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NOMENCLATURE 

 

𝑎 = Radial depth of cut in orthogonal cutting (m) 

𝑎𝑖 = Approximation coefficient of discrete wavelet transform at decomposition level 𝑖 

𝑎𝑘 = Autocorrelation coefficient at time difference 𝑘 

𝐵 = Shannon entropy of a signal 

𝑐𝑘 = Autocovariance function at time difference 𝑘 

𝑐𝑦 = System damping (N/m/s) 

𝐶𝐹 = Capacitance in the charge amplifier feedback loop (F) 

𝑑𝑖 = Detail coefficient of discrete wavelet transform at decomposition level 𝑖 

𝑑𝑖𝑗 = Piezoelectric modulus that relates the electric displacement along axis 𝑖 to the 

mechanical stress along axis 𝑗 (C/N) 

𝐷 = Diameter of cutting tool (m) 

𝜀(𝑡) = Bending strain (m/m) 

𝐸𝑖 = Young’s modulus of the PVDF sensor along axis 𝑖 (N/m2) 

𝐸𝑡 = Young’s modulus of the tool (N/m2) 

𝐹(𝑡) = Time series dynamic cutting force (N) 

𝐹𝑥 = Radial dynamic force component (N) 

𝐹𝑦 = Tangential dynamic force component (N) 

𝐹𝑧 = Feed dynamic force component (N) 

𝑔[𝑛] = Low pass filter 

𝐺 = Shear modulus of the tool (N/m2) 

𝐺𝐶𝑢𝑡(𝑠) = Continuous time transfer function matrix between cutting forces and strain at 

the location of the PVDF sensor 

𝐺𝑃𝑉𝐷𝐹(𝑠) = Transfer function matrix between the strain measured by the PVDF sensor 

and the charges generated in the electrodes of the PVDF sensor 
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ℎ0 = Undeformed chip thickness (m) 

ℎ(𝑡) = Chip thickness (m) 

ℎ[𝑛] = High pass filter 

𝐻 = Distance from the center of PVDF sensor to the neutral axis with respect to bending 

moment created by F (m) 

𝐼𝑝 = Polar moment of inertia (m4) 

𝐼𝑧𝑧 = Area moment of inertia (m4) 

𝑘𝑦 = System stiffness (N/m) 

𝐾𝐶𝑢𝑡 = Orthogonal cutting force coefficient (N/m2) 

𝐾𝐹𝑒𝑒𝑑 = Feed force calibration constant (V/N) 

𝐾𝑅𝑎𝑑 = Radial force calibration constant (V/N) 

𝐾𝑇 = Boring torque calibration constant (V/Nm) 

𝐾𝑇𝑎𝑛 = Tangential force calibration constant (V/N) 

𝐿 = Distance from the idealized concentrated force to the center of the PVDF sensor (m) 

𝑚𝑦 = System mass (kg) 

𝑁 = Number of samples 

 𝑝𝑖 = Probability mass function of a sample 

𝑃𝑅 = Power ratio of the top two largest Fast Fourier Transform peaks 

𝑞(𝑡) = Electric charge generated in the electrodes of a PVDF sensor (C) 

𝑞𝐴 = Total electric charge generated in the electrodes of PVDF sensors in the axial rosette 

configuration (C) 

Φ(𝑠)  = Frequency response transfer function 

𝑆 = Sampling period (s) 

𝑇(𝑡) = Time series of cutting torque (Nm) 

𝑣𝑖𝑗= Poisson ratio of the PVDF sensor material; it represents the contribution of the 

normal strain along axis 𝑖 to the normal strain along axis 𝑗 
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𝑉(𝑡) = Time series of voltage output of charge amplifier (V) 

𝑉[𝑛] = Discrete voltage samples collected by the data logging unit (V) 

𝑉𝐴(𝑡) = Time series of voltage output of anti-aliasing filter (V) 

𝜔𝑐 = Chatter vibration frequency (Hz) 

𝜓(𝑡) = Mother wavelet of a continuous wavelet transform 

𝑋 = Discretized sample dataset of a signal 

𝑋𝐹 = Discrete Fourier Transform of a signal 

𝑋𝜔 = Continuous wavelet transform of a signal 

𝛾(𝑡) = Torsional shear strain (%) 

𝑦(𝑡) = Instantaneous displacement between the tool and workpiece (m) 

 

 

 

 

 



xiii 

 

SUMMARY 

 

A low-cost, high fidelity measurement system consisting of a thin film 

Polyvinylidene Fluoride (PVDF) piezoelectric strain rosette and data logging electronics 

has been designed, fabricated, and evaluated for monitoring the dynamic cutting forces and 

torque in single-point cutting processes, specifically turning and boring. Physics-based 

models are used to relate the measured voltage to the process forces and torques. By means 

of key assumptions about particular strain components, simplified PVDF strain sensor 

rosettes are developed to isolate the particular strains of interest. Wired and wireless 

communication methods to transmit the dynamic strains measured by the sensors to a data 

logging base station are demonstrated. The proposed methods are experimentally validated 

through comparison with quartz-based piezoelectric cutting force and torque 

dynamometers. In addition, the performance of several chatter detection algorithms applied 

to turning force and boring torque data is evaluated with a focus on embedded electronic 

automation. The dynamic cutting force data is acquired from turning experiments by 

varying the initial workpiece geometry, while the dynamic torque data is acquired from 

boring experiments performed on industrial rotor compressor discs. For chatter detection 

in turning, spectral analysis is demonstrated to be the most robust algorithm and is shown 

to be capable of detecting dynamic instability before physical damage to the part occurs. 

For chatter detection in boring, autocorrelation modeling is demonstrated to be the most 

computationally efficient of the techniques evaluated.
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CHAPTER 1 

INTRODUCTION 

 

Motivation and Problem Statement 

Single point machining processes such as turning and boring are used extensively 

in manufacturing applications, including gas turbine rotor and stator production. Though 

analytical methods exist to predict the cutting forces and dynamic instability in such 

processes [1, 2], they do not account for process uncertainties. Sources of process 

uncertainty that are difficult to model include inhomogeneity in workpiece material 

properties, and tool breakage/wear, etc., which in turn can negatively impact part quality 

and productivity of the operation. Therefore, the machining process requires on-line system 

monitoring in addition to physics-based modelling to maximize production and minimize 

costs. 

 Cutting forces and torques in machining in general, and single-point cutting in 

particular, are of particular practical significance for process monitoring since they can be 

used as a robust proxy for the detection of tool breakage, wear, and self-excited chatter 

vibrations [3, 4]. Current state-of-the-art for accurate measurement of forces in single-point 

cutting consists of platform type quartz-based piezoelectric force dynamometers. 

Piezoelectric sensors consist of a material that produces charge when undergoing 

deformation or temperature change. However, these force sensing systems suffer from 

several limitations including: 1) high cost, 2) difficulty in incorporating them into the 

machine tool system without compromising the system dynamic stiffness, and 3) limited 

bandwidth (typically < 4 kHz). Therefore, a low-cost, highly sensitive, nonintrusive 

measurement method is required to realize real-time process monitoring in a production 

environment. 
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Though there exist analytical models to identify cutting conditions that avoid 

chatter [5-8], they do not account for a wide range of process related uncertainties 

mentioned earlier. Also, structural dynamic characteristics of the 

workpiece/tool/fixture/machine tool system change as a function of the machining 

parameters including tool position and fixturing and are therefore difficult to characterize. 

Therefore, real-time detection of dynamic instability, i.e. chatter, is still necessary for 

active chatter suppression during the cutting process. Though multiple chatter detection 

methods for turning and boring have been proposed by the research community, the 

corresponding algorithms have yet to be implemented on the factory floor. 

Various reasons exist for the failure to apply on-line chatter detection methods in a 

production environment. Generally, the sensors and detection algorithms are developed 

and validated in a laboratory setting and do not consider the demands of production 

environments including reconfigurability, cost, and sources of noise. As a result, chatter 

monitoring systems proposed by researchers are limited by at least one of the following 

drawbacks: 1) the sensors used to robustly acquire data for processing are costly (such as 

piezoelectric microphones and quartz-based dynamometers), 2) the chatter detection 

algorithms fail to consider various events or machine tool setups that can change the 

signal’s behavior, such as tool breakage, changing cutting parameters, pre-existing 

geometric discontinuities in the workpiece (e.g., holes, steps, etc.), 3) the chatter 

monitoring methodologies cannot accommodate automated machine tool correction or 

practical data logging, and 4) the computing hardware used for signal acquisition and 

processing tend to be intrusive and expensive, as is the case with contract vendors who 

have to reconfigure the CNC software architecture to facilitate chatter 

detection/suppression.  

Polyvinylidene Fluoride (PVDF) piezoelectric strain sensors are seen as a potential 

candidate for nonintrusive machine tool monitoring due to their flexibility in mounting, 

wide frequency bandwidth (with resonant frequency above 10 MHz), high strain sensitivity 
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(~10 mV/µε), and low cost (~$5 per sensor) [9]. The PVDF strain sensor is constructed by 

sputtering PVDF onto a thin polymer film, which can then be easily attached to a host 

structure. Thus, the PVDF thin film sensor produces a corresponding charge when the host 

structure is strained elastically. The development and use of PVDF thin film sensors for 

monitoring the dynamic forces in end milling [10] and in non-machining applications [11-

15] have been reported. 

While PVDF-based sensing has been evaluated for end milling, PVDF-based force 

sensing has not been developed nor validated for single-point cutting processes such as 

turning and boring. In single-point cutting processes, the tool is in continuous contact with 

the workpiece. Thus, ideally the cutting force should be a steady state signal (termed static 

force). In this thesis, dynamic forces are defined as variations about the static forces. 

Dynamic forces measured by the PVDF sensor can be used to characterize process states 

including tool breakage, wear, and self-excited vibrations [2, 3]. In summary, the need for 

low cost, flexible, and robust systems for on-line monitoring of single-point cutting 

processes such as turning and boring serve as the primary motivation for this research. As 

a result, a new machining process monitoring system consisting of PVDF piezoelectric thin 

film sensing is researched. 

Research Objectives 

In light of the problems discussed above, this research aims to develop innovative, 

low-cost, and non-intrusive sensing systems for monitoring the dynamic cutting forces and 

torque in single-point cutting processes, specifically turning and boring, and to evaluate 

the performance of several computationally efficient chatter detection algorithms suitable 

for embedded application. The specific objectives of this research are:  

1. Develop quantitative physics-based measurement system models for PVDF sensing 

of dynamic forces in turning and dynamic torque in boring processes. 
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2. Demonstrate robust, on-line measurement of the dynamic cutting forces and 

torques in turning and boring, respectively, using the PVDF sensors and 

measurement system models developed in this thesis. 

3. Establish efficient turning and boring chatter detection methods suitable for 

implementation in high speed embedded electronic platforms. 

The research objectives of this thesis are accomplished through a comprehensive 

literature review of prior work followed by design, analysis, and rigorous experimental 

validation of the proposed approaches. 

Proposed Approach 

The overall approach for process monitoring of turning and boring processes is 

shown in Figure 1. The cutting forces and torque in turning and boring, respectively, 

elastically deform the cutting tool. The PVDF piezoelectric thin film sensor rosette 

measures the  dynamic strains produced in the tool at the location of the sensor and converts 

the strains to cutting forces/torque using physics-based measurement system models 

developed in this thesis. The sensed signals are then processed by the embedded 

microcontroller-based electronics using algorithms developed in this thesis to detect the 

onset of chatter before chatter marks occur on the workpiece. If chatter alarm is issued by 

the monitoring system, corrective action can be taken by the machine tool controller but, 

for certain environments, simply recording the alert can be sufficient.  
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Figure 1. Overall approach. 

Thesis Outline 

The remainder of this thesis is organized as follows. Chapter 2 presents a 

comprehensive review of prior work and existing external sensor-based technologies. 

Chapter 3 introduces a novel PVDF piezoelectric strain sensor based method for 

monitoring dynamic feed, radial, and tangential forces in turning and its experimental 

validation. Chapter 4 introduces a simplified PVDF piezoelectric strain sensor 

configuration for monitoring the dynamic torque in boring and its experimental evaluation. 

Chapter 5 discusses various mathematical algorithms for on-line chatter detection and 

experimental evaluation of the proposed methods. Finally, the conclusions and future 

recommendations of this work are given in Chapter 6. 
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CHAPTER 2 

LITERATURE REVIEW 

 

A literature review of prior research is presented in this chapter. The review is 

divided into four sections: 1) developments in monitoring of machining processes with an 

emphasis on single-point cutting, 2) a more specific overview of monitoring of cutting 

forces in single-point cutting, 3) PVDF sensor based applications, 4) on-line algorithms for 

chatter detection in single-point cutting processes. 

Machining Process Monitoring  

Monitoring of the machining process is vital to the success of automated 

manufacturing. The topic has been extensively investigated by researchers [3, 16, 17]. A 

variety of sensors including microelectromechanical systems (MEMS) accelerometers 

[18], acoustic emission sensors [19], thin film strain gauges [20, 21], and thermocouples 

[22, 23] have been used for monitoring machining processes including milling, drilling, 

turning, grinding, lapping, and chemical mechanical processing. However, several 

challenges related to  practical implementation of such sensing technology still remain [3]. 

Because machining is performed with a wide variety of cutting tools, part geometries and 

materials, and cutting conditions, the sensor packaging and their corresponding algorithms 

must be robust and adaptable to changes in all possible variables. In addition, use of sensors 

incurs additional cost and maintenance. The machine characterization from the sensor 

information must be checked, relayed to a network or computer, and then the appropriate 

action must be taken. Figure 2 shows the major steps involved in an automated process. 

Each arrow in the process represents a physical connection in the loop (e.g. wire). As a 

result, from an implementation standpoint, sensors are often viewed as expensive, 

inefficient, and inaccurate when compared to the alternative of a trained operator. 
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Therefore, low-cost, nonintrusive, wireless sensors have emerged as a promising candidate 

for machining process monitoring. 

 

 

Figure 2. Example of an automated process monitoring chain. 

 

Recently, the application of embedded and wireless sensing in machining has 

attracted the interest of the research community as a way to implement nonintrusive yet 

robust sensing systems. Several researchers [24-26] have identified and evaluated wireless 

monitoring system requirements and potential faults for implementation of wireless 

standards in turning applications in production environments. Even though researchers 

continue to investigate the integration of wireless capability into the factory system 

architecture [27-30], sensors that exploit the flexibility of the wireless standard must also 

be implemented in order to fully realize machining process monitoring.  

Wireless and embedded sensing have been previously demonstrated for the 

collection of temperature, vibration, sound, and force data. Ho, et al. [31] developed a 

wireless cutting temperature data acquisition system for the turning process using a 

standard thermocouple coupled with Bluetooth transmission. Several researchers [32-34] 

demonstrated the applicability of thermal sensors embedded in the spindle or under the 

rake face of the tool. However, temperature data cannot be easily correlated to other 

machining process events such as chatter or tool breakage. Aruväli, et al. [35] used a solid 

state MEMS accelerometer attached to the carriage of a lathe to correlate vibration data 

with machine tool faults. Work done by [36] and [18] used a wireless piezoelectric 
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vibration sensing system and a MEMS accelerometer to detect tool wear. However, 

accelerometers are susceptible to transients unrelated to the cutting process such as table 

rapid decelerations and tool carriage rotations. Acoustic emission sensors embedded in the 

tool [37, 38] and utilizing a Doppler radar [39] have been demonstrated for monitoring tool 

wear. Unfortunately, acoustic emission sensors have not been studied in surroundings 

resembling a production environment and are susceptible to background noise emitted from 

sources including nearby machines. Though filtering techniques exist to filter normally 

distributed acoustic background noise, strong harmonics (e.g. another machine chattering 

nearby) are more difficult to isolate and physically identify when the source is unknown.  

Among the large number of machining process variables, cutting forces are of practical 

significance since they can be used as a robust proxy for the detection of tool breakage, 

wear, and self-excited vibrations [3, 4]. Cutting forces are directly related to physics-based 

modeling of machining process, and are therefore the most robust and accurate parameter 

for machining process monitoring. 

Monitoring of Cutting Forces in Single Point Cutting 

Current state-of-the-art for accurate measurement of forces in single-point cutting 

consists of platform-type quartz-based piezoelectric force dynamometers [40]. These types 

of sensors exhibit the high sensitivity and sensor frequency bandwidth required for the 

collection of single-point cutting force data. However, they suffer from several limitations 

including 1) the sensors used to robustly acquire data for processing are costly (such as 

piezoelectric microphones and quartz-based dynamometers), 2) the chatter detection 

algorithms fail to consider various events or machine tool setups that can change the 

signal’s behavior, such as tool breakage, changing cutting parameters, pre-existing 

workpiece geometric discontinuities (e.g., holes, steps, etc.), 3) the chatter monitoring 

methodologies cannot accommodate automated machine tool correction or practical data 

logging, and 4) the computing hardware used for signal acquisition and processing tend to 
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be intrusive and expensive. Many CNC machine tools are equipped with spindle power 

monitors that can be accessed via universal protocols such as MTConnect [41-43]. 

However, such access methods (e.g. measurement of spindle load and axis position) are 

primarily limited in machining process monitoring due to insufficient sampling rate 

required to detect chatter, which typically occurs at higher frequencies.  

Researchers have developed and demonstrated innovative cutting force 

measurement systems in order to overcome the drawbacks of current state-of-the-art 

methods. Cutting force measurements by integrating force/torque sensors into the housing 

are an example of recent innovation [44-46]. These methods require special installation 

techniques that vary significantly from machine-to-machine and can be corrupted by 

inertial forces. Implementation of metal foil strain gauges for monitoring of forces in 

turning [20, 47, 48] and boring [49] have been demonstrated. Though strain gauges have 

proven to be sufficient for static cutting force measurements, these sensors suffer from the 

drawback of low resonant frequencies and DC excitation noise for dynamic cutting force 

measurements. Costly circuit and rosette design techniques are required to overcome such 

limitations. Researchers have attempted to supplement strain gauges with accelerometers 

to indirectly calculate the dynamic forces [20, 50], though such accelerometers still suffer 

from the limitations including susceptibility to inertia forces. Totis, et al. [51] developed 

an adaptable piezoelectric force ring for a mill-turn machine, but such sensors are cost-

prohibitive. These drawbacks severely inhibit the practical implementation of on-line 

cutting force monitoring and emphasize the need for a flexible and low-cost dynamic force 

measurement system for single-point cutting processes such as turning and boring that can 

be implemented in an industrial environment. 
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PVDF Based Sensing Applications 

PVDF based piezoelectric strain sensors have been shown to be potential candidates 

for sensing applications where only the dynamic or quasistatic strain signals are of interest. 

An image of a typical PVDF sensor in comparison to a coin is reproduced in Figure 3.  

 

 

Figure 3. Example picture of PVDF thin film sensor [52]. 

 

The PVDF polymer can be laminated onto a sheet of polyester, resulting in a very 

thin sensor film (~40 μm) [53]. PVDF’s piezoelectric properties result in the sensor 

producing a charge when it is dynamically strained. The charge can then be converted to 

voltage using a charge amplifier. The voltage is measured by a DAQ (Data Acquisition), 

which can be correlated to the strain. PVDF’s low thickness and high conformability (due 

to its flexibility) minimize its impact on the host structure’s dynamics. This property is 

particularly important for mounting to host structures that have complex shapes or possess 

low stiffness. In addition, the PVDF polymer facilitates the decoupling of strain 

components in a general strain field due to its different strain sensitivities along its two in-

plane axes. Instead of an external power supply, piezoelectric PVDF sensors require a 

charge amplifier circuit. Thus, the PVDF dynamic output voltage is independent of the 

supply voltage, making it ideal for adaptable remote sensing solutions. In addition, PVDF 

sensors are inexpensive (~$5 per sensor) when compared to state-of-the-art quartz-based 

piezoelectric dynamometers (~$30,000 without associated charge amplifier and cabling). 

PVDF-based sensing has been demonstrated in multiple applications, thus showing 

flexibility not only in mounting, but also in implementation. PVDF-based dynamic force 

sensors have been demonstrated for fault detection in both metallic [15] and ceramic [11] 
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materials along with a large variety of biomedical applications [12-14]. For example, 

PVDF sensors were used for dynamic force sensing in microscale applications where 

MEMS-based sensors cannot be used because of their fragility and complex packaging [54-

56]. In [57], PVDF was used in the form of a wire to isolate and measure the radial wall 

motions of a fluid-filled pipe. An exotic use of PVDF thin film sensing application is shown 

in [58], where a strip of PVDF was mounted on the outside of a shoe to measure dynamic 

dance movements. However, research involving the validation of PVDF-based sensors 

generally involve qualitative analysis [59, 60], and quantitative physics-based models 

relating dynamic strain to force while considering thermal effects are rare [61]. PVDF 

sensor-based monitoring applications have been recently demonstrated for force sensing in 

end milling [10, 62] and tool wear monitoring in face milling [63], where the cutting force 

signal is inherently dynamic. 

On-line Detection of Chatter in Single Point Cutting: Sensors and Algorithms 

Various sensing methods have been proposed for the detection and quantification 

of chatter in single-point cutting. Along with appropriate sensitivity, an acceptable sensor 

must possess a wide flat band frequency response to detect the possible frequency range of 

chatter vibrations. Chatter frequencies can range from 100 Hz to as high as 4000 Hz [64]. 

Possible process signals for chatter detection include vibrations [65-83], force [67, 76, 80, 

84-90], acoustic emission [70, 71, 76, 91-93], process induced optical response [87, 94], 

motor current [69], temperature [95], surface roughness [86, 95], and ultrasound waves 

[96]. Force, acceleration, acoustic emission, and spindle current/power are the most 

commonly used process signals for chatter detection in machining [64]. 

Accelerometers are commonly used for chatter detection due to their ease of 

mounting and wide frequency response. However, piezoelectric accelerometers commonly 

used in machining vibrations research are costly, although cheaper MEMS accelerometers 

have been used for chatter detection in milling processes [18, 97, 98]. However, in the 
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context of chatter detection, accelerometers cannot easily isolate the location of the 

vibrations of the entire structure whether or not such vibrations are the result of dynamic 

instability. Thus, the chatter signal to noise ratio can be low for inexpensive 

accelerometers, especially when attempting to detect chatter in its incipient stage. Acoustic 

emission sensors are relatively non-intrusive to the machining process and have been used 

for real-time chatter detection in single-point cutting. However, acoustic sensors  often 

require extensive signal processing to isolate the chatter signal from acoustic signals 

dependent on other process parameters [99]. In addition, most low-cost acoustic emission 

sensors do not yield a flat frequency response under 100 Hz. A typical frequency response 

of a MEMS microphone is shown in Figure 4. Monitoring of spindle motor current/power 

for chatter detection has been demonstrated not only for chatter detection in turning, but 

also in milling [100, 101]. Though the spindle electrical current offers a relatively simple 

and nonintrusive signal for chatter detection, the measurement parameter suffers from the 

drawback of narrow bandwidth. For example, Heidenhain has clearly specified frequency 

bandwidth limitations (no higher than 100 Hz) on their motor current based chatter 

suppression technology [102]. 

 

 

Figure 4. Frequency response of several MEMS microphones [103]. 
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Vibrations associated with the machining process affect instantaneous chip 

thickness, which in turn affects cutting forces. Therefore, cutting force has been identified 

as a robust signal output by the machining process for detection of chatter due to its direct 

relationship with dynamic instability [2, 104, 105]. In addition, force and strain 

measurements can be used to isolate and amplify the chatter signal in the location/direction 

of interest [61]. However, measurement of cutting force with the desired bandwidth and 

sensitivity for detection of the onset of chatter requires can be expensive and intrusive (e.g., 

piezoelectric force dynamometers). Thus, the use of a low-cost thin-Film PVDF strain 

sensor for chatter detection through the measurement of the dynamic cutting force signal 

is proposed in this thesis. When the PVDF sensor is attached to the tool shank, a high signal 

to noise ratio (SNR) can be achieved due to the reduced direct signal transmission path 

between the sensor and the cutting zone. In addition, as shown by Ma, et al. [61] PVDF 

sensors can be configured into rosettes to isolate the strain/force component of interest. 

However, a chatter detection algorithm is still required. 

Ideally, a chatter detection algorithm should be designed to enable automated real-

time machine tool correction, but in certain environments, simply detecting the onset of 

dynamic instability can be sufficient to prevent irreparable damage to the workpiece and/or 

the machine tool system. Chatter detection algorithms have been developed for both 

milling and single-point cutting, although the force signals in the two processes are 

inherently different. While milling cutting force signals are largely dominated by tooth 

passing frequency dependent harmonics [106-109], single-point cutting force signals 

resemble dynamic noise about a static mean [2, 21] in the simplest case. In addition, single-

point cutting force signals can also contain spindle speed dependent harmonics along with 

nonstationary features due to complex toolpaths, continuously varying cutting process 

parameters (such as continuously varying spindle speed to ensure constant surface speed 

in a face turning operation), and preexisting discontinuities in the workpiece geometry (e.g. 
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holes, slots, etc.). Thus, certain assumptions used in milling chatter detection algorithms, 

such as constant harmonics [110-113], cannot be made in single-point cutting. Note that 

while Suprock, et al. [114] compensated for changing spindle harmonics through the use 

of multiple bandpass filters over time as the center frequency varies, the technique works 

best when using real-time spindle speed measurements, thus inducing a significant lag 

between the real and theoretical values. 

Algorithms developed for chatter detection in milling processes are not examined 

in this review for the reasons mentioned previously. However, chatter detection algorithms 

that have demonstrated applicability to both milling and single-point cutting are examined. 

Prior work on chatter detection algorithms for single-point cutting generally apply three 

types of signal processing methods, including (i) statistical analysis on time domain data 

[65, 66, 69, 71-73, 84, 85, 90, 115], (ii) spectral decomposition based analysis including 

Fourier transform and wavelet transform [67, 68, 76, 77, 80, 82, 87, 94, 116], and (iii) 

machine learning techniques such as Artificial Neural Networks (ANN) and support vector 

machines [78, 81, 89, 95, 96, 117].  

An interesting method for detecting chatter in turning processes involves 

processing multiple sensor signals. Calculation of the coherence function between two 

sensor signals, as reported in [71, 72], has shown promise due to its normalization 

capability, thus reducing susceptibility to variations in the cutting conditions. Elias, et al. 

[69] demonstrated the use of Cross-Recurrence Quantification Analysis (CRQA) as a 

method for combining statistical time series data from multiple sensors and examining the 

change in CRQA parameters as an indication of chatter. However, increasing the number 

of sensors also increases the cost, thus limiting its wide-scale use.  

Artificial Neural Networks have been shown as a promising technique for early 

detection of chatter. ANNs are a type of machine learning algorithm that assigns weights 

to inputs (neurons) based on their correlation to an output state of the system. Thus, as 

more inputs are fed to the network, the weights adapt and the algorithm is trained. ANNs 
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have been successfully demonstrated for epileptic seizure detection [118-121] and bearing 

fault detection [122-124]. However, chatter detection methods based on machine learning 

algorithms suffer from the drawback that extensive training and classification is required. 

A reason for the failure to implement on-line chatter detection methods is a lack of 

robustness of the existing methods to process variations encountered in a production 

environment. Generally, algorithms are developed and validated in a laboratory setting, 

where the effect of some of the process variables is assumed to be negligible. In addition, 

the algorithms are validated for very simple machining cases, which are not representative 

of production applications. For example, some algorithms are successfully validated with 

toolpaths that slowly increase the depth of cut [5, 85]. These algorithms do not consider 

robustness against pre-existing workpiece geometric discontinuities such as steps, 

predrilled holes, etc., which can trigger false alarms. From a signal shape perspective, these 

geometric discontinuities act as nonlinearities and produce non-stationary signals. To 

compensate for these geometric variations, some of the previously mentioned algorithms 

require system identification prior to on-line implementation. This limits algorithm 

flexibility since each individual setup needs to be experimentally characterized. 

One of the most significant barriers to on-line chatter detection is the computational 

cost. Though low-cost, non-intrusive machine tool sensing systems have been 

demonstrated, the hardware for processing the sensor output relies on off-the-shelf personal 

computers. Such computing platforms tend to be bulky and costly compared to the sensors 

used. In an experimental/research setting, such validation is appropriate, but some 

algorithms tested with a computer system cannot be practically implemented on a 

microcontroller-based embedded system, which has limited memory and processing speed. 

An ideal chatter detection system is one that executes the algorithm computation on an 

embedded processor due to its flexibility and low-cost. A proposed low-cost, nonintrusive 

embedded chatter detection system will be presented in this thesis along with 

computational criteria for embedding the algorithm into a microcontroller. 
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Summary 

It can be deduced from the literature survey presented in this chapter that existing 

methods for monitoring the cutting force and/or torque in single-point cutting processes 

are intrusive, prohibitively expensive, possess limited bandwidth, or are dependent on the 

workpiece material. Therefore, low-cost PVDF sensors are a promising candidate for 

dynamic cutting force. In addition, the reported methods for on-line chatter detection suffer 

from at least one of the following drawbacks: 1) possible sensitivity to transient events in 

machining other than chatter vibrations, 2) high memory requirement, and 3) high 

computational cost. To promote widespread adoption of chatter recognition monitoring, it 

is proposed that chatter algorithms be designed to overcome the foregoing drawbacks and 

have the memory and computational efficiency required for implementation in embedded 

systems instead of on off-the-shelf personal computers. 
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CHAPTER 3 

PVDF SENSOR BASED DYNAMIC CUTTING FORCE 

MEASUREMENT IN TURNING 

 

Introduction 

In this chapter, novel PVDF-based strain sensor-based methods for measuring the 

dynamic force components in the feed, radial, and tangential directions in the turning 

process are presented. In the following sections of this chapter, the overall dynamic force 

sensing methodology and approach are described, followed by experimental validation, 

discussion of results and conclusions. 

Turning Force Measurement System Modeling 

This section describes the force measurement system for turning. Consider the 

schematic shown in Figure 5. The PVDF sensor(s) glued to the tool shank is (are) wired to 

the piezoelectric and anti-aliasing signal conditioning electronics, which are in turn wired 

to a data logging unit. The dynamic cutting forces acting on the insert elastically deform 

the tool shank. The dynamic elastic strains generated in the host structure at the PVDF 

sensor location then produce electric charges at the electrodes due to the piezoelectric 

effect.  
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Figure 5. PVDF rosette configuration for outer diameter turning. 

 

The charges are then converted into voltage signals using a charge amplifier. The 

voltage signal is processed by an anti-aliasing filter before being read by a data acquisition 

unit. The general signal flow for both turning and boring is shown in Figure 6. 

 

 

Figure 6. Signal flow for single-point cutting force measurement system. 

 

In Figure 6, 𝐹(𝑡), 𝑇(𝑡), 𝜀(𝑡), 𝛾(𝑡), 𝑞(𝑡), 𝑉(𝑡), 𝑉𝐴(𝑡), 𝑉[𝑛], and S denote the 

dynamic cutting force component, the dynamic cutting torque, PVDF bending strain 

response, PVDF torsional shear strain response, charge generated at the sensor electrodes, 

voltage signal output by the charge amplifier, voltage signal output by the anti-aliasing 

filter, digital voltage samples collected by the data logging unit, and the sampling period, 

respectively. Between turning and boring, 𝐺𝐶𝑢𝑡(𝑠) and 𝐺𝑃𝑉𝐷𝐹(𝑠)  will differ while the rest 

of the signal flow remains the same. Note that 𝑇(𝑡) and 𝛾(𝑡) relate to the boring process 

described in the following chapter. 𝐹(𝑡) and 𝜀(𝑡) correspond to turning processes, and the 

derivation for these parameters will be described in this section.  
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Dynamic strains experienced by the turning tool are measured by the PVDF sensor 

rosette and used to calculate the dynamic force component of interest. Figure 5 illustrates 

the strain gauge rosette used to measure the dynamic force components in the radial (X), 

feed (Z), and tangential (Y) directions using PVDF sensors at location i (𝑖 = 1,2,3). 

In the following derivation, it is assumed that the cutting forces can be 

approximated as three point loads acting at a location equal to half the radial depth of cut 

measured from the free end of the tool, though in reality the forces are distributed across 

the tool-workpiece contact. To obtain the tangential dynamic force component (𝐹𝑦), only 

one PVDF sensor (𝑖 =  1) is needed if the axial and torsional strains are assumed to be 

negligible compared to the bending strain. It is also assumed that the small strain theory of 

elasticity is applicable. These assumptions can also be applied to obtain the dynamic feed 

force (𝐹𝑧) with PVDF sensor 𝑖 =  2. Note that the following derivation of the relationship 

between the measured dynamic strain and the dynamic force component is for the dynamic 

tangential force component. The derivation approach is identical for the dynamic feed force 

component. The derivation for the dynamic radial force (𝐹𝑥) is presented later. 

Treating the tool as a cantilever beam with square cross-section clamped in the tool 

holder, the bending strain generated in the tool at the location of the PVDF sensor 𝑖 =  1 

can be found using the standard bending formula 

 

 𝜀1 =
𝐹𝑦𝐿𝐻

2𝐸𝑡𝐼𝑧𝑧
=

6𝐹𝑦𝐿

𝐸𝑡𝐻3
                           (1) 

 

where 𝐿 is the distance between the center of the PVDF sensor and 𝐹𝑦, 𝐻 is the cross 

sectional height of the tool, 𝐸𝑡 is the Young’s Modulus of the tool, and 𝐼𝑧𝑧 is the area 

moment of inertia. It was shown by Ma, et al. [61] that the axial strain is usually 1-2 orders 

of magnitude lower than the bending strain given by Eq. (1). Using the derivation of PVDF 

charge output for a single PVDF sensor formulated by Ma, et al. [61], and assuming the 
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pyroelectric effect is negligible, the general charge output of the PVDF sensor 

configuration shown in Figure 7 can be written as 

 

 𝑞 =
∫[𝜀1(𝑑31𝐸1 + 𝜐12𝑑32𝐸2) + 𝜀2(𝑑32𝐸2 + 𝜐21𝑑31𝐸1)]𝑑𝐴3

1 − 𝜐21𝑣12
 (2) 

 

where 𝑑𝑖𝑗 is the piezoelectric modulus relating the electric displacement along axis 𝑖 to the 

mechanical stress along axis 𝑗 (all axes are shown in Figure 7), 𝑣𝑖𝑗 is the Poisson’s ratio of 

the PVDF sensor material and represents the contribution of the normal strain along axis 𝑖 

to the normal strain along axis 𝑗, 𝐸𝑖 is the Young’s modulus of the PVDF sensor along axis 

𝑖. Note that while Figure 7 shows the PVDF sensor to be flat, the model studies the change 

in deformation from the sensor’s initial state, which can be flat when attached to a square 

shank turning tool or curved on a cylindrical boring bar. 

 

 

Figure 7. Schematic of a PVDF sensor element. 

 

However, relating 𝜀2 to 𝜀1using the Poisson’s ratio, assuming 𝑑32 << 𝑑31 [125], 

and substituting Eq. (1) into Eq. (2) results in the following relation between the charge 

developed at the sensor location and the corresponding force component 
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 𝑞1 =
6𝐿𝐴3[𝑑31𝐸1(1 − 𝜐𝑡𝜐21)]

𝐸𝑡𝐻𝑦
3(1 − 𝜐21𝑣12)

𝐹𝑦 (3) 

 

where 𝜐𝑡 is the host structure’s Poisson’s ratio. Because the PVDF sensor is mounted 

parallel to the tool’s longitudinal axis and is therefore not sensitive to in-plane shear strains, 

Eq. (3) can be used to solve for 𝑞2, which in turn can be used to determine the dynamic 

feed force, 𝐹𝑧. 

To determine the dynamic radial force, 𝐹𝑥, the corresponding axial strain must be 

isolated. The axial strain is expressed as  

 

 𝜀𝑎 =
𝐹𝑥

𝐸𝑡𝐻2
 (4) 

 

Instead of using the configuration developed by Ma, et al. [61], a simplified sensor 

configuration is proposed in Figure 5 to meet the sensor mounting (size) constraints of the 

turning tool holder. Using the PVDF sensors i = 1, 3 to cancel the bending strains while 

assuming that the torsional strains are negligible, the total charge can be written as 

 

 𝑞𝐴 = 𝑞1 + 𝑞3 (5) 

 

Note that the addition notation is used because axes 3 of the sensors 𝑖 =  1, 3 lie in 

opposite directions. Assuming that the same PVDF sensors are used (therefore, 𝑑𝑖𝑗, 𝑣𝑖𝑗, 

and 𝐸𝑖 are the same) and both sensors experience the same axial strain, substituting Eq. (2) 

and (4) into Eq. (5) yields the following equation relating charge output to the dynamic 

radial cutting force  
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 𝑞𝐴 =
2𝜀𝑎𝐴3[𝑑31𝐸1(1 − 𝜐𝑡𝜐21)]

1 − 𝜐21𝑣12
=

2𝐴3[𝑑31𝐸1(1 − 𝜐𝑡𝜐21)]

𝐸𝑡𝐻2(1 − 𝜐21𝑣12)
𝐹𝑥 (6) 

 

After relating the piezoelectric charge to the cutting forces in turning, a charge 

amplifier converts the charge to voltage, thus facilitating data acquisition by an A/D 

converter. The following section describes how this process relates to the PVDF model. 

Signal Flow Modeling 

The derivation of the remainder of the signal flow in Figure 6 can be used to relate 

the voltage to the dynamic force and dynamic torque for all the PVDF sensor 

configurations discussed in this thesis. In order to record the data electronically, the output 

charge is converted to voltage using a charge amplifier circuit. Therefore, the resulting 

voltage as a function of charge is expressed as 

 

 V(t) =
q

CF
 (7) 

 

where 𝐶𝐹 is the capacitance in the charge amplifier feedback loop. The voltage signal is 

then processed by a low pass filter with a cutoff frequency of no more than half the 

sampling rate in order to mitigate the aliasing effect. The filtered signal is then read by a 

data acquisition unit, thus transforming the analog signal into the discrete domain with 

sample time 𝑇. Figure 8 illustrates the idealized frequency response of the measurement 

system. Note that the charge amplifier response is 0 at 0 Hz, and therefore, any frequencies 

lower than 𝑓1 will be attenuated. Though the charge amplification circuitry depends on the 

electrical requirements, the general components that determine 𝑓1 are the values pertaining 

to the feedback capacitors and resistors.  
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Figure 8. Example measurement system frequency response. 

 

By substituting Eq. (7) into Eq. (3) and Eq. (6), 𝐾𝑇𝑎𝑛 and 𝐾𝑅𝑎𝑑 for turning can be 

written as 

 

 𝑉 = 𝐾𝑇𝑎𝑛𝐹𝑦, 𝐾𝑇𝑎𝑛 =
6𝐿𝐴3[𝑑31𝐸1(1 − 𝜐𝑡𝜐21)]

𝐶𝐹𝐸𝑡𝐻𝑦
3(1 − 𝜐21𝑣12)

 (8) 

 

 𝑉 = 𝐾𝑅𝑎𝑑𝐹𝑥, 𝐾𝑅𝑎𝑑 =
2𝐴3[𝑑31𝐸1(1 − 𝜐𝑡𝜐21)]

𝐸𝑡𝐻2(1 − 𝜐21𝑣12)
 (9) 

 

Note that Eq. (11) and Eq. (12) imply a linear relationship between the voltage 

output and force.  

Experimental Verification 

A set of turning experiments were performed on Aluminum 6061 and AISI 1018 

steel (Rockwell B70) to validate the PVDF measurement system. A Kistler 9257B 3-axis 

Force Component Dynamometer was used as the reference signal for comparison. Both 

signals were digitally recorded with a National Instruments cDAQ-9178 at a sampling rate 

of 12 KHz. The cut-off frequency of the PVDF signal charge amplifier was set to 7.24 Hz 

while the anti-aliasing filter was an 8-order low pass Bessel filter with a cut off frequency 
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of 5.5 KHz. A Bessel filter was chosen over a Butterworth filter to produce a linear phase 

response at the filter output. 

 

 

Figure 9. Force measurement setup for turning. 

 

Because certain material and geometric constants are not known exactly, 𝐾𝑇𝑎𝑛 

(which also corresponds to 𝐾𝐹𝑒𝑒𝑑 for the dynamic feed force component) and 𝐾𝑅𝑎𝑑 have 

to be calibrated. Note that since different host structures have different geometric and 

mechanical properties (e.g. cross-sectional area and Young’s Modulus), the sensor 

configuration has to be recalibrated for different tools. The results of sensor calibration are 

shown in Table 1 for the outer diameter longitudinal turning tests. The length of cut in each 

test was 25.4 mm and was performed with a right hand turning tool (Valenite MTGNR-16-

4D). All cuts were performed without coolant. Note that while other toolpaths and cutting 

tools were tested and will be discussed later, they were not used for sensor calibration. 
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Table 1. Cutting conditions for turning tests for sensor calibration. 

Test 

No. 

Spindle 

Speed 

(RPM) 

Cutting 

Speed 

(m/min) 

Depth 

of Cut 

(mm) 

Feed 

(mm) Material 

KTan 

(mV/N) 

KFeed 

(mV/N) 

KRad 

(mV/N) 

1 500 40 1.27 0.254 AL 6061 2.89 2.49 4.33 

2 1000 80 1.27 0.254 AL 6061 3.15 2.65 4.18 

3 2000 160 1.27 0.254 AL 6061 3.06 2.75 5.08 

4 2500 200 1.27 0.254 AL 6061 2.78 2.69 4.65 

5 1500 120 0.635 0.254 AL 6061 3.02 2.12 2.96 

6 1500 120 0.9525 0.254 AL 6061 3.15 2.35 2.94 

7 1500 120 1.5875 0.254 AL 6061 2.41 3.01 5.24 

8 1500 120 1.905 0.254 AL 6061 3.19 2.69 5.10 

9 1500 120 1.27 0.076 AL 6061 3.03 3.68 3.00 

10 1500 120 1.27 0.152 AL 6061 3.09 3.05 5.03 

11 1500 120 1.27 0.330 AL 6061 2.76 2.81 5.21 

12 1500 120 1.27 0.406 AL 6061 2.89 2.45 3.70 

13 1000 80 0.635 0.127 ST 1018 2.92 2.79 3.24 

14 1500 120 0.635 0.127 ST 1018 2.98 3.57 3.18 

15 2000 160 0.635 0.127 ST 1018 2.59 2.34 2.99 

16 1500 120 0.3175 0.127 ST 1018 3.52 4.22 5.21 

17 1500 120 0.9525 0.127 ST 1018 3.08 2.75 3.86 

18 1500 120 0.635 0.063 ST 1018 2.72 3.10 4.18 

19 1500 120 0.635 0.190 ST 1018 3.28 2.05 3.22 

 

The average values for 𝐾𝑇𝑎𝑛, 𝐾𝐹𝑒𝑒𝑑, and 𝐾𝑅𝑎𝑑 were determined to be 2.92 mV/N, 

2.82 mV/N, and 4.07 mV/N, respectively. Figures 10 to 12 show representative results of 

the turning tests. Recall that the PVDF sensor can only measure the dynamic component 

of force and not the static component. Therefore, to permit comparison of the PVDF signal 

with the forces measured by the piezoelectric force dynamometer, all signals shown in the 

figures have been transformed to zero mean but the actual cutting forces measured by the 

piezoelectric force dynamometer vary about a non-zero static mean. Figures 10 and 11 

show that for 𝐹𝑦 and 𝐹𝑧, respectively, the PVDF signals appear to match the dynamometer 

dynamic force signals quite well. Figure 12 shows the frequency decomposition of the 

measured dynamic force profiles presented in Figure 11. For comparison, the spectra are 
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normalized by the magnitude of the maximum frequency. At lower frequencies, the PVDF 

sensor and dynamometer reference signals are similar. This is because stable cutting 

frequencies detected by the sensors are a function of the spindle frequency, which is 

relatively low (25 Hz) compared to the sampling rate. However, the PVDF sensor 

frequency decomposition exhibits a particular harmonic (4688 Hz) that the dynamometer 

does not show. This could be due to the inherent differences in the 

frequency/electromagnetic circuitry characteristics of the dynamometer and cutting 

tool/PVDF sensor systems, specifically the electromagnetic interference resulting from 

lower quality shielding for the PVDF sensor system. The sensor-tool configuration 

frequency response from an impact hammer impulse width of 0.55ms is shown in the 

Appendix. Note that the frequency magnitude is approximately unity magnitude until the 

impact hammer frequency. Frequency response characteristics are presented in datasheets 

for the PVDF thin film sensor [9] and the cutting force dynamometer [40].  

 

 

Figure 10. PVDF signal comparison with dynamometer for dynamic 𝐹𝑦 (Test 12). 
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Figure 11. PVDF signal comparison with dynamometer for 𝐹𝑧 (Test 17). 

 

 

Figure 12. PVDF signal frequency decomposition comparison with dynamometer (Test 

17). 

 

The radial PVDF and dynamometer reference signals show some differences, as 

seen in Figure 13. In addition, the individual values for 𝐾𝑅𝑎𝑑 appear to vary much more in 

comparison to the other constants. This is because the point of contact between the right 
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hand turning tool and workpiece induces a torsional strain that is not cancelled by the 

configuration using two PVDF sensor, thus distorting the signal. Using the force data 

procured from experimentation, the torsional strain was determined to be ~45% of the axial 

strain. Special test cases were run to determine when the PVDF sensor data for the radial 

dynamic force is in better agreement with the Kistler dynamometer data. 

 

 

Figure 13. PVDF signal comparison with dynamometer for 𝐹𝑥 (Test 8). 

 

Figure 14 shows the results for a facing operation. In this operation, the 𝐹𝑥 force 

matches more closely than in the previous tests. This is because, during the facing 

operation, the feed force is aligned with 𝐹𝑥, thus increasing the axial strain generated in the 

tool. Figure 15 shows the PVDF 𝐹𝑥 response for a straight longitudinal turning test 

performed using a threading tool (Kennametal DVVNN-163D) instead of the right-handed 

turning tool listed in Table 1. In this test, the responses are in better agreement because the 

force is concentrated closer to the axis of the tool, thus reducing the torsional strain. The 

harmonic response shown in Figure 15 was present in all the test cases with the threading 
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tool even though no chatter was observed. This response could be the result of the system 

being asymptotically stable (harmonics are present but do not grow). 

 

 

Figure 14. PVDF signal comparison with dynamometer for dynamic radial force 

component (Facing). 

 

 

Figure 15. PVDF signal comparison with dynamometer for dynamic radial force 

component (Threading Tool). 
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Summary 

A novel, low cost and non-intrusive method for monitoring the dynamic 

components of the cutting forces in turning was proposed, designed and validated. The 

force monitoring methodology takes advantage of a low cost PVDF sensor, which yields a 

combination of high flexibility, low electromagnetic interference, wide bandwidth, high 

dynamic range, and high strain sensitivity along the different geometric axes of the sensing 

element. Physics based models have been developed to relate the charge produced by the 

PVDF sensor to dynamic cutting forces. PVDF signals were acquired using an in-house 

developed charge amplifier and a commercial DAQ. Though wireless functionality is not 

incorporated in the turning case, a wireless transmitter, implemented for the rotating boring 

bar in Chapter 4, can easily be adapted to the turning case. In addition, schematics for 

wireless PVDF-based monitoring of turning processes developed after the experiments 

described in this chapter is provided in the Appendix. The measured PVDF sensor signals 

were found to be in reasonably good agreement with those measured by the reference 

piezoelectric force dynamometer. For measuring the radial cutting force using a simplified 

dual sensor configuration, turning processes involving facing toolpaths and threading tools 

were identified to yield better agreement with the dynamometer-based reference signal. 

When the material constants of the cutting tool and the PVDF sensor are known, they can 

be used directly in Eqs. (8) and (9) to transform the PVDF sensor signals into cutting force 

signals independent of the machining parameters or workpiece material. In this case, no 

calibration is needed for the measurement system to function. However, in this work, 

because certain geometric constants are not known, the PVDF sensor signal was calibrated 

against the dynamometer force signal. The PVDF sensor cannot measure the static strain 

component in turning due to the inevitable charge decay at the sensor electrodes, but, if 

desired, the sensor can be supplemented with a standard metal foil strain gauge to obtain 
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the entire reference signal. Such a combination would alleviate the sensitivity requirements 

of the associated electronics, thus reducing cost. The PVDF sensor signal represents a 

slightly distorted version of the cutting force signal and is useful in applications where only 

the AC content of the cutting forces is of interest. If the exact shape of the dynamic force 

is not required, then the simplified rosettes can still be correlated with the machining 

responses of interest including tool wear, tool breakage, and chatter. The sensor and its 

associated electronics require more robust packaging in order to withstand external 

disturbances typically encountered in a production environment, including coolants and 

automatic tool changing. 
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CHAPTER 4 

PVDF SENSOR BASED BORING TORQUE MEASUREMENT 

 

Introduction 

In this chapter, a novel, PVDF-based sensor for measuring the dynamic torque 

acting on a boring tool are presented. In contrast to the work of Ma et al. [62], a simplified, 

two sensor configuration attached to the rotating boring bar is used to measure the dynamic 

cutting torque component. Other improvements over the work of [62] include 

demonstration of a real-time wireless transmitting device and an improved digital filter 

design that does not require the use of a recovery inverse-filter. 

Boring Torque Measurement System Modeling 

Figure 16 shows the experimental setup for boring. For non-rotating boring tools 

mounted in a lathe, Eq. (3) and (6) can be used to obtain the corresponding forces. 

However, for rotating boring bars, particularly those used in a machining center, the 

dynamic torque is of interest. As with the turning case, the PVDF sensors glued to the tool 

shank are wired to the piezoelectric and anti-aliasing signal conditioning electronics 

designed and built in-house, which are in turn wired to a data logging unit. Note that this 

section describes how 𝑇(𝑡) and 𝛾(𝑡) depicted in Figure 6 are related to the boring process, 

and provides their derivation.  
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Figure 16. Force measurement setup for boring. 

 

Using the torsion formula, the shear strain 𝛾 produced in the boring bar can be 

related to the dynamic boring torque as 

 

 𝛾 =
𝐷

2𝐺𝐼𝑝
𝑇 =

16

𝜋𝐺𝐷3
𝑇 (10) 

 

where 𝐷 is the diameter of the boring bar, G is the shear modulus of the boring bar, 𝐼𝑝 is 

the polar moment of inertia, and 𝑇 is the dynamic cutting torque. In contrast to the four 

PVDF sensor model used by Ma et al. [62], a model using two PVDF sensors in the 

configuration shown in Figure 17 is proposed. Though most boring bars are large enough 

to support the four PVDF sensor configurations, using two sensors reduces the circuit 

complexity and the computational error stack-up.  
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Figure 17. PVDF rosette configuration for a boring tool. 

 

In this configuration, subtracting 𝜀1/2,1 and 𝜀1/2,2 cancels the axial and thermal 

strains experienced by the host structure. The shear strain 𝛾 can be found from 𝜀1/2,𝑖 using 

the following expression derived from Mohr’s Circle 

 

 

𝜀1,1 = 𝜀2,2 =
𝛾

2
+ 𝛼1Δ𝑇 

𝜀1,2 = 𝜀2,1 = −
𝛾

2
+ 𝛼1Δ𝑇 

(11) 

 

Therefore, subtracting 𝑞2 from 𝑞1 using Eq. (2) and making similar assumptions 

about 𝑑32 as in the case of the turning tool, the charge output of the torque PVDF sensor 

configuration can be written as  

 

 𝑞𝑇 =
16𝐴3[𝐸1𝑑31(1 − 𝜐21)]

𝜋𝐺𝐷3(1 − 𝜐21𝑣12)
𝑇 (12) 

 

However, a key assumption in the derivation of Eq. (12) is that bending strains 

produced in the boring bar are negligible. While this assumption is applicable for multi-

insert boring tools, a single insert boring bar was used in this thesis to test its validity. 
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Therefore, it is expected that the PVDF torque signal from the single insert boring bar will 

experience some distortion due to the bending strains. 

Signal Flow Modeling 

The derivation of the rest of the PVDF-based boring dynamic torque measurement 

model follows the same steps as for the turning model presented earlier provided a charge 

amplifier and anti-alias filter are used as shown in Figure 6. Under these conditions the 

PVDF-based boring dynamic torque measurement system also exhibits the same frequency 

characteristics as shown in Figure 8. As in turning, the material and geometric constants 

can be combined into a singular constant 𝐾𝑇 relating voltage to the torque by substituting 

Eq. (12) into Eq. (7). This results in the following formula 

 

 𝑉 = 𝐾𝑇𝑇, 𝐾𝑇 =
16𝐴3[𝐸1𝑑31(1 − 𝜐21)]

𝐶𝐹𝜋𝐺𝐷3(1 − 𝜐21𝑣12)
 (13) 

Experimental Verification 

To validate the PVDF measurement system for boring, a set of boring tests were 

performed. A Kistler 9272 drilling force dynamometer was used to provide a reference 

signal for the cutting torque. Similar to the turning experiments, the dynamometer signal 

was recorded by a National Instruments cDAQ-9178 at a sampling rate of 12 KHz. The 

PVDF signal was sampled by a MK20DX256VLH7 microcontroller with 16-bit resolution. 

For real-time wireless communication, a RN41 Bluetooth transmitter (IEEE Standard 

802.15.1) was used to communicate with a corresponding RN41 Bluetooth receiver 

connected to a laptop. The PVDF wireless transmission electronics were attached to a 3D 

printed housing that was concentrically mounted to the boring bar. Though the 

MK20DX256VLH7 can sample faster than 400 KHz, the RN41 could only send data at 13 

KHz without significant packet loss. Therefore, the sampling rate for the PVDF signal was 

13 KHz, while the charge amplifier cutoff was configured to be 7.24 Hz and the anti-
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aliasing low pass cutoff was 5.5 KHz. Figure 18 shows the electronic data logging 

equipment used for experimental validation. 

 

 

Figure 18. Data logging equipment for boring sensor validation. 

 

For all boring experiments, the PVDF sensors were adhesively bonded to a 50 mm 

body diameter by 280 mm projection length single insert boring head (ISCAR BHFI 

MB16-MB50). The length of cut was 5.08 mm. Table 2 shows the test conditions for 

experimental validation along with the empirically determined 𝐾𝑇 for each test. Tests 12-

14 correspond to a unique workpiece geometry that will be described later. The average 

sensitivity was calculated to be 30.15 mV/Nm, which is ~10 times more sensitive than the 

PVDF rosette formulation tested by Ma et al. [62] for an equivalent shaft diameter and 

feedback capacitance. 
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Table 2. Cutting conditions for boring tests. 

Test 

No. 

Spindle 

Speed 

(RPM) 

Cutting 

Speed 

(m/min) 

Radial 

Depth of 

Cut (mm) 

Feed 

(mm) Material 

Intersecting 

Hole 

Geometry 

KT 

(mV/Nm) 

1 120 15.5 1.78 5.08 1018 ST No 29.09 

2 120 15.5 1.78 7.62 1018 ST No 30.58 

3 120 15.5 1.78 2.54 1018 ST No 35.48 

4 150 19.5 1.78 5.08 1018 ST No 30.10 

5 135 17.4 1.78 5.08 1018 ST No 30.13 

6 120 15.5 1.27 5.08 1018 ST No 29.35 

7 120 15.5 2.29 5.08 1018 ST No 31.98 

8 120 15.5 1.78 5.08 AL 6061 No 28.70 

9 120 15.5 1.78 7.62 AL 6061 No 30.49 

10 150 19.5 1.78 5.08 AL 6061 No 29.11 

11 120 15.5 2.29 5.08 AL 6061 No 28.86 

12 120 15.5 1.78 5.08 1018 ST Yes 27.70 

13 150 19.5 1.78 5.08 1018 ST Yes 31.37 

14 120 15.5 2.29 5.08 1018 ST Yes 29.13 

 

Figures 17 to 19 show representative results of the dynamic torque comparison 

between the PVDF-based sensor system and the torque measured by the Kistler drilling 

dynamometer. Though the dynamic torques measured by the two methods are in reasonable 

agreement, they are not as good as the results shown in Figure 10 and Figure 11. The main 

reason for the observed discrepancy is the assumption of negligible bending strain. Using 

the thrust force from the dynamometer force data, the bending strain was calculated to be 

35% of the torsional strain. An interesting point to note is that, when testing AL 6061, the 

workpiece/dynamometer assembly generated chatter vibrations, and the agreement 

between the PVDF and dynamometer signals was better, as shown in Figure 21. A 

comparison of the frequency decompositions for the data in Figure 21 is shown in Figure 

22. As in turning, the harmonics tend to agree in the lower frequency range (<2000 Hz), 

and some disagreement is evident at the higher frequencies. During stable cutting, the 

dynamic force signals resemble Brownian noise in the frequency domain. Therefore, the 
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PVDF and dynamometer signals tended to agree more when the frequency distribution 

exhibited clear harmonics. 

 

 

Figure 19. PVDF signal comparison with dynamometer dynamic torque component (Test 

1). 

 

 

Figure 20. PVDF signal comparison with dynamometer dynamic torque component (Test 

5). 
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Figure 21. PVDF signal comparison with dynamometer dynamic torque component (Test 

8). 

 

 

Figure 22. PVDF signal frequency decomposition comparison with dynamometer (Test 8). 

 

In addition to the conventional hole enlargement experiments, another workpiece 

geometry shown in Figure 23 was tested. In this configuration, one of two intersecting 

holes is enlarged, thus introducing a harmonic at the spindle frequency so low (2 Hz) that 
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the PVDF sensor should not be able to detect it. During experimentation, it was indeed 

established that the PVDF sensor system does not capture such a low harmonic. However, 

Figure 24 shows that the PVDF dynamic measurement response still compares favorably 

with the dynamometer’s response. 

 

 

Figure 23. Intersecting hole condition. 

 

 

Figure 24. PVDF signal comparison with dynamometer dynamic torque component (Test 

12). 
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Summary 

A novel, low cost and non-intrusive method for monitoring the cutting torque in the 

boring process has been proposed, designed and validated. Physics based models have been 

developed to relate charges produced by the simplified two PVDF sensor rosette to the 

dynamic cutting torque. A wireless data acquisition system, developed in-house, was used 

to measure the PVDF sensor signals. Experimental results showed some discrepancy in the 

PVDF signal compared to the piezoelectric dynamometer-based reference signal due to the 

assumptions made in the physics based model relating the piezoelectric charge to the 

dynamic torque. Ideal tool/workpiece setups and cutting phenomena were identified to 

yield better agreement with the dynamometer-based reference signal. The PVDF sensor 

was shown to be better suited for measuring high frequency signals as opposed to low 

frequency harmonics. If the exact shape of the dynamic torque is not required, then the 

simplified rosette can still be correlated with the machining responses of interest including 

tool wear, tool breakage, and chatter. 
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CHAPTER 5 

ON-LINE CHATTER DETECTION 

 

Introduction 

This chapter evaluates the performance of three chatter detection algorithms for the 

turning and boring processes with the eventual goal of developing embedded sensor-based 

process monitoring automation. The objective of chatter detection in this thesis is to detect 

chatter in its early stages and prior to the appearance of chatter marks on the workpiece 

surface. Three chatter detection algorithms, based on the following three methods, were 

evaluated: 1) 1st Autocorrelation Coefficient, 2) Wavelet Transform, and 3) Fast Fourier 

Transform. To evaluate the algorithms, cutting force data were gathered from a number of 

turning scenarios consisting of varying workpiece geometries using a piezoelectric force 

dynamometer. Boring data were gathered for a single toolpath with varying machining 

parameters using the PVDF sensor configuration outlined in Chapter 4. 

In the following sections, the general sensor and processor requirements for chatter 

detection are described. A description of the signal shape during stable cutting versus 

unstable cutting is then presented. This is followed by derivations of the three chatter 

algorithms evaluated in this thesis. Then, the various turning conditions for chatter 

algorithm validation are presented. Description of the boring chatter detection problem is 

also presented. The results of applying each chatter algorithm to detect chatter in turning 

and boring are presented followed by discussion of the results. 

Sensor and Processor System Requirements 

In order for an algorithm to detect chatter instability before the occurrence of chatter 

marks on the workpiece surface, the sensing system must be low-cost, robust, and 
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nonintrusive. Specifically, a sensing and monitoring system with the following features is 

required: 

 Utilize a sensor flexible enough that it can robustly transform the measured time series 

signal into a voltage time series to be recorded by a microprocessing unit. Chatter 

detection sensors including strain gauges [21, 50], piezoelectric thin-film sensors, and 

microphones [93] have been investigated in the literature but are not the primary focus 

of this chapter. For chatter algorithm development and evaluation purposes, a 3-axis 

cutting force dynamometer is used due to its high frequency bandwidth and 

nonstationary signal shape while the PVDF thin film measuring system presented in 

Chapter 4 is used subsequently to evaluate its effectiveness for chatter detection in the 

boring process. 

 Use a microprocessor that performs the majority of on-line chatter detection 

calculations. Low cost and low profile embedded microcontroller series including 

Arduino [126], mbed [127], and BeagleBoard [128] are suitable for this application. 

However, their onboard memory and processing power are severely limited compared 

to a current state-of-the art personal computer. For example, an Arduino Due can store 

512 kB of flash memory (~64,000 double variables) while MATLAB running on a Dell 

XPS 8700 can store at least 900 MB (~112,500,000 double variables) [129]. Such 

memory limitations adversely impact mathematical calculations including complex 

numbers, matrix operations, and digital filtering. For this research, the benchmark 

processor unit was a MK20DX256VLH7 (72 MHz clock, 256 kB memory) 

microcontroller using the Arduino environment [130]. This microprocessor was 

selected for its low cost and its flexibility in being configured as an embedded system 

(Teensy 3.1) or as an Integrated Circuit that can be soldered onto a prototype printed 

circuit board with minimal supplementary components. 

 Use a receiver for collecting the chatter algorithm output. After the measured signal is 

processed by the algorithm, the output needs to be sent to a receiver. Examples of a 
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receiver include a standalone DAQ system, the machine tool controller, or a webserver. 

Having the microcontroller unit process the data to produce a compressed output (e.g. 

is there chatter or not?) reduces the computational burden on the receiver unit and 

allows for flexible implementation. Transmission methods to transfer the algorithm’s 

results to the receiver include an RS-232 cable, Bluetooth, and Secure Digital (SD) 

storage. Examples of devices to receive the algorithm’s results include machine tools 

for autonomous adaptation of cutting speed or feed for chatter avoidance and cloud 

based storage for productivity monitoring. 

Algorithm Description and Implementation 

Three chatter detection algorithms, based on the following three methods, were 

evaluated: 

 1st Autocorrelation Coefficient  

 Wavelet Transform  

 Fast Fourier Transform 

These methods were chosen due to their relatively low computational and memory 

requirements, which are suited for embedded processing units. The ultimate goal of each 

algorithm is to collect and process the sensor data in real time, and compute parameters 

that are sensitive to the onset of dynamic chatter instability before chatter marks appear on 

the workpiece surface. The algorithms were implemented in MATLAB, although the 

computational feasibility of the algorithm was also tested on the proposed 

MK20DX256VLH7 microcontroller. 

Methodology 

To recognize chatter from a measured signal, the corresponding signal shape and 

pattern must be first identified. In this work, chatter is defined a dynamic instability in 

machining that is characterized by self-induced vibrations, which produce poor workpiece 
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surface finishes [104]. Figure 25 provides a basic illustration of the underlying mechanism 

of regenerative chatter [104], which is commonly encountered in machining operations.  

 

 

Figure 25. Chip regeneration in orthogonal cutting [104]. 

 

The following derivation will provide a simplified example of the distinct 

regenerative chatter behavior to be identified for autonomous detection. As established in 

[104], the single degree of freedom equation of motion for orthogonal cutting is as follows 

 

 𝑚𝑦𝑦(𝑡)̈  + 𝑐𝑦𝑦(𝑡)̇ + 𝑘𝑦𝑦(𝑡)  = 𝐹𝐶𝑢𝑡(𝑡) = 𝐾𝐶𝑢𝑡𝑎ℎ(𝑡) (14) 

 

where 𝑦(𝑡) is the displacement of the workpiece, 𝑎 is the radial depth of cut, ℎ(𝑡) is the 

undeformed chip thickness, and 𝐾𝐶𝑢𝑡 is the orthogonal cutting force coefficient. Note that 

in the case of single point cutting, the orthogonal model can be mapped to oblique 

coordinates, which can then be resolved into the machine tool coordinates via a 

transformation matrix as a function of constant cutting tool geometry. Initially, the surface 

of the part is smooth before the first spindle revolution. However, every revolution leaves 

behind a wavy surface because of the bending vibrations of the shaft in the feed direction 

𝑦. When the second revolution starts, the part experiences modulations both due to the 
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current workpiece/tool vibrations and the surface undulations produced in the previous 

spindle revolution. Thus, a change in the instantaneous undeformed chip thickness is 

produced, which can be described mathematically as follows 

  

 ℎ(𝑡) = ℎ0 − [𝑦(𝑡) − 𝑦(𝑡 − 𝑆)] (15) 

 

where ℎ0 is the nominal undeformed chip thickness, 𝑆 is the spindle speed, and therefore 

[𝑦(𝑡) − 𝑦(𝑡 − 𝑆)] is the dynamic instantaneous undeformed chip thickness. Substituting 

Eq. (15) into Eq. (14), and transforming the equation into the Laplace domain, the transfer 

function between the nominal undeformed chip thickness and dynamic undeformed chip 

thickness is given by 

 

 
ℎ(𝑠)

ℎ0(𝑠)
=

1

1 + (1 − 𝑒−𝑠𝑇)𝐾𝑐𝑢𝑡𝑎Φ(𝑠)
 (16) 

 

where Φ(𝑠) is the frequency response transfer function. Assume that the root of the 

characteristic equation is 𝑠 = 𝜎 + 𝑗𝜔𝑐, where 𝜔𝑐 is the frequency at which the part deforms 

in the 𝑦 direction (or the chatter frequency). If the root has a positive real part (𝜎 > 0), the 

time domain solution will have a positive exponent. Thus, the amplitude of the system’s 

displacement will exponentially increase while modulating at frequency 𝜔𝑐. Over time, the 

system will become unstable, thus resulting in chatter. If the root’s real part is negative (𝜎 

< 0), the time domain solution shows that the vibration will subside with time. Thus, the 

vibration amplitude at frequency 𝜔𝑐 goes to 0. Stability lobe diagrams identifying 

stable/unstable cutting conditions can be derived by analyzing the critical stability at 𝜎 = 

0. 

In single-point cutting, the dynamic chip thickness oscillates about a constant chip 

thickness value. In this thesis, the signal waveform corresponding to a constant chip 
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thickness is identified as static, and the signal waveform resulting from the varying chip 

thickness about the average chip thickness is identified as dynamic. From the previous 

derivation, an increasing periodic signal waveform would be identified as chatter. Note that 

the stable single-point cutting process may have harmonics, though they will not grow in 

magnitude. However, a random disturbance needs to be added to account for the various 

random processes also present in the actual process, e.g. material inhomogeneities, noise 

in the measurement system, etc. In light of the central limit theorem, the aggregation of all 

these random processes can be modeled as a Gaussian white noise about the static signal. 

Gaussian noise is assumed to have no correlation with the dynamic state of the cutting 

process. Thus, for single-point cutting, when the cutting process is stable, the dynamic 

cutting force is dominated by Gaussian white noise. During the transition from stable 

cutting to unstable cutting, the vibration at the chatter frequency starts to grow and 

eventually dominates the cutting force signal after chatter is fully developed. Figure 26 

shows a representative CMM measurement of a turned workpiece and a picture of the 

corresponding machined surface exhibiting chatter marks. 
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Figure 26. Example CMM data and workpiece surface. 

 

1st Autocorrelation Coefficient 

The autocorrelation function is the basis of the first chatter detection algorithm to 

be described. Autocorrelation is the cross-correlation of a signal with itself at different 

points in time [131]. The autocorrelation function is useful in determining a data set’s level 

of correlation. Information entropy, also a way to measure system correlation, has been 

demonstrated to have properties that are similar to the autocorrelation function [132] and 

calculation of system entropy has been used for chatter detection in single-point cutting 

[85, 93]. The calculation of Shannon Entropy of a dataset 𝑋 with samples {𝑥1, ⋯ 𝑥𝑛} is 

given as follows: 

 

 𝐵 = − ∑ 𝑝𝑖 log 𝑝𝑖

𝑛

𝑖

 (17) 
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where 𝑝𝑖 is the probability mass function of a sample. However, the 𝑙𝑜𝑔 operation used in 

the entropy analysis is computationally expensive for embedded processor systems. On the 

MK20DX256VLH7, a single 𝑙𝑜𝑔 operation takes ~50 μs while a single multiplication (e.g., 

when computing the autocorrelation) on the MK20DX256VLH7takes ~0.063 μs. 

Therefore, the autocorrelation function was determined to be a more practical tool for 

implementation in embedded processor systems. The autocovariance function is defined as 

 

 𝑐𝑘 =
1

𝑁
∑(𝑋𝑡 − �̅�)(𝑋𝑡+𝑘 − �̅�)

𝑁−𝑘

𝑡

 (18) 

 

The autocorrelation function consists of the coefficients {𝑎1, ⋯ 𝑎𝑛}.  Thus, the 

value of autocorrelation coefficient at time difference 𝑘 is defined as follows: 

 

 𝑎𝑘 =
𝑐𝑘

𝑐0
 (19) 

 

where 𝑐0 is the variance function, which is defined as: 

 

 𝑐0 =
1

𝑁
∑(𝑋𝑡 − �̅�)2

𝑁

𝑡

 (20) 

 

The autocorrelation function exhibits the following properties: 

 The autocorrelation function is both symmetric and Hermitian. 

 The continuous autocorrelation function reaches its peak at zero lag (𝑘 = 0). 

 The autocorrelation of white noise will have a strong peak at 𝑘 = 0 and will be 0 

at all other 𝑘. 
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 The Wiener–Khinchin theorem [133] relates the autocorrelation function to the 

power spectral density via the Fourier transform. 

Using the previously mentioned properties and the previously stated methodology, 

it is possible to identify a signal white noise, and therefore as stable. Examples of 

autocorrelation functions of a representative sinusoidal signal (𝑓(𝑥) = sin 𝑥) and of 

random noise (mean = 0 and standard deviation = 1) are shown in Figure 27.  

 

 

Figure 27. Example autocorrelation functions. 

 

Note that  𝑐𝑘 = 1 at 𝑘 = 0 for both waveforms. However, for random noise, 𝑐𝑘 ≈

0 at all other values of 𝑘. Thus, the autocorrelation function can be examined at a single 

time lag point to check for randomness. In particular, to test for randomness, the 

autocorrelation coefficient for 𝑘 = 1 can be tested against the confidence interval for 

rejection of the null hypothesis that the data is random [4]. The autocorrelation value at a 

particular time lag is defined as the 1st autocorrelation coefficient. For completeness, the 

chatter variable to be monitored is defined as follows 
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 𝑎1 =
∑ (𝑋𝑡 − �̅�)(𝑋𝑡+1 − �̅�)𝑁−1

𝑡

∑ (𝑋𝑡 − �̅�)2𝑁
𝑡

 (21) 

 

In this work, the absolute value of the 1st autocorrelation coefficient is known to be 

close to 0 when the data is random, and close to 1 when the data is perfectly correlated. 

When chatter develops, a specific periodicity emerges, and the data becomes more 

correlated, thus bringing the 1st autocorrelation coefficient closer to 1. The benefits of this 

algorithm include computational efficiency (𝑂(~10𝑁)) addition and multiplication 

operations) and minimal onboard storage requirements. In addition, a normalized threshold 

can easily be set to detect the onset of chatter, and the chatter frequency can be identified 

by calculating the entire autocorrelation function [134].  

In the current work, the 1st autocorrelation coefficient was calculated every 500 

points. This window helps minimize the moving average effect, though a linear fit can be 

subtracted from the windowed data to produce a zero mean dataset. However, the force 

data obtained when the tool is not cutting can be strongly correlated due to natural sensor 

characteristics (in this case, the MAINS hum). Therefore, computer generated, normally 

distributed random numbers are added to the raw force data to distinguish between the non-

cutting and chatter cases. 

Second Generation Wavelet Transform 

A mathematical method of interest for chatter detection is the wavelet transform. 

Multiple chatter algorithms have been developed using wavelet transforms [116, 135, 136], 

and wavelet transforms have been demonstrated on embedded systems [137]. The 

continuous wavelet transform (CWT) of a signal 𝑥(𝑡) is defined as [138] 

 

 𝑋𝜔 =
1

|𝑎|
1

2⁄
∫ 𝑥(𝑡)𝜓 (

𝑡 − 𝑏

𝑎
) 𝑑𝑡

∞

−∞

 (22) 
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where 𝑎 and 𝑏 are scaling and translational wavelet parameters, respectively, of the mother 

wavelet 𝜓(𝑡). The wavelet parameters are a function of the type of wavelet (e.g. Hermitian, 

Poisson, Shannon, etc.). The CWT can also be described as a convolution of the input data 

signal with a set of functions generated by the mother wavelet. By convolving the signal 

with the wavelet, certain frequencies of the time domain signal are amplified while others 

are minimized depending on the scaling parameter. Thus, simultaneous time-frequency 

resolution can be controlled. Analogous to how the Fast Fourier Transform (FFT) is to the 

Fourier Transform, the discrete wavelet transform (DWT) is to the CWT. The DWT 

involves decomposing a signal into approximation and detail coefficients through a series 

of filter banks as follows.  

 

 

𝑎𝑖 = (𝑥 ∗ 𝑔)[𝑛] = ∑ 𝑥[𝑘]𝑔[𝑛 − 𝑘]

∞

𝑘=−∞

 

𝑑𝑖 = (𝑥 ∗ ℎ)[𝑛] = ∑ 𝑥[𝑘]ℎ[𝑛 − 𝑘]

∞

𝑘=−∞

 

(23) 

 

where 𝑎𝑖 and 𝑑𝑖 are the approximate and discrete coefficients, respectively, at 

decomposition level 𝑖, 𝑔 is the low pass filter, and ℎ is the high pass filter. These filter 

banks act as wavelets in the CWT derivation. The approximation coefficients produce 

better low frequency resolution, while the detail coefficients produce better high frequency 

resolution. By continually decomposing the approximation coefficients into next level 

approximation and detail coefficients, multiple bands can be examined, thus achieving 

sufficient time-frequency resolution if the appropriate number of decompositions is 

performed. Figure 28 shows an example schematic of a 3 level decomposition DWT with 

a sampling rate of 12 KHz. 
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Figure 28. DWT example schematic. 

 

Note that the Discrete Wavelet Transform takes only 𝑂(𝑁) for a particular 

decomposition. This paper evaluates the computationally efficient Second Generation 

Wavelet Transform (SGWT) as a method suitable for embedded microcontroller 

applications. The SGWT involves application of the lifting scheme, which is the act of 

factorizing filter bank convolution and subsampling onto even and odd samples, thus 

reducing the number of operations by an order of two [139]. Through the lifting scheme, 

the wavelets are not designed in the frequency domain while retaining the favorable 

wavelet properties of multiresolution capability and computational efficiency. Figure 29 

shows a schematic of the SGWT. The basic steps for the SGWT are as follows: 

1. Split the input signal into odd and even samples. 

2. A Predictor operator is applied to the even values and the output is subtracted from the 

odd samples. The result is the detail coefficient. 

3. The Update operator is applied to the detail coefficient, and the output is added to the 

even samples. The result is the approximation coefficient. 
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Figure 29. SGWT example 

 

In this work, the lifting scheme corresponds to the Haar-Wavelet [137]. Thus, the 

Predictor Operator is the identity multiplication while the Update Operator is division by 

2. Note that the chosen sorting, predicting, and updating operations are computationally 

efficient for the MK20DX256VLH7 microcontroller (~3N add and multiplication 

operations per decomposition while the odd/even sort requires minimal computation). The 

SGWT however does require significant memory if all decompositions are to be stored. 

Therefore, this thesis recommends identifying and monitoring the decomposition level that 

is most sensitive to chatter. Decomposing straight from the raw signal to the band of 

interest, as opposed to performing stage-like decompositions, also saves computation cost. 

 

Fast Fourier Transform 

The Fast Fourier Transform (FFT) is a computationally efficient method of 

performing the Discrete Fourier Transform (DFT). The DFT signal transformation can be 

described as [140]: 

 

 𝑋𝐹 = ∑ 𝑥𝑛𝑒−𝑖2𝜋𝑚
𝑛
𝑁

𝑁−1

𝑛=0

      𝑚 = 0, … , 𝑁 − 1 (24) 

 



55 

 

When analyzing the cutting force data in the spectral domain, it was determined 

that a stable harmonic in the single-point cutting process is accompanied by other 

harmonics of similar power. However, during the onset of chatter, a dominant frequency 

emerges, with associated frequencies emerging shortly thereafter. Therefore, comparing 

the magnitudes of the two largest peaks in the FFT can demonstrate if a particular 

frequency is emerging as dominant. The application of the FFT to chatter detection 

involves performing the transformation on a mean-shifted set of points, identifying the two 

highest peaks, and then calculating their ratio. If a cut becomes unstable, the ratio of the 

peaks will increase as the power at a particular frequency becomes large. Thus, a threshold 

can be established. The resulting parameter can be expressed as: 

 

 𝑃𝑅 =
𝑃1

𝑃2
 (25) 

 

where P1 and P2 are the amplitudes corresponding to the two highest peaks. 𝑃𝑅 can be 

chosen through experimentally procuring cutting data and tuning the parameter to the 

desired threshold. 

The computation complexity of the FFT is 𝑂(𝑁 log 𝑁). To calculate the frequency 

of the two largest peaks after creating the FFT, a binary search algorithm can be used. Note 

that if the sampling frequency is low enough such that the FFT bins are not susceptible to 

noise, the autocorrelation matrix and a corresponding eigenvalue method can be used to 

identify the highest two frequencies without computing the entire frequency spectrum 

[110]. However, because no assumptions are made about the frequency behavior of the 

cutting system dynamics, the largest sampling frequency was chosen. Thus, in this work, 

while it is possible to use the eigenvalue method to identify the largest frequency 

component [141], calculating the second largest frequency with appropriate resolution 

would require an autocorrelation matrix so large that it would need more computations than 
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computing an entire FFT. However, if the required frequency resolution is known, then the 

sampling rate could be lowered to facilitate the eigenvalue method. 

Turning Experiments 

For the acquisition of cutting force data during stable and unstable cutting, three 

turning process scenarios were analyzed. The differences between the three cases involved 

changing the pre-existing workpiece geometry and toolpath. Variation of other parameters, 

such as the workpiece material, tool feed rate, and cutting speed were found to change the 

chatter frequency and signal magnitude, but did not change the signal shape itself.  

Case 1  

Figure 30 illustrates the basic toolpath for Case 1, which involves a linear, outer 

diameter longitudinal turning pass. The radial depth of cut increases gradually as the tool 

traces an inclined linear path. Chatter occurs once a threshold depth of cut is reached [104]. 

This case will be used as a baseline test case for the chatter detection algorithms evaluated 

in this study.  

 

 

Figure 30. Case 1 tool path. 
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Figure 31 shows an example of the feed force data acquired in this case. If there is 

no runout, the signal should ideally represent a Gaussian distribution with a linearly 

increasing mean. The cutting force signal for this particular case is non-stationary. 

Depending on the algorithm, the force data can be adjusted to yield favorable statistical 

properties through various data transformations (e.g. periodically subtracting the mean or 

adding white noise). Note that stable and unstable cutting are defined by the existence of 

chatter marks. In this research, dynamic instability is defined as the occurrence of chatter 

marks on the workpiece surface. By using the tool feed rate in conjunction with the CMM 

data, the chatter marks on the workpiece can be synchronized with the force data. 

 

 

Figure 31. Example feed force data (Case 1). 

 

Case 2 

This case involved cutting along a toolpath parallel to the workpiece longitudinal 

axis. However, the radial depth of cut increases along the feed direction due to steps on the 

workpiece surface (see Figure 32). The magnitude of the depth of cut increase differs 

between the individual tests. In some cases, the sudden increase will induce chatter, while 

in other cases, chatter will not occur when the radial depth of cut changes. 
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Figure 32. Case 2 tool path 

 

Figure 33 shows representative feed force data for Case 2. In this test, the first depth 

of cut increase did not induce chatter. Chatter however did occur when the cutting tool 

encountered the second step increase in the depth of cut. An ideal chatter algorithm will 

only trigger an alarm when the step causes dynamic instability. In addition, if the depth of 

cut increase triggers chatter, the event is similar to when chatter occurs immediately upon 

sudden entry of the tool into the part instead of gradual tool engagement with the part. 
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Figure 33. Example feed force data (Case 2). 

 

Case 3 

Like Case 2, Case 3 involved cutting along a toolpath that is parallel to the 

workpiece longitudinal axis. A pre-existing hole was drilled into the part perpendicular to 

the workpiece axis thereby disrupting the constant depth of cut. Figure 34 shows the basic 

toolpath. In some of the Case 3 tests, dynamic instability occurred when the tool 

encountered the hole. However, the more significant phenomenon under investigation is 

the case of a completely stable cut, as shown in Figure 34. 
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Figure 34. Case 3 tool path. 

 

In Figure 35, the cut is completely stable because there were no visible chatter 

marks on the workpiece surface. The cyclical variation in the feed force evident in Figure 

35 is due to intermittent cutting as the tool repeatedly passes over the hole. When the tool 

encounters the hole, it suddenly loses contact with the workpiece. During this transition, 

the tool bends in the direction opposite to the cutting force vector, much like when a 

compressed spring is released. This springback is detected by the dynamometer, as seen by 

the negative force values in Figure 35. Chatter detection algorithms were tested to 

determine if the characteristics exhibited by a stable cut, such as in this case, give rise to a 

false alarm. 
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Figure 35. Example feed force data (Case 3). 

 

The single point turning tests corresponding to Cases 1-3 were performed on an 

Okuma Spaceturn LB2000EX. A Kistler 9257B dynamometer was used to measure the 

cutting forces. Cutting force was used as the sensed variable since it is readily measured 

with high fidelity and is sensitive to dynamic chatter instability. A National Instruments 

cDAQ-9178 data acquisition system was used at a sampling rate of 12 KHz to acquire the 

force data; per the Nyquist criterion, this sampling rate allows chatter frequencies up to 6 

KHz to be detected. All turning tests were performed with a right hand toolholder (Valenite 

MTGNR-16-4D) with no coolant. The onset of chatter is marked by the appearance of a 

characteristic pattern on the workpiece surface. A Hexagon Metrology Coordinate 

Measuring Machine (CMM) was used to confirm the occurrence of chatter marks on the 

machined surface, thus synchronizing the physical occurrence of chatter with the cutting 

force data. The cutting parameters are summarized in Table 3. 
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Table 3. Cutting conditions for turning tests for chatter detection. 

Test 

No. 

Case 

No. 

Spindle 

Speed 

(RPM) 

Feed 

(mm) 

Workpiece 

Material 

Occurance of 

Chatter Along 

Length (mm) 

1 1 1000 0.025 1018 ST 8.38 

2 1 1000 0.025 1018 ST 1.04 

3 1 1000 0.025 1018 ST 7.01 

4 2 1000 0.025 1018 ST 12.60 

5 2 1000 0.025 1018 ST 14.88 

6 2 1000 0.025 1018 ST 16.66 

7 3 1500 0.025 AL 6061 N/A 

8 3 1500 0.025 AL 6061 N/A 

 

Turning Results 

1st Autocorrelation Coefficient 

To calculate an allowable threshold to detect chatter, the inverse of the 95% 

confidence bands for testing randomness of a data set specified by [131] was used. A 

threshold of 0.877 was calculated, meaning that if the absolute value of 𝑎1 is greater than 

0.877, chatter is detected. Figure 36 illustrates the algorithm result when applied to the 

force data corresponding to Case 1. 
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Figure 36. 1st Autocorrelation Coefficient (Test 1). 

 

In this test, chatter was detected 1,430 ms before chatter marks appeared on the 

workpiece. Note that 𝑎1 continues to approach 1 as the force data grows in magnitude. 

Therefore, this test demonstrates that the algorithm output does not produce a false alarm, 

and the threshold can be adjusted depending on algorithm robustness and automated 

corrective action requirements (e.g. adjustment of tool feed or cutting speed). However, 

stable cutting harmonics can also produce correlated data, thus triggering a false alarm for 

this algorithm. Figure 37 illustrates the results of a test corresponding to Case 2. This is an 

instance of stable correlated data, and therefore the algorithm triggers an alarm. However, 

after the alarm is issued, 𝑎1 decreases, thus showing that the signal is not increasing in 

magnitude, which would be required for dynamic instability. Further support for this 

conclusion is derived from the CMM data shown in Figure 26, which show that chatter 

marks occur approximately near the third step cut by the tool while a false alarm is triggered 

at the second step. The 1st autocorrelation algorithm also triggers a false alarm for Case 3, 

where cutting over the hole exhibits a strongly correlated, but stable signal, as shown in 

Figure 38. 
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Figure 37. 1st Autocorrelation Coefficient (Test 6). 

 

 

 

Figure 38. 1st Autocorrelation Coefficient (Test 7). 

 

Second Generation Wavelet Transform 

For turning, seven wavelet decompositions were performed. Level 2 to 6 wavelet 

detail components are shown in Figure 39 and Figure 40 for Case 1 and Case 2, 
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respectively. It appears that the level 6 detail decomposition signal produces the highest 

magnitude at the onset of chatter and therefore demonstrates the most sensitivity to the 

chatter frequency. The result is logical as the level 6 decomposition corresponds to a 93.75 

Hz to 187.5 Hz filter bank, and the chatter frequency in this case is 108.4 Hz. The 

differences in cutting condition from Case 1 to Case 2 do not seem to affect the algorithm’s 

sensitivity to chatter. 

 

 

Figure 39. SGWT algorithm results (Test 3). 

 

 

Figure 40. SGWT algorithm results (Test 6). 
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However, the level 6 decomposition of the SGWT does not demonstrate significant 

sensitivity to a strongly induced harmonic, as shown in Figure 41. This is because Case 3 

has multiple stable frequencies that exhibit strong resolutions in all the decompositions, as 

opposed to the onset of chatter, which tends to yield a single emerging frequency. Another 

disadvantage of the Wavelet Transform is the number of decompositions requires prior 

knowledge of the chatter frequency, which is not always known or is constantly changing 

(especially in the case of constant surface speed cutting). A method of autonomously 

identifying dynamic instability instead of visualizing the decomposition sensitivity is also 

required in order for the SGWT to be effective in chatter detection. 

 

 

Figure 41. SGWT algorithm results (Test 8). 

 

Fast Fourier Transform 

In this work, the threshold for the FFT power ratio 𝑃𝑅 is taken as 5 by using a safety 

factor of 1.75 for the highest 𝑃𝑅 observed during stable cutting for Case 3. As with the 

autocorrelation algorithm, computer generated normally distributed random numbers are 

added to the raw force data in order to distinguish between the cutting and non-cutting 
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cases. With the MK20DX256VLH7, a 1024 point FFT requires 42.8 ms of computation 

time, while brute force searching for the two largest magnitudes takes 2 ms. However, a 

1024 point FFT appears to be the largest number of possible bins without running into 

memory constraints. Therefore, a 1024 point FFT was used in the algorithm evaluations. 

Figure 42 shows the algorithm’s application to force data for Case 1. In this case, chatter 

was detected 465 ms before chatter marks appeared on the workpiece. 

 

 

Figure 42. FFT algorithm results (Test 2). 

 

Figure 43 and Figure 44 show the algorithm performance for Cases 2 and 3, 

respectively. In Case 2, chatter was detected 1,147 ms before chatter marks appeared on 

the workpiece surface. Sudden steps in the radial depth of cut did not appear to trick the 

algorithm into triggering a false alarm. This is because the sudden transients mostly affect 

the 1st bin of the FFT; and because this bin is not considered, transient effects are mitigated. 

For Case 3, the FFT algorithm did not trigger any alarms, because even though the total 

spectrum power increased, no singularly emerging harmonic was produced. 
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Figure 43. FFT algorithm results (Test 5). 

 

 

 

Figure 44. FFT algorithm results (Test 9). 

 

Boring Experiments 

Unlike the turning case, for the acquisition of boring torque data during stable and 

unstable cutting, only one scenario was analyzed. This is due to the simpler toolpaths used 
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for boring holes. Figure 45 shows the toolpath schematic for the boring case, which 

involves a linear, inner diameter boring pass.  

 

 

Figure 45. Boring case tool path. 

 

Note that the radial depth of cut remains constant throughout the entire toolpath. 

Thus, chatter does not develop gradually and therefore time of chatter recognition before 

marks occur on the workpiece could not be acquired. However, the PVDF configuration 

isolates torque, and therefore the boring signal shape resembles that of turning. Figure 46 

shows a comparison of cutting forces in an outer diameter turning test and cutting torques 

in a boring test. The signal shapes are similar in that they exhibit noise about a static mean. 

In fact, the primary difference between turning and boring is that the boring tool has 

symmetric principle axes of stiffness while a turning tool tends to have a stiffness in one 

direction that is greater than in all other directions [142]. Though the root cause for chatter 

is different, the force signal shape characteristics for chatter recognition are unchanged. 

Analytical models for chatter in boring are limiting because they do not account for the 
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mode coupling effect. Thus, the emphasis of this thesis is on recognizing boring chatter 

instead of modelling the nature of chatter in boring processes.  

 

 

Figure 46. Example turning vs. boring comparison. 

 

Figure 47 shows the power spectra of both the unstable and stable cutting torque 

signals. Note that the unstable cutting torque yields a single dominant frequency at 252 Hz 

in comparison to other peaks in the decomposition. 

 

Figure 47. Frequency decomposition of unstable and stable cutting. 
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The PVDF sensor configuration developed in Chapter 4 was used to measure the 

cutting torque. The sampling rate for the PVDF signal was 13 KHz while the charge 

amplifier cutoff was configured to be 7.24 Hz and the anti-aliasing low pass cutoff was 5.5 

KHz. Though the PVDF sensing system’s frequency bandwidth capability to distinguish 

chatter was demonstrated in [62], the PVDF measuring system was not used in conjunction 

with an on-line algorithm to detect chatter.  

All boring tests were performed with a single-insert boring bar (ISCAR BHFI 

MB16-MB50 with CAT-40 holder) with a CAT-40 to CAT-50 adapter. The tests were 

performed on a boring machine (Liné Machine Tools, Vegamill TF218) located in the 

Siemens Energy facility in Charlotte, North Carolina. Other parameters such as the 

workpiece material, tool feed rate, and cutting speed were changed to test algorithm 

robustness. The test conditions are summarized in Table 4. 

 

Table 4. Cutting conditions for boring tests. 

Test 

No.  RPM 

Feedrate 

(mm/min) 

Depth of Cut 

(mm) 

Length of Cut 

(mm) Chatter? 

1 540 90 0.635 70 Yes 

2 540 90 0.635 70 Yes 

3 540 90 0.1905 70 Yes 

4 540 90 0.1905 70 Yes 

5 520 210 0.1905 70 No 

6 520 210 0.1905 70 No 

7 520 210 0.1905 70 No 

8 520 210 0.1905 70 No 

9 520 210 0.1905 70 No 

10 650 210 0.635 70 Yes 

11 650 210 0.635 70 Yes 

12 594 70 0.1524 90 No 

13 594 70 0.1524 90 No 
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Boring Results 

1st Autocorrelation Coefficient 

For boring, the 1st autocorrelation coefficient was calculated every 1000 points. 

This window helps to minimize the moving average effect, though alternatively a linear fit 

can be subtracted from the windowed data to produce a zero mean data set. In the case of 

boring, the electronics were powered by a 3.7 volt lithium ion battery, and therefore the 

torque signal did not experience distortion from 50/60 Hz electrical noise typically 

associated with an AC power source. However, for consistency with the turning case, 

computer generated, normally distributed random numbers were added to the raw torque 

data. As with the turning case, the same threshold of 0.877 was calculated using the inverse 

of the 95% confidence bands for testing randomness of the data set. Figure 48 shows a 

representative result obtained when the algorithm is applied to the PVDF torque data 

corresponding to Test 1 (Table 4). 

 

 

Figure 48. 1st Autocorrelation Coefficient (Test 1). 
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In this test, chatter was detected when the tool contacted the workpiece. Note that 

𝑎1 continues to approach 1 as the force data grows in magnitude. Therefore, as in the 

turning case, this test demonstrates that the algorithm output does not produce a false alarm, 

and the threshold can be adjusted depending on algorithm robustness and automated 

corrective action requirements (e.g. adjustment of tool feed or cutting speed). Figure 49 

shows the results of Test 12, where the entire cut was stable. Unlike in the turning case, 𝑎1 

does not increase in magnitude above the threshold. This is the case for boring operations 

because the effect of runout is not present because the boring operation follows a previous 

drilling/boring pass. Thus, the 1st Autocorrelation Coefficient method is more robust than 

in the turning case while still enjoying the computational efficiency advantages over the 

other algorithms. 

 

 

Figure 49. 1st Autocorrelation Coefficient (Test 12). 

 

Second Generation Wavelet Transform 

Similar to turning, 7 wavelet decompositions were computed for the boring case. 

Level 2 to 6 wavelet detail components are shown in Figure 50 and Figure 51 for Test 2 
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and Test 6, respectively. In contrast to turning, the SGWT does not consistently produce a 

decomposition with the highest sensitivity. Figure 50 shows that decomposition levels 3 to 

5 produce the highest signal magnitude during unstable cutting. However, note that the 

magnitude decreases when decomposing the signal to level 6. This is because the level 6 

decomposition corresponds to a 101.56 Hz to 203.12 Hz filter bank, and the chatter 

frequency in this case is ~275 Hz. Thus, the frequency of interest lies outside of 6th level 

decomposition band. This error reinforces the notion that the chatter frequency must be 

known prior to implementing the algorithm to prevent unnecessary computations. Note that 

Figure 51 shows a completely stable cut, and the sensitivity differences in the 

decomposition bands are difficult to identify visually. 

 

 

Figure 50. SGWT algorithm results (Test 2). 
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Figure 51. SGWT algorithm results (Test 6). 

 

Fast Fourier Transform 

In this work, the threshold for the FFT power ratio 𝑃𝑅 is taken as 2. As with the 

autocorrelation algorithm, computer generated normally distributed random numbers were 

added to the raw force data in order to distinguish between the cutting and non-cutting 

cases. With the MK20DX256VLH7, a 1024 point FFT appears to be the largest number of 

possible bins without running into memory constraints. Therefore, a 1024 point FFT was 

used in the algorithm evaluations. Figure 52 shows the algorithm’s application to boring 

torque data for Test 11, which was an unstable cut. In this case, chatter was detected before 

the torque signal exploded. 
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Figure 52. FFT algorithm results (Test 11). 

 

Figure 53 shows the algorithm performance for Test 9. In this test, the algorithm 

did not trigger a false alarm because even though the total spectrum power increased, no 

singularly emerging harmonic was produced. However, note that the FFT algorithm’s 

threshold can be tuned for desired levels of sensitivity and robustness. 

 

 

Figure 53. FFT algorithm results (Test 9). 
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Experimental data show that spectral analysis was found to be the most robust 

chatter detection method for the three cutting scenarios for turning. Turning generally 

requires more complicated toolpaths/workpiece geometry, and thus the spectral analysis is 

recommended for turning processes. However, since boring of holes is a relatively simple 

and finishing operation, the 1st autocorrelation coefficient method would be recommended 

for boring processes due to its computational efficiency.  

Summary 

Three algorithms were tested for chatter detection in single point cutting operations 

with a focus on developing low-cost embedded system based real time process monitoring 

instrumentation. The 1st autocorrelation coefficient was determined to be the most 

computationally efficient method, but was found to be susceptible to false alarms during 

stable cutting. Spectral analysis using a ratio of two peaks with the highest power in the 

FFT was found to be the most robust chatter detection method for the three cutting 

scenarios analyzed in this study. Spectral analysis is however computationally demanding 

from a microcontroller (MK20DX256VLH7) performance standpoint. Thus, for boring 

processes with a single insert where runout is minimal, the 1st autocorrelation function is 

recommended due to its low computational complexity. Future development of chatter 

detection algorithms should not only consider variations in the machining parameters, but 

also variations in the workpiece/tool setup. It is strongly recommended to develop chatter 

detection methods considering the limits of practical computational hardware for 

processing sensor-generated data. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

This chapter summarizes the original contributions and main conclusions of this 

thesis and suggests possible areas for future studies.  

Original Contributions 

A set of innovative methods and algorithms for wireless monitoring of single point 

cutting process has been presented in this thesis, including the PVDF sensor based 

measurement of turning cutting forces and boring cutting torque. In addition, simplified 

PVDF rosette configurations consisting of two sensors have been developed for isolation 

of particular strain components. In addition three computationally efficient algorithms for 

microcontroller-based on-line chatter recognition were developed and tested in a variety of 

cutting cases. The originality of this research lies in the modeling of the single-point cutting 

forces/torque measurement system, the development of various chatter detection 

algorithms suited for embedded processing, and the proposed cutting condition setups for 

validating the algorithms. The proposed methods in this thesis represent lower cost but 

efficient alternatives to the current industry standard for cutting force/torque measurement, 

and for chatter recognition algorithms that require expensive hardware. Note that the 

contributions discussed in this thesis can be applied to other applications that require signal 

recognition of harmonic faults such as bearing fault analysis. 

Main Conclusions 

The conclusions for each major section of this thesis are summarized below. 
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 PVDF Sensor Based Monitoring of Dynamic Cutting Forces in Turning 

 PVDF sensor based dynamic cutting force measurement system was designed, 

analyzed, prototyped, and experimentally validated for turning processes. The PVDF 

sensor signal was found to be in reasonable agreement with the standard piezoelectric 

force dynamometer signal for feed and tangential force components, though not for the 

radial force component.  

 Ideal conditions including facing toolpaths and threading tools were identified for 

obtaining better agreement with the dynamometer-based reference signal when using a 

simplified 2 PVDF rosette for measuring radial cutting forces. 

 Quantitative, physics based models were established to relate the measured PVDF 

sensor signals to the dynamic tangential, radial, and feed forces in turning. The model 

was shown to be independent of the workpiece material and cutting conditions.  

PVDF Sensor Based Monitoring of Cutting Torque in Boring 

 A wireless PVDF sensor based cutting torque measurement system was designed, 

analyzed, prototyped, and experimentally validated for boring processes. 

 When monitoring chatter, better agreement with the dynamometer-based reference 

signal in both the time and frequency domains was achieved. 

 Quantitative, physics based models were established to relate the signal from the 

simplified 2 sensor PVDF rosette to the dynamic cutting torque in boring. The model 

was shown to be independent of the workpiece material and cutting conditions.  

Comparison of Chatter Detection Algorithms 

 Three algorithms (1st Autocorrelation, Second Generation Wavelet Transform, Fast 

Fourier Transform) were tested for chatter detection in single point turning and boring 

operations with a focus on developing low-cost embedded real time process monitoring 

instrumentation. 
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 Spectral analysis using a ratio of two peaks with the highest power in the FFT was 

found to be the most robust method for chatter detection in turning. The method was 

able to detect chatter at least 0.5 seconds before chatter occurred on the workpiece and 

was robust to variations in workpiece geometry and cutting conditions.  

 The 1st autocorrelation coefficient was determined to be the most computationally 

efficient method for chatter detection in boring when effects of runout are minimized. 

Future Work and Recommendations 

All the sensing methods and algorithms developed in this thesis can be applied in 

shop floor applications for a relatively low cost. The PVDF-based sensing technologies are 

especially useful for high precision applications that require expensive tooling for parts 

that are too complex for outsourcing or standard tooling. However, a majority of machine 

tools lack the capability to automatically suppress chatter even after a fault is detected. 

Chatter is not even on the list of specific machine tool alarms. The primary limitation for 

integrating the PVDF sensor into an industrial machine tool platform is the lack of open 

communication protocols for sensor integration. Thus, the modification of machine tool 

controllers to facilitate integration of chatter detection sensors and embedded tooling would 

be an interesting topic. This type of development would naturally result in standardized 

open architecture methodologies for machine tools to override spindle speed and/or feed 

parameters to suppress chatter.  

A particularly interesting subject for future work is further exploration of the nature 

of chatter in boring bars. As stated in [142, 143], the nature of chatter in boring processes 

is not entirely due to the regenerative effect, but rather the difference in phase between the 

two principle axis of stiffness and the cutting force vector. This phenomenon, known as 

Mode Coupling chatter, occurs in symmetric low stiffness operations including boring bars 

and robotic milling [144]. However, detailed analysis of the chatter behavior and 

prevention of this type of chatter is lacking. In particular, there is little work utilizing 
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analytical models or cutting data to identify/distinguish mode coupling and regenerative 

effects when chatter occurs. The work reported in [143] identifies the dynamic instability 

in robotic milling as mode coupling chatter because their data could not be explained by 

the regenerative chatter stability lobe model. However, the classical stability lobe model is 

susceptible to various nonlinearities. Thus, a study into the behavior of chatter in boring 

operations considering both chip regeneration and mode coupling effects is highly 

recommended to assist in the further development of on-line chatter detection algorithms.
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APPENDIX 

 

Figure A.1. Wireless PVDF sensor based turning schematic. 
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Figure A.2. Wireless PVDF sensor based boring schematic. 
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Figure A.3. PVDF sensor response from impulse hammer testing.  
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Figure A.4. PVDF sensor response [9]. 
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Figure A.5. Typical Kistler quartz-based piezoelectric sensor response [40]. 
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