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SUMMARY 

 A network of mobile sensors, such as vector sensors mounted to drifting floats, can 

be used as an array for locating acoustic sources in an ocean environment. Accurate 

localization using coherent processing on such an array dictates the locations of sensor 

elements must be well-known. In many cases, a mobile, submerged array cannot meet this 

requirement, however the presence of ambient acoustic noise provides an opportunity to 

correct sensor location errors. It has been previously shown that ambient noise correlations 

across separated, fixed hydrophones can provide the separation distance between them (K. 

G. Sabra et al., 2005, IEEE J. Ocean Engineering, Vol. 30). A time-domain framework for 

this method is presented for the case of vector sensors in isotropic ambient noise to quantify 

their gain relative to traditional hydrophone correlations. Furthermore, a novel method is 

presented for identifying hidden ambient noise correlation peaks when the separation 

distance is changing, and its accuracy is found to match that of GPS. Lastly, a novel 

weighted coherent processing algorithm is presented and its performance compared to 

traditional methods, finding increased localization precision even in the presence of severe 

noise. This method is applied to locating a source, and succeeds using both GPS and 

ambient-noise-corrected sensor locations. All experimental data used in these studies were 

collected from a novel vector sensor array, and details of its design and deployment are 

presented as well. 
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CHAPTER 1 

INTRODUCTION 

Locating objects in the ocean is a difficult task due to the limited depth at which 

light penetrates and propagates. Even in clear water, objects beyond a hundred meters or 

so cannot be “seen” in the traditional sense, and in deep or turbid water, visibility may be 

quasi-null. Fortunately, sound propagates with much less attenuation underwater, and in 

ideal conditions, it can propagate for hundreds, if not thousands, of kilometers (Worcester 

et al., 1999). Locating and tracking objects thus relies on detecting the sounds emitted by 

an object. It has applications ranging from naval security (J. C. A. Shipps, B.M., 2004) to 

wildlife monitoring (Thode et al., 2010), among others. 

To obtain the direction towards a source, multiple sensors can be placed in the 

environment at different locations. The difference in arrival time of a sound at each sensor 

gives information on the location of its source through a process called beamforming (or 

array signal processing) (Van Trees, 2004). As part of this process, the locations of each 

sensor are required to compare the time-difference-of-arrival (TDOA) of the recorded 

sound with the theoretical TDOA. If the sensor locations are not accurately known, the 

localization performance suffers (Culver & Hodgkiss, 1988; S. E. Dosso, Collison, Heard, 

& Verrall, 2004). 

However, if passive and covert operations are desired, obtaining accurate sensor 

locations in an ocean environment can prove difficult. Global positioning system (GPS) 

signals do not propagate underwater; acoustic positioning systems are non-covert and limit 

sensor mobility; and dead-reckoning accumulates errors much too large for source 
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localization (Paull, Saeedi, Seto, & Li, 2014). However, there exists an additional source 

of information which can be exploited to correct the errors inherent in dead-reckoning. 

Ambient noise exists in every ocean environment to some degree, from low 

frequency seismic noise (Woolfe, Lani, Sabra, & Kuperman, 2015) to high frequency 

wind-generated surface noise (Brooks & Gerstoft, 2009). It has been shown that 

correlations of ambient noise across separated sensors results in the Green’s function (or 

channel impulse response) between them (Roux & Kuperman, 2004). Knowing the 

propagation speed, the direct-arrival peak of the Green’s function results in the separation 

distance between sensors. This peak forms as a result of the ambient noise sources which 

reside in a narrow endfire beam formed by the baseline of the two sensors (Roux & 

Kuperman, 2004). The peak can thus be enhanced by beamforming the ambient noise 

recordings to isolate only contributing sources (Leroy et al., 2012). 

An acoustic vector sensor, which measures both pressure and acoustic particle 

velocity, functions as a single sensor with multiple co-located components. As a result, a 

single sensor is able to be steered, i.e. it has inherent directionality (Nehorai & Paldi, 1994). 

Its directionality could be exploited to improve the emergence of an ambient noise 

correlation peak. This becomes important when the allowable observation length is limited 

by sensors which are drifting, thus changing the environment as a measurement is being 

made (Woolfe, Sabra, & Kuperman, 2015). In extreme cases, changes in the environment 

occur so rapidly that the Green’s function peak has yet to emerge from correlation noise. 

A stochastic search algorithm can attempt to locate hidden peaks in many short 

observations of the ambient noise to obtain the environmental changes on a short time scale 

(Woolfe, Sabra, et al., 2015). Using this information, the distance between any pair of 
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sensors is obtained, and knowledge of the distance between all pairs of sensors can correct 

the sensor locations (S. E. Dosso et al., 2004). Correcting the sensor locations then results 

in better localization performance. 

The main contributions of this work are to: analyze the performance of vector 

sensors for ambient noise correlations in relation to traditional hydrophone correlations; 

present a stochastic search methodology for identifying ambient noise correlation peaks 

hidden in noise; analyze the effects of noise and sensor positional errors in vector sensor 

source localization; and demonstrate the improvement of source localization using 

ambient-noise-corrected sensor locations. Lastly, a new free-floating vector sensor array 

was developed to obtain experimental data used in the above-mentioned analyses. 

Chapter 2 details the design and deployment of the free-floating vector sensor array 

used to collect experimental data for later chapters. The data preprocessing steps are also 

presented here, since many of them are used identically in later chapters. 

Chapter 3 presents the theory behind the emergence of the Green’s function from 

ambient noise correlations. It introduces a novel time-domain interpretation of vector 

sensor ambient noise correlations. Furthermore, it analyzes the performance of vector 

sensor correlations relative to standard hydrophone correlations using theoretical and 

experimental results. 

Chapter 4 presents the theory of identifying Green’s function peaks from ambient 

noise correlations when the medium is rapidly varying. A novel stochastic search method 

is tested on simulated and experimental data to demonstrate its performance in measuring 

sensor separation distances. In addition, Chapter 4 presents the theory of correcting sensor 
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locations using distances measured in this way, commenting on each method’s ability to 

obtain valid results. 

Chapter 5 defines a standard vector sensor beamforming methodology, adding a 

novel weighting method to improve localization performance. The performance of this 

method and traditional methods is compared in the presence of sensor noise and location 

errors, for both simulated and experimental data. Lastly, the improvement of source 

localization is quantified when using sensor locations corrected using the stochastic search 

method described in Chapter 4. 
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CHAPTER 2 

DATA COLLECTION 

2.1 Introduction 

 Obtaining experimental data is a critical component in effectively testing proposed 

methods of vector sensor ambient noise array element localization and source localization. 

The experimental data will serve to reinforce simulated findings as well as provide a 

foundational proof-of-concept for the methods studied in later chapters. Without 

experimental validation, it is difficult to draw conclusions on the functionality or efficacy 

of results drawn from simulated methods. 

 The desired dataset for testing ambient noise array element localization (AEL) 

contains synchronized recordings of ocean ambient noise on multiple vector sensors whose 

separation distances are changing at different rates. The separation distances must also be 

small (on the order of tens to hundreds of meters). Ideally, the exact locations of the sensors 

are also measured to have a ground-truth to which the ambient noise localization can be 

compared. Furthermore, there should be few interfering sources present, and the locations 

of any sources in the area should at least be well-known. For testing source localization, 

the separation distances should be larger than the ambient noise case (on the order of 

hundreds to thousands of meters) if absolute localization is required (range and bearing). 

However, if sharing data with the ambient noise array shape, only bearing can be 

effectively obtained (Nichols & Sabra, 2015). Obviously, the source to be localized should 

also have a known position as a ground-truth. In addition, it would be beneficial if the 

source traverses a large area of possible locations around the array to test localization in a 

variety of scenarios. 
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 To date, the only experimental data which verifies ambient noise correlation 

Green’s function extraction uses hydrophones or hydrophone arrays. Roux et al. 

demonstrated experimental success in extracting Green’s function information from fixed 

hydrophones in a 100 – 300 Hz band (Roux & Kuperman, 2004). In 2005, experimental 

work by Sabra et al. demonstrated the technique multiple times and over a wider band, and 

showed it could be used for array element self-synchronization (AESS) and array element 

self-localization (AESL) (Sabra, Roux, & Kuperman, 2005a, 2005b; K. G. Sabra et al., 

2005). A year later, Siderius et al. demonstrated the technique for passive fathometry and 

sub-bottom profiling, which also included drifting hydrophone arrays (Martin Siderius, 

Harrison, & Porter, 2006). Further experimental results were given by Harrison and 

Siderius in 2008 (Harrison & Siderius). An important finding in these works by Siderius et 

al. is that beam-steered correlations can aid in the emergence of a coherent peak, thus 

reducing the required averaging time. In addition, the direction of sensor drift was 

perpendicular to the ambient noise propagation direction (i.e. the changes in environment 

were solely due to changing bathymetry beneath the sensors). As a result, they did not 

encounter the scenario where the averaging duration was limited by the drift rate. 

 Two other papers applied ambient noise correlations for Green’s function 

extraction in 2008 (Brooks & Gerstoft, 2009; Fried, Kuperman, Sabra, & Roux, 2008), 

both corroborating the technique for bottom-mounted hydrophones in different bands and 

using different noise sources. Brooks and Gerstoft used a tropical storm as the ambient 

noise source, whereas Fried et al. used distributed biologic noises from the croaker fish 

(Sciaenidae) family. Later in 2010, Siderius et al. improved emergence of the Green’s 

function for fathometry using adaptive processing, further reinforcing the notion that 
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selective use of ambient noise sources leads to improved extraction (M. Siderius et al.). 

Around the same time, Godin et al. demonstrated passive ocean tomography using bottom-

mounted hydrophone arrays, estimating the sound speed profile through pair-wise 

correlations across the arrays (Godin, Zabotin, & Goncharov, 2010). 

 Beamformed hydrophone ambient noise correlations were again shown to improve 

Green’s function extraction in 2012 and 2013 by Leroy et al. and Lani et al., both using 

data from bottom-mounted vertical line arrays in the presence of distributed shipping noise 

(Lani, Sabra, Hodgkiss, Kuperman, & Roux, 2013; Leroy et al., 2012). In addition to using 

beamformed ambient noise correlations, Woolfe et al. demonstrated the approach for 

measuring changing sound speed between hydrophone triads separated by over 100 km 

(Woolfe, Lani, et al., 2015a). In this work, the rate at which sound speed varies constrains 

the allowable averaging duration, but a sufficient averaging duration was achieved to 

obtain a coherent correlation peak. This limitation was again introduced in Woolfe and 

Sabra 2015 (Woolfe & Sabra, 2015b), and later a proof-of-concept formulation of the 

stochastic search method was proposed (Woolfe, Sabra, et al., 2015c). The experimental 

data used in these studies came from moored hydrophone triads recording in the 1 – 40 Hz 

band in the presence of ice noise, shipping noise, and seismic noise. The experimental data 

used for validating the stochastic search method still maintained a distinct correlation peak, 

and simulated additive noise was introduced to artificially decrease the signal-to-noise ratio 

(SNR). However, it proved the concept of using a stochastic search on ambient noise 

correlations to enable shorter averaging times, thus capturing faster environmental 

changes. 
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 The final experimental test which most closely aligns with the goals of this work 

was presented in 2016 by Naughton et al. (Naughton et al., 2016). Ambient noise 

correlations were obtained for a freely-drifting hydrophone array, where the distance 

between sensors varied over the course of the experiment. It was demonstrated that 

occasional coherent peaks could be obtained even for the short (~10 second) averaging 

time allowed by the drifting sensors. However, the most likely reason for the emergence of 

these peaks was the presence of endfire sources (i.e. shipping noise), which was confirmed 

by coherently beamforming the array to determine the direction of the dominant energy. In 

addition, the work used a peak-detection algorithm to identify the sensor separation 

distances, which works well when the ambient correlation yields a strong peak. However, 

over half of the peak locations were inaccurate by more than 10 ms (~15 meters assuming 

1500 m/s sound speed). This indicates a large number of correlations did not produce a 

strong correlation peak for the rather short averaging time dictated by the sensor drift rate. 

 From the past experimental tests, it is clear that novel experimental data would 

enable ambient noise correlations on drifting sensors, where the drift rate limits the 

allowable averaging time for the emergence of coherent peaks (e.g. such a constraint was 

experienced in the experimental data of Naughton et al. (Naughton et al., 2016)). In effect, 

the emergence of coherent peaks should not occur, and a technique such as that employed 

in Woolfe et al. (Woolfe, Sabra, et al., 2015c) could be applied to estimate the distances 

between sensors. A benefit of estimating inter-sensor distance is that it enables a 

measurable reference (i.e. GPS locations) to corroborate the stochastic search findings, 

whereas the experimental data in Woolfe et al. required the varying temperature to be 
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measured with the noise correlation method itself, or alternatively rely on imprecise 

external data sources (e.g. Argo (2000)). 

 In addition to drifting sensor data, an area not yet studied experimentally involves 

the use of vector sensors. It was shown that beamformed ambient noise correlations 

improve Green’s function emergence from ambient noise correlations (Harrison & 

Siderius, 2008; Lani et al., 2013; Leroy et al., 2012; Martin Siderius et al., 2006; M. 

Siderius et al., 2010). Similarly, a vector sensor provides directionality through the 

weighting of its components (see Figure 2), and could improve upon the existing body of 

hydrophone research. In addition to improving ambient noise correlations, a 

mobile/drifting vector sensor array could also yield some insights into source localization 

not yet explored experimentally. 

 Previous experiments utilizing vector sensors began as far back as the 1980’s where 

a neutrally-buoyant, freely drifting array of infrasonic (1 – 10 Hz) floats were designed and 

deployed (G. L. D'Spain et al., 1992; Hodgkiss & Anderson, 1983). The first localization 

efforts demonstrated intensity processing and conventional beamforming on single sensors 

(G. L. D'Spain et al., 1992), and later more comprehensive theory was developed (Nehorai 

& Paldi, 1994), and even improved (Hawkes & Nehorai, 1998, 1999, 2000, 2001, 2003). 

However, experimental data was generally limited to incoherent processing of single 

sensors, e.g. directional frequency and recording (DIFAR) sensors (Greene et al., 2004; 

Swartz, 2003). Smith and van Leijen later applied traditional cardioid and novel non-linear 

hippioid processing to DIFAR buoy data (Smith & van Leijen, 2007). The first true vector 

sensor array processing experimental data was presented in 2009 by Poulsen, where a 19-

element towed vector sensor array was deployed in sea trials during 2006 and 2007 
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(Poulsen, 2009). Further experimental data was obtained in 2010 by Felisberto et al, Santos 

et al, and Thode et al. using a towed vector sensor array for tracking whales (Felisberto, 

Santos, & Jesus, 2010; Santos, Felisberto, & Jesus, 2010; Thode et al., 2010). To date, no 

distributed vector sensor array has been deployed and coherently processed, as the 

positional accuracies and temporal synchrony required poses a formidable challenge in an 

ocean environment. 

 As such, novel experimental data would involve a distributed, mobile vector sensor 

array where the sensor elements are synchronized and their locations known. Not discussed 

in this thesis is a large body of work undertaken by Dave Trivett, James Martin, Dr. Karim 

Sabra, Dr. Kevin Smith, and many others to mount vector sensors to autonomous littoral 

gliders (Alaska Native Technologies, LLC) in order to obtain such a dataset. Issues with 

clock synchrony, glider self-noise, navigation, and dead-reckoning accuracy prevented 

such efforts from yielding an ideal dataset. However, data from two surfaced gliders 

(effectively floats) was obtained in 2012, such that GPS could be used to locate the sensors 

and the self-noise and navigation were not an issue. Clock synchrony was also not 

guaranteed, but proved to be sufficient for coherent processing (Nichols & Sabra, 2015). 

Many of the lessons learned from partaking in these experiments have guided the design 

and development of the free-floating vector sensor array which is described in this chapter. 

Section 2.2 describes the array design, such as the hardware elements and their 

functionality. Section 2.3 describes the data collection and processing steps required to 

obtain usable data from the array. Furthermore, it details the data collection efforts over 

five deployments between 2015 and 2016, summarizing the lessons learned and usable data 

collected from each. 



11 

 

2.2 Array Design 

2.2.1 Vector Sensors 

 The vector sensor available for this array is the Wilcoxon VS-301 (see Figure 1), a 

compact sensor which measures acoustic pressure and particle velocity using a hydrophone 

and three-axis accelerometer co-located within the sensor body (Meggitt). Since it 

measures sensor acceleration to obtain fluid particle velocity, it must be mounted with a 

compliant suspension to allow it to freely move in response to the surrounding fluid motion 

(see Figure 11). In addition, the acceleration channels will require integration to obtain 

velocity. Both will limit the lower usable frequency of the sensor, the suspension limit is 

due to its resonance frequency and the integration limit is due to 1/𝑗𝜔 noise amplification 

at low frequencies. The sensor is also sensitive to flow noise (Lauchle, Wang, & Howe, 

2002), which can be especially prevalent at low frequencies. In practice, the lower usable 

frequency will be on the order of tens to hundreds of Hertz. The upper frequency is limited 

by the accelerometer’s internal resonance frequency, which varies from unit to unit but is 

typically around 3.5 kHz. 

 

Figure 1: Wilcoxon VS-301 vector sensor 

 Within the band of approximately 100 Hz to 2 kHz, the sensor frequency response 

is roughly flat. If the acceleration data is properly integrated and multiplied by the fluid’s 
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specific acoustic impedance 𝜌0𝑐 (typ. 1.5 ⋅ 106 Rayls), the magnitude of the resulting 

velocity will equal that of pressure. In this scenario, the components of the sensor can be 

weighted and summed, effectively resulting in a beamformed single sensor with cardioid 

directionality pattern (see Figure 2). 

 

Figure 2: Directionality of single vector sensor steered toward 0 degrees 

 Figure 2 shows the sensor directionality pattern when steered towards the right. 

This pattern represents the sensitivity of the steered sensor to sound arriving from a given 

direction. It shows that the sounds coming from the right are recorded normally, and sounds 

coming from the left are not recorded at all. The sensor can be steered in any direction 

desired simply by changing the weights used (see Chapter 5 for further treatment). In order 

for the steering direction to be specified in a meaningful coordinate system (e.g. aligned 

with a local North, East, Down system), the sensor’s orientation in the coordinate system 

needs to be known. The recorded velocity components in the sensor coordinate system can 

then be appropriately rotated into the global coordinate system. 
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 This work makes use of a North-East-Down (NED) coordinate system, which 

means the positive x-, y-, and z-axes are aligned with North, East and Down respectively. 

This global coordinate system assumes the ocean surface is a flat plane defined by z = 0, 

and is the default convention used in aerial and nautical navigation. To rotate the sensor 

coordinate system (SCS) into the global coordinate system (NED), the orientation of the 

SCS needs to be known in the NED frame. To achieve this, the vector sensor measures the 

gravity and magnetic field vectors with an internal inertial measurement unit (IMU). The 

gravity vector is measured with a static accelerometer (separate from the acoustic 

accelerometer), and determines which way is Down in the SCS. The magnetic field is 

measured with a magnetometer, and this determines the direction of magnetic north. In the 

vicinity of the experimental site, the magnetic declination (variation of magnetic north from 

true north) is known and remains relatively constant. Knowing all three pieces of 

information, the orientation of the sensor is known in a NED coordinate system. The vector 

sensor IMU data is packaged with other operational data (e.g. temperature, voltage, error 

codes, etc.) on the non-acoustic sensor (NAS) data line as a digital bitstream. This bitstream 

is recorded as an analog signal by the recorder and later digitized to form bits and bytes 

(see Section 2.3.2). 

 To augment and validate the vector sensor IMU data, additional IMU’s were 

created, such as the one in Figure 3. These use an accelerometer (ADXL345) and 

magnetometer (HMC5883L) which are polled by an Arduino Pro Mini microprocessor 

which then saves the data to a microSD card on a SparkFun OpenLog (SparkFun). 
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Figure 3: Arduino-based inertial measurement unit (IMU) 

 These units were placed inside the pressure vessel, and as such, did not measure the 

sensor’s absolute orientation. Rather, they measured the orientation of the pressure vessel, 

which was coupled to the sensor with known relative orientation. Thus, the orientation of 

the sensor could be inferred from the orientation of the pressure vessel. 

2.2.2 Data Recording and Synchrony Hardware 

 To record the data from the vector sensors in a synchronized way, multiple pieces 

of commercially-available hardware were combined. The recording unit is a Tascam DR-

680 multi-track recorder (see Figure 4), which is capable of simultaneous sampling of up 

to six channels of data (TASCAM). It stores the data as wave files on an embedded SD 

card, and supports a maximum of 32 GB cards. At its default sample rate of 44100 Hz, this 

allows up to 100 hours of total recording time. Recording five tracks simultaneously 

(pressure, three velocity components, and NAS data channel) limits the usable recording 

time to around 20 hours. 
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Figure 4: DR-680 multi-track recorder 

 The multi-track recorder specifies a flat frequency response from 20 Hz – 20 kHz 

(+0.5/-1.5 dB) and 0.007% distortion at 1 kHz. It employs anti-aliasing filters, but does not 

specify their parameters. Its maximum input level is +24 dBu (~12.3 V), which dictates the 

scaling of the wave file value ( 1) to volts. 

 The default clock on the recorder is not stable enough to allow multiple recorders 

to remain synchronized over many hours of recording. However, the recorders do allow 

for an external clock source via a digital input called S/PDIF (Sony/Philips Digital Interface 

Format). The original purpose of this input is to carry digital audio data into the recorder, 

but it additionally can carry clock information in the digital data frame. Thus, the recorder’s 

clock can be overridden by inputting S/PDIF data with a custom clock source. 

 To achieve this, a rubidium atomic clock from Symmetricom (SA.33m) is used to 

generate a very stable 10 MHz clock signal (see Figure 5). It drifts in frequency much less 

than standard crystal oscillators used in typical commercial equipment, and is even orders 

of magnitude more stable than an oven-controlled crystal oscillator (OCXO). These were 
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obtained as surplus from old array hardware, and as such are about 10 years old. Their 

performance at this age unfortunately does not meet that of new hardware, but they perform 

suitably for acoustic synchrony. 

 

Figure 5: Symmetricom SA33.m rubidium clock 

 Since the clock sources only a 10 MHz square wave, and the recorder requires a 

standardized S/PDIF frame input, a commercial analog to S/PDIF converter was purchased 

which employs the Cirrus CS8406 digital audio interface transmitter chip. However, this 

commercial converter uses its own crystal oscillator to supply the CS8406, so it needed to 

be removed and replaced with the clock signal from the rubidium oscillator. This was 

achieved using a custom-built clock source board (see Figure 6). 

 

Figure 6: Clock circuit board. From left to right: S/PDIF converter, 4 MHz NAS 

clock, DC/DC converters, rubidium clock. 
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 The clock board contains the S/PDIF converter on the left, followed by a 4 MHz 

crystal oscillator (for the vector sensor data channel), two DC-DC converters, and the 

rubidium clock on the right. A yellow LED indicates whether the rubidium clock has 

locked onto a steady frequency by turning off when the clock is ready. Thus, the rubidium 

clock drives the CS8406 on the S/PDIF converter, which passes the clock signal via data 

frames to the multi-track recorder. Since the recorder’s default clock frequency is about 

11.2 MHz, the change to 10 MHz means the actual sample rate will be 39062.5 Hz. 

 With all recorders running on separate stable clocks, the remaining problem is 

synchronizing all the recorders with each other. To accomplish this, a “sync pulse” is 

simultaneously recorded on every recorder on a single channel of data at the beginning and 

end of the experiment. A reference recorder is used to play back the sync pulse on auxiliary 

cables branched to each recorder, using equal-length BNC cables split from the reference 

recorder. The sync pulse is comprised of two 10-second linear sweeps from DC to 18 kHz 

(see Figure 7) with a 10-second pause between them. 
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Figure 7: Spectrogram of a single sync chirp. A sync pulse consists of a sync chirp, 

10 seconds of silence, and another sync chirp. 

 One sync pulse (i.e. two sets of chirps) is injected into the acoustic record at the 

beginning of the experiment, after all clocks have stabilized/locked. Another is inserted 20 

– 60 minutes later, and a final sync pulse is applied at the end of the record. The use of 

three pulses allows the first two to correct for the average difference in clock frequencies, 

and the third confirms the records remained synchronized throughout the experiment. 

Additionally, any combination of sync pulses can be used to re-synchronize the acoustic 

data (see Section 2.3.3). 

 To demonstrate the clock stability, two different clocks were connected to a 

frequency counter in relative mode. This records the relative frequency of the clocks by 

counting clock pulses for each over a short period of time (200 s). Thus, the ratio of number 

of pulses in this time window is given by  
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𝑅 =

𝑁𝑎

𝑁𝑏
 1 

where 𝑁𝑎 and 𝑁𝑏 are the number of pulses in the counting duration for clock A and B, 

respectively. Alternatively, the ratio can be described by the ratio of clock frequencies, 

since the number of clock periods is given by 

 𝑁𝑥 = 𝑓𝑥𝑇 2 

where 𝑓𝑥 is the frequency of the x-th clock and 𝑇 the counting duration. Substituting 

Equation 2 into Equation 1, the counting ratio is 

 
𝑅 =

𝑓𝑎
𝑓𝑏

 3 

Thus, a ratio of unity denotes equal clock frequencies. Plotting (𝑅 − 1)𝑓𝑏, assuming clock 

B is the reference clock having 𝑓𝑏 = 10 MHz frequency, shows the difference in clock 

frequencies over the course of a week (see Figure 8). 
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Figure 8: Difference in clock frequencies measured in 200-second intervals over the 

course of a week. The reference clock is assumed to have 10 MHz frequency. 

 The relative ratio plotted in Figure 8 shows that clock A was consistently slower 

than clock B. To determine the effective sample rate at a given time, the total number of 

samples up to that point is divided by the time elapsed. Assuming again that clock B is the 

reference, operating at a steady 10 MHz, the total number of samples counted by clock A 

is 

 ∑𝑁𝑎 = 𝑁𝑏 ⋅ ∑𝑅 = 𝑓𝑏𝑇 ⋅ ∑𝑅 4 

and thus, the effective sample rate at time t is 

 
𝑓𝑎(𝑡) =

∑𝑁𝑎

𝑡
=

𝑓𝑏𝑇

𝑡
⋅ ∑𝑅 5 

and the difference in sample rates is then 
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𝑓𝑑𝑖𝑓𝑓(𝑡) = 𝑓𝑎 − 𝑓𝑏 = 𝑓𝑏 (

𝑇

𝑡
∑𝑅 − 1) 6 

The sample rate difference using all recordings up to time t is plotted in Figure 9 over the 

course of a week. 

 

Figure 9: Cumulative clock frequency difference, summing results from 200-second 

intervals 

 Figure 9 shows that over the course of a week, clock A had a sample frequency 

about 2.64 Hz slower than clock B. However, the absolute size of the difference in 

frequency is not the concern. Applying two sync pulses to the acoustic record, one at the 

start and another sometime later allows for correction of the average sample rate difference 

between clocks. For example, adding a sync pulse one hour into the record gives a 

measurement of the number of samples taken in that hour, and dividing by 3600 seconds 

(1 hour) gives the cumulative sample frequency over the hour. In this dataset, performing 

a sync pulse one hour in would have resulted in an effective sample rate of clock A of 
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9,999,997.3 Hz, assuming clock B was the reference at 10 MHz. Then, only the deviation 

of clock A from its measured value would result in errors when compared to clock B. This 

error, expressed in parts-per-million (ppm), is plotted in Figure 10. 

 

Figure 10: Cumulative clock frequency difference variation. Mean drift was corrected 

with synthetic sync pulse 1 hour into recording. 

 The result of Figure 10 shows that the relative clock error (after correcting for the 

mean difference in clock rates) remains within 4e-3 ppm over an entire week. Over the 

course of the longest possible recording (20 hours), the worst-case relative clock error is 

less than 2e-3 ppm, which equates to 144 μs, equal to a propagation distance of 21.6 cm 

(1500 m/s sound speed). Over a more realistic deployment (8 hours due to battery life), the 

clock error would be within 58 μs (8.6 cm at 1500 m/s sound speed). This proves the clocks 

are stable enough to ensure clock drift errors are within reason for localizing sensors and 

sources. These results are summarized in Table 1. 
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Table 1: Clock Synchrony Bench-test Summary 

Clock Drift Duration 

(hr) 
Max. Relative Error (μs) 

Effective Distance Error 

(cm) 

c = 1500 m/s 

8 58 8.6 

20 144 21.6 

 

2.2.3 Float Hardware 

 As mentioned in Section 2.2.1, vector sensors require a compliant suspension to 

allow free movement with the surrounding fluid. This is accomplished using standard 3”-

3.5” x 1/8” rubber bands wrapped around a slotted cylinder and pulled around the sensor 

body (see Figure 11). Varying types of rubber bands were tested, however no conclusive 

data was obtained on the optimal choice. It seemed a tradeoff exists in choosing the 

suspension stiffness. On the one hand, a loose suspension decreases the resonant frequency, 

but on the other hand, it also allows larger sensor motion. If the surface float pulls the 

sensor cage through the water, the looser suspension might cause the sensor to bump into 

the cage. 
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Figure 11: Vector sensor mounting inside sensor cage 

 In addition to a rubber band suspension, the sensor cage was covered in nylon 

stockings to help reduce flow around the sensor. Care must be taken when installing the 

stockings to avoid areas which can trap bubbles. A hot soldering iron can be used to poke 

a small hole somewhere near the top of the cage while simultaneously sealing the nylon 

fibers. The sensor cages (Figure 11) were mounted on 1/4”-20 threaded rod near the top of 

the frame (see Figure 12). 
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Figure 12: Instrument can, top to bottom: flow shield and sensor cage, instrument can, 

and drogue 

 The frames are repurposed hardware from the ARAP array (McEachern, 

McConnell, Jamieson, & Trivett, 2006), where the sensor cage sits near the top, protected 

by perforated plastic sheets as additional flow shielding (see Figure 12). The bottom of the 

frame houses the instrument can, inside which the batteries and recording electronics 

reside. The battery packs consisted of 24 D-cell alkaline batteries in an 8S3P configuration 

(3 parallel sets of 8 series batteries). Conservatively, their capacity is about 16000-20000 

mAh. 

 In later deployments of the array, the instrument frame was also fitted with a 4’x4’ 

plastic sheet to act as a drogue. The entire frame is suspended from the surface float by 

tethers of varying lengths (see Figure 13). These tethers were originally static lines in 

parallel with a rubber bungee material, but were later changed out for 8.5 mm diameter 
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dynamic climbing rope. The suspension requires some compliance to allow the surface 

float to move vertically with the surface gravity waves while leaving the sensor frame 

relatively stationary at depth. 

 

Figure 13: System schematic 

 The surface floats serve two purposes, the first being to support and suspend the 

sensor frame. The second is to house the antennae, GPS receiver, strobe and batteries above 
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water. This allows the position of the float to be measured and used as a reference when 

locating the sensors using ambient noise correlations. The first revision of the floats 

repurposed the ARAP hardware (see Figure 14). 

 

Figure 14: Float design, Revision 1 

 These tended to float somewhat low in the water, and there was concern the 

instruments might sink were the instrument can to leak and fill with water. The second 

revision added further floatation elements to add enough reserve buoyancy to prevent such 

a problem (see Figure 15). 
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Figure 15: Float design, Revision 2 

 However, after deploying the second revision of float, it was found the acceleration 

channels on the vector sensor were overwhelmed with impulsive noise (see Appendix B). 

It was determined the source of this noise was due to the sudden vertical motions caused 

by the surface float pulling the instrument frame upward. The effect was more pronounced 

on days with higher sea-state (see Appendix B), and the accelerometer present in the 

backup IMU (see Section 2.2.1) measured large accelerations in the vertical direction 

which were correlated with the impulsive noise events. 

 To fix this issue, the floats were redesigned to have minimal differential buoyancy. 

In other words, the cross-sectional area of a horizontal plane sectioning the float was 

minimized. This means that when a gravity wave passes the float and increases the water 

height by a small amount, the increase in buoyancy force on the float is minimized. 

Revision 2 of the floats had very large cross-sectional area, and thus the differential 
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buoyancy when a wave passed meant the float “rode” the wave rather than let it pass by. 

This in turn meant the sensor frame was “riding” the waves as well. In addition, the 

instrument frame drogue serves as a large vibrational damper, restricting motion of the 

frame upward when the surface float rises. Thus, the force from the float is mostly 

converted into stretching of the tether rather than displacement of the frame. The third 

revision of the float design used 4, 4” PVC pipes, each about 10 feet in length (see Figure 

16). A 20-pound weight was suspended from a threaded rod below the floats to ensure it 

remained vertical in the water (see Figure 17). Lastly, a red buoy was attached to the float 

to aid in its retrieval on the winch, as well as locating the floats visually. The third revision 

of float was observed to have much smaller noise present on the acceleration channels. 

Furthermore, they retained their vertical position in the water when a wave passed by, 

appearing to “sink” below the oncoming wave. 

 

Figure 16: Float design, Revision 3. GPS antenna and waterproof box are mounted 

between flotation members. 
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Figure 17: Float design, Revision 3 surfaced. The flotation members are connected at 

the bottom with two parallel plates, which mount the rod holding ballast weights below. 

2.2.4 GPS Positioning and AIS 

 To measure GPS positions, and also aid in retrieving the floats, a GPS modem was 

placed inside a waterproof enclosure on the surface floats (see previous section). The GPS 

modem is a Raveon RV-M7 (see Figure 18) (Raveon). It requires a GPS antenna to obtain 

GPS locations, and a VHF antenna for sending messages to the base station on the research 

vessel (also a RV-M7 radio). 
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Figure 18: Raveon GPS modem 

 GPS locations are received by the modem, and sent over the VHF link using a time-

division multiple access (TDMA) scheme. They can be received by a base station radio on 

the research vessel at a range up to 5 km depending on conditions. The GPS data is logged 

on a base station computer and also used to locate the floats for retrieval. In addition, the 

GPS data is logged on the float itself by connecting a SparkFun OpenLog to the serial port 

on the Raveon, with some custom signal-level conversion circuitry in between to protect 

the OpenLog. The electronics within the enclosure on the surface float was powered by a 

rechargeable 12V sealed lead-acid battery. 

 The float GPS locations were broadcast by the radios at an interval of 10 seconds, 

mainly to save battery power. The research vessel location was tracked using the base 

station radio GPS antenna as well as the vessel’s onboard GPS. Other vessels in the area 

could be tracked using historical automatic identification system (AIS) data. Unfortunately, 

this only covers larger vessels which are required to use the system, as well as some larger 

personal craft which opt to use the system. Many of the smaller vessels in the area are not 

tracked using AIS, and could not be reliably tracked with the research vessel radar since it 

was far from the array. 
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2.2.5 Conclusion 

 This section described the design and development of the array hardware which 

will be used to collect vector sensor ambient noise data on drifting sensors for testing AEL. 

The array will also be able to record vessel noise for testing source localization 

performance.  

2.3  Data Collection 

2.3.1 Introduction 

 As mentioned in Section 2.2.1, the vector sensor data does not immediately result 

in acoustic pressure and particle velocity in a global coordinate system. Many 

preprocessing steps need to be performed before usable data is obtained for analysis in the 

following chapters. The steps are: 

1. Digitizing the NAS data stream to obtain sensor orientation 

2. Rotating acceleration components into NED coordinate system 

3. Scaling acceleration and pressure measurements into physical units 

4. Integration of acceleration and conversion into pressure units 

5. Synchronization of data across different sensors 

6. End-use specific preprocessing (e.g. filtering) 

Steps 1-4 are described in Section 2.3.2, Step 5 is described in Section 2.3.3, and Step 6 is 

described in Section 2.3.4. 

2.3.2 Vector Sensor Processing 

 The VS-301 non-acoustic (NAS) data is a digital signal recorded by one analog 

channel on the DR-680 multi-track recorder. The bitrate is approximately 4 kilobits/sec 
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and the recorder sample rate is about 40 kHz, thus each symbol takes up 10 samples in the 

analog recording. A digital ‘1’ is represented by a high/positive voltage, and digital ‘0’ 

represented by a low/negative voltage. Successive symbols simply take up multiple symbol 

lengths in the record (see Figure 19). 

 

Figure 19: Sample NAS bitstream recorded as analog signal on DR-680 

 The NAS data is first digitized using a simple scaled signum function 

 𝑑(𝑡) = 0.5(sgn𝑛(𝑡) + 1) 7 

where 𝑛(𝑡) is the NAS raw data stream, sgn is the signum (sign) function, and 𝑑(𝑡) is the 

digital signal. The time-difference between zero-crossings of the signal 𝑑(𝑡) determine 

how many symbols reside in a given state, and the magnitude of 𝑑(𝑡) determines which 

symbol resides in that state. These bits are written to a file, loaded with varying bit offsets, 

and descrambled using a proprietary method. The resulting descrambled bytes form 
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packets of 40 bytes each. The packets contain information such as the sensor gravity vector, 

magnetic heading vector, temperature, voltage, error code and checksum. 

 To properly apply the sensor rotation into a global coordinate system, the 

components of the data packets needed to be scaled or rearranged in some cases. To 

ascertain the scaling and order of the gravity and heading vector components, each axis of 

the sensors was pointed downward and the sensor rotated about that axis by 360 degrees. 

Plotting the resulting magnetic and gravity vectors shows their relationships (see Figure 

20). 
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Figure 20: Orientation calibration for VS-301 serial numbers 0011, 0022, 0103, and 

0123. Gravity vectors are displayed as open circles, and magnetic field vectors as closed 

dots. The colors of both denote the elapsed time, starting at blue and going to red. The 

sensors were oriented with the +Z, +Y, +X axes pointing down, in that order, while 

rotated around each axis. 

 Figure 20 shows the gravity vector as open circles, and the magnetic field vector as 

closed dots. The time at which the vector was recorded is denoted by color, beginning with 

blue and transitioning to red. Older sensors having serial numbers 0011, 0022, 0103 show 

the gravity vector is positive in the “up” direction, as opposed to the newer sensor, 0123, 

which is positive in the “down” direction (i.e. pointing the positive axis to the ground 

results in a positive measurement). The magnetic vector is inclined downward at the 
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location of the test, meaning it should have a large positive component along the axis which 

was oriented downward. This was not the case for the older sensors, but was the case for 

the newer sensor. Furthermore, the color of the gravity vector and magnetic vector circle 

surrounding its axis should match. In other words, the magnetic vector should circle the 

axis which was pointed down during the rotation. In the older sensors, there appears to be 

a transposition in the x- and y-axes. For example, when the y-axis is pointed down (red 

gravity circles on negative y-axis), the red magnetic vector dots circle the apparent x-axis. 

Any use of these sensors in the experiment must take care to record which sensor is used, 

and each sensor needs to be calibrated in this way to ensure orientation information is valid. 

 In addition to identifying the scaling and order of the magnetometer components, 

an in-situ calibration was performed to remove “hard-iron” and “soft-iron” distortions 

(Konvalin, 2008). These distortions shift the origin of magnetometer data and skew the 

sensitivity of the magnetometer in different axes, respectively. The result is that 

magnetometer data will take on a shifted ellipse (see Figure 21), which needs to be 

converted into a centered circle for accurate heading measurements. To achieve this, the 

sensor frames are rotated slowly in a full circle during the experiment to obtain a full ellipse 

of data points. The simplest method involved driving the research vessel in a large circle, 

taking about 20 seconds to complete, while all sensors were on deck in their standard 

orientation. Plotting the horizontal magnetic vector data collected during this time shows 

the ellipsoidal shape caused by distortions (see Figure 21). 
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Figure 21: Example magnetometer data in the horizontal plane (red dots), with a 

least-squares ellipse fit (black dashed line) and a RANSAC-filtered ellipse fit (black solid 

line). 

 However, simply fitting a least-squares ellipse to the data results in a poor fit 

(dashed black line) due to outliers in the data. Employing an outlier-robust curve-fitting 

technique called RANSAC (Fischler & Bolles, 1981) results in a much better fit to just the 

inliers (solid black line), which is used to transform the magnetometer data into a circle 

(see Figure 22). 
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Figure 22: Magnetometer data in the horizontal plane, corrected by the RANSAC-

filtered ellipse fit (black solid line in Figure 21). 

 With calibrated magnetometer and accelerometer data, the axes of the global 

coordinate system (e.g. NED) can be found in the sensor coordinate system (SCS). The 

“down” vector is given by 

 
�⃗⃗� =

𝑔 

|𝑔 |
 8 

where 𝑔  is the gravity vector, whose positive orientation is “down”. The “magnetic east” 

vector is then given by 
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𝑣 = �⃗⃗� ×

�⃗⃗� 

|�⃗⃗� |
 9 

where �⃗⃗�  is the magnetic field vector (corrected) and the × operator denotes cross-product. 

Finally, the “magnetic north” vector is given by 

 �⃗� = 𝑣 × �⃗⃗�  10 

The rotation matrix from the sensor coordinate system to a magnetic north NED coordinate 

system is then  

 𝑅𝑆𝐶𝑆 = [�⃗�  𝑣  �⃗⃗� ]𝑇 11 

and a rotation from a magnetic north coordinate system to a true north coordinate system 

by a simple z-axis rotation by the magnetic declination angle 𝛿 (assumed constant) is given 

by 

 
𝑅𝑧 = [

cos 𝛿 sin 𝛿 0
− sin 𝛿 cos 𝛿 0

0 0 1
] 12 

All acceleration data can then be transformed from its sensor coordinate system into a 

common global coordinate system by the transformation 

 𝑎 𝑁𝐸𝐷 = 𝑅𝑧𝑅𝑆𝐶𝑆 𝑎 𝑆𝐶𝑆 13 

where 𝑎 𝑆𝐶𝑆 is the acceleration in the sensor coordinate system and 𝑎 𝑁𝐸𝐷 is the acceleration 

in the NED coordinate system. 

 Step 3 simply requires scaling the pressure and acceleration wave file 

measurements into their respective physical units. To obtain voltages, the values are 

multiplied by 12.3 Volts/count (+24 dBu), which was obtained from the DR-680 gain 
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specifications (see Section 2.2.2). Pressure data is scaled using the hydrophone sensitivity 

of -162 dB re 1V/μPa. Accelerometer data is scaled using varying sensitivities (see 

Appendix A), generally between 3 and 10 V/g, and using 9.81 m/s2 per g. The resulting 

units of pressure are in Pascals, and acceleration in m/s2. 

 Step 4 requires integration of acceleration and scaling into pressure units. The 

scaling is a simple multiplication by the fluid’s specific acoustic impedance 𝜌0𝑐 = 1.5 ⋅

106 for water. Integration is implemented in the frequency domain by point-wise 

multiplication of the spectrum by 1/𝑗𝜔, except at zero-frequency which is multiplied by 

zero. After steps 1 – 4 are performed on each sensor, the data on each is ready to be 

analyzed, however if data from multiple sensors is to be analyzed simultaneously, it must 

be loaded synchronously. 

2.3.3 Synchronizing Data 

 To ensure data across multiple sensors is synchronized, multiple “sync pulses” were 

applied to each sensor’s record (see Section 2.2.2). The first sync pulse effectively 

synchronizes the start time of each record, and the second is used to synchronize the end 

time since the clocks each operate at slightly different, unknown frequencies. To obtain the 

start times and effective sample rates of each data record, one clock is chosen as the 

reference clock to which all others are synchronized. Then, the delays of each sync pulse 

are found using a frequency-domain correlation 

 𝐷𝑖(𝜔) = 𝑅(𝜔) ⋅ 𝐹𝑖(𝜔)∗ 14 

where 𝑅(𝜔) is the reference sync pulse spectrum, 𝐹𝑖(𝜔)∗ is the conjugate spectrum of the 

i-th sensor’s delayed sync pulse, and 𝐷𝑖(𝜔) is the delay correlation spectrum. The time 
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delay is then obtained by a linear fit of the unwrapped phase of 𝐷𝑖(𝜔) within the sync pulse 

range of frequencies (200 Hz – 18000 Hz in this case). The delay for the i-th sensor’s sync 

pulse is then given by 

 𝛿𝑖 =
𝑠𝑖

2𝜋
 15 

where 𝑠𝑖 is the linear-fitted slope of the phase of 𝐷𝑖(𝜔). Finally, each channel of data can 

obtain its offset from the reference channel start time Δ𝑖 and its sample frequency 𝑓𝑠𝑖 by 

linear-fitting the points 

 𝑝 = [𝒑  𝒑 + 𝜹𝒊] 16 

where 𝒑 is a vector of all pulse times, and 𝜹𝒊 a vector of all the i-th sensor pulse delays. 

The slope and y-intercept of this linear fit will be 𝑚 and 𝑏, respectively. The offset and 

sample frequency are obtained by 

 
Δ𝑖 = −

𝑏

𝑚
 17 

and 

 𝑓𝑠𝑖 = 𝑚 ⋅ 𝑓𝑠 18 

where 𝑓𝑠 is the assumed sample frequency of the reference clock. The reference clock has 

by definition 𝜹𝒓𝒆𝒇 = 0, thus 𝑚𝑟𝑒𝑓 = 1 and 𝑏𝑟𝑒𝑓 = 1. Then, Δ𝑟𝑒𝑓 ≡ 0, meaning all other 

clock’s offsets are relative to the reference clock. A negative offset indicates the record 

needs to start earlier to be in sync, and a positive offset means the record needs to start later 

to be synchronized. 
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 In most cases, the offsets and sample frequencies of the individual clocks means 

they won’t be aligned sample-for-sample. Thus, the reference clock sample times are used 

to linearly interpolate all other data points onto a common time axis. This procedure is also 

performed on other data sources such as the GPS locations, which due to the TDMA 

protocol are not simultaneously-sampled. 

2.3.4 Preprocessing Data 

 The final and optional step in preparing vector sensor data for analysis is referred 

to as preprocessing. The steps which can be taken include downsampling, filtering, 

whitening and clipping. Downsampling was performed using MATLAB’s built-in 

“resample” function with a decimation factor of 8. This aids in the storage and 

manipulation of data since the default sample rate is 39.0625 kHz, much higher than the 

highest usable frequency of about 2 kHz. Thus, a downsampled sample rate of ~4883 Hz 

is just high enough to satisfy the Nyquist-Shannon sampling theorem. 

 Filtering is performed by first windowing the data in time with a Tukey window 

(r=0.01), and then multiplying the data spectrum by a Tukey window with r=0.1. 

Alternatively, a 4th-order Butterworth filter is applied using MATLAB’s “filtfilt” zero-

phase filtering function. Whitening is performed similarly in the frequency domain, except 

in addition to the Tukey window, the spectrum is divided by  

 
𝐸(𝜔) = √𝑝(𝜔)𝑝∗(𝜔) + 𝑣𝑥(𝜔)𝑣𝑥

∗(𝜔) + 𝑣𝑦(𝜔)𝑣𝑦
∗(𝜔) + 𝑣𝑧(𝜔)𝑣𝑧

∗(𝜔) + 𝜖 19 

which is the energy spectrum computed from the vector sensor pressure and velocity 

spectra 𝑝(𝜔) and 𝑣𝑥,𝑦,𝑧(𝜔). A small “machine precision” value 𝜖 is added to avoid division 

by zero. Whitening is a step which helps equalize the contribution of ambient noise with 
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different amplitudes at different frequencies, and makes the noise more “white”, hence the 

term whitening (Karim G. Sabra et al., 2005b). 

 Lastly, clipping involves replacing any data values beyond a given amplitude 

threshold with the threshold. Typically, this threshold is three times the standard deviation 

of the data, such that only a small number of large impulsive events are clipped. This step 

helps reduce the impact of these impulses on further processing, and helps to make the data 

more noise-like. 

2.3.5 Experimental Data Collected 

2.3.5.1 April 2015 

 The first at-sea trial of the float hardware took place on the R/V Savannah, 

approximately 100 miles SE of Savannah, GA near the continental shelf (see Figure 23). 

The floats were deployed for 17 hours overnight, and retrieved in the morning. During 

much of this time, the research vessel was operating silently at a distance of 12 km from 

the array. 
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Figure 23: April 2015 deployment area (black dot), 31.15 N, 80.15 W 

One of the four floats experienced GPS radio errors and was not deployed. Another float 

was capsized during deployment, flooding its GPS antenna which caused it to fail. 

Furthermore, the batteries were shorting to the metal pressure vessel, causing them to drain 

rapidly. The clocks did not stay synchronized as a result. There is not likely much usable 

data collected from this experiment. 

2.3.5.2 August 2015 

 The second experiment testing the float hardware was performed in the Long Island 

Sound, departing port in New London, CT (see Figure 24). The research vessel used was 

the R/V Michael J. Greeley, graciously operated by the United States Coast Guard 

Academy. Two days of deployments were used during this experiment, the first a shorter 

hardware testing day and the second which aimed to collect the required data. 
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Figure 24: August 2015 deployment site (black dot), 41.2 N, 72.1 W 

This deployment was more successful, with no battery or GPS problems. However, some 

of the clocks in use were an older GPSDO (GPS-disciplined oscillators) type, which were 

unstable. In addition, the power connectors to the clock were not physically latching, and 

were accidentally unplugged during removal of the recording hardware, causing loss of 

whatever synchrony was present up to that point. It is likely that three of the floats remained 

reasonably synchronized until that point, but the final sync pulse was unable to verify this 

except for one float pair on August 23rd (see Table 2). In total, only one pair is known to 

be synchronized, and only hydrophone data is likely to be useful from this experiment due 

to impulsive noise on the accelerometers. 

2.3.5.3 April 2016 

 This experiment was a repeated deployment to the location tested in August 2015 

(see Figure 24). All clocks did not remain synchronized, as the batteries were drained 

before retrieval. This was likely the combined result of the newer Symmetricom clocks 

using more power and the attempt to get the clocks to lock by running them overnight 
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before the experiment. Cold weather may also have played a role in decreasing the 

batteries’ available voltage. Not much usable data was obtained from this experiment. 

2.3.5.4 June 2016 

 

Figure 25: June 2016 deployment sites (black dots) for Day 1 (40.9 N, 71.7 W) and 

Day 2 (41.2 N, 71.9 W) 

 This experiment attempted to collect better quiet ambient noise data by traveling 

further out to sea to deploy the sensors (see Figure 25). The recorder gains were increased 

to better capture the ambient noise, however the high sea state meant the surface floats 

induced so much noise into the acceleration channels they were almost entirely clipped 

(see Appendix B). Fortunately, all recorders remained synchronized and no battery 

problems were encountered. The second day deployed much closer and with lower sea-
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state and gains, however the impulse noise was still prevalent on the acceleration channels. 

Only one pair of floats remained synchronized on Day 2 due to a few Symmetricom clocks 

which seemed to unlock when mechanically disturbed (likely old, failing clocks). 

Hydrophone data from either day may still be useful by-products of this deployment. 

2.3.5.5 October 2016 

 

Figure 26: October 2016 deployment site (black dot), 41.2 N, 71.9 W. River 

deployment occurred in the river near the New London marker. 

 The final deployment of the floats occurred over two days in October 2016, in the 

same location as Day 2 in June 2016 (see Figure 26). The first day was designated to test 

the hardware, and in addition to the free drift deployment, the sensor frames were dropped 

to the bottom of the river outside the Coast Guard Academy to obtain static ambient noise 

recordings. The second day of data collection obtained the most quiet ambient noise data 

and vessel maneuvering. Three of four sensors remained synchronized, however one of 

these had a malfunctioning GPS antenna and reported erratic GPS measurements. The 

redesigned third revision of the floats nearly eliminated impulsive noise on the acceleration 

channels (see Appendix B). In total, over 8 hours of usable vector sensor ambient noise 
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data was collected, with at least an hour of research vessel maneuvering as well. In addition, 

there were many nearby vessels, some of which were tracked using AIS. Although not in 

an ideal, quiet location, this dataset proved to be useful for the analyses in the remainder 

of this work. 

2.3.5.6 Summary 

 In total, eight days of deployment data were collected, however only two contained 

all of the data necessary for vector sensor ambient noise correlations and source tracking. 

A few others may have hydrophone-only data which is usable for other purposes. Also, if 

precise synchrony across sensors is not required, many more datasets could hold useful 

information. A summary of the synchronization status and major problems encountered on 

each deployment is given in Table 2. 
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Table 2: Experiment Summary 

Experiment Date Synchronized Floats Possible Data Problems 

April 7, 2015 None N/A 

August 22, 2015 Maybe 0002-0004 Impulses1 

August 23, 2015 0003 & 0004, maybe 0005 Impulses1 

April 2, 2016 None N/A 

June 20, 2016 All Extreme Clipped Data 

June 22, 2016 0004 & 0005 Impulses1 

October 29, 2016 0002, 0004, 0005 Sensor Noise2 

October 30, 2016 0002, 0004, 0005  

1: Impulses present on acceleration data from float design (see Section 2.2.3) 
2: One sensor channel became static part-way through experiment 

 

2.4 Conclusion 

 The requirements of a new freely-floating vector sensor array for collecting ambient 

vector sensor noise on drifting sensor platform were introduced. The design and hardware 

components of the array were presented, and the steps required for obtaining useful data 

from the array were outlined. A summary of the array’s deployments was given in relation 

to the usable data yielded from each. In short, a newly-designed vector sensor array 

collected ambient noise and vessel noise data which can be analyzed in the following 

chapters. 
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CHAPTER 3 

VECTOR SENSOR AMBIENT NOISE CORRELATIONS FOR 

GREEN’S FUNCTION EXTRACTION 

3.1 Introduction 

 Ambient noise exists in any acoustic environment to some extent, and can be 

exploited as a source of information about the environment or the sensors placed within. It 

has been shown theoretically and experimentally that correlations of ambient noise across 

separated sensors contains the Green’s function (also referred to as the Channel Impulse 

Response) between them (Lani et al., 2013; Leroy et al., 2012; Naughton et al., 2016; Roux 

& Kuperman, 2004; Karim G. Sabra et al., 2005b; K. G. Sabra et al., 2005). Encapsulating 

both environmental and sensor placement information, the Green’s function defines the 

propagation of sound between two separated sensors. Exact knowledge of the Green’s 

function is not generally guaranteed in every acoustic environment, and its estimation has 

many uses ranging from seismology, structural monitoring, ocean tomography, fathometry, 

sub-bottom profiling, or simply inter-sensor distance estimation (Godin et al., 2010; 

Harrison & Siderius, 2008; K. G. Sabra et al., 2005; Martin Siderius et al., 2006). 

 The presence of ambient noise in the ocean can be exploited to estimate the Green’s 

function (Roux & Kuperman, 2004). The ambient noise source may be wind-driven surface 

noise (high frequency), ambient shipping noise (mid-frequency), or geologic/seismic 

activity (low frequency), to name a few. Many distributed noise sources exist in any case, 

and some are well-positioned for their sound to propagate directly between sensors (see 

Figure 27). In an ocean waveguide, such sources within a narrow region in the endfire of 

the sensors contribute to the emergence of the Green’s function (Roux & Kuperman, 2004). 
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Thus, to develop the Green’s function from the interfering broadside noise, long averaging 

times and/or bandwidth must be used. To lessen these requirements, arrays of sensors can 

be spatially filtered to focus on only contributing sources (Leroy et al., 2012). 

 

Figure 27: Ambient noise correlation theory for sensors separated by a distance d, 

where sources within the red cones support the emergence of correlation peaks. The 

correlation of data from sensor 1 and 2 will highlight source contributions such as that 

highlighted in red, producing two peaks at ± d/c given enough averaging time. 

Alternatively, the extraction of the Green’s function can be improved by leveraging 

the directionality of vector sensors to reject interfering ambient noise sources. Owing to 

the directionality of the velocity channels, a vector sensor can be steered to record the 

component of velocity along the baseline of two sensors (Gerald L. D'Spain, Luby, Wilson, 

& Gramann, 2006). The resulting dipole beampattern means sound sources broadside to 

the array (i.e. perpendicular to the baseline) no longer contribute to the ambient noise 

correlation. In a traditional hydrophone correlation, these sources serve only to increase 
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the noise power recorded on each sensor, and do not contribute to the emergence of the 

Green’s function. As shown by Bendat and Piersol (Bendat & Piersol, 2010) and also by 

Sabra et al. (Karim G. Sabra et al., 2005b), the variance of the correlation of finite-length 

uncorrelated white noise sequences is proportional to the product of noise powers. Thus, 

increasing the recorded ambient noise power without any improvement in emergence of 

the Green’s function only increases the confounding noise in the correlations. In Section 

3.2, expressions for the ambient noise correlation and its derivative are derived for vector 

sensors in an isotropic ambient noise field in a free space environment to compare the 

traditional hydrophone correlation and a vector sensor velocity correlation. In contrast to 

existing works which present the results in the frequency domain (Cox, Lai, & Bell, 2009; 

Hawkes & Nehorai, 2001), these results will present the correlations in the time domain, 

building on the results presented by Rafaely (Rafaely, 2000). The simple convolutional 

expression derived in Section 3.2 provides a unique interpretation of the ambient noise 

correlation process. 

In Section 3.3, the benefit of using vector sensors over hydrophones is quantified 

and examined for varying degrees of self-noise on the pressure and velocity channels, and 

experimental correlations are examined to corroborate the theoretical findings. 

3.2 Vector Sensor Ambient Noise Correlations 

3.2.1 Setup 

 Consider a pair of separated directional sensors whose separation distance is 𝑑 (see 

Figure 28), in the presence of isotropic ambient noise. Without loss of generality, assume 

a coordinate system whose Z-axis lies along the baseline of the sensors, and that both 

sensor’s acoustic x-axes are aligned with the global frame Z-axis. Any point �⃗�  in the global 
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coordinate system is defined by a radius (r), azimuth angle (𝜙) and polar angle (𝜃) (see 

Figure 28). 

 

Figure 28: Diagram of vector sensor separated by distance d along the z-axis. 

Ambient noise propagates with wave vectors described by the azimuth angle 𝜙 and polar 

angle 𝜃. 

Now, decompose the isotropic ambient acoustic field into plane waves propagating in all 

directions and express the acoustic pressure as 

 𝑝(�⃗� , 𝑡) =
1

√4𝜋
∫ 𝑠𝑖(𝑡 − Δ𝑡𝑖𝑟)ⅆ𝑆

𝑆

 20 

where S denotes integration over the surface of the unit sphere, 𝑠𝑖(𝑡) is the ambient noise 

plane wave propagating in a given direction, and Δ𝑡𝑖𝑟 the propagation delay of the i-th 

direction plane wave to position �⃗� . The field’s magnitude is divided by an arbitrary factor 

of √4𝜋 for later normalization purposes. Furthermore, the velocity of the field, after 

conversion to pressure units by multiplying by the specific acoustic impedance (𝜌0𝑐) is 
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�⃗⃗� (𝒓,  𝑡) =

1

√4𝜋
∫𝑠𝑖(𝑡 − Δ𝑡𝑖𝑟)�⃗⃗� 𝒊 ⅆ𝑆

𝑆

 21 

where �⃗⃗� 𝒊 = [cos𝜙𝑖 sin 𝜃𝑖 sin𝜙𝑖 sin 𝜃𝑖 cos 𝜃𝑖]
𝑇 is the sensor’s directional response 

vector in the coordinate system in Figure 28. Lastly, the recorded data vector of the two-

sensor array will be given by 

 �⃗⃗� (𝑡) = [𝑝(�⃗⃗� , 𝑡) �⃗⃗� 𝑇(�⃗⃗� , 𝑡) 𝑝(�⃗⃗� , 𝑡) �⃗⃗� 𝑇(�⃗⃗� , 𝑡)]
𝑇
 22 

where �⃗⃗�  is the origin and location of the first sensor, and �⃗⃗� = [0 0 𝑑]𝑇 is the location 

of the second sensor. 

 For any two components of the data vector, whether on the same sensor or different 

sensors, the correlation between them is given by 

 𝐶𝑢𝑣(𝜏) = 𝐸[𝐷𝑢(𝑡)𝐷𝑣(𝑡 + 𝜏)] 23 

assuming the noise processes are stationary and thus the correlation depends only on the 

lag 𝜏. Substituting the components 𝐷𝑢 and 𝐷𝑣 yields 

 
𝐶𝑢𝑣(𝜏) =

1

4𝜋
𝐸 [∫𝑠𝑖(𝑡 − Δ𝑡𝑖𝑢)𝑙𝑢 ⅆ𝑆

𝑆

⋅ ∫ 𝑠𝑗(𝑡 − Δ𝑡𝑗𝑣 + 𝜏)𝑙𝑣 ⅆ𝑆

𝑆

] 24 

where 𝑙𝑢,  𝑙𝑣 denote the necessary factors for pressure (unity) or velocity (correct 

component of �⃗⃗� ), depending upon which is being correlated. Rearranging the above result 

gives 

 
𝐶𝑢𝑣(𝜏) =

1

4𝜋
∫∫E[𝑠𝑖(𝑡 − Δ𝑡𝑖𝑢)𝑠𝑗(𝑡 − Δ𝑡𝑗𝑣 + 𝜏)𝑙𝑢𝑙𝑣] ⅆ𝑆

𝑆

ⅆ𝑆

𝑆

 25 



55 

 

Assuming all individual planewaves from different directions are independent (i.e. 

uncorrelated), i.e. 

 𝐸[𝑠𝑖(𝑡)𝑠𝑗(𝑡 + 𝜏)] = 0     ∀𝑡, ∀𝜏, 𝑖 ≠ 𝑗 26 

the correlation simplifies to  

 
𝐶𝑢𝑣(𝜏) =

1

4𝜋
∫E[𝑠𝑖(𝑡 − Δ𝑡𝑖𝑢)𝑠𝑖(𝑡 − Δ𝑡𝑖𝑣 + 𝜏)]𝑙𝑢𝑙𝑣 ⅆ𝑆

𝑆

 27 

To further simplify, define the relative propagation delay between sensors τ′ = Δ𝑡𝑖𝑣 −

Δ𝑡𝑖𝑢, and the definition 𝐶𝑠𝑠(𝜏) = 𝐸[𝑠𝑖(𝑡)𝑠𝑖(𝑡 + 𝜏)] and substitute to obtain 

 
𝐶𝑢𝑣(𝜏) =

1

4𝜋
∫𝐶𝑠𝑠(𝜏 − 𝜏′)𝑙𝑢𝑙𝑣 ⅆ𝑆

𝑆

 28 

For components on the same sensor, the propagation delay 𝜏′ = 0, and for components on 

different sensors, 𝜏′ = 𝑑 cos 𝜃 /𝑐. The ambient noise autocorrelation is defined by 𝐶𝑠𝑠(𝜏). 

The terms 𝑙𝑢, 𝑙𝑣 will be either unity for pressure channels or a component of �⃗⃗�  for velocity 

channels. 

3.2.2 Correlations on Same Sensor Components 

For correlations between components of the same sensor, the correlation in 

Equation 28 simplifies to 

 
𝐶𝑢𝑣(𝜏) =

𝐶𝑠𝑠(𝜏)

4𝜋
∫ 𝑙𝑢𝑙𝑣 ⅆ𝑆

𝑆

 29 
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where 𝑙𝑢, 𝑙𝑣 are either unity or a component of the vector 

[cos 𝜙 sin 𝜃 sin 𝜙 sin 𝜃 cos 𝜃], depending on whether pressure or velocity components 

are correlated. 

3.2.3 Correlations Across Sensors 

 The correlation in Equation 28 for components on different sensors is given by 

 

𝐶𝑢𝑣(𝜏) =
1

4𝜋
∫ ∫ 𝐶𝑠𝑠(𝜏 − 𝑑 cos 𝜃 /𝑐)𝑙𝑢𝑙𝑣 sin 𝜃 ⅆ𝜃

𝜋

0

ⅆ𝜙

2𝜋

0

 30 

where the unit sphere surface integral has been specified for the coordinate system in 

Figure 28. Since 𝑙𝑢, 𝑙𝑣 will be either unity or a component of the vector 

[cos 𝜙 sin 𝜃 sin 𝜙 sin 𝜃 cos 𝜃], the double integral over azimuth and elevation can be 

separated into parts 

 

𝐶𝑢𝑣(𝜏) =
1

4𝜋
∫ 𝑧𝑢(𝜙) 𝑧𝑣(𝜙) ⅆ𝜙

2𝜋

0

⋅ ∫ Css(𝜏 − 𝑑 cos 𝜃 /𝑐) 𝑒𝑢(𝜃)𝑒𝑣(𝜃) sin 𝜃 ⅆ𝜃

𝜋

0

 

31 

where 𝑙𝑥 = 𝑧𝑥(𝜙)𝑒𝑥(𝜃) is broken into azimuthal (z) and elevational (e) parts. Substitution 

of the variable 𝜏′ = 𝑑 cos 𝜃 /𝑐 on the elevation integral and simplifying cancelling terms 

yields 
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𝐶𝑢𝑣(𝜏) =
𝑐

4𝜋𝑑
∫ 𝑧𝑢(𝜙) 𝑧𝑣(𝜙) ⅆ𝜙

2𝜋

0

⋅ ∫ Css(𝜏 − 𝜏′) 𝑒𝑢(cos−1(𝑐𝜏′/𝑑))𝑒𝑣(cos−1(𝑐𝜏′/𝑑))ⅆ𝜏′

𝑑/𝑐

−𝑑/𝑐

 

32 

Now, define a rectangular windowing function 

 
Π(𝑥) = {

1, |𝑥| ≤ 1/2

0, |𝑥| > 1/2
 33 

so that the correlation can be written generally as 

 

𝐶𝑢𝑣(𝜏) = 𝑆𝑢𝑣 ∫ 𝑊𝑢𝑣(𝜏
′)𝐶𝑠𝑠(𝜏 − 𝜏′) ⅆ𝜏′

∞

−∞

 34 

where the scaling factor 𝑆𝑢𝑣 and windowing function 𝑊𝑢𝑣(𝜏) are given by 

 

𝑆𝑢𝑣 =
𝑐

4𝜋𝑑
∫ 𝑧𝑢(𝜙) 𝑧𝑣(𝜙) ⅆ𝜙

2𝜋

0

 35 

and 

 
𝑊𝑢𝑣(𝜏

′) = Π (
𝑐𝜏′

2𝑑
) 𝑒𝑢(cos−1(𝑐𝜏′/𝑑)) 𝑒𝑣(cos−1(𝑐𝜏′/𝑑)) 36 

Note that as a result of the formulation in Equation 34, the correlation of ambient noise 

between separated sensors is simply the convolution of a windowing function with the 

ambient noise autocorrelation, scaled by a constant factor. Alternatively, the correlation of 

ambient noise across sensors can be viewed as linear time-invariant (LTI) system whose 

input is the noise process autocorrelation, and whose output is the correlation of separated 
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sensor components in the ambient noise field (see Figure 29). The transfer function of such 

an LTI system is simply the product of the scaling factor and windowing function. 

 

Figure 29: LTI system interpretation of the ambient noise correlation process. Each 

system/process is represented as a box whose transfer function is specified within. 

3.2.4 Simplification 

 Simplification of the scaling factor (Equation 35) and windowing function 

(Equation 36) is possible for each pair of correlations (i.e. pressure to pressure, pressure to 

velocity, velocity to velocity). When correlating the data vector, a covariance matrix is 

formed as 

 𝑅(𝜏) = 𝐸[�⃗⃗� 𝐻�⃗⃗� ]

=

[
 
 
 
 
 
 
 
 
 
𝐶𝑝1,𝑝1 𝐶𝑝1,𝑣𝑥1 𝐶𝑝1,𝑣𝑦1 𝐶𝑝1,𝑣𝑧1 𝐶𝑝1,𝑝2 𝐶𝑝1,𝑣𝑥2 𝐶𝑝1,𝑣𝑦2 𝐶𝑝1,𝑣𝑧2

𝐶𝑣𝑥1,𝑣𝑥1 𝐶𝑣𝑥1,𝑣𝑦1 𝐶𝑣𝑥1,𝑣𝑧1 𝐶𝑣𝑥1,𝑝2 𝐶𝑣𝑥1,𝑣𝑥2 𝐶𝑣𝑥1,𝑣𝑦2 𝐶𝑣𝑥1,𝑣𝑧2

𝐶𝑣𝑦1,𝑣𝑦1 𝐶𝑣𝑦1,𝑣𝑧1 𝐶𝑣𝑦1,𝑝2 𝐶𝑣𝑦1,𝑣𝑥2 𝐶𝑣𝑦1,𝑣𝑦2 𝐶𝑣𝑦1,𝑣𝑧2

𝐶𝑣𝑧1,𝑣𝑧1 𝐶𝑣𝑧1,𝑝2 𝐶𝑣𝑧1,𝑣𝑥2 𝐶𝑣𝑧1,𝑣𝑦2 𝐶𝑣𝑧1,𝑣𝑧2

𝐶𝑝2,𝑝2 𝐶𝑝2,𝑣𝑥2 𝐶𝑝2,𝑣𝑦2 𝐶𝑝2,𝑣𝑧2

𝐶𝑣𝑥2,𝑣𝑥2 𝐶𝑣𝑥2,𝑣𝑦2 𝐶𝑣𝑥2,𝑣𝑧2

𝐶𝑣𝑦2,𝑣𝑦2 𝐶𝑣𝑦2,𝑣𝑧2

𝐶𝑣𝑧2,𝑣𝑧2]
 
 
 
 
 
 
 
 
 

 

37 

where the lower diagonal is omitted due to correlation symmetry (i.e. 𝐶𝑢𝑣(𝜏) = 𝐶𝑣𝑢(−𝜏)), 

and the explicit dependence on 𝜏 is omitted for clarity. Dividing the 8 x 8 matrix into 

submatrices for each sensor yields 
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𝑅(𝜏) = [

𝑅11(𝜏) 𝑅12(𝜏)

𝑅21(𝜏) 𝑅22(𝜏)
] 38 

where a submatrix 𝑅𝑖𝑗(𝜏) denotes the 4 x 4 covariance matrix for components of sensor i 

and j. Mirroring the structure of the covariance submatrices, the scaling factor and 

windowing functions for cross-sensor (𝑖 ≠ 𝑗) correlations are 

 

𝑆 =
𝑐

𝑑
[

1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/4 0
0 0 0 1/4

] 39 

 

𝑊(𝜏) = Π(
𝑐𝜏

2𝑑
) ⋅

[
 
 
 
 
 
 
 1

𝑐𝜏

𝑑
0 0

−
𝑐𝜏

𝑑
(
𝑐𝜏

𝑑
)
2

0 0

0 0 1 − (
𝑐𝜏

𝑑
)
2

0

0 0 0 1 − (
𝑐𝜏

𝑑
)
2

]
 
 
 
 
 
 
 

 40 

and the correlations for same-sensor (𝑖 = 𝑗) components are 

 

𝑅𝑖𝑖(𝜏) = 𝐶𝑠𝑠(𝜏) ⋅ [

1 0 0 0
0 1/3 0 0
0 0 1/3 0
0 0 0 1/3

] 41 

Since the Green’s function emerges from the derivative of the ambient noise 

correlations, a more useful representation might be the derivative of Equation 34: 

 �̇�𝑢𝑣(𝜏) = 𝑆𝑢𝑣 𝑊𝑢𝑣(𝜏) ∗ �̇�𝑠𝑠(𝜏) = 𝑆𝑢𝑣 �̇�𝑢𝑣(𝜏) ∗ 𝐶𝑠𝑠(𝜏) 42 

where the dot superscript denotes a derivative with respect to 𝜏, and the ∗ operator denotes 

convolution. Either of the two expressions are valid, and each provide a different 

perspective on the formation of the ambient noise correlation derivative. The first 
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expression convolves the windowing function with the derivative of the noise 

autocorrelation. The second convolves the derivative of the windowing function with the 

noise autocorrelation. Both cases yield identical results, but offer different interpretations 

which will be examined in the following section. 

 

3.2.5 Discussion 

The windowing functions for cross-sensor correlations are plotted in Figure 30, 

normalized to unit amplitude. The window function describes the LTI impulse response, 

or in other words, is the resulting correlation for an ambient noise process whose 

autocorrelation is a dirac delta function (e.g. an ideal white noise sequence of infinite 

bandwidth). 
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Figure 30: Windowing functions (see Equation 40) for various pairs of vector sensor 

channel correlations (black solid lines). Windows are normalized to unit amplitude for 

comparison, and also normalized on the horizontal axis between ±d/c. Shown in red 

dashed lines are normalized ambient noise correlations (see Equation 34) for an example 

bandwidth of 150-1500 Hz. 

Upon initial inspection, the pressure correlation window corroborates existing analytical 

results from both the time (Rafaely, 2000) and frequency domain (Cox et al., 2009; Hawkes 

& Nehorai, 2001). The other correlation windows are not as readily verified, but also 

correspond to the inverse Fourier transform of the frequency domain results in Cox et al. 

and Hawkes & Nehorai (see Appendix C for comparisons). From the figure, it is clear that 

in the infinite-band ideal noise case, the axial velocity correlation is “sharper” than the 

corresponding pressure correlation. If the correlations were to be used to identify the 
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separation distance, the velocity correlation would slightly outperform pressure due to 

having a more pronounced peak associated with the direct arrival. 

However, in many real applications there exists a lower frequency limit which can 

be measured, especially with vector sensors. Due to digital recording limitations such as 

storage, sample frequency, and aliasing, there also exists an upper limit to the frequencies 

recorded. As such, the ambient noise autocorrelation will deviate from an ideal Dirac delta 

function. For future examples, assume the ambient noise is band-limited Gaussian white 

noise with a center frequency 𝑓𝑐 and bandwidth 𝐵, and whose one-sided power spectral 

density is a constant 𝜎𝑠
2/𝐵 between frequencies 𝑓𝑐 −

𝐵

2
 and 𝑓𝑐 +

𝐵

2
. Given that the noise 

autocorrelation is the inverse fourier transform of the power spectral density, it can be 

written analytically as (see Appendix D) 

 𝐶𝑠𝑠(𝜏) = σs
2 ⋅ cos(2𝜋𝑓𝑐𝜏) ⋅ sinc(𝜋𝐵𝜏) 43 

The result is a sinc-windowed cosine at the center frequency, whose envelope width 

decreases with increasing bandwidth, approaching a Dirac delta function as bandwidth 

goes to infinity. For example, the noise autocorrelation for a few example bands are plotted 

in Figure 31. 
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Figure 31: Sample noise autocorrelations (see Equation 43) for a) 150-1500 Hz b) 0-

1500 Hz and c) 50-500 Hz filtered white noise. 

When convolved with the windowing functions, the realistic noise autocorrelation 

functions tend to highlight areas with sharp transitions, i.e. the “steps” at 𝜏 = ±𝑑/𝑐. For 

the same bands demonstrated in Figure 31, the pressure ambient noise correlation 

computed from the convolution in Equation 34 is compared to the theoretical window 

(black dashed line) in Figure 32. 

 

Figure 32: Sample ambient noise correlations (see Equation 34) for pressure channels, 

normalized to unit amplitude and unit separation distance for a) 150-1500 Hz band b) 0-

1500 Hz band and c) 50-500 Hz band. The windowing function is plotted in dashed lines. 
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 As seen in Figure 32, the ambient noise correlation for pressure does not approach 

the shape of the windowing function unless the lower frequency limit is very near zero. For 

this reason, it is possible to estimate the separation distance directly from bandlimited 

ambient noise correlations, since the location of the sharp peaks seem to correspond 

directly with the 𝜏 = ±𝑑/𝑐 (unity in the normalized plots). 

 

Figure 33: Inset of positive peaks in Figure 32, with the windowing function plotted 

in dashed lines. 

However, upon closer inspection (see Figure 33), it becomes clear that the peaks of the 

ambient noise correlation do not exactly align, and the error is exacerbated for lower 

bandwidth. For this reason, the Green’s function should strictly be estimated from the 

derivative of the ambient noise correlation. This approach is also the recommended 

approach in the literature (Karim G. Sabra et al., 2005b), and is discussed in further detail 

there. 

3.2.6 Derivative of Ambient Noise Correlations 

 The derivative of the ambient noise correlation is expressed in two forms in 

Equation 42. The first interpretation uses the same windowing functions plotted graphically 
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in Figure 30 and convolves them with the noise autocorrelation derivative. For the example 

used previously (Equation 43), the derivative of the noise autocorrelation is given by 

 
�̇�𝑠𝑠(𝜏) = 𝜎𝑠

2 ⋅ [
cos(2𝜋𝑓𝑐𝜏) ⋅ (cos(𝜋𝐵𝜏) − sinc(𝜋𝐵𝜏))

𝜏

− 2𝜋𝑓𝑐 sin(2𝜋𝑓𝑐𝜏) sinc(𝜋𝐵𝜏)] 

44 

where the ambient noise power is 𝜎𝑠
2, the signal bandwidth 𝐵 and center frequency 𝑓𝑐. For 

the same bands presented previously, the ambient noise autocorrelation derivatives are 

plotted in Figure 34. 

 

Figure 34: Sample noise autocorrelation derivatives (see Equation 44) for a) 150-

1500 Hz b) 0-1500 Hz and c) 50-500 Hz band.  

As was the case with the ambient noise autocorrelation, the main lobe width is 

inversely proportional to the bandwidth. When convolved with the windowing functions, 

narrower main lobes will produce sharper (i.e. more precise) peaks for estimating the 

separation distance. A difference between the derivative of the autocorrelation and the 

autocorrelation itself is that the inclusion of near-zero frequencies does not have much an 

effect, due to the scaling by 𝑗𝜔 in the frequency domain when taking a derivative. This is 
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evident in the ambient noise correlation derivative examples plotted in Figure 35, obtained 

from the convolution in Equation 42. 

 

Figure 35: Sample ambient noise correlation derivatives (see Equation 42) for 

pressure channels, normalized to unit amplitude and unit separation distance for a) 150-

1500 Hz band b) 0-1500 Hz band and c) 50-500 Hz band. The windowing function is 

plotted in dashed lines. Note the similarity of these peaks to those in Figure 31. 

 The ambient noise correlation derivative provides peaks at the propagation delay 

which can be identified and used to estimate the sensor separation distance. These peaks 

are nearly identical to the noise autocorrelation function, a fact which is more easily 

verified using the second interpretation of Equation 42. Rather than taking the derivative 

of the noise autocorrelation, this interpretation convolves the derivative of the windowing 

function with the noise autocorrelation. The windowing function derivatives are plotted in 

Figure 36, normalized to unit amplitude for comparison purposes. 
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Figure 36: Derivatives of windowing functions (see Equation 40) for various pairs of 

vector sensor channel correlations (black solid lines). Windows are normalized to unit 

amplitude for comparison, and also normalized on the horizontal axis between ±d/c. 

Shown in red dashed lines are normalized ambient noise correlation derivatives (see 

Equation 42) for an example bandwidth of 150-1500 Hz. 

 It now becomes clearer why peaks of the ambient noise correlation are nearly 

identical to the noise autocorrelation shape, due to the windowing functions being 

comprised of two widely-separated impulsive peaks, which convolve almost separately 

with the noise autocorrelation, unchanging it. The result of the convolution is two peaks at 

𝜏 = ±𝑑/𝑐 having all the characteristics of the ambient noise autocorrelation. It is worth 

noting that the sign of one peak may be negative, a consequence of taking the derivative of 

the windowing function. This sign change is unimportant if only the location of the peak 

is desired, and is further discussed in Sabra et al. (Karim G. Sabra et al., 2005b). 



68 

 

3.2.7 Conclusion 

 Correlations between vector sensor data collected in an ambient noise field can be 

used to obtain the Green’s function direct arrival time in a free space environment. 

Expressions for an isotropic ambient noise field pressure and particle velocity were 

correlated to obtain a simple convolution expression for the correlation result directly in 

the time-domain. Examples in various frequency bands were presented and compared, and 

they indicated the need to use the derivative of ambient noise correlations for Green’s 

function extraction. The same frequency band examples were presented for the ambient 

noise correlation derivative, using both interpretations of the derivative expression. Both 

interpretations resulted in the ambient noise correlation derivative being comprised of 

ambient noise autocorrelation peaks centered on the propagation delay times. Identifying 

these peaks and assuming a constant propagation speed results in an estimate of the sensor 

separation distance. 

3.3 Performance of Vector Sensor Green’s Function Extraction 

3.3.1 Theoretical Performance Measures 

 As seen in Section 3.2, correlations of data from vector sensors in an ambient noise 

field provide information on the Green’s function between sensors. However, it is 

important to note the theory only provides the expected value of the ambient noise 

correlation. If only a limited number of samples are recorded for a finite duration, there 

will be a non-zero variance in the correlation tails given by (Karim G. Sabra et al., 2005b) 

 
Var[𝐶𝑢𝑣(|𝜏| ≫ 0)] ≈

𝐶𝑢𝑢(0)𝐶𝑣𝑣(0)

2𝐵𝑤𝑇𝑟
 45 
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Thus, the variance in the correlation tails is proportional to the product of the powers, 

𝐶𝑢𝑢(0)𝐶𝑣𝑣(0), in each correlated signal, and decreases with increasing observation length 

𝑇𝑟 or bandwidth 𝐵𝑤. One interpretation of this result is that there exists some correlation 

process “noise” as a result of a finite-length correlation which corrupts the expected value 

Green’s function peaks. If the variance of this noise is too large, the Green’s function peaks 

may not be visible. Thus, the variance of the correlation dictates the required number of 

samples (i.e. averaging time) required for the Green’s function to emerge (Karim G. Sabra 

et al., 2005b). 

 If in addition to the acoustic noise defined in Equations 20 and 21, there also exists 

uncorrelated noise on each sensor, the variance will increase, potentially masking the 

acoustic noise correlation peak which results in the Green’s function estimate. The model 

for measured acoustic pressure in the presence of additive noise is given by 

 
𝑝(�⃗� , 𝑡) =

1

√4𝜋
∫ 𝑠𝑖(𝑡 − Δ𝑡𝑖𝑟) + 𝑛𝑝𝑖(�⃗⃗� , 𝑡)ⅆ𝑆

𝑆

 46 

where 𝑛𝑝𝑖(�⃗� , 𝑡) is the i-th component of the time-domain pressure noise signal at a point 

�⃗� . It is assumed to be uncorrelated for different indices i and at different locations, and has 

standard deviation 𝜎𝑛𝑝. The noise signal is defined inside the integral so that the pressure 

signal-to-noise ratio (SNR) can be simply defined as 

 𝑆𝑁𝑅𝑝 =
𝜎𝑠

𝜎𝑛𝑝
 47 

where 𝜎𝑠 is the standard deviation of the acoustic/ambient noise signal 𝑠𝑖(𝑡). Likewise, the 

model for acoustic velocity in the presence of noise is given by 
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�⃗⃗� (𝒓,  𝑡) =

1

√4𝜋
∫𝑠𝑖(𝑡 − Δ𝑡𝑖𝑟)�⃗⃗� 𝒊 + �⃗⃗� 𝒗𝒊(�⃗� , 𝑡) ⅆ𝑆

𝑆

 48 

where �⃗⃗� 𝒗𝒊(�⃗� , 𝑡) is an indentically-distributed, independent noise vector which is 

uncorrelated for different locations and indices i. Depending on the source of noise, the 

magnitude of �⃗⃗� 𝒗𝒊 may depend on the sensor’s directional response.  

 We define extrinsic noise as noise which is affected by the sensor’s directionality. 

Extrinsic noise is thus acoustic in some sense, but not a result of the ambient acoustic noise 

which contributes to the emergence of the Green’s function. Rather, extrinsic noise 

encompasses effects such as local flow noise which is uncorrelated across sensors. In this 

case, the magnitude of �⃗⃗� 𝒗𝒊 is multiplied by the sensor’s directional response �⃗⃗� 𝒊. 

 In contrast, intrinsic noise is defined as noise which is non-acoustic in nature, i.e. 

intrinsic to the sensor and its electronics. This noise encompasses effects such as amplifier 

electronic noise and quantization noise. As a result, it is not affected by the sensor’s 

directionality, and thus the standard deviation of any component of �⃗⃗� 𝒗𝒊 is 𝜎𝑛𝑣. For extrinsic 

noise, the covariance matrix is diagonal with the diagonal elements being �⃗⃗� 𝒊𝜎𝑛𝑣. Like the 

pressure SNR, the velocity SNR is defined as 

 𝑆𝑁𝑅𝑣 =
𝜎𝑠

𝜎𝑛𝑣
 49 

 To quantify the emergence of a Green’s function peak from the surrounding noise, 

a peak signal-to-noise ratio (PSNR) is defined as the peak correlation value to three times 

the correlation tail standard deviation. Using this definition and substituting Equation 45 

gives 
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𝑆𝑁𝑅𝑢𝑣 = 
max𝐶𝑢𝑣(𝜏)

3 ⋅ Stⅆ[𝐶𝑢𝑣(|𝜏| ≫ 0)]
=

max𝐶𝑢𝑣(𝜏)

3
√

2𝐵𝑤𝑇𝑟

𝐶𝑢𝑢(0)𝐶𝑣𝑣(0)
 50 

An expression for the signal power, 𝐶𝑖𝑖(0), is obtained in a very similar way to Equation 

29, and will be equal to 

 𝐶𝑖𝑖(0) = 𝐷𝑖𝜎𝑠
2 + 𝑁𝑣𝜎𝑛𝑖

2  51 

where 𝐷𝑖 =
1

4𝜋
∫ 𝑙𝑖𝑆

2
ⅆ𝑆, is the integral of the sensor’s directionality over the unit sphere 

(see Equation 29); 𝑁𝑣 is either equal to unity for intrinsic noise, or equal to 𝐷𝑖 for extrinsic 

noise; and 𝜎𝑛𝑖
2  is the noise power of either pressure or velocity noise, depending on the 

index i. 

 Finally, to represent the gain of a velocity correlation to a pressure correlation, 

define the ratio of their respective SNR’s as 

 
𝑆𝑁𝑅𝑣/𝑝 =

𝑆𝑁𝑅𝑣𝑣

𝑆𝑁𝑅𝑝𝑝
≈

𝐶𝑝𝑝(0)

𝐶𝑣𝑣(0)
=

1 + 𝑆𝑁𝑅𝑝
−2

𝐷𝑣 + 𝑁𝑣𝑆𝑁𝑅𝑣
−2

 52 

The approximation in Equation 52 stems from the pressure and velocity correlation peaks 

being nearly identical (see discussion in 3.2.5). Note that 𝐷𝑝 = 1 and 𝐷𝑣 = 1/3 in the case 

of ideal vector sensors in isotropic ambient noise. Substitution of definitions in Equations 

47 and 49 result in the right-hand expression in Equation 52. To confirm the approximation 

made in Equation 52, the pressure and velocity SNR’s as defined in Equation 50 were 

computed across a range of possible bandwidths and separation distances and the ratio is 

plotted in Figure 37. 
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Figure 37: Ratio of velocity SNR to pressure SNR vs. separation distance and 

bandwidth. SNRp = SNRv = 1, band = [150, 150+Bw] Hz, sound speed = 1500 m/s. Solid 

black line denotes area below which the bandwidth and separation distance are such that 

no correlation peak is discernable. 

 As evidenced by the constant ratio of velocity SNR to pressure SNR plotted in 

Figure 37, there is no considerable difference in the correlation peak (i.e. numerator of 

Equation 50) for pressure or velocity. The velocity outperforms pressure by 4.77 dB (3x) 

only due to the decreased signal power in the velocity autocorrelation. As such, it can be 

assumed the performance of velocity correlations will be improved across all reasonable 

ranges and bandwidths (such that a peak is resolvable in the first place). Thus, plotting 

𝑆𝑁𝑅𝑣/𝑝 as a function of the pressure and velocity SNR’s will show a regime when velocity 

correlations outperform pressure correlations (see Figure 38 and Figure 39). 
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Figure 38: Ratio of velocity correlation PSNR to pressure correlation PSNR with 

varying amounts of intrinsic noise on pressure and velocity channels, quantified by 𝑆𝑁𝑅𝑝 

and 𝑆𝑁𝑅𝑣. 
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Figure 39: Ratio of velocity correlation PSNR to pressure correlation PSNR with 

varying amounts of extrinsic noise on pressure and velocity channels, quantified by 

𝑆𝑁𝑅𝑝 and 𝑆𝑁𝑅𝑣. 

 As seen in the intrinsic noise case (see Figure 38), velocity correlations outperform 

pressure correlations for equal noise levels (dashed line). If the velocity SNR exceeds ~1 

dB, it will outperform pressure even if the pressure is noiseless. Only in extreme velocity 

noise relative to pressure (bottom-left quadrant) will a pressure correlation outperform 

velocity. The results are even more beneficial in the extrinsic noise case (see Figure 39). 

Velocity correlations outperform pressure by a factor of 3 for equal SNR (dashed line), 

since both ambient acoustic and local-acoustic noise interference is reduced by the sensor 

directionality. Above a velocity SNR of approximately -2 dB, it will always outperform 

pressure. In low velocity SNR cases, the pressure SNR must be at least 5 dB greater for 

pressure correlations to significantly outperform velocity correlations. 
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Figure 40: Ratio of velocity correlation PSNR to pressure correlation PSNR with 

equal amounts of noise on pressure and velocity channels, denoted 𝑆𝑁𝑅𝑝 and 𝑆𝑁𝑅𝑣. 

Intrinsic noise model is shown as a solid line and extrinsic noise model is shown as 

dashed line. 

 For the case where the pressure and velocity noise levels are the same, the ratio of 

the resulting 𝑆𝑁𝑅𝑝/𝑣 is plotted in Figure 40. The dashed line is the extrinsic noise reference 

of 3x reduction in velocity noise (4.77 dB). The solid shows the variation for the intrinsic 

noise case. For very low SNR, the intrinsic noise dominates any acoustic noise, thus both 

pressure and velocity perform equally. As the intrinsic noise level is reduced, and the SNR 

increases, the gain of the velocity correlations approaches the maximum, where the 

intrinsic noise is negligible in relation to the acoustic noise. Thus, the velocity sensor 

achieves a 3x gain due to its decreased sensitivity to broadside ambient noise sources. 
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 In addition to the relative SNR as a method of comparing velocity and pressure 

performance, the required time-bandwidth product (TBWP) can be compared. Given the 

peak SNR described in Equation 50 should be greater than 0 dB (i.e. the peak and noise 

amplitudes are equal), the TBWP can be solved as 

 
(𝐵𝑤𝑇𝑟)𝑢𝑣 ≥

9𝐶𝑢𝑢(0) ⋅ 𝐶𝑣𝑣(0)

2(max𝐶𝑢𝑣(𝜏))2
 53 

where the values in Equation 51 can be substituted in the numerator to yield 

 
(𝐵𝑤𝑇𝑟)𝑢𝑣 ≥

9(𝐷𝑢𝜎𝑠
2 + 𝑁𝑣𝜎𝑛𝑢

2 )(𝐷𝑣𝜎𝑠
2 + 𝑁𝑣𝜎𝑛𝑣

2 )

2(max𝐶𝑢𝑣(𝜏))2
 54 

Noting that the correlation 𝐶𝑢𝑣(𝜏) is proportional to the noise autocorrelation amplitude 

(see Equation 43), a normalized correlation can be defined as 

 
𝐶�̅�𝑣(𝜏) =

𝐶𝑢𝑣(𝜏)

𝜎𝑠
2

 55 

which is calculated with a normalized noise autocorrelation 

 
𝐶�̅�𝑠(𝜏) =

𝐶𝑠𝑠(𝜏)

𝜎𝑠
2

 56 

which has a maximum value of one. Thus, the expression of Equation 54 can be rewritten 

in terms of the channel signal-to-noise ratios as 

 
(𝐵𝑤𝑇𝑟)𝑢𝑣 ≥

9(𝐷𝑢 + 𝑁𝑣𝑆𝑁𝑅𝑢
−2)(𝐷𝑣 + 𝑁𝑣𝑆𝑁𝑅𝑣

−2)

2(max𝐶�̅�𝑣(𝜏))2
 57 
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It is worth noting that the maximum of the correlation is proportional to 𝑐/𝑑 (see Equation 

39). This means that the required TBWP is proportional to (𝑑/𝑐)2. Thus, increasing the 

distance by a factor of two means the required averaging time increases four-fold. 

 Simplifying Equation 57 for the pressure and axial velocity components and 

dividing through by the (assumed fixed) bandwidth, the required averaging times are given 

by 

 
(𝑇𝑟)𝑝𝑝 ≥

9(1 + 𝑆𝑁𝑅𝑝
−2)

2

2𝐵𝑤(max 𝐶�̅�𝑝(𝜏))
2 58 

and 

 
(𝑇𝑟)𝑣𝑣 ≥

(1 + 3𝑁𝑣𝑆𝑁𝑅𝑣
−2)2

2𝐵𝑤(max𝐶�̅�𝑣(𝜏))2
 59 

These results indicate that for equal SNR on pressure and velocity channels, and if the noise 

is extrinsic (i.e. 𝑁𝑣 = 1/3), the required averaging time is 9 times higher for pressure 

correlations than velocity correlations. This is because the pressure correlations have 3 

times the standard deviation in their tails, and the standard deviation is proportional to the 

inverse of the square root of TBWP. The relationship is not as straightforward for differing 

amounts of SNR on pressure and velocity channels, or if the noise source is intrinsic. For 

this reason, simulations are carried out to plot the required averaging time as a function of 

the channel SNR. 

 Simulations employ Equation 34 to obtain the maximum value of 𝐶𝑢𝑣(𝜏) seen in 

the denominator of Equations 58 and 59. The expressions for the noise autocorrelation are 

obtained from Equation 43, normalized by dividing by 𝜎𝑠
2. The resulting averaging times 
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are plotted for a reference distance of 10 meters and reference bandwidth of 1000 Hz (200-

1200 Hz) (see Figure 41). The reference distance was chosen such that distinct peaks are 

present in the noise correlation for the chosen bandwidth. 

 

Figure 41: Required averaging time for reference separation of 10 m, reference band 

of 1000 Hz. Times are shown for pressure correlations (black solid), velocity correlations 

with intrinsic noise (red solid) and extrinsic noise (red dashed). 

 The lines shown in Figure 41 give the averaging time required for 10-meter 

separation distance and 1000 Hz bandwidth, for the pressure correlation (black line), and 

velocity correlation (red lines). Both intrinsic (solid) and extrinsic (dashed) noise cases are 

shown for velocity. Pressure results are unaffected by the source of noise, as both intrinsic 
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and extrinsic noise is received at equal power for a hydrophone. The results show that the 

averaging time required is less for velocity correlations than pressure correlations for equal 

SNR. Equivalently, horizontal lines on the graph indicate the difference in SNR required 

for velocity and pressure to require equal averaging times. For low noise cases, pressure 

correlations require about 10x the averaging time than velocity. This is due to the factor of 

9 previously mentioned, plus the slightly increased correlation peak values obtained by 

velocity correlations. 

 As was previously mentioned, the required TBWP is proportional to (𝑑/𝑐)2, so to 

compute what the required averaging times are from Figure 41 for a different separation 

distance than its reference (10 m), the time simply needs to be scaled by a factor 

 
𝐹𝑑 = (

𝑑

𝑑𝑟𝑒𝑓
)

2

 60 

where 𝑑 is the actual separation distance. Likewise, the required averaging time is linearly 

proportional to the inverse of the bandwidth, so results from the reference plot in Figure 41 

can be obtained by scaling by the factor 

 
𝐹𝐵 =

𝐵𝑟𝑒𝑓

𝐵𝑤
 61 

where 𝐵𝑤 is the actual bandwidth. For example, the required averaging time for a velocity 

correlation with intrinsic noise at 0 dB is about 10 seconds for the reference case. At a 

distance of 20 meters and a bandwidth of 500 Hz, the required averaging time would be 80 

seconds (i.e. 10 ⋅ (
20

10
)
2

⋅
1000

500
). 
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3.3.2 Experimental Performance 

 As predicted by the theory presented in Section 3.2, both the pressure and velocity 

ambient correlation peak should be nearly equal in magnitude. The theory presented in 

Section 3.3.1 dictates that the standard deviation of correlation tails is lower for velocity 

correlations relative to pressure. To examine these traits experimentally, ambient noise 

correlations were obtained from the October 30 experimental data collected in the Long 

Island Sound (see Figure 42). The sensors were at fixed depths of 20 and 26 meters, and 

their separation distance varied between approximately 12 and 80 meters. Data from each 

sensor was preprocessed with the filter, clip, and then whiten steps described in Section 

2.3.4. 

 

Figure 42: Deployment location of sensors during October 30th 2016 experiment 

 Correlations of pressure and velocity data were obtained from successive 1 second 

windows over a period of approximately 2 hours during which the research vessel was 
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silent and more than 4 km removed from the array. Their amplitudes, obtained from the 

magnitude of the Hilbert transform, were smoothed over the experiment run time using a 

10 second moving average window (see Figure 43a-b). The ratio of the pressure correlation 

amplitude to velocity correlation amplitude is plotted as a function of the experiment run 

time in Figure 43c. 
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Figure 43: a) Pressure correlation amplitudes, normalized per-correlation. b) Axial 

velocity correlation amplitudes, normalized per-correlation c) Experimental pressure to 

velocity correlation amplitude ratio. Amplitudes are obtained from magnitude of Hilbert 

transform, dB values obtained with 10 log10. 

 The black dotted lines in Figure 43 were obtained by estimating the sensors’ 

separation distance from GPS coordinates and dividing by an assumed sound speed of 1500 

m/s to obtain the propagation delay. Note that along this line, the correlation amplitude 

ratio is approximately 0 dB, corroborating the finding that ambient noise correlation peaks 

are nearly identical as predicted in Section 3.2.5. Another important feature of Figure 43 is 

the predominantly blue color seen in the correlation amplitude ratio, meaning the velocity 

correlation noise is generally lower than that of the pressure correlation. To quantify these 

findings, the ratio of pressure and velocity standard deviations in the correlation tails 

(defined by the region |𝜏| > 0.1 seconds) is plotted in Figure 44a. The ratio for the standard 

deviation in the correlation interior is plotted in Figure 44b. The interior region is defined 

by |𝜏| < 0.8 ⋅ 𝑑/𝑐, where 𝑑 is the GPS-estimated separation distance at the correlation 

center time. 
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Figure 44: a) ratio of P/V standard deviation in the correlation tails (|𝜏| > 0.1) with 

the equal-noise theoretical value (4.77 dB) in dashed line. b) P/V standard deviation ratio 

of the interior correlation (|𝜏| < 0.8 ⋅ 𝑑/𝑐). 

 Typical values of the pressure to velocity noise amplitude ratio were between 3 and 

5 dB, well-predicted by the theory of Section 3.3.1, assuming the intrinsic or extrinsic 

pressure and velocity noise SNR’s were roughly equal (see Figure 44a). Also of note is the 

effect of interfering sources (mainly tugboats and ferries operating in the area) as streaking 

dark lines in the correlations of Figure 43c, and the increased ratio of Figure 44b. The 

increase in the amplitude ratio becomes more pronounced as the sources passed the array 

broadside (correlation lag of approximately zero), and when the sensors were at their 

closest separation distance. Thus, the velocity channel dipole directionality limits the effect 
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of broadside interferers, whereas a pressure channel remains sensitive to broadside 

interferers, hence the increased correlation amplitude ratios seen in Figure 44b. 

 Repeating the analysis for the second quiet time observed from 14:45 – 15:25 local 

time, the correlation amplitudes are plotted in Figure 45a/b. The ratio of pressure to 

velocity amplitude is plotted in Figure 45c. 
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Figure 45: a) Pressure correlation amplitudes, normalized per-correlation. b) Axial 

velocity correlation amplitudes, normalized per-correlation c) Experimental pressure to 

velocity correlation amplitude ratio. Amplitudes are obtained from magnitude of Hilbert 

transform, dB values obtained with 10 log10. 

The ratio is approximately 0 dB for the strong peak in the negative time delays, but is no 

longer equal to 0 dB for the positive side. This could be a result of insufficient averaging 

time to develop the ambient noise correlation peak. The negative time delay peak is not a 

result of ambient noise, but of a far-field interfering source identified in the AIS record. 

For such a source, the pressure and particle velocity signal received by the sensors should 

have been equal in amplitude after the velocity data was transformed into pressure units 

via multiplication by the specific acoustic impedance. Despite this shortcoming, the ratio 

of standard deviation in the correlation tails and interior can be compared to quantify the 

decrease in velocity correlation noise (see Figure 46). Again, the region defining the tails 

is |𝜏| > 0.1 and the interior is defined by |𝜏| < 0.8 ⋅ 𝑑/𝑐. 
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Figure 46: a) ratio of P/V standard deviation in the correlation tails (|𝜏| > 0.1) with 

the equal-noise theoretical value (4.77 dB) in dashed line. b) P/V standard deviation ratio 

of the interior correlation (|𝜏| < 0.8 ⋅ 𝑑/𝑐). 

 The ratio of pressure to velocity correlation standard deviation in the tails is about 

2 dB, indicating that there is not equal noise in the pressure and velocity recordings. A gain 

of 4.77 dB is expected if the pressure and velocity noise are equal, however a gain of 2 dB 

is achieved if the velocity extrinsic noise is slightly higher than that of pressure (see Figure 

39). The interior correlation ratio is slightly higher due to the occasional broadside 

interfering source, but also averages about 2 dB. This is likely because the interior 

correlations are not as corrupted with interfering sources. 
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3.3.3 Conclusion 

 Noise variance estimates were added to the expected value expressions developed 

in Section 3.2 to obtain expressions for the SNR of a pressure or velocity ambient noise 

correlation. The ratio of the velocity SNR to the pressure SNR was examined under varying 

separation distance and bandwidths, and found to be constant across both. This ratio was 

then examined for varying amounts of pressure and velocity channel noise, for both the 

intrinsic noise and extrinsic noise cases. Velocity ambient noise correlations were found to 

outperform pressure correlations in all cases except where a significant amount of noise is 

present on both channels (< 0 dB SNR) and the velocity noise is significantly higher than 

pressure (> 5 dB difference). 

3.4 Conclusion 

 Correlations of vector sensor data in an isotropic ambient noise field were derived 

and expressed in a simple convolutional framework. These expressions indicate the 

pressure and velocity correlation expectations are nearly identical for the typical frequency 

bands used experimentally. Furthermore, the development showed the importance of using 

the correlation derivative when attempting to locate the Green’s function peak. In addition 

to examining the expectation of the correlations, the variance was analyzed to quantify the 

SNR of the correlation process in the presence of noise. Pressure and velocity correlations 

were compared using their respective PSNR’s as well as their required averaging times for 

Green’s function extraction. In most cases, except where extreme velocity noise is present, 

a velocity correlation outperforms a pressure correlation. 
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CHAPTER 4 

ARRAY ELEMENT LOCALIZATION OF MOBILE VECTOR 

SENSOR ARRAYS USING AMBIENT NOISE CORRELATIONS 

4.1 Introduction 

 Ambient noise exists in any acoustic environment to some extent, and can be 

exploited as a source of information about the environment or the sensors placed within. It 

has been shown theoretically and experimentally that correlations of ambient noise across 

separated sensors contains the Green’s function (also referred to as the Channel Impulse 

Response) between them (Lani et al., 2013; Leroy et al., 2012; Naughton et al., 2016; Roux 

& Kuperman, 2004; Karim G. Sabra et al., 2005b; K. G. Sabra et al., 2005). Encapsulating 

both environmental and sensor placement information, the Green’s function defines the 

propagation of sound between two separated sensors. Exact knowledge of the Green’s 

function is not generally guaranteed in every acoustic environment, and its estimation has 

many uses ranging from seismology, structural monitoring, ocean tomography, fathometry, 

sub-bottom profiling, or simply inter-sensor distance estimation (Godin et al., 2010; 

Harrison & Siderius, 2008; K. G. Sabra et al., 2005; Martin Siderius et al., 2006). 

 In the case of inter-sensor distance estimation, the Green’s function specifies the 

travel time of sound propagating along the path between sensors. Assuming the 

propagation speed is known and the path is direct (i.e. straight), the distance between 

sensors can be inferred from the measured travel time. Knowledge of the distance between 

sensors becomes critical for applications where the sensors are mobile and their locations 

carry a great deal of uncertainty. It is also highly important to have accurate knowledge of 

sensor locations for coherent processing of sensor array data (Culver & Hodgkiss, 1988; S. 
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E. Dosso et al., 2004). For example, localizing a source accurately requires the inter-sensor 

distances to be known within fractions of a wavelength of the source signal (0.1 – 1 m for 

1500 – 150 Hz in the ocean, using a fraction of 10%). Common methods of measuring 

sensor locations include using fixed arrays, global positioning system (GPS), or acoustic 

transponders (“pingers”) (Paull et al., 2014). 

In a fixed array, the sensor locations are measured before deployment, and assumed 

to remain fixed throughout their use. In some instances, even an array which is “fixed” can 

suffer from undesirable sensor perturbations (S. E. Dosso et al., 2004; S. E. E. Dosso, 

Gordon R., 2006; Morley, Dosso, & Chapman, 2009). Fixed arrays also suffer from not 

being adaptable to changing mission intent or environments. A mobile array offers the 

ability to adaptively reposition, add or remove elements as dictated by changing 

requirements. If the mobile array has access to GPS signals, their positions can be obtained 

with uncertainties between 0.7 and 1.5 meters (Grimes, 2008), which resides on the 

threshold of usable accuracy for underwater applications. However, GPS signals do not 

propagate to any significant depth underwater, and thus sensors which remain submerged 

for extended periods of time must rely on dead reckoning or acoustic transponders to obtain 

their positions (Paull et al., 2014). Dead reckoning iteratively updates the estimate of sensor 

location through knowledge of the sensor orientation and speed, however it suffers greatly 

from measurement error accumulation and perturbations, where errors of tens to hundreds 

of meters can be common (Paull et al., 2014). Acoustic transponders, or “pingers”, can 

remedy this problem by emitting signals from beacons whose locations are known. Within 

this area of sensor localization, there exist many different modes of operation. Long 

baseline (LBL) modes use fixed beacons, typically arranged along the boundary of the 
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operation area and moored to the seafloor. Their accuracy, typically 1 m or better, comes 

at the cost of a restricted operational area, high setup cost, and reduced secrecy (Paull et 

al., 2014). GPS-tracked surface beacons may also be used with comparable performance 

to LBL systems, but still suffer from limited operational area and significantly reduced 

secrecy. Short baseline (SBL) systems use beacons or active transponders in a much 

smaller array, typically small enough to be mounted to a vessel or towed behind it (Paull 

et al., 2014). They can ascertain the distance and bearing to the sensors, which can be 

localized if the position of the SBL system is known. Performance of SBL systems can 

approach that of LBL systems while offering the benefit of a mobile tracking area (Paull 

et al., 2014). However, the cost and loss of secrecy of such a system is far worse than the 

more passive LBL systems. If a sensor’s location underwater is to be accurately determined 

underwater in a flexible, cheap and clandestine way, acoustic transponders may not be a 

suitable solution. This leaves ambient noise correlations as one of the few viable solutions 

for localizing a sensor underwater in a totally covert manner. 

The presence of ambient noise in the ocean can be exploited almost as a LBL 

transponder system, where the “beacons” are distributed throughout the entire environment 

(Roux, Sabra, Kuperman, & Roux, 2005). The ambient noise source may be wind-driven 

surface noise (high frequency), ambient shipping noise (mid-frequency), or 

geologic/seismic activity (low frequency), to name a few. In any case, the sound from these 

sources will eventually propagate through all possible paths between two separated 

sensors. Thus, correlations of data collected from separated sensors ought to carry some 

information about the propagation delays experienced by each path. When averaged over 

long periods of time, an estimate of the Green’s function between sensors emerges from 
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the ambient noise correlations, or more specifically from its derivative (Roux & Kuperman, 

2004; Karim G. Sabra et al., 2005b). For fixed hydrophones, this has been experimentally 

verified (Fried et al., 2008; Lani et al., 2013; Leroy et al., 2012; Roux & Kuperman, 2004; 

Karim G. Sabra et al., 2005b), and requires averaging times on the order of minutes. In the 

case of drifting sensors, the same procedure should work in theory, assuming the sensors 

are quasi-stationary over the averaging duration (i.e. assumed stationary for the averaging 

duration, then moving to new locations for the next averaging duration). However, this 

either limits the allowable sensor drift speed or averaging duration. Conservatively, the 

direct arrival of the Green’s function should not change by more than 10% of the center 

frequency’s wavelength over an averaging period (0.1 – 1 m for 1500 – 150 Hz). If 

averaging lengths of one minute or more are to be used, drift speeds must be incredibly 

slow (6 – 60 m/hr for frequencies between 150 – 1500 Hz). Alternatively, the averaging 

time can be shortened to accommodate higher drift speed (2 – 20 s for 180 m/hr over 1500 

– 150 Hz bands). Unfortunately, at such short averaging times, a reliable estimate of the 

Green’s function may not have fully emerged from the ambient noise correlations. 

A proposed method for improving Green’s function extraction in the presence of a 

rapidly fluctuating medium employs a stochastic search algorithm to search for peaks 

hidden in noise (Woolfe, Sabra, et al., 2015). As previously stated, drifting sensors 

constrain the allowable averaging time for the sensors to remain quasi-stationary. However, 

using a shorter averaging time than required means the Green’s function peaks will be 

buried in correlation noise. Accepting this limitation, and assuming the time delays of each 

peak is known a priori, the correlation peaks can be shifted to a common time. Upon 

summing multiple short-time correlations with aligned peaks, the peaks will coherently 
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sum, while the noise will incoherently sum. The result would be identical to a long-time 

correlation of stationary sensors, displaying a prominent correlation peak centered at the 

origin. For any set of shifts other than the true time delays, the summed result will be 

smaller (see Figure 47). This method has been experimentally verified as a proof-of-

concept for the case of stationary hydrophones with changing speed of sound in a low 

frequency regime (1 – 40 Hz) (Woolfe, Sabra, et al., 2015). It has yet been demonstrated 

on a higher frequency regime for drifting sensors. Furthermore, the stochastic search was 

not constrained or optimized to produce more accurate solutions. 



93 

 

 

Figure 47: Correlation ensemble with hidden peaks (exaggerated for demonstration) 

having time delays 𝜏𝑖. The shifted-and-summed correlation when the estimated time 

delays �̂� match the true time delays 𝜏 is shown in black on the bottom. An example sum 

is shown when the time delays are not correct (red). 

Thus, the goal of the stochastic search is to estimate the locations of hidden peaks 

in many short-time correlations. If the stochastic search chooses the correct time delays of 

each peak, the shifted and summed result will have a sharp peak and reduced noise. 

Otherwise, a poor estimate results in the correlation peaks not adding coherently, and the 

resulting sum being smaller (see Figure 47). In this way, the stochastic search repeatedly 

guesses the time delays of hidden Green’s function peaks within noise, and evaluates the 

fitness of any guess using the shift-and-sum metric (Woolfe, Sabra, et al., 2015). Many 
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stochastic search methods exist, such as simulated annealing, particle filters, and genetic 

algorithms, to name a few (Mitchell, 1999). They excel at computationally complex 

problems such as this, where doing an exhaustive search of the entire space is 

computationally prohibitive. However, they also rarely find a global optimum, usually 

settling on a local optimum solution. For example, consider the correct estimation of 

Green’s function peak locations, except a single estimate is incorrect. The shifted and 

summed correlation would still appear to be a sharp peak with relatively large amplitude. 

If the stochastic search never guessed the fully-correct solution, it would never find the 

slightly more optimal sum and simply return the “local optimum” solution. Having one 

misplaced estimate of a large group of correct estimates might not be a problem, since 

physical limitations dictate a sudden change in the distance between sensors is not possible. 

Thus, filtering of the stochastic search results could be performed to mitigate these 

problems. 

An alternative approach to avoiding erroneous estimates is to explicitly inform the 

stochastic search of physical constraints. A simple method of doing this would be to 

constrain the solution space such that the difference between successive time delays is 

physically admissible. Another possible method could use parameterized motion models 

and allow the stochastic search to vary the model parameters. Both methods are valid, and 

Section 4.2.2 will examine the benefits and weaknesses of each in identifying the 

correlation peaks, leading to robust Green’s function estimates. 

As discussed before, knowledge of the Green’s function propagation delay and 

sound speed yields a measurement of the distance between sensors. The extraction of 

Green’s function delays from short-time correlations can be augmented using both vector 
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sensor correlations over using hydrophones only (see results from Chapter 3) as well as 

using a stochastic search algorithm. Assuming this process is performed for all pairs of 

sensors, the locations of each can be determined, to within an arbitrary translation and 

rotation (proper rigid translation). Such an unknown translation needs to be estimated using 

other means, or simply ignored if subsequent source localization does not require absolute 

accuracy. Leveraging ambient noise in this way could also augment the performance of 

any of the previously discussed methods (LBL, SBL, GPS, dead reckoning, etc.), thus 

eliminating the problem of the array’s unknown proper rigid translation. 

There exist many ways in which the locations of the array elements can be 

determined, a process hereafter referred to as Array Element Localization (AEL). Each 

method attempts to invert the non-linear function which produces inter-sensor distances 

from the sensor locations. As the function is non-linear, no closed-form inverse solution 

exists. The first and simplest method of inverting such a function is to linearize it about an 

operating point using a Taylor series expansion. The linearization is used to solve for a 

solution, and this process is repeated until the error in the solution is acceptably small (S. 

E. Dosso, Fallat, Sotirin, & Newton, 1998). However, this method does not take 

measurement error or a priori location error into consideration. Instead of a simple least 

squares optimization, a regularized cost function can be employed which considers either 

inter-sensor distance errors, prior sensor location errors, or both (S. E. Dosso et al., 2004). 

This method can achieve decent performance while also being rather simple to implement. 

Another method of AEL which can outperform the regularized least-squares method is to 

employ a Kalman filter which adds additional information/constraints given the past state 

of the sensor array. For example, the array can be assumed to freely drift with random 
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accelerations, and thus the next location of a sensor is likely to be in the direction it is 

drifting (Culver & Hodgkiss, 1988). This method has the drawback of applying a motion 

model to the array, which requires some knowledge of how the array moves and what 

accelerations it may experience. Furthermore, the method requires the random variables to 

be Gaussian, a constraint which is usually acceptable. If unacceptable however, a more 

advanced state estimation algorithm such as a particle filter could be used, but at the cost 

of increased complexity. For most situations, a regularized least-squares minimization will 

yield acceptable AEL results with minimum complexity. 

This chapter will first introduce the stochastic search problem, then show 

simulation and experimental methodologies and results for Green’s function extraction 

from ambient noise correlations in Section 4.2. Section 4.3 will introduce the AEL problem 

formulation and solution methods and compare their solutions for finding the sensor 

locations from measurements of the inter-sensor distances. 

4.2 Sensor Separation Distance Estimation Using Stochastic Search 

4.2.1 Stochastic Search Problem Statement 

 Consider two vector sensors separated by a time-varying distance d, in the presence 

of ambient noise (see Figure 48). The finite-time correlation estimate is given by 

 

�̂�12(𝜏) =
1

𝑇
∫ 𝑠1(𝑡)𝑠2(𝑡 + 𝜏) 𝑑𝑡

𝑇

0

 62 

where 𝑠𝑖(𝑡) is the data recorded from sensor i, which may be either a pressure or velocity 

signal. Even an arbitrarily-steered beamformed signal could be used as the signal 𝑠𝑖(𝑡), for 

example from a vertical line array (Harrison & Siderius, 2008; Lani et al., 2013; Leroy et 
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al., 2012). Also, the time-derivative of a recorded signal may be used if the correlation 

derivative 

 
𝑑

𝑑𝜏
�̂�12(𝜏) =

1

𝑇
∫𝑠1(𝑡)

𝑑

𝑑𝜏
𝑠2(𝑡 + 𝜏) 𝑑𝑡

𝑇

0

 63 

is desired (Karim G. Sabra et al., 2005b). It is important to note the difference between the 

theoretical correlation derived in Section 3.2 (see Equation 23) and that of Equation 63, as 

the latter is only a finite-length approximation (see Section 3.3). As described in Section 

3.3.1, the Green’s function peaks may be buried in noise if the averaging time is 

insufficient. However, because the distance between sensors is now time-varying, the 

theoretical emergence of the Green’s function from long time-averaged correlations is not 

guaranteed. Shorter time windows where the array can be considered quasi-stationary must 

be used, even if the resulting correlation shows no sign of Green’s function peaks. 
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Figure 48: Ambient noise correlation theory for sensors separated by a distance d, 

where sources within the red cones support the emergence of correlation peaks. The 

correlation of data from sensor 1 and 2 will highlight source contributions such as that 

highlighted in red, producing two peaks at ± d/c given enough averaging time. 

 Thus, the primary challenge is to locate the Green’s function peaks in the presence 

of noise. It is assumed that regardless of the quality of the correlated signals 𝑠𝑖(𝑡), the 

sensor motion is such that the averaging time is insufficient to develop clear correlation 

peaks. Define a peak signal-to-noise ratio (PSNR) as the ratio of Green’s function peak to 

three times the correlation noise standard deviation 

 
𝑃𝑆𝑁𝑅 =  

|�̂�12(𝜏 = 𝑑/𝑐)|

3 ⋅ stⅆ[�̂�12(|𝜏| ≫ 0)]
 64 

When the peak is equal in size to the 99% amplitude threshold of the correlation noise, 

PSNR will be 1 (0 dB). Thus, the regime suited to a stochastic search requires a PSNR less 

than 1. 
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 To estimate the peak time delays, a multitude of short-time correlations will be 

needed to synthetically extend the averaging time. Consider an ensemble of short-time 

correlations 

 

�̂�12(𝜏, 𝑡𝑖) =
1

𝑇
∫ 𝑠1(𝑡

′)𝑠2(𝑡
′ + 𝜏) 𝑑𝑡′

𝑡𝑖+𝑇

𝑡𝑖

 65 

where the running time, 𝑡𝑖, can be a set of discrete times at which a correlation is obtained. 

A simple choice of running times could be 𝑡𝑖 = 𝑖𝑇 for integers 𝑖 = 0, 1, …𝑁𝑐 − 1, 

corresponding to a total of 𝑁𝑐 correlations, each 𝑇 seconds long with no overlap between 

successive correlation windows. 

 Now, if the correlation length 𝑇 is chosen such that the sensor separation distance 

is approximately constant for 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖 + 𝑇, each short-time correlation will behave as 

the theory in Section 3.2 predicts. Peaks should exist for the i-th correlation at the positive 

and negative time delay 

 

𝜏𝑖 =
𝑑 (𝑡𝑖 +

𝑇
2)

𝑐
 

66 

where the sensor separation distance is assumed to be a constant value equal to the 

separation distance at the center of the correlation window. In other words, the i-th 

separation distance is given by 

 
𝑑𝑖 = 𝑑 (𝑡𝑖 +

𝑇

2
) 67 

Applying the theory described in Section 3.2, the expected correlation ensemble will be 

described by 
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 𝐶12(𝜏, 𝑡𝑖) ≈ ±𝑌(𝜏 − 𝜏𝑖) ± 𝑌(𝜏 + 𝜏𝑖) 68 

where 𝑌(𝜏) is the function describing the peaks present in the correlation. When 𝐶12(𝜏) is 

computed from the signal derivatives, 𝑌(𝜏) ≈ 𝐶𝑠𝑠(𝜏). This was the result presented in 

Section 3.2.6 for the ambient noise correlation derivatives, where the peaks are almost 

identical to the ambient noise process autocorrelation. For plain correlations (i.e. no time 

derivative), 𝑌(𝜏) will be the integral of the ambient noise autocorrelation (e.g. see Section 

3.2.5). More complicated functions for 𝑌(𝜏) may also be used, if the appropriate theory is 

developed for more complicated correlation setups. In any case, the shape of the peak 

function 𝑌(𝜏) should be known, the only unknown being its location within the noise.  

To quantify the quality of an estimate of the peak locations, a shifted and summed 

correlation function 

 

𝑃(�̂�, 𝜏) = ∑ �̂�12(𝜏 + �̂�𝑖, 𝑡𝑖)

𝑁𝑐−1

𝑖=0

 69 

is defined, where �̂� = [𝜏0̂, 𝜏1̂, … , 𝜏̂𝑁𝑐−1] is a vector of the peak estimate locations. In other 

words, the function 𝑃(�̂�, 𝜏) shifts each short-time correlation by the estimated peak location 

for that correlation. It then sums all the shifted short-time correlations over the longer 

ensemble. If the hidden peaks in each short-time correlation are aligned after shifting, they 

sum coherently whereas the correlation noise sums incoherently. For example, the function 

𝑃(�̂�, 𝜏) when all estimates are equal to the true delays (𝜏̂𝑖 = 𝜏𝑖 ∀ 𝑖) is approximately 

 𝑃(�̂� = 𝝉, 𝜏) ≈ ± 𝑁𝑐 ⋅ 𝑌(𝜏) + 𝑒(𝜏) 70 
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where 𝑒(𝜏) accounts for the sum of correlation noise and negative correlation peaks which 

were summed incoherently. For any selection of time delays not equal to the correct time 

delays, the central sum component 𝑁𝑐 ⋅ 𝑌(𝜏) will not be as large, since the individual peaks 

won’t have summed coherently (see Figure 49). An objective function 

 

Φ(�̂�) = | ∫ 𝑃(�̂�, 𝜏) ⋅ 𝑌(𝜏) 𝑑𝜏

𝑇

−𝑇

| 71 

is defined as the zero-lag correlation between the shifted and summed correlation function 

and the expected peak shape. Large values of the objective function indicate the estimated 

time delays better match the true time delays of underlying correlation peaks hidden within 

noise. 
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Figure 49: Correlation ensemble with hidden peaks (exaggerated for demonstration) 

having time delays 𝜏𝑖. The shifted-and-summed correlation when the estimated time 

delays �̂� match the true time delays 𝜏 is shown in black on the bottom. An example sum 

is shown when the time delays are not correct (red). These summed correlations are 

correlated with the reference peak shape �̃� (blue). 

 The objective function in Equation 71 could be used directly to brute-force search 

for the correct time delays. A simple example demonstrating the computational complexity 

of such a problem highlights the need for a stochastic search method. Imagine ambient 

noise correlations were obtained for a duration of only two minutes, and that the sensor 

drift rate constrained the allowable correlation duration to be 10 seconds. With no overlap 
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in correlation windows, this requires estimation of only 12 time delays. Assuming the prior 

estimate of sensor separation was rather precise (e.g. GPS-measured), the search area might 

be ±1.5 m, or ±1 ms. If the resolution of the distance estimation is desired to be 10 cm 

(i.e. a time-delay ~67 μs assuming a water sound speed of ~1500 m/s), this equates to 30 

possible delays to evaluate per correlation window. Since each of the 30 possible delays 

must be tested with all other permutations of the other time delays, the total number of 

guesses to make is 3012 = 5.3 ⋅ 1017. Running such a simple and restricted search at 100 

billion evaluations per second would still take over two months to return the optimum 

solution. A stochastic search can find the optimum or near-optimum solution in real time 

or faster even on modest hardware. 

4.2.2 Simulation Methodology 

 To evaluate the performance of various stochastic search methods and the 

numerous parameters they possess, a simulation environment was implemented. A 

simulated environment allows the peak locations to be known exactly, as well as the PSNR 

of the peak to its surrounding noise. The PSNR is defined in a similar way to Equation 50, 

and is given by 

 
𝑃𝑆𝑁𝑅 =

𝑌(0)

3 ∗ stⅆ[𝑁(𝜏)]
 72 

where 𝑌(𝜏) is again the known peak shape of a noise correlation process (see Equation 43), 

and 𝑁(𝜏) is simulated additive band-limited noise (see Figure 50). An ensemble of 

correlations is thus simulated as 

 𝐶12(𝜏, 𝑡𝑖) = 𝑌(𝜏 − 𝜏𝑖) + 𝑁𝑖(𝜏) 73 
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where the i-th correlation center time is 𝑡𝑖, the peak delay is 𝜏𝑖, and the additive noise 

realization 𝑁𝑖(𝜏). The noise is simulated by taking random white noise and filtering it to 

within the frequency band of interest. This is performed in the frequency domain by 

windowing the noise in the time domain with a Tukey window (r = 0.03) equal in length 

to the sequence, then windowing in the frequency domain with a Tukey window (r = 0.1) 

encompassing the operating band. Lastly, the noise is divided by its standard deviation and 

multiplied by the desired standard deviation 𝜎𝑁. This ensures the noise sequence has 

standard deviation 𝜎𝑁, so the PSNR is known. The magnitude of 𝑌(𝜏) is kept constant, and 

the noise variance adjusted accordingly. Also, it is worth noting that Equation 73 is missing 

the negative time delay, but since the separation distance is typically much larger than the 

search window employed by the stochastic search, it is irrelevant whether the negative peak 

exists. 

 To generate realistic values for the peak time delays 𝜏𝑖, real separation data was 

obtained from float GPS data collected off the coast of New London, CT in October 2016. 

A time period was chosen which exhibited somewhat fast drift speeds, with a maximum 

velocity of 200 m/hr inferred from GPS measurements. Since GPS data was sampled at 10 

second intervals, a linear interpolation was used to obtain the separation distance between 

samples, at a rate of 1 second updates for the simulated correlation ensemble. 
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Figure 50: Simulation of ambient noise correlations, where base correlations (left) are 

simulated with known PSNR (0.7). A number of the base correlations are averaged to 

form a total of 𝑁𝑠 averaged correlations (right). 

 For each simulation, an ensemble correlation was created with a given PSNR (see 

Figure 50), and an assumed base correlation length (e.g. 1 second). The resulting base 

correlation contained a total of 900 correlations, covering a fifteen-minute period. To then 

simulate the effect of increasing the correlation averaging times, multiple base correlations 

were averaged (see Figure 51). Performing averaging of the base correlations in this way 

also accounts for the possibility that successive peak functions will incoherently sum if the 

averaging length is too long. 

 Once all base correlations have been averaged, the resulting 𝑁𝑠 correlations are 

given to a stochastic search method to attempt to identify the peak locations. However, the 

number of averaged correlations (𝑁𝑠) will often be much larger than a stochastic search 

can feasibly identify simultaneously (e.g. 900 correlations total). Thus, the averaged 

correlations are segmented into pieces of length 𝑁, and each is identified separately by the 

stochastic search (see Figure 51). 
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Figure 51: Stochastic search methodology. Base correlations (12 total) are shown in 

black, and the true time delays of their hidden peaks in red. The downsampled true delays 

are plotted with dashed circles, with a linear interpolation between them. Correlations are 

averaged in groups (blue regions), and the stochastic search operates on segments of 

averaged correlations (yellow boxes). 

 The example demonstrated in Figure 4 shows a total number of correlations 𝑁𝑐 =

12. The base correlation averaging duration is assumed to be 1 second, for a total of 12 

seconds of correlations. The averaging length is 𝑇 = 2 seconds, which means every 2 

correlations are averaged (blue regions) to obtain a total of 6, 2-second correlations. Then, 

the stochastic search is segmented using 𝑁 = 3 to identify a total of 6 time delays in 2 

separate searches. The initial conditions of the search can either be obtained from the true 

delays (red curve) or the downsampled delays (black dashed curve). The example in Figure 

51 uses downsampled delays obtained from linear interpolation of the true delays 

downsampled to a 4 second period. 

 Table 3 shows the salient parameters which are varied in the following simulations. 

The correlation averaging length 𝑇 is varied by averaging different numbers of the 
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simulated base correlations. If too small, the correlation peaks will remain buried in noise 

and require a larger number of shifted and summed correlations in the stochastic search to 

obtain a coherent peak. If made too large, the drifting correlation peaks will begin to sum 

incoherently (i.e. “smear”). This limit is defined by the drift rate and is described in Section 

4.1. The parameter 𝑁 is the number of parameters to estimate in each stochastic search. 

Decreasing this number too low could result in the shifted and summed correlations to still 

have an SNR of less than 0 dB, and thus the objective function (Equation 71) will not 

recognize a good solution. In addition, decreasing 𝑁 will speed up each individual search, 

but will require more searches overall. Increasing 𝑁 too much will result in the stochastic 

search having too many parameters to estimate, and increase the chances of a suboptimal 

global maximum is obtained (see Appendix E). Lastly, the base SNR is varied to simulate 

any number of effects which serve to decrease the correlation peak size in relation to the 

noise. These effects were discussed in Section 3.3 and include increased sensor separation 

distance or increased sensor noise. 
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Table 3: Salient Parameter Table 

Parameter 

Description 
Name Typical Values 

Considerations 

Make Smaller Make Larger 

Correlation 

Averaging 

Length 

𝑇 1 – 30 seconds 

Coherent peaks  

buried in noise → 

increase 𝑁 

Increased SNR, but 

possible smearing 

of coherent peaks 

(drift) 

Stochastic 

Search 

Segment 

Length 

𝑁 
5 – 30 time 

delays 

Too few 

correlations to sum 

→ no peak in 

objective function 

Too many time 

delays for 

stochastic search to 

estimate 

Base SNR 𝑃𝑆𝑁𝑅 -20 – 0 dB 

Need more 

averaging to 

develop peaks → 

increase 𝑁, 𝑇 

Less noise, above  

0 dB → peak 

detection  

 

 Simulations varying each of the parameters in Table 3 were carried out for different 

stochastic search methods. Presented here are the results for the genetic algorithm (see 

Appendix E for others). The genetic algorithm has its own set of many different parameters, 

and most were left at the default MATLAB settings. However, changes were made to limit 

the maximum number of generations to 1000, set the population size to 100, set the number 

of population elites to 2, and set the initial population to the prior guess (e.g. GPS estimated 

separation distances).  

 The first method is hereafter referred to as the “unconstrained” genetic algorithm. 

The only constraint is a rectangular window within which the solution must lie. The bounds 

of this window are obtained by expanding the limits of the true separation distances. The 

expansion coefficient 𝐾𝐵 was taken to be 4, and the bounds calculated using the equation 
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�⃗� 𝑩 = [𝜏𝑙𝑏 , 𝜏𝑢𝑏] =

1

2𝑐
(𝑅𝑚𝑎𝑥 + 𝑅𝑚𝑖𝑛) +

𝐾𝐵

2𝑐
[−(𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛), (𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛)] 74 

where the distances 𝑅𝑚𝑎𝑥 and 𝑅𝑚𝑖𝑛 are the maximum and minimum measured separation 

distances. Lastly, the starting population estimates were determined from a downsampled 

measurement of the separation distance. This mimics the scenario where GPS or other 

localization methods are only obtained infrequently. In between, the separation distance is 

linearly interpolated. For these simulations, the period of downsampled separation distance 

measurements was taken to be 5 minutes. Thus, the starting estimate of the genetic 

algorithm is linearly-interpolated from actual separation distance measurements taken only 

every 5 minutes. 

 The second method compared was the “constrained” genetic algorithm. The 

rectangular bounds used in the unconstrained method were identical, however the addition 

of a difference constraint between successive estimates was taken to be less than 𝛿, which 

was expanded from actual separation distances using the equation 

 
𝛿 =

𝐾𝐷

𝑐
⋅ max|𝑅𝑖 − 𝑅𝑖−1| 75 

where 𝑅𝑖 denotes the separation distance measured at 𝑡𝑖, and the maximum is taken over 

the entire duration of the correlation ensemble. The difference expansion coefficient 𝐾𝐷 

was taken to be 5, thus allowing the largest difference in successive time delays to be five 

times that seen in the true separation distance. Note that the difference constraint is only 

applied to the identification subsection containing 𝑁 time delays. No constraints were 

carried across the boundaries of successive segments. Such a constraint is possible if the 

previous segment’s solution is already known. The constrained method used identical 
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genetic algorithm parameters to the unconstrained method, and used the same starting 

estimate obtained from linearly-interpolated 5-minute true separation distance updates. 

 To implement the difference constraint, a set of linear constraints was specified to 

constrain the difference in successive peak locations. The MATLAB algorithm requires 

the linear constraint to be of the form 

 𝐴�⃗̂� ≤ �⃗⃗�  76 

where �⃗̂�  is the solution estimate vector. To constrain the differences between successive 

estimates, the matrix was given by 

 

𝐴 =

[
 
 
 
 

1 −1 0 0
−1 1 0 0
0 1 −1 0
0 −1 1 0
0 0 0 ⋱]

 
 
 
 

 77 

and the vector  

 �⃗⃗� = [𝛿1 𝛿1 𝛿2 𝛿2 …]𝑇 78 

where the values 𝛿𝑖 were generally all equal to a constant 𝛿. The value of 𝛿 could be either 

fixed (e.g. 1 ms or 1.5 m maximum change in successive estimates), or determined by the 

maximum difference observed in the prior (e.g. GPS) data (see Equation 75). The latter 

generally resulted in smaller constraints, so it was often multiplied by a factor (typ. 5) to 

allow for larger changes to occur during the solution search. 

 The resulting solutions returned by the genetic algorithm were evaluated with 

respect to the true peak locations using the root-mean-square error (RMSE) 
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𝑅𝑀𝑆𝐸 = 𝑐 ⋅ √
1

𝑁𝑠
∑(�̂�𝑖 − 𝜏𝑖)2

𝑁𝑠

𝑖=1

  79 

which takes the square root of the average squared error of the estimated time delays �̂�𝑖, 

and true time delays 𝜏𝑖, then converts the value to units of meters by multiplication with 

the baseline sound speed 𝑐 = 1500 𝑚/𝑠. The RMSE expressed in meters is useful for 

comparing the performance of the distance estimation to other measurements of distance 

(e.g. GPS). 

4.2.3 Simulation Results 

 The simulation results are computed for the values 𝑃𝑆𝑁𝑅 = [1, 0.85, 0.7, 0.5, 0.3, 

0.2, 0.1, 0.05, 0.01] or equivalently, in decibels 𝑃𝑆𝑁𝑅 = [0, -0.7, -1.5, -3, -5.2, -7, -10, -

13, -20] dB. The averaging duration values simulated were 𝑇 = [1, 2, 5, 10, 20, 30] 

seconds, and the stochastic search segment lengths 𝑁 = [5, 10, 20, 30]. Following the 

parameter order in Table 3, the results for each parameter variation are shown below. 

4.2.3.1 Changing Averaging Length 

 Referring to Table 3 to guide the results found here, the first effect which will be 

examined is changing the correlation averaging length 𝑇. The first two plots in Figure 52 

and Figure 53 show the variation in RMSE for constant N = 10. 
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Figure 52: RMSE of unconstrained genetic algorithm vs. averaging time and SNR, N 

= 10 
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Figure 53: RMSE of constrained genetic algorithm vs. averaging time and SNR, N = 

10 

From these figures, there are two key takeaways: 

• Increasing the averaging time increases the error, more so for the unconstrained 

method 

• Decreasing the SNR increases the error, but the results are somewhat random 

The variation in RMSE vs. averaging length for constant SNR = -3 dB is plotted in Figure 

54 and Figure 55. 
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Figure 54: RMSE of unconstrained genetic algorithm vs. averaging time and N, SNR 

= -3 dB 
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Figure 55: RMSE of constrained genetic algorithm vs. averaging time and N, SNR = -

3 dB 

From these results, the first takeaway remains the same: 

• Increasing the averaging time increases the error 

• When unconstrained, the increase in error is worse for longer stochastic search 

lengths 

Finally, the variation in averaging time is shown across all values of SNR and N in stacked 

surface plots in Figure 56 and Figure 57. 
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Figure 56: RMSE of unconstrained genetic algorithm vs. averaging time, SNR, and T 
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Figure 57: RMSE of constrained genetic algorithm vs. averaging time, SNR, and T 

The results here corroborate the findings from the plots of N = 10 and SNR = -3 dB in that 

the increased averaging time leads to increased RMSE. The increase is less severe for 

the constrained method. 

4.2.3.2 Changing Segment Length 

 The second parameter in Table 3 is the stochastic search segment length 𝑁. Figure 

66 and Figure 67 show the variation in RMSE with varying segment length for T = 2 
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Figure 58: RMSE of unconstrained genetic algorithm vs. N and SNR, T = 2 s 
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Figure 59: RMSE of constrained genetic algorithm vs. N and SNR, T = 2 s 

From these results, the takeaways are 

• Increasing the segment length increases the error 

• Decreasing SNR increases the error somewhat, more so for the unconstrained 

method 

The variation in RMSE with changing segment length is plotted in Figure 60 and Figure 

61 for constant SNR = -3 dB. 
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Figure 60: RMSE of unconstrained genetic algorithm vs. N and T, SNR = -3 dB 
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Figure 61: RMSE of constrained genetic algorithm vs. N and T, SNR = -3 dB 

The takeaways from these results are 

• Increasing N increases error, but much less so for the constrained method 

• Increasing averaging time increases error, especially for unconstrained method 

Finally, the variations in segment averaging length are plotted as stacked surfaces in Figure 

62 and Figure 63. 
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Figure 62: RMSE of unconstrained genetic algorithm vs. T, SNR, and N 
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Figure 63: RMSE of constrained genetic algorithm vs. T, SNR, and N 
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identify time delays. Constraining the difference in successive values can somewhat abate 

these effects.  

4.2.3.3 Changing SNR 

 Finally, the last parameter of Table 3 to vary is the base correlation SNR 

(equivalently called PSNR). This parameter generally is not controlled in an experiment, 

as the ambient noise sources and interfering noise sources will dictate the correlation 

process SNR. The variation in RMSE is plotted versus the SNR for an averaging length T 

= 2 seconds in Figure 64 and Figure 65. 

 

Figure 64: RMSE of unconstrained genetic algorithm vs. SNR and N, T = 2 s 
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Figure 65: RMSE of constrained genetic algorithm vs. SNR and N, T = 2 s 

The takeaways from these results are 
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Figure 66: RMSE of unconstrained genetic algorithm vs. SNR and T, N = 10. High 

values of T are not displayed due to their large error. 
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Figure 67: RMSE of constrained genetic algorithm vs. SNR and T, N = 10. High 

values of T are not displayed due to their large error. 
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Figure 68: RMSE of unconstrained genetic algorithm vs. T, N, and SNR. 
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Figure 69: RMSE of constrained genetic algorithm vs. T, N, and SNR. 
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4.2.4 Experimental Methodology 

 As explained in Section 2.3.5, the usable experimental data which contains 

synchronized, clean pressure and velocity channel data from floats with valid GPS 

positions comes from the October 30, 2016 dataset. The two floats with valid GPS positions 

were 0004 and 0005, with fixed depths of 20 and 26 meters. During the deployment, there 

were two times during which the R/V Greeley was at a distance and running silently, the 

first between approximately 11:49 and 13:28 local time, and the second between 14:45 and 

15:22. The first quiet time was corrupted with loud interfering vessels in the area and was 

not suitable for ambient noise correlation identification (see Appendix F). 

 During the second quiet time, lasting approximately 40 minutes, the sensors drifted 

from 55 meters apart to 130 meters apart, diverging the entire time (see Figure 70). The 

maximum drift speed seen during this period was 0.055 m/s, or 200 m/hr. 

 

Figure 70: Separation distance between floats 0004 and 0005 during quiet time 2. 

 An ensemble of correlations of 1 second length are obtained and plotted in Figure 

71 and Figure 72. They are normalized with respect to the total maximum observed 

throughout the quiet time. Per-correlation normalized plots were shown in Figure 43 and 
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Figure 45 (see Section 3.3.2). The preprocessing steps used in preparing the data for 

correlation was to first filter the data, then integrate the acceleration and convert to pressure 

units, then filter, clip, and whiten the resulting data (see Section 2.3.4 for more information 

on these processes). The bandwidth chosen for the filtering was obtained by time-

windowing the full-bandwidth correlations around the supposed ambient noise correlation 

peak and plotting the peak’s spectrum. The resulting spectrum is nearly flat across 200 – 

1500 Hz, with a small decrease in the amplitude of the 800-900 Hz band. Thus, the 

bandwidth was chosen to be maximally wide, and encompassed 200 – 1500 Hz. The 

bandwidth chosen also avoids the low-frequency velocity noise (< 100 Hz) and the velocity 

resonant frequency (1.8 – 3 kHz). As seen in Section 3.3.1, the variance of the ambient 

noise correlation decreases with the time-bandwidth product, thus the widest allowable 

band was chosen. 

 

Figure 71: Pressure correlation ensemble amplitudes for quiet time 2. The amplitude 

is relative to the overall maximum amplitude, and is 10 log10 of the Hilbert transform 

magnitude. 
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Figure 72: Velocity correlation ensemble amplitudes for quiet time 2. The amplitude 

is relative to the overall maximum amplitude, and is 10 log10 of the Hilbert transform 

magnitude. 

 Note that the correlations are very homogenous, with few interfering ridges. They 

also are more similar to the per-correlation normalized plots in Figure 43 and Figure 45 

(see Section 3.3.2), since the per-correlation maximum is nearly the same as the overall 

maximum. The only interfering source seen during this quiet time is on the negative time 

delays, and was likely the result of the tug “Pocomoke”, which was tracked (using AIS 

data) traveling along the array’s endfire direction. It traveled from 8 km to 15 km from the 

array over this period. Despite the presence of this interferer, the positive time delays were 

relatively clean and presented the opportunity to identify ambient noise correlation peaks. 

 To identify the hidden ambient noise peaks in the positive time delays of the 

correlation ensembles plotted in Figure 71 and Figure 72, the same genetic algorithms 

presented in Section 4.2.3 for simulation results are employed. Where possible, all 

parameters used were identical. However, the main difference in the experimental results 

is the use of the GPS-measured separation distances as the source of the starting guess and 
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window constraints (see Equation 75). A fundamental difference between the simulated 

and experimental cases is that the GPS-measured distances themselves have errors 

associated, and cannot be assumed to be the “ground-truth” solution as was the case in 

simulation. 

 For this reason, it is important to verify the results by plotting the SNR gain over 

time, or relative to the assumed solution (e.g. GPS-derived). The SNR gain is defined as 

the PSNR (see Equation 72) of the shifted and summed correlations. If stated as a single 

number, it is assumed to be the PSNR of the entire shifted and summed correlation 

ensemble. If plotted as a function of time, it is assumed to be the PSNR of the sum only 

until that point in time. Defining the PSNR as a function, as defined in Equation 72, the 

SNR gain at a particular time 𝑡𝐺  is given by 

 

𝑆𝑁𝑅𝐺(�̂�, 𝑡𝐺) = 𝑃𝑆𝑁𝑅 [∑ �̂�12(𝜏 + �̂�𝑖, 𝑡𝑖)

𝐺−1

𝑖=0

] 80 

where �̂� = [𝜏̂0, 𝜏1̂, … , 𝜏̂𝑁𝑐−1]. If 𝑆𝑁𝑅𝐺 is given with no explicit dependence on time, it is 

assumed the sum is taken over all correlations in the ensemble (i.e. 𝐺 = 𝑁𝑐). Note that the 

estimated time delays �̂�𝑖 could be either a stochastic search solution, or any assumed prior 

solution (e.g. GPS-derived). To compare two different solutions, their SNR gains can be 

compared using a relative ratio 

 
𝑆𝑁𝑅𝑟𝑒𝑙(�̂�𝟏, �̂�𝟐, 𝑡𝐺) =

𝑆𝑁𝑅𝐺(�̂�𝟏, 𝑡𝐺)

𝑆𝑁𝑅𝐺(�̂�𝟐, 𝑡𝐺)
 81 

which gives the ratio of the SNR gains. As before, the omission of an explicit time 𝑡𝐺  

indicates the SNR gain is taken for the entire correlation ensemble. In this way, the 
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stochastic search solution can be compared to a prior estimate such as the GPS-estimated 

solution. 

 To compare the performance of different methods, both RMSE (see Equation 79) 

and 𝑆𝑁𝑅𝑟𝑒𝑙 will be examined. Three different methods were compared, with different 

values of 𝑁 = [10, 20, 30]. Both pressure and axial velocity correlations are compared, 

and the correlation derivative is used to simplify the peak detection (see discussion in 

Section 3.2.6). Lastly, the averaging length of the correlation ensemble was varied using 

the values [1, 2, 5, 10, 20, 30] seconds. 

 The first method of stochastic search was the “unconstrained” genetic algorithm. It 

is identical to the method used in simulation results, where the only constraint is a 

rectangular window within which the solution must lie. The bounds of this window were 

obtained by expanding the limits of the GPS-measured separation distances with an 

expansion coefficient 𝐾𝐵 = 4 (see Equation 74). Lastly, the starting population estimates 

were determined from downsampled separation distance measurements taken every 10 

minutes. Thus, the starting estimate of the genetic algorithm is linearly-interpolated from 

GPS measurements assumed to be taken only every 10 minutes, despite them being 

sampled at 10 second intervals. 

 The second method compared was the “constrained” genetic algorithm, which is 

again identical to the method used in simulation. The difference expansion coefficient 𝐾𝐷 

was taken to be 5, thus allowing the largest difference in successive time delays to be five 

times that seen in the GPS-measured separation distance. Lastly, the starting estimates were 

obtained from linearly-interpolated 10-minute GPS updates. 



135 

 

 The third method is almost identical to the “constrained” method, using the same 

constraints and parameters for the genetic algorithm. However, the starting estimate was 

instead linearly interpolated from the measured GPS separation distances, sampled with 

the original period of 10 seconds. This method is included in the event both methods 1 and 

2 fail for a certain set of parameters. It indicates whether the estimation failed due to the 

problem being impossible to solve even with the “correct” answer as a starting point. 

4.2.5 Experimental Results 

 The first results presented are for the positive time delays of the 14:45 – 15:25 

period using the pressure and axial velocity correlations between sensors 0004 and 0005. 

For demonstrative purposes, a sample set of solutions are plotted between 15:12 and 15:17 

in Figure 73, Figure 74, and Figure 75. The sample is taken from results run using the 

velocity correlation derivative, with an averaging length of 2 seconds, and 𝑁 = 10 

parameters estimated per segment. 
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Figure 73: Sample solution for unconstrained genetic algorithm (black circles). The 

GPS-estimated correlation lag is shown in magenta, and the underlying velocity 

correlation derivative amplitude (10 log10 magnitude of Hilbert) is plotted with black = 0 

dB and white = -10 dB. 

 

Figure 74: Sample solution for constrained genetic algorithm, started with 

downsampled GPS estimates (black circles). The GPS-estimated correlation lag is shown 

in magenta, and the underlying velocity correlation derivative amplitude (10 log10 

magnitude of Hilbert) is plotted with black = 0 dB and white = -10 dB. 
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Figure 75: Sample solution for constrained genetic algorithm (black circles), started 

with the GPS-estimated correlation lag (magenta). The underlying velocity correlation 

derivative amplitude (10 log10 magnitude of Hilbert) is plotted with black = 0 dB and 

white = -10 dB. 

 From the three sample solutions for each method, the RMSE is visible as the 

“spread” of the solution from the GPS-estimated separation distance (magenta line). 

Furthermore, the “realism” of the solution is apparent in the frequency and magnitude of 

large differences between estimates (e.g. the unconstrained estimate is highly unrealistic 

around 15:14). Lastly, the SNR gains of each method are not readily compared, since the 

averaging length is too short for the correlation peaks to be visible to the naked eye. As 

this is simply a small selection of a great number of solutions, they will not be presented 

for every set of parameters. Their RMSE (see Equation 79) and 𝑆𝑁𝑅𝑟𝑒𝑙 (see Equation 81) 

will be compared instead in the following figures. 

 Plotted in Figure 76 is the RMSE (with respect to GPS) of the solutions obtained 

for the three different genetic algorithms, for each of the three different numbers of 
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parameters estimated. Figure 77 shows the same results, but omitting the unconstrained 

results so the differences between constrained methods become visible. 

 

Figure 76: Pressure correlation derivative RMSE of genetic algorithm methods vs. 

averaging length. Unconstrained is shown in blue, constrained with downsampled GPS 

starting in green, and constrained with GPS starting estimates in red. The segment length 

N = 10 is shown as solid lines, N = 20 as dashed lines, and N = 30 as variable-dashed 

line. 
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Figure 77: Pressure correlation derivative RMSE of constrained genetic algorithm 

methods vs. averaging length. Constrained with downsampled GPS starting is in green, 

and constrained with GPS starting estimates in red. The segment length N = 10 is shown 

as solid lines, N = 20 as dashed lines, and N = 30 as variable-dashed line. 

 The results of Figure 76 show that an increase in the averaging length of the 

correlations increases the RMSE of the results, as was seen in the simulation results of 

Section 4.2.3. For the unconstrained genetic algorithm, the increase in stochastic segment 

length 𝑁 also increases the RMSE, which was an effect also seen in simulation results. 

This result does not hold for the constrained methods, as only the averaging length seems 

to influence the RMSE. The number of parameters estimated does not seem to detriment 

the estimate, since the difference constraint helps keep the entire solution feasible even for 

larger numbers of parameters. Put another way, the estimation with only 10 parameters 

might be nearly identical to identifying 30 parameters if the extra 20 parameters are simply 

“following” the trend of the other 10 due to the difference constraint. A final takeaway 

from Figure 77 is that using the GPS measurements as the starting estimates, rather than 

the downsampled estimates, provides a minor improvement in the resulting error. This is 
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to be expected, since the RMSE is assuming the GPS is the correct solution, and thus 

starting the genetic algorithm with this solution ought to result in a maximally-similar 

solution. 

 Similar results for the velocity correlations were obtained, the RMSE of which are 

plotted in Figure 78 and Figure 79. 

 

Figure 78: Velocity correlation derivative RMSE of genetic algorithm methods vs. 

averaging length. Unconstrained is shown in blue, constrained with downsampled GPS 

starting in green, and constrained with GPS starting estimates in red. The segment length 

N = 10 is shown as solid lines, N = 20 as dashed lines, and N = 30 as variable-dashed 

line. 
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Figure 79: Velocity correlation derivative RMSE of constrained genetic algorithm 

methods vs. averaging length. Constrained with downsampled GPS starting is in green, 

and constrained with GPS starting estimates in red. The segment length N = 10 is shown 

as solid lines, N = 20 as dashed lines, and N = 30 as variable-dashed line. 

 The results are so similar in fact, they are not plotted together, as the resulting plot 

is quite difficult to interpret. However, a different error metric is employed to further 

highlight their differences. The SNR of the shifted and summed correlations using the 

genetic algorithm delays is compared to the SNR of shifted and summed correlations using 

GPS delays. This indicates how much better the genetic algorithm is at obtaining coherent 

peak locations, and the metric is defined as (see Equation 81) 

 
𝑆𝑁𝑅𝑟𝑒𝑙 =

𝑆𝑁𝑅𝐺(�̂�𝑮𝑨)

𝑆𝑁𝑅𝐺(�̂�𝑮𝑷𝑺)
 82 

Figure 80 is comparable to Figure 76, except that the metric plotted is 𝑆𝑁𝑅𝑟𝑒𝑙 (see Equation 

82). Figure 81 shows the same 𝑆𝑁𝑅𝑟𝑒𝑙 metric, but plotted for the velocity correlations. 
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Figure 80: Pressure correlation derivative SNRrel of genetic algorithm methods vs. 

averaging length. Unconstrained is shown in blue, constrained with downsampled GPS 

starting in green, and constrained with GPS starting estimates in red. The segment length 

N = 10 is shown as solid lines, N = 20 as dashed lines, and N = 30 as variable-dashed 

line. 

 

Figure 81: Velocity correlation derivative SNRrel of genetic algorithm methods vs. 

averaging length. Unconstrained is shown in blue, constrained with downsampled GPS 

starting in green, and constrained with GPS starting estimates in red. The segment length 
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N = 10 is shown as solid lines, N = 20 as dashed lines, and N = 30 as variable-dashed 

line. 

 From Figure 80 and Figure 81, it becomes clear that the number of parameters is 

important for all three methods. For 𝑁 = 20 and 30, the SNR gain relative to the SNR gain 

of the GPS-estimated separation distance is not consistently different from unity. However, 

when 𝑁 = 10, the 𝑆𝑁𝑅𝑟𝑒𝑙 follows a more consistent trend. For short averaging lengths, the 

SNR gain relative to GPS is high, and tapers off for longer averaging time to about 7 dB. 

Also, there appears to be a maximum SNR gain between 2 and 10 second correlation 

averaging lengths. This could be due to the drift rate of ~200 m/hr which designates the 

averaging time be between 2 and 10 seconds to limit the “smearing” of correlation peaks. 

The unconstrained method obtains the highest gain relative to GPS, which indicates that 

despite its larger RMSE, it is finding higher SNR solutions. This indicates that both RMSE 

and 𝑆𝑁𝑅𝑟𝑒𝑙 are important metrics in identifying the validity and quality of a solution. The 

RMSE assumes the GPS solution is the exact, true solution. This most certainly is not the 

case, since GPS errors and sensor/antenna drift could cause the true solution to be 

inaccurate by as much as 1-2 meters. This is demonstrated by the stochastic search SNR 

gains being higher than those of the GPS-estimated separations, indicating the GPS 

separations are actually sub-par. Thus, without a precisely-known true solution, the RMSE 

does not fully encapsulate the performance of a certain method. 

 Plotted below in Figure 82 and Figure 83, the pressure and velocity RMSE and 

𝑆𝑁𝑅𝑟𝑒𝑙 are compared for 𝑁 = 10, the case in which the methods were able to identify peaks 

which increased SNR. 
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Figure 82: RMSE for pressure (solid) and velocity (dashed) correlation derivative 

genetic algorithm methods vs. averaging length. Unconstrained is shown in blue, 

constrained with downsampled GPS starting in green, and constrained with GPS starting 

estimates in red. Only results for N = 10 are shown. 

 

Figure 83: SNRrel for pressure (solid) and velocity (dashed) correlation derivative 

genetic algorithm methods vs. averaging length. Unconstrained is shown in blue, 

constrained with downsampled GPS starting in green, and constrained with GPS starting 

estimates in red. Only results for N = 10 are shown. 
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 The results indicate that the estimates made from velocity correlations (dashed 

lines) had higher SNR gain relative to the GPS than the pressure correlation estimates (solid 

lines) by a factor of about 1.5. However, the difference in performance using RMSE as the 

metric is not as conclusive. Comparing the three methods, both pressure and velocity 

correlations perform best for shorter averaging times. Again, starting the constrained 

genetic algorithm with the true GPS separation was slightly better than using the 

downsampled GPS separation (red vs. green curves). 

 

Figure 84: SNRavg for pressure (solid) and velocity (dashed) correlation derivative 

genetic algorithm methods vs. averaging length. Unconstrained is shown in blue, 

constrained with downsampled GPS starting in green, and constrained with GPS starting 

estimates in red. Only results for N = 10 are shown. 

 Shown in Figure 84 is the plot of just the SNR gains of each method (i.e. not relative 

to the GPS gain). The similarity of the SNR gains for pressure and velocity correlations 

indicates it is the GPS gain which is lower for the velocity correlations, leading to a higher 

𝑆𝑁𝑅𝑟𝑒𝑙. Since the GPS separation is identical for pressure and velocity, this must mean the 

velocity correlations have worse coherent averaging along the GPS separation delays than 
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pressure. This could be due to the numerical integration required to go from acceleration 

to velocity, adding noise to the resulting correlations that is not present in the pressure 

correlations. There may also be more extrinsic noise present on the acceleration channels 

due to their mounting situation (see Section 2.2.3). This effect is best shown by plotting 

the SNR gain of each method over time (see Figure 85). 

 

Figure 85: SNRavg over time for pressure (solid) and velocity (dashed) correlation 

derivative genetic algorithm methods. Unconstrained is shown in blue, constrained with 

downsampled GPS starting in green, and constrained with GPS starting estimates in red. 

Only results for N = 10, T = 5 seconds are shown. The SNRavg of the GPS-measured time 

delays is shown in black. 

 Figure 85 indicates the genetic algorithms can continue increasing the SNR of the 

shifted and summed correlations as time goes on. The GPS-estimated separation distances, 

however, do not increase the SNR of the shifted and summed correlations. In other words, 

the GPS-estimated separation distances do not accurately describe the ambient peak 

locations. Another result of Figure 85 shows that the SNR gain of the velocity correlation 

is higher than that of pressure until the very end of the time window. It is possible that an 
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event around 15:21 caused the velocity SNR gain to decrease when using GPS. The result 

is that the 𝑆𝑁𝑅𝑟𝑒𝑙 of velocity seems to be higher than pressure when compared at 15:25, 

even though that is not the case when comparing SNR gains at different times (e.g. 15:14). 

4.2.6 Conclusion 

 Simulations of Green’s function peak extraction were performed using 

unconstrained and constrained genetic algorithms. Unconstrained searches with large 

numbers of parameters is unsuited for precise detection of the Green’s function peak 

locations, however, constraining the solution to be physically admissible allows the genetic 

algorithm to find the peaks to within GPS error. 

 Experimental results were difficult to come by due to the limitations of the 

experimental data; however, the preliminary results corroborate the simulation results. 

Namely, velocity correlations outperform pressure correlations due to the reduced 

noise present in a velocity correlation. Also, shorter correlation averaging provides 

better results since the correlation peaks will add coherently, rather than being “smeared” 

during the averaging process. Lastly, the stochastic search length should be as short as 

possible, yet long enough that coherent peaks can form if the correct solution is chosen. 

Otherwise, the stochastic search may settle on a sub-par local optimum. 

 As for the stochastic search method employed, it does not appear to depend much 

on the exact search methodology used. However, some form of constraint is necessary to 

maintain physically admissible solutions. Unconstrained genetic algorithm results were 

able to maximize SNR gain, but at the cost of realistic solutions. This may indicate a more 

optimal choice of objective function exists which considers physical constraints, rather 

than applying constraints explicitly. Constraining the difference between successive 
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estimates provided a simple and functional method for estimating peak locations. The 

performance of such methods in estimating sensor separation distance was comparable, or 

arguably better than the GPS-estimated distances. 

 With a method available for identifying the sensor separation distance between any 

pair of sensors in an array, the remaining problem (see Section 4.3) is to correct the 

locations of each sensor in the array, given their estimated separation distances. 

4.3 Array Element Localization / Correction 

4.3.1 Simple Theory 

 Assume an array is composed of 𝑁 sensors, with estimated prior locations in need 

of correction. In relation to this work, the prior estimates come from GPS or dead-

reckoning, and the corrections are made using the distances between each sensor measured 

by an ambient noise correlation process described in Section 4.2.1. Consider a vector of 

distances between each pair of elements 

 �⃗⃗� = [𝑑12 𝑑13 … 𝑑23 𝑑24 … 𝑑(𝑁−1)𝑁]𝑇 83 

where 𝑑𝑖𝑗 is the distance between sensor i and j. Note that 𝑑𝑖𝑗 = 𝑑𝑗𝑖 and thus the distance 

vector contains only 𝑁(𝑁 − 1)/2 elements to avoid redundant distances being included. 

There exists some non-linear function 𝐷 such that 

 �⃗⃗� = 𝐷(�⃗⃗⃗� ) 84 

where the parameter vector 

 �⃗⃗⃗� = [�⃗� 1
𝑇 �⃗� 2

𝑇 … �⃗� 𝑁
𝑇 ]𝑇 85 
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contains the 3-dimensional locations of each sensor �⃗� 𝒊. The non-linear function 𝐷 cannot 

be simply inverted to solve for the parameter vector given measurements of the distances 

between sensors. Instead, it is linearized using a Taylor series expansion 

 �⃗⃗� = 𝐷(�⃗⃗⃗� 𝟎) + 𝐽 𝜹𝒎⃗⃗ ⃗⃗ ⃗⃗   86 

around and operating point �⃗⃗⃗� 𝟎, with a Jacobian matrix 𝐽 (see Appendix G) and differential 

parameter vector 𝜹𝒎⃗⃗⃗⃗ ⃗⃗   (S. E. Dosso et al., 1998). Rearranging to put known terms together 

the resulting equation is given by 

 𝐽 𝜹𝒎⃗⃗ ⃗⃗ ⃗⃗  = �⃗⃗� − 𝐷(�⃗⃗⃗� 𝟎) ≡ 𝜹𝒅⃗⃗⃗⃗  ⃗ 87 

where 𝜹𝒅⃗⃗⃗⃗  ⃗ is defined as the difference between the measured inter-sensor distances and the 

inter-sensor distances resulting from the parameter vector guess �⃗⃗⃗� 𝟎. Following the 

gradient to arrive at a solution which minimizes the error 𝜹𝒅⃗⃗⃗⃗  ⃗ requires solving for the 

increment in parameter vector 𝜹𝒎⃗⃗⃗⃗ ⃗⃗  . The above equation is generally over-defined for large 

N, since the number of inter-sensor distances 𝑁(𝑁 − 1)/2 exceeds the degrees of freedom 

3𝑁 (or 2𝑁 for planar recalibration). Thus, a minimum square error solution is obtained 

using the pseudoinverse of 𝐽 to find the parameter vector increment 

 𝜹𝒎⃗⃗⃗⃗ ⃗⃗  = (𝐽𝑇𝐽)−1𝐽𝑇 𝜹𝒅⃗⃗⃗⃗  ⃗ 88 

Finding the solution for the parameter vector involves starting at an initial guess, such as 

the prior estimate obtained from GPS. Equation 88 is used to solve for an increment in 

parameter vector, and the increment is added to the prior. From this new point, the process 

repeats until the error vector 𝜹𝒅⃗⃗⃗⃗  ⃗ is suitably small. Figure 86 demonstrates a nominal test 

array of three elements, constrained to two degrees of freedom within the plane. The 
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measured distances are each 1 meter, and the resulting estimates of array locations are 

shown in Figure 87 after three iterations of the algorithm. Note that the array has settled 

into its expected equilateral triangle shape, however with a slight rotation from the nominal 

array. Although technically a correct solution, there may be a need to include errors in the 

distance measurements to account for the fact that some measurements may be more 

accurate, and thus considered more importantly, than others. 

4.3.2 Theory with Distance Measurement Uncertainty and Prior Estimate 

Uncertainty 

To include distance measurement uncertainty, the parameter vector solution should 

instead minimize the objective function  

 𝜙 = |𝐺(𝐽 𝜹𝒎⃗⃗ ⃗⃗ ⃗⃗  − 𝜹𝒅⃗⃗⃗⃗  ⃗)|
2
 89 

where a distance error matrix 𝐺 is defined by 

 
𝐺 = ⅆiag (

1

𝜎12
,

1

𝜎13
, … ,

1

𝜎(𝑁−1)𝑁
) 90 

(S. E. Dosso et al., 2004). Here, the value 𝜎𝑖𝑗 denotes the standard deviation of the error in 

the corresponding distance measurement 𝑑𝑖𝑗 between sensors i and j. Now, the increment 

in solution estimate is given by 

 𝜹𝒎⃗⃗⃗⃗ ⃗⃗  = [𝐽𝑇𝐺𝑇𝐺 𝐽]−1𝐽𝑇𝐺𝑇𝐺 𝜹𝒅⃗⃗⃗⃗  ⃗ 91 

As before, the solution requires iterating from a starting point until a stopping criterion is 

met. In this case, the criterion is given by 
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 𝜒2 ≡ |𝐺(𝐷(�⃗⃗⃗� ) − �⃗⃗� |
2

≲ 𝑁 92 

where 𝑁 is the total number of sensors. If the solution should account for prior estimate 

uncertainty in addition to distance measurement uncertainty, the parameter vector solution 

should minimize the objective function 

 𝜙 = |𝐺(𝐽 𝜹𝒎⃗⃗ ⃗⃗ ⃗⃗  − 𝜹𝒅⃗⃗⃗⃗  ⃗)|
2
+ 𝜇 |𝐻 (�⃗⃗⃗� − �⃗⃗⃗̂� )| 93 

where 𝜇 is an arbitrary scaling parameter, �⃗⃗⃗̂�  is the prior/initial parameter vector estimate, 

and 

 
𝐻 = ⅆiag (

1

𝜉1𝑥
,

1

𝜉1𝑦
, … ,

1

𝜉𝑁𝑧
) 94 

is the matrix of uncertainties in the prior estimate (S. E. Dosso et al., 2004). The standard 

deviation of the i-th sensor’s x, y, or z location component is given by 𝜉𝑖𝑐. 

 At each iteration, the parameter 𝜇 is selected such that the 𝜒2 value decreases by a 

factor of 10. This ensures the solution is approaching the minimum at a reasonable rate. If 

𝜇 is too small, the solution overemphasizes the importance of the distance measurements, 

and if 𝜇 is too large, it overemphasizes the importance of the prior estimates. The updated 

parameter vector at each iteration is obtained by (S. E. Dosso et al., 2004) 

 �⃗⃗⃗� = [𝐽𝑇𝐺𝑇𝐺 𝐽 + 𝜇𝐻𝑇𝐻]−1 [𝐽𝑇𝐺𝑇𝐺 (𝜹𝒅⃗⃗⃗⃗  ⃗ + 𝐽�⃗⃗⃗� 𝟎) + 𝜇𝐻𝑇𝐻�⃗⃗⃗̂� ] 95 

where the value of 𝜇 was selected such that 𝜒2 ≡ |𝐺(𝐷(�⃗⃗⃗� ) − �⃗⃗� |
2
 is 10% of the previous 

iteration’s value. The same stopping criterion is used as before. 
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 The example nominal array shown in Figure 86 was passed into the AEL 

algorithm described above using two different sets of uncertainties. The first, whose 

solved array is shown in Figure 88, used very precise distance measurements and 

imprecise prior estimates. The result is nearly identical to that of Figure 87, since in that 

case the distance measurements were assumed perfect, and no prior measurement was 

considered. The second set of uncertainties, whose solved array is shown in Figure 89, 

used similar precision of the distance measurements and prior estimates, both imprecise 

enough to allow a solution which feasibly satisfies both the distance measurements and 

the prior location estimates. The solution is thus a hybrid of the prior array and equilateral 

triangle. 
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Figure 86: Nominal test array, with sensors shown as black dots, and their separation 

distances shown in the title, and drawn with dashed lines. 



154 

 

 

Figure 87: Sensor positions after three iterations. Sensors are shown as black dots, 

and their separation distances shown in the title, and drawn with dashed lines. 
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Figure 88: Sensor positions after solving regularized least-squares with 𝜎=0.01 

(precise distance measurements) and 𝜉=0.5 (very inaccurate initial estimates). Sensors are 

shown as black dots, and their separation distances shown in the title, and drawn with 

dashed lines. 
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Figure 89: Sensor positions after solving regularized least-squares with 𝜎=0.1 

(accurate distance measurements) and 𝜉=0.1 (accurate initial estimates). Sensors are 

shown as black dots, and their separation distances shown in the title, and drawn with 

dashed lines. 

 The results shown above demonstrate the AEL algorithm’s ability to consider the 

measurement and prior uncertainties appropriately. The prior uncertainty is rather well-

known from GPS performance (Grimes, 2008). However, the measurement uncertainty of 

the ambient noise correlation estimation is not as well known. It is only known that the 

accuracy of the ambient noise estimation is comparable to that of GPS, assuming the 

conditions described in Section 4.2.6 are met. Furthermore, the experimental data 

limitations are such that only 2-3 elements can be used, and as such, only their 2D locations 
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corrected. Indeed, the simple case of a pair of elements means only the distance between 

them can be corrected. 

4.4 Conclusion 

 Correlations of ambient noise recorded on separated vector sensors contains 

information on the separation distance between them. The goal is thus to leverage this 

information to correct the locations of sensors in an array, improving their source 

localization performance. However, the correlation peaks which need to be identified are 

buried in noise, since the drifting sensors limit the allowed correlation averaging length. A 

stochastic search method employing the genetic algorithm was successfully applied to 

identify the hidden correlation peak locations. When properly constrained, its performance 

meets or exceeds that of GPS. Furthermore, the method performs best when estimating 

peaks from the correlation derivative. Using the estimated peak locations, the distance 

between pairs of sensors is obtained, and can be passed into a simple regularized non-linear 

optimization algorithm for array element localization. An array whose sensor locations are 

corrected in this manner should have improved source localization performance (see 

Chapter 5). 
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CHAPTER 5 

COHERENT SOURCE LOCALIZATION USING SPARSE VECTOR 

SENSOR ARRAYS 

5.1 Introduction 

Locating and tracking sound sources in an ocean environment is useful in a myriad 

of scenarios such as military surveillance, submarine warfare, wildlife monitoring, natural 

resource mining or seismic event tracking. Regardless of the application, source 

localization relies on measurements of the acoustic field to determine where a possible 

source is located. These measurements are taken on a number of separated sensors, referred 

to as an array. Array signal processing is the field which concerns the extraction of useful 

information from the array. 

A subset of array signal processing, referred to as beamforming, generally attempts 

to invert the propagation process which created the recorded sound in the first place. For 

example, the traditional beamforming method guesses a source location, virtually 

propagates the sound to each sensor and then compares this expectation with the actual 

data recorded. A good match indicates the source was likely at the guessed location. 

Repeating for many different possible source locations will result in one with the highest 

output, marking the most likely source location. The first uses of beamforming for source 

localization were limited to direction-finding using narrowband hydrophone arrays (Van 

Trees, 2004). Many advancements have since been made to generalize the process for 

broadband processing, optimize the performance under a variety of conditions, and 

adaptively process the data (Van Trees, 2004). 
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Vector sensor beamforming was introduced later with the advent of sensors capable 

of measuring acoustic particle velocity (G. L. D'Spain, Hodgkiss, & Edmonds, 1991; 

Nehorai & Paldi, 1994). Some of the first developments utilize an intensity-based 

approach, where the product of pressure and velocity is used to determine the propagation 

direction (G. L. D'Spain et al., 1992). Another early development was an extension of the 

scalar (hydrophone) methods, which scales and adds pressure and velocity components 

(Gerald L. D'Spain et al., 2006; Hawkes & Nehorai, 1998). Just as in the scalar array case, 

these methods rely on a replica (or weight) vector to spatially filter the array data, and the 

replica which yields a large output is assumed to be indicative of the true source location. 

However, a fundamental difference between vector sensor beamforming and 

hydrophone beamforming is that the replica contains the directional response of the sensor, 

as well as the propagation delays experienced by the assumed source. Having a directional 

component to the beamforming process means a single sensor is able to roughly determine 

the direction of a source, and an array of vector sensors typically performs better than an 

identical hydrophone array. This performance gain comes first from the directionality, 

which effectively carries more information about the source location than a hydrophone 

array. Secondly, the increased number of data channels helps improve the signal-to-noise 

ratio (SNR) in the presence of uncorrelated channel noise (Gerald L. D'Spain et al., 2006). 

Lastly, a vector sensor array is able to better reject spurious peaks in the beamformer 

output. These peaks could be the result of interfering sources, or the result of array 

geometry limitations such as left-right ambiguity in line arrays or grating lobes in sub-

sampled arrays (Cox & Lai, 2009). The vector sensor replica ensures that sound arriving 

from these angles does not have as large a beamformer output due to the mismatched angles 



160 

 

(Chen & Zhao, 2004). The benefits afforded by a vector sensor array are not without cost 

though. 

Noise is a more serious problem when using vector sensors, either caused by flow 

sensitivity, integration noise, electronic noise, or orientation measurement noise. Inertial-

based types of vector sensors measure fluid acceleration rather than velocity, so they are 

very sensitive to local currents or movement of the sensor through the water (Lauchle et 

al., 2002). This effect manifests itself either through low frequency corrupting noise 

induced by currents/flow, or by impulsive events which are believed to be caused by 

sudden movement of the sensor through the water (see Section 2.2.3). Thirdly, the sensor 

technology may be such that the acceleration channels carry more electronic noise than 

pressure channels (J. C. Shipps & Deng, 2003). Finally, although not a form of noise 

recorded explicitly by the acceleration channels, there exists sensor orientation 

measurement noise. Both the gravitational vector and magnetic field vector are measured 

to obtain the orientation of the vector sensor so its components may be rotated into a 

common coordinate system for processing. Any noise or errors in the measurement of the 

orientation will manifest themselves as errors in the acceleration components. Regardless 

of the source of noise, vector sensors may experience a drastic decrease in localization 

performance, especially if only a single sensor is used. 

One of the methods which has been used to mitigate these problems is to weight 

the pressure and velocity components depending on the amount of noise present (Gerald 

L. D'Spain et al., 2006). This method aims to maximize the detection performance of a 

vector sensor array. It also only allows control of the pressure and velocity inputs through 

the selection of their weights. If localization performance is the primary concern, the 
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optimum weights may differ. The weights could also be more general and encompass all 

components of the data covariance matrix to account for noise which is correlated for same-

sensor components and uncorrelated across sensors. Furthermore, the positional 

uncertainty of the sensor locations is not accounted for in the prior work by D’Spain et al. 

Some past work has been done on optimal processing of perturbed hydrophone arrays 

(Schultheiss, 1980), and it was found that the optimum processing is not much better than 

traditional processing for small perturbations, and no benefit is gained for large 

perturbations. These results indicate that a perturbed array could benefit from an array 

processing scheme which is robust to both sensor noise and perturbations. 

Section 5.2 introduces such a beamforming framework, which weights the data 

covariance matrix element-wise. It also proposes a novel weighting method which is both 

robust to local noise (e.g. flow noise) and sensor location errors. Section 5.3 examines the 

performance of traditional beamforming methods and the novel method using simulated 

and experimental data. Section 5.4 demonstrates the performance of the localization 

methods when the sensor locations are derived from various sources. The AEL 

methodology proposed in Chapter 4 is also validated in Section 5.4, where the localization 

performance is compared in relation to GPS-derived sensor locations. 

5.2 Weighted Array Signal Processing 

5.2.1 Vector Sensor Beamforming Theory 

 Assume 𝑁 vector sensors are located in free space, and they record a time-domain 

data vector 

 �⃗⃗� (𝑡) = [𝑝1(𝑡) 𝑣1𝑥(𝑡) 𝑣1𝑦(𝑡) 𝑣1𝑧(𝑡) … 𝑝𝑁(𝑡) 𝑣𝑁𝑥(𝑡) 𝑣𝑁𝑦(𝑡) 𝑣𝑁𝑧(𝑡)]𝑇 96 
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where a numerical subscript denotes the i-th sensor, and the p, x, y, z subscript denotes the 

pressure, or corresponding axis of velocity. Note that all components of velocity are 

assumed to be in the same coordinate system (see Section 2.3.2). Furthermore, assume all 

preprocessing steps have already been applied beforehand (see Section 2.3.4). The 

frequency domain data vector is obtained by taking the Fourier transform of the time-

domain data vector, and produces 

 �⃗⃗� (𝜔)

= [𝑝1(𝜔) 𝑣1𝑥(𝜔) 𝑣1𝑦(𝜔) 𝑣1𝑧(𝜔) … 𝑝𝑁(𝜔) 𝑣𝑁𝑥(𝜔) 𝑣𝑁𝑦(𝜔) 𝑣𝑁𝑧(𝜔)]𝑇 

97 

Pairwise correlation of each component of data can then be performed in the frequency 

domain by multiplying the spectra by their complex conjugate, which in matrix form is 

represented by the data covariance matrix 

 
𝑅(𝜔) = 𝑑(𝜔)𝑑(𝜔)𝐻 = [

𝐶11(𝜔) 𝐶12(𝜔) …

𝐶21(𝜔) 𝐶22(𝜔) …
⋮ ⋮ ⋱

] 98 

where the H superscript denotes Hermitian transposition (complex conjugate transpose) 

(Nichols & Sabra, 2015). The submatrices 𝐶𝑖𝑗(𝜔) are 4x4 submatrices pertaining to the 

cross-spectra of data from sensor i to sensor j and is defined by 

 

𝐶𝑖𝑗 = 

[
 
 
 
 
𝑝𝑖𝑝𝑗

∗ 𝑝𝑖𝑣𝑗𝑥
∗ 𝑝𝑖𝑣𝑗𝑦

∗ 𝑝𝑖𝑣𝑗𝑧
∗

𝑣𝑖𝑥𝑝𝑗
∗ 𝑣𝑖𝑥𝑣𝑗𝑥

∗ 𝑣𝑖𝑥𝑣𝑗𝑦
∗ 𝑣𝑖𝑥𝑣𝑗𝑧

∗

𝑣𝑖𝑦𝑝𝑗
∗ 𝑣𝑖𝑦𝑣𝑗𝑥

∗ 𝑣𝑖𝑦𝑣𝑗𝑦
∗ 𝑣𝑖𝑦𝑣𝑗𝑧

∗

𝑣𝑖𝑧𝑝𝑗
∗ 𝑣𝑖𝑧𝑣𝑗𝑥

∗ 𝑣𝑖𝑧𝑣𝑗𝑦
∗ 𝑣𝑖𝑧𝑣𝑗𝑧

∗
]
 
 
 
 

 99 

where the * superscript denotes complex conjugation and the explicit dependence on 

frequency is omitted for clarity. The diagonal block matrices 𝐶𝑖𝑖 are referred to as the 

incoherent matrices, as they contain only cross-spectra of components on the same sensor. 
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Off-diagonal block matrices 𝐶𝑖𝑗 , 𝑖 ≠ 𝑗 are referred to as coherent matrices, as they require 

coherent cross-spectra of data across different sensors. 

 To locate a single source in free space, the classical Bartlett beamformer is 

employed (Van Trees, 2004) 

 𝐵(𝜔, 𝜃) = 𝑤(𝜔, 𝜃)
𝐻
𝑑(𝜔)𝑑(𝜔)𝐻𝑤(𝜔, 𝜃) 100 

where the search space vector 𝜃 is an arbitrary vector describing the unknown source 

parameters, 𝑤 is the steering (or replica) vector, and 𝐵 is the beamformer output power. 

For simple direction of arrival (DOA) estimation, the parameter vector is simply the 

unknown angle from the array to the source. The angle which maximizes the output power 

is the assumed source bearing. In the case of an arbitrary sparse vector sensor array, the 

source may not be at the same bearing for each sensor, so the parameter vector must take 

this into account. For this chapter, the source’s 3D location is the unknown, so the 

parameter vector is given by 

 𝜃 = �⃗� 𝒔 = [𝑟𝑠𝑥 𝑟𝑠𝑦 𝑟𝑠𝑧]𝑇 101 

where the position of the source is �⃗� 𝒔. 

 The steering, or replica, vector in Equation 100 is formulated such that a correct 

match of the parameter vector to the parameters that generated the data vector 𝑑 produces 

the maximum beamformer output power (Hawkes & Nehorai, 1998). In other words, the 

replica vector represents the data vector that would be recorded when the source is located 

at the estimated location 𝜃. For a simple spherical wave emanating from the source without 

spherical spreading losses, the weight vector is given by 
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 𝑤(𝜔, 𝜃)

=
[𝑒𝑗𝜔𝜏1  𝑒𝑗𝜔𝜏1 cos 𝜃1 cos𝜙1 𝑒𝑗𝜔𝜏1 sin 𝜃1 cos𝜙1 𝑒𝑗𝜔𝜏1 sin𝜙1

𝑒𝑗𝜔𝜏2 𝑒𝑗𝜔𝜏2 cos 𝜃2 cos𝜙2 𝑒𝑗𝜔𝜏2 sin 𝜃2 cos𝜙2 𝑒𝑗𝜔𝜏2 sin𝜙2]
𝑇

 

102 

where the relative time delay of the wave arriving at sensor i is 𝜏𝑖, defined by the distance 

of sensor i to the source divided by an assumed constant sound speed 𝑐. The azimuth, 𝜃𝑖, 

and elevation, 𝜙𝑖, angles describe the angle of the source to the i-th sensor (see Figure 90 

and Figure 91). 

 

 

 

Figure 90:  Vector sensor propagation direction convention, with azimuth angle 𝜃 and 

elevation angle 𝜙. 
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Figure 91: Propagation from source to sensor i, with azimuth angle 𝜃𝑖 and elevation 

angle 𝜙𝑖. The x, y, z, coordinate system is assumed to be aligned with North, East, and 

Down respectively (NED coordinate system). 

 For any frequency and selection of a parameter vector, the beamforming process 

(see Equation 100) can be simply written as 

 𝐵 = 𝑤𝐻𝑅𝑤 103 

where the covariance matrix 𝑅 is defined in Equation 98. To locate a source using a wide 

band of frequencies, the beamformer output is calculated for each frequency as in Equation 

100. Its time-domain response 𝐵(𝑡) is obtained through an inverse Fourier transform, and 

should contain a single peak centered at 𝑡 = 0 if the parameter vector estimate matched the 

true parameters. For this reason, the wide-band beamformer output power is defined as 

 

Π(𝜃) = √∫(𝑓(𝑡)𝐵(𝑡, 𝜃))
2

𝑑𝑡 104 
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where 𝑓(𝑡) is a narrow time window centered at 𝑡 = 0 whose width is inversely 

proportional to the signal bandwidth (Nichols & Sabra, 2015). A typical choice of 𝑓(𝑡) is 

a rectangular window whose width is 2/𝐵. This encapsulates the main lobe of the cross-

spectrum peaks. Thus, an incorrect parameter vector won’t shift the cross-spectral peaks to 

reside within the window, and the wide-band beamformer power will be smaller than that 

for the correct parameter estimate. 

 A typical application of the beamformer described here is to define a search space 

of likely candidates for the parameter vector, in this case a 3D search space for the source 

location. Then, for a discretized set of parameter vectors within the search space, the 

beamformer output power is computed. The estimated source location is given by the 

parameter vector which maximizes the output power, i.e. 

 𝜃𝒔 = max
�̂�∈𝑆

Π(𝜃) 105 

where 𝑆 denotes the search space. In the case of tracking a surface vessel, the source’s z 

position is known to be zero (i.e. at the surface). This allows the search space to be the 2D 

plane defined by 𝑧 = 0. When plotted over this plane, the beamformer output power Π(𝜃) 

is also referred to as an ambiguity surface. An example of such an ambiguity surface is 

shown in Figure 92, where the beamformer output power is normalized between 0 and 1 

and plotted as a function of the 2D search space. 
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Figure 92: Sample ambiguity surface normalized to unit amplitude. The evaluation 

points are shown as gray dots, and the surface is interpolated between them. The 

estimated source location is given by the maximum of the ambiguity surface (red cross), 

and its error shown with a red arrow. 

The gray dots in Figure 92 denote the discrete locations at which the beamformer output 

power was calculated, and the color of the surface is interpolated between these vertices. 

The darker the surface, the higher the beamformer power and thus, the more likely a source 

resides at that location. Shown as a red cross, the estimated source position �̂�𝒔 is located at 

the maximum of the ambiguity surface. The accuracy of the estimate can be represented as 

its distance to the actual source (red arrow), and is defined by 

 𝜖𝑎 = |�̂�𝒔 − �⃗� 𝒔| 106 

In addition to an accuracy metric, a precision metric is introduced which describes the 

probable error in the source location, or in other words, how much larger the beamformer 
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output is for the estimated source location relative to other locations. Thus, the precision 

of an estimate is defined by 

 
𝜖𝑝 = 10 log10 (

(P − 1) Π(�̂�𝒔)

∑ Π(�⃗� 𝒔)�⃗� 𝒔≠�̂�𝒔

) 107 

where 𝑃 is the number of discrete points in the ambiguity surface. Thus, the precision gives 

a ratio of the peak beamformer output relative to the average non-peak output (that is 

equivalent to a peak-to-sidelobe ratio for the beamformer output). Together, the accuracy 

and precision define a beamforming method’s ability to accurately locate a source and how 

precisely the location is known. Alternatively, the precision is a useful metric for source 

detection, as a precision of 0 dB indicates a constant ambiguity surface (i.e. no source 

present). Values much higher than 0 dB indicate the strong presence of a source. 

5.2.2 Weighted Correlation Matrices 

 Performing beamforming as described in Section 5.2.1 with the covariance matrix 

equal to  

 
𝑅 =  [

𝐶11 𝐶12 …
𝐶21 𝐶22 …
⋮ ⋮ ⋱

] 108 

is hereafter referred to as coherent beamforming, where all components of sensor cross-

spectra are present in the beamformer output. The reason the covariance matrix is 

represented in the block-matrix format of Equation 108/98 is to highlight the properties of 

each block matrix. For example, the incoherent matrices 𝐶𝑖𝑖 represent correlations of data 

on the same sensor. If the sensor is in the presence of localized acoustic noise, it is possible 

the correlations within are corrupted by the noise. Likewise, if time-synchrony across 
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sensors is not guaranteed, the correlations in the coherent matrices 𝐶𝑖𝑗, 𝑖 ≠ 𝑗, would not 

yield much useful information. For these reasons, one might be interested in optimizing 

the beamformer output to account for noise, time-synchrony errors, sensor positional 

errors, etc. To this end, the covariance matrix from Equation 108 can be element-wise 

weighted to produce a weighted covariance matrix 

 𝑅𝑤 = 𝑊 ⊙ 𝑅 109 

where the ⊙ operator denotes an element-wise (Hadamard) product, and 𝑊 is an arbitrary 

matrix of weighting components. The covariance-weighted beamformer output is then 

calculated for each frequency and estimated parameter vector as 

 𝐵𝑤 = 𝑤𝐻𝑅𝑤𝑤 110 

 As stated before, fully coherent processing uses all terms in the covariance matrix, 

thus its weight matrix is  

 𝑊𝐶 = 𝟏4𝑁 111 

where 𝟏𝑛 denotes an n by n square matrix of ones. Incoherent processing only uses same-

sensor correlations, thus its weight vector is 

 

𝑊𝐼 = [

𝟏4 𝟎4 𝟎4 ⋯

𝟎4 𝟏4 𝟎4

𝟎4 𝟎4 𝟏4

⋮ ⋱

] 112 

where 𝟎𝑛 denotes an n by n square matrix of zeros. 

 In the event the vector sensors are subject to large amounts of local noise (e.g. flow, 

surface noise or biological noise), the incoherent terms may be unusable for source 
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localization (Hawkes & Nehorai, 2001). Although far from optimal, a novel method of 

weighting is proposed which nullifies the contribution of the incoherent terms, and is 

referred to as cross-coherent processing. Its weight matrix is given by 

 

𝑊𝐶𝐶 = [

𝟎4 𝟏4 𝟏4 ⋯

𝟏4 𝟎4 𝟏4

𝟏4 𝟏4 𝟎4

⋮ ⋱

] 113 

Such a method uses only correlations across sensors, which are less affected by localized 

noise at each sensor. This is especially true for sparse arrays where the distances between 

sensors may be extremely large. Thus, the performance of the cross-coherent method 

should outperform the incoherent method as the noise levels increase. However, it will 

require more precise sensor location estimates as it is still a coherent processing method 

(Culver & Hodgkiss, 1988; S. E. Dosso et al., 2004). To evaluate the performance of each 

of these methods, simulated and experimental data are processed in the following section, 

and the performance metrics of Equations 106 and 107 are compared. 

5.3 Localization Performance with Positional Uncertainty 

5.3.1 Simulation Methodology and Results 

 Simulations were carried out in a simple free-space environment in which the 

source emits a spherical wave that is received by each sensor as a plane wave propagating 

radially (see Figure 93). Spherical spreading and impedance were neglected since the 

receivers are all assumed to be in the far field as well as whitened to normalize their 

received amplitudes. Furthermore, the simulations restricted the sensor and source 

locations to the surface plane, since the distances between sensors and source are much 

larger than any possible sensor depth. 
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Figure 93: Simulation model, where the source signal 𝑠(𝑡) is broadcast and received 

by each sensor as a plane wave. The source signal is delayed by the distance to the source 

(𝑑𝑖(𝑡)) divided by a constant sound speed 𝑐. The velocity received by each sensor is 

𝑢𝑖(𝑡). 

 The source is assumed to be a random point source radiator, broadcasting a signal 

𝑠(𝑡) which is Gaussian white noise with unit power (or variance). Each sensor receives a 

delayed version of this signal plus additive noise whose SNR is defined by 

 
𝑆𝑁𝑅 =

𝜎𝑠
2

𝜎𝑛
2
 114 
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where the signal power 𝜎𝑠
2 is arbitrarily chosen to be unity, and the noise standard deviation 

is 𝜎𝑛. The signal is assumed to propagate at a constant sound speed 𝑐 across a distance 

𝑑𝑖(𝑡) to reach the i-th sensor. Thus, the pressure received at the i-th sensor is 

 
𝑝𝑖(𝑡) = 𝑠 (𝑡 −

𝑑𝑖(𝑡)

𝑐
) + 𝑆𝑁𝑅𝑝

−1/2
𝑛𝑖𝑝(𝑡) 115 

where 𝑆𝑁𝑅𝑝 is the SNR of the pressure channels, and 𝑛𝑖𝑝(𝑡) is Gaussian white noise with 

unit power which is assumed uncorrelated to the source signal or any other additive noise 

signals. Note that the distance from source to sensor i, 𝑑𝑖(𝑡), should in fact be evaluated at 

a retarded time which indicates the distance when the signal was emitted. However, it is a 

fair assumption that the source and sensors are moving much slower than the speed of 

sound, and thus the distance does not change appreciably during the propagation time. 

Assuming a plane wave arrival at the i-th sensor, the velocity received is 

 
�⃗⃗� 𝒊(𝑡) =

�⃗⃗� 𝒊(𝑡)

𝜌0𝑐
𝑠 (𝑡 −

𝑑𝑖(𝑡)

𝑐
) + (3𝑆𝑁𝑅𝑣)

−1/2�⃗⃗� 𝒊𝒗(𝑡) 116 

where �⃗⃗� 𝒊(𝑡) is the vector pointing from source to sensor at time t, 𝜌0 is the ambient density, 

𝑐 the sound speed, 𝑆𝑁𝑅𝑣 the velocity channel SNR, and �⃗⃗� 𝒊𝒗(𝑡) the velocity Gaussian white 

noise signal with diagonal, unit covariance. The factor of three is introduced such that the 

power of the velocity signal magnitude to noise magnitude is given by 𝑆𝑁𝑅𝑣 (Gerald L. 

D'Spain et al., 2006). 

 To simulate positional uncertainty in the sensor locations, a positional noise vector 

is added to the sensor locations after the data simulation has taken place with the nominal 

positions. The error vector is given by 
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 �⃗� 𝒊 = 𝜎 ⋅ [𝑒𝑥 𝑒𝑦 0]
𝑇
 117 

with 𝜎 defining the standard deviation in position error, and 𝑒𝑥, 𝑒𝑦 being Gaussian random 

variables with zero-mean and unit variance. Positional error is only added in the surface 

plane, since future simulations are neglecting the vertical positions. Furthermore, each 

sensor receives added positional noise which is uncorrelated in the x and y directions, as 

well as for different sensors. Although a simplification of the often-complex positional 

errors which may arise, including correlated errors across different sensors or the x and y 

axes, this analysis will prove useful as a worst-case scenario if 𝜎 is chosen to match the 

maximum value experienced in any direction. 

 To test the localization performance of the methods introduced in Section 5.2.2, 

simulated data were generated for 10 second snapshots with a sample rate of 5512.5 Hz 

and filtered in the band 100 – 800 Hz. The assumed sound speed was 1494 m/s and ambient 

density 992 kg/m3. The source and sensor locations were constant across the 10 second 

simulation snapshot and are plotted in Figure 94. 
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Figure 94: Simulation methodology, showing locations of each sensor surrounding 

the source. The search area is shown in the inset and is a 51 x 51 grid with 4-meter 

spacing, with an example interpolated ambiguity surface. 

The ambiguity surface was evaluated on an equally-spaced grid centered on the true source 

location containing 2601 points (51 x 51), with 4 meters horizontally and vertically 

between points, for a total search area 204 x 204 meters large. All simulated acoustic data 

was preprocessed by filtering/whitening, clipping, then filtering again (see Section 2.3.4) 

in order to match the steps taken in experimental analyses. The pressure and velocity SNR 

(𝑆𝑁𝑅𝑝, 𝑆𝑁𝑅𝑣) as well as the standard deviation of positional error 𝜎 were varied in each 

trial. A sample set of ambiguity surfaces (generated for a larger set of points for 

demonstration purposes) is shown for each beamforming method in Figure 95. 
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Figure 95: Sample ambiguity surfaces for simulated localization using positional 

standard deviation of 10 meters and 15 dB SNR. The surface is normalized to unit 

amplitude, and the estimated source location is displayed as a red cross. The true source 

location is a black circle with white border and the sensor locations are black squares. 

The sample ambiguity surfaces were generated using 𝜎 = 10 meters and 𝑆𝑁𝑅𝑝 = 𝑆𝑁𝑅𝑣 =

15 dB. Beamformer output powers were normalized to the range 0 to 1 for each ambiguity 

surface. Note that these results are only for a single statistical realization and do not reflect 

the overall performance of each method. However, some properties of each method 

become apparent, such as the relative imprecision the incoherent method displays. This 

indicates the presence of noise is likely to be able to vastly skew the estimated source 

location. Furthermore, note the high precision of the source estimate in the cross-coherent 

case, although its estimate is inaccurate. This is due to the positional error which was added 

to the sensor positions. Figure 95 gives a sense of what is to be expected from the simulated 

results: the optimum method will depend on the amount of acoustic and positional noise 

present. 

 The simulation results presented in Figure 96 and Figure 97 reflect the average 

performance of 50 statistical trials, each with different random number generator seeds. 

This ensures the signal, noise and positional noise vectors are different for each trial. 
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Figure 96: Localization error for high SNR (15 dB pressure, 15 dB velocity) in solid 

lines and low SNR (-5 dB pressure, -10 dB velocity) in dashed lines. The incoherent 

weighting is shown in blue, the coherent in green, and the cross coherent in red. 

The solid lines in Figure 96 show the high SNR results, with 𝑆𝑁𝑅𝑝 = 𝑆𝑁𝑅𝑣 = 15 dB. The 

dashed lines correspond to a low SNR case, with 𝑆𝑁𝑅𝑝 = −5 dB and 𝑆𝑁𝑅𝑣 = −10 dB. 

The high SNR case shows that the incoherent method outperforms the coherent methods 

when the positional errors increase beyond a meter or so. However, for negligible 

positional error (< 1 m), the coherent methods have no error. In the case of very low SNR, 

the incoherent method no longer outperforms the coherent methods. Both coherent 

methods have very similar performance for low SNR, only slightly worsened with the 

increased noise. Also worth noting is that the cross-coherent method outperforms the 

coherent method slightly for modest positional errors (< 20 m) and both noise cases. 
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Figure 97: Localization precision for high SNR (15 dB pressure, 15 dB velocity) in 

solid lines and low SNR (-5 dB pressure, -10 dB velocity) in dashed lines. The incoherent 

weighting is shown in blue, the coherent in green, and the cross coherent in red. 

 Examining the localization precision, plotted in Figure 97, the cross-coherent 

method performs the best for both high and low SNR, and across all positional errors. The 

coherent method performs second-best, but shows a more noticeable decrease in precision 

for low SNR (dashed line) than the cross-coherent, which seems more robust to decreased 

SNR. Lastly, the incoherent method has very low precision (almost 0 dB), indicating that 

the ambiguity surface is approximately the same value as the maximum value. This 

property is likely why the error increases so drastically when noise is added; any slight 

increase in the ambiguity surface at the wrong location could easily cause a new maximum 

to be found there. 
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5.3.2 Experimental Methodology and Results 

 To validate the proposed beamforming framework and weighting methods from 

Section 5.2, experimental data collected from the October 30 dataset were analyzed. The 

source tracked is the research vessel (R/V), whose location is known from GPS 

measurements taken during the experiment. Since the vessel is moving, the experimental 

data is segmented into windows of length 𝑇 = 5 seconds (i.e. snapshot duration). The 

maximum vessel speed observed was 13.5 kts (~7 m/s), which means the vessel travels no 

more than 35 meters in a given window. The segment length was chosen to be as short as 

possible, but long enough that the beamforming process is robust to noise. Shorter 

segments often resulted in erratic localization behavior, and longer segments usually were 

acceptable, but could degrade localization performance if the source moves significantly 

over a period. 

 Acoustic data from three periods, hereafter referred to as P1, P2, and P3, were 

analyzed. Each period consisted of the research vessel either approaching or retreating from 

the array. Each period also contained a section of data where the vessel performed 

maneuvers around the array, either circling it, passing through it, or a combination of both. 

The acoustic data were preprocessed using a filtering step, followed by integration and 

pressure unit conversion, then finally another filtering step (see Section 2.3.4). The filtering 

was performed in the widest band possible of 200 – 1500 Hz to avoid low frequency 

acceleration noise and integration noise, as well as the higher frequency accelerometer 

resonant peak. A sample of the source power spectral density (PSD), filtered to the stated 

band, is plotted in Figure 98. 
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Figure 98: Power spectral density of source at 11:33:00-11:33:10 

Clipping was unnecessary as a preprocessing step, as the source signal did not contain 

significant peaks. Whitening was avoided since it tends to skew the relative amplitudes of 

the velocity channels, causing incoherent methods which rely solely on this information 

for localization to perform poorly. 

 Period 1 lasted from 11:33:00 to 11:38:10 while the R/V made maneuvers around 

the array and then retreated (see Figure 99). 
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Figure 99: Period 1 sensor locations and source (R/V Greeley) locations. 

The sensors with synchronized data (0002, 0004, 0005) were in a triangle formation, not 

drifting much throughout the period (see Figure 100). It was during this time the tides were 

changing direction from West to East. 
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Figure 100: Period 1 sensor positions with sample separation distances. Note sensor 

0002’s GPS antenna malfunctioned, causing erratic measurements. 

Note that sensor 0002 had a malfunctioning GPS antenna, and thus its position appears to 

be erratic. This is not actually the case, but will unfortunately add additional sources of 

error during localization. A correlation ensemble (see Section 4.2.1) between pressure 

channels on sensors 0004 and 0005 shows a clear coherent peak due to the source (see 

Figure 101). Each correlation is normalized to its own maximum, and the magnitude is 

obtained using the magnitude of the Hilbert transform. The difference in distance from the 

source to each sensor divided by the sound speed (1500 m/s) is overlaid with a black line, 

and represents the estimated location of the coherent peak which should result. The bottom 

horizontal color bar indicates the relative maximum of each correlation with respect to the 

total maximum. As time goes on, the correlation maxima become smaller due to the boat 

receding from the array and getting quieter. 
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Figure 101: Correlation ensemble for 5 second intervals over the course of Period 1. 

Each correlation in the ensemble is normalized to its own maximum. These maxima are 

plotted relative to the overall maximum in the bottom panel. The black line denotes the 

estimated correlation delay given the source and sensor positions and a sound speed of 

1500 m/s. 

A grid of test points for the beamforming algorithm to evaluate (see Section 5.2.1) was 

chosen to encompass the possible source locations (see Figure 102). It attempts to strike a 

balance between being too broad and taking too much time to evaluate and being too 

narrow such that the localization has no choice but to “succeed”. 
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Figure 102: Ambiguity surface grid points for Period 1. 

A sample normalized ambiguity surface for each beamforming method at 11:33:10 is 

plotted using a color scale in which black denotes the maximum (i.e. unity) and white 

indicates the minimum. The actual source and sensor locations are plotted as well as the 

estimated source location obtained from the maximum of the ambiguity surface (see Figure 

103, Figure 104, Figure 105). 
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Figure 103: Sample incoherent ambiguity surface for one 5-second segment. The true 

source is shown as a green dot (R/V Greeley) and the estimated source as a purple dot. 

 

Figure 104: Sample coherent ambiguity surface for one 5-second segment. The true 

source is shown as a green dot (R/V Greeley) and the estimated source as a pink dot. 
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Figure 105: Sample cross coherent ambiguity surface for one 5-second segment. The 

true source is shown as a green dot (R/V Greeley) and the estimated source as a sky blue 

dot. 

These results are similar to the simulation results seen in Section 5.3.1: the incoherent is 

accurate but not precise, the cross-coherent is precise and accurate, and the coherent falls 

somewhere in between. The accuracy of the incoherent method indicates the SNR of the 

source is high, which makes sense given its proximity (~100 meters) to the sensors. 

Another aspect of these results shows that the range-resolution of the array is limited, and 

will especially be strained when the source is much further from the array. For this reason, 

only the bearing to the source will be considered in the following results, and the error 

metric is modified to be 

 𝜖𝑏 = 𝜃𝑠 − 𝜃𝑠 118 

where 𝜃𝑠 is the bearing from the array centroid to the source and 𝜃𝑠 is the bearing to the 

estimated source location. The precision metric is identical to that in Equation 107, 
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however it is worth noting that the metric is not search-space invariant (i.e. the precision 

changes as the search space changes). Figure 106a shows the bearing error for 5-second 

snapshots over the duration of P1, for each of the three weighting methods. Figure 106b 

shows the localization precision for each snapshot. 

 

Figure 106: Localization accuracy and precision over Period 1 for the incoherent 

(purple), coherent (pink) and cross-coherent (blue) methods. The letter markers (A, B, C) 

match the times shown in Figure 99. 

The results show that the incoherent method is relatively accurate, and consistently so over 

the entire period. The coherent methods do not fare as well; on average they are accurately 

locating the source, but occasionally display a large error for a single snapshot. This could 

be easily avoided using a source tracking algorithm implemented with Kalman filters or 

the like. It is most likely the result of sensor 0002’s malfunctioning GPS, which effectively 
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puts the positional error much higher than it would be for accurate GPS (~ 10 m instead of 

1.5 m). As seen in the simulation results (see Section 5.3.1), the coherent methods have 

higher error than the incoherent method for high SNR cases. This is experimentally verified 

since the vessel was close by for the entire period, thus having relatively large SNR (see 

correlation ensemble in Figure 101). 

 Furthermore, the precision of the localization is somewhat similar to simulation 

results. The cross-coherent method obtains the highest precision which decreases as the 

source moves further away, decreasing SNR. The coherent method also shows a similar 

effect, but with lower overall precision. The only difference between the experimental 

results and simulation is the higher precision of the incoherent method, which is due to the 

difference in the search space. In simulation, the search space was very localized to around 

the stationary source. In this case, the search space encompasses many points not near the 

source. This ensures there are points in the space which will be in a direction different to 

the true source direction, thus having smaller output even for the incoherent beamformer. 

Ideally, the precision metric should be invariant of the search space, or be defined for a 

search space which is nearly infinite. However, computational limitations dictated the 

search space be as small as possible. 

 The second period, P2, lasted from 13:30:30 to 13:51:10 local time of October 30th. 

The R/V was returning to the array from a standoff distance of ~4.5 km (see Figure 107) 

to reposition the sensors, as they had drifted far from each other. Before approaching any 

sensors, the vessel performed a maneuver through the array, this time sharper and more 

sudden than that of P1. 
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Figure 107: Period 2 sensor locations and source (R/V Greeley) locations. 

 The sensors had drifted from West to East over this period, diverging from their 

initial close separations to over 80 meters apart (see Figure 108). The array also became 

more linear from North to South, rather than their triangular configuration seen during P1. 

The aperture of this array was approximately 150 meters, increasing to almost 200 meters 

by the end of the period. Again, note that sensor 0002 displayed poor GPS locations due to 

its antenna malfunction. 
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Figure 108: Period 2 sensor positions with sample separation distances. Note sensor 

0002’s GPS antenna malfunctioned, causing erratic measurements. 

 The search space required for this period is much larger than that used in P1, since 

there was a larger number of possible source locations across the entire period. This could 

be remedied in the future if the search space is limited to where the source is believed to 

be, given its history (e.g. using Kalman filtering). In any case, as a proof of concept, the 

search space is shown in Figure 109, encompassing a large area around the source and 

sensors. 
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Figure 109: Ambiguity surface grid points for Period 2. 

 An example ambiguity surface is shown for each method at 13:38, denoted by 

marker B in Figure 107. The incoherent surface is plotted in Figure 110, the coherent in 

Figure 111, and the cross-coherent in Figure 112. 
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Figure 110: Sample incoherent ambiguity surface for one 5-second segment. The true 

source is shown as a green dot (R/V Greeley) and the estimated source as a purple dot. 

 

Figure 111: Sample coherent ambiguity surface for one 5-second segment. The true 

source is shown as a green dot (R/V Greeley) and the estimated source as a pink dot. 
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Figure 112: Sample cross-coherent ambiguity surface for one 5-second segment. The 

true source is shown as a green dot (R/V Greeley) and the estimated source as a sky blue 

dot. 

 These ambiguity surfaces are evocative of the simulation results again, in that the 

incoherent displays a wide beam (i.e. dark area) in the direction of the source. The cross-

coherent method shows increased noise as the background “clutter” in the ambiguity 

surface. It is also apparent that the cross-coherent method still leverages the sensor 

directionality, as the clutter noise amplitude is larger in the direction of the source (i.e. in 

the same areas the incoherent method shows high output). The coherent method is again 

somewhere between the incoherent surface and cross-coherent surface, as it is simply the 

combination of the two. Also, worth noting is the slight bearing error of the coherent 

methods compared to a more severe error seen in the incoherent case. This effect 

corroborates the simulation findings where the incoherent method fails for low SNR, 

even when the coherent methods still function properly. 
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 As was the case in P1, the range resolution of the array is limited due to the 

closely-spaced sensors. Again, the localization accuracy will be displayed using the 

bearing error (Equation 118). A future experiment which is not opportunistic in nature 

should attempt to position the sensors further from each other to test absolute error. 

Figure 113a shows the localization accuracy over the 5-second snapshots of P2, and 

Figure 113b shows the localization precision for each method. 

 

Figure 113: Localization accuracy and precision over Period 2 for the incoherent 

(purple), coherent (pink) and cross-coherent (blue) methods. The letter markers (A, B, C) 

match the times shown in Figure 107. 

 The results shown in Figure 113 show a clear period between marker A and B where 

the localization fails. This is simply due to the source being too far from the array for it to 
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be detected (as was intended when the 4.5 km standoff distance was selected). At point B, 

and possibly even before, the source is being properly localized. One might even argue that 

the coherent methods were detecting the source before point B, but with a small positive 

bearing error (which could be simply due to the GPS errors present in sensor 0002). From 

point B to point C, the results are very similar to P1, where all methods locate the source 

on average. The coherent methods show more spurious peaks, and all methods fail when 

the source is too close (i.e. source driving through the array) and the free-space, far-field 

assumptions of the beamformer are no longer upheld as multipath propagation effects start 

to become more significant when the source moves closer to the array in this shallow water 

environment. 

 The localization precision of each method follows a similar trend to P1. The cross-

coherent method again has the highest precision, followed by the coherent and closely 

behind by the incoherent. The precision increases during this period however, as the source 

is moving closer to the array, thus increasing the SNR. 

 Finally, the third period, P3, lasted from 14:27:30 to 14:45:10 local time. The R/V 

had just finished repositioning the array elements and performed a simple circular 

maneuver (marker A) around the array, then proceeded to the 4.5 km standoff distance 

(marker C, see Figure 114). 
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Figure 114: Period 3 sensor locations and source (R/V Greeley) locations. 

 During P3, the array remained somewhat linear while drifting from West to East 

(see Figure 115). The apparent separation distance is small when all locations are plotted 

simultaneously as in Figure 115, however the separation distance mainly is due to differing 

easterly positions, and varied from 30 meters to 60 meters. Sensor 0002’s GPS malfunction 

appears to be slightly better-behaved during this period, which may help the coherent 

methods’ accuracy. 
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Figure 115: Period 3 sensor positions. Note sensor 0002’s GPS antenna 

malfunctioned, causing erratic measurements. 

 The search space for P3 is shown in Figure 116, and was chosen to encompass the 

source and sensors with enough added area to ensure the success of localization was not 

due to a restrictively small search space. 
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Figure 116: Ambiguity surface grid points for Period 3. 

Ambiguity surfaces for each method are shown for 14:38:20 (marker B in Figure 114). The 

incoherent surface is shown in Figure 117, the coherent in Figure 118, and the cross-

coherent in Figure 119. 
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Figure 117: Sample incoherent ambiguity surface for one 5-second segment. The true 

source is shown as a green dot (R/V Greeley) and the estimated source as a purple dot. 

 

Figure 118: Sample coherent ambiguity surface for one 5-second segment. The true 

source is shown as a green dot (R/V Greeley) and the estimated source as a pink dot. 
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Figure 119: Sample cross-coherent ambiguity surface for one 5-second segment. The 

true source is shown as a green dot (R/V Greeley) and the estimated source as a sky blue 

dot. 

 The sample surfaces demonstrate a case where the cross-coherent method maintains 

an accurate estimate when the incoherent and coherent do not. This could be the result of 

an interfering source to the North which has biased the incoherent beam quite far from the 

R/V (see Figure 117). The coherent method also shares this bias, as its cross-coherent 

component is not large enough to overrule the incoherent component. In other words, the 

coherent method shares a dark sidelobe in the direction of the source with the cross-

coherent method, however the incoherent main lobe is larger (see Figure 118). The cross-

coherent method eschews the incoherent information, which allows this coherent lobe to 

accurately locate the source. Furthermore, note that the cross-coherent surface displays 

three lobes. These are the result of intersecting hyperbolae which correspond to the 

correlation time delay of the source. Each pair of sensors produces a hyperbola for the 
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source’s differential arrival time. The hyperbolae are scaled by the sensor directionality, 

and their intersection should align with the true source location. This indicates the cross-

coherent method acts as a method which solves for the source location from time-

difference-of-arrival (TDOA) information using intersecting hyperbolae. This makes 

sense, since the fundamental source of information in the cross-coherent method is the 

cross-correlation between sensors, yielding peaks at the TDOA times. 

 Figure 120a plots the localization accuracy over P3 for each 5-second segment. 

Figure 120b plots the localization precision for each method. 

 

Figure 120: Localization accuracy and precision over Period 3 for the incoherent 

(purple), coherent (pink) and cross-coherent (blue) methods. The letter markers (A, B, C) 

match the times shown in Figure 114. 
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 Similar results to P1, P2 and simulation are obtained for P3. The localization error 

is erratic for the coherent methods, and more stable for the incoherent method from marker 

A to B. Just before marker B, the coherent and incoherent methods begin to fail, and a short 

time later, the cross-coherent method fails as well. At this point, the source has moved too 

far from the array to be reliably located. A few snapshots between B and C show small 

error for the coherent methods, which might simply be random luck if the localization is 

so erratic. Again, a tracking algorithm could improve the bearing error, as well as improved 

GPS accuracy (e.g. fixing sensor 0002), or spreading the sensors further apart as done in 

simulation. 

 The localization precision is highest for the cross-coherent method, and varies as 

the source moves further from the array. It is unclear why the precision peaks again after 

marker A, but this could be the result of more complicated bathymetry present in the area 

of P3. As seen in the previous periods, the incoherent has the smallest precision, closely 

followed by the coherent method. The large search space relative to simulation results 

allows the incoherent precision to nearly match that of the coherent. This near-matching 

also corroborates the finding displayed in Figure 118, where the coherent ambiguity surface 

appears to be more heavily favoring the incoherent components. The result is that the 

ambiguity surface is not drastically different from the incoherent, thus its precision is 

almost identical. 

5.3.3 Conclusion 

 Source localization using weighted correlation matrices was tested on simulated 

and experimental vector sensor data. Incoherent processing was shown to be accurate in 

high SNR cases, and robust to sensor position errors. However, its accuracy suffers greatly 
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when more noise is present. Furthermore, its precision is usually quite low. The coherent 

methods display higher precision, but at the cost of accuracy if the positional noise is high. 

They also perform better under low SNR conditions, with the cross-coherent method 

retaining high precision and accuracy, as long as positional errors are well-managed. 

Further improvements could be made to include adaptive weighting of the correlation 

matrix, or adding tracking algorithms to improve sequential localization performance. 

5.4 Localization Performance Using Ambient Noise AEL 

5.4.1 Methodology 

 Sensor location accuracy was shown to be vital to localization performance of 

coherent methods (see Section 5.3). Leveraging the ambient noise array element 

localization (AEL) algorithm presented in Chapter 4 to decrease sensor location error 

should improve localization performance. To test this theory, sensor pair 0002/0005 from 

October 30th experimental data (see Section 2.3.5.5) was examined between 15:12 and 

15:17 local time. The pair contained the sensor with erratic GPS measurements, which 

provides opportunity for improvement using ambient noise AEL. The GPS error may also 

reflect a scenario in which dead-reckoning or other low-accuracy method was used to 

locate the source. 

 To correct the sensor positions, the difference-constrained genetic algorithm with a 

stochastic search segment length of 10 was applied to the positive time delays of a 5-second 

correlation ensemble. The ensemble was obtained from beamformed axial velocity 

correlations where the vector sensor data was preprocessed using a filter step, integration 

and pressure unit conversion step, followed by a whitening step (see Section 2.3.4). The 

filter band limits used were 200 – 1500 Hz. All parameters match those of the results 
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presented in Section 4.2. The separation distances were obtained by multiplying the genetic 

algorithm time delays by an assumed sound speed of 1500 m/s. Then, the AEL algorithm 

was applied using an assumed measurement error 𝜎 equal to 0.01 meters and an assumed 

prior (i.e. GPS) measurement error 𝜉 equal to 1.5 or 10 meters for the valid and invalid 

GPS sensors, respectively. This effectively ignores the GPS prior in order to fix the 

distances between sensors to those measured by the genetic algorithm. A plot of the 

corrected sensor locations is shown in Figure 121. The thin lines denote the GPS 

measurements, and the thick lines denote the genetic algorithm’s corrected locations. 

 

Figure 121: Sensor locations using GPS (thin lines) estimates and positions obtained 

from regularized AEL obtained from constrained genetic algorithm distance estimates 

(thick lines). Note the GPS and GA positions for sensor 0005 are nearly identical. 

 The location of sensor 0005 does not change at all, since its prior error is an order 

of magnitude smaller than that of 0002. Furthermore, the erratic GPS measurements (thin 
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line) are effectively smoothed out by the genetic algorithm distance estimation, resulting 

in feasible corrected locations (thick line). 

 In addition to comparing the GPS and genetic algorithm sensor locations, a third 

method is used which assumes the sensor locations are constant across the five-minute 

period. This simulates a scenario in which the sensors’ locations were known until they 

submerged, at which point no further GPS measurements were obtained. Table 4 outlines 

the different parameters which were tested in the following experimental results. 

Table 4: Experimental Results Parameter Table 

Parameter Values Comments 

Sensor Pair 0002/0005 
Tests whether the GA/AEL method can 

correct GPS errors 

Sensor 

Locations 
Constant, GPS, GA 

Tests worst-case scenario, current best-

case scenario, and proposed AEL method 

Beamforming 

Methods 

Incoherent, Coherent, 

Cross-Coherent 

Tests each of the three weighting methods 

introduced in Section 5.2.2 

 

 Localization was performed using the same methodology employed in Section 

5.3.2. The localization snapshots were each 5 seconds long. Data was preprocessed using 

a filter step, integration and pressure unit conversion step, and finally a clipping and 

whitening step (see Section 2.3.4). The band limits for filtering and whitening were kept at 

200 – 1500 Hz to match the parameters used in the previous section. Since only two 

closely-spaced sensors were used for these tests, only the source bearing can be accurately 

ascertained (see Section 5.3.2). As such, the search space was chosen to be a simple angular 
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scan from 0 to 360 degrees in 1-degree increments. The beamformer output power was 

normalized to its maximum to be able to compare the three different weighting methods. 

 The estimate accuracy (see Equation 118) was obtained assuming the strong source 

present in the negative lags of the correlation ensemble (see Figure 72, Section 4.2.4) was 

the tug “Pocomoke” whose GPS location was obtained from the automatic identification 

system (AIS) database (see Figure 122). The only evidence for this being the case is the 

measured time-difference-of-arrival from the tug’s GPS location to the sensors matches 

somewhat well with the peak locations of the correlation ensemble (see Figure 123). 

 

Figure 122: Sensor locations and estimated source “Pocomoke” tug whose location 

was obtained from AIS data. 
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Figure 123: Velocity correlation ensemble amplitude for sensors 0002/0005 

normalized to the overall maximum. Black corresponds to 0 dB and white to -10 dB. The 

TDOA of the Pocomoke is overlaid as a green dashed line, computed assuming a sound 

speed of 1500 m/s. 

 The estimate precision metric is identical to that presented in Equation 107. 

However, due to the search space being one-dimensional, the precision values will be 

somewhat smaller than the two-dimensional results presented in the previous section. 

5.4.2 Results 

 For the 0002/0005 sensor pair, sample beamformer outputs at 15:15 local time are 

plotted for each beamforming method in Figure 124. The estimated source direction is 

shown as a black dotted line. 
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Figure 124: Sample beamformer outputs at 15:15 using a) constant sensor positions, 

b) GPS-measured sensor positions, and c) genetic algorithm AEL positions. The 

incoherent output is shown in purple, the coherent in pink, and the cross-coherent in blue. 

Each method of obtaining sensor locations (constant, GPS, and genetic algorithm) have 

very similar incoherent results. This is to be expected, since the bearing to a far-field source 

does not change much for small changes in sensor location. The coherent method generally 

follows the incoherent trend, but with small variations because of the cross-coherent 

components present. The cross-coherent method shows the greatest difference between the 

three sensor location methods. Using constant separation distance is obviously not ideal, 

as it carries too much error for the cross-coherent method to work well. The cross-coherent 

method carries a bias for the GPS and GA results, however there is a strong peak at the 

true source direction when using the GA sensor locations. This indicates the GPS locations 

are still somewhat inaccurate, but the GA locations improved upon them enough to 

improve the source localization. 

 Plots of the localization error for each method across the entire period are given in 

Figure 125 for each of the source location methods. 
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Figure 125: The localization error assuming the source is the “Pocomoke” tug. The 

localization was performed using a) constant sensor positions, b) GPS-measured sensor 

positions, and c) genetic algorithm AEL positions. The incoherent error is shown in 

purple, the coherent in pink, and the cross-coherent in blue. 

The most obvious feature of the localization accuracy plot is the presence of approximately 

19-degree bias in all the results. This was seen in the sample beamformer outputs in Figure 

124, and could stem from many causes. The first cause could be an incorrect assumption 

of the true source location (i.e. the source was not the Pocomoke tug). The second cause 

could be a systematic error in the vector sensor orientation measurements, causing the 

apparent direction to the source to be shifted by the sensor orientation bias. In any case, it 

is most likely that the beamformers are locating an actual source, and that source is either 

actually or apparently 19 degrees off of the Pocomoke bearing. However, not much can be 

determined about the different beamforming methods or sensor location methods from 

these results. Plots of the localization precision (see Figure 126) will show how precise 

each method was in locating whichever source they are tracking. 
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Figure 126: The localization precision assuming the source is the “Pocomoke” tug. 

The localization was performed using a) constant sensor positions, b) GPS-measured 

sensor positions, and c) genetic algorithm AEL positions. The incoherent precision is 

shown in purple, the coherent in pink, and the cross-coherent in blue. 

 The precision results show that the coherent and incoherent methods perform 

similarly for any choice of sensor locations. However, the cross-coherent method displays 

different precision for the different sensor location methods. A higher precision indicates 

the cross-coherent method obtains a sharper peak at the estimated source bearing, which 

results from having the correct sensor separation distance. It also indicates that weaker 

sources (i.e. with lower SNR) are more likely to be detected with the cross-coherent 

methods than the other 2 methods. The constant sensor locations become more inaccurate 

over time, thus the cross-coherent precision drops. The GPS and GA estimates have 

comparable cross-coherent precision, with the GA sometimes slightly higher than the GPS, 

indicating the GA measurements may be superior to GPS at times. 

5.4.3 Conclusion 

 Time delays identified by the constrained genetic algorithm presented in Chapter 4 

were used to correct erratic GPS measurements. The corrected sensor locations resulted in 

more precise localization results, indicating the distance measurements were accurate and 
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the sensor location corrections valid. Possible improvements to the analysis performed here 

would be to attempt array localization using ambient noise while simultaneously tracking 

a known source, possibly even one which is not purely in the endfire direction. 

5.5 Conclusion 

 Beamforming using weighted correlation matrices provides opportunities for novel 

methods of locating sources, with varying degrees of sensitivity to noise and sensor 

location errors. A novel cross-coherent weighting method was proposed which maintains 

localization accuracy and precision even in the presence of noise. Simulated and 

experimental data showed that coherent beamforming requires accurate knowledge of 

sensor locations, and this was corroborated by applying the ambient noise AEL method 

described in Chapter 4 to improve sensor location estimates and thus, the localization 

performance. 
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APPENDIX A 

VECTOR SENSOR CALIBRATIONS 

As described in Chapter 2, the vector sensor IMU components showed different 

scaling and orientation depending on the serial number. To confirm the acoustic 

sensitivities, each sensor was tested with a reference measurement to obtain the 

hydrophone sensitivity and accelerometer sensitivity. All sensors had a hydrophone 

sensitivity of -162 dB re 1 V/µPa, however the accelerometer sensitivities varied. 

The first method mounted the sensor rigidly to a mechanical shaker with a reference 

accelerometer also attached. The shaker was operated from 40 to 240 Hz and the reference 

accelerometer used to find the VS-301 sensitivity. The second method mounted the sensor 

to a piezoelectric shaker stack and the displacement measured with a Laser Doppler 

Vibrometer (LDV). The frequency range tested was between 50 and 2500 Hz, however 

there were suspected resonances of the setup at this range which may have caused the 

results to be somewhat less accurate. Figure 127 and Figure 128 show the axial and radial 

configurations of the sensor mounted to the piezoelectric stack. 
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Figure 127: Axial accelerometer calibration setup using piezoelectric shaker (bottom) 

and LDV (red laser dot). 
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Figure 128: Radial accelerometer calibration setup using piezoelectric shaker 

(bottom) and LDV (laser dot not shown). 

 The calibration results are shown below for the shaker calibration and the axial (z-

axis) LDV calibration. Each sensor which was tested is shown, using the notation SN 

VSXX to denote the serial number of the VS-301. 
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Figure 129: Mechanical shaker calibration curves for X, Y, Z axes of sensor #0017. 

Assumed reference sensitivities are shown in black dashed lines. 
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Figure 130: Piezoelectric shaker/LDV calibration curve for Z-axis of sensor #0017. 

Assumed reference sensitivity is shown in black dashed line. 



216 

 

 

Figure 131: Mechanical shaker calibration curves for X, Y, Z axes of sensor #0022. 

Assumed reference sensitivities are shown in black dashed lines. 
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Figure 132: Piezoelectric shaker/LDV calibration curve for Z-axis of sensor #0022. 

Assumed reference sensitivity is shown in black dashed line. 
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Figure 133: Mechanical shaker calibration curves for X, Y, Z axes of sensor #0103. 

Assumed reference sensitivities are shown in black dashed lines. 
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Figure 134: Piezoelectric shaker/LDV calibration curve for Z-axis of sensor #0103. 

Assumed reference sensitivity is shown in black dashed line. 
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Figure 135: Mechanical shaker calibration curves for X, Y, Z axes of sensor #0123. 

Assumed reference sensitivities are shown in black dashed lines. 
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Figure 136: Piezoelectric shaker/LDV calibration curve for Z-axis of sensor #0123. 

Assumed reference sensitivity is shown in black dashed line. 

 The calibrations show that there may have been some errors in obtaining the 

sensitivities using the LDV method. However, the mechanical shaker method appears to 

have more consistent results. The sensitivities of the sensors appear to vary depending on 

the serial number, with the most common being around 10 V/g. One sensor showed 3 V/g 

sensitivity on just one component, and another appears to have a malfunctioning axis. This 

axis was oriented vertically in experiments whenever possible, to limit its effect on 

localization performance. Figure 137 shows the hydrophone calibration performed in water 

using a reference hydrophone and a chirp signal played through a 15 cm diameter source. 
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Figure 137: Reference hydrophone calibration curve for hydrophone of sensor #0123. 

Assumed reference sensitivity is shown in black dashed line. 
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APPENDIX B 

DATA SPECTROGRAMS 

 Plotted below are sample spectrograms of the acoustic data collected for various at-

sea tests. The power spectral density computed from 1-second bins is plotted over 15-

minute windows, plotted in logarithmic scale. No preprocessing (filtering, downsampling, 

rotation, etc.) was performed on the acoustic data. Only a pressure and horizontally-

oriented velocity channel are shown for each sensor. The sample rate was 39.0625 kHz, 

but only frequencies up to 2 kHz are shown to match the sensor’s usable frequency range. 

 Figure 138 shows the pressure and X-axis velocity for Sensor 0005 on October 29th, 

2016 when the sea-state was higher than on the following day, plotted in Figure 139. The 

spectra during the river-bottom deployment on the 29th is plotted in Figure 140. For 

comparison, the spectra are plotted for the June 2016 deployment which employed the 2nd 

revision floats. Figure 141 shows the spectra for June 20th, which had the highest sea-state, 

and Figure 142 shows the spectra for June 22nd , which had a calmer sea-state.
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Figure 138: Representative spectrograms for Sensor 0005’s pressure and X-axis velocity for October 29, 2016 from 12:00 – 12:15 

local time. 
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Figure 139: Representative spectrograms for Sensor 0005’s pressure and X-axis velocity for October 30, 2016 from 12:45 – 13:00 

local time. 
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Figure 140: Representative spectrograms for Sensor 0005’s pressure and X-axis velocity for October 29, 2016 from 15:45 – 16:00 

local time. The sensor frame was stationary on the bottom of the river for this period of time. 
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Figure 141: Representative spectrograms for Sensor 0005’s pressure and X-axis velocity for June 20, 2016 from 11:18 – 11:33 

local time. The second generation of floats was in use here, and the recorder gains set too high, resulting in clipped data. 
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Figure 142: Representative spectrograms for Sensor 0005’s pressure and X-axis velocity for June 22, 2016 from 14:30 – 14:45 

local time. The second generation of floats was in use here, resulting in clipped data on the velocity channels. 
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APPENDIX C 

TIME-DOMAIN / FREQUENCY-DOMAIN COMPARISON 

Using the material from Hawkes and Nehorai 2001 and Cox et al. 2009, the 

correlation between two separated vector sensors in the presence of isotropic noise is 

analyzed for the special case where the vector between the sensors is aligned with their x-

axes. This assumption will work for any two sensors, provided their data is rotated into a 

baseline-x coordinate system, and the noise is isotropic. At a given frequency 𝜔, the 

correlation matrix between the two sensors in the presence of only isotropic noise is given 

by 
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 119 

Note the argument ks, where s is the separation distance, is omitted after each 𝑗𝑛 (spherical 

Bessel functions). Plotting the non-zero terms in the correlation matrix against ks/2π, which 

gives the ratio of the separation distance relative to a wavelength, shows the magnitude of 

each component relative to each other (see Figure 143). 
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Figure 143: Narrowband spatial correlation for various components of a vector 

sensor. The abscissa is represented in multiples of the narrowband wavelength 𝜆 = 𝑐/𝑓.  

 For large separation distances relative to a wavelength, the correlation of the 

ambient noise decreases, as is expected. However, a surprising consequence is that 

correlations between pressure channels and correlations between velocity channels are 

nearly identical for large separations. 

 The above narrowband correlation functions are used to simulate wideband 

correlations by taking an IFFT on a band-limited set of narrowband noise correlations. 

With a spacing of 10 meters, sound speed of 1500 m/s, sample rate of 20 kHz, and a band 

between 1 and 9000 Hz, the theoretical “infinite”-band result of a step function is obtained 
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for pressure-pressure correlation, whose derivative gives the Green's function estimates. 

The velocity-velocity correlation is markedly different in this case, however, when only 

higher frequencies are used, it approaches the pressure-pressure correlation. 

 

Figure 144: Simulated wideband correlations of pressure and velocity components for 

“infinite” band (i.e. no filtering). 

For a more limited band of 20-1500 Hz, the correlations become more similar: 

 

Figure 145: Simulated wideband correlations of pressure and velocity components for 

20-1500 Hz band. 

And finally, for the typically-used band of 200-1500 Hz: 
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Figure 146: Simulated wideband correlations of pressure and velocity components for 

200-1500 Hz band. 

The reason the pressure-pressure and velocity-velocity converge is seen in Figure 143, 

because their spectral correlation functions are nearly identical for large frequencies, so 

when filtered above any frequency whose wavelength is about equal to the spacing, the 

functions are nearly identical. Thus, for the typical inter-element spacing experienced at 

sea (20-60 m), the pressure-pressure and velocity-velocity correlations will be identical if 

only frequencies above 25-75 Hz are used. 

 To confirm the time-domain results presented in Chapter 3 match the frequency-

domain results presented by Hawkes and Nehorai 2001 and Cox et al. 2009, the Bessel 

function method plotted in Figure 146 is compared to the convolution formulation of 

Chapter 3 in Figure 147. 
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Figure 147: Comparison of pressure correlations computed with the convolution 

method presented in Chapter 3 (black solid line) and the wideband summation of the 

Bessel function expressions (red dashed lines). The sensor separation distance is 10 

meters, and the bandwidth 200-1500 Hz. 

 The results match exactly, indicating the equivalence of the two interpretations. 

Lastly, the axial velocity correlations are compared for 10 meter spacing, 20-1500 Hz 

bandwidth in Figure 148. 
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Figure 148: Comparison of velocity correlations computed with the convolution 

method presented in Chapter 3 (black solid line) and the wideband summation of the 

Bessel function expressions (red dashed lines). The sensor separation distance is 10 

meters, and the bandwidth 20-1500 Hz. 

Again, the results are exactly identical. The equivalence of the inverse Fourier transform 

of the Bessel solution and the convolution method indicates they are time/frequency 

Fourier pairs. 
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APPENDIX D 

NOISE AUTOCORRELATION DERIVATION 

 The autocorrelation is related to the power spectral density by the Fourier transform 

 

𝐶𝑠𝑠(𝜏) = ∫ 𝑆(𝑓) ⋅ 𝑒𝑗2𝜋𝑓𝜏

∞

−∞

𝑑𝑓 120 

where the power spectral density is given by 𝑆(𝑓). If a noise process has equal power 

across a bandwidth 𝐵 centered on a frequency 𝑓𝑐, its power spectral density is given by 

 

𝑆(𝑓) = {
𝜎𝑠

2

2𝐵
, 𝑓𝑐 −

𝐵

2
≤ |𝑓| ≤ 𝑓𝑐 +

𝐵

2
0  , otherwise
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Thus, the integral in Equation 120 becomes 
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Integrating and simplifying the expression results in 
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2𝐵

1
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[𝑒𝑗2𝜋𝜏(𝑓𝑐+𝐵/2) − 𝑒𝑗2𝜋𝜏(𝑓𝑐−𝐵/2) + 𝑒𝑗2𝜋𝜏(−𝑓𝑐+𝐵/2)

− 𝑒𝑗2𝜋𝜏(−𝑓𝑐−𝐵/2)] 

123 

which further simplifies to 

 
𝐶𝑠𝑠(𝜏) =

𝜎𝑠
2

𝜋𝐵𝜏

1

2𝑗
[𝑒𝑗2𝜋𝜏𝑓𝑐 + 𝑒−𝑗2𝜋𝜏𝑓𝑐][𝑒𝑗𝜋𝜏𝐵 − 𝑒−𝑗𝜋𝜏𝐵] 124 

Applying the Euler formula for sine and cosine functions yields 
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𝐶𝑠𝑠(𝜏) =

𝜎𝑠
2

𝜋𝐵𝜏
⋅ cos(2𝜋𝑓𝑐𝜏) ⋅ sin(𝜋𝐵𝜏) 125 

which is finally simplified using the definition of sinc(𝑥) = sin(𝑥)/𝑥 to yield 

 𝐶𝑠𝑠(𝜏) = σs
2 ⋅ cos(2𝜋𝑓𝑐𝜏) ⋅ sinc(𝜋𝐵𝜏) 126 

Thus, the noise process autocorrelation is obtained from its speculated power spectral 

density.  
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APPENDIX E 

ADDITIONAL STOCHASTIC SEARCH SIMULATION RESULTS 

 Shown in Figure 149 is the average RMSE of 20 different realizations of base 

correlations having varying PSNR from 0.1 to 2 (-10 dB to 3 dB). Any results for SNR 

higher than 2 (3 dB) are effectively redundant as the correlation peak is clearly visible even 

in the base correlations, thus extended averaging times are unnecessary. The true time 

delays (blue circles) were obtained from linear interpolations of the experimental delays 

described above. The estimated time delays from the genetic algorithm are superimposed 

as red crosses. The averaged correlations are plotted in black underneath. 

 

Figure 149: Genetic algorithm RMSE vs total number of correlations (left) for 

varying base correlation SNR. Two sample solutions are shown for SNR = 0.3 (top right) 

and SNR = 2 (bottom right), where the true delays are plotted as blue circles and the 

estimated delays as red crosses. 
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 The results show an increase in the error as the number of correlations increases. 

This effect is due to the decreased averaging duration, and thus increased noise hiding the 

peak. It may also be indicative of the algorithm having too many degrees of freedom. 

This may certainly be the case when using more than 100 correlations, as on several 

occasions the genetic algorithm reached the 1000 generation limit and was forced to 

return a solution prematurely. This limitation in estimating many time delays and getting 

all correct could be remedied in two ways: the first involves filtering the incorrect 

estimates afterward and the second reduces the number of estimated parameters using a 

model. 

 The first method, post-filtering, allows the genetic algorithm to estimate the large 

number of time delays, fully expecting some or many of them will not have converged on 

the true solution. Then, a model with a reduced number of parameters is fit to the 

estimates, and the model which best fits is used as the final solution. However, because of 

the prevalence of outliers, a simple least-squares fit will generally be quite poor. Instead, 

RANSAC is used, a method which attempts to find the best fit while ignoring outliers 

(Fischler & Bolles, 1981). This is achieved by running a model-fit on a small, randomly 

selected set of points for a fixed number of iterations 𝐾. On each iteration, a random 

subset of 𝑁 points is selected and the traditional least-squares model obtained for the 

subset. Then, using a threshold 𝐷, the number of inliers is estimated as the number of 

points with a residual to the model fit of 𝐷 or less. After all 𝐾 iterations are run, the 

iteration with the highest number of inliers (and lowest model fit error in the event of a 

tie) is assumed to be a decent fit of the data, ignoring outliers. Lastly, the model is fit to 

the inliers from the winning iteration, again using a traditional least-squares fit. The 
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RANSAC method relies on the assumption that at least one of the 𝐾 iterations will select 

𝑁 subset points which are all inliers, and the resulting model-fit will result in the 

remainder of inliers being identified. Assuming the percentage of points that are inliers is 

𝑤, the probability of selecting all inliers on at least one iteration is 

 𝑝 = 1 − (1 − 𝑤𝑁)𝐾 127 

The probability 𝑝 is plotted in Figure 150 as a function of 𝑤. A nominal choice for 𝐾,𝑁 

is shown in black. Choices of 𝐾,𝑁 which increase the probability are shown in blue, and 

choices which decrease the probability are shown in red. It can be seen that decreasing 

the number of iterations decreases the probability, as expected. Also, choosing more 

points in the subset selection also reduces the probability. For this reason, the number of 

subset points 𝑁 should be as small as possible, but no smaller than the number of model 

parameters so that a least-squares fit can be performed. Likewise, increasing the number 

of iterations increases the probability, as does decreasing the number of subset points. 
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Figure 150: RANSAC performance curves 

 A takeaway of Figure 150 is that there exists some cutoff inlier percentage where 

RANSAC is no longer very likely to select all inliers on at least one iteration. For the 

nominal choice of parameters (𝐾 = 1000, 𝑁 = 6), this cutoff is about 40%. Running ten 

times as many iterations reduces the cutoff to 30%, whereas reducing the number of subset 

points by half decreases the cutoff to 20%. Likewise, reducing the iterations by a factor of 

10 or nearly doubling the number of subset points increases the cutoff to 60%. Since the 

unconstrained genetic algorithm generally has at least 50% inliers, the nominal parameter 

set was deemed sufficient. 
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 To filter the unconstrained genetic algorithm results, the RANSAC algorithm was 

applied using 𝐾 = 1000 iterations with 𝑁 = 6 subset points and 𝐷 = 0.5/𝑐 seconds. The 

model used for least-squares fitting was given by 

 

�̂�(𝑡) = 𝑎0 + 𝑎1𝑡 + ∑ 𝑏𝑛 sin (
𝑖𝜋𝑡

𝑇
)

4

𝑛=1

 128 

where the parameters 𝑎0, 𝑎1, 𝑏1, 𝑏2, 𝑏3, 𝑏4 are to be determined by the RANSAC 

algorithm. The filtered solution is taken to be the function �̂�(𝑡) with the best-fit 

parameters of the inliers. 

 

Figure 151: Genetic algorithm RMSE vs total number of correlations (left) for 

varying base correlation SNR and without (blue) and with (red) RANSAC filtering. Two 

sample solutions are shown for non-filtered (top right) and RANSAC-filtered (bottom 

right) for SNR = 0.3, where the true delays are plotted as blue circles and the estimated 

delays as red crosses. The correlation waveforms are not plotted on the right for clarity. 
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 Shown in Figure 151 is the average RMSE of 20 statistical trials for a selected set 

of base PSNR’s of 2 and 0.3 (3 dB and -5 dB). The genetic algorithm example shows that 

for 60 estimated time delays, there exist many outliers. A decent number of estimates were 

also accurate though, but the RMSE of the genetic algorithm suffers regardless. The 

RANSAC method uses the same estimates produced by the genetic algorithm, but finds the 

best-fit model (see Equation 128) while ignoring outliers. As seen in the left panel, the 

RMSE is dramatically decreased, even for the low SNR case. Also, the RMSE is now more 

consistent across the number of correlations, since the RANSAC model simply needs a 

small set of correct time delays to obtain a decent best-fit model. One of the drawbacks of 

the model-based approach such as RANSAC is the ability of a model to have too many 

degrees of freedom, allowing it to fit points which should be outliers. Likewise, the model 

could be too simplistic, and not capture the true dynamics of sensor drift accurately. 

 The second method of correcting error experienced when identifying many time 

delays is to only allow the stochastic search to estimate a smaller number of model 

parameters. For example, using the same model from Equation 128, the stochastic search 

would vary 𝑎0, 𝑎1, 𝑏1, 𝑏2, 𝑏3, 𝑏4 and evaluate the time delay model function �̂�(𝑡𝑖). Then, it 

evaluates the objective function identically to before, returning the time delays generated 

by the optimum parameter set. 
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Figure 152: RANSAC-filtered genetic algorithm RMSE vs total number of 

correlations (left) for varying base correlation SNR. Two sample solutions are shown for 

SNR = 0.2 (top right) and SNR = 0.7 (bottom right), where the true delays are plotted as 

blue circles and the estimated delays as red crosses. The correlation waveforms are 

omitted on the right for clarity. 

 Figure 152 shows the results of using a genetic algorithm to identify the optimum 

parameter set of the model in Equation 128. The RMS error of this method is comparable 

to using RANSAC to post-filter the genetic algorithm results. Both have relatively 

constant error across the number of averaged correlations. However, the model-based 

identification suffers when a local minimum is obtained and the resulting model only fits 

a portion of the true time delays. There obviously exists a better solution which fits all the 

time delays, but the search was not guaranteed to find such a global optimum. This is a 

well-known limitation of stochastic search methods, and the post-filtering method 

handles the problem of local optimum solutions which contain outliers more gracefully. 
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APPENDIX F 

ANALYSIS OF FIRST QUIET TIME, OCTOBER 30, 2016 

 During the first quiet time, the sensors drifted with a separation distance between 8 

and 80 meters, first towards each other, then away. Their separation distance during this 

time period is plotted in Figure 153. The maximum drift speed seen during this time was 

approximately 0.05 m/s, or 180 m/hr (note the drift speed does not refer to the speed over 

ground of the individual floats, but their separation speed). 

 

Figure 153: Sensor separation distance for first quiet time 

An ensemble of short-time correlations of 1 second length are plotted in Figure 154 

and Figure 155 for pressure and axial velocity components, respectively. They are 

normalized with respect to the total maximum observed throughout the quiet time. The 

preprocessing steps used in preparing the data for correlation was to first filter the data, 

then integrate the acceleration and convert to pressure units, then filter, clip, and whiten 

the resulting data (see Section 2.3.4 for more information on these processes). The 

bandwidth chosen for the filtering was obtained by time-windowing the full-bandwidth 
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correlations around the supposed ambient noise correlation peak and plotting the peak’s 

spectrum. The resulting spectrum is nearly flat across 200 – 1500 Hz, with a small decrease 

in the amplitude of the 800-900 Hz band. Thus, the bandwidth was chosen to be maximally 

wide, and encompassed 200 – 1500 Hz. 

 

 

Figure 154: Pressure correlation ensemble amplitudes for quiet time 1. The amplitude 

is relative to the overall maximum amplitude, and is 10 log10 of the Hilbert transform 

magnitude. 
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Figure 155: Velocity correlation ensemble amplitudes for quiet time 1. The amplitude 

is relative to the overall maximum amplitude, and is 10 log10 of the Hilbert transform 

magnitude. 

 From the figures, it is clear there were a number of interfering sources, each creating 

a ridge in the correlation ensemble. For example, the strong ridge seen from the beginning 

of the quiet time period to about 12:15 was most likely the result of the passenger vessel 

“Carol Jean”, whose GPS location is provided by AIS data. Knowing the difference in 

distance between the vessel and the array elements, the expected time delay is plotted and 

nearly perfectly matches up. None of the other tracks appear to have a corresponding AIS 

vessel responsible, and could have been the result of the many smaller personal craft in the 

area not required to use AIS. For this reason, ambient noise correlations for this period may 

be corrupted with interfering noise. 
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APPENDIX G 

AEL JACOBIAN MATRIX 

 Restating the sensor position vector 

 �⃗⃗⃗� = [�⃗� 1
𝑇 �⃗� 2

𝑇 … �⃗� 𝑁
𝑇 ]𝑇 129 

as presented in Chapter 4, and linearizing the function for inter-sensor distances from 

sensor locations 

 �⃗⃗� = 𝐷(�⃗⃗⃗� ) 130 

about an operating point �⃗⃗⃗� 𝟎 yields 

 �⃗⃗� = 𝐷(�⃗⃗⃗� 𝟎) + 𝐽 𝜹𝒎⃗⃗ ⃗⃗ ⃗⃗   131 

where 𝐽 is the Jacobian matrix, equal to the partial derivatives of the function 𝐷 with respect 

to the components of �⃗⃗⃗� . For the distance between sensor i and j, the component of �⃗⃗�  is 

𝑑𝑖𝑗, and the corresponding row of the Jacobian matrix is 

 
𝐽𝑖𝑗 = [

𝜕𝑑𝑖𝑗

𝜕𝑚1

𝜕𝑑𝑖𝑗

𝜕𝑚2

𝜕𝑑𝑖𝑗

𝜕𝑚3
…] 132 

which has only non-zero partial derivatives for the components of �⃗⃗⃗�  which are part of 

sensor i or j’s positions. Thus, the components of the Jacobian row are 

 
𝐽𝑖𝑗 =

1

𝑑𝑖𝑗
[(𝑥𝑖 − 𝑥𝑗)(𝛿𝑖 − 𝛿𝑗) (𝑦𝑖 − 𝑦𝑗)(𝛿𝑖 − 𝛿𝑗) (𝑧𝑖 − 𝑧𝑗)(𝛿𝑖 − 𝛿𝑗) …] 133 
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where the distance between the sensors is 𝑑𝑖𝑗 and 𝛿𝑖 is equal to one in a column which 

corresponds to a component of sensor i, and zero otherwise. The three components in 

Equation 133 repeat n times, where n is the number of sensors. 
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