system starts obtaining images without motion blur after the fourth frame

is given the vibration suppression commands, and the system starts obtaining images

without motion blur after the sixth frame is given the step input. It can be easily

seen that the camera orientation system experiences less vibration and has a faster

settling time given the vibration suppression commands. It can also be seen from

the obtained images that the system will receive less motion blur given the vibration

suppression commands as shown in Figure 8.
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(a) (b)

Figure 7: Time responses of the camera orientation system. (a) Time response of
the camera orientation device with vibration suppression input. (b) Time response
of the camera orientation device with step input.

(a) (b)

Figure 8: The image frame of interest obtained for both inputs, as indicated in
Figure 7. (a) An image obtained with the discrete switching commands. (b) An
image obtained with the step command.
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3.2 Image De-blurring

The blur kernel, or the PSF, represents a trajectory of the motion. In order to

estimate the latent image accurately, the blur kernel must be estimated accurately.

This study developed a method for the estimating of PSFs using the system dynamics

of the camera orientation system.

3.2.1 Dynamics-based Blur Kernel Estimation

In the absence of external disturbances, the motion of a robotic camera orientation

system is predictable since the dynamics of the system and input commands are

known and given. Therefore, the motion of the system is estimated in an open-loop

manner without the use of additional sensors. This approach is inspired by evidence

that a saccade is completed in an open-loop manner [91] and the human brain predicts

or uses information of eye movements to reduce motion smear [92, 114].

The state-space representation of a m-DOF, n-th order, linear system can be

written as:

ẋ(t) = Ax(t) +
N−1∑
i=0

[Bui(t− ti)] (1)

y(t) = Cx(t) (2)

ui(t− ti) = Ai · 1(t− ti) (i ∈ 0, · · · , N) (3)

t0 = 0 (4)

x(t) ∈ R
n×1

u(t),y(t) ∈ R
m×1

A ∈ R
n×n,B ∈ R

n×m,C ∈ R
m×n

where x(t) is the state vector, u(t) is the control input vector, y(t) is the output

vector, A is the system matrix, B is the input matrix, C is the ouput matrix, 1(t) is
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Figure 9: Time response of the system by step input

the unit step function, Ai is the amplitude of i-th step input, and N is the number

of inputs given to the system.

Therefore, given the dynamics and control information, the motion of the camera

orientation system can be estimated from (2). The linearity is assumed for simplicity

in this study, but nonlinear dynamics can also be used since the dynamics calculation

is open-loop.

The camera orientation mechanism, employed in this study, exhibits a single dom-

inant frequency at 14.4 Hz with a damping ratio of 0.19. However, the dominant

frequency was different at 16.1Hz when the desired distance was full stroke. The sys-

tem parameters were identified experimentally by the observation of a step response

as shown in Figure 9. Although nonlinearity was observed, an input of full stroke is

not the range of the motion of interest in this study. Therefore, the system can be

represented as a linear second-order system given as:

G(s) =
K

s2 + 2ζωns+ ω2
n

(5)

where K is the residue, ωn is the natural frequency, and ζ is the damping coefficient.

The value of K is 6650.3.

Since the robotic camera orientation mechanism has a single dominant natural
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frequency, it can be modeled as a linear, time-invariant (LTI), second-order, un-

derdamped system. Then, the time response of the single DOF camera orientation

system can be given as:

θ(t) =

j∑
i=1

Ai

ω2
n

[1− e−ζωn(t−ti) · (cosωd(t− ti) +
ζ√

1− ζ2
· sinωd(t− ti))] · 1(t− ti) (6)

where Ai is the amplitude of the i-th step input, ti is the time of the given i-th step

input, j is the number of amplitudes given to the system, ωn is the natural frequency,

and ζ is the damping coefficient.

The camera orientation system in this study has a single DOF and thus the output

vector is:

y(t) = θ(t)x̂ (7)

where x̂ is a unit vector in the horizontal axis.

A PSF can be given as

k(x,y) = h (8)

where h is an energy level.

The pixel of the kernel (x, y) is

(x, y) = L

∫ tb

ta

θ(t)dt (9)

where L is a conversion factor dependent on the size of the blur kernel, and the energy

function is

h =
tb − ta
tacq

(10)

where tacq is the acquisition time of a single image.

Thus, the energy level at the location (x, y) of the PSF pixel is proportional to

the time remaining at the location (x, y). The PSF is an energy distribution function

for which the energy conservation constraint must hold:

∫∫
k(x,y)dxdy = 1 (11)
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Figure 10: Dynamics-based Estimation of the PSF for the robotic camera orientation
system.

3.2.2 Implementation of Dynamics-based Estimation

The proposed method requires an accurate estimation of the motion given the sys-

tem dynamics and control commands to estimate the PSF. Given the mechanical

properties and input commands to the system, a discretized PSF can be estimated

in an open-loop manner, without the use of external sensors as shown in Figure 10.

This approach results in the fast estimation of the PSFs using the robotic camera

orientation system because it is estimated simultaneously with the image acquisition

in an embedded motion controller.

The mechanical system was modeled as a linear second-order system. It has been

reported by Schultz and Ueda that a linear second-order model is sufficient in the

range of the motion of interest and any significant nonlinearity was not observed

in the camera orientation mechanism when it was controlled by discrete switching

commands [97]. Also, it has been reported by Schultz and Ueda that a linear dynamic

model is sufficient for model-based control [96]. In addition, the experiment results

comparing the real and calculated responses clarify the validity of the linear model as

shown in Figure 11. To apply the proposed control method to a genral mechanism,

issues associated with possible nonlinearity in the structure may need to be resolved.

Figure 11 shows the experiment results of a comparison between the actual motion
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Figure 11: Comparisons between the actual motion and the estimated motion. (a)
Time response of the camera orientation system given the step command. (b) Time
response of the camera orientation system given the discrete switching commands.

and the estimated motion. The actual motion was recorded by an encoder and the

estimated motion was calculated by (6) implement on the embedded controller.

Figure 11(a) shows a comparison for step commands. For this particular mech-

anism, nonlinearity was not observed when the desired step was 10 degrees or less.

A slight nonlinearity was observed where the natural frequency was 16.1 Hz when

the desired step input was a full stoke step while the natural frequency was 14.4 Hz

when the desired step input was below 77% of the full stroke. This was due to a

saturation effect. The overshoot caused the third layer to collide with the first layer

units [96]. Although the nonlinearity was observed, approximately a variation of 12%

of the natural frequency, when the desired step was beyond 77% of the full stroke,

the repeatability of the response was very high and the motion could be accurately

estimated by using the predefined values of natural frequency accordingly as shown

in 11(a). In this study, the range of step input where any significant nonlinearity was

not observed was used as an input. The estimated motions show a good agreement

with the actual motion overall with only minor errors after settling possibly due to

flexibility of the cellular actuators and mechanical frictions.

28



(a) (b)

Figure 12: Sensitivity plots (a) Sensitivity plot for the frequency (b) Sensitivity plot
for the damping coefficient

Figure 11(b) shows the results for vibration suppression discrete switching com-

mands where a good agreement is observed. When the discrete switching commands

were used to generate a motion, any significant nonlinearity in the mechanism was

not observed.

3.3 Sensitivity Analysis of the Dynamics-based Approach

This approach assumes that the system dynamics is modeled accurately and the

motion has no unpredictable disturbances. Figure 12(a) and 12(b) show sensitiv-

ity analysis for system parameters given the discrete switching commands shown in

Figure 6(b). The sensitivity analysis was performed because the performance of the

proposed method depends on the accuracy of system modeling. The system has no

RMS position errors if the system parameters are calibrated accurately at frequency

of 14.4Hz and damping coefficient of 0.19 as shown in Figure 12. The analysis shows

that the motion is not estimated accurately with parameter errors, resulting in a

poor estimation of the PSFs. In particular, the estimation model is not robust to

the frequency parameter error. Although the performance is sensitive to the parame-

ter calibration as expected, the calibration in general can be done with a reasonable
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precision. Any issues regarding the parameter calibration were not observed in this

study. It is possible to add command constraints on robustness to variations in fre-

quency or damping coefficient but it results in more switching of commands and a

longer settling time.

While the system in this research was modeled as a linear second-order system,

the dynamics-based motion de-blurring method is theoretically applicable to a higher

order linear dynamic system or a non-linear system. The motion of the system can be

estimated by knowing the accurate dynamics model and control commands. However,

the current method is not applicable to a system experiencing significant external

disturbances.

3.4 Deconvolution

A spatially-invariant blurred image B can be represented by a convolution between

a shift-invariant blur kernel K and a latent sharp image I plus noise N, as follows:

B = K⊗ I+N (12)

B,K, I ∈ R
m×n

K ∈ R
l×l

where m is the width of the image in pixels, n is the height of the image in pixels, l

is the length or height of the blur kernel, and ⊗ is the convolution operator.

As the PSF is obtained, the latent image can be estimated by means of a de-

convolution algorithm. In this study, a widely-used Richardson-Lucy deconvolution

method was selected [89]. This method is known to be robust in the presence of high

noise levels. It estimates the latent image iteratively given the blurry input image

and the estimated PSF [29].

In+1 = ((B� (In ⊗K))⊗ K̂)� In (13)
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where B is the obtained blurry image, K is the blur kernel, K̂ is the flipped blur

kernel, In is the estimated image at n th iteration, � is the elementwise multiplication

operator, and � is the elementwise division operator.

For the deconvolution process, MATLAB’s deconvlucy.m function was used.

3.5 Evaluation Method

3.5.1 Compared Algorithms

Images with motion blur were obtained under various conditions to verify the pro-

posed method. The results were compared with those of other notable and state-of

the art algorithms proposed by: Fergus et al. [27], Shan et al. [105], Xu et al. [121],

Goldstein et al. [33], Whyte et al. [120], and Cho et al [18]. These compared algo-

rithms analyze inherent image properties and include parameters such as dimension

of the blur kernel that need to be manually defined by the users. If the parameters

are not properly determined, the resultant images would be deteriorated. For a fair

comparison, the parameters were adjusted a number of times to find the best possible

blur kernels. The results were compared qualitatively and quantitatively.

3.5.2 Quantitative Evaluation

In general, previous image de-blurring studies have qualitatively evaluated their re-

sults in comparison with those of other algorithms. Although the results of such

evaluation were successfully discussed, it was a subjective evaluation. In this study,

the results of the proposed de-blurring algorithm will be evaluated both qualitatively

and quantitatively. The quantitative evaluation method subtracts the clean image

with no motion blur from the estimated latent image and evaluates the pixel values

of the difference image. The procedures of a quantitative evaluation method are as

follows:

1. obtain a clean image with no motion blur at the closest discretized position to

the blurry image;
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2. convert both the de-blurred image and the clean image into grayscale;

3. pattern match between the estimated latent image and the clean image to find

the translation matrix;

4. translate the clean image based on the previous step;

5. determine the absolute of the difference between the de-blurred image Ide−blurred

and the translated clean image Iclean;

Idiff = |Iclean − Ide−blurred| (14)

6. trim 10% of the image border to remove the boundary artifacts from the image

deconvolution;

7. evaluate;

Difference V alue =

∑n
j=1

∑m
i=1 Idiff(i,j)

m× n
(15)

8. normalize DifferenceV alue by DifferenceV alue of the proposed method

where Idiff(i,j) is a pixel value at pixel (i, j).

The lower difference value results from the higher correlation between the esti-

mated latent image and the clean image with no motion blur. Therefore, it can be

concluded that the better de-blurring method will have a lower difference value.

3.6 Experimental Results

3.6.1 Vibration Suppression Input and Step Input

To investigate the effect of the motion controller on the image quality, the proposed de-

blurring method was tested for two different command inputs: vibration suppression

and step inputs.

Figure 15 shows the results of the proposed image de-blurring method and others

when the system was oriented by vibration suppression commands. The input blurry
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Figure 13: Experimental setup for image de-blurring

image is the frame of interest indicated in Figure 7(a). The estimated PSFs are

shown in Figure 16. The intensity profile of the PSFs has a left-shifted center since

the motion of the selected image frame was settled to the desired position. The

amount of time that the device position was around the target position was dominant

within a single exposure window, when the motion was created by the vibration

suppression control as shown in Figure 7(a). Therefore, the intensity value in the

PSF was accumulated relatively high around the target region, which corresponds

to the left side of the PSF. The results show that all of the methods removed the

blur because the vibration suppression technique reduced the motion blur. However,

the results obtained by Goldstein et al., Shan et al., and Xu et al. present ringing

artifacts. The results show that the proposed method, Whyte et al.s method, and
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Fergus et al.s methods have successfully estimated the latent image.

Figure 17 shows the results of the proposed image de-blurring method and others

when the system was oriented by step input. The input blurry image is the frame of

interest indicated in Figure 7(b), which is the same frame in the previous case. The

PSFs have a left-shifted center as shown in Figure 18. This is because the motion of

the selected image frame was oscillated around the second peak where the intensity is

relatively high. However, the intensity profile is more distributed than the previous

case because the velocity profile is almost constant except the oscillatory region at

the end of the interested frame as shown in Figure 7(b). The results show clearer

comparisons than the previous case because the input image was more degraded.

The results obtained by Goldstein et al., Fergus et al., and Whyte et al.s are still

blurry. The results of Shan et al. and Xu et al. show an improvement, but the ringing

artifacts still exist. The proposed method shows the most distinguishable letters and

the best overall result.

Comparing the results, it can be concluded that it is preferable to give the discrete

switching commands as an input because it has a faster settling time and less motion

blur in the image, resulting in better estimation of the latent image regardless of the

image de-blurring method.

3.6.2 Oscillatory Input

The proposed method has been discussed and compared to other approaches when the

system experiences uni-directional movement. In this section, the proposed method

was investigated when the system runs an oscillatory motion to verify that the pro-

posed method performs effectively when the motion paths are overlapping or inter-

secting. For this experiment, it is preferable to have longer exposure times due to the

limitation of working around the natural frequency of the camera orientation device.

The longer exposure time ensures that the device experiences full-cycle of oscillation,
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but also make image acquisition susceptible to excess light. Therefore, images were

obtained while indoor lights are off. Blurry images were obtained under oscillatory

conditions with three different amplitudes as shown in Figure 14. The amplitudes

were one PZT step, two PZT steps, and four PZT steps. Images are obtained at 10.4

fps. The indicated image frame shown in Figure 14 was investigated for all three

amplitudes.

Figures 20, 22 and 24 show the estimated PSFs with different oscillation ampli-

tudes. The PSFs have considerably uniform intensity distribution with low-amplitude

multiple peaks. The amount of time staying at each pixel of the blur kernel within a

single exposure window has a small variation as the camera was positioned. There-

fore, the PSFs exhibit multiple peaks that is a natural consequence as the system

experienced full cycle of oscillation.

Figure 19 shows image de-blurring results when the system obtained images while

having an oscillatory motion created by one PZT step. Shan et al.s result is degraded

due to an existence of dark noise in the capture image. Most of the methods show

an improvement over the input blurry images but have small discrepancies from the

image with no motion blur. The results of Goldstein et al. and Xu et al. have a small

amount of ringing artifacts and the results of the proposed method and Whyte et al.s

method are locally blurry. The proposed method, however, shows less blur globally.

Figure 21 shows image de-blurring results when the system obtained images while

having an oscillatory motion created by two PZT steps. It can be checked again that

Shan et al.’s method is not robust to low ambient light. The results of Goldstein

et al. and Xu et al. are degraded with ringing artifacts and the result Fergus et al.

still presents a large amount of blur. Although the results of the proposed method

and Whyte et al. have a discrepancy with the image with no motion blur, those have

the best results compared to the others.

Figure 23 shows image de-blurring results when the system obtained images while
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Figure 14: Oscillatory responses of the camera orientation system with various am-
plitudes. Images are obtained at 10.4fps.

having an oscillatory motion created by four PZT steps. The results of Fergus et al.

and Shan et al. have not estimated the blur kernels properly such that the letters

are not distinguishable. The results of Goldstein et al. and Whyte et al. show an

improvement but outputs are still blurry. Xu et al.’ method has greatly improved

the image but some of the characters are not clear. The proposed method shows the

best qualitative result in that all characters except ’e’ are recognizable.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 15: Test set #1. The obtained blurry image and estimated latent images
by various methods. Images are taken at 29fps with Vibration Suppresion input
command. (a) - (g) are cropped local images. (a) Proposed Method (b) Goldstein
et al. (c) Fergus et al. (d) Whyte et al. (e) Shan et al. (f) Xu et al. (g) Cropped
obtained blurry image (h) Obtained blurry image

(a) (b) (c) (d) (e) (f)

Figure 16: Test set #1. Estimated blur kernels. The size of the PSFs is 21 × 21.
(a) Proposed Method (b) Goldstein et al. (c) Fergus et al. (d) Whyte et al. (e) Shan
et al. (f) Xu et al.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 17: Test set #2. The obtained blurry image and estimated latent images by
various methods. Images are taken at 29fps with Step input. (a) - (g) are cropped
local images. (a) Proposed Method (b) Goldstein et al. (c) Fergus et al. (d) Whyte
et al. (e) Shan et al. (f) Xu et al. (g) Cropped obtained blurry image (h) Obtained
blurry image

(a) (b) (c) (d) (e) (f)

Figure 18: Test set #2. Estimated blur kernels. The size of the PSFs is 21 × 21.
(a) Proposed Method (b) Goldstein et al. (c) Fergus et al. (d) Whyte et al. (e) Shan
et al. (f) Xu et al.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 19: Test set #3. The obtained blurry image and estimated latent images by
various methods. Images are taken at 10.4fps with periodic oscillatory input. One
PZT step was used to create oscillatory response. (a) - (g) are cropped local images.
(a) Proposed Method (b) Goldstein et al. (c) Fergus et al. (d) Whyte et al. (e) Shan
et al. (f) Xu et al. (g) Cropped obtained blurry image (h) Obtained blurry image

(a) (b) (c) (d) (e) (f)

Figure 20: Test set #3. Estimated blur kernels. The size of the PSFs is 11 × 11.
(a) Proposed Method (b) Goldstein et al. (c) Fergus et al. (d) Whyte et al. (e) Shan
et al. (f) Xu et al.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 21: Test set #4. The obtained blurry image and estimated latent images by
various methods. Images are taken at 10.4fps with periodic oscillatory input. Two
PZT steps were used to create oscillatory response. (a) - (g) are cropped local images.
(a) Proposed Method (b) Goldstein et al. (c) Fergus et al. (d) Whyte et al. (e) Shan
et al. (f) Xu et al. (g) Cropped obtained blurry image (h) Obtained blurry image

(a) (b) (c) (d) (e) (f)

Figure 22: Test set #4. Estimated blur kernels. The size of the PSFs is 21 × 21.
(a) Proposed Method (b) Goldstein et al. (c) Fergus et al. (d) Whyte et al. (e) Shan
et al. (f) Xu et al.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 23: Test set #6. The obtained blurry image and estimated latent images by
various methods. Images are taken at 10.4fps with periodic oscillatory input. Four
PZT steps were used to create oscillatory response. (a) - (g) are cropped local images.
(a) Proposed Method (b) Goldstein et al. (c) Fergus et al. (d) Whyte et al. (e) Shan
et al. (f) Xu et al. (g) Cropped obtained blurry image (h) Obtained blurry image

(a) (b) (c) (d) (e) (f)

Figure 24: Test set #6. Estimated blur kernels. The size of the PSFs is 35 × 35.
(a) Proposed Method (b) Goldstein et al. (c) Fergus et al. (d) Whyte et al. (e) Shan
et al. (f) Xu et al.
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Figure 25: Quantitative evaluation of the de-blurred results

3.6.3 Quantitative Evaluation

The results of the de-blurring methods have been discussed in a qualitative manner.

This section presents a quantitative evaluation of the de-blurred images by the method

suggested in Section 3.5.2. Figure 25 shows quantitative evaluations for test sets #1

− #5. For the test set #1, the proposed method has the second best estimation

according to the suggested quantitative evaluation. For the test set #2, the proposed

method has the best quantitative result, which agrees with the qualitative evaluation

that the proposed method shows the most distinguishable letters. The proposed also

has the best quantitative results when de-blurring images that are obtained in the

course of oscillatory movements as it can be checked from test sets #3 − #5.

The effectiveness of the proposed algorithm was investigated under various motion
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conditions. The proposed algorithm estimated the PSFs overall better than conven-

tional methods. The experiment results show that the performance metric of the

proposed method is 16.96% better than the 2nd best algorithm and 31.14% better

than the other algorithms on average. It can be concluded from the experimental

results and the quantitative evaluations that the proposed algorithm has properly es-

timated the PSFs and showed better image de-blurring results than other approaches.

However, residual blur or ringing exists in the image for some cases because it is the-

oretically impossible to recover high-frequency image from the images blurred with

low-pass PSF.

3.7 Computation Time

Image de-blurring techniques is in general known to be computationally expensive.

The proposed method, however, estimates the blur kernel in an open loop manner

as the images are obtained. This approach results in a significant reduction of com-

putation time. Figure 26 and Table 2 show computation times for each algorithm

for each test presented in this study. A total of 10 trials are conducted for each of

the algorithm and for each test to evaluate average computation times. Computa-

tion times include estimation of a PSF and a deconvolution process. Computation

times were measured by running either MATLAB or compiled executable programs

distributed by the authors. For comparison, blur kernel sizes are fixed for each case.

The properties that are used for comparing computation times are shown in Table 3.

The results show that the proposed method is fastest among all the methods. This

is because the PSF is estimated from the embedded motion controller simultaneously.

The proposed method estimated latent images 4.8 times faster than the 2nd fastest

algorithm and 51 times faster than the other algorithms on average. The computation

time of the proposed method is not highly dependent on the size of the image and the

blur kernel. On the contrary, the computation time is highly dependent on those for
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Figure 26: Comparisons of computation times

the methods proposed by Goldstein et al., Fergus et al., Whyte et al., and Shan et al.

This is because those are based on a statistical model of the image or a series of opti-

mization techniques. Most of the computation efforts of the proposed method result

from the iterative deconvolution process. Since the proposed method was executed

in MATLAB, the computation times can be reduced further by executing a compiled

program in GPU or FPGA, which will be discussed in Chapter 4. In conclusion, the

proposed method is the least computationally expensive.

Table 2: Comparisons of Computation Times [sec]
Methods Proposed Goldstein et al. Fergus et al. Whyte et al. Shan et al. Xu et al.

Software MATLAB MATLAB MATLAB MATLAB
Compiled
Executable

Compiled
Executable

Set #1 1.84 24.68 154.63 177.58 33.06 7.41
Set #2 1.17 24.76 144.66 168.39 32.88 7.41
Set #3 1.12 15.47 148.19 162.37 20.45 5.31
Set #4 1.12 25.05 130.71 115.36 32.20 7.35
Set #5 1.88 47.59 111.50 172.45 140.16 7.61
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Table 3: Image sizes that were used to estimate computation times

Properties Image Size PSF Size
Set #1 640x480 21x21
Set #2 640x480 21x21
Set #3 640x480 11x11
Set #4 640x480 21x21
Set #5 640x480 35x35

3.8 Experiments with Different Scenes

This section presents experiment results when the system was capturing different

scenes and oriented by vibration suppression commands. For test sets #6 - #9, the

results were compared with the algorithms proposed Xu et al. [121], Goldstein et al.

[33], and Cho et al [18].

Figure 28 shows a comparison of the de-blurring results for various cases. The first

two rows show results when UVGA-size images were used and the last two rows show

results when VGA-size images were used. The first column shows the input images,

the second column shows the results obtained by the proposed methods, and the other

columns are results obtained by the compared methods. The degree of blurriness was

dependent on the velocity during the exposure window and the velocities of the test

sets #6, #7, #8, and #9 were 16.25, 30.47, 49.99, and 37.49 deg/sec, respectively.

For the test set #6, all the methods successfully recovered the blurry input image

due to a low degree of blurriness. However, the results obtained by Xu et al. and

Goldstein et al. show minor artifacts around the edges of the ‘Lab logo (the name of

the authors’ laboratory with a mascot character)’. For the test set #7, the proposed

method exhibits the least blurriness in particular around the ‘Lab logo’ and ‘First

Aid’ regions, although it has a relatively low contrast around sharp edges. The result

obtained by Cho et al. shows a fine recovery and contrast overall, although ringing

artifacts exist all over the image. Different parameter values were tested for Cho’s

method to avoid ringing artifacts. However, the final results were deteriorated. For
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Table 4: Comparisons of Computation Times [sec]

Set
Image
Size

Kernel
Size

Proposed
Method

Xu
et al.

Cho
et al.

Goldstein
et al.

#6 UVGA 35 × 35 2.32 13.85 15.81 29.71†

#7 UVGA 75 × 75 3.32 14.57 18.13 80.35†

#8 VGA 41 × 41 1.20 8.17 4.99 30.66
#9 VGA 31 × 31 0.93 7.87 4.96 49.64
† SVGA image was used due to a software limitation

the test set #8, all the methods were not able to perfectly recover the blurry image

possibly due to high velocity. Overall, it can be concluded that the proposed method

obtained the best result by observing the ‘Lab logo’ and ‘First Aid’ regions. For the

last test set, all the methods showed yielded improved results, with the proposed

method providing the best result, based on comparison of the ‘Lab logo’ regions.

Overall, the proposed method obtained the best results in terms of geometrical

recovery while the method created a relatively low contrast around some sharp edges.

This issue can be improved by applying a sharpening filter to the final outcome by

allowing a slight increase in the processing time. The total process time would increase

less than 1% when using a sharpening filter depending on the dimension of the blur

kernel. In this study, a sharpening filter was not introduced for a fair comparison

with other methods.

Figure 27(a) shows quantitative evaluations for test sets #6 − #9. It can be

found again in the graph that the proposed method provides the lowest scores for all

the test cases, which means that the closest result to the clean static image can be

obtained. The experiment results show that the performance metric of the proposed

method is 13.23% better than the 2nd best algorithm and 21.39% better than the

other algorithms on average. As can be observed in Table 4 and Figure 27(b), the

proposed method provides the fastest computation time. The proposed method es-

timated latent images 5.7 times faster than the 2nd fastest algorithm and 12 times

faster than the other algorithms on average. The experiment results in regard to
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Figure 27: Experimental results of the test sets #6 − #9. (a) Quantitative Evalua-
tion. (b) Comparisons of computation times.

both quantitative evaluations by the performance metric of the proposed method and

computation times agree with the results presented in the previous section.
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(a) Blurry input (b) Proposed method (c) Xu et al.

(d) Cho et al. (e) Goldstein et al.

(f) Blurry input (g) Proposed method (h) Xu et al.

(i) Cho et al. (j) Goldstein et al.

Figure 29: Test set #6. Cropped local images from Figures 28(a) - 28(e).
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(a) Blurry input (b) Proposed method (c) Xu et al.

(d) Cho et al. (e) Goldstein et al.

(f) Blurry input (g) Proposed method (h) Xu et al.

(i) Cho et al. (j) Goldstein et al.

Figure 30: Test set #7. Cropped local images from Figures 28(f) - 28(j).
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(a) Blurry input (b) Proposed method (c) Xu et al.

(d) Cho et al. (e) Goldstein et al.

(f) Blurry input (g) Proposed method (h) Xu et al.

(i) Cho et al. (j) Goldstein et al.

Figure 31: Test set #8. Cropped local images from Figures 28(k) - 28(o).
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(a) Blurry input (b) Proposed method (c) Xu et al.

(d) Cho et al. (e) Goldstein et al.

(f) Blurry input (g) Proposed method (h) Xu et al.

(i) Cho et al. (j) Goldstein et al.

Figure 32: Test set #9. Cropped local images from Figures 28(p) - 28(t).
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Figure 33 shows another experiment result when the system was capturing a

difference scene. Figure 35 shows the estimated PSFs. Similarly to the first case,

the intensity profile has a left-shifted center since the motion of the selected image

frame was settled to the desired position. The results of Goldstein etal., Shan etal.,

and Xu etal. again present ringing artifacts and the results are slightly degraded.

The methods proposed by Fergus etal. and Whyte etal. show an improvement but

also have a small amount of ringing artifacts. The proposed method shows the best

estimation with the least ringing artifacts among all the methods.

(a) Proposed Method (b) Goldstein et al. (c) Fergus et al.

(d) Whyte et al. (e) Shan et al. (f) Xu et al.

(g) Blurry input (h) Obtained
blurry image

Figure 33: Test set #10. The obtained blurry image and estimated latent images
by various methods. Images are taken at 29fps with Vibration Suppresion input
command. (a) - (g) are cropped local images.
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(a) Proposed Method (b) Goldstein et al. (c) Fergus et al.

(d) Whyte et al. (e) Shan et al. (f) Xu et al.

(g) Blurry input

Figure 34: Test set #10. The obtained blurry image and estimated latent images
by various methods. Images are taken at 29fps with Vibration Suppresion input
command. (a) - (g) are cropped local images.

(a) (b) (c) (d) (e) (f)

Figure 35: Test set #10. Estimated blur kernels. The size of the PSFs is 21 × 21.
(a) Proposed method (b) Goldstein etal. (c) Fergus etal. (d) Whyte etal. (e) Shan
etal. (f) Xu etal.
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Camera Orientation 
System

Scene Text

Figure 36: Experimental setup for evaluation by OCR.

3.9 Evaluation by OCR

In the previous sections, the de-blurring methods are quantitatively evaluated by

taking the difference between the resultant image and the reference image. In this

section, the proposed and compared de-blurring methods are evaluated by optical

character recognition (OCR) technology. OCR is a technology that converts text on

images into an ASCII code, machined-encoded text.

Figure 36 shows the experimental setup to evaluate the de-blurring methods by

OCR. A paper, on which texts are printed, is placed in the scene. A VGA-size

image is obtained at 30 fps and the mean angular velocity of the camera orientation

system during the exposure is 32.5 deg/sec. The obtained image is de-blurred by

the proposed and other methods. Then, OCR is used to evaluate the de-blurring

methods by checking text recognition results. In this study, OCR software that is

built-in Microsoft OneNote 2010 is used. For evaluation, three different printed texts

are used: (1) 10 alphabet characters, (2) 10 numerical digits, and (3) A sentence
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(a) (b)

(c)

Figure 37: Input blurry images for evaluating the de-blurring methods by OCR. (a)
10 alphabet characters. (b) 10 numerical digits. (c) A sentence (100 characters).

containing 100 characters. The obtained blurry images are shown in Figure 37.

Figure 38 shows the recognized texts by MS OneNote 2010 OCR from the de-

blurred images when Figure 37(a) is used as an input image. Figures 39(a) and 39(b)

show numbers of accurate and inaccurate text recognition of each method. The text

recognition from the original input image is poor due to blurriness. It can be observed

that recognition results from both the proposed and Xu’s methods are successful that

all characters are captured. However, the recognition result by Xu’s method includes

one inaccurate dot. Although the de-blurring methods improve the OCR results, texts

are partially recognized from the de-blurred images by the other compared methods.

Figure 40 shows the recognized numerical digits from the de-blurred images when

Figure 37(b) is used as an input image. Figures 39(a) and 39(b) show numbers

of accurate and inaccurate numerical digit recognition of each method. It can be

observed that all 10 numerical digits are recognized only from the de-blurred image

by the proposed method. Although a recognition rate from the de-blurred image by
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Xu’s method is high, the OCR result includes many inaccurate machined-encoded

texts. No numerical digits are recognized from the de-blurred images by Goldstein,

Fergus, and Whyte methods. The OCR result from the image obtained by Shan’s

method show 3 numerical digits and unwanted ASCII texts.

Figure 42 shows the de-blurred images for a blurry input shown in Figure 37(c)

by various methods. Figure 43 shows the recognized texts from Figure 42 by OCR.

The recognition rate from a blurry input image is only 5% as it can be observed in

Figure 44. It can be observed that the recognition rates are improved using the de-

blurring technique. Among various de-blurring methods, the proposed method shows

the best text recognition rate. However, there are large discrepancies in the OCR

results between the reference image and de-blurred images by the other methods.

The experimental results from all cases show that the proposed method exhibits

better text recognition results by OCR than the conventional methods.
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L MN O P

.AE.CDE.
O P

ABCDE
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ABCDE
LMNOP

Input Image Proposed Method Goldstein et al. Fergus et al.

Whyte et al. Shan et al. Xu et al. Reference

Figure 38: Text recognition results from the de-blurred image. The input blurry
image is Figure 37(a).
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Figure 39: Evaluation of the de-blurring methods by OCR. (a) Number of recognized
text. (b) Number of inaccurately recognized text.
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Figure 40: Text recognition results from the de-blurred image. The input blurry
image is Figure 37(b).
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Figure 41: Evaluation of the de-blurring methods by OCR. (a) Number of recognized
numerical digit. (b) Number of inaccurately recognized numerical digit.

(a) Proposed method (b) Goldstein et al. (c) Fergus et al.

(d) Whyte et al. (e) Shan et al. (f) Xu et al.

Figure 42: De-blurred images of 37(c) by various methods.
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Figure 44: Recognition rates by OCR from the de-blurred images containing a sen-
tence.
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3.10 Summary

This chapter presented a method to estimate the spatial-invariant PSF for the robotic

camera orientation system [55, 51]. The robotic camera system was given discrete

switching commands in an open-loop manner to effectively suppress the vibration.

The camera orientation system captured images with relatively small motion blur

as a result of the vibration suppression technique. The PSF was estimated in an

open-loop manner with the aid of known system dynamics, requiring no external

sensors. It was assumed that the system dynamics was well calibrated and the system

had no unpredictable disturbances. The latent image was estimated by using the

deconvolution process in knowledge of the estimated PSF.

The proposed method is investigated under various motion conditions and scenes

to verify the effectiveness and was compared to well-known other approaches. The

proposed method shows the best estimation of the PSF overall from the experiment

results. The experiment results show that overall the performance metric of the pro-

posed method is 31.29% better than that of conventional methods. The proposed

method is also evaluated by OCR technology and the text recognition rates of the

proposed method is 57.8% point better than that of conventional methods. In ad-

dition, the computation time of the proposed method is 45.1 times faster than the

conventional methods. Although the proposed method was tested in the single DOF

mechanism, it is also applicable to a multi DOF camera orientation system. Non-

linear dynamics can also be handled since the dynamics calculation is feedforward.

The proposed method, however, is limited to the application that the camera is fully

controlled by actuators.
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CHAPTER IV

SYSTEM ARCHITECTURE FOR VISUAL-MOTOR

COORDINATION AND REAL-TIME PERFORMANCE

This chapter presents a system architecture to achieve real-time performance by

visual-motor coordination.

The field of view of a generic camera is limited [84]. This limitation motivates

research in panoramic image generation. In classical methods, multiple images are

taken at rest with different angles of view to generate a panoramic image. Exist-

ing methods are not robust to blurry images due to a lack of information on high

frequencies [65]. Due to this reason, images are not obtained in the course of motion.

A panoramic image may be generated while quickly sweeping an environment

by visual-motor coordination using the robotic vision system. Although images are

obtained in the course of rapid motion, the dynamics-based de-blurring method dis-

cussed in the previous chapter can be incorporated to enhance the quality. Recovering

high-frequency information of raw images could benefit the algorithm for panorama

generation. However, if the processing time is longer than the summation of image

acquisition time and positioning time, then incorporating the de-blurring technique

has no advantages.

The dynamics-based de-blurring method improved computation times but the im-

plantation was non real-time and limited to a single image. Therefore, the proposed

architecture aims to achieve: (1) real-time image de-blurring within 30 fps, and (2)

parallel system architecture for visual-motor coordination and accelerating computa-

tion time.
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Figure 45: Comparison of pipelines. (a) Pipeline of conventional de-blurring meth-
ods. Image acquisition, motion estimation, and kernel generation are processed in a
serial manner. (b) Pipeline of the proposed de-blurring method. Image acquisition,
motion estimation, and kernel generation are processed in a parallel manner.

4.1 Methodology and System Architecture

Figure 45(a) shows a general pipeline of the existing de-blurring methods. The pro-

cesses are performed essentially in a serial manner including iterative loops, which can

be an obstacle for achieving the real-time performance. A blurry image is obtained

and its blur kernel or PSF is estimated by analyzing the obtained image. Then,

non-blind deconvolution is performed to restore the blurry image [62]. Most of the

studies update the blur kernel iteratively and some studies even feedback the decon-

volution results to refine the final outcome [18, 33]. Sensor-based approaches include

the motion estimation process and may update the kernel in an iterative manner

[9, 3, 45].
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This research proposes a pipeline in which image acquisition, motion estimation,

and kernel estimation are performed in a parallel manner using the FPGA as shown

in Figure 45(b). The dynamics-based approach has been adopted to estimate the blur

kernel [55]. Since it relies only on dynamics and control information, the blur kernel

can be estimated from the motion controller on the FPGA in a parallel manner during

image acquisition as shown in Figure 45(b). Although this study does not introduce

an iterative process, a feedback loop may be included to further improve estimation

of the blur kernel.

The previous section demonstrated that the dynamics-based approach can improve

computation times; however, the implementation was non real-time and limited to

a single image [55] . To further improve the dynamics-based concept, this section

proposes a system architecture that exploits parallel computing to achieve real-time

image de-blurring and make use of resultant images for panoramic image generation

as shown in Figure 46. In order for real-time image processing and control of multiple

actuators, the proposed system architecture embodies various processors to increase

the parallelism.

4.1.1 Vision Sensor

In order for the dynamics-based approach to estimate the blur kernel in a sensorless

fashion, it is critical to accurately locate an exposure window of each image frame.

Otherwise, the motion causing the blurry image may not be properly estimated, re-

sulting in a deteriorated de-blurred image. This study deals with motion blur due to

rapid motion with regular frame rates as opposed to existing studies that focused on

motion blur caused by handshake during a long exposure. Thus, it is recommended

to employ a camera that supports GPIO (General Purpose Input/Output). Synchro-

nization is guaranteed by sharing the clock between the camera and motion system or

digital signals to communicate exposure window information if GPIO is supported.
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Although cameras such as webcams do not support IO capabilities, synchronization

could be achieved by software clocks. However, it may not be robust to a communica-

tion delay or jitter in sampling clock. It is also recommended to operate a camera in a

global shutter mode to avoid the wobble effect. Otherwise, artifacts exist in a rolling

shutter mode where all pixels of an image sensor are not registered at once. The

wobble effect can be removed by introducing a homographic model [35]. However,

minor artifacts may still exist and the computational effort may increase.

4.1.2 FPGA

The FPGA is a 2D integrated circuit that is programmable, reconfigurable, and scal-

able [71]. Unlike a controller run by an operating system, FPGA programs run

at the hardware level. A number of programs can be operated concurrently in a

parallel manner because programs are compiled into physical hardware and thus the

FPGA allows for parallel operation at a deterministic and fast rate [76]. By taking

advantage of this parallelism, the proposed system intensively exploits the FPGA for

motion control and partial image processing as shown in Figure 46.

Xilinx Virtex-5 LX 85 having 12960 slices was used to operate required functions

at a sampling frequency of 100 kHz. The vision sensor was operated by sharing a

clock with the FPGA and thus exposure windows could be monitored. For vibration

suppression of the camera positioning mechanism having a total of 32 PZT actuators,

activations of the distributed actuators were switched every 0.9 ms at the fastest.

Given a desired motion profile, low-level commands were generated and given to

the motor drivers. While controlling the actuator system, the trajectory was esti-

mated by tracking generated low-level commands with mechanical information for

each exposure window and thus the PSF was generated in a parallel and sensorless

fashion. Each FPGA program adopted a pipelining method to increase the through-

put. Since the FPGA is naturally asynchronous with other controllers, the Direct
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Figure 46: Function blocks and data flows of the proposed system architecture for
a general robotic system with the real-time image de-blurring capability. The FPGA
is used to control a multi-actuator system and execute various functions in a parallel
manner. The GPU is used to enhance process times of matrix computations.

Memory Access (DMA) and First-in First-out (FIFO) methods were used to enable

loss-less data transfer at high rates.
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4.1.3 GPU

Once the blur kernel was determined, the non-blind deconvolution process was per-

formed by parallel computing to achieve real-time performance. The GPU was dedi-

cated to accelerate the speed of image de-blurring, panoramic generation, and other

post-processing. The process speed can be benefited by using a large number of

threads with a high memory bandwidth of the GPU. The GPU programs were coded

in C/C++ by using NVIDIA’s CUDA (Compute Unified Device Architecture). A

NVIDIA GeForce GTX 770 graphics card that features 1536 CUDA cores operating

at 1046 MHz with 2 GB of memory performed the computations. A desktop computer

running Microsoft Windows 7, 64 bit version, with Intel i7-2600K 3.40 GHz processor

and 12.0 GB RAM was used.

Since the FPGA was intensively used in this architecture, one might argue that

the use of a FPGA may be a better option to accelerate image processing [79] than

the use of a GPU. However, previous research reported that GPUs outperformed

FPGAs in term of matrix computation [94, 83]. In addition, the use of GPU has the

advantage of scalability and compatibility. Also, the CUDA-enabled libraries have

been widely available in various platforms [67, 78].

In the proposed architecture, the use of GPU was limited to the deconvolution

process since the kernel could be estimated in a parallel manner as shown in Figure

45(b). Otherwise, image acquisition, motion estimation, and kernel generation would

need to be executed in a serial manner on the GPU.

4.1.4 Real-Time Controller and Host PC

In a number of robotics applications, a real-time operating system (RTOS) has been

used for timing critical tasks such as motion control because of the reliability of deter-

ministic sampling rates [34]. In this architecture, since the majority of computational

tasks were executed on either FPGA or GPU, the role of the RTOS was limited to
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high-level motion planning and data logging. The role of the host PC except for GPU

was for the user interface (UI) and information display.

4.2 Real-Time Image de-blurring

4.2.1 Spatially invariant and deterministic kernel from pure rotational
system

Existing studies attempted to estimate a spatially-invariant kernel assuming the uni-

form motion blur by investigating local regions or by averaging the kernel over the

entire image [27]. However, this approach may not be applicable to the case where

a camera experiences certain motion with a non-constant depth in scene. Therefore,

some studies attempted to estimate a spatially-variant kernel by other means such

as using the Microsoft Kinect sensor to obtain the depth map, measuring local blur

by image segmentation or introducing a homography model to the camera motion

[122, 120]. These existing approaches are effective when motion of a camera involves

translational movements. The model of a blur kernel must be carefully chosen based

on the condition. In this study, since the camera positioner only generates pure rota-

tional movements like the human ocular system, the spatially-invariant kernel model

is adopted.

Figure 47 shows the model of a pinhole camera experiencing rotational motion

in the 2D space. FOV is the field of view in the initial camera position and FOV′ is

the field of view of the camera rotated for θx degrees. An arbitrary point on the 2D

plane appears on the image plane at Ix, which is a horizontal distance from the image

center. The position of the pixel of an arbitrary point for the rotated camera Ix′ is

equivalent to Ix1′ + Ix2′ . Px is the horizontal distance of an arbitrary point from the

pinhole on the 2D plane. Similarly, the horizontal distance of an arbitrary point from

the pinhole for the rotated camera Px′ can be expressed as Px1′ + Px2′ . The depths

of an arbitrary point at the initial and rotated positions are d and d′, respectively.

From the geometry shown in Figure 47,
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Figure 47: Pinhole camera model for rotational motion

Ix1′ =
fcamera

d′
Px1′ , (16)

where fcamera is the focal length, and

Px1′ =
Px

cos(θx)
. (17)

Also,

Ix2′ = fcamera tan(θx). (18)

Therefore,
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ΔIx = fcameraPx(
1

d′ cos(θx)
− 1

d
) + fcamera tan(θx). (19)

If a scene or object is not positioned close enough to the pinhole, it may be

assumed that d ≈ d′. Since the motion blur in this study is mainly caused by rapid

motion within a short exposure time, as opposed to existing studies, it may also be

assumed that cos(θx) ≈ 1. If the camera is rotated for 10 degrees, approximately

a half stroke of the camera orientation system, an error of 1.52% error would be

induced. This error is not significant in this study for VGA and UVGA images since

the corresponding error on the blur kernel is even smaller than the size of a single

pixel. As a consequence, a constant depth can be assumed even if the scene or object

is close to the camera. From these assumptions, (19) can be simplified as:

ΔIx = fcamera tan(θx). (20)

Therefore, a spatially invariant kernel model was adopted for the robotic camera

positioner that generates pure rotational motions. In addition, unlike existing studies

require user inputs, the dimension of the blur kernel in the horizontal direction kx

can be determined by

kx = fcamera tan(θx)sx (21)

where sx is the pixel size of the image sensor in the horizontal direction.

4.2.2 Instant dynamics-based blur kernel estimation

In the FPGA, the angular displacement of the camera positioner, θ = θxx̂ + θyŷ, at

each sample was estimated by using the dynamics-based method reported in [55]. By

sampling the estimated motion, the trajectory of the blur kernel can be represented

as
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−→
k = kxx̂+ kyŷ, (22)

where x̂ is the unit vector in the horizontal direction and ŷ is the unit vector in the

vertical direction. The intensity along with the profile at each sample is determined

as

K(kx,ky) = nkxky , (23)

where K(kx,ky) is the pixel value of the blur kernel K at the location (kx, ky), nkxky

is the number of samples remaining at the pixel (kx, ky) within a single exposure

window. The resultant blur kernel K is a o × p matrix, where o is the height of the

blur kernel, and p is the width of the blur kernel. After the exposure window for a

single frame was closed, to preserve information of the initial position, this blur kernel

K was enlarged to a (2q + 1)× (2q + 1) matrix by locating the starting point at the

center (q + 1, q + 1) where q = max(o, p). The newly introduced pixels were padded

by zeros.

Then, the summation of elements of the blur kernel was normalized to one for

intensity conservation:

2q+1∑
u=0

2q+1∑
v=0

K(u,v) = 1. (24)

Since the programs on the FPGA used for kernel estimation run at 100 kHz, the

PSF was generated in 30μs after an image was obtained. This is the fastest kernel

estimation reported and was not feasible by using existing image-based methods or

sensor-based approaches [9, 3, 45]. These existing methods employ an additional

vision sensor and therefore require additional image processing.

The normalization of the blur kernel was performed on the GPU to decrease the

data transfer time. The data type of integer can be used for the blur kernel if not
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Figure 48: Comparison of data transfer times per pixel from CPU to GPU for various
kernel dimensions

normalized by (24) while the data type of float must be used when normalized. Figure

48 shows a comparison of transfer times of a blur kernel per pixel from the CPU to

GPU for various kernel dimensions. The use of integer data type was always faster

than the float data type because of a smaller memory size. In addition, the transfer

times using the data type of float significantly increased as the kernel dimension

increased while the times were almost constant for the integer data type. If the

maximum value of the blur kernel elements exceeded 255, the kernel was equalized

ranging from 0 to 255 and floating points were rounded to the nearest integer to

minimize the memory size.

4.2.3 Real-Time Deconvolution

The Richardson-Lucy approach is known to be robust in the presence of high noise

levels. However, it is an iterative method that increases the computation time. There-

fore, the real-time performance may not be feasible for large-size images. On the other

hand, the Wiener method is known to be faster than the Richardson-Lucy method.

It estimates a latent image in the frequency domain in a non-iterative fashion. This

72



method is less robust than the Richardson-Lucy method to the existence of noise

as shown in Figure 49 [101]. In this research, both Richardson-Lucy and Wiener

deconvolution methods were used and selection of the method was dependent on the

input image size and light conditions. [89, 81].

The objective of the Wiener deconvolution is to estimate Î(t) that minimizes the

mean square error of I (t) [81]:

Î = g⊗B (25)

where g is defined by the Wiener filter in the frequency domain as

G(f) = (H∗(f)� S(f))� (|H(f)�H(f)| � S(f) +N(f)) (26)

G,H,S,N ∈ R
m×n

where G(f) is the Fourier transform of g at the frequency of f , H(f) is the Fourier

transform of K at the frequency of f , H∗(f) is the complex conjugate of H(f), S(f) is

the mean power spectral density of I(t), and N(f) is the mean power spectral density

of N.

From (25),

Î(f) = G(f)�B(f) (27)

where Î(f) is the Fourier transform of Î(t). Therefore, the latent image can be found

by taking the inverse Fourier transform of Î(f). Although the dimension of the blur

kernel in the frequency domain is the same as that of the obtained image, it is a faster

method than the Richardson-Lucy method.

Since a spatially-invariant kernel was used, a color image consisting of three chan-

nels was treated as a single channel image as shown in Figure 50 when performing

the Richardson-Lucy deconvolution process on the GPU. This approach reduced the
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(a) (b) (c)

Figure 49: Comparison between Richardson-Lucy and Wiener deconvolution meth-
ods. The image was taken under low light condition to introduce noise and to test
robustness. The results shows that the Richardson-Lucy method is robust to noise
while the Wiener method is not. (a) Original blurry input (b) Result obtained by the
Richardson-Lucy method (c) Result obtained by the Wiener method

D
econvolution

R
G
B

Blurry Image

Blur Kernel

De-blurred Image

GPU
CPU

Final Result

Figure 50: Single channel approach when performing the deconvolution process on
the GPU to improve computation time.

computation time by 5.06% and 6.57% for UVGA and VGA size images respectively

as shown in Table 5. In contrast, no significant change was observed for the Wiener

deconvolution method.

Table 5: Improvement in computation time by single channel approach

Image size three channels [msec] single channel [msec]
VGA 92.9 88.2
UVGA 27.72 25.9

4.3 Experimental Results

Tables 7 and 8 show comparisons of computation times of image de-blurring in condi-

tions given in Table 6. An existing de-blurring algorithm proposed by Xu et al. [121]

was chosen as it is known to be efficient, widely used for benchmarking purposes, and
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supports GPU computation. A code distributed by the author was used. The con-

ventional algorithm include free parameters that need to be tuned by a user. These

parameters were adjusted manually until the best possible results were obtained.

In addition, UVGA-size images were decreased to the SVGA size when running

Xu’s method due to software limitations. Therefore, the computation time of these

methods would be longer for UVGA size images.

Table 6: Conditions of the test sets

Set Image Kernel
velocity
(deg/sec)

#1 1280 × 960 35 × 35 16.25
#2 1280 × 960 75 × 75 30.47
#3 640 × 480 41 × 41 49.99
#4 640 × 480 31 × 31 37.49

Table 7: Comparisons of Computation Times using GPU for Color Images [ms]

Set
Proposed
(R-L)

Proposed
(Wiener)

Xu et al.

#1 52.1 46.8 2519†

#2 88.2 47.7 2214†

#3 26.7 16.2 1710
#4 25.9 16.1 1986
† SVGA image was used due to software limitation

Table 8: Comparisons of Computation Times using GPU for Grayscale Images [ms]

Set
Proposed
(R-L)

Proposed
(Wiener)

Xu et al.

#1 19.3 19.8 2687†

#2 30.9 19.9 2233†

#3 9.8 9.9 1713
#4 9.4 9.9 1725
† SVGA image was used due to software limitation

As can be observed in Tables 7 and 8, the proposed method provides the fastest

computation time. Real-time performance has been achieved for VGA-size color

images regardless of the deconvolution method. Although real-time performance for
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Figure 51: Improvement in the computation times. (a) Color images (b) Grayscale
images

UVGA-size color images could not be achieved by using the Richardson-Lucy method,

it was close to real-time using the Wiener method. It can also be observed that the

kernel size was not the major factor affecting the computational time in the Wiener

method. On the contrary, the computational time of the Richardson-Lucy method is

highly dependent not only on the image size but also the kernel size. Although all

results are far from the real-time performance, it can be confirmed that the dynamics-

based approach provides the fastest results.

In general, the main part of computation time in de-blurring is occupied by kernel

estimation. Although the method by Xu et al. has shown notable results among

image-based de-blurring algorithms as shown in Figure 26, the computation time
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was significantly longer than the proposed method as shown in Table 8. It includes

nested iterative loops for kernel estimation resulting in an extensive computation. The

method by Cho et al. has also shown notable results by using the CPU. However, the

real-time performance may not be feasible using GPU-based acceleration according

to their paper [18].

4.4 Summary

This chapter presented a system to control distributed PZT actuators and achieve

real-time performance within 30 fps for image de-blurring. The experimental results

show that the real-time performance for image stitching within 30 fps was achieved

when VGA-size images and UVGA-size grayscale images were used. Although the

frame rate was slightly below 30 fps for UVGA-size color images, real-time perfor-

mance may be achieved by using an advanced GPU or adopting multi-GPU system.

This chapter validated the hypothesis that the key enabler for real-time visual

processing in a fast moving vision system is utilizing dynamics information and par-

allel computing; a neural mechanism utilizes the dynamic model of the eye to predict

self-induced eye movements and compensate motion smear. The preliminary research

in this chapter provided the basis of rapid panorama generation by visual-motor co-

ordination that will be explained in Chapter 5.
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CHAPTER V

DYNAMICS-BASED PANORAMA GENERATION

This chapter presents a fast panoramic generation method using a rapid-moving

robotic vision system. It is realized by developing a dynamics-based method for

homography estimation using a robotic vision system. For panoramic image stitch-

ing, most of existing algorithms [28, 31, 39, 66] are designed to process clean images,

resulting in limited robustness to motion blur. The speed of motion in traditional

dynamic camera platforms with servomotors is often bounded to avoid blurry im-

ages. The use of a high framerate camera for robotic vision is an alternative practical

approach. Most of existing high-speed vision systems employ a camera with a high

frame rate, e.g., 200-1000 fps, mounted on a standard positioning mechanism [16, 125].

However, applications may be limited by the requirement of a bright light condition

as well as the cost and size of high framerate cameras.

In this research, a camera with a standard frame rate is used and images are

acquired from different angles of view while the robotic camera positioner quickly

scans the environment. The obtained images may be blurry due to the fast motion

of the camera positioner. An image with an enlarged FOV will be generated based

on dynamics-based homography estimation, which is robust to degraded images. The

resultant image may be improved in a parallel fashion by incorporating the real-time

de-blurring method discussed.

5.1 Visual-Motor Coordination

This section demonstrates the importance of the coordination between motion control

and image processing for quick scanning of the field of view. While the proposed

dynamics-based image processing technique is solely useful, the method is even more
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effective when combined with the vibration suppression technique in terms of scanning

time. If the system needs to scan multiple positions, the total acquisition time is

dependent on both mechanical settling time and tstationary. The time tstationary is

the difference between the time that the new commands are given and the time the

motion generated by previous commands was settled in a single exposure window

as shown in Figure 52. tstationary is minimally the exposure time of the camera if

no motion was involved. The mechanical settling time is dependent on the natural

frequency and can be considered as a constant. Therefore, the total acquisition time

can be adjusted by tstationary. A longer tstationary would result in less motion blur and

vice versa. Since the degree of motion blur is dependent on the total acquisition time,

there is a trade-off between a scanning time and an image quality.

Figure 53 shows the experimental results when the camera orientation device scans

four different equally spaced positions. The proposed method was only used to es-

timate the latent image because its advantage has already been verified in Sec. 3.6.

A total of four trials were conducted for each case and the total travel distance was

16 PZT steps. The results show that the completion times are faster overall when

the vibration suppression commands are given. In comparison, the same quality of

(a) (b)

Figure 52: Visual-motor coordination (a) Vibration suppression input (b) Step input
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estimated latent images cannot be achieved in the same time by the step input, or vi-

bration uncompensated input. When the vibration suppression commands are given,

standard deviation of the estimated image quality decreases as the completion time

increases. However, this tendency is not clear when the vibration uncompensated

command is given. Therefore, the results show that the vibration suppression tech-

nique is essential for the scanning time, even if the proposed de-blurring method is

applicable for any type of commands. Also, quantitative evaluation supports the

notion that the vibration suppression technique contributes to the image quality.

By means of visual-motor coordination, incorporating the dynamics-based mo-

tion de-blurring method with vibration suppression technique allows environmental

scanning at a fast rate while achieving acceptable image quality.

Figure 53: Results of visual-motor coordination. The camera orientation device
scans four different positions. The total travel distance is 16 PZT inputs.

5.2 Dynamics-based Stitching

The effectiveness of the vibration suppression commands to generate saccade-like

movements for visual-motor coordination was presented in the previous section. A
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Figure 54: Timeline to create a panoramic image from VGA images. The ‘move’
block represents the settling time for a point-to-point motion using the robotic vision
system. The ‘image’ block represent the time of image acquisition. The ‘de’ block
represents the computation time of image de-blurring that set to 16.5 ms based on
the results from section 4.3.

panoramic image can be generated by acquiring multiple images while the robotic

vision system quickly sweeps and scans the environment as shown in Figure 54. To

generate an enlarged FOV, the camera may acquire images with respect to the position

of the camera orientation system rather than acquiring images at the full frame rate

for feeding video. The total scanning time can be decreased by adjusting time lengths

at rest. It should be noted that there is a trade-off in quality as shown in Figure 53.

To relate neighbor images to each other, a homography matrix should be obtained to

warp images on the same plane.

5.2.1 Homography Estimation

This section the dynamics-based approach for the estimation of the homography ma-

trix. The camera positioner presented in this study produces pure rotational motion

and thus the homography matrix can be given as [111]:
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H = CcameraRC−1
camera (28)

H ∈ R
3×3

where Ccamera is the camera intrinsic matrix and R is the rotation matrix. The

rotation matrix is a function of a static angle θ̄:

R = R(θ̄). (29)

The static angle θ̄ is equivalent to the center of gravity of the blur kernel that

was estimated on the FPGA. The center of gravity of the i-th blur kernel Kcog,i =[
Kcog,x,i Kcog,y,i

]T
is located at

Kcog,i =

2q+1∑
u=0

2q+1∑
v=0

K(u,v),i

⎡
⎢⎣u
v

⎤
⎥⎦ , (30)

where K(u,v),i is the value of the i-th blur kernel at the pixel (u, v).

Therefore, the static angle of the i-th frame for transformation θ̄i =

[
θ̄x,i θ̄y,i

]T

is

θ̄x,i = arctan(
Kcog,x,i

fcamerasx
) + θx,i0 (31)

θ̄y,i = arctan(
Kcog,y,i

fcamerasy
) + θy,i0 (32)

where sy is the pixel size of the image sensor in the vertical direction and i0 denotes

the initial position of the i-th frame.

5.2.2 Modified Deconvolution

The real-time de-blurring method was presented in the previous chapter but the

results tend to have ripple artifacts around edges as shown in Figure 55(b) due to

zero padding when computing convolutions. This artifact may not be significant when

de-blurring a single image. However, these ripples could exist in multiple regions in
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(a) (b) (c)

Figure 55: Deconvolution results. The original method has artifacts around the
edges due to zero padding. (a) Original blurry input. (b) Obtained by general
deconvolution. (c) Obtained by modified deconvolution.

a panoramic image or confuse a conventional image-based panoramic algorithm. The

artifacts could be neglected by simply trimming the them after the deconvolution

process but it conflicts with the purpose of a panoramic image.

To avoid this issue, the input image was padded with flipped images as shown in

Figure 56. The dimension of the flipped image is:

mpad =

⎧⎪⎪⎨
⎪⎪⎩
kx · nRL, Richardson-Lucy Method

kx, Wiener Method

(33)

npad =

⎧⎪⎪⎨
⎪⎪⎩
ky · nRL, Richardson-Lucy Method

ky, Wiener Method

(34)

where mpad and npad are the width and height of the flipped image, respectively, and

nRL is the total number of iteration in the Richardson-Lucy method.

The artifact can be avoided by padding each side of the input image with a

flipped image as shown in Figure 55(c) [50]. This padding approach results in a

longer computation time due to the increased dimension of the input image.

5.3 Experimental Setup

Figure 57 shows the experimental setup for generating a panoramic image by visual-

motor coordination. The times of ‘move’, ‘image’, and ‘de’ blocks in Figure 54 were

set to 60 ms, 33 ms, and 16.5 ms, respectively, based on the results from Section 4.3.
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mpad

npad

Figure 56: An input image padded with flipped images to avoid ripple artifacts.

The proposed method generates a panoramic image solely based on the dynamics

of the camera positioner. Note that a slight non-linearity was observed when the

camera passed the neutral position where both the cellular actuators were activated.

Since the proposed method is purely based on the dynamics, encoder data was used

for adjusting only when the camera passed the neutral position. In other motion

ranges, encoder information was not used when only a single cellular actuator was

used to position the camera and no significant non-linearity was observed. Since the

method is independent on image features, it should be robust to degraded blurry

images and does not require overlapped regions between neighboring images.

5.4 Experimental Results

5.4.1 Evaluation

Figures 58, 59 show the panoramic images generated by the proposed method and ex-

isting methods. For comparisons, Microsoft (MS) Image Composite Editor (ICE) [73],

PTGui [77], and Panoweaver [25] programs were chosen. The robotic camera system

scanned the environment to the right and left facing to the object and a total of 17

images were captured in the motion. The size of image was VGA and the mean an-

gular velocity during the single exposure window was 36.1 deg/sec. For the proposed

method, a newly obtained image was stitched on the top of the existing panoramic
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Figure 57: Experimental setup for generating a panoramic image while quickly scan-
ning the environment by visual-motor coordination.

image. For the conventional methods, the entire image set was given to the program

at once. Otherwise, errors would be propagated when stitching the latest image on

the existing panoramic image, resulting in incompletion of the algorithms. In addi-

tion, two additional clean images obtained at rest were given for the other methods

due to failure. A panoramic image generated from clean images at rest is also shown

in Figure 58(c) for reference.

It can be seen that the proposed method generates stitching results with no geo-

metric distortion or misalignment as shown in Figure 58(b). In addition, the output

image is enhanced by incorporating real-time image de-blurring as shown in Figure

58(a). The result exhibits minor seams since no additional image processing was

applied such as blending.

The panoramic image generated by MS ICE also shows notable results and the

degree of the blurriness is improved due to blending the additional clean images.
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(a)

(b)

(c)

Figure 58: Panoramic results of the proposed method. (a) Dynamics-based method
incorporating with real-time image de-blurring. (b) Dynamics-based method incor-
porating without image de-blurring. (c) Clean static image for reference.
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(a)

(b)

(c)

Figure 59: Panoramic results of the compared methods. (a) MS ICE (b) PTGui (c)
Panoweaver
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Figure 60: Quantitative evaluation of the panorama results.

However, geometrical misalignments are observed in particular on the right side.

In addition, the entire image is slightly curved or distorted. The panoramic image

generated by PTGui exhibits substantial geometrical misalignments in the bottom left

area. The panoramic image generated by Panoweaver exhibits substantial geometrical

misalignments and the left area is identical to the additional clean images.

Figure 60 shows a quantitative evaluation of the image stitching results. The

difference value was obtained by averaging the difference of pixel values between the

resultant panoramic image and the panoramic image generated from clean images. For

a fair comparison, the reference image was generated by using the same method and

then warped. Therefore, lower scores indicate better results. The results show that

the performance metric of the proposed method is 41% better than the conventional

algorithms on average. It should be noted that the current proposed method is limited

to a robotic vision system that produces pure rotation motion. Also, the dynamics-

based approach requires an accurate system model and it is not completely robust to

external disturbances.
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5.4.2 Computation Time

Tables 9 and 10 show that real-time image stitching can be achieved when VGA-size

image are given. The real-time performance was achieved for both GPU and CPU

computations. The proposed dynamics-based method provides a faster computation

time than other methods.

For UVGA-size images, the performance was close to real-time with 30 fps by

taking advantage of the GPU-based acceleration. Similarly, the computation times of

the proposed method were faster than those of the conventional methods. Contrary to

image deconvolution, the computation time was not significantly improved by massive

parallelism because the processes did not involve a number of matrix computations.

Table 9: Comparisons of Stitching Times per Image (GPU Computation)

VGA UVGA
Method Time [ms] fps Time [ms] fps
Proposed 11.1 90.1 36.8 27.17
PTGui 168.1 5.95 260.9 3.83

Table 10: Comparisons of Stitching Times per Image (CPU Computation)

VGA UVGA
Method Time [ms] fps Time [ms] fps
Proposed 28.9 34.6 72.1 13.87
MS ICE 1189 0.84 1303 0.77

Panoweaver N/A N/A N/A N/A

5.5 Response to External Disturbance

The developed dynamics-based image processing methods are not robust to exter-

nal disturbances. Since the developed methods do not rely on external sensors or

analyze image domains, artifacts may exist in de-blurring or stitching process due

to the external disturbances. Although it has been assumed that no unpredictable
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Figure 61: Transmissibility analysis of the camera orientation system.

disturbances exist in this study, simulation and experiments are conducted to vali-

date the mechanical design of the camera orientation system in regard to the external

disturbances.

Figure 61 shows the transmissibility analysis by simulation for the camera orien-

tation system, where the transmissibility is the ratio of the angular displacement of

the camera to the external disturbances. It can be observed that the high-frequency

disturbances are decayed out, and thus the effect of high-frequency noises on image

acquisition may be negligible.

Transmissibility =

√
1 + (2ζγ)2√

(1− γ2)2 + (2ζγ)2
(35)

where γ = ω/ωn.

Figure 62 shows the experimental setup to test the transmissibility of the camera

orientation system. The camera orientation system was assembled to a frame, which

is rotatable. An impact force was manually applied on the indicated point by a
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Figure 62: Transmissibility analysis of the camera orientation system.

rubber hammer. The angular displacement of the entire camera orientation system

can be derived from the measurement by a Micro-Epsilon optoNCDT 2200 ILD 2200-

20 laser position sensor. The angular displacement of the camera within the frame

was measured by a 10-bit YUMO E6B2-CWZ3E encoder. Therefore, the angular

displacement of the camera in the global coordinate can be determined by comparing

the signals captured by the laser sensor and encoder.

Figure 63 shows the responses of the entire camera orientation system and camera

inside the frame due to the impact force. The total angular displacement of the entire
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Figure 63: Responses of the entire system and camera due to the impact force.

system due to the impact was 12.9 degrees. In can be observed that the motion

of the entire system was not fully transmitted to the camera in the early stage of

response. When the angular displacement of the entire system was -5.6 degrees, the

angular displacement of the camera was -1.2 degrees. The external disturbance was

compensated by flexibility in the actuation system.

Additional experiments were conducted when the camera orientation system was

firmly fixed. Figure 64 shows the experimental setup to observe responses to the

external disturbances.An impact force was manually applied on the frame by using

a rubber hammer. The magnitude of the applied force was 100 ± 5 N, which was

measured by a Omegadyne LCM703-50 load cell. The external force was applied on

the system with a total of 6 different conditions as demonstrated in Table 11. For

each load condition, a total of 10 trails were conducted.

The camera experienced impulse-like displacements in response to the impact

force and the peak values are shown in Figure 65. When the force was applied on the

bottom part of the frame, the angular displacements were not significant. However,
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Figure 64: Experimental setup. The camera orientation system is supported in a
vertical manner. A rubber hammer is used to apply external disturbances to the
camera orientation system.

the angular displacements were not negligible when the force was applied on the top

part of the frame. This is because the camera orientation system was supported

in a vertical manner and only the bottom part of the frame was firmly fixed. The

displacement was significant when the force was applied normal to the lens surface

due to bending moment. When the impact force was vertically applied on the Point

1, the white plastic frame was bended resulting in a angular displacement.

The same experiment was conducted when the entire frame of the camera ori-

entation system was firmly fixed to a rigid surface as shown in Figure 66. The load

conditions are tabulated in Table 12 and the peak values of the angular displacements

in response to the impact load are shown in Figure 67. It can be observed that the
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Table 11: Conditions of the external force applied on the system

Condition # Impact Point Direction of the force
1 1 y
2 2 y
3 3 y
4 1 -x
5 3 -x
6 1 -z
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Figure 65: Peak values of the displacements due to the impact force applied on the
camera orientation system.

external disturbances are negligible when the entire frame of the camera orientation

system was firmly fixed.

Table 12: Conditions of the external force applied on the system

Condition # Direction of the force
7 -x
8 -y
9 -z
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Figure 66: Experimental setup. The entire frame of the camera orientation system
is firmly fixed.
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Figure 67: Peak values of the displacements due to the impact force applied on the
camera orientation system.
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5.6 Summary

This chapter presented a method to generate a panoramic image in real-time using a

robotic vision system that can move as fast as human eyes [54, 52]. The dynamics-

based image stitching method generated a panoramic image from images acquired in

the course of rapid motion. The velocity of the robotic vision system was limited for

the sake of comparison. The proposed method was robust to degraded blurry images

while the conventional methods were not robust. The experimental results showed

that the real-time performance for image stitching within 30 fps was achieved when

VGA-size images were used. The performance metric of the proposed method was

41% better than the conventional methods.

The analysis on external disturbances was conducted, although it has been as-

sumed that no external disturbances exist. The high-frequency disturbances were

compensated out due to flexibility in the actuation system. Also, the disturbances

were negligible on the camera when the entire system was firmly fixed.

96



CHAPTER VI

DISCRETE SWITCHING CONTROLLER FOR

SMOOTH-PURSUIT LIKE MOVEMENTS

This chapter presents a method to generate discrete switching commands for a camera

orientation system exhibiting quantization and flexibility to achieve smooth-pursuit

like movements. While the human eyes have two representative movements that are

saccade and smooth pursuit [24], prior works on robotic camera positioning systems

have been focused only on saccade-like motion [55, 54, 96, 119]. Existing vibration

suppression techniques also have focused on point-to-point movements.

An arbitrary velocity profile is generated by combining and optimizing a series

of pulse-like commands at each primitive. The proposed controller generates pulse-

like switching commands to match the velocity of an object of interest for image

acquisition. Unlike other visual tracking methods for feeding video, the proposed

method is designed to match the velocity of the object of interest only during the

exposure window. Therefore, discrete switching commands for vibration suppression

are generated after the exposure window to reduce the number of switching further.

A desired motion profile may be generated using a classical feedback controller

with PWM quantization but each unit actuator is required to produce high-frequency

switching that can potentially damage the complaint mechanism. For this reason, a

discrete control method with reduced numbers of switching must be developed.

6.1 Cellular Actuator: Compliance and Quantization

The cellular actuator used in this study for generating motions is shown in Figure

68. A total of 16 lead zirconate titanate (PZT) actuators are nested in a multi-layer
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fashion [98]. Each PZT actuator is independently operated in a binary manner (i.e.,

either ’ON’ or ’OFF’), as if each motor unit in the biological system switches between

contraction and relaxation. In this way, the cellular actuator exhibits quantization.

A single PZT actuator, APA50XS by Cedrat Technologies, can generate a blocking

force of 18 N and a maximum displacement of 80 μm [14]. The multi-layer mechanism

is made of brass and has a thickness of 170 μm, which introduces compliance in the

mechanism. By combining these features, the multi-layered structure is capable of

creating increased displacements and strains at the output point, while displacements

of a single PZT are limited [116].

Figure 69 shows the single DOF camera positioner used in this study [97]. Two

cellular actuators are connected to a moving platen via a rod and placed in an an-

tagonistic manner. When the PZT actuators are activated, the output point of the

cellular actuator moves inward, i.e., contraction. By contracting or activating one

cellular actuator while relaxing or deactivating the other cellular actuator, a tilting

motion of the camera is generated. In this study, only one of the cellular actuators

was activated to generate motion.

6.2 Quantization Effects

Considering the quantization effect due to independent binary operations in the indi-

vidual units, the output displacements of the cellular actuator are discrete as shown

in Figure 70. Consequently, the angular displacements of the camera orientation sys-

tem with respect to the number of PZT actuators activated are discrete as shown in

Figure 71. It is assumed that the cellular actuator is a linear system, since no signif-

icant nonlinearity was observed in the discrete angular displacements during overall

activation; however, minor nonlinearity was observed when a total of 12 PZTs were

activated. The camera positioner created 16 discrete angles that were measured by

a 10-bit YUMO E6B2-CWZ3E encoder. The resolution of 0.6407◦ with a σ value of
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Figure 68: The cellular actuator exhibits quantization and flexibility. A total of
16 PZT actuators is nested in a multi-layer fashion and each PZT is operated in an
ON-OFF manner.

Figure 69: The camera orientation system. It has a 1 DOF motion driven by an
antagonistic pair of cellular actuators.
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Figure 70: The cellular actuator produces discrete output positions due to the binary
operation in the PZT actuators.
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Figure 71: Angular displacements of the camera orientation system with respect to
the number of individual PZTs activated.

0.0032 and an R2 value of 0.9995 was obtained in the discrete actuation of the camera

orientation system.
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Let pk be the activation level of the cellular actuator, and a total of k PZT

actuators are activated. Then, the corresponding discrete output position Θk is

Θk = Ψ · pk (36)

where Ψ is a linear mapping observed in Figure 71.

To reproduce smooth pursuit-like movements, this study aims to generate an

arbitrary velocity profile from one discrete position Θk to the next one Θk+1 . The

motion y can be achieved by

y(t) = f(x(t), u(t), t) (37)

y(0) = Θk

where t is the time, f is the dynamics of the camera orientation system, x is the state,

and u is the control input.

In order to achieve an arbitrary velocity profile, an appropriate u(t) value needs

to be determined. Owing to the quantization effects in the actuation system, the

control input must be discretized as opposed to conventional control inputs, which

are continuous variable. Therefore, the following constraint must be satisfied:

u(t) ∈ Z. (38)

Figure 72 shows a response of the camera orientation system when a single PZT

actuator is activated. Let the maximum velocity in the course of the transient re-

sponse be simply equivalent to xp

tp
. For tracking a slowly moving object, this study

focuses on velocity profiles that are slower than velmax. It was considered that velocity

profiles comparable to velmax are saccade-like movements.

Assume the desired motion is a constant velocity that is 10 times slower than

velmax as shown in Figure 72. The transient response is dependent on mechanical
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Figure 72: Step Response of the camera orientation system. This study is interested
in generation of motion with velocity slower than the early stage of step response.

properties such as the damping coefficient ζ and dominant natural frequency ωn. Each

individual unit may need to be activated and deactivated consistently to generate

slowly moving profiles [53]. One conventional approach is to use a feedback controller

with PWM quantization [112].

Figure 73 shows the simulation result of a PWM feedback controller to achieve

this motion. The cost function was

J =

∫ tend

0

(xTQoptx+ uTRoptu)dt+ xT (tend)Soptx(tend) (39)

where Qopt, Ropt, and Sopt are positive definite weighting matrices. The sampling

frequency was 1 kHz. The continuously variable control input ũ was quantized into

u by PWM modulation through iterative optimization processes to satisfy (38).

It can be verified with simulation that the feedback controller with PWM quan-

tization successfully tracks the desired motion. However, the controller causes high

frequency switching in the individual PZT actuators as shown in Figure 73(b). In
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Figure 73: Using a conventional feedback controller with PWM quantization, the
camera orientation system can track a ramp signal that is 10 times slower than the
maximum velocity in response to the step input. However, it causes high-frequency
switching in the individual PZTs.

practice, this is not desirable because it may potentially damage the compliant mech-

anism, which has a thickness of 170 μm. In addition, this approach has little in

common with the actuation strategy in the biological system [95]. Therefore, a dis-

crete switching controller should be developed.

6.3 Discrete Switching Commands

The proposed discrete switching controller is designed to track an object of interest

only during the exposure windows. It mainly consists of two parts: (1) Generating

velocity profiles for tracking, and (2) Suppressing vibration. The discrete switching

commands for tracking are generated to match the velocity of the object of inter-

est, similar to smooth pursuit in the biological system. The commands are given to
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the system during the exposure windows, and thus images can be obtained in the

course of motion while avoiding blurriness of the object of interest. After images are

obtained, additional discrete switching commands are generated for suppressing vi-

brations and attaining the desired position. The commands for vibration suppression

require less switching than in the tracking period. No additional switching is required

once the vibration is completely suppressed. Therefore, the suppressing vibrations

limits switching in individual PZT units, and avoids fatigue in the thin compliant

mechanism.

6.3.1 System Model and Modified Input

It was observed that the dynamics of the camera orientation system was slightly

changed and exhibited a linear third-order system. The transfer function of a third-

order system can be represented as

G(s) =
K

s2 + 2ζωns+ ω2
n

· 1

τs+ 1
(40)

where τ is equivalent to a time constant in the first order system. The time response

of a third-order system to step inputs can be given as

θ(t) =
n∑

i=1

Ai · 1(t− ti)

ω2
n

(
1− e(t−ti)/τ

C1

− e−ζωn(t−ti)

C1

· [C2 cos(ωd(t− ti))

+C3
ζ√

1− ζ2
sin(ωd(t− ti))]

) (41)

where

C1 =
1

η(η − 2)ζ2 + 1

C2 = η(η − 2)ζ2

C3 = η((η − 2)ζ2 + 1)

η =
1

τζωn
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Figure 74: Block diagrams. (a) Open-loop controller for a third-order system. (b)
Open-loop controller for a second-order system with modified desired profile.

System parameters were determined experimentally by the observation of re-

sponses to discrete switching commands. The time constant τ was 0.005, the natural

frequency was slightly changed to 11.4 Hz, and the damping ratio was 0.19.

In order for smooth-pursuit like movements, an open-loop quantized controller

needs to be designed to achieve an arbitrary velocity profile as shown in Figure 74(a).

Although the mechanical system is a third-order system, this study treats the camera

orientation system as a second-order system. The first-order term 1
τs+1

is neglected in

the plant which causes lag. This effect can be compensated by modifying the signal

given to the controller to Θdes(s) = Θd(s)(τs + 1) as shown in Figure 74(b), while

the desired profile is Θd(s). Therefore, the modified signal in the time domain is

determined as

θdes(t) = θd(t) + τ θ̇d(t). (42)

This approach is applicable if the system is linear.

6.3.2 Tracking Commands

The time response of the camera orientation system, modeled as a linear second order

system, can be represented as

θ(t) = Ψ ·
n∑

i=1

Ai · 1(t− ti)

ω2
n

[1− e−ζωn(t−ti)

√
1− ζ2

sin(ωd(t− ti) + ψ)] (43)

Ai ∈ Z, ∀i

where

ψ = atan
(√1− ζ2

ζ

)
, (44)
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Figure 75: Example of pulse generation. The amplitude of the response can be
adjusted by changing Δt.

n is the total number of inputs given to the system, Ai is the amplitude of the ith

step input, ti is the time of the given ith step input, and ωd is the damped natural

frequency.

The objective is to determine piecewise functions to generate motion primitives.

The piecewise function is a pulse-like command consisting of positive and negative

step inputs. By changing the time interval, Δt, between the ON and OFF commands,

the amplitude of the response can be adjusted as shown in Figure 75(b). Since the

camera orientation system is modeled as an LTI system, an arbitrary velocity profile

can be achieved by a summation of the responses at each primitive.

The brief procedure of the proposed discrete switching controller is shown in Figure

76. A total of m pulses is given to the system to achieve the desired motion from

activation level pk at time tk to pk+1 at time tk+1. There is a tradeoff between the

number of pulses m and the tracking performance. The number of pulses must be

chosen such that the control frequency ωc is at least two times greater than the natural

frequency ωn to meet the Nyquist criterion.

Due to redundancies in the actuation system, a number of solutions exist. The

solution space is reduced by generating the ON signal in a periodical manner.
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ton,j = tk +
tk+1 − tk

m
(j − 1) (45)

where j denotes the jth pulse and on denotes the positive step input. Since redun-

dancy still exist, the solution space is narrowed further by introducing the following

constraints:

|Aon,j| = |Aoff,j| = 1 (46)

pk ≤
∑

Ai ≤ pk+1, ∀i (47)

where off denotes the negative step input. This bounds the activation level between

the start and desired discrete positions at any time, limiting the amplitude of residual

oscillations in the compliant actuation system. In addition, this could prevent failure

in implementation. For instance, the control input may not be possible to implement

when approaching to the maximum activation level pmax from pmax−1 without the

bounding constraints.

The desired motion profile θdes(t) is divided into m target positions θ̄tar,j along

the trajectory with a constant time interval as

θ̄tar,j = θdes(ton,j+1). (48)

The jth OFF command is followed by the ON command with a time interval of

Δtj at time toff,j to satisfy (48) at each primitive. Due to residual vibration, the time

interval Δtj is not simply linear with θ̄tar,j as in PWM. Timing of the OFF commands

toff,j are determined at each primitive in a recursive manner as follows.

Residual vibrations may exist in the system due to control inputs. Let the residual

vibration at ton,j be introduced into the system at tr,j with an amplitude of Ar,j and a

phase of φr,j. Unlike Ai, the amplitude of the residual vibration Ar,j is not necessarily

an integer. After a pulse-like command are generated, three different signals, the

residual vibration, and vibrations due to ON and OFF commands, can be represented
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Figure 76: Generation of discrete commands for velocity matching. The timings of
primitive movements are determined to achieve the target positions indicated by blue
circles at the time when the next primitive is generated.

as a single impulse response. Let Br,j, Bon,j, and Boff,j be the decayed amplitudes of

the residual vibrations at time toff,j due to Ar,j, Aon,j, and Aoff,j, respectively.

Br,j = Ar,j · e−ζωn(toff,j−tr,j) (49)

Bon,j = −Aon,j · e−ζωn(toff,j−ton,j) (50)

Boff,j = −Aoff,j (51)

Similarly, phases can be calculated at time toff,j.

Φr,j = ωd(toff,j − tr,j) + φr,j (52)
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Φon,j = ωd(toff,j − ton,j) + ψ (53)

Φoff,j = ψ (54)

where Φr,j, Φon,j, and Φoff,j are the phases of Br,j, Bon,j, and Boff,j, respectively, at

toff,j. An equivalent single impulse input with an amplitude of Beqv and a phase of

Φeqv given at time toff,j representing these three signals can be determined as follows:

Beqv =
√

(B1)2 + (B2)2 (55)

Φeqv = atan
(B2

B1

)
(56)

where

B1 = Br,j cos(Φr,j) + Bon,j cos(Φon,j) + Boff,j cos(Φoff,j) (57)

B2 = Br,j sin(Φr,j) + Bon,j sin(Φon,j) + Boff,j sin(Φoff,j) (58)

When a pulse-like command is given to the system, the response of the camera

orientation system at time τ can be represented as:

θj(τ) = θref +Ψ
( Beqv

ω2
n

√
1− ζ2

e−ζωn(τ−toff,j) · sin(ωd(τ − toff,j) + Φeqv)
)
, (59)

τ > toff,j

where θref is the reference position to the desired motion, which may be Θk.

Timing of primitive movements are determined to achieve target positions at the

time when the next primitive is generated. Therefore, timing of the OFF command

can be determined by solving (59) for toff,j while setting τ = ton,j+1 and θj = θ̄tar,j.

Since the pulse-like commands are generated at each primitive, the solution must

satisfy

toff,j ∈ [ton,j, ton,j+1]. (60)

Therefore, toff,j can be numerically determined by using bracketing methods [15,

38], guaranteeing convergence. The following target positions can be achieved by
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Figure 77: Discrete switching commands for generating an arbitrary movement. The
desired trajectory is the same as that in Figure 73.
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Figure 78: Failure of command generation in achieving the target position.

substituting Ar,j+1, φr,j+1, and tr,j+1 with Beqv, Φeqv, and toff,j, respectively, and

repeating (49)-(60) from j = 1 to j = m.

Figure 77 shows the simulation results of the proposed controller when the desired

trajectory is identical to the simulation shown in Figure 73. Although minor position

errors exist, it can be observed that the proposed controller successfully achieved the

desired motion with less switching.
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Figure 80: Comparison between with and without changing the reference.

The resultant position due to a total of j − 1 pulse-like commands at time ton,j+1

is θj−1(ton,j+1) as indicated by a black dot in Figure 78. The jth pulse-like command

is generated to compensate the discrepancy between θ̄tar,j and θj−1(ton,j+1). How-

ever, the discrete switching controller cannot achieve the target position if |θ̄tar,j −
θj−1(ton,j+1)| > Δθmax, where Δθmax is the maximum displacement that can be gen-

erated at the primitive.

Δθmax =
Ψ

ω2
n

[1− e−ζωn
(tk+1−tk)

m√
1− ζ2

sin(ωd
(tk+1 − tk)

m
+ ψ)] (61)
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Due to the nature of pulse-like commands, the response settles back to the ref-

erence position θref after the target position is achieved. This settling displacement

is linear to Beqv. The amplitude of the residual vibration Beqv increases as the dis-

placement |θ̄tar,j − θref | increases; Beqv ≈ |θ̄tar,j − θref |. Therefore, the controller may

fail to compensate for the discrepancy in positions when θ̄tar,j is close to Θk+1. The

value of |θ̄tar,j − θj−1(ton,j+1)| is also dependent on the phase Φeqv, which varies at

each primitive.

To avoid this issue, the reference position θref is changed to Θk+1 when θ̄tar,j

exceeds the midpoint Θk+Θk+1

2
, or vice versa. In this case, the ON command is not

generated and does not obey (45). Let this takes place at the jc
th primitive and the

sign of Aoff,jc is inverted. The same procedures (49)-(60) are used to determine toff,jc .

After the reference position is changed, the calculation of command timings is

identical except that the signs of Aon,jc∼m and Aoff,jc∼m are inverted. Figure 79 shows

the concept of changing the reference position when the target position crosses the

midpoint. The discrete switching controller is considered to push the actuation system

toward the midpoint by inducing residual vibrations until the reference position θref

is changed. Then, the discrete switching controller gradually diminishes the residual

vibrations to settle the actuation system at the desired discrete position Θk+1 . Using

this approach, the range of Bsum can be reduced to approximately [0, |Ai|
2
], which

helps avoid failure as shown in Figure 80. The program containing the proposed

discrete switching controller is summarized by the pseudocode in Algorithm 1.

6.3.3 Validation of the Controller for Tracking

The proposed discrete controller for tracking an arbitrary velocity profile is experi-

mentally validated. A photo of the experimental setup is shown in Figure 81. The

moving platen is measured by a Micro-Epsilon optoNCDT 2200 ILD 2200-20 laser

position sensor. The position resolution, linearity, and measurement frequency of
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Figure 81: Experimental setup for measuring the responses.

the laser sensor are 0.3 μm, 6 μm, and 10 kHz, respectively. The signal from the

laser sensor was recorded in the FPGAs with cRIO-9118 and NI 9205 platforms. The

Algorithm 1 Discrete Controller for Tracking

1: Input: desired motion θdes; number of pulses m;
2: Define timings of ON commands ton,j by (45)
3: Define target positions θ̄tar,j by (46)
4: for each primitive j do
5: if θdes,j−1 → θdes,j crosses the midpoint then
6: Invert signs of Aon,j∼m and Aoff,j∼m

7: Ignore (45) and omit ON command
8: end if
9: Determine timings of OFF commands toff,j

by (49) - (60)
10: Update residual vibrations:

Br,j+1 = Beqv, φr,j+1 = Φeqv, and tr,j+1 = toff,j
11: end for
12: Output: Discrete switching input u(t)
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measured displacements are converted to angles by triangulation.

The proposed controller was tested for various motion profiles and compared with

a conventional PWM controller. For a direct comparison, the PWM controller had

the same amount of switching, and the commands were generated in an open-loop

manner. The discrete switching commands for tracking were generated only in the

indicated period. Thus, the response due to residual oscillations after the tracking

region can be neglected in this experiment.

A total of four different velocity profiles were tested as shown in Figure 82. All

velocity profiles were in the range of a single PZT activation level. The responses of

both the proposed and PWM controllers were comparable when the desired motion

was a ramp input as shown in Figure 82(a). It can be observed from Figures 82(b) -

82(d) that the proposed controller performed better than the the conventional PWM

controller when the velocity of the desired motion was not constant. The proposed

discrete controller exhibited better RMS (Root Mean Square) position errors than

the PWM controller as demonstrated in Table 13. The proposed discrete switching

controller successfully tracked the desired profiles, although minor position errors ex-

ist due to quantization effects and slow control frequency. However, the conventional

PWM controller experienced significant position errors, particularly when the veloc-

ity varied consistently. This is because the PWM controller does not account for

dynamics.

Table 13: RMS Position Errors [deg]

Test # Tracking time # of pulses ωc Proposed PWM
1 500 ms 18 36.0 Hz 0.0259 0.0309
2 360 ms 20 55.5 Hz 0.0319 0.0644
3 407 ms 20 49.1 Hz 0.0210 0.0744
4 350 ms 20 57.1 Hz 0.0368 0.1862
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Figure 82: Comparisons between the proposed discrete controller and the conven-
tional PWM controller. (a) Test #1. Ramp signal. (b) Test #2. Half period of a
triangle wave. (c) Test #3. Half period of a sinusoidal signal. (d) Test #4. Absolute
period of a sinusoidal signal.

115



6.3.4 Vibration Suppression Commands

The proposed method is designed to match the velocity of the object of interest only

during the exposure window, unlike other visual tracking methods for feeding video.

It was considered that acquisition of few images in one PZT increment is sufficient,

since the FOV of the camera is not significantly changed. After the robotic vision

system obtains images, the tracking commands are no longer necessary. Therefore,

while the camera orientation system reaches the desired quantized position, residual

vibrations are suppressed in the flexible system. With this approach, the number of

switching can be further reduced, which contributes to the prevention of fatigue in

the thin-layered mechanism. To achieve vibration suppression, the real and imaginary

components of the residual vibrations must be zero. Therefore, a set of vibration

suppression commands can be determined as follows:

n∑
i=1

Ai · e−ζωn(t−ti) · cosφi = 0 (62)

n∑
i=1

Ai · e−ζωn(t−ti) · sinφi = 0 (63)

The solutions satisfying both (62) and (63) are not unique due to nonlinearity in

the equations. Schultz and Ueda investigated vibration suppression commands using

a quantized system for point-to-point movements in [96]. They used a nested-loop

algorithm to first find a pattern of Ais, and then used a numerical solver to determine

a set of tis. One of their conditions was relaxed that the system is undamped (ζ = 0);

Thus, (62) and (63) can be expressed as
∑n

i=1Ai cosφi = 0 and
∑n

i=1Ai sinφi = 0,

respectively. However, their algorithm may return a different command set when

given the same desired point-to-point movement because of the iterative nested loops

and the numerical solver. For this reason, they concluded in [96] that no statements

in regard to existence, nonexistence, or uniqueness of the solutions can be made using

classical mathematical methods. Solutions to systems of nonlinear equations are still
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a topic of mathematics research.

In this study, the vibration suppression commands are determined in a minimum

switching manner after the tracking region. This introduces additional constraints:

m1+m2∑
i=1

Ai = 1 such that (m1 +m2) is minimized, (64)

where m1 and m2 are the number of switching in tracking and vibration suppression

commands, respectively.

If the last point of the tracking region is above the midpoint Θk+1+Θk

2
, an additional
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even number of switches is required because
∑m1

i=1Ai = 1. If the last point of the

tracking region is below the midpoint Θk+1+Θk

2
, an additional odd number of switches

is required because
∑m1

i=1Ai = 0. In this case, one additional switch is not the

minimum number that can satisfy (62) and (63), as Bsum is not an integer and decays

with time. The first ON switch after the exposure window in the tracking commands

is included to make
∑m1

i=1Ai = 1.

Let Btrack and Φtrack be the amplitude and phase of the residual vibrations due

to m1 switches during the exposure window. Since Btrack is approximately [0, |Ai|
2
],

introducing two additional switches is sufficient to suppress the residual vibration.

This can be explained using the complex plane representation.

Figure 83 shows the complex plane and the red arrow represents the residual

vibration due to tracking commands. The solid lines represent an example for an

undamped system and the dashed lines represent an example for an underdamped

system. The residual vibration can be suppressed in the next quadrant where Φtrack

exists. For vibration suppression, the sum of vectors in the complex plane must be

equal to zero. A counter residual vibration with an amplitude and phase of Btrack

and π + Φtrack, respectively, can be generated in the following quadrant by having

two additional switches. It can be observed from the complex plane that the discrete

switching commands for vibration suppression also satisfy (46) and (47).

The two additional phases φvs1 and φvs2 to suppress the residual vibration for an

undamped system (ζ = 0) can be given as

φvs1 = Φtrack +
π

2
− α

2
(65)

φvs2 = φvs1 + α (66)

where

α = acos
(
1− (Btrack)

2

2

)
(67)

Timing of the two commands, tvs1 and tvs2, to suppress the residual vibration can
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be determined using the following relationship:

ti = φi/ωn (68)

For an underdamped system, the amplitudes of the residual vibration and the first

switch for vibration suppression are exponentially decaying, which introduces addi-

tional nonlinear terms compared to the undamped system. As a result, the phases of

each switch for an underdamped system exist slightly after that for undamped system.

The solutions to timing of the vibration suppression commands can be determined

using numerical methods that guarantee convergence. The phases of an undamped

system can be used as a reference to find a local minimum.

The entire set of discrete switching commands for both tracking and vibration

suppression can be determined as

u(t) =

m1+2∑
i=1

Ai · 1(t− ti), (69)

where

A = [A1 · · · Am1 − 1 1], (70)

t = [t1 · · · tm1 tvs1 tvs2]. (71)

Figure 84 shows one possible visual-motor application due to the suppression

of vibrations after the exposure window. Tracking switching commands run first for

object tracking, and vibration suppression switching commands follow for background

image capture. The repetition of this switching in a short period of time allows images

of both the object of interest and the background to be updated. In addition, the

generated commands in a single quantized increment are reusable if the velocity of

the tracking profile is constant in multiple quantized increments. This is because no

residual vibrations exist when the tracking controller is initiated.
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Figure 84: Possible combination of saccade-like movements and smooth pursuit when
the desired velocity is constant.

6.3.5 Validation of the Controller for Vibration Suppression

To validate the proposed method, the responses of the system were measured using

the same setup shown in Figure 81. The proposed method consisting of both tracking

and vibration suppression controllers was compared with the method involving the

tracking only controller discussed in the previous section. For the tracking only

controller, no further switches were generated after the image acquisition period.

The experimental conditions are listed in Table 14.

Three different velocity profiles were tested and two different image acquisition

times were used for each velocity profile. Tests #5 and #6 had the same desired

motion, while the image acquisition times were 100 ms and 210 ms, respectively.

Tests #7 and #8 had the same desired motion, while the image acquisition times

were 180 ms and 240 ms, respectively. Tests #9 and #10 had the same desired

motion, while the image acquisition times were 90 ms and 390 ms, respectively.

It can be observed in Figure 85 that the proposed controller successfully sup-

pressed the residual vibration after the image acquisition period. For all cases, the
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Figure 85: Comparisons between the proposed method, consisting of both the track-
ing and vibration suppression controllers, and the tracking only controller. Tests #5
and #6 have the same desired motion with different image acquisition times. Tests
#7 and #8 have the same desired motion with different image acquisition times. Tests
#9 and #10 have the same desired motion with different image acquisition times.
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Table 14: Test Conditions

Test #
Desired motion

time
Image acquisition

time
ωc

5 300 ms 100 ms 60 Hz
6 300 ms 210 ms 60 Hz
7 310 ms 180 ms 97 Hz
8 310 ms 240 ms 97 Hz
9 510 ms 90 ms 59 Hz
10 510 ms 390 ms 59 Hz

proposed controller has an improved settling time. It also reduced the switching in-

dicated in Table 15. Although the residual vibrations were not significant using the

tracking only controller in test #6 as shown in Figure 85(b), the proposed controller

exhibited a better performance. The responses after the image acquisition period

without the vibration suppression commands vary because they are dependent on the

tracking commands. It can be observed again that the proposed tracking controller

was effective during the image acquisition period with low control frequency.

Table 15: Experimental Results of the Proposed Method

Test #
Improvement in
settling time

Reduction in
number of switching

5 209 23
6 43 8
7 393 16
8 97 8
9 208 28
10 239 5

6.4 Experimental Setup for Tracking

Figure 86 shows the experimental setup to validate the study. A red checkerboard is

used as an object of interest. The object of interest is positioned in the horizontal

direction by a linear stage from Eshed Robotek. The device contains a Pittman

GM8712G759 24V DC motor equipped with a 19.5:1 gearbox and a 0.435 diameter

pulley. An embedded controller is used to control the DC motor to generate motion.
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The robotic vision system employs a Ximea subminiature camera MU9PC-MH,

which obtains images at 12.5 fps with UVGA or 28 fps with VGA. The subminiature

camera is operated in a trigger mode and the camera provides active exposure infor-

mation to external devices. Images are obtained using a global shutter mode. The

image data is sent via USB 2.0 to the host PC running MS Windows 7 64 bit version

with Intel i7-2600K 3.40 GHz CPU and 12.0 GB Ram.

The moving objects can be tracked and their motion profiles can be estimated by

various means [21, 103]. However, motion estimation of moving objects is not in the

scope of this study. For this reason, it was assumed that motion of the moving object

of interest is known.

Camera 
Orientation System

Object 1

Object 2

Embedded
Controller

Linear
Stage

Figure 86: Experimental setup. The proposed discrete switching commands are
given to the system for tracking the object of interest positioned by the linear stage.
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Figure 87: Generated movements to track objects of interest. The discrete switching
commands for vibration suppression were generated after the exposure window. (a)
Tracking Test #1. One image is obtained. (b) Tracking Test #2. Two images are
obtained

6.5 Results and Discussions

The discrete switching commands were given to the system to match the velocity

of the object during the exposure window and vibration suppression commands fol-

lowed. If the velocity of the camera orientation system matches that of the object

during the exposure window, no blurriness would be observed on the object in the

obtained images. Two different experiments for tracking objects were conducted and

the experimental conditions are listed in Table 16 and shown in Figure 87.

Table 16: Experimental Conditions for Tracking Objects

Tracking
Test #

Exposure
time

Image
size

Number of
obtained images

Mean
Velocity

1 35 ms VGA 1 8 deg/sec
2 80 ms UVGA 2 8 deg/sec

6.5.1 Tracking a Single Object

For tracking test #1, the camera orientation system obtained a single image while

tracking a single moving object. The generated motion profile is shown in Figure 87(a)

and the image was obtained during the indicated exposure window. The exposure
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(a) (b) (c)

Figure 88: Tracking test #1. The exposure time was 35 ms. The images were
obtained under various conditions for comparison. (a) Obtained image while tracking.
(b) Object in motion with camera at rest. (c) Reference image.

time of the camera was 35 ms and the image resolution was VGA. The images are

obtained under various conditions for comparison and the cropped images are shown

in Figure 88.

Figure 88(b) shows the image obtained when the object was in motion while the

camera was at rest. The motion of the object is not negligible, since blurriness is

observed. Figure 88(c) shows the reference image obtained when both the object and

camera were at rest. Figure 88(a) is the image obtained by using the proposed method,

and its quality is comparable with the reference. Since no significant blurriness is

observed in the image obtained by the proposed method, it can be concluded that

the controller successfully matched the motion of the object of interest during the

exposure window.

The results can also be evaluated in a quantitative manner. Since a checkerboard

image was used as an object, the gradients of the images in the horizontal direction

were computed for evaluation. If the checkerboard image is blurry, the gradient map

would show weak peaks, because high frequency information is degraded. In contrast,

the gradient map of a clean image would show strong peaks.

Figure 89 shows the absolute values of gradients in the middle line of the images. It

can be observed that the image obtained by the proposed method exhibits comparable

peak intensities with the reference. Although some peaks of the proposed method are
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Figure 89: Comparisons of the absolute of the gradient values. Gradients of the
middle line of the images are depicted.

slightly weaker than those of the reference image, half of the peaks exhibit similar

intensities. The image obtained when only the object was in motion exhibits low peak

values due to blurriness. The peak values were computed over the entire domain and

the mean values are listed in Table 17. The proposed method was effective, since

the mean peak value in the image obtained by the proposed method was comparable

with that in the reference image.

Table 17: Mean Peak Values of Image Gradients (Tracking a Single Object)

Proposed
Method

Reference
Image

Object in motion
& camera at rest

213.79 231.08 115.79

6.5.2 Tracking Two Objects

For tracking test #2, the camera orientation system obtained two images during

the course of motion. Two objects, ‘Object 1’ and ‘Object 2’, traveled in opposite
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(a) (b) (c)

(d) (e) (f)

Figure 90: Tracking test #2. The exposure time was 80 ms. The system tracked two
moving objects in a short period of time and two images were obtained. (a) ‘Object
1’ captured in ‘Exposure Window 1’. (b) ‘Object 1’ captured when the camera was at
rest. (c) Reference image of ‘Object 1’. (d) ‘Object 2’ captured in ‘Exposure Window
1’. (e) ‘Object 2’ captured when the camera was at rest. (f) Reference image of
‘Object 2’.

directions. The generated motion is shown in Figure 87(b) and shows the proposed

discrete controller can possibly be used for tracking multiple objects in a short period

of time. The camera orientation system attempted to match the velocity of ‘Object

1’ in ‘Exposure Window 1’ and the velocity of ‘Object 2’ in ‘Exposure Window 2’.

In order to test the proposed method rigorously, the exposure time was kept longer

than that in tracking test #1 as indicated in Table 16.

The obtained images in tracking test #2 are shown in Figure 90. The top row

shows the cropped images of ‘Object 1’ and the bottom row is the cropped images

of ‘Object 2’ obtained under various conditions. The first column shows the images

obtained by the proposed method and the last column shows the reference images

obtained at rest. The middle column shows the images when the object was in motion

while the camera was at rest.
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It can be observed that the images obtained by the proposed method exhibit com-

parable quality with the reference images; however, minor blurriness exists. Although

the camera orientation system successfully generated the desired movements, minor

blurriness cannot be avoided. This is because the camera orientation system experi-

ences rotational motion while the object of interest experiences linear motion. This

effect became significant in tracking test #2 due to the long exposure time. Figures

90(b) and 90(e) show that movements of the objects are not negligible. Table 18

demonstrates the mean peak values of the image gradients. Although the peak values

in the image obtained by the proposed method are weaker than those in the reference

image, the intensities are preserved by tracking the objects. Thus, it can be concluded

that the proposed discrete switching controller was effective.

Table 18: Mean Peak Values of Image Gradients (Tracking Two Objects)

Object #
Proposed
Method

Reference
Image

Object in motion
& camera at rest

1 131.22 192.06 73.7
2 124.54 178.72 63.25

6.6 Summary

This chapter presented a discrete switching controller to generate an arbitrary ve-

locity profile for a quantized, compliant actuator-driven robotic vision system. The

proposed method is designed to match the velocity of the object of interest only

during the exposure window. During the exposure window, tracking motion is gener-

ated by combining and optimizing a series of pulse-like commands at each primitive.

Then, residual vibrations are suppressed while the camera orientation system reaches

the desired quantized position. Although classical feedback controllers with PWM

quantization are capable of generating an arbitrary velocity profile, they causes high-

frequency switching that would damage the thin, compliant mechanical structure.

The proposed controller is an open-loop method and requires less frequent switching
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than the existing methods.

The proposed method was investigated under various motion profiles to verify its

effectiveness and compared with the classical method. For generating the desired

velocity profiles, the proposed method exhibits better RMS position errors than the

classical method. After the exposure window, the proposed controller shows an im-

proved settling response, as it accounts for the system dynamics. Using the proposed

controller, the camera orientation system tracked a moving object and obtained im-

ages. The image quality of the object of interest was comparable with the reference

image, validating the effectiveness of the proposed method.
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CHAPTER VII

CONCLUDING REMARKS

This thesis tightly synchronized motion control and image processing in the fast-

moving robotic vision system, inspired by the neuro-ocular mechanism. By merging

the system dynamics area and image processing area, two representative modes in the

biological eye were reproduced in a single robotic eye platform, while existing camera

platforms focused on a single function. The dynamics-based image processing meth-

ods were developed in coordination with inherently discrete and rapid movements in

a fast-moving robotic eye. The proposed de-blurring method predicts the blur ker-

nel based on the dynamic model of the robotic eye and movements induced by the

control system. This mechanism was the key enabler of real-time panoramic image

stitching with simultaneous motion de-blurring in a dynamic vision system, allowing

for generic image sensors with a standard frame rate and significantly less compu-

tational load, and requiring no motion sensors. Conventional image de-blurring and

stitching methods have analyzed image properties by various means. However, in

general, they require much computation time or are not robust to blurry images for

post-processing.

In the neuromotor system, the movements are generated by muscles that are

essentially quantized, compliant actuators. Motion is achieved by discrete activation

and thus muscles cannot produce continuously variable outputs. In an engineering

system, this can be considered as velocity matching control of an impulsive dynamical

system. The discrete switching controller was developed for the robotic eye driven by

quantized, complaint actuation systems to match the velocity of the object of interest

during an exposure window. The desired trajectory was achieved by combining and
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optimizing a series of pulse-like commands at each primitive. After image acquisition,

residual vibrations were suppressed while the camera orientation system reached to

the desired quantized position. The proposed controller requires less switching than

the conventional methods that helps avoid fatigue in the mechanism.

Several experiments were conducted to validate the dynamics-based image pro-

cessing method and demonstrate the effectiveness of this ocular physiology-inspired

approach. A system architecture was designed to realize the developed algorithms and

achieve real-time performance by parallelism and visual-motor coordination. The im-

provement on processing times by the dynamics-based approaches was demonstrated.

The quality of resultant images were compared with that of prior methods. The

contributions of the proposed methods were also demonstrated by quantitative eval-

uation. The discrete switching controller reproduced smooth pursuit like movements,

enabling the robotic eye to track an object of interest.

The research described in this thesis provides original contributions:

• A dynamics-based image de-blurring method was developed for a robotic vi-

sion system. The computation times of the dynamics-based approach was 45.1

times faster on average than the conventional approaches. In addition, the per-

formance metric of the proposed method was 31.29 % better than the other

algorithms on average. The proposed method was also evaluated by OCR tech-

nology and the text recognition rates of the proposed method was 57.8% point

better than that of conventional methods.

• The dynamics-based approach was extended to the generation of panoramic

images. Using the dynamics information, the algorithm was robust to degraded

blurry input images, while panoramic images generated by the conventional

methods exhibited significant artifacts. The performance metric of the proposed

method was 41 % better than the other algorithms on average when blurry
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images were given.

• A system architecture was developed to control multiple PZT actuators and

enhance computation times of image processing. A blur kernel was estimated

in a parallel manner during the exposure window. Therefore, the blurry image

and the blur kernel were obtained at the same time. This architecture allowed

for the robotic vision system to generate panoramic images in the course of

rapid motion while incorporating the de-blurring technique in real-time with 30

fps for VGA-size images.

• A discrete switching controller was developed to generate an arbitrary velocity

profile with reduced switching. The proposed controller was designed to match

the velocity of an object of interest only during exposure windows. Thus, after

images were obtained, vibration suppression commands were followed to reduce

switching further. In comparison with the conventional PWM method, the

proposed method showed improved RMS position errors during the exposure

windows and enhanced settling times after image acquisition.

This thesis has presented original contributions, but a variety of studies can be

addressed in future research.

• This thesis used a robotic vision system that has a single-DOF. The impact

of verification experiments may be limited. Future work could investigate the

developed dynamics-based methods for a multi-DOF robotic vision system.

• The robotic vision system employed a single camera. The established techniques

can be extended to stereo camera systems to make use of depth information.

• One key assumption in this study was that the system was not experiencing

external disturbances. Robust or isolation methods to external disturbances for

the dynamics-based approaches can be examined.
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• Visual algorithms such as recognition may be considered to investigate psychol-

ogy in visual perception using a robotic eye system.
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APPENDIX A

MODIFIED BLUR KERNEL FOR TRANSLATIONAL

MOTION

Image Plane

OO

d

z

Px

Ix

Ix

fcamera

Arbitrary Point

Figure 91: Pinhole camera model for translational motion

The camera orientation system used in this study can generate only pure rotational

motion. If the camera orientation system experiences translational movements during

the exposure window, a modified blur kernel can be introduced incorporating depth

information.

Figure 91 shows the model of a pinhole camera experiencing translational motion

in 2D space. An arbitrary point in the real world appears on the image plane at Ix,
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which is a horizontal distance from the image center.

Ix = fcamera tan(β) (72)

where fcamera is the focal length and β is the angle between the normal axis of the

image plane and the position vector of an arbitrary point. Since,

tan(β) =
Px

d
(73)

where Px is the horizontal distance from the pinhole in the real world and d is the

depth. Therefore,

Ix =
fcamera

d
Px (74)

Let the camera moves by z as shown on the figure so the pinhole is moved from

O to O′. To estimate motion of an arbitrary point, ΔIx variation of the position on

the image plane needs to be defined. Similarly, Ix′ the horizontal distance from the

image center of the moved camera is

Ix′ =
fcamera

d
(Px + z) (75)

Therefore,

ΔIx = Ix − Ix′ =
fcamera

d
z (76)

Although fcamera and z are constant for all pixels, position variation of a pixel is

dependent on the depth. Therefore, a spatially invariant kernel model is not valid

when a translational movement takes place during the exposure window.

Figure 92 shows the experimental setup to test motion blur caused by translational

motion. A linear stage is used to generate translational motion during the exposure

window. For this experiment, the PZT actuators in the camera orientation system

are not operated. Since motion blur caused by translational motion is dependent on

the depth of the scene, a Kinect sensor is used to obtain a depth map.
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Figure 93 shows the tested scene where two checkerboards are placed with different

distances from the camera orientation system. Figure 94 is an image showing the

checkerboards with depth information.

Figures 95(a) - 95(b) are the obtained blurry images. It can be observed that

the degrees of blurriness on two images are different due to different distances to the

vision sensor. Figures 96(a) - 96(b) are the de-blurred images obtained by using a

spatial invariant blur kernel determined by a distance to the red checkerboard. The

blur kernel size is 27 × 27. It can be observed that the image of red checkerboard is

improved while the image of the blue checkerboard exhibits artifacts. Figures 97(a) -

97(b) are the de-blurred images obtained by using modified blur kernels. The modified

blur kernels are generated by incorporating the depth information. The blur kernel

sizes for the red and blur checkerboards are 27 × 27 and 21 × 21, respectively. It can

be observed that the image on both checkerboards is improved.

Camera Orientation
System

Linear Stage

MS Kinect

Figure 92: Experimental setup to test the de-blurring method for translational mo-
tion.
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Figure 93: Scene to test motion blur caused by translational motion. Two checker-
boards are placed with different distances to the vision system.

Figure 94: Image with depth information.
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(a) (b)

Figure 95: Obtained blurry images.

(a) (b)

Figure 96: De-blurred images acquired using a spatially invariant kernel. The blur
kernel size was 27 × 27.

(a) (b)

Figure 97: De-blurred images acquired using modified blur kernels. The blur ker-
nel size for the red checkerboard was 27 × 27. The blur kernel size for the blur
checkerboard was 21 × 21.
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APPENDIX B

EVALUATION OF THE DE-BLURRING METHODS

USING A CHECKERBOARD

The image de-blurring methods were evaluated by various means in Chapter 3. In

this appendix, the de-blurring methods are evaluated using a red checkerboard as

shown in Figure 98.

(a)

(b)

Figure 98: A red checkerboard is used to evaluate the de-blurring methods. (a) clean
image obtained at rest. (b) blurry image obtained in the course of motion
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Figure 98(a) is the reference image obtained at rest and Figure 98(b) is the blurry

image obtained in the course of motion. On the red checkerboard region, pixel values

between the red and white colors are clear. If blurriness exists, colors would be

blended, and thus pixel values of those regions would be different from that of red

and white colors. For evaluation, R values are extracted from the de-blurred RGB

image on the red checkerboard region. Then, number of white pixels are counted;

pixel value ∈ [0, 255]. Pixel values exceeding 235 are considered as white. The better

image would exhibit more white pixels.

Figure 99 shows the de-blurred images by the proposed and compared methods.

The compared algorithms include parameters that need to be manually defined by

the users. For a fair comparison, the parameters are adjusted a number of times to

find the best possible results. It should also be noted that the compared algorithms

include additional image processing such as noise reduction and sharpening, while no

additional image processing is applied for the proposed method.

Figure 100 shows the number of white pixels counted on the checkerboard region.

The total number of pixels on the red checkerboard region is 18500. It can be observed

that the number of white pixels in the reference image is close to half of the total pixel

number on the checkerboard region. It can be observed that the proposed method

shows the best results and all methods recovered the blurry image in part.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 99: De-blurred images. (a) Proposed method (b) Goldstein et al. (c) Fergus
et al. (d) Whyte et al. (e) Shan et al. (f) Xu et al. (g) Cho et al.
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Figure 100: Number of white pixels on the checkerboard region.
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APPENDIX C

IMPROVED IMAGE PROCESSING BY DE-BLURRING

Most of the existing image processing algorithms used clean images because it is chal-

lenging to accurately extract feature points or edges from degraded blurry images.

The dynamics-based image de-blurring method was incorporated to improve the qual-

ity of the panoramic image in Chapter 5. In fact, the de-blurring method can benefit

other image processing algorithms by recovering high-frequency information.

Figures 101 and 102 show comparisons of the SIFT and RANSAC results between

the de-blurred and blurry images. The degree of blurriness of Figure 101 is more severe

than that of Figure 102. It can be observed from Figure 101 that the de-blurred image

set has an improved result, while most of the matched features in the blurry image

set are inaccurate. Although both sets have an accurate feature matching in Figure

102, it can be observed that the de-blurred image set has an improved result with

increased number of feature matching.

The effectiveness of the de-blurring method for image processing can also be

checked by other means. Figures 103, 104, and 105 show panoramic images gen-

erated by the compared methods discussed in Chapter 5 when the de-blurred images

were given. Although minor artifacts exist, it can be observed that all programs

successfully generated the images without feeding additional clean images.
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(a)

(b)

Figure 101: Examples of image stitching by SIFT and RANSAC. (a) Matched feature
points from a de-blurred image set. (b) Matched feature points from a blurry image
set.
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(a)

(b)

Figure 102: Examples of image stitching by SIFT and RANSAC. (a) Matched feature
points from a de-blurred image set. (b) Matched feature points from a blurry image
set.
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Figure 103: Panoramic image generated by MS ICE given the de-blurred images.

Figure 104: Panoramic image generated by PTGui given the de-blurred images.

Figure 105: Panoramic image generated by Panoweaver given the de-blurred images.
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APPENDIX D

PANORAMIC IMAGE GENERATION

In Chapter 5, the experiments for panorama generation were conducted in the labo-

ratory. An additional experiment was conducted on the first floor atrium of the Love

building (Georgia Tech), as shown in Figure 106.

Figures 107 and 108 show panoramic results of the proposed and compared method,

respectively. Since no output images were generated for the compared methods using

the same set of images, two additional images with low degree of motion blur were

provided to avoid failure.

Figure 106: Experimental setup for panorama generation.
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It can be seen that the proposed method generates stitching results with no ge-

ometric distortion or misalignment as shown in Figure 107(a). Since no additional

image processing was applied such as blending, the result exhibits minor seams.

The panoramic image generated by MS ICE shows successive results. However,

the entire image is curved or distorted. The panoramic image generated by PT-

Gui exhibits substantial geometrical misalignments and the entire image is distored.

Panoweaver software was not effective in this experiment as shown in Figure 108(c).

(a)

(b)

Figure 107: Panoramic results of the proposed method. (a) Dynamics-based method
incorporating with real-time image de-blurring. (b) Clean static image for reference.
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(a)

(b)

(c)

Figure 108: Panoramic results of the compared method. (a) MS ICE (b) PTGui (c)
Panoweaver

149



APPENDIX E

ROBOTIC VISION SYSTEM FIRMWARE

Figure 109 shows a GUI controlling the robotic vision system. The GUI allows users

to change control parameters, camera parameters, and operation modes which are

programmed in the FPGAs. Various control methods discussed in this study can

be selected and the user can enter the desired location either manually or automati-

cally. The GUI displays live image streams and the position of the camera orientation

system. Various parameters programmed in both FPGAs and RT-Level can be mon-

itored and saved.

The code for the robotic vision system are implemented in FPGAs, RT Level,

CPU, and GPU. Most of the core functions are programmed in the FPGAs to take

advantage of fast sampling rates and parallelism. Figure 110 shows the state diagram

representation of functions programmed in the FPGAs. In order to control distributed

actuators and determine key parameters for image processing, related processes are

executed in a parallel fashion. The sampling rates of each process are tabulated in

Table 19.

The host PC is mainly used for parameter setting, system monitoring, and image

acquisition, as shown in Figure 111. The user interface, receiving parameters for image

processing from FPGAs, and image processing are operated in a parallel fashion.

This enables the dynamics-based processing methods to be performed in a pipelining

fashion, as shown in Figure 112.

The RT-Level is used to generate commands for smooth pursuit or velocity control,

and write data into a file.
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Figure 113 shows a GUI controlling two linear stages that are used in the smooth-

pursuit experiments. The GUI allows users to change motion parameters of both

linear stages independently, while control parameters are not allowed to be adjusted

via GUI. If the velocity of the desired motion is not constant, then the motion profile

needs to be pre-programmed. For operating the linear stages, the control functions

are programmed in both RTOS and FPGAs. Once the desired position is determined

in the RT-Level, the control signals are generated in the FPGAs as shown in Figure

114. The desired position can be interrupted or updated at every control sample.

Table 19: Sampling rates of the key functions in FPGAs [kHz]

Receive Desire Position 100
Switching Process 400
Position Estimation 100

Sync & Trigger Camera 1
Monitor Exposure Window 100

Read Encoder 1
Save Data 2

Figure 109: GUI for the robotic vision system
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FPGA
Receive

Desired Posi on
from RT

De
Command

Send Command to
Switching Processes

Switching
Process

Ini ate Move
(Single PZT)

Switching
Process

Ini ate Move
(Single PZT)

Monitor
Switching Processes

Posi on
Es ma on

Sync/Trigger
Camera

Monitor
Exposure Window

PSF
Es ma on

COG
Es ma on

Label Image

Read Encoder

Transfer to CPU

Save Data Transfer to RT

Figure 110: State diagram representation of functions in the FPGAs.
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CPU Idle Set
Desired Posi on

Image
Acquisi on

Adjust
Control Parameters

Adjust
Camera Parameters

Sync Camera

Receive PSF
From FPGA

Receive COG
From FPGA

Deblur Image
(GPU)

Panoramic 
Genera on

Figure 111: State diagram representation of functions in the CPU.

Image 1

PSF 1

Image 2 Image 3 Image 4

PSF 2 PSF 3 PSF 4

De-blur 
Image 1

De-blur 
Image 2

De-blur 
Image 3

Panoramic
Genera on

Panoramic
Genera on

Figure 112: The dynamics-based image processing methods are executed in a pipelin-
ing fashion.

153



Figure 113: GUI for operating two linear stages
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Figure 114: State diagram representation of functions in the FPGAs for operating
linear stages.
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APPENDIX F

DESIGN OF A 2-DOF CAMERA POSITIONER

35mm 36mm

70mm

Figure 115: CAD model of a 2-DOF mechanism

The robotic vision system used in this study has a single-DOF. Although the

developed dynamics-based approaches are applicable to 2D motion, the impact of

verification experiments may be limited. A 2-DOF platform was designed as shown

in Figure 115. Panning and tiling is realized by an orthogonal roller engagement

mechanism. Friction-drive rollers are used instead of bevel gears. In replacement of

the antagonistic cellular PZT actuators, a pair of piezoelectric rotary stepper motors

is used, which is also suitable for an open-loop control and quantization.
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Figure 116: Exploded view of the CAD model
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[34] Götz, M., Dittmann, F., and Pereira, C. E., “Deterministic mechanism
for run-time reconfiguration activities in an rtos,” in Industrial Informatics,
2006 IEEE International Conference on, pp. 693–698, IEEE, 2006.

[35] Grundmann, M., Kwatra, V., Castro, D., and Essa, I., “Calibration-free
rolling shutter removal,” in Computational Photography (ICCP), 2012 IEEE
International Conference on, pp. 1–8, April 2012.

[36] Gu, J., Hitomi, Y., Mitsunaga, T., and Nayar, S., “Coded rolling shutter
photography: Flexible space-time sampling,” in Computational Photography
(ICCP), 2010 IEEE International Conference on, pp. 1–8, March 2010.

[37] Ham, R. V., Sugar, T. G., Vanderborght, B., Hollander, K. W.,
and Lefeber, D., “Compliant actuator designs,” IEEE Robotics Automation
Magazine, vol. 16, pp. 81–94, September 2009.

[38] Hamming, R., Numerical methods for scientists and engineers. Courier Cor-
poration, 2012.

[39] Harris, C. and Stephens, M., “A combined corner and edge detector.,” in
Alvey vision conference, vol. 15, p. 50, Citeseer, 1988.

[40] Harris, C. M. and Wolpert, D. M., “Signal-dependent noise determines
motor planning,” Nature, vol. 394, no. 6695, pp. 780–784, 1998.

159



[41] Henley, S. L., “Seamless multi-camera panoramic imaging with distortion
correction and selectable field of view,” Aug. 12 1997. US Patent 5,657,073.

[42] Holcombe, A. O., “Seeing slow and seeing fast: two limits on perception,”
Trends in cognitive sciences, vol. 13, no. 5, pp. 216–221, 2009.

[43] Hyde, J. M. and Seering, W. P., “Using input command pre-shaping to
suppress multiple mode vibration,” in Robotics and Automation, 1991. Pro-
ceedings., 1991 IEEE International Conference on, pp. 2604–2609 vol.3, Apr
1991.

[44] Jia, J., “Single image motion deblurring using transparency,” in Computer
Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pp. 1–
8, IEEE, 2007.

[45] Joshi, N., Kang, S. B., Zitnick, C. L., and Szeliski, R., “Image de-
blurring using inertial measurement sensors,” ACM Transactions on Graphics
(TOG), vol. 29, no. 4, p. 30, 2010.

[46] Judge, S. J., Wurtz, R. H., and Richmond, B. J., “Vision during saccadic
eye movements. i. visual interactions in striate cortex,” J Neurophysiol, vol. 43,
no. 4, pp. 1133–55, 1980.

[47] Jurgen, W. and Segal, S. S., “Effect of motor unit recruitment on functional
vasodilatation in hamster retractor muscle,” The Journal of physiology, vol. 524,
no. 1, pp. 267–278, 2000.

[48] Jürgens, R., Becker, W., andKornhuber, H., “Natural and drug-induced
variations of velocity and duration of human saccadic eye movements: evidence
for a control of the neural pulse generator by local feedback,” Biological cyber-
netics, vol. 39, no. 2, pp. 87–96, 1981.

[49] Katoch, R. and Ueda, J., “Trajectory planning for antagonistic non-linearly
quantized sma actuator arrays based on evolutionary optimization,” in 2015
American Control Conference (ACC), pp. 2631–2636, July 2015.

[50] Kilbride, S., Kim, M., and Ueda, J., “Real time image de-blurring and
image stitching for muscle inspired camera orientation system,” in Advanced
Robotics and its Social Impacts (ARSO2014), 2014 IEEE International Work-
shop on, to be publihsed 2014.

[51] Kim, M. D. and Ueda, J., “Dynamics-based motion deblurring for a
biologically-inspired camera positioning mechanism,” in 2013 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pp. 2689–2694, Nov
2013.

[52] Kim, M. D. and Ueda, J., “Real-time image de-blurring and image processing
for a robotic vision system,” in 2015 IEEE International Conference on Robotics
and Automation (ICRA), pp. 1899–1904, May 2015.

160



[53] Kim, M. D. and Ueda, J., “Discrete switching commands for tracking and
vibration suppression using a quantized, compliant camera orientation system,”
in 2016 IEEE International Conference on Robotics and Automation (ICRA),
pp. 5177–5182, May 2016.

[54] Kim, M. D. andUeda, J., “Real-time panoramic image generation and motion
deblurring by using dynamics-based robotic vision,” IEEE/ASME Transactions
on Mechatronics, vol. 21, pp. 1376–1387, June 2016.

[55] Kim, M. D. and Ueda, J., “Dynamics-based motion de-blurring for a pzt-
driven, compliant camera orientation mechanism,” The International Journal
of Robotics Research, vol. 34, no. 4-5, pp. 653–673, 2015.

[56] Koo, I. M., Jung, K., Koo, J. C., Nam, J. D., Lee, Y. K., and Choi,

H. R., “Development of soft-actuator-based wearable tactile display,” IEEE
Transactions on Robotics, vol. 24, pp. 549–558, June 2008.

[57] Laffranchi, M., Tsagarakis, N. G., and Caldwell, D. G., “Analysis
and development of a semiactive damper for compliant actuation systems,”
IEEE/ASME Transactions on Mechatronics, vol. 18, pp. 744–753, April 2013.

[58] Lee, Y.-C., Lan, C.-C., Chu, C.-Y., Lai, C.-M., andChen, Y.-J., “A pan-
tilt orienting mechanism with parallel axes of flexural actuation,” Mechatronics,
IEEE/ASME Transactions on, vol. 18, no. 3, pp. 1100–1112, 2013.

[59] Lehrer, S. S., “The regulatory switch of the muscle thin filament: Ca 2+
or myosin heads?,” Journal of muscle research and cell motility, vol. 15, no. 3,
pp. 232–236, 1994.

[60] Lenz, A., Anderson, S., Pipe, A., Melhuish, C., Dean, P., and Por-

rill, J., “Cerebellar-inspired adaptive control of a robot eye actuated by pneu-
matic artificial muscles,” Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on, vol. 39, no. 6, pp. 1420–1433, 2009.

[61] Lesmana, M. and Pai, D., “A biologically inspired controller for fast eye
movements,” in Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pp. 3670–3675, 2011.

[62] Levin, A., Weiss, Y., Durand, F., and Freeman, W. T., “Understand-
ing and evaluating blind deconvolution algorithms,” in Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 1964–1971,
IEEE, 2009.

[63] Liu, X. and El Gamal, A., “Simultaneous image formation and motion blur
restoration via multiple capture,” in Acoustics, Speech, and Signal Process-
ing, 2001. Proceedings.(ICASSP’01). 2001 IEEE International Conference on,
vol. 3, pp. 1841–1844, IEEE, 2001.

161
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