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SUMMARY

The precision machining has long been focused on the machined part geometrical
consideration, such as dimensional accuracy and surface roughness. The machined part
dimensional accuracy is strongly influenced by the tool wear and tool deflection. The surface
roughness is a function of process parameters, such as cutting speed, feed rate, and tool geometry
(edge radius, rake angle). With the rapid development of precision machining technology, the
manufacturing end-product functionality requires the precision machining capability beyond
machined part geometrical properties. Other aspects of the machining end-product, including the
surface physical properties, metallurgical, chemical and biological characterizations are also part
of the precision machining requirement. The surface residual stress profile could significantly
influence the workpiece fatigue life and corrosion resistance. In additional to the mechanical states,
the material microstructure attributes are closely related to the surface functionalities. For example,
the surface micro-hardness is dominated by the grain size and phase composition for multiphase
material. Other microstructure properties of the machined surface include the plastic deformation
induced dislocation density, phase transformation, micro-cracks and inter-granular attack. To fully
describe the precision machining process, the microstructure consideration is required. Compared
with the traditional framework which only includes the thermal and mechanical considerations,
the microstructure-based machining process model could provide a more in-depth understanding

of the mechanical, thermal and microstructural interactions.

The microstructure consideration in the machining process covers phase transformation,
dynamic recrystallization, grain morphology and dislocation density. The material microstructure

evolution in the machining process is a combined effect from the thermal-mechanical interactions.
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For example, the phase transformation is dependent on the temperature history, grain growth is
determined by the strain, strain rate and temperature effect. In addition, the material microstructure
properties would inversely affect the material mechanical properties and heat generation in the
machining processes. Therefore, a thermal-mechanical-microstructural coupled framework would
be more desirable for the machining process description. The material microstructure evolution in
the machining process could be lead to the undesirable direction, such as increased grain size on
the machined surface, or undesirable phase transformation effect. To avoid this, a comprehensive
machining process design process would be required, which takes the machining process
parameters, machine tool configuration and workpiece material properties into consideration. The
current work aims to bring out a computational framework to assist the machining process design
and optimization, which outputs the machined end-product microstructure states related surface
integrity properties. The model would need a material microstructure structural evolution model,
explicit correlation of the material mechanical properties with material microstructural states. This
thesis, for the first time, concludes from the current state of the art research in machining with a
consideration of the material microstructure properties, brings out the material microstructure

affected machining framework.

Alternatively, the precision machining also includes the precise control the machined part
dimensional accuracy, improved residual stress states and machined parts surface integrity. For
the hard to machine material, especially Nickle based super alloy, advanced machining process
would be required to solve the state of art challenges. An advanced thermal enhanced machining
system is developed with improved machining efficiency and reduce energy cost. A novel co-axial

laser-assisted milling system is developed, specifically for the hard-to-machine material with high

Xiv



energy efficiency and large material removal rate. A comprehensive numerical based laser-assisted

milling model is proposed for the process simulation and optimization.
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CHAPTER 1. INTRODUCTION

1.1 Motivation

The development of high precision machining technology enables the complicated shape
control, high geometrical accuracy and good surface integrity of the end-product. The geometrical
shape control is achieved by the precise machine tool path planning and error compensation.
Appropriate design of the final workpiece material mechanical and microstructural property is
required for good surface integrity. The machining process conditions could significantly influence
the resultant surface integrity of the final workpiece material. The service functionality of the
precision machining end-product strongly depends on workpiece material properties. The main
consideration in terms of the final workpiece properties includes mechanical attributes (residual
stress profile, yield stress, surface hardness), microstructure states (grain structure and orientation,
phase composition). The workpiece material properties in the machining process are directly

influenced by the process conditions.

Appropriate selection of the machining parameters could help to improve the functionality
performance of the end product [1]. For the hard to machine material, such as titanium, nickel
based alloys and hardened steels, the high precision machining still faces considerable challenges
[2]. Significant microstructural evolution has been observed in the machining process [3-5]. The
material mechanical properties are strongly dependent on the microstructural states. Also,
workpiece surface corrosion resistance, microhardness is also influenced by the microstructural
attributes. The machining induced residual stress profile is a critical factor for the workpiece
corrosion resistance. For biomedical or aerospace industry, the grain refinement would be

desirable for the strengthening.



The thermo-mechanical loading introduced from high speed machining will unfavorably
affect the workpiece material properties, such as augmented grain size, reduced surface hardness,
and tensile residual stress profile [6]. Most of the current research work only focuses on the
thermo-mechanical coupling process, where the microstructural evolution effect is largely ignored.
However, obvious microstructural change has been observed in the machining process, especially
for multiphase material, such as titanium alloys and nickel-based alloys. Therefore, it is important

to understand the thermo-mechanical-microstructural coupling effects.

The combined effect of server plastic deformation, large strain, high strain rate and high
temperature in the primary shear zone and workpiece/tool interface would promote the
microstructure evolution such as dislocation density change, grain size evolution and multiphase
material phase transformation. The early work on the microstructure change in the machining
process is reported by Xu et al. [7] in the grinding of ceramics. The different material
microstructure effect on the material removal mechanism is investigated. The white layer is
observed in the hard turning of hardened steel by Chou et al. [8], which results from workpiece
material phase transformation effect. Similarly, the extensive grain refinement and strain induced
martensite phase transformation is observed by Ghosh et al. [4] in surfaced turning of 304L
stainless steel. The grain refinement and uniform nanocrystalline structure also is found in the chip
in turning of copper by Swaminathan et al. [9]. The investigation of machining induced
microstructure change would not only benefit the machining process optimization to achieve
machining end-product with good service functionality, the machining tool selection and
improvement could also be obtained. However, the microstructural level investigation of
machining is still at its debut stage, where most of the research focuses on the experimental

investigation.



Different advanced machining processes, such as thermal-assisted machining, acoustic-
assisted machining, have been proposed to achieve high machining efficiency, improved
machining end-product quality. Due to the complicated thermal-mechanical coupling effects, the
current modeling techniques have not been well developed to fully address the challenges. Only
some simple empirical models are proposed by previous researchers. In a current study, a more
energy efficient co-axial laser assisted milling setup is developed to locally heat the working piece
material in the milling process. A two-step modeling is proposed for the laser-assisted milling

process simulation.

1.2 Research Goal and Objectives

A physical based modeling scheme for the residual stress, machining forces and
microstructural states will be developed. The flow chart of the proposed research method is shown
in Fig. 1. The material microstructural affected machining inputs the process parameters,
machining tool configuration and material initial mechanical microstructural properties into a well-
defined process function path. The machining forces and temperature field are the output in the
first step, which was calculated by the classic contact mechanics theory. In the second step, the
thermo-mechanical loading condition from the previous step are taken into the microstructural
evolution loop. The phase transformation is purely based on the temperature loading history.
However, the dynamical recrystallization process is a strong function of strain, strain rate,
temperature. After the explicit calculation of the microstructure attributes, the material flow stress
is updated back into step one. An interactive process is conducted. Finally, the residual stress,

material microhardness, machining forces are the prediction outcomes.
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Figure 1 Material microstructural affect machining modeling scheme

1.3 Overview of Thesis

The thesis consists of five parts. In the chapter 2, literature review part, we would give a
comprehensive review work on the state of art research on the material microstructure related
machining process modeling work. Mainly two different material will be reviewed, the Ti-6Al-4V
and the Inconel 718. In the chapter 3, a material dynamic recrystallization model and phase
transformation model will be introduced for the multiphase material. A case study will be
conducted on the orthogonal turning of Ti-6Al-4V for the grain size evolution and phase change
prediction. In chapter 4, a thermal-mechanical-microstructure coupled machining process
modeling framework will be developed for application the machining force and residual stress
calculation. The microstructure sensitive flow stress model will be developed. In chapter 5, as an
extension of the traditional machining process, a novel co-axial laser-assisted milling setup is
developed to machine the hard to machine material. An FEA (finite element analysis) model is

developed for the temperature field and heat-affected zone prediction in the laser-assisted

4



machining process. At the second section of the chapter 5, the analytical machining force

prediction model is proposed for the milling force prediction in the laser-assisted milling process.



CHAPTER 2. LITERATURE REVIEW

2.1 Machining induced microstructure evolution

In the manufacturing processes, such as hot forging, laser assisted melting and friction stir
welding, the material microstructure would typically have considerable change due to the high-
temperature effect [10-12]. With the development of high speed machining equipment, the
increased cutting speed could elevate the machining temperature where material microstructure is
unstable. In a traditional manufacturing process, the material microstructural evolution path is
mainly dependent on the temperature history. In the machining process, the server plastic
deformation (large strain, high strain rate) could also help to promote the material microstructure
evolution. The material microstructure evolution mainly occurs in the primary shear zone and

machined workpiece surface.

The microstructure changes on the machined surface typically manifest as the white layer.
In the machining process, the generation of white layer mainly attributes to the two mechanisms:
the phase transformation from rapid heating and quenching, the homogenous structure or ultrafine
grain structure from the server plastic deformation. A list of some selected research work on the
white layer is shown in Table 1. The white layer in the hard turning of AISI 52100 steel alloys has
been reported by the Chou et al. [8]. In the white layer, improved material microhardness is
observed due to possible strain hardening effect. In the laser assisted milling of Al 2024 alloy, up
to around 5 um thick heat-affected-zone layer is observed, where a-liquid phases are generated
[13], shown in Fig. 2. High residual stress concentration and reduced fatigue life on the heat
affected zone are observed. In the high speed hard turning of hardened steels with ceramic cutting

tool, refined grain structure and white layer is observed on the machined surface up to 2 gm depth
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into the workpiece. Compared with the ceramic cutting insert, less significant microstructure
alteration is found when machining with PCBN tool, as reported by EI-Wardany et al. [14]. The
micromachining, the material microstructure has strong influence on the end product qualify. The
roughness of the machining surface is dominated by surface layer grain size. More than three times
better surface roughness was reported by Popov et al. [15] in the milling of ultra-fine grain
aluminum. In the high speed milling of AISI H12 steel, significant microstructure and
microhardness changes are found [16]. Also, the effect of different milling conditions on the
microstructure are investigated, as shown in Fig. 3. Extensive grain refinement and strain induced
martensitic phase transformation near the machined surface in finish turning of 304L steel are
reported by Ghosh et al. [4], as shown in Fig. 4. The work hardened layer on the surface could

help to increase the susceptibility to stress corrosion crack of the machined surface.

20um

Figure 2 The heat affected zone of the aluminum alloy after the laser assisted milling
process, where A is the unaffected area, B indicates the elongated grain structure region, C shows
the refined a-grain structure [13].



Table 1 Previous research on white layer formation in machining

Material Process References Comments
ENS steel Drilling Griffiths [17] Catastrophic wear and rubbing induce
white layer formation.
AISI 1045 steel Turning Han et al. [18] Plastic deformation promotes phase
transformation at lower temperature.
AISI 52100 Turning Barbacki et al. [19]
steel Ramesh et al. [20] Prediction model for plasticity
induced martensitic phase
transformation.
Umbrello et al. [21] The white layer thickness increases
with increasing feed rate.
Poulachon etal. [22] | The white layer thickness increases
with the tool flank wear.
Duan et al. [23] Temperature based FEA model for
white layer thickness prediction.
BS 817M40 Turning Barry et al. [24] Refined grain size from the material
steel recrystallization.
H13 steel Turning Bosheh et al. [25] The martensitic phase transformation
is correlated with tool wear.
Ti-6Al-4V Turning Che-Haron et al. Working hardening is observed on the
[26] white layer.
Veladsqueza et al. Plastically affected zone observed, but
[27] no phase transformation.
End Daymi et al. [28] Thin plastically deformed layer.
milling
Inconel 100 Turning | Ranganath etal. [29] | FEA prediction model for the white

layer and bent grains




(@) (b)

Figure 3 The microstructure of the AISI H13 steel of the machined workpiece at cutting
speed of 300 m/min, feed rate = 0.1 mm/tooth, axial depth of cut = 0.2 mm , (a) at cutting
direction of 0°(b) cutting direction of 60° [16].

[001]

Figure 4 EBSD image showing around 150 zm thick layer grain refinement (less than 0.5
4m) in the machined surface [4].

Besides the observation on the white layer formation purely from experimental study, both
empirical and physical based models have been proposed to predict the white layer generation after
machining. A finite element based model is developed by Ranganth et al. [29] to calculate the
plastic strain, which is believed to be the cause of white layer generation on the machined surface
of Inconel 100 alloy. The temperature effect on the white layer generation is largely ignored. Duan

et al. [23] argued that, the phase transformation is the dominating factor in white layer generation.



A pure temperature-based phase transformation model is used for the white layer thickness
prediction. Ramesh et al. [20] developed a model that incorporates the strain, stress and
temperature effect on the white layer generation. Similar research is done by Han et al. [18] in
turning of AISI 1045 steel. From a more physics based ground, an a