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SUMMARY

This thesis focuses on the development and implementation of a method to unfold

the gamma energy distribution incident on a detector from that detector’s inherent

response. A common assumption is made to tackle this problem: the response of the

detector is a linear transformation of the incident gamma distribution that maps to

the actual measurement. This problem is simplified into an inverse matrix problem,

where Gold’s iterative matrix-unfolding algorithm is used for this deconvolution. The

response function matrix is created using a semi-empirical technique where Monte

Carlo simulations are coupled with information extracted from experimental data. To

determine the capabilities of this approach, the model used to generate the matrix

is verified against experiment. Once ready for unfolding, both a performance metric

of the algorithm and a selection method for the algorithm’s parameters are designed

with consideration to their physical implications. Finally, these various methods are

applied to five spectra: 137Cs, 60Co, 22Na, PuBe, and the resulting gamma spectrum

from a cyclotron-induced reaction.
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CHAPTER I

INTRODUCTION

Knowing the gamma energy distribution of some radiation field in great detail has

a vast number of applications. Such instances include characterizing an unknown

source, identifying an isotope with unique gamma signatures, or determining how

a gamma energy distribution changes when passing through some material. Appli-

cations for gamma spectroscopy are seemingly endless, including medical imaging,

nonproliferation, radiation protection, dosimetry, and safeguards, to name a few.

In particular, the application of gamma spectroscopy to nonproliferation is of high

interest in today’s research landscape. In the active interrogation of cargo scanning,

previous approaches use bremsstrahlung-based sources for imaging. However, new

methods propose to replace these sources with a low-energy nuclear reaction (LENR)

source for various reasons. First, these proposed sources have higher mean energies

than typical bremsstrahlung beams, making them more highly penetrating. Addition-

ally, the reduction in low energy photons that are normally absorbed by the cargo

reduces the absorbed dose to the cargo. Some of these reactions also produce neu-

trons, which can be useful if probing for special nuclear material. The discrete nature

of the gamma ray energies, as opposed to a continuous bremsstrahlung spectrum, can

also be exploited for higher information gain.

One LENR of interest is 11B(d, γn)12C, where deuterons around 3 MeV are accel-

erated onto a 11B target. The measured gamma spectrum from such an accelerator at

MIT is shown in Figure 1. Several of the gamma lines are expected from 12C nuclear

transitions, particularly 4.438 MeV and 15.1 MeV. These gammas are particularly

useful for cargo scanning purposes because the relative transmission of these gammas
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through a material will allow not only the determination of material density, but also

effective atomic number [17]. Thus, knowing the expected emission probabilities of

these gamma lines is important for the design and optimization of a cargo scanning

system using this beam.
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Figure 1: LaBr3(Ce) measurement of the gamma spectrum from 11B(d, γn)12C [18].

The expected population of 12C states and the subsequent transition probabilities,

however, are not well known. Analyzing a measured gamma spectrum like the one in

Figure 1 can give insight into the relative state populations, but not without some

level of post-processing. The true energy distribution of the gammas is not shown,

but a convoluted spectrum due to the detection mechanisms used to measure it.

Determining the incident distribution is the motivation behind this thesis, where the

approach is gamma spectral unfolding. This common method estimates the detector’s

response to a range of gamma energies, then attempts to mathematically separate the

response from the incident distribution.

Gamma unfolding has been in the literature for many decades, though the com-

putational power available today has only recently become available. Simulating a

response function with gammas up to 16 MeV allows the extension of these age-old
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techniques to newer problems such as the LENR in Figure 1. Using the guidance

of a combination of these previous approaches, a methodology is developed for the

response function creation for both 5 MeV and 16 MeV max-energy applications. Sub-

squently, an particular algorithm for unfolding is needed, along with an evaluation of

the response function model and the unfolded spectra.

1.1 Objective

The overall goal of this work is to unfold gamma spectra with energies below 5 MeV

and the LENR spectrum in Figure 1. Several objectives are necessary to achieve

meaningful results.

1. Design, implement, and test an approach to create a response function matrix

that sufficiently represents the response of LaBr3(Ce) to a wide range of incident

gamma energies.

2. Select and apply an algorithm that is capable of deconvolving the response

function from measurements without oscillating.

3. Develop a performance metric to determine the quality of the unfolded spec-

trum.

4. Develop a strategy for the selection of algorithm performance parameters using

the performance metric.

5. Apply these methods to the spectra of interest, using the results as a final

evaluation of the overall approach.

3



CHAPTER II

TECHNICAL BACKGROUND

2.1 Gamma Spectrum Unfolding

Energy spectrum unfolding is the mathematical attempt to separate a radiation de-

tector’s characteristic response from the energy distribution that was incident upon

it. When a detector measures gamma rays of a certain energy, E, the response of

the detector is not an impulse at E. Rather, it is a function of the various gamma

interactions that produce energetic electrons in the material. Beyond this variation in

electron energy, the number of informations carriers that are created, the collection

efficiency of these information carriers, and the subsequent electronics play a signifi-

cant role in the response of an individual system. If the incident energy distribution

is not monoenergetic, but rather a distribution, determining this distribution is an

ill-conditioned inverse problem [13].

There have been several approaches to gamma spectrum unfolding, most of which

rely on the predictable features of gamma spectra to facilitate the unfolding process.

Two semi-analytical methods include the folding iteration method and the stripping

method. Both attempt to remove the Compton scattering contribution by iterating

through the spectrum multiple times [8] [19]. This approach is effective for detectors

with good energy resolution and a well-defined full-energy-peak. In these cases, the

spectrum after processing is just the full-energy deposition peaks, but they do not

account for single and double escape peaks in higher energy spectra. Another more

recent approach is unfolding using artificial neural networks, which is trained experi-

mental data to recognize patterns in the spectra in attempt to either identify isotopes

or to output the incident photon spectrum [1]. Using this machine learning approach

4



requires a large dataset to train the network that properly represent the energy-space

of interest [12].

The iterative matrix-unfolding method is a common unfolding approach that uses

a response function matrix to extract the unfolded spectrum. The matrix represents

how a particular detector would respond to different incident photon energies. A

challenge of this method is in generating the response matrix. One study uses several

monoenergetic gamma sources to generate a small subset of the response matrix,

then interpolates spectra in between the experimental matrix to fill out the matrix

[8]. When using experimental data as the foundation for the matrix construction,

interpolation is an integral step to ensuring that the matrix spans the energy-space.

Another approach to complete a full matrix is through simulation. This is either

done by finely sampling the energy-space [16] or sampling a smaller subset of energies

coupled with interpolation [10]. Simulation of detector response can also have a variety

of levels of complexity, e.g. simulating the scintillation yields or electron-hole pair

transport or simply energy deposition in the detector. For each, empirical data is

necessary to supplement the simulations. This is in the form of either information

carrier production and propagation or the macroscopic characterization of energy

resolution.

2.1.1 Iterative Matrix-Unfolding Method

A measured detector response y(E) is formulated as

y(E) =

∫ ∞
0

R(E ′)x(E ′)dE ′ (1)

This continuous representation is often simplified to a linear system for a variety of

solution methods. To do this, the iterative matrix-unfolding method assumes that the

total response of a detector is a linear combination of the responses to all the photon

energies incident on the detector volume. In other words, an experimental spectrum
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(y) results from taking the incident energy spectrum (x) and linearly transforming it

via the response function (R), or R : x→ y. The general equation for this method is

shown in Eq. 2. The goal here is to determine the unfolded spectrum, which is x.

y = R · x (2)

This equation can be written in a more explicit form as in Eq. 3. This describes

a matrix where the unfolded spectrum x has M elements, and the measured experi-

mental spectrum has N elements.

y(Ei) =
M−1∑
k=0

R(Ei, Ek)x(Ek), i = 0, 1, 2, ..., N − 1 (3)

Solving for x, however, requires a matrix-unfolding method. To do this, an implemen-

tation of the Gold Decomposition Algorithm from ROOT is used.

2.1.2 Gold Decomposition Algorithm

The algorithm used for the decomposition is part of the ROOT code package. ROOT

is an open-source package developed originally for high energy physics analysis [4].

The specific details of this implementation are referenced from [10], and the algorithm

details are discussed in the original paper by Gold [7]. Its primary merit is that it

guarantees a non-oscillating solution. The first step in solving Eq. 2 is to find the

vector z by

z = A · x (4)

where A = RTR and z = RT · y. The method iteratively solves for x using Eq. 5.

x
(k+1)
i = x

(k)
i +

x
(k)
i∑N−1

m=0 Aimx
(k)
m

[
zi −

N−1∑
m=0

Aimx
(k)
m

]
(5)

This is performed for some number of iterations k = 0, 1, ..., L. The algorithm starts

with initial solution
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x(0) = [1, 1, ..., 1]T . (6)

This method is positive definite and converges to some stable state. Additional

iterations past convergence do not provide further results. ROOT’s implementation,

however, provides a boosting option for the algorithm to continue to decrease the

deconvolved peak widths. The description of this process is again referenced from

[10]:

1. Set the initial solution x(0) according to Eq. 6.

2. Set the required number of repetitions R and iterations L.

3. Let number of repetitions r = 1.

4. According to Eq. 5 for k = 0, 1, ..., L− 1 find solution x(L).

5. If r = R finish the calculation, else

(a) apply boosting operation, i.e. set x
(0)
i =

∣∣∣x(L)i

∣∣∣p i = 0, 1, ..., N − 1 and p is

boosting exponent;

(b) set r = r + 1;

(c) continue in 5.

2.2 Energy Calibration and Resolution in LaBr3(Ce)

An understanding of the behavior of inorganic scintillators is necessary for the semi-

empirical approach used for spectral unfolding for two reasons. First, the experimental

spectrum must be calibrated to energy because the simulation outputs in energy units,

and second, the energy resolution information is used in the creation of the response

function.
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The calibration technique maps channel number to energy using known gamma

spectra. Fitting the calibrations with some function, as in Figure 2, allows the ex-

perimental spectrum to be transformed into energy-space. The calibration is not,

however, linear in energy. This can occur from saturation in the PMT [15] and from

the increase in ionization density in the electron track with decreasing electron energy

causing non-proportionality [5].

Channel number
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Figure 2: The energy calibration curve relates the voltage channels from the multi-
channel analyzer to the corresponding electron energy. The voltage pulse created in a
scintillator is assumed represent the energy deposited in the detector by the charged
particle that induced the signal. This relationship is sometimes nonlinear due to PMT
saturation [15] and non-proportionalities in ionization densities [5].

After the calibration, the energy resolution information needed for the response

function matrix can be extracted, explained in detail in Section 3.1. To do this, it

is assumed that the full-energy deposition peaks are Gaussian. Using the standard

deviation from Gaussian functions fit to the data works for most gamma sources,
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but there is an issue when applied to reaction-based sources. When a nuclear reac-

tion produces gammas, they are broadened in energy due to the kinematics of the

reaction [14]. The width of the experimental peak from a broadened gamma is not

representative of the intrinsic energy resolution of the detector at that energy.

2.2.1 Energy Broadening from Reaction-Based Gamma Sources

Although at first glance PuBe emits a monoenergetic gamma at 4.438 MeV, in reality

it has a small distribution about this mean. A Geant4 simulation shown in Figure

3 reveals the expected energy distribution emitted from the 9Be(α, γn)12C based

source.
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Figure 3: A uniformly distributed, monoenergetic, isotropic alpha source representing
the alpha decay of plutonium is simulated in Geant4. This simulation accounts for
the energy dependence of the alpha after some slowing down, the emission angle of
the neutron, and the energy dependence of the carbon after some slowing down at
the time of decay.

To determine the energy resolution of the detector at the energy of a broadened
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gamma, we must quantify the gamma distribution from the reaction. Investigating

9Be(α, γn)12C as in PuBe, there are four phenomena that contribute to the gamma

energy distribution. The first comes from the alpha slowing down in the medium,

described by the Bethe formula for heavy charged particles, as in Eq. 7.

−dE
dx

= k2C
4πneZ

2e4

mev2
ln

[
2mev

2

I(1− β2)
− β2

]
(7)

As long as the alpha maintains enough energy to induce the reaction, Eα ≥ 1.264

MeV [14], the alpha will be at some energy 1.264 MeV ≤ Eα ≤ 5.245 MeV when the

reaction occurs.

After the reaction, the angle of emission of the neutron changes the available ki-

netic energy to the carbon. If the neutron is emitted 180◦ from the original momentum

of the alpha, the carbon will have maximum energy.

This energetic carbon is also an excited state and will gamma decay to reach its

ground state. The decay probability is a function of time, and as more time passes, the

carbon slows down in the material, adding to the uncertainty of the carbon energy.

The carbon at a given kinetic energy at the time of emission can also change the

energy of the gamma depending on the angle of emission.

With the emission spectrum in Figure 3, we can extract the energy resolution by

comparing a simulation with this gamma spectrum to the experimental data.

2.2.2 11
5 B(21H,nγ)126 C Source and Measurement

The measurement used here was taken by P. B. Rose [18] at the MIT Bates Linear

Accelerator Center. A cyclotron accelerates 3.02 MeV deuterons to a natural boron

target to induce the reaction. As was the case for PuBe, this reaction-based source

does not produce purely monoenergetic photons, but a broadened energy distribution

about the emission energy. This reaction differs from PuBe in that it has a forward

bias, whereas PuBe alpha particles are isotropically incident upon Be. Consequently,

10



the energy distribution is not symmetric, but is skewed toward higher energies, giving

the unusual shape to the peaks in Figure 1.

Unfolding this spectrum is of particular interest because the relative yields of the

gamma energies are not well known. The performance of the unfolding, however, is

heavily dependent on the accuracy of the calibration.

The energy calibration was also performed in this work, using low energy check

sources (below 3 MeV) and the well known 4.438 MeV and 15.1 MeV lines. The

other gamma peaks between 4.5 MeV and 10 MeV potentially correspond to other

transitions from the excited 12C nucleus, shown in Figure 4. Purely from this kind of

speculation, there seems to be two adjacent gamma energies in the 6 - 8 MeV region.

However, the only transitions that could correspond are 7.45 MeV and 8.27 MeV,

implying the calibration is slightly skewed to the left. If this 7.45 MeV transition

occurs in 12C, the 3.21 MeV transition should follow, though it is not clear it exists.

The next peak corresponds well to the 9.64 MeV transition, but if it is also skewed to

the left, could potentially come from the 10.67 MeV or even 12.70 MeV transitions.

Another explanation for these lines is neutron capture in surrounding elements

such as Al, C, other isotopes of B, etc. These possibilities are not explored here due

to their multitude.

Some work in characterizing this source is emerging due to the interest by the

nonproliferation field. One work by Brandis et al [2] explores the 4.44 MeV and 15.1

MeV yields as a function of incident deuteron energy. The study indicates that at 3

MeV, the 4.44 MeV gamma was just over an order of magnitude higher in intensity

than the 15.1 MeV gamma. This will serve as a point of comparison for the unfolding

results.

11



Figure 4: The excited nuclear states and possible transitions are shown from ENSDF
[3].
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CHAPTER III

DEVELOPMENT OF COMPUTATIONAL METHOD

The general methodology for unfolding, outlined in Figure 5, is a semi-analytic iter-

ative matrix-unfolding approach. It uses the combined results of experimental data

and simulation to create a response function matrix. This matrix is then used for the

decomposition of known and unknown gamma spectra.

(3)

(2)

(5)

(1)

(4)

Figure 5: The implementation details of the method include the particular inputs
and outputs. Experimentally measured spectra are used for two purposes: to extract
energy resolution information and to be unfolded. The simulation generates an ideal
energy deposition matrix that requires the energy resolution information to match
experimental results. Finally, deconvolving the experimental spectrum with the re-
sponse matrix outputs the unfolded spectrum.
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The diagram takes two input types, measured spectra and a Geant4 model. The

first step in the process is to energy calibrate the experimental spectra (1), as dis-

cussed in Section 2.2. The experimental spectra can then be related to the Geant4

simulation which models energy deposition. Also from the experimental spectra, the

energy resolution information for the detector of interest is extracted (2), discussed

in Section 3.2. This will be incorporated with the simulation to have a more accurate

representation of the detector response function.

Next, the Geant4 model is made (3), simulating the energy deposition in LaBr3(Ce)

over a range of photon energies. This represents the an ideal detector response with

perfect energy resolution. Next, the simulation results are combined with the experi-

mental energy resolution via convolution (4). Now, the response function can be used

to deconvolve the incident photon spectrum from an experimentally measured spec-

trum from its detector response (5) using the deconvolution algorithm described in

Section 2.1.2.

3.1 Creating the Response Function Matrix in Geant4

The matrix-unfolding method intrinsically requires a response function matrix that

represents the detector response from photons that span the energy range of interest.

The physics code Geant4 is capable of synthesizing this matrix by simulating the

transport of radiation through matter. Geant4 is first used to calculate the energy

deposition distribution in a LaBr3(Ce) crystal without regard to the later processes

such as scintillation, PMT multiplication, or subsequent electronics. Post-processing

of the response function accounts for the statistical fluctuations of these downstream

steps.

The model contains a cylindrical LaBr3(Ce) crystal 1.5”-length and 1.5”-diameter

suspended in a detailed model of the Georgia Tech neutron generator vault. The

photon beam is a monoenergetic, isotropic point source and is 100 cm from the center
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of the detector. One assumption is the source is not self attenuating, i.e. the source

is sampled from a point in air, not from within the respective material. Additionally,

it assumes that the radiations are independent in time and there is no possibility of

coincidence.

The response function is created for gamma energies up to 6 MeV, consisting of

1200 energies. Each event randomly sampled from this subset of energies and recorded

the energy deposition in the detector in a two-dimensional histogram. The energies

span 0.005 MeV to 6 MeV with 5 keV intervals. Figure 6a shows a sample energy

spectrum from a sub-simulation with incident photon energy at 2 MeV.
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Figure 6: An example simulated spectrum (a) at 2 MeV represents the frequency of
energy deposition for each energy bin in LaBr3(Ce). The simulation, however, does
not account for the scintillation or signal amplification processes. In (b), the spectrum
is convolved with empirical energy resolution information to better represent the
detector response.
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3.2 Accounting for Energy Resolution

The synthesized response function from Geant4 is a calculation of the energy deposi-

tion in the detector by charged particles per incident photon. The model generating

the response function is an oversimplification of the physical processes that take place

in a scintillator. This is a necessary simplification because of the high light output

in a LaBr3(Ce) crystal, with about 63,000 scintillation photons per MeV deposited

in the detector [9]. Modeling the scintillation response for each incident photon is

impractical, both for computational considerations and the accuracy of optical pa-

rameters needed; so another method to account for the realistic detector response

is employed. The check sources used for energy calibration provide this additional

energy resolution information.

3.2.1 Extracting Empirical Energy Resolution

The energy resolution from experimental spectra provide the necessary information

to empirically spread the energy deposition responses created in the Geant4 model.

Assuming that a peak can be estimated as a Gaussian, the FWHM
H0

of each calibration

peak is plotted against the corresponding mean energy H0 of that Gaussian, shown

in Figure 7.

The fitting function, Eq. 8, is used to model the energy resolution where α and

β are particular to the scintillator and PMT, R is the fractional energy resolution,

and H0 is the mean energy [11]. The 1√
E

dependency reflects the notion that the

scintillation counting is governed by Poisson counting statistics.

R =
FWHM

H0

=

√
α + βE

E
(8)

As mentioned in Section 2.2.1, the method for calculating the energy resolution

for the 4.438 MeV gamma from PuBe includes calculating the theoretical gamma

distribution via Monte Carlo simulation. The energy resolution is the deconvolution
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Figure 7: The energy resolution information is taken from experimental data from
22Na, 137Cs, 60Co, a mixed thorium source, and PuBe. The energy resolution for the
PuBe peak is extracted by deconvolving the experimental peak with the calculated
theoretical peak width.

of the theoretical distribution from the measured one. This is done iteratively by

finding the Gaussian spreading function that minimizes the L2-norm of the residual.

Figure 8 (right) shows the Gaussian spread simulation, f(E) for a variety of sigma

values. Each of these f(E) is then compared to the experimental spectrum, g(E).

The L2-norm of the difference is then calculated for each sigma value. For a the two

discrete functions, this norm is defined as

error =

√√√√N−1∑
i=0

(f(Ei)− g(Ei))2 (9)

Figure 8 (left) shows this error as a function of sigma. Choosing the sigma that min-

imizes the error, we now have the energy resolution needed to spread the theoretical

PuBe spectrum to match the experimental spectrum. The corresponding result of the

sigma with minimum error is highlighted in Figure 8 (right).
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Figure 8: To determine LaBr’s energy resolution at 4.438 MeV, the theoretical gamma
distribution that PuBe emits is spread with varying sigma values. We then choose
the sigma value that minimizes the error between this function and the experimental
spectrum.

3.2.2 Convolution of the Response Function Matrix

The response function uses the energy resolution information to match the actual

response of the detector. This first requires an assumption that each impulse can be

spread as a Gaussian with a standard deviation σ(E) where

σ ≈ FWHM

2.3548
(10)

is evaluated from the fitting function in Figure 7 at the mean energy of the incident

energy. Thus, the standard deviation is constant for each Gaussian function evaluation

in Eq. 11.

f(E, µ) =
1

σ(µ)
√

2π
e−(E−µ)

2/2σ(µ)2 (11)

The convolution process is described by Eq. 12.
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R′(Ei, Ek) =
N−1∑
l=0

f(Ei, µ = El)R(El, Ek)w, i = 0, ..., N − 1, k = 0, ...,M − 1 (12)

This matrix multiplication creates the Gaussian spread response function. However,

the approach taken for creating the response function is stochastic. For a given re-

sponse (from a single incident energy), a given energy bin is Gaussian spread stochas-

tically. For a bin with N counts, a value is sampled from a Gaussian centered at that

bin with standard deviation dictated by the energy resolution curve, Eq 8.
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Figure 9: After convolution, the total response function matrix represents how the
detector will respond to different incident gamma energies. This example shows a
subset of 9 energies out of the ∼ 1000 energies in the full matrices.

The motivation behind using a stochastic approach to spreading the function is

that the response function maintains integer counts in each bin. This more clearly

maintains Poisson statistics.

3.3 Unfolding a Spectrum

After calibrating the experimental spectrum, generating the response function and

convolving the response function, the Gold decomposition algorithm is used to solve
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Eq. 3. ROOT already contains an implementation of this algorithm which is used

for the unfolding. With the experimental spectrum, the response function, the sizes,

number of repetitions, and a boosting parameter, the code generates the unfolded

spectrum.

It is also of interest to determine what the error is on the unfolded spectrum.

The unfolded spectrum will have error due to the existence of statistical error in the

measured spectrum (input vector). In a paper by R. Gold and E. F. Bennett [6], they

found that the error associated with iteratively unfolding y = Rx is described by

Sy = BSx (13)

where the elements of the vector Sy are the variances {〈(δyi)2〉} and the elements of

Sx are {〈(δxi)2〉}. The matrix B has elements bij = (rij)
2 for i, j = 1, 2, ...n. This

result can be achieved assuming that error in the response function is small relative

to that of the measured spectrum. Essentially, this is a second unfolding problem

similar to the original problem.
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CHAPTER IV

EVALUATION OF COMPUTATIONAL METHOD

4.1 Evaluating the Quality of the Response Function

The response function matrix is created by first simulating energy deposition in the

detector, then spreading the spectrum using empirical data. Before the response func-

tion is used for unfolding, it is important to check the accuracy of the model used

to generate the response function. To do this, we simulate the decay of 60Co: two

independent, isotropic gammas. The first gamma at 1.3325 MeV happens 100% of

the time, and the other at 1.1732 MeV occurs 99.88 % of the time.

Energy (MeV)
0.2 0.4 0.6 0.8 1 1.2 1.4

N
or

m
al

iz
ed

 C
ou

nt
 R

at
e

2−10

1−10

1

Figure 10: A comparison of the model (green) and experiment (red) for the 60Co
transitions demonstrates the quality of the model. The model is scaled such that the
1.33 MeV peak has the same magnitude in both.

The results of the simulation (green) and the experimental spectrum (red) are

plotted together in Figure 10. Several features align well, including the Compton
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edges and the photopeaks. There are, however, discrepancies between the spectra, in

particular the low energy side of the Compton continuum. Qualitatively, it is clear

that the model underestimates certain aspects of the low energy gammas. One po-

tential reason are that the room return is not modeled accurately. However, the room

is modeled in great detail, so it is not the lack of some geometric features. If this

is the reason, it implies that Geant4 inaccurately models gammas at low energies.

Geant4, however, is a well-validated code, especially for gamma and electromagnetic

interactions. Another potential source of error is the lack of PMT and physical source

modeling, i.e. the source is modeled as a point with no material.

To test this discrepancy, a PMT and source material are added independently

to the model. The addition of the PMT showed little to no change in the response.

However, the addition of source material dramatically increased the low energy region,

showing significantly better agreement with experiment. This, however, is impractical

to account for when generating the full response function. Because the various sources

used have different material properties, a more general material-less response function

is used with the understanding that it will always introduce low-energy error.

In addition to a qualitative explanation for the features, the spectral differences

can be quantified by comparing several parameters: total efficiency, peak efficiency,

and peak-to-Compton ratio. These results for 60Co, listed in Table 4.1, show that

when comparing features to either the total number of counts (peak-to-total) or to

number of source particles (total and peak efficiency), the simulation under estimates

the parameters. This can be attributed to the same source of error as the back-

scatter error as discussed before: the simulation under estimates total number of

counts relative to the peak/number of emitted particles. The response function is

in good agreement for the peak-to-Compton ratio for both peaks, showing that the

interaction probabilities for a gamma with full energy in the detector is well-predicted

in the model.
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Table 1: Comparison of spectral features between an experimental

and simulated 60Co spectrum

Peak Energy Parameter Experiment Simulation % error

- Total Efficiency 2.205 ∗ 10−2 1.346 ∗ 10−2 63.82 %

Peak Efficiency 1.346 ∗ 10−5 0.997 ∗ 10−5 35.01 %

1.1732 MeV Peak-to-Total 6.181 ∗ 10−4 7.406 ∗ 10−4 16.54 %

Peak-to-Compton 0.2334 0.2301 1.43 %

Peak Efficiency 1.070 ∗ 10−5 0.830 ∗ 10−5 28.92 %

1.3325 MeV Peak-to-Total 4.854 ∗ 10−4 6.167 ∗ 10−4 21.29 %

Peak-to-Compton 0.1858 0.1717 8.21 %

This comparison works well for gamma energies below 2 MeV where pair produc-

tion is not prominent, but it is also of interest to investigate the peak-to-single-escape

and peak-to-double-escape ratios. To do this, we simulate the gamma spectrum of

PuBe as was done to calculate the energy resolution in Section 3.2.1. The simu-

lation (green) and experiment (red) are shown together in Figure 11. To simulate

PuBe, only the gamma produced in the (α, n) reaction is considered. The emission

spectrum, shown in Figure 3, is the same as the one used to determine the energy

resolution at 4.438 MeV.

A superficial inspection reveals several discrepancies between the two spectra. Fur-

ther consideration of the source used, however, helps explain some of these differences.

First, PuBe does emit a 4.438 MeV gamma, but also contains a significant amount of

239Pu and other actinides that have accumulated. These isotopes typically have low

energy gamma emission, explaining the peaks present in the experimental spectrum

at lower energies. Additionally, this 1 Ci plutonium source has high activity and is

prone to causing pile-up in the detector. This causes a significant increase in counts
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in the Compton region of the 4.438 MeV peak. Further, because PuBe is a gamma

and neutron source, it is expected that neutrons in the room will induce (n, γ) reac-

tions, increasing the number of gammas present. For example, there is a visible 2.2

MeV gamma in the experimental spectrum that is not accounted for in the simplified

model.
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Figure 11: A comparison of the model (green) and experiment (red) for PuBe’s 4.438
MeV demonstrates the quality of the model. The model is scaled such that the 1.33
MeV peak has the same magnitude in both.

Limiting the investigation to the low energy features of the spectra, we instead

look to the single escape peak (SEP) and double escape peak (DEP). Exploring

anything else would only be useful if PuBe were modeled in its entirety, both neutron

and low energy gamma emission. The relative height of the escape peaks to the full-

energy deposition peak are listed in Table 4.1. Similar to the peak-to-Compton ratio

for 60Co, these peak-to-SEP and peak-to-DEP ratios are in good agreement between

experiment and simulation. We can thus expect the unfolding algorithm to unfold

even higher energy photons that produce SEPs and DEPs.
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Table 2: Comparison of escape peaks between an experimental and

simulated PuBe spectrum

Parameter Experiment Simulation % error

Peak-to-SEP 1.425 1.389 2.53 %

Peak-to-DEP 1.391 1.330 4.39%

This evaluation of the model indicates that the unfolding algorithm using this

model for the response function will generate reasonable results. We expect that in

the low energy region, the unfolding code will predict additional gamma lines that

represent in-scatter that is not accounted for in the model. Additionally, any pile-up

from a high activity source or a neutron source like PuBe will be seen as gamma lines

that are not directly from the source but are seen by the detector. Figure 12 shows

the final response function.
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Figure 12: Final response function used for unfolding.
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4.2 Exploring the Unfolding Parameters

As discussed in Section 2.1.2, Gold’s decomposition algorithm is used to solve x in the

original y = Rx equation. This algorithm uses an iterative approach, with three input

parameters that constrain the algorithm: number of iterations, number of repetitions,

and boosting factor. The number of iterations is the most straightforward. A solution

x = [1, 1, ..., 1]T is first guessed, then is updated as

x
(k+1)
i = x

(k)
i +

x
(k)
i∑N−1

m=0 Aimx
(k)
m

[
zi −

N−1∑
m=0

Aimx
(k)
m

]
(14)

This is repeated for the number of iterations, L, specified. This x converges to some

positive-definite vector after some number of iterations past which more iterations

has no effect.

The boosting factor, p, and number of repetitions, R, are related parameters. If

p > 1, then once the algorithm has finished L iterations, it boosts the vector x as

x
(0)
i =

∣∣∣x(L)i

∣∣∣p. Then, the iterative process in Eq. 14 performed again with L iterations.

This overall boosting process is repeated R times.

It is not immediately clear which combination of these three parameters will yield

the best performance of the algorithm. To gain insight, a small study is done on the

60Co spectrum. Holding the boosting factor p constant, the spectrum is unfolded, then

the RMS error is calculated from ||Rx− y||2 for an increasing number of repetitions

and iterations. Each case is also compared against p = 1, no boosting. The results

with boosting factors p = 2, 3, 4, and 5 are shown in Figure 13. These results show

that using some boosting consistently performs better than no boosting. However,

neither change in the boosting factor nor the number of repetitions shows significantly

different performance. Thus, the conclusion for choosing the parameters is to first

choose p = 2, R = 2, because these take the least time to compute. Then, increase the

iterations until a consistent minimum is achieved. In the case of 60Co, this minimum

occurs at 6000 iterations with RMS of 0.06289.
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Figure 13: A comparison of the unfolding parameters shows that boosting improves
the performance, but the other parameters play little role in the accuracy of the
unfolding.

This argument works well for spectra with defined peaks, but breaks down when

the spectrum is more continuous. In unfolding applications, these typically come in

two varieties. First, there are spectra with few to no peaks, such as a fission or

bremsstrahlung spectrum. These are not explored in this work, but it is speculated

that the algorithm will perform best with no boosting, as the role of the boosting is

to strengthen the peak height. Second, there is the case where there is some spreading

about a mean gamma energy, such as in PuBe. The unfolding is expected to yield the

total number of counts proportional to the integral of that peak (off by the efficiency

of the detector). The boosting allows the peak height to be amplified, and the peak

spreading effect from the reaction kinematics is subdued.

This would suggest that this algorithm’s purpose is to predict the number of
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gammas needed to produce a spectrum and what mean energies those gammas had.

In the case of a broadened peak, the unfolding should not reproduce the original

incident distribution, but an impulse at its mean energy. To unfold a continuous

spectrum, either no boosting should be applied, or a different algorithm should be

used.

4.3 The Unfolded Spectra

4.3.1 137Cs, 22Na, and 60Co

Using the parameter selection process discussed in Section 4.2, Gold’s decomposition

is applied to 137Cs, 60Co, and 22Na spectra. In order to better highlight the features

of the unfolded spectra, they are plotted in semi-log.
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Figure 14: Semi-log plot of the measured (red) and unfolded (blue) 137Cs spectra.

The 137Cs measured and unfolded spectra are shown in Figure 14. The unfolded

spectrum (blue) shows a sharp peak at the center of the measured spectrum’s photo-

peak. Its relative height to the photopeak is understated in the semi-log plot, but it

is nearly an order of magnitude higher, which is to be expected for several reasons.

The response function accounts for total efficiency and for events that resulted in
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Compton scatter in the detector. The height of this peak should correspond do the

total number of incident photons of that energy.

The unfolded spectrum also has additional low energy counts. The analysis of the

response function quality revealed discrepancies between measurement and model

at low energies, particularly surrounding the backscatter peak. The model under-

predicted the low-energy region, meaning the unfolded spectrum requires additional

counts in this region to account for the perceived elevated number of counts in the

measured spectrum. This phenomenon occurs in all unfolded spectra and will only be

mentioned here for brevity.
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Figure 15: Semi-log plot of the measured (red) and unfolded (blue) 22Na spectra.

Similar results are found when applying the algorithm to 22Na. Shown in Figure

15, the decomposition algorithm shows peaks corresponding to the 1.275 MeV and

0.511 MeV peaks emitted from the source. The unfolded 1.275 MeV peak is not quite

an impulse – this phenomenon is discussed further in the 60Co analysis.

The next spectrum, 60Co, shown in Figure 16, has two peaks at both photopeaks.

These peaks, however, are not sharp impulses as expected for a monoenergetic gamma

source. Rather, there is a small spread around each photopeak, the reason for which
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Figure 16: Semi-log plot of the measured (red) and unfolded (blue) 60Co spectra.

is not immediately clear. A possible explanation is that the Gaussian spreading fit,

shown in Figure 7, is not perfect. Additionally, it could likely be an artifact from

the decomposition algorithm and could be suppressed with a more careful selection

of the parameters. As mentioned in Section 4.2, the parameters boosting parameters

are both 2, and the number of iterations was chosen by finding the minimum 2-norm of

the residual (in this case 4000). This was the selected approach because increasing the

number of repetitions and the boosting factor did not decrease the residual norm much

past 2. However, using a boosting factor of 10, 10 repetitions, and 10000 iterations,

the results are seemingly more physical, shown in Figure 17. Although the spread is

not completely reconciled, this plot does not nearly have the spread as Figure 16.

Although this intuitively seems more physical, it is useful to quantify the accu-

racies of each in some way. To do this, the ratio of the total counts in each peak

is calculated and compared to the 60Co decay scheme. For the unfolded spectrum

calculated using the parameters 2, 2, 4000, the ratio is 0.9895, and for that using 10,

10, 10000, the ratio is 0.9635. Both results are close to the theoretical result, 0.9988,

within 3.5%. The first unfolded spectrum with lower parameters yields the slightly
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Figure 17: Semilog plot of the measured (red) and unfolded (blue) 60Co spectra.

better ratio with 0.93 % error.

This does raise the question of whether this approach for choosing the parameters

is the best. Some alternative options are proposed in Section 5.

4.3.2 PuBe

In addition to the check sources used in the previous section, the unfolding method was

designed to unfold up to 5 MeV beams, including the gamma spectrum from PuBe.

This task is more challenging, however, because the gammas that are emitted are not

discrete at 4.44 MeV. Instead, there is a broadening about this energy, discussed in

detail in Section 2.2.1.

Using the previous method, the first step is to determine the 2-norm of the residual

for increasing iterations, with boosing factor as 2 and the number of repetitions as 2.

Using this approach, the resulting unfolded spectrum is shown in Figure 18 with 8000

iterations. These results look far different from those of the check sources, not only

because of the continuous nature of the incident energy distribution, but because of

the prominence of the single and double escape peaks.

31



Energy (MeV)
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 o
f m

ea
su

re
d 

an
d 

un
fo

ld
ed

 s
pe

ct
ra

dEdN

5−10

4−10

3−10

Figure 18: Semi-log plot of the measured (red) and unfolded (blue) PuBe spectra with
8000 iterations, 2 repetitions, and boosting of 2.

The algorithm has the challenge in this case to discriminate full-energy peaks

from the escape peaks, making this spectrum more ill-conditioned than the previous

spectra. The typical structure for a monoenergetic spectrum has a full-energy peak

with two escape peaks to the left, each 0.511 MeV than the previous peak. When

attempting to unfolded, considering the single-escape peak (in this case at 3.93 MeV)

as a possible full-energy peak, there is both a peak at full-energy and one 0.511 MeV

to the left. Although it does not completely fit the three peak structure, it does satisfy

two of those peaks. Similarly, in the case of 0.511 MeV above the full-energy peak

at 4.95 MeV, there are two peaks to the left that account for two of the three peaks

expected for a gamma at this energy. These two cases, 3.93 MeV and 4.95 MeV, are

less prominent than the true energy of 4.44 MeV because they do not satisfy but two

of the three peaks. Further, at 1.022 MeV lower (3.42 MeV) and likely at 1.022 MeV

higher (5.46 MeV), an even smaller peak is shown, because it only satisfies one of the

three peaks necessary.

In attempt to achieve a single energy in the unfolded spectrum at 4.44 MeV, the
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parameters are pushed (as was done for 60Co) to 104 iterations, 10 repetitions, and a

boosting of 10. These are chosen empirically, such that beyond them, there is little to

no change in the resulting unfolded spectrum. Using the 2-norm of the residual as the

measure of error, the error for the lower parameters (2.809*10−3) is only marginally

lower than that for the higher parameters (2.945*10−3). As shown in Figure 19, there

is now a large line at 4.44 MeV, three between 1 and 2 MeV, and several below 1

MeV.
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Figure 19: Semi-log plot of the measured (red) and unfolded (blue) PuBe spectra with
104 iterations, 10 repetitions, and a boosting of 10.

As in the case for the unfolded spectrum with lower parameters, there are several

peaks below 1 MeV. Though here, the peaks are much more finely resolved. These

peaks are understood to be the low energy gammas emitted by plutonium and the

other actinides present in the PuBe source. The accuracy of these lines is not examined

here.

The peaks between 1 and 2 MeV are likely products of discrepancy in the model

and reality. This discrepancy is actually twofold. First, the high intensity of the source

induces more pileup in the detector where none is accounted for in the model. Second,
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the presence of neutrons in the room can induce (n, γ) reactions in the room, creating

additional noise and peaks in the spectrum. In particular, the gamma produced in

hydrogen neutron capture at 2.2 MeV and its corresponding escape peaks are not

properly recognized. Because the response function does not account for the extra

scatter in the room and because the algorithm is geared toward peak amplification,

these small SNR peaks are either missed or mislabeled.

This use of higher valued parameters comes at the cost of losing the distribution

of about 4.44 MeV, only highlighting the importance of properly choosing the param-

eters. For more continuous spectra, lower parameters seem to maintain this nature

more effectively. For discrete spectra, higher parameters seem to perform better. This

is intuitive when revisiting the purpose of each parameter. The number of iterations is

purely for convergence, but the boosting and repetitions apply nonlinear transforma-

tions, amplifying higher values relative to the lower ones. This in particular is useful

for a space like this where peaks contain the majority of the desired information.

4.3.3 Low-Energy Reaction Beam

To unfold the LENR beam, a modified version of the approach is applied. First, the

model used to create the response function is simplified because the facility infor-

mation is unavailable. Instead, a planar beam is perpendicularly incident upon the

detector volume, which is suspended in air. Additionally, there is no energy resolu-

tion information available at energies beyond 4.438 MeV, so the fitting function is

simply evaluated up to the necessary energies to approximate the response function.

The unfolding parameters are heuristically chosen to maximize peak sharpness, 104

iterations, 10 repetitions, and a boosting of 10.

Despite the crude model and energy resolution approximations, the results show

gamma lines in nearly all the places expected, shown in Figure 20. The particular
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energies of interest (those 3 MeV and above), have the energies and intensities de-

scribed in Table 4.3.3. To better show the relative intensities, Figure 20b is shown

with a semi-log measured spectrum and a scaled, linear unfolded spectrum.
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Figure 20: The two plots show the measured and unfolded spectra for the LENR
gamma distribution in different scales.

Table 3: Energies and intensities of unfolded gamma lines relative to

maximum

Energy (MeV) Relative Intensity

3.065 39.48 %

3.275 47.32 %

3.965 56.08 %

4.415 100 %

4.545 13.84 %

5.035 53.20 %

6.195 56.71 %

7.405 59.08 %

9.715 54.41 %

14.625 36.39 %
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As was predicted by the available 12C transitions, the 3.065 MeV and 3.275 MeV

peaks neighbor the 3.21 MeV transition that is necessary if a 7.45 MeV occurs. The

6.195 MeV line has no corresponding transition in 12C, indicating it either comes

from some other reaction or is a mis-calibrated 7.45 MeV transition. If this is the

case, the nearby 7.405 MeV line would shift to the right, possibly to where a 8.27

MeV transition would lie. This would also likely push the 9.715 MeV to the right,

possibly to the 10.67 MeV transition. An alternative explanation is the 6.195 MeV

results from another reaction, the 7.405 MeV corresponds to the 7.45 MeV transition,

and the 9.715 MeV to the 9.64 MeV transition. A more detailed calibration would

provide more insight into these discrepancies.

The two transitions typically of interest are 4.44 MeV and 15.1 MeV. If only

the 4.415 MeV line corresponds to the 4.44 MeV transition and the 14.625 MeV

to the 15.1 MeV, the 4.44 MeV intensity is only larger by a factor of 2.75. This is

much smaller than the predicted order of magnitude in [2] for 3 MeV deuterons. It

is likely that given the crudeness of the model, the peaks surrounding 4.44 MeV also

correspond to this transition. After applying this correction, the 4.44 MeV peak is

6.13 times larger than the 15.1, still smaller than the published ratio, possibly due to

the over-simplification of the model.

Finally, of small consequence but of notice is the underestimation of the 15.1 MeV

location. This was a calibration point, though close investigation reveals the challenge

of using this point for calibration: the photopeak is blurred beyond recognition. The

shift in the unfolded location of the peak either resulted from improper selection of

the peak location or inability of the algorithm to find it.

4.3.4 Propagation of Statistical Error

The method described in Section 3.3 is used to propagate the statistical error through

the unfolding process. Both the source and background counts are Poisson distributed,
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but to subtract the background, they are converted to count rates. Propagating the

statistical error for each leads to Eq. 15 for the variance of the gross count rate

S2
x =

n

t2n
+
b

t2b
(15)

where Sx is the standard deviation of the gross count rate in a bin, n is the number

of source counts in a bin, n is the measurement time for the source, b is the number

of background counts in a bin, and tb is the measurement time for the background.

These are then unfolded with a matrix B, such that each element is the square of

each corresponding element in R.
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(a) Unfolded 137Cs spectrum
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Figure 21: A comparison of the unfolded spectrum to its corresponding statistical
error shows they are 5 orders of magnitude apart.

A sample of this propagation is shown in Figure 21 for 137Cs. It is clear from these

plots why the error bars are not visible: they are 5 orders of magnitude smaller than

the unfolded spectra.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

Due to the pervasive nature of gamma spectroscopy across so many fields of study,

having adequate tools for analyzing the resulting spectra is essential. The original mo-

tivation of this work was to unfold and characterize the gamma measurement from

a 11B(d,nγ)12C reaction. The resulting information is to be used in simulation of

the source for nonproliferation research. Along the way, many interesting questioned

seemingly raised themselves due to the nature of the problem and the methods se-

lected.

5.1 The Response Function

Using Monte Carlo methods to create the response function for the unfolding pre-

sented both advantages and disadvantages. One benefit is that these simulations are

not limited in energy-space. They can simulate any monoenergetic photon and its

resulting energy deposition in a detection volume. This is helpful for both filling in

the response function more finely and extending to energies beyond the capabilities

of any of the sources available at Georgia Tech. The obvious limitation is the detail

and complexity of the model and its implications on the results. It is not immedi-

ately evident to what degree the model should represent reality. This work revealed

that something like adding a room around the experiment makes a slight change in

the spectrum, but adding a gram of metal around the source drastically changes the

response.

This leads to another important point raised by this research: the details of the

unfolding are entirely dependent on the desired outcome of the code. For example,

creating a response function that unfolds the energy distribution that is directly
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incident upon the detector, a response function that unfolds the energy distribution

leaving the source within some small time window, or a response function that unfolds

the true nuclear transition probabilities are three very different problems. In the case

of a high activity source, the response function used in this thesis cannot possibly

represent such a situation given the structure of the simulation, begging the question:

what does the unfolded result physically mean? In a response function where one

gamma is simulated after another, no pile-up or background coincidence can occur.

Accounting for the temporal behavior of the source and the possible coincidence of

background would make the response function a more accurate representation. For a

given event, depending on the provided activity, the number of gammas produced are

sampled from a PDF characteristic of its decay rate. Similarly, with a given probabil-

ity, one or more background counts could be registered in the detector simultaneously

with a source count. These types of counts are not linearly separable, an assumption

these unfolding methods depend on. This, of course, raises another problem: this re-

sponse function is only suitable for one activity level and one background spectrum

(the price to pay for sophistication).

5.2 The Algorithm

Gold’s iterative unfolding method was designed decades ago for this exact purpose:

gamma spectrum deconvolution. It truly shines when unfolding a spectrum with dis-

tinct peaks. But given a bremsstrahlung spectrum, it quickly breaks down. This is

fine for conventional gamma sources, but in more complex energy fields such as fis-

sion, bremsstrahlung, or nuclear-reaction-broadened peaks, the algorithm does not

maintain the continuity. Although this work exclusively uses this algorithm for un-

folding, this is not to say it is what is most appropriate. Some algorithms common to

neutron spectral unfolding are build to deal with much more ill-conditioned problems

and could likely be of use in unfolding continuous spectra.
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The algorithm does have the benefit of guaranteeing convergence to some sharp

spectrum given high enough parameters. This matter is discussed more in the next

section.

Mentioned briefly in the introduction was some work on using machine learning

for unfolding. The current literature is littered with attempts at gamma and neutron

unfolding using neural networks and the like. I believe there is still work to be done in

the field, and using combinations of the response function generation techniques dis-

cussed above paired with machine learning could prove fruitful. The response function

approach becomes training set generation, and unfolding something nonlinear like the

nuclear transition probabilities becomes more realistic. Such an approach requires a

strict selection of the training data to be confident in the result.

5.3 Evaluating the Performance

One of the most challenging aspects of this work is in the selection of the unfolding

parameters and evaluation of unfolded spectra. Even the measure of the quality of

the unfolding is brought into question. As was mentioned, the 2-norm of the residual

is used consistently, but this has the effect of choosing the spectrum that satisfies

y = Rx closely. The underlying problem is revealed during the model evaluation:

there exist discrepancies between model and measurement. In future studies, this

measure of performance needs to be examined and chosen with more regard to the

physical implications of the selection. One solution is to simply take the 2-norm of

the residual of only regions where the model is in good agreement.

The other difficulty in the evaluation is that the parameter space is large and

required some heuristic truncating. The performance reported by each parameter set

selection was inherently biased by the performance metric. What can be concluded

from this study is that beyond a certain number of iterations, the algorithm essentially

converges and does not perform any better (or worse). Having higher boosting and

40



repetition values sharpened the peaks in the unfolded spectrum. If the boosting value

was too high for the number of repetitions, several lines around a peak would form

(and not combine to form one line). A similar phenomenon occurs with the contrary.

The relationship between repetitions and boosting is nonlinear and even with some

parametric studies, it seems the best approach is as such: decide a performance metric,

test the algorithm with a large subset of parameter combinations and choose the best

one.
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APPENDIX A

PEAK BROADENING CALCULATIONS

The energy resolution at the 4.438 MeV characteristic gamma peak from PuBe is

higher than anticipated in the LaBr3(Ce) measurements. The kinematic calculations

of the nuclear reactions occurring in PuBe that produce the gammas show that this

is not a characteristic of LaBr3(Ce) but of PuBe. First considering the (α, n) reaction

with 9Be, shown in Figure 22, we perform an energy and momentum balance to

determine the resulting kinetic energy of 12C*. The constant values are listed in Eq.

mn = 939.565
MeV

c2

mα = 3728.401
MeV

c2

mC = 11177.928
MeV

c2

Eα = 5.245MeV

Q9Be(α,n)12C∗ = 1.264MeV

Qγ−decay = 4.438MeV

mC∗ = 11182.366
MeV

c2

(16)

We only consider the case where the 12C* is emitted forward because this is

the maximum kinetic energy of 12C*. In this case, the gamma emitted will be at a

maximum when in the same direction as 12C* and minimum when emitted opposite

of 12C*.

Eα + EBe +Q9Be(α,n)12C∗ = En + EC∗ (17a)

pα + pBe = pC∗ − pn (17b)
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α

9Be

n

12C*

Figure 22: The (α, n) reaction in PuBe results in a neutron and a 12C. The gamma
will achieve maximum and minimum energies when the reaction occurs with the α at
maximum energy.

Eα +��
�*0

EBe +Q9Be(α,n)12C∗ =
p2n

2mn

+
p2C∗

2mC∗
(18a)

pn = pC∗ −
√

2mαEα +��
�*0

pBe (18b)

(pC∗ −
√

2mαEα)2

2mn

+
p2C∗

2mC∗
− Eα −Q9Be(α,n)12C∗ = 0 (19)

(
1

2mn

+
1

2mC∗

)
p2C∗ −

√
2mαEα
mn

pC∗ +

(
mαEα
mn

− Eα −Q9Be(α,n)12C∗

)
= 0 (20)

pC∗ = 246.486
MeV

c

EC∗ = 2.717MeV

(21)

With the 12C* nucleus traveling at 2.717 MeV, the maximum gamma energy

will be when it is emitted in the opposite direction of the original momentum of

12C*. Conversely, the minimum gamma energy will be when it is emitted in the

same direction. We determine these gamma energy bounds by doing an energy and

momentum balance for both cases.

For the maximum case:
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γ

12C

γ

12C

Figure 23: The gamma decay of the carbon yields the maximum and minimum gamma
energies when it is emitted forward or backwards, respectively. The carbon should also
be moving at its maximum energy.

Qγ−decay + EC∗ = EC + Eγ (22a)

pC∗ = pC − pγ (22b)

Qγ−decay + EC∗ =
p2C

2mC

+ pγc (23a)

pC = pC∗ + pγ (23b)

Qγ−decay + EC∗ =
(pC∗ + pγ)

2

2mC

+ pγc (24)

(
1

2mC

)
p2γ +

(
pC∗
mC

+ c

)
pγ +

(
p2C∗
2mC

−Qγ−decay − EC∗
)

(25)

pγ = 4.536
MeV

c

Eγ = 4.536MeV

(26)

For the minimum case:
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Qγ−decay + EC∗ = EC + Eγ (27a)

pC∗ = pC + pγ (27b)

Qγ−decay + EC∗ =
p2C

2mC

+ pγc (28a)

pC = pC∗ − pγ (28b)

Qγ−decay + EC∗ =
(pC∗ − pγ)2

2mC

+ pγc (29)

(
1

2mC

)
p2γ +

(
c− pC∗

mC

)
pγ +

(
p2C∗
2mC

−Qγ−decay − EC∗
)

(30)

pγ = 4.340
MeV

c

Eγ = 4.340MeV

(31)
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