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SUMMARY 

Molecular dynamics (MD) simulations calculate the trajectory of atoms as a 

function of time. Material properties that depend on the dynamics of atoms can be predicted 

in terms of these atomic motions, yielding insight into atomic-level behaviors that 

ultimately dictate these properties. Such insight is crucial for developing a low-level 

understanding of material behavior, and MD simulations have been used to successfully 

predict properties for decades. Thermal transport properties in solids are largely dictated 

by collective atomic vibrations known as phonons, which can be understood and probed 

deeply through analysis of MD trajectories. The heart of MD simulations is the 

mathematical representation of potential energy between atoms, termed the interatomic 

potential, from which the forces and dynamics are calculated. The use of MD simulations 

to generally predict and describe thermal transport has not been fully realized due to the 

lack of accurate interatomic potentials for a variety of systems and obtaining accurate 

interatomic potentials is not a trivial task. Furthermore, it is not known how to create 

potentials that are guaranteed to accurately predict phonon properties, and this thesis seeks 

to answer this question. The goal is to create potentials that accurately predict phonon 

properties, which are thereby termed phonon optimized potentials (POPs).  
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CHAPTER 1. INTRODUCTION 

This introductory chapter reviews the concept of phonons; what phonons are and 

how they are modeled. Existing theories for modeling phonons are explained along with 

their shortcomings, as well as more general theories based on molecular dynamics (MD) 

simulations. Atomistic thermal transport involves the study of phonons using these 

computational techniques, and it forms one of the key approaches for theoretical and 

computational research in nanoscale heat conduction. This chapter introduces the biggest 

problem that hinders the progress of atomistic thermal transport modeling, namely the 

problem of accurately describing interactions between atoms in a computationally cheap 

manner.  

1.1 Phonons 

Heat transfer occurs through a variety of thermal energy carriers; electromagnetic 

radiation transfers heat via photons 1, fluids can transport heat via the diffusion of 

molecules and their interactions 2, and electrically conducting solids transport heat via 

electrons 3. However, all phases of matter transport heat via atomic motions, and this is the 

main method of heat conduction in semiconductors, insulators, and covalently bonded 

solids 4. The idea that atomic motions influence thermal properties was first introduced by 

Einstein, where he used Planck’s radiation theory to show that quantization of atomic 

vibrations can explain the temperature dependent heat capacity of solids 5. Atomic motions 

in well-ordered crystalline materials consist of vibrations around an equilibrium site 6. 

These lattice vibrations then form sinusoidal waves in the crystal 7. Such lattice vibrations 

have quantized amplitudes due to quantum mechanics, and each quanta of energy is called 
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a phonon 8. Phonons in crystalline materials possess well-defined wave characteristics and 

can therefore be ascribed distinct wave vectors and wavelengths 7. Lattice dynamics (LD) 

is a formalism for solving the equations of motion for atoms, and was first formulated in 

1912 by Born and von Karman to describe phonons 9. However, it wasn’t until the 1950s 

that experimental advancements in the form of neutron scattering enabled measurements 

of these vibrational frequencies, thus confirming their existence and the validity of the LD 

theoretical treatment10-12.  

Although phonons are largely responsible for thermal energy transfer in many 

solids and their behavior can be modeled via LD, there are also classical theories applicable 

to macroscopic systems 13. The classical theory of heat conduction is based on Fourier’s 

law, which states that the heat flux Q  through a system is proportional the negative 

gradient of the temperature field with respect to position T , given by Equation 1.  

TQ    (1) 

The constant of proportionality,  , is the thermal conductivity of the material. Thermal 

conductivity in solids possesses contributions from electrons and phonons 14. The 

contributions to thermal conductivity in many technologically relevant materials, such as 

semiconductors and insulators, are dominated by phonons 4, since the number of 

conducting electrons is negligible. Fourier’s law in Equation 1 accurately predicts thermal 

behavior in solids until the characteristic length reaches the mean free path of phonons 13. 

Many important modern devices, such as transistors for example, are reaching length scales 

smaller than the mean free paths of many phonons 15,16 and as a result, modified or 

revised/new models must be developed to understand the behavior of such systems.  
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One example of the breakdown of Fourier’s law stems from an inability to treat 

thermal conductivity as a material specific, yet size/geometry independent parameter 17,18. 

As one shrinks the size of a material, one can account for deviations from Fourier’s law by 

simply modifying the associated thermal conductivity, where the modification occurs 

because some phonons begin to interact with boundaries more frequently than other 

phonons 19-21. Quantifying such size effects and phonon behavior has become a major 

undertaking in the nanoscale phonon transport community and it has been largely 

successful 22-24. A thorough understanding of phonons and how to predict/model their 

behavior, will lead to better understanding of thermal transport properties in terms of the 

underlying phonon contributions to such properties 25. Here, it is useful to note that the 

traditional definition of phonons as wave-like vibrational modes in crystals evolved out of 

formulations from LD to describe the frequencies, group velocities and wave-vectors of 

these modes in crystals 26. Some of these quantities, such as velocity, also led to a corpuscle 

theory of phonons by treating phonons as quasi-particles that can scatter with each other 

and other particles, which is more formally described in the next section 8.  

1.2 Phonon Gas Model 

 Phonons were originally modelled as gas particles colliding in a closed vessel in a 

model known as the phonon gas model (PGM), in which case kinetic theory can be used to 

calculate gas transport properties 8. Peierls introduced the PGM in 1929 to describe the 

random thermal transport from phonons in solid materials27. In this sense,  the PGM treats 

the vibrational modes in a crystalline solid (i.e., phonons) as quasi-particles with well-

defined velocities, that can scatter with each other 8. Kinetic theory, which is normally 

applied to predict transport properties of gases of molecules, can then be used to describe 
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transport properties in a gas of phonons 28. The PGM states that each phonon with a wave-

vector q  and polarization index s  carries a quanta of harmonic oscillator energy   8,27. 

In the PGM, a phonon identified by sq  can then travel with group velocity svq  and can 

scatter with other phonons, boundaries, or crystal imperfections 8. Kinetic theory applied 

to a gas allows one to calculate the gas thermal conductivity, which depends on the specific 

heat, velocities and mean free paths of the particles 29. The thermal conductivity of a 

phonon gas is therefore written as a sum over all contributions from individual phonons 

with wave-vector q  and polarization index s , normalized by the crystal volume V , as 30-

32 

 
sq

sssvc
V ,

1  qqq  (2) 

where Tfc sss  /qqq   is the specific heat of mode sq  in terms of the Bose-Einstein 

distribution sfq
. The group velocity and mean free path of mode sq  in general    and   

Cartesian directions are given by 


svq  and 


sq , respectively. Here, the mean free path 

represents the product of the group velocity and the average amount of time between 

collisions.  

It is important to express Equation 2 here since it illustrates some key aspects of 

the PGM, which assumes vibrational modes possess particle quantities such as velocities 

and mean free paths. The PGM results in accurate thermal conductivity predictions for pure 

crystals, where the vibrational modes are wave-like and can be assigned quantities such as 

group velocities and wave-vectors 33,34. Conversely, one could state that the PGM requires 
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that the modes of vibration can be described with wave-vectors and group velocities, since 

every mode is envisioned to carry heat like a particle and thus it must have an associated 

speed. Many normal modes, however, have been shown to lack well-defined wave vectors 

and velocities, when some form of disorder is present or some form of symmetry is lost35-

37. The PGM therefore breaks down when disorder is added to the system, since many 

modes in disordered systems lack well-defined group velocities and wave-vectors, as long 

range periodicity is lost 38,39. The PGM is therefore not a general method to predict thermal 

conductivity since many systems contain some level of disorder such as defects, grain 

boundaries or deviations from a perfect crystalline lattice. The PGM provides accurate 

thermal property predictions for pure crystals, but it cannot be generally applied to other 

types of solid with some level of disorder and this limitation stems from the intrinsic 

requirement of wave-like quantities for every mode 7,34,40.  

Although the PGM is somewhat limited in application, more modern approaches 

utilizing molecular dynamics (MD) simulations possess much more generality 41,42. MD 

simulations provide a computational foundation to study the dynamics of any atomic 

system in any phase of matter 43. Linear response theory in statistical mechanics provides 

a framework for relating material properties to the atomistic level dynamics obtained from 

MD in a general way, regardless of the phase of matter or any level of disorder in the 

system 44. Thermal property prediction using MD is therefore general in applicability to a 

variety of materials, unlike the traditional approaches that rely on the validity of the PGM 

42.  

1.3 Molecular Dynamics (MD) 
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MD simulations involve numerical simulation of the motions of atoms as a function 

of time. Dynamics are determined by solving Newton’s equations of motions numerically 

for a system of interacting particles, where the interactions between particles are 

approximated as mathematical functions known as interatomic potentials, force fields, or 

are often just referred to as “potentials”. Obtaining the dynamics first involves calculating 

the force for every atom. In classical MD the force iF  on an atom i  is given by the classical 

mechanical definition as the gradient of the system potential energy via 

 
i

i

U

R

λR
F






,
 (3) 

where iR  is the position of atom i  and U  is the interatomic potential, which is represented 

as an analytical function of all atomic positions R  and a set of parameters λ  that are 

used/fit to describe a specific material/chemistry 43. A typical simulation starts with random 

initial velocities for every atom corresponding to a specific temperature. By knowing the 

forces on each atom from Equation 3, Newton’s 2nd law yields an acceleration for each 

atom, and a finite timestep is used to numerically integrate the acceleration and solve for 

velocities and positions at the next timestep. A popular choice of integration algorithm that 

is also used in this thesis is the Verlet algorithm 45.  

A single MD simulation can be thought of as a member of a statistical ensemble; a 

single simulation will sample microstates associated with a system that corresponds to 

macroscopic constraints/observables 46. How the equations of motion are integrated then 

depends on constraints associated with or imposed by the ensemble; constraints can include 

temperature in the form of thermostats, barostats for pressure constraints, or imposing total 
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energy conservation. Imposing constant composition (number of atoms), volume and total 

energy results in a microcanonical ensemble, often abbreviated NVE47. Constant number 

of atoms, volume and temperature simulations generate configurations belonging to the 

canonical or NVT ensemble by utilizing thermostats 46. Barostats are applied to integrate 

the equations of motion in a constant number of atoms, pressure and temperature NPT 

ensemble 48,49. Each ensemble provides an approach to sample the phase space (positions 

and velocities) resulting from dynamics with the different macroscopic constraints. For an 

equilibrium MD simulation to study thermal conductivity, the atomistic dynamic 

quantities, e.g., positions, velocities and forces at a given timestep, can then be used as 

inputs to calculate the heat flux through a material, based on Hardy’s general energy-flux 

operator 50. Hardy’s expression for the volume averaged instantaneous heat flux vector Q  

is given by 50 
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where the indices i  and j  run over all atoms, and 
i

jU

R


 is the gradient of the potential 

energy of atom j  with respect to the position iR  of atom i . Other quantities obtained from 

the MD simulation are the per-atom total energies iE , velocities iυ , and pairwise distances 

ijr . Equation 4 assumes that the per-atom energy iE  and potential jU  are well-defined 

quantities, which is the case for analytical interatomic potentials that define the total energy 

as a sum of all per-atom contributions 51. During a MD simulation the heat flux in Equation 

4 can be calculated as a function of time. Time correlation functions of the heat flux can 
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then be used to calculate thermal conductivity tensor   52, utilizing the Green-Kubo 

relation 53 





0

2
')()'( dttQttQ

Tk

V

B

  (5) 

where Bk  is the Boltzmann constant, T  is the system temperature, and the integrand is the 

heat flux autocorrelation.  

The power of the MD method, utilizing GK theory, lies in its generality; it is 

applicable to any phase of matter, unlike the PGM 50. The generality allows one to declare 

any atomic structure at the beginning of the simulation, and this structure may contain 

varied composition, defects, boundaries, etc. MD simulations also generally sample the 

phase space according to the ensemble, i.e., every atom experiences dynamics and motion 

at finite temperatures 50. The motion of every atom also naturally includes anharmonicity 

to full order, which offers a great advantage to MD for studying phonon transport, over 

many other methods that start from the harmonic approximation and introduce complexity 

as they attempt to incorporate anharmonicity 34. Furthermore, recent advances in 

techniques such as Green-Kubo modal analysis 35decompose the motions and GK thermal 

conductivity calculated in MD simulations into contributions from individual vibrational 

modes. This supplies further insight into how different vibrational modes contribute to 

thermal transport and thermal conductivity. Modal analysis can also be applied to interfaces 

via interface conductance modal analysis (ICMA), which provides insight into how 

vibrational modes contribute to thermal transport across interfaces 54.  
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MD simulations and modal analysis provide general methods to study thermal 

transport properties in any material or phase of matter. The generality of these methods lies 

in the fact that the inputs are basic atomistic quantities that exist in every system such as 

atomic velocities, positions and forces, as there are no assumptions about the nature of 

vibrational modes in the system nor any requirements to ascribe group velocities to such 

modes 50,52,54. While MD simulations and modal analysis provide general methods to study 

and predict thermal transport in any atomic system, the real power of these methods has 

yet to be realized, as accurate MD simulations of thermal transport in many systems, 

including pure crystals, are still challenging 55,56. This is due to the lack of a wide variety 

of accurate interatomic potentials, which are at the heart of the MD method 56,57.  

1.4 The Lack of Potentials 

In a MD simulation, the forces on each atom depend on the gradient of the system 

potential energy via Equation 3 at each timestep; these forces dictate the dynamics for the 

next timestep, and therefore dictate the heat flux and final bulk properties calculated via 

linear response theory 52. Accurate forces are required for accurate dynamics, which in turn 

determine bulk properties. Thus, property prediction when the force and potential are 

inaccurate still yields results, but they may not be physically meaningful. Much worse, for 

such an inaccurate simulation, there would be no faith in any predictions or explanations 

of experimental data. This issue is particularly important because one of the most important 

roles modelling and simulation play in science is to provide detailed insight and 

understanding. Thus, if the simulations are not of high fidelity, they provide little to no new 

trustworthy insight. Furthermore, when many existing potentials are applied to thermal 

property prediction, they often yield inaccurate thermal properties 23,57. This discrepancy 
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between existing potentials and thermal property prediction arises from the fact that most 

of these potentials were not made with the thought of thermal transport or phonons in mind 

57. This issue is better appreciated by considering the century-long history of potential 

development, especially as it pertains to phonons and thermal transport. 

1.4.1 History of Potentials for Phonons 

Commonly used potentials in the heat transfer community today were inspired by 

original works on potentials in the early 1900s 58. Analytical representations of interaction 

potentials began in 1924, when John Lennard-Jones determined an analytical expression 

to represent the van der Waals energy and forces between ideal gas molecules, and later 

extended his potential to describe bulk compression properties of simple ideal gas crystals 

59,60. A few years later, Morse crafted a potential that described anharmonic bonds between 

diatomic gas molecules 61. Early work involving potentials, in the 1920s and 1930s, 

involved studying compressional and thermodynamic properties of gases and simple ideal 

gas crystals 62. In the 1950s and 1960s, a surge in experimental methods to measure elastic 

constants, mechanical properties, and crystal structure led researchers to parameterize the 

original potentials made for gases (Morse, Lennard-Jones, etc.)59,61 to cubic structured 

metals 63,64. All the potentials up to this point described 2-body interactions between pairs 

of atoms and Born noted that being restricted to 2-body interactions would not properly 

describe elastic properties in more complex crystal structures containing more than one 

basis atom (e.g., diamond, wurtzite, etc.), as seen in many covalently bonded solids where 

phonon transport is dominant 65. Stable classical MD simulations of more complex 

structures such as semiconductors and covalent solids, where phonon transport is a 
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dominant mode of heat conduction, were not possible until the development of potentials 

containing 3-body terms by Tersoff in 1985 58.  

The Tersoff potential incorporated short-range angular interatomic interactions into 

a Morse-like functional form to successfully describe the cohesive energy, bond energy 

and bulk elastic properties of diamond structured silicon 58. That same year, Stillinger and 

Weber created a 3-body potential for silicon that was more adept at describing melting 66. 

Even today, the Tersoff and Stillinger-Weber potentials are still the most commonly used 

functional forms for MD simulations of thermal transport in simple semiconductors, such 

as silicon 67. Many more analytical potentials inspired by the 3-body Tersoff and Stillinger-

Weber formulations arose in the 1990s to study other phenomena. These formulations, for 

example, included functional forms that could describe transitions from covalent to 

metallic bonding 68, phase transitions such as melting 69, and energetics associated with 

clusters, surfaces and defects 70. Potentials up to this point in time were still parameterized 

against experimental quantities, similar to the creation of cubic metal potentials in the 

1950s, although the more flexible 3-body forms allowed for these parameterizations to be 

successful at stabilizing covalent solids 58,71,72. Brenner noted, in response to the rise of 

many analytical potentials in the 1990s and their different parameterizations, that analytical 

potentials lacked transferability; once parameterized for one situation they may not 

properly describe another atomic scenario, and many analytical forms were shown to be 

unable to describe multiple phenomena simultaneously 51. This problem of transferability 

is especially true for phonons; many traditional analytical potentials for covalent solids 

were shown to yield poor agreement to experimental phonon properties and thermal 

conductivity since they were optimized for other purposes 57,73-77. In response to the lack 



 12 

of parameterizations of analytical potentials that described phonons and thermal transport 

accurately, some attempts in the late 1990s and early 2000s involved parameterizing 

potentials against experimental phonon frequencies 56,78-80.  

Creation or re-parameterization of potentials to describe phonons and thermal 

transport in semiconductor and insulator systems was a largely attempted by trial and error, 

and still yielded inaccurate phonon and thermal property prediction 76,78,79,81. Broido et. al 

even abandoned the use of analytical potentials in favor of using the Boltzmann transport 

equation (BTE), which is similar in concept to kinetic theory, to calculate thermal 

conductivity directly from first principles. Here they used LD, where the 2nd order force 

constants were determined directly from density functional theory (DFT) 34, and they used 

3rd order force constants as inputs to Fermi’s golden rule, to determine the phonon-phonon 

scattering rates 34. This breakthrough approach requires no adjustable parameters and 

exhibits excellent agreement with experiments and can be predictive 34. However, it is not 

a complete solution to the problem, because it is restricted to describing crystals, since it 

still relies on the validity of the PGM. Thus, there has still been significant interest in using 

MD to study phonons more generally, which then requires parameterization of analytical 

functional forms to reach the length and time scales needed. In this sense, the process 

associated with parameterizing analytical potentials has been considered a daunting task 

within the phonon transport community 34,56. Although a few authors made attempts at 

parameterizing potentials purely for the study of phonons and accurate thermal transport 

properties, these attempts still resulted in inaccurate thermal property predictions 81,82. 

Some of the earliest work on parameterizing potentials with phonon properties in mind 

included a series of studies starting in 2006 by Powell, in where he optimized the Tersoff 
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potential to reproduce experimental mechanical properties and phonon frequencies in 

group III-IV semiconductors 83. 

Powell noted that the Tersoff functional form was unable to simultaneously 

reproduce elastic constants and phonon properties 83. The following few years saw an 

increase in the number of attempted parameterizations using Tersoff by Powell, but 

experimental phonon fitting targets only included frequencies at a few points of the 

Brillouin zone 80. Work in this area continued to progress until 2012 when Powell 

attempted the creation of an entirely new functional form in order to properly describe 

phonon frequencies, but his new potential was still not guaranteed to accurately predict 

phonon transport properties since he was more concerned with elastic properties 84,85. 

Parameterization against experimental quantities, as performed by Powell and many others, 

still had not seemed to produce potentials guaranteed to accurately predict thermal 

transport 84.  

In 1994, Ercolessi introduced the concept of parameterizing potentials to reproduce 

quantum mechanical quantities such as forces 86. This sparked a surge in re-parameterizing 

potentials to match quantum mechanical data instead of experiments, in attempts to 

computationally scale up the expensive quantum mechanical, or ab initio, results to 

computationally cheaper analytical potentials 82,87,88. This was a powerful realization, 

because it suggested that empirically parameterized potentials that were fit to ab initio 

inputs, could one day offer predictive capability. Success in fitting to quantum mechanical 

quantities such as energies were seen with metals using the embedded-atom method, which 

is based on a physical rationalization of the overlapping electron density in metals 88,89. 

Attempts to fit analytical potentials such as Tersoff to ab initio quantities in covalent solids, 
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where phonon transport is a dominant mode of heat transfer, however, remained 

unsuccessful; the potentials that were fit to ab initio data still possessed inaccurate phonon 

and thermal properties 82,90. While work in this area for covalent solids is slim, Umeno et. 

al. for example attempted to re-parameterize the original Stillinger-Weber potential for 

silicon-silica systems by only modifying a few of the original parameters to reproduce 

quantum mechanical forces; the resulting phonon and thermal properties, however, still 

exhibited poor agreement with experiments 82. 

Much of the inability to reproduce quantum mechanical forces in previous studies 

could have presumably lay in the fact that the search space for the parameters of the 

potentials was largely constrained to reside near the original parameter sets, which were 

parameterized against experiments 91. Many authors would impose these constraints due to 

lack of a robust fitting algorithm to easily perform such multi-objective and highly multi-

dimensional optimizations, along with attempts to maintain the stability of existing 

potentials, while still helping them reproduce quantum mechanical data 82,91. These 

difficulties in parameterizing potentials, along with the lack of work to optimize potentials 

specifically for the study of phonons and thermal transport, have led to a lack of potentials 

that accurately predict phonon properties 56. This lack of potentials is one of the biggest 

roadblocks hindering progress in the field of thermal property prediction, as there are now 

methods such as GK 52, GKMA 35 and ICMA 54 that allow for general prediction of bulk 

properties from atomistic dynamical quantities, and there are methods to perform fast MD 

by efficiently integrating the equations of motion 92, but there are no methods that aid in 

the creation of potentials for the study of phonon properties 56. Since potentials are at the 

heart of a MD simulation and are the most important input, the lack of potentials for 
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studying phonons translates to an inability to study many different systems 56,57. This 

results in a gap between theoretical understanding and experimental confirmation, since 

the lack of potentials prevents the usage of MD to study many of the systems that are of 

interest experimentally 93,94. 

1.4.2 Bridging the Theoretical-Experimental Gap 

Many experimental methods provide ways to measure thermal transport properties 

without restrictions or constraints associated with the underlying chemistry i.e., measuring 

pure crystals 94, interfaces 95, amorphous materials 96, alloys and polymers 97,98 are all 

possible with the same techniques. MD simulations, applicable to any material or phase of 

matter, also provide a general method to study and predict thermal transport in such 

systems 99. Furthermore, MD simulations and modal analysis provide more insight into the 

underlying dynamics and vibrational modes giving rise to thermal properties 35. Theoretical 

pursuits, namely MD simulations and modal analysis, can therefore aid in experimental 

research by providing a deeper and more detailed level of understanding, since most 

experimental techniques only yield the overall transport property and provide no insight 

into the comprising contributions associated with different phonons. Contrarily, 

experiments can aid in theoretical research by providing a plethora of observed phenomena 

to further develop and confirm the predictions of theoretical models 100-102. This 

collaboration between theory and experiment aids progress in our overall understanding of 

the underlying physics 103. Currently, however, the number of systems studied and 

published experimentally greatly outweighs the number of appropriately corresponding 

systems studied theoretically via classical MD simulations 103. For the past few decades, 

experimentalists have developed methods to measure thermal transport in systems ranging 



 16 

from pure simple crystals to disordered materials and interfaces 95,96,104. Yet, there has not 

been a corresponding increase in the study of these systems using MD simulations, and the 

use of MD simulations to study whatever systems potentials do exist for, including pure 

simple crystals, are often inaccurate 56,57,76,105,106. This is due to the lack of interatomic 

potentials that allow for accurate MD simulations and thermal property prediction 107. As 

a result, it has been generally recognized that the creation of a method to help in the 

seemingly daunting process of potential creation and parameterization would enable the 

community to close the gap between theory and experiment.  

The creation of potentials, specifically for the study of phonons, has not been an 

explicit subject of research and has eluded researchers in theoretical phonon transport for 

many years 76,81. While a few attempts have been made by Lindsay 81, Umeno 82, and 

mainly Powell 80,83,85 to create or optimize potentials that accurately predict phonon 

properties, they have still resulted in inaccurate descriptions. Furthermore, these existing 

studies did not thoroughly investigate how to create or parameterize potentials that 

accurately predict phonon properties, or what is involved in such a process. Optimizing 

potentials for phonon properties therefore invites many unanswered questions, several of 

which are the subject of the remainder of this thesis. 

1.5 Questions and Hypotheses 

Since lattice thermal conductivity and thermal transport depends on the motions and 

vibrations of atoms, the goal is to obtain potentials that accurately capture the thermal 

motion of atoms so that accurate phonon properties can be calculated using these motions. 

The lack of existing work towards this goal leads to a fundamental question (Question 1); 
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namely, how does one create (i.e., optimize or parameterize) a potential that will accurately 

predict phonon properties and thermal transport? More specifically, what quantities should 

the potential be optimized to reproduce by varying the fitting parameters? It is not desirable 

to only fit to phonon dispersion curves, since this is not general; phonon dispersions are 

only well-defined for pure crystals 26. We also cannot directly fit to thermal conductivity 

values, since thermal conductivity is not unique. Thermal conductivity represents a 

summation of many individual phonon level properties/interactions that can be represented 

in many different ways, yet can still yield the same overall thermal conductivity 56. 

Additionally, full calculations of thermal conductivity are computationally expensive and 

might be impractical to use in an objective function for optimization. Thus, more general 

and easily calculable quantities are desired for the optimization process. 

Atomic vibrational motion, in part, depends on the stiffness of the interactions 108. 

The stiffness between interacting bodies is described by how the forces change with respect 

to displacements of the bodies 108. It is therefore hypothesized (Hypothesis 1) that a 

potential which accurately reproduces interatomic forces, calculated via quantum 

mechanics, will accurately capture phonon and thermal transport properties by possessing 

accurate vibrational motions that give rise to such properties. Specifically, fitting only to 

forces should be sufficient in obtaining a potential that accurately predicts phonon and 

thermal properties. This hypothesis is supported by MD trajectories being dictated by 

forces, which also dictate the GK thermal conductivity 52. More quantitatively, it is 

hypothesized for this reason that the error in forces for a potential is likely to directly 

translate to an associated level of error in thermal conductivity. For example, a 10% error 

in forces might lead to roughly a 10% error in thermal conductivity. Accurate forces are 
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attainable as fitting targets via quantum mechanical methods, which solve for the electronic 

structure of a group of atoms, from which forces are calculated. A powerful quantum 

mechanical method for solids is DFT, which offers excellent predictive power when 

calculating the energetics, forces and dynamics from first-principles (i.e., the Schrödinger 

equation) 109. To prove or disprove Hypothesis 1 of fitting to forces, DFT will therefore be 

used in this thesis to obtain the forces to optimize potentials against.  

This raises another question (Question 2); how closely can quantum mechanical 

forces and vibrational properties such as phonon frequencies be matched when using 

traditional potentials for solids (e.g., Tersoff, Stillinger-Weber, Morse, etc.)? It is not 

known how well quantum mechanical forces can be captured using relatively simple 

analytical functional forms. Previous work in this area, especially for covalent solids, 

involved only slight changes to the traditional parameter sets of these potentials without 

fully exploring the parameter search space 91. It is hypothesized (Hypothesis 2), that for 

small displacements around equilibrium positions, the percent error in quantum mechanical 

forces using traditional functional forms for semiconductors (Tersoff and Stillinger-

Weber) can reach below 10% if the parameter search space is searched thoroughly enough. 

Hypothesis 2 is supported by existing force-fitting work with simple metals, in which 

embedded atom potentials reached a 20% force error after thorough fitting to phase 

transition configurations 110. Furthermore, traditional potentials for semiconductors should 

be able to resolve small forces about equilibrium atomic positions since these traditional 

potentials were used to study seemingly more complex tasks such as bulk elasticity and 

fracture 111, defect formation 112, liquid flow 113,114, and chemical reactions 114. Atoms in 

these situations move much further from their equilibrium positions than the mean squared 
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displacements associated with thermal motions giving rise to thermal transport properties 

26. Due to this excess flexibility of traditional functional forms, one could say that 

traditional forms are “overdesigned” for the study of phonons. For this reason, it is 

hypothesized that the functional forms carry more than enough complexity than what is 

needed to simply describe vibrations around equilibrium. Thus, it is suspected that 

parameters exist that should be able to reduce the force error to within 10%, if the search 

space is probed in a sufficiently diverse way. Some traditional potentials result in accurate 

thermal property prediction, but these potentials were not designed for this purpose; it is a 

matter of luck that a potential will accurately predict a property when it has been optimized 

for another purpose 51. Such traditional potentials can still possess large errors with respect 

to quantum mechanical forces 57. Hypotheses 1 and 2, if correct, together state that 

traditional functional forms for solids (e.g., Tersoff, Stillinger-Weber, Morse, Coulomb, 

etc.) will accurately predict phonon properties if optimized for such a purpose (i.e., 

parameterized against forces).  

Traditionally, potential parameters were thought to possess some physical meaning 

and authors always publish a single best parameter set that describes their phenomena of 

interest 58,66,71,72,112. Since these traditional functional forms were not designed for the study 

of phonons, however, many of their parameters may not possess any relevant physical 

meaning for phonons. This raises a question (Question 3); will parameters that accurately 

predict phonon and thermal properties be obtained if we do not infer any physical meaning 

to the parameters of a potential, and just perform brute force multi-objective fitting in a 

large region of the parameter search space? Due to the overdesign of traditional potentials 

for the atomic phase space of thermal vibrations it is hypothesized (Hypothesis 3) that 
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many parameter sets exist to describe thermal phenomena; these parameter sets may not be 

physically meaningful and may be obtained via brute-force fitting, without spending 

unnecessary time to deduce individual parameter values based on physical or chemical 

insight. This is a major shift in thinking with how researchers traditionally obtain 

parameters; it has been customary to analytically or experimentally deduce the values of 

each parameter, or based on physical or chemical intuition 51,58,66. While the concept of 

overdesign should result in enough flexibility for the study of phonons using traditional 

potentials, one known limitation of traditional potentials for studying phonons in 

semiconductors is the exclusion of long-range interactions 58,66. 

Phonon frequencies have been shown to depend on long-range interatomic 

interactions, so excluding them results in inaccurate frequency prediction 115,116.  Brillouin 

zones, or primitive cells in reciprocal space, serve as spaces to calculate phonon 

frequencies and plot them as a function of directions in reciprocal space via phonon 

dispersion curves 117. The phonon frequencies near the edges of Brillouin zone boundaries 

are associated with long-range interatomic interactions, so phonon frequencies in these 

regions cannot be accurately predicted using traditional short-range potentials that only 

include nearest neighbors 115,116. Many semiconductor and insulating materials possess 

face-centered cubic or diamond structured Brillouin zones, shown in Figure 1. 
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The X and L  points in Figure 1, for example, show regions of the Brillouin zone with 

inaccurate phonon frequency calculations according to traditional short-range potentials 

for covalent solids (e.g., Tersoff58 and Stillinger-Weber66) 118. This raises another important 

question (Question 4); will the addition of traditional long-range potentials (e.g., Coulomb, 

Buckingham, van der Waals interactions) allow accurate phonon frequency prediction for 

the entire Brillouin zone if these potentials are parameterized to match long-range 

interatomic forces? Traditional long-range potentials, like their short-range counterparts, 

have also been successfully used in the past to study larger and more complex regions of 

phase space, including phase transitions119 such as melting120. The overdesign principle 

should therefore also apply to traditional long-range potentials, thus allowing for the 

resolution of phonon frequencies at Brillouin zone boundaries. It is therefore hypothesized 

(Hypothesis 4) that the addition of traditional long-range interactions (e.g., Coulomb, 

Buckingham, van der Waals interactions) will alleviate the known issue of capturing 

Figure 1 – Brillouin zone for a diamond lattice, residing in reciprocal space with reciprocal 

coordinates  
zyx qqq ,, . The capital letters are symmetry points of the Brillouin zone, with 

the   point residing at the center of the Brillouin zone. The points at the edge of the 

boundaries are X  and L , which are also symmetric (identical) for all edges. 
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phonon frequencies at the Brillouin zone boundaries. Answering these questions and 

testing the hypotheses involves a variety of tasks that pose major challenges in potential 

optimization. It therefore important to highlight the main challenges which hinder 

investigation of the proposed questions and hypotheses, to better understand the tools that 

must be developed to begin addressing such problems. 

1.6 Challenges  

Aside from the fact that the proposed questions are unanswered, therefore rendering 

the production of potentials for phonon properties as uncharted scientific territory, 

optimizing potentials is also a time-consuming and daunting procedure in general 86,121-123. 

No convenient tools exist to simplify this task. Although some authors began attempts at 

tools to easily create potentials 124, such tools lack desirable features as: (1) generality 

across any potential or fitting target that would aid in answering Question 1, (2) speed 

which would allow for more efficient investigation, and (3) a user-interface to conveniently 

change optimization settings, thus further aiding in potential fitting experiments. Aside 

from plaguing the general scientific community that uses MD 86,119,120, these challenges 

limit the tractable investigation of the proposed questions and hypotheses since answering 

the proposed questions involves experimenting with different functional forms and fitting 

quantities, along with thoroughly searching the parameter space for solutions that describe 

quantum mechanical forces and phonon properties well. Question 1, for example, involves 

identification of which fitting quantities are necessary to produce a potential that accurately 

describes phonons. The general applicability of a fitting method to a variety of reference 

quantities is therefore of utmost importance. The generality must extend to the use of 

different potentials as well, to answer Question 2 regarding how well analytical potentials 
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can reproduce quantum mechanical quantities and phonon properties. Further flexibility in 

the ability to parameterize a variety of potentials is needed, since Question 3 involves the 

need to thoroughly search the parameter search space, and answering Question 4 involves 

the addition of long-range potentials. Aside from optimization generality, lack of speed 

and a convenient user-interface to change optimization settings limit the ability to answer 

these questions by hindering the amount of potential fitting experiments that can be done 

in a reasonable amount of time. Answering Question 3 requires effective scanning of many 

parameters in the parameter search space to confirm the possible existence of many 

parameter sets that describe phonon properties, which again is limited by these known 

challenges. A prerequisite task for answering the proposed questions is therefore to develop 

a tool, a computer program, which alleviates these existing challenges in potential 

optimization. Such a tool will allow for the tractable investigation of the proposed 

questions and hypotheses, as well as aid the general scientific community that uses MD, in 

their efforts to develop interatomic potentials. 

Chapter 1 has introduced the problem of developing potentials for phonon properties, 

along with the necessary prerequisites to address the problem. The remainder of this thesis 

will cover my approach to solving the problem of a lack of potentials, along with answering 

the proposed questions and hypotheses. Chapter 2 covers interatomic potential modelling 

and optimization, as well as introducing the fitting problem and methods used to 

accomplish the fitting. Chapter 3 covers the methods used in this thesis to predict phonon 

properties, and will also serve as a basis for the theory which is used to develop phonon 

optimized potentials (POPs). Chapter 4 combines the material of Chapters 2 and 3 to 

introduce the procedure of developing POPs. The powerful open-source program POPs is 
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also introduced in Chapter 4, which alleviates the challenges in potential optimization 

highlighted in Chapter 1. Chapter 5 covers applications to some simple systems, and 

Chapter 6 discusses limitations of the current method as well as attempted solutions. 

Chapter 7 concludes the thesis and discusses future work needed to overcome the 

remaining challenges. Challenges arise in investigating and answering the proposed 

questions and hypotheses due to the lack of tools that aid in the convenient optimization of 

potentials; it is therefore a secondary goal of this thesis to create a tool, or computer 

program, that alleviates these known issues. Such a tool will aid in the investigation of the 

proposed questions and hypotheses by providing a tractable method to quickly 

parameterize a variety of potentials to a variety of fitting targets. To begin at accomplishing 

such a task, and investigating the questions and hypotheses raised, a more thorough 

discussion on interatomic potential modelling and optimization is first needed.  
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 INTERATOMIC POTENTIALS 

The mathematical and analytical approximation of interatomic interactions i.e., the 

interatomic potential, forms the foundation of classical MD simulations. This chapter 

further covers the basics of potentials and how they are optimized, to offer a better 

understanding of the proposed questions and hypotheses.  

2.1 Introduction to Interatomic Potentials 

Analytical potentials seek a relation between an atom’s environment and its potential 

energy 51. Specifically, this should be a closed-form analytical relation so that the exact 

spatial gradient may be performed when calculating the force in MD simulations via 

Equation 3. An example of an atomic environment is shown in Figure 2, where the circles 

represent atoms. The red atom in Figure 2, for example, possesses a potential energy that 

depends on the positions of all the atoms in its environment. All atoms within some cutoff 

radius cr  of the atom under consideration make up the atomic environment, which is 

termed a neighbor list inside a typical MD program. Positions of atoms in the atomic 

environment, or the environmental geometry, dictate the potential energy of an atom. 

Traditional analytical potentials assume that the total potential energy can be expanded into 

contributions from single atoms, 2-body interactions, 3-body interactions, and so forth, 

represented by Equation 6 51 
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where )( iiU R  is the self-interaction potential energy of atom i , as a function of its position 

vector iR , ),( jiijU RR  is the 2-body interaction potential between atoms i  and j , as a 

function of the positions iR  and jR  of atoms i  and j , and similarly for higher order 

interactions. For a single atom i , the interactions between other atoms for the higher-order 

terms in Equation 6 must be truncated to some cutoff cr  to restrict enormous amounts of 

atoms from entering the neighbor list, thus rendering the potential calculation more 

expensive. The higher-order terms in Equation 6 sum over all atoms in the neighbor list of 

each atom i . For a given atom i , the self-energy of the first term in Equation 6 would only 

include contributions from itself. The 2-body energy of atom i  would include contributions 

from all pairs of atom i  and atoms j  in its neighbor list. The 3-body energy of atom i  

would include all the triplets of atoms i , j , and k  atoms in the neighbor list of atom i , 

and so forth. Interatomic potentials are simply functional forms that give potential energy 

Figure 2 – Representation of an atomic environment. The environment, or neighbor list, 

of the red atom includes all atoms within some cutoff distance. 
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in terms of these N -body interactions. Analytical potentials, according to the expansion 

in Equation 6, cast the environmental geometry of any atom i  into a specific function of 

the positions of all atoms in the environment (the neighbor list), along with fitting 

parameters to tailor it to a specific set of atomic species. A general form of such potentials, 

for a single atom i , is given by Equation 7 

 λR,ii UU   (7) 

where iU  is the potential energy of atom i , R  are all the positions of all atoms in the 

environment of atom i , and λ  are a set of fitting parameters. This form of potential energy, 

in which the energy can be written for each atom, is also required in Hardy’s heat flux 

operator of Equation 4 where per-atom energies are assumed to be definable 50. The total 

potential energy for the system now results as a sum of per-atom contributions, which is 

the potential energy we take the spatial derivative of to calculate forces on atoms in 

Equation 3. While the potential energy represented by analytical interatomic potentials are 

functions of atomic positions, plain Cartesian coordinates of atoms are poor candidates for 

the description of environmental geometry 51. Aside from the fact the plain Cartesian 

coordinates by themselves do not offer unique information into the geometry of a group of 

atoms, their values change under mathematical operations such as translation and rotation. 

In other words, Cartesian coordinates by themselves are not translationally or rotationally 

invariant 125. Invariance, or symmetry, describes a property of a system that is unchanged 

under a mathematical transformation 126. Such transformations apply to all positions of all 

atoms in a system. An important theorem in classical mechanics called Noether’s theorem 

states that for every invariance in a system, there is a corresponding conservation law 126. 
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Translational and rotational invariance are intuitive necessities, since simple translation or 

rotation of an atomic system (e.g., a crystal) will not change the interatomic interactions, 

or bulk properties of the material, in the absence of external fields 125. It is therefore 

necessary to cast the positions of atoms into invariant mathematical descriptions, or 

geometric descriptors, of the atomic environment. 

2.2 Geometric Descriptors 

Geometric descriptors are transformations of atomic coordinates into quantities that 

can be more easily used in a mathematical potential model 125. More importantly, these 

transformations cast the environmental geometries from plain Cartesian coordinates into 

invariant descriptions of geometry. For example, a potential possessing simple translational 

invariance defined by Equation 8 

   CUU  RR  (8) 

involves the addition of a constant number C  to the positions of all atoms R . Such a 

potential, possessing translational invariance, would result in dynamics that conserve 

translational or linear momentum 126. Another important invariance for interatomic 

potentials, rotational invariance, denotes an unchanging potential energy when rotating the 

system; rotational invariance ensures conservation of angular momentum 125. These 

invariances, translational and rotational, are especially important in classical MD 

simulations since all modes of vibrations, including translational modes, can be excited; 

the translational modes should therefore conserve energy for stable dynamics (i.e., no 

unphysical increases in total energy) to be realized. Invariant descriptions of the geometry 
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of a group of atoms therefore results in potentials that conserve linear and angular 

momentum, thus resulting in stable MD simulations. The most traditionally used geometric 

descriptor for interatomic potentials, dating to early works of Lennard-Jones62 and Morse61, 

is the simple pairwise distance between two atoms ijr . This distance does not change when 

a system of two atoms is translated, and therefore the potential energy of the system is also 

unchanged; likewise, for rotation. The advent of potentials for covalently bonded solids 

resulted in potentials with 3-body descriptors including angles between triplets of atoms; 

these angles are also unchanged under total system transformations such as translation and 

rotation. Illustrations of these commonly used and traditional descriptors are shown in 

Figure 3.  

 

 

 

 

Central potentials utilizing the pairwise distance between atoms i  and j , ijr , have 

traditionally been and still are the most common. Traditionally used descriptors for 

semiconductors and insulators, where phonon transport dominates heat conduction, also 

included the angular descriptor ijk  between triplets of atoms. These are the only two 

Figure 3 – Traditionally used geometric descriptors. Simple examples are (a) the pairwise 

distance between pairs of atoms and (b) angles between triplets of atoms. 
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geometric descriptors, represented in Figure 3, that are employed in the traditionally used 

semiconductor potentials (e.g., Tersoff and Stillinger-Weber) involved in Question 3 of 

whether traditional potentials for such materials will accurately predict phonon properties 

if parameterized for such properties. These geometric descriptors were used by traditional 

potentials to describe seemingly more complex phenomena per the concept of overdesign, 

and should therefore possess the necessary flexibility to describe thermal transport. The 

traditional long-range potentials (e.g., Coulomb and Buckingham) involved in Question 4 

of whether the addition of long-range potentials will more accurately predict phonon 

frequencies, only incorporate the 2-body radial geometric descriptor ijr . Hypothesis 4, 

stating that traditional long-range potentials can accurately reproduce phonon frequencies 

at the Brillouin zone boundaries, therefore assumes that the radial geometric descriptor is 

sufficient for describing such phenomena in diamond structured semiconductors. More 

modern geometric descriptors exist to bring more flexibility in describing interatomic 

interactions, namely with the recent machine learned interatomic potentials 125. These more 

modern potentials utilize geometric descriptors with more flexibility in describing the 

atomic environment compared to simple distances and angles, but are orders of magnitude 

more expensive in computation 127; the original questions and hypotheses, however, deal 

with traditionally used potentials containing desirable computational speed. While 

different geometric descriptors provide different flexibilities in describing atomic 

environments, the parameters of the potential ensure that proper energetics in those 

environments are accurately calculated. Consideration of some common traditional 

potentials will show how these parameters arise, and where they reside in an analytical 

functional form in relation to the geometric descriptors. 
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2.3 Example Potentials 

One of the most commonly used potentials in physics and MD simulations is the 

Coulomb potential, representing the interaction between charged bodies or atoms i  and j  

128. The traditional Coulomb potential, serving as a model example potential, is given by 

Equation 9 
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where we see the traditional radial descriptor ijr , along with some other parameters that 

represent the charges i  and j  of atoms i  and j  , along with physical constants 1  and 

2 . This potential includes the radial descriptor in the denominator, thus stating that the 

interaction decays with increasing interatomic distance. The sign of the charges can 

influence the Coulomb potential to be either positive or negative, thus denoting either a 

repulsive or attractive interaction. Another traditional example is the Morse potential made 

for anharmonic bonding, given by Equation 10  

  2321 )(exp1)(   ijij rrU  (10) 

where we again see a radial geometric descriptor ijr , along with three fitting parameters in 

the set λ . Another common example, incorporating traditional van der Waals interactions 

that decay as the inverse 6th power of the interatomic distance 129, is the Born potential 130 

given by Equation  
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which again utilizes the same radial geometric descriptor 
ijr  along with some fitting 

parameters. These example traditional radial potentials, often used for long-range 

interactions, all possess a similar shape when plotted as a function of interatomic distance 

ijr  for a pair interaction. This shape is shown in Figure 4, noting the combination and 

repulsive and attractive interactions which combine to form a minimum energy equilibrium 

region in which the atoms vibrate about. 

 

 

 

 

 Representations of a potential in terms of geometric descriptors such as in Figure 4 

is referred to as a potential energy surface (PES), which becomes a hyper dimensional 

surface when more than two atoms are involved 131. The PES, while difficult to visualize 

for a system of many atoms, is an important concept when referring to the behavior of an 

analytical potential in terms of its geometric descriptors 131. For many potentials and 

Figure 4 – Potential energy surface (PES) of traditional 2-body potentials as a function of 

the radial geometric descriptor. Attractive forces bring atoms together at larger separations, 

and repulsive forces keep atoms from touching each other. 
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interactions, however, the PES is better understood in terms of more complex descriptors 

than simple pairwise distances. An example of a simple potential utilizing the angular 

geometric descriptor 
ijk  is given by Equation 12 

 2
21)(   ijkijkU  (12) 

where the fitting parameters 1  and 2  determine the shape of the PES in terms of the 3-

body angular descriptor. This harmonic 3-body potential forms a PES that is parabolic 

about some equilibrium angle 2 , and the parameter 1  influences the shape of the 

parabola (i.e., strength of the 3-body interaction). Variations of the 3-body potential in 

Equation 12 appear in more complex potentials used to describe covalent bonding in 

semiconductors and insulators, such as Tersoff72 and Stillinger-Weber66. The functional 

forms of Tersoff and Stillinger-Weber contain up to 18 fitting parameters 112, but they are 

simply analytical functions of atomic positions, particularly geometric descriptors of 

positions, and some fitting parameters.  

Hundreds of functional forms exist today 132, with varying analytical forms, and 

different representations of atomic geometry, offer varying degrees of flexibility to 

describe various regions of the PES. The fitting parameters, however, ensure that the PES 

can be properly described in terms of whatever quantity the potential is fit to. It is therefore 

worthwhile, especially to better understand what is involved in investigating the proposed 

questions and hypotheses in Chapter 1, to more deeply consider the parameterization 

problem associated with fitting potentials to target quantities. 

2.4  Optimization 
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The process of parameterizing interatomic potentials greatly eludes many researchers 

in computational materials science, especially those studying phonons. This is evident by 

the plethora of studies which state the difficulties and uncertainties associated with 

parameterizing potentials for phonon properties 74,76,78,80,84,91,133,134. For the few researchers 

who do attempt their own optimizations, they usually start with pre-existing parameter sets 

that were designed for purposes other than the application they are studying 85,91,135. This 

results in parameter sets that are presumably nowhere near as optimized as they could be 

for a certain task, since the parameter search space is not often well-searched. The reason 

for the lack of successful parameterizations of a variety of functional forms lies in the lack 

of tools necessary to perform such daunting optimizations. To better explain this problem, 

it is important to consider the optimization problem more in depth. 

Interatomic potential optimization refers to the process of minimization the errors 

between quantities calculated with the potential and reference quantities. This optimization 

problem is represented mathematically via Equation 13 

))((minarg λ
λ

Z  (13) 

for some error )(λZ , or objective function, between potential quantities and target 

quantities, and this error is a function of the parameter set λ  of the potential (e.g., the three 

parameters of the Morse potential in Equation 10). The minarg  operator means that the 

arguments λ  are sought that minimize the objective function )(λZ , thus representing a 

general parameterization problem. The objective function )(λZ  between reference 

quantities and target quantities can take the form of any error metric (e.g., standard 
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deviation, etc.). A commonly used and simple objective function, to illustrate an example, 

is the sum of squared errors between potential quantities  λiq  and reference target 

quantities 0

iq  121 

   
N

i

ii qqZ
20)( λλ  (14) 

where the index i  runs over all N  quantities being fit to, or fitting targets. It is important 

to note that the potential calculated quantities,  λiq , are also functions of the potential 

parameters since these quantities are calculated by the potential. The quantities included in 

the error )(λZ  can therefore be anything that is calculable by the potential, and that a 

reference exists for (e.g., experiments or ab initio data). Optimizing the parameters λ  can 

be a large multi-dimensional optimization problem, with many functional forms possessing 

dozens of parameters 51. This optimization problem was traditionally simplified by 

attempting to experimentally or analytically deduce the values of most parameters 58,132, 

and many authors would publish a single best set of parameters that describes their 

phenomena of interest 72,83,132. Authors such as Powell would also incorporate local 

minimization methods starting from regions in the parameter search space near the 

originally published Tersoff values 85. This thesis, however, adopts a new philosophy per 

Hypothesis 3.  

Investigation of Hypothesis 3 requires an optimization method capable of searching 

a large multi-dimensional search space, to obtain many different sets of parameters. Such 

optimization tools lie within the realm of global optimization, and differ from traditionally 
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used potential fitting methods of gradient-based local minimization 81,83-85,91. This will aid 

in the investigation of other questions and hypotheses by allowing the same algorithm, or 

program, to be applied when experimenting with different potentials and fitting quantities. 

Such algorithms fall under the umbrella of optimization methods known as metaheuristics; 

these algorithms do not require any information about the gradient of the objective function 

since they depend on stochastic optimization processes 136. Guided random sampling of the 

parameter search space also renders metaheuristics as excellent candidates for exhaustive 

searches, especially compared to gradient-based or numerical optimization techniques 137. 

Metaheuristics are therefore excellent candidates of an algorithm choice to investigate the 

proposed questions and hypotheses by being applicable to any potential or fitting quantity, 

and will aid in the exhaustive searching required to obtain multiple parameter sets. Their 

strength as exhaustive multidimensional search algorithms 137 also render metaheuristics 

as excellent tools to explore the parameter search spaces in testing how well traditional 

analytical functional forms can reproduce quantum mechanical fitting targets (Question 2), 

the viability of traditional potentials for phonons (Question 3) and the viability of long-

range interactions of phonons (Question 4). While many optimization methods fall under 

the category of metaheuristics, a powerful class of metaheuristic methods in artificial 

intelligence belong to evolutionary optimization 138.  

Evolutionary optimization refers to a class of bio-inspired algorithms that mimic 

Darwin’s theory of natural selection 138,139. These algorithms are best understood by 

considering the evolutionary phenomena from which they are derived. Populations of 

organisms may undergo biological or physical changes over many generations of 

reproduction, these changes result in characteristics that aid the organism in its 
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environment 139. These changes arise in natural selection since only biologically fit 

individuals will survive to pass on their genes, thus modifying the gene pool an physical 

characteristics of organisms over many generations 139. The evolutionary process can be 

thought of as a powerful optimization tool, and vocabulary used in biology aids in its 

understanding as an optimization method 138; the population of individuals refers to a 

collection of all parameter sets, the parameter sets themselves are the genes of each 

individual, and the biological fitness is the objective function value. Populations of 

organisms (individuals), over generations of reproduction, can be thought of as optimizing 

their genes (i.e., a long parameter set of four base pairs for biological DNA 140) to minimize 

or maximize some fitness metric, or objective function. By analogy, Giraffes for example, 

have minimized the distance between their heads and the trees from which they eat, thus 

resulting in relatively long necks compared to other animals 141. In this case, giraffes with 

long necks possess genes (parameters) that minimize some objective function (the distance 

between their head and a tree). A more complex example, discovered by Darwin himself, 

involved the optimization of finch beak shapes in the Galapagos islands to better access 

their unique food sources on each island 139. Evolutionary optimization algorithms are often 

incorporated to apply this process to non-biological problems in science and engineering 

142. Instead of minimizing the distance between a giraffe head and a tree, for example, this 

thesis aims to minimize the distance between endpoints of quantum mechanical force 

vectors and a potential calculated force vectors. This sort of generality is a main strength 

of evolutionary optimization and metaheuristics, since all they require is a metric to 

minimize without any regard to the mathematical form of the metric, unlike gradient-based 

optimization methods 142. Accomplishing this task first involves representing sets of 
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parameters as artificial genes, so that operations can be performed on these genes that 

mimic the evolutionary process. The genetic algorithm is a commonly used tool to perform 

optimization operations on artificial genes, or genetic representations of parameters 143.  

2.4.1 Genetic Algorithm 

One powerful algorithm that mimics the evolutionary process is the genetic 

algorithm (GA), which performs operations on artificial genes to simulate the natural 

selection process 138; these operations mimic the genetic process of mating and 

reproduction. Central to the GA, therefore, is the genetic representation of fitting 

parameters. Biological genes, or DNA, store information in four-valued base pairs, which 

offers the astounding variability seen in all life on Earth 140. A simpler representation, 

commonly employed in GAs, involves using genes with two base pairs, namely zeros and 

ones (i.e., binary) 143. Simple artificial genes can therefore be thought of as binary strings 

of data, from which genetic operations can be performed on. Understanding how fitting 

parameters are represented as binary strings, especially in the case of potentials, is 

paramount in showing how the GA can be applied to the potential optimization process. 

All the parameters in a potential need to be cast into some binary representation to perform 

bitwise genetic operations, and then the concatenation of these binary sequences represents 

a single individual of the population. Each parameter i  requires a minimum and 

maximum interval, min and max  respectively, for which the GA will search in. The 

representation of a parameter value can be converted back and forth between binary and 

its decimal representation via Equation 15 144 
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minmax

12



 




 d

L
 (15) 

where L  is the length of the binary string and d  is the integer decimal value of the binary 

number. As a simple example, consider a parameter with a encoded by the binary string 

“1010” in which the intervals  0.1min   and 0.2max  . To solve for the actual decimal 

value of the parameter, which would be input to the potential, note that the length 4L  

and the binary string has an integer value 10d . Here, d  is equivalent to 10 by taking the 

zeros and ones in the binary strings to be the coefficients of increasing powers of two, 

namely )81()40()21()10(2120212010 3210  . Substituting 

these values into Equation 15 yields 
3

5110
15

1
 , which is indeed a value between 

the minimum and maximum intervals 0.1min   and 0.2max  . This process of encoding 

parameters as binary strings occurs for every fitting parameter in the potential. Considering 

the Morse potential of Equation 10, for example, the GA begins by randomizing a 

population of individuals with random parameter values and utilizing Equation 15 to 

convert the values to binary string representations.  

 

 

 

Figure 5 – Example representation of parameters into binary strings of length 4L  for a 

Morse potential. The different colors represent different parameter representations, and the 

concatenated binary string represents a single individual in the population. 



 40 

Figure 5 shows how each parameter in a potential is concatenated into a binary string, and 

the string represents the “genes” of the “individual”, which is a specific set of values for 

the parameters. A single individual in the population therefore simply refers to a binary 

string, which encodes a full set of parameters. The GA initializes the optimization 

procedure by creating a random population of these binary strings, from which random 

fitting parameters are obtained. This artificial gene now makes it easier to perform GA 

operations on, to mimic the reproduction of this individual with other individuals.  

 In each iteration, or “generation”, of the GA, a selection process ensues which 

eliminates individuals containing undesirable objective function values, which depends on 

their genes and the parameters encoded by genes. In the case of potential fitting, smaller 

objective function values are favored for minimizing the error between potential quantities 

and reference quantities. The bottom half of the population, containing the larger objective 

function values, are discarded. The top half, with smaller objective function values, will 

survive and form pairs for mating; their genetic material are combined to produce a 

parameter set that is some mixture of the two parents. This process is known as crossover 

143, and involves randomly splicing the genes of two parents to mix their genes. The 

crossover process is illustrated in Figure 6, continuing from the Morse potential example 

with three parameters of length 4L  strings. 
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In Figure 6, the crossover point for the two parents (red and blue binary strings) occurs at 

the dashed line, and this point is chosen randomly. The first (blue) parent in Figure 6 is the 

same individual shown in the Morse potential example of Figure 5, with three fitting 

parameters represented as length 4L  binary strings, for a total of 12 bits. The parent 

represented by the blue binary string in Figure 6 randomly pairs with the individual 

represented by the red binary string, whom will also contain the same genetic structure 

(i.e., binary string length and parameter interval values) for consistency. Cleaving the 

binary strings and mixing the ends results in the two children shown in Figure 6 which are 

now genetic combinations of the two parents. In this example, only the last parameter (last 

4 binary digits) of the Morse potential are modified. In practice, however, this splicing 

occurs at random points for every individual, thus resulting in offspring that are random 

combinations of one of the two parents. The resulting children now contain mixture of 

genetic material, or parameter values, of their two parents. Crossover occurs for every 

parent pair in the population, thus replacing the unfit individuals discarded in the selection 

process with new children that are mixtures of fit parents. To add further diversity, the 

children randomly experience genetic mutations at random points in their genes. This is 

Figure 6 – Example crossover process. Two parents (blue and red strings) are randomly 

spliced at the dashed line. The genetic material on the right side of the splice are mixed 

and matched to form two new individuals, or offspring. 
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represented in the GA by randomly flipping a binary digit in the children’s binary strings 

from a “1” to a “0” and vice versa. After mutation the generation comes to an end and the 

process is repeated starting with selection again for another generation. This process 

repeats until some sort of convergence is reached; the average objective function value of 

the population can be used as a convergence criterion, or the objective function of the top 

individual may be used.  

 The crossover and mutation processes in the GA are paramount to the success of 

the GA in both exploiting minima and exploring the search space, respectively 145. Since 

crossover involves mixing solutions of fit individuals, and these individuals may reside in 

similar regions of the search space after many generations, crossover aids in exploiting 

local minima 145. Mutation, on the other hand, offers an opportunity for the offspring of 

two parents to jump out of local minima into a better (lower) minima. Exploration of the 

search space is therefore thoroughly achieved via the mutation process, thus heavily aiding 

in global optimization 145. Mutation probability is defined by some user-defined 

probability, or mutation rate. A lower mutation rate results primarily in crossover 

operations, thus resulting in better local optimization or exploitation. A higher mutation 

rate, on the other hand, results in more population diversity, thus resulting in better global 

optimization (or exploration). Too high of a mutation rate (e.g., near 100%) renders the 

GA no better than a random search, and small mutation rates (< 50%) are used in practice 

145. 

 Algorithmically, the GA is summarized as follows: 
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1) Initialization – form a population of N individuals. Individuals represent a 

complete set of parameters that can be used to evaluate the potential. However, in 

a GA they are not represented as real numbers, but instead in binary format, which 

facilitates subsequent manipulation according to the evolutionary process. 

Individuals (e.g., parameter sets) are represented as binary strings, which are termed 

the genotypes and are initialized as random binary strings (random zeros and ones). 

Each genotype is a concatenation of P  “substrings” of length L , and each 

substring represents one of the P  parameters being optimized. 

2) Gene expression – decode the genotypes into phenotypes. Phenotypes are the 

actual observable representation of genotypes in genetics. In this case, the 

phenotypes are a set of real numbers which are the actual parameters being fit. Each 

substring in the binary string (genotype) can be converted to a real number using 

Equation 15. 

3) Assess fitness – calculate the objective function for each individual. Using the 

set of parameters (phenotype) from Step 2, we calculate the objective function 

),...,( 1 PZZ   for each individual. This is where the potential is evaluated to 

calculate quantities that enter the objective function. This step can also be easily 

parallelized since the order of which individuals are evaluated does not matter if a 

list of objective function values is gathered at the end.  

4) Selection – choose the fittest individuals to be parents. In the case of 

minimization, a low Z  value represents a high fitness or a low error with respect 

to the ab initio results being fit to. The individuals are first sorted from lowest to 

highest in terms of their objective function value Z  and then a process known at 
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elitism is performed in which a user-defined percentage of the best individuals are 

chosen to be parents, with 100% chance of surviving until the next generation. The 

rest of the population is chosen at random until the parent population is composed 

of N/2 individuals, where N is the total population size. 

5) Crossover – allows parents to mate. Crossover involves the combination of 

solutions. This is accomplished by randomly selecting two parents and splicing 

their binary strings (genotypes) at a random point, and then mixing the end pieces. 

The resulting combinations are termed children and join the parents in the new 

population of the next generation. Crossover ensures exploitation of the search 

space, meaning that crossover aids more in local minimization than global 

minimization. This is because after many generations, all individuals possess 

similar genotypes since the population converges to a set of genes. Mixing these 

similar solutions results in better exploitation of whatever local minima the GA is 

converging to. 

6) Mutation – randomly change the genotype of the children. Mutation is 

accomplished by choosing a random binary digit in the genotype of the children 

and flipping its value (i.e., a “1” becomes a “0” and vice versa). This process 

happens for every child solution with a user-defined probability known as the 

mutation rate, below 50% in practice 146. Mutation ensures exploration of the search 

space, thus aiding more so in the task of global minimization as opposed to local 

minimization. This is because randomly perturbing the solutions helps the 

algorithm step far away from local minima. If the mutation rate is too high, the GA 
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becomes no better than a random search and will be more difficult to converge to a 

single solution. 

7) Evolve. The algorithm returns to Step 2 and repeats until a user-defined number of 

generations have elapsed. 

The algorithm listed by Steps 1 – 7 is the GA used in this thesis to parameterize potentials. 

It is important to realize that the GA process generally applies to any objective function 

regardless of the unique potentials being parameterized or fitting quantities being fit to. 

This will aid in the answering of Question 1, since it allows for a variety of fitting quantities 

to be tested (i.e., changing the objective function), without spending time changing the 

underlying optimization algorithm. The GA process described in this section applies the 

same operations and rules to any parameter of any fitting problem, and therefore requires 

no extra coding when changing the objective function. This is especially useful when 

attempting to answer Question 1 regarding which quantities to fit the potential to, since no 

modifications to the fitting algorithm arise when testing new fitting quantities as the GA 

requires no knowledge of the form of the objective function, only its value. This provides 

a powerful tool needed to answer the proposed questions and test the hypotheses, since 

different fitting quantities can easily be added and experimented with. Specifically, this 

means that the objective function )(λZ  of Equation 14 could contain any fitting quantity 

without changing the underlying GA used to accomplish the minimization.  

Traditional fitting quantities include experimental values that are calculable with 

analytical potentials, such as lattice parameters, bulk moduli and elastic constants 

58,66,112,121. For phonons, some notable authors, such as Powell, fit directly to experimental 

phonon frequencies at a few points in a Brillouin zone 80. Fitting to experimental quantities 
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is not general, however, since calculation of phonon dispersions and elastic constants must 

be modified for different crystal structures. The availability of such experimental quantities 

is also another limitation, along with the time to obtain them. Pseudopotentials that can be 

used in DFT calculations, however, exist for the majority of elements in the periodic table 

147 and DFT has been shown to calculate interatomic interactions and forces so accurately 

that the vibrational and phonon frequencies resulting from these forces agree almost 

exactly with experimental values. This agreement is quite consistent across many different 

classes of materials and thus the approach of using DFT as a reference for potential 

optimization is ideal and it also enables predictive power 34 109. 109,148 149.  

2.5 Density Functional Theory (DFT) 

DFT is a computational quantum mechanical method that solves for the electronic 

structure of a group of atoms. The system potential energy and forces are dictated by the 

electronic structure, and the electronic structure is dictated by the positions of ions 150. The 

electronic structure, namely the electron density as a function of ionic positions, determines 

the ground-state energy of electrons associated with a group of atoms, along with the forces 

on ions 150-152. DFT codes such as Vienna Ab-initio Simulation Package (VASP)153 and 

Quantum Espresso154 solve for this electronic structure, or density, from which system 

potential energy and forces are obtained. Revolutionary work by Hohenberg and Kohn in 

the 1960s, which lead to their winning the Nobel Prize in Chemistry in 1998  showed that 

the ground-state energy is a unique functional of the electron density, and that the density 

which minimizes the ground-state energy is the true electron density 152. This ground-state 

electron density uniquely determines all properties, such as energies and forces 109. The 
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electron density is therefore the key variable in DFT calculations, and is calculated from 

the individual pseudo electron wavefunctions iψ  via 155 

     rrr i

i

i ψψn  *
 (16) 

where the summation runs over all electrons and both spins of each electron 156. A DFT 

calculation begins by initializing a random electron density  rn  in terms of randomly 

initialized wave-functions iψ . To calculate the electron ground-state energy for 

minimization, which according to Hohenberg and Kohn is a functional  ][ rnE  of the 

electron density, we must incorporate the Schrödinger equation.  

The Schrödinger equation can describe time-dependent electron dynamics in the 

absence of any time-independent assumptions 157. However, their ground-state energy is 

practically time-independent since their mass is three to four orders of magnitude lower 

than the ions, and therefore the ions move much slower than the electrons 158. For this 

reason, the time dependent nature of the pseudo wave functions is usually neglected and 

time-independent Schrödinger equation is given by 
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where the bracketed term on the left includes all contributions to the Hamiltonian,   is a 

set of solutions or eigenstates of the Hamiltonian and E  is the ground-state energy of the 

system that we wish to solve for. The electron mass is given by m ,   is the reduced 
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Planck’s constant, and eN  is the number of electrons in the system. The three terms in the 

bracketed Hamiltonian of Equation 17 define the summed kinetic energy of all electrons i

, the summed interaction energy between each electron and the field of nuclei, and the 

pairwise sum of interaction energies between all pairs of electrons i  and j . Equation 17 is 

an example of a many-body Schrodinger equation, for which analytical solutions are sparse 

159. Kohn and Sham, however, in the 1960s, showed that the many-electron Schrodinger 

equation can be simplified by solving a set of single-electron Schrodinger equations 160. 

The Kohn-Sham equations have the form 

         rrrrr iiiXCHC UUU
m
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2

2
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which are like the full Schrodinger equation in Equation 17, except lack the summation 

over all electrons. The bracketed terms on the left-hand side are the electron kinetic energy, 

the Coulomb interaction  rCU  between the electron and collection of atomic nuclei, the 

Hartree potential  rHU  describing electron repulsion with the single electron and the total 

electron density, and the exchange-correlation potential  rXCU  which includes all effects 

that are not described by the other potentials. The Coulomb interaction  rCU  between the 

single electron and all nuclei is a known term that does not depend on the electron density 

161. The Hartree potential is readily calculated from a volume integral of the electron 

density via 155 
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where e  is the electron charge. The exchange-correlation potential is formally defined as 

a functional derivative of the exchange-correlation energy with respect to the electron 

density as 155 

 
 

 r

r
r

n

E
U XC

XC



  (20) 

where  rXCE  is the exchange-correlation energy, often called the exchange-correlation 

functional. Electronic exchange and correlation are quantum mechanical phenomena 

referring to the effect that is associated with the Pauli exclusion principle, and the lack of 

self-interaction between an electron and its own charge density, respectively 162. While the 

true form of the exchange-correlation functional is not known, it can be determined for the 

idealized case of a homogenous electron gas possesses constant electron density at all 

points in space 163,164. The exchange-correlation potential  rXCU  in this case is therefore 

the known exchange-correlation potential for a uniform electron gas at the electron 

position. This approximation uses only the local electron density to define  rXCU , and is 

therefore referred to as the local density approximation (LDA) 163. Although seemingly 

simple due to the homogenous electron gas assumption, the LDA functional is useful for 

systems with slowly varying electron densities such as metals 165. Covalently bonded 

solids, where phonon transport is dominant and are therefore of primary interest in this 

thesis, however, contain more complex variations in charge density 166. To describe more 
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complex charge densities, an approach utilizing both the local electron density and the local 

gradient of the electron density was formulated, known as the generalized gradient 

approximation (GGA) 167. The GGA class of exchange-correlation functionals has seen 

more success than the LDA in describing properties with covalently bonded solids 168-170. 

More modern functionals based on the GGA approach include the Perdew-Wang (PW91) 

171 and Perdew-Burke-Ernzerhof (PBE) 172 functionals. Many researchers have applied 

these functionals successfully to describe vibrational properties of covalent solids with 

excellent experimental agreement 33,34,76,116,173.  

Since there are many exchange-correlation functionals, it is up to the user to 

determine which one is best for a system under consideration. Regardless, once it is chosen, 

the exchange-correlation potential for a single electron can be solved via Equation 20, 

which is required to solve the Kohn-Sham equations of Equation 18. The single-electron 

wave functions of the Kohn-Sham equations are also known from the charge density, along 

with the Hartree potential in Equation 19. Solving the Kohn-Sham equations for every 

electron yields a new set of single-electron pseudo wave functions, from which a new 

electron density  rKSn  defined by the Kohn-Sham equations can be calculated. If the 

original electron density  rn  is the same as the Kohn-Sham electron density, then this is 

the true electron density since      rr KSnEnE  ; the ground-state energy functional is 

the ground-state energy corresponding to the Schrodinger equation in this case. If the two 

original and Kohn-Sham electron densities are not the same, or nearly the same, the trial 

electron density  rn  is updated and the entire process repeats. A variety of density update 

techniques exist in many software packages 174. This self-consistent loop, rooted in the 
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Schrödinger equation, is a powerful method for finding the ground-state electron density. 

A summary of the DFT process to find the ground-state electron density is as follows: 

1) Define an initial electron density  rn . 

2) Calculate the Hartree potential and exchange-correlation potential using  rn , via 

Equations 19 and 20. 

3) Solve the Kohn-Sham equations for every electron in the system, Equation 18, 

using the calculated Hartree and exchange-correlation potentials to solve for the 

new single-electron wave functions. 

4) Calculate the new electron density resulting from the Kohn-Sham equations, 

     rrr i

i

iKSn ψψ* . 

5) Compare  rKSn  and  rn . If they are the same, then the ground-state electron 

density is reached, and this electron density can be used to calculate the total energy 

via the Hartree potential and single electron-wave functions. Otherwise, update the 

electron density and repeat from Step 2. 

Once the electron density is found, various quantities relevant for potential fitting such as 

energies and forces are obtained 175.  

The Hellman-Feynman theorem allows the calculation of forces on ions due to the 

electron density 151. These forces are often used to calculate bulk phonon frequencies in 

crystals 116. This process revolves around using DFT to numerically approximate the 

derivative of the total energy with respect to displacement. The 2nd order force constants, 

or 1st derivatives of force with respect to atomic positions, are also useful quantities, as 
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they form the elements of the Hessian matrix for all atoms. The Hessian is used by the 

dynamical matrix to calculate phonon frequencies in the Brillouin zone, since it represents 

the stiffness of interaction between every pair of atoms. Since the phonon dispersions 

calculated for a wide variety of crystals using this method agree almost exactly with 

experimental phonon dispersions, and the forces are the only inputs, it is well accepted that 

DFT forces are close to the true forces on atoms 33,116. For this reason, fitting to DFT forces 

is sufficient to obtain POPs, according to Hypothesis 1. At this point, however, it may seem 

futile to parameterize analytical potentials to match DFT quantities since DFT yields 

accurate forces. 

The entire DFT process possesses cubic computational scaling with the number of 

electrons in the system 
eN , represented in Big O notation as  3

eNO . This cubic scaling 

arises since solving the Kohn-Sham equations for every electron in the system involves 

diagonalizing the total Hamiltonian to obtain every electron eigenstate, and matrix 

diagonalization scales cubically with the number of matrix elements 176.  Classical MD 

based on analytical potentials, however, possesses linear scaling  NO  with the number of 

atoms N  in the system 92. This can be realized from the decomposition of total potential 

energy into per-atom contributions in analytical potentials, seen in Equation 6. As more 

atoms are added to the system, the total potential energy required for force calculation 

simply requires an extra per-atom energy contribution to calculate, hence linear scaling. 

Fitting computationally cheap models (i.e., analytical potentials) to DFT therefore allows 

us to scale up computationally; DFT accuracy could then be used to study larger systems 

for longer times using classical MD simulations based on analytical potentials. Creating 

analytical potentials that reproduce DFT data therefore bridges an important gap in 
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multiscale modelling, between quantum and classical methods. This is further illustrated 

in Figure 7.  

 

 

 

 

 

As shown in Figure 7, quantum mechanical modeling methods such as DFT are applicable 

in the regime of femtoseconds and angstroms. Classical MD based on analytical potentials 

are computationally tractable in the nano regime, with modern computers handling up to 

320 billion atoms 177. Mesoscopic and macroscopic finite element methods cover the micro 

regime and above. The red circle in Figure 7 shows the gap that is bridged by fitting 

analytical potentials to DFT data; this connects quantum and classical methods in 

multiscale modeling. Bridging this gap allows us to study systems in the nano regime by 

taking advantage of the linear scaling of classical MD simulations, with the accuracy of 

DFT; this would otherwise not be possible or tractable on modern computing hardware. To 

specifically perform this task for phonons, and create POPs, it is necessary to consider the 

Figure 7 – Material modelling methods as a function of length and time scales which they 

are applicable to. The red circle shows the connection established by obtaining analytical 

potentials that reproduce DFT data, thus bridging the gap between quantum and classical 

methods. 
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lattice dynamics (LD) theory which describe phonons. This will show how phonon 

properties are calculated using modern computational techniques, and provide insight into 

which quantities give rise to phonon properties.  
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 PREDICTING PHONON PROPERTIES 

BTE based calculations rely on LD calculations of phonon frequencies and dispersion 

as well as 3rd order and higher force constants to evaluate anharmonic phonon quantities. 

This chapter formally introduces these approaches so that their integration into the POPs 

tool can be justified and clarified. 

3.1 Lattice Dynamics 

Deeper insights into the true nature of the shape of the PES can be obtained via 

derivatives of the PES with respect to Cartesian atomic positions. These derivatives are 

called the interatomic force constants (IFCs). A mathematical definition of the IFCs can be 

obtained by assuming the PES of a crystal can be written as a Taylor expansion about the 

equilibrium Cartesian positions of atoms, which we term herein a Taylor expansion 

potential (TEP), given by 173 
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where 
i , 

ij , and 
ijk  are the IFCs of 1st, 2nd and 3rd order, and 

iu  is the displacement 

of atom i  in the  direction. The constant 0U  energy does not provide any information 

on the shape of the PES so it can be ignored, since it has no effect on the dynamics. The 

first derivative term becomes zero, by definition, when all atoms are exactly located at their 

equilibrium sites,  thus the TEP can be written as173 
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The mathematical definition of the displacement is given by 

0

iiiu    (23) 

where 0

i  is the equilibrium Cartesian coordinate  of atom i  and 
i is the current 

coordinate.  The indices i , j , and k  in the TEP of Equation 22 run over all atoms in the 

system under consideration, and the superscripts  ,  , and   denote general Cartesian 

directions. The 2-body term, for example, includes a sum over all pairs of atoms i  and j , 

and all 2nd order IFCs 
ij  between each ij  pair. Since there are three possible Cartesian 

coordinates in the two terms denoted by the superscript  , there are nine possible IFC 

values for each ij  pair. These nine IFC values can be represented as a 33  matrix for each 

2-body interaction: 
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There are therefore nine 2nd order IFCs, or 2nd derivatives of the potential energy with 

respect to displacement, for each 2-body interaction. By a similar logic there are 27 

definable 3rd order IFCs 
ijk , or 3rd derivatives of the potential with respect to 

displacement, for every triplet ijk . For a given N -body interaction, there are 
N3  IFCs, 
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representing the spatial derivatives of the potential energy in all combinations of Cartesian 

directions.  

To model phonon properties using the IFCs, the IFCs must first be calculated and 

there are two main methods used, namely: (1) the direct displacement method (DDM) and 

(2) density functional perturbation theory (DFPT). The DDM simply fits the TEP of 

Equation 22 to force-displacement data obtained from DFT calculations 116. The number 

of IFCs in a unit cell is equal to NN 33  , but the fitting problem and number of parameters 

can be simplified by assuming certain symmetry operations for the IFCs in a crystal. One 

of these symmetries, for example, assumes the diagonal terms of the IFC matrix are 

identical, and ij  pairs are commutable 116, which must be true by Newton’s third law. This 

is represented by 



jiij   (25) 

thus simplifying the 9-element 2nd order IFC matrix to six unique elements. A similar 

relation holds for 3rd order IFCs 33,116. Density functional perturbation theory (DFPT) 

perturbs the wave functions in DFT to varying orders to calculate IFCs of varying orders 

149. Due to the relative ease of fitting a TEP to force-displacement data compared to 

perturbing the wave functions, the DDM is used in this thesis to obtain force constants 

instead of DFPT.  

The fitting procedure to obtain the IFCs in Equation 22 involves using the TEP to 

perform the minimization problem of Equation 13 in Chapter 2. The target quantities in the 

objective function are forces. With known displacements 

iu  and the corresponding forces 
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on all atoms, the IFCs can be readily obtained by fitting the TEP to reproduce these 

quantities 116. The TEP forces are given by the negative gradient of the potential in Equation 

22 with respect to position, thus yielding 

 
 



, ,

...
j jk

kjijkjiji uuuF  (26) 

A least squares local minimization algorithm can then be used since this is a convex 

problem if the crystal displacements are small enough, whereby one approaches the 

harmonic limit in which the PES possesses a shape that can be well resolved with the TEP 

116. Once the IFCs are obtained, various LD theories allow for the calculation of phonon 

properties.  

The simplest quantities calculable with LD take the limiting case, termed the 

harmonic limit, whereby we truncate the Taylor expansion in Equation 22 to include only 

harmonic terms. Useful representations of harmonic phonon behaviour include phonon 

dispersion and phonon density of states. The group velocity and frequency of each mode 

are required to calculate these quantities, so their calculation will be discussed first. Phonon 

frequencies are eigenvalues of the dynamical matrix, whose components depend on the 2nd 

order IFCs via 26 





l

i

ij

ji

ij
lle

mm
D
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Where im is the mass of atom i , lR is the position of primitive cell l , and lq  is the 

primitive cell position in reciprocal space. Diagonalizing the dynamical matrix yields the 
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3N eigenvalues and corresponding eigenvectors 
sqe for each q  point in reciprocal space 

and atomic polarization s . The eigenvalues sq  of the dynamical matrix D  are given by 

26 

  qs

T

qsqs Dee
*2   (28) 

which are the frequencies of phonon mode sq . Diagonalizing the dynamical matrix for 

each q  point in reciprocal space allows for the construction of a  q  plot, representing 

frequency as a function of directions in the Brillouin zone, which is termed the phonon 

dispersion. The group velocity, another harmonic quantity, is given by the slope of the 

phonon dispersion curves by: 

q
v

q

q





s

s


 (29) 

This derivative is calculated numerically in this thesis using the Alamode program 116. 

Harmonic properties (i.e., frequencies and group velocities) describe individual vibrational 

modes and how they behave 35. Phonon transport properties such as thermal conductivity, 

however, arise due to anharmonic effects associated with larger displacements and higher 

order interactions in the TEP.  

Anharmonic LD relieves the truncation of the TEP associated with the harmonic 

approximation. The 3rd order IFCs 
ijk  are obtained using the DDM in the same way as 

the 2nd order IFCs, by simply fitting the TEP to DFT force-displacement data. One of the 
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key quantities required to calculate anharmonic phonon transport properties is the phonon 

lifetime, or relaxation time 
sq  of mode sq . The relaxation time can be estimated as 116 

),(2)(1  ijk

anh

ss TT 

qq  (30) 

where ),( 

ijk

anh

s T q  is the imaginary part of the phonon anharmonic self-energy as a 

function of temperature and third order IFCs in Equation 22. The Alamode program 116 is 

used in this thesis to calculate ),( 

ijk

anh

s T q  via Fermi’s golden rule, and the tetrahedron 

method in reciprocal space aids in its calculation 179. Calculation of the relaxation time in 

Equation 30 is crucial in PGM based thermal conductivity expressions, which require the 

mean free path sss v qqq   .  

Although DFT can be used to calculate harmonic and anharmonic phonon 

properties by obtaining the IFCs from quantum mechanical force-displacement data, the 

same force-displacement data can come from an analytical interatomic potential as well. 

Understanding how harmonic and anharmonic phonon properties arise from underlying 

quantities such as forces, namely the IFCs or derivatives of the forces, further supports 

Hypothesis 1 that optimizing an analytical potential against DFT forces should produce a 

potential that yields accurate phonon quantities such as frequencies, eigenvectors (modes) 

and relaxation times.  

3.2 Phonon Thermal Conductivity 

3.2.1 Boltzmann Transport Equation 
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 The BTE can be applied to study the properties of a system of interacting particles, 

and if one invokes the PGM for phonons, the BTE can subsequently be used to calculate 

thermal conductivity. As mentioned in Chapter 1, this approach of treating phonons as 

boson particles yields accurate results for crystals, and thus it is used in this thesis for 

prediction of crystal thermal conductivity. The general BTE is derived from the Louville 

equation, and can be written for each phonon mode sq  as 28 
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where sfq
 is the Bose-Einstein distribution of phonon mode sq , sqv  is the phonon group 

velocity, sqa  is the particle acceleration and 

coll
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

 q
is the collision term, that describes 

how the phonons interact and scatter with each other. Solving the BTE is greatly simplified 

by introducing the relaxation time approximation (RTA), where the collision term is 

replaced by28 
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where 0f  is the equilibrium distribution and the relaxation time sq  can be assumed to be 

independent of group velocity in the RTA 28. It is important to note that this is the same 

relaxation time that can be calculated from the 3rd order IFCs via Equation 30. Rewriting 

the BTE under the RTA and neglecting acceleration gives  
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where 0

ss ff qq   represents the perturbed phonon distribution from the equilibrium 

distribution. Assuming a steady-state distribution, we have 0




t

f sq
. The distribution 

function is assumed to vary spatially only, and can be written as T
T

ff ss









 qq

r
 utilizing 

the chain rule and spatial gradient of temperature. Designating the perturbed phonon 

distribution as 
0ˆ
sss fff qqq  , applying the steady-state assumption, and substituting the 

new spatial gradient of the distribution, the BTE can be written as  
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The specific heat of a phonon mode sq  is given by the Bose-Einstein specific heat 

Tfc sss  /qqq  , so we can incorporate this into Equation 34 and rearrange to give 

 
sssss fTc qqqqq v ˆ   (35) 

for each phonon. This relation holds true for all Cartesian directions specified by the group 

velocity vector and spatial gradient of temperature; for any general Cartesian direction   

we therefore have 
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sssss f
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Since this relation is valid for every phonon mode sq , it is also valid for the sum of all 

phonon modes in the system given by 
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Adding another group velocity in any Cartesian direction   on both sides of this relation, 

for every phonon mode, yields 
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The term on the right hand side is the heat flux 
Q  in the   Cartesian direction, defined 

as 31,32,50 
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and V is the crystal volume. Substituting Equation 38 into the heat flux, and solving for 

Q  yields: 
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According to Fourier’s law 


 




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T
Q  for an anisotropic medium, this now defines 

the thermal conductivity tensor   as 


s

ssss vvc
V q

qqqq   1
 (41) 

which is the same as the thermal conductivity obtained from the kinetic theory of gases in 

Chapter 1, Equation 2, noting that the mean free path sss v qqq    30-32. This expression 

will be used in this thesis to calculate crystal thermal conductivity. This BTE-RTA thermal 

conductivity result yields excellent agreement with experimental thermal conductivities for 

many semiconductors and insulator crystals 34. More importantly, the BTE derivation in 

Equation 41 shows how fundamental phonon quantities (group velocities and relaxation 

times), which depend on changes in force with respect to atomic positions, dictate the 

thermal conductivity. According to GK theory, thermal conductivity also depends on forces 

via Hardy’s flux operator 50. Thermal conductivity via the GK approach utilizes the 

autocorrelation of the heat flux, calculated from equilibrium MD simulations. 

3.2.2 Equilibrium Molecular Dynamics 

Thermal conductivity calculations using MD simulations include equilibrium MD 

(EMD) and non-equilibrium (NEMD) simulation methods. EMD simulations involve 

sampling the phase space around the equilibrium structure of group of atoms under a NVE 

ensemble, and using the resulting dynamical quantities as a function of time to calculate 

the atomistic heat flux via Equation 4 and the GK thermal conductivity via Equation 5 180. 

This method has been shown to be equivalent to and yield the same results as the BTE 
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thermal conductivity, at least when applied to systems where the PGM is applicable (i.e., 

crystals) 56,181. Some studies even found that the GK method is more accurate than the BTE 

approach 99; this is especially true for high temperatures where anharmonic interactions are 

stronger, and MD naturally includes anharmonicity to full order, unlike the truncated TEP. 

This benefit of MD is fully realized when one considers the phase space of atoms that can 

be sampled in an MD simulation; when starting from random velocities on all atoms in a 

crystal, the phase space of all atom is explored in dynamics consistent with the ensemble. 

In the case of thermal conductivity calculation, the phase space dynamical properties of 

positions, velocities and forces are used to calculate the heat flux in Equation 4 which is 

then used with GK theory to get thermal conductivity. Phase space can be sampled in a 

MD simulation via time averaging or ensemble averaging 182. Time averaging involves 

probing the phase space sequentially for a single trajectory until a representative average 

has been obtained. Ensemble averaging samples the phase space with independent 

trajectories, which can be interpreted as separate MD simulations starting from different 

initial velocities. Independent trajectories can be more quickly simulated in parallel, 

compared to a single long run used in time averaging. In other words, ensemble averaging 

can be up to 200 times faster than time averaging when utilizing parallel processing for 

different ensembles 182. As a result, ensemble averaging with EMD simulations are used 

herein. Ensembles of EMD simulations provide the atomic trajectories and dynamical 

quantities required to calculate the heat flux, and then the thermal conductivity at the 

autocorrelation of the heat flux. 

Like the BTE thermal conductivity based on the PGM, which depends on group 

velocities and relaxation times calculated from force derivatives, the GK thermal 
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conductivity also depends on forces. Atomic trajectories, namely the positions, velocities 

and forces, are direct inputs to Hardy’s heat flux operator 50. Since the forces determine the 

dynamics and trajectories of atoms in MD simulations, this further supports Hypothesis 1 

that optimizing potentials against accurate quantum mechanical forces will yield a potential 

that accurately predicts phonon and thermal properties. Furthermore, fitting to many DFT 

forces for many configurations of atoms (i.e., many displacements) should allow the 

potential to capture the spatial derivatives of forces (IFCs), required by the LD 

formulations of phonon group velocity and relaxation time; these quantities are also direct 

inputs to the PGM thermal conductivity derived from the BTE. This hypothesis is therefore 

supported by all the theories covered in this chapter. While the two main methods of 

calculating phonon thermal conductivity, the BTE and GK method using EMD 

simulations, provide theoretical support for Hypothesis 1, this still needs to be investigated 

by fitting analytical potentials to DFT forces. 
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 CREATING PHONON OPTIMIZED POTENTIALS 

Phonon properties and thermal conductivity depend mainly on the interatomic forces, 

and how those forces change with respect to displacement, as seen Chapter 3; this further 

supports Hypothesis 1. Although supported in theory, this hypothesis still needs to be 

tested. In the process, Question 2 of how well can quantum mechanical quantities such as 

forces be reproduced by an analytical potential will be investigated as well. Hypothesis 3, 

that idea many different parameter sets can describe phonons well via traditional potentials, 

will be investigated by using the GA to perform more complete assessments of the 

parameter search space. Prior to these investigations, the underlying methodology and 

goals associated with the POPs tool are worthwhile to highlight – i.e., the basic tenets that 

underpin it. Many of these tenets are based on the proposed questions and hypotheses, and 

they also describe the philosophy behind the POPs approach 57. 

4.1 The POPs Tenets 

Based on the original hypotheses, these Tenets pose a hypothesized recipe for the 

creation of POPs, along with the underlying methods to create them. 

Tenet 1: It is believed that many traditional analytical potentials, especially for 

semiconductors, are overdesigned for the study of phonons by possessing features and 

flexibility that aid in studying regions of phase space beyond thermal vibrations around 

equilibrium. This is the main idea behind Hypotheses 2, 3 and 4. Given this assumed 

overdesign, a core part of the POPs philosophy is to treat the fitting parameters are purely 

mathematical objects that are devoid of any physical meaning whatsoever. From this first 
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Tenet, we can justify usage of the GA to randomly sample the large parameter search space 

and find many unique parameter sets.  

Tenet 2: For an analytical potential to be optimized for describing phonons, the key 

quantities that must be well described are the forces and their spatial derivatives. 

Hypothesis 1 stated that fitting the potential only to forces should accomplish this task, and 

therefore result in accurate thermal properties, since fitting to the forces in many 

configurations (atomic displacements) should provide information about the derivatives of 

these forces with respect to displacement. The formalism presented in Chapter 2 shows that 

the velocities and relaxation times for the crystalline thermal conductivity based on the 

BTE requires accurate 2nd and 3rd order IFCs, or spatial derivatives of force. Therefore, an 

analytical potential that reproduces these derivatives will accurately predict phonon and 

thermal properties based on this formalism. Although, in concept one would need an 

infinite number of derivatives to be exact, we note that in practice only the first three or 

four derivatives of energy (
id
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) are actually needed for most 

systems/temperatures, but higher order terms can be included as deemed necessary 183. 

Here, it is also important to clarify that the goal of POPs is to make potentials that replicate 

the results of quantum DFT calculations and not necessarily experiments. In this sense the 

goal is to make POPs based purely on first principles data, thereby enabling them with 

predictive power.  

Tenet 3: Assuming the basis of Tenet 2 is correct, one can use a form of error 

between target quantities and potential quantities to assess the viability of a POP. This then 

can provide a universal scale upon which any potential can be assessed. It may happen, for 
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example, that a certain potential exceeds 20% error in forces and therefore may not be 

suitable for the study of phonons in a system of interest. A goal of the POPs methodology 

is to provide a way to assess the suitability of a given parameter set for any functional form 

without having to perform any expensive thermal conductivity calculations. By performing 

an exhaustive search via the GA, this should elucidate the viability of a specific functional 

form to reproduce thermal properties. It is therefore a goal of this methodology to enable 

assessment of the suitability of the functional form itself, without spending unnecessary 

amounts of time with expensive thermal conductivity calculations for every potential under 

consideration. It should be noted that this is a powerful attribute of the approach as it seeks 

for example to be able to state that a given function form, such as Tersoff’s potential, is 

incapable of reproducing the DFT forces in a certain system to with, say 40%. By 

conducting a sufficiently exhaustive search, such a statement allows one to rule out an 

entire functional form altogether, rather than always leaving room for future modification 

of parameters to improve its description. In this way, this approach seeks to identify the 

fundamental limitations of a functional form. 

Tenet 4: A major goal of the POPs approach is to easily create potentials for any 

system in an easy and quick fashion. The term “easy” here implies minimal user input, and 

that the procedure is capable of handling most of the effort. It is highly desirable to have 

the approach be built in such a way that it does not require excessive coding by the user. 

This therefore allows less time to be spent debugging the optimization process, and more 

time to be spent on the creation of POPs to study the physics of phonons. It is therefore 

highly desirable to have the approach be built in such a way that there are no difficult 

deterrents (long optimization times or excessive coding).  
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These tenets highlight the goals in this work to create POPs, along with the 

hypotheses involved in performing such a task. Furthermore, according to Tenet 4, a goal 

of the POPs method is convenience. This tool, the POPS optimization program, was 

therefore developed to bring ease and simplicity to the potential optimization process. 

Along with aiding in the investigation of the questions and satisfying the POPs Tenets, the 

value of such a program is well-known in the MD community where no current tools exist 

123. 

4.2 POPS Optimization Program 

The issue of generality (Issue 1) is important since it allows for the convenient testing 

of a wide variety of potentials, across a wide variety of fitting quantities. It is therefore of 

interest to link the POPS optimization program with some sort of existing library of 

potentials, along with a calculator that computes quantities associated with these potentials 

for fitting. An excellent and renowned choice is the Large-scale Atomistic/Molecular 

Massively Parallel Simulator (LAMMPS), developed at Sandia National Labs 92. 

LAMMPS contains a library of interatomic potentials that are easily invoked by simple 

user commands, along with parameter settings for such potentials. Furthermore, various 

quantities associated with the potential (e.g., forces and energies) can readily be computed 

via the LAMMPS compute class. The object-oriented C++ structure of the LAMMPS code 

allows for the intuitive extension of LAMMPS to add user-defined potentials and quantities 

to compute. The great number of potentials and calculable quantities, combined with the 

convenient extendibility, renders LAMMPS as an excellent choice to interface with the 

POPS program so that these quantities can be invoked to satisfy Issue 1.  
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In the spirit of the object-oriented nature of LAMMPS, offering convenient 

extendibility in the form of C++ classes, the POPS program will also contain an object-

oriented framework with modules that aid in the addition of new settings. A user-interface 

module, for example, will aid in Issue 3 by providing a convenient way to change settings 

and experiment with different fitting procedures without wasting as much time coding such 

features. Code organization resulting from these modules will aid in the development of 

fast code, aiding in Issue 2 of speed as well. The modular design of the POPS program is 

therefore of utmost importance in understanding how this program will aid in the 

investigation of the proposed questions and hypotheses. 

4.2.1 Program Organization and Modules 

It is important to note that to be fast and efficient, the POPS program does not 

simply use the operating system to perform file input/output on LAMMPS input files and 

execute LAMMPS. POPS is a C++ library extension to LAMMPS, and therefore 

communicates with LAMMPS through its own library. During runtime, therefore, it is 

required that the entire POPS program and its connection to LAMMPS be compiled as a 

single package. This low-level connection of code allows for much quicker and efficient 

runtime as opposed to simply executing LAMMPS via a system command, thus further 

aiding in Issue 2 of speed. For the same reason that the modular structure of LAMMPS 

provides convenience, in the sense that users can easily add their own features and 

modules, the POPS program is also object-oriented and modular. The modules of the POPS 

program are designed so that users can add features such as their own fitting targets, 

objective functions, and fitting algorithms without having to recompile the entire program, 

thus further aiding in Issue 1 of generality.  
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The only two external libraries required by the POPS program are LAMMPS and 

Open MPI, a Message Passing Interface (MPI) C++ library. The MPI library is not used to 

take advantage of the parallel features of LAMMPS, but instead to parallelize the GA. This 

highlights another advantage of the GA, it can be evaluated using “embarrassingly parallel” 

operations; this means that separate parts of the optimization procedure can be executed in 

isolation of each other and do not require communication. Thus they can be evenly 

distributed across computing processes for a near linear increase in speed with respect to 

increasing the amount of assigned processors. High performance computing allows the 

connection of many separate computers, or “nodes”, to incorporate their combined power 

for accomplishing a task, and the MPI library handles the passing of information between 

nodes. This process is easily applied to the GA, noting that there is a population of 

individuals as explained in Chapter 2. All individuals must undergo evaluation of the 

objective function, which adds to the overall compute time of the GA. If we parallelize the 

fitting process over individuals in the population, it is possible to separate the computing 

so that each processor handles 
procs

tot
P

N

N
N   individuals, where 

totN  is the total number of 

individuals and procsN  is the number of processes being incorporated. These 
PN  individuals 

are sent to their own computing process to evaluate their objective functions, instead of a 

single process evaluating all objective functions. 184. While the speed-up as a function of 

incorporated computing processes does not result in exactly 100% parallel efficiency due 

to the need for some level of inter-process communication via MPI, the efficiency remains 

well above 90% for many processes with the POPS program. Figure 8 shows the parallel 

efficiency of the POPS program as a function of computing processes, calculated by 
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performing five GA generations with 256 individuals in the population. This benchmark 

was performed on a cluster of 24-core Intel® Xeon® CPUs E5-2680 at 2.50 GHz with 64 

GB of memory.  

 

 

 

 

 

 

 

If one has access to a certain number of computing cores, they should be able to decrease 

the training time to achieve a potential by a significant amount. This significant increase in 

speed from traditionally serial fitting algorithms 85,124, or algorithms incorporating only a 

single computing process, further alleviates Issue 2.  

The parallelization module, utilizing the MPI libraries, ensures fast potential 

optimization, other modules in the POPs program work together to complete the 

optimization process. The LAMMPS potential module allows for potential quantities to be 

calculated for every parameter set, or every individual in the GA population. The user-

Figure 8 – Parallel efficiency of the POPS program. The large black dots are the actual 

speedup efficiency values and the dotted line is the theoretically ideal value. 
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interface module allows the convenient modification of optimization settings, thus 

alleviating Issue 3. An optimization module must be incorporated, which will house the 

GA, so that operations can be performed on parameters to minimize the objective function. 

In this regard, another module which has not been mentioned is the objective function, or 

error module. The error module contains the definition of the error, )(λZ  , between 

reference quantities and DFT quantities to be minimized. Existence of such a module 

allows one to easily extend the POPS program to include a variety of fitting targets without 

modifying the rest of the code, thus alleviating Issue 1 of generality. A high-level 

organization of these five modules is shown in Figure 9, along with how potential 

parameters flow through the program during optimization. 
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This high-level organization shows the main modules which drive the POPs program, and 

the circular arrow shows the flow of parameters through the program as they are optimized 

with the GA in the optimization module (blue box).  

Fitting begins by initialization in the optimization module, and then parameter sets 

(population individuals in the GA) are distributed across processors. White boxes represent 

the parallelization module, utilizing the MPI libraries, which first scatter the parameters 

across processors for potential and error calculation, and then gather the resulting errors 

back before performing the GA operations mentioned in Chapter 2. The red box, the 

Figure 9 – High-level organization of the POPS program. The circular arrow represents 

the flow of parameters through the modules during the potential optimization process. The 

blue box is the fitting module, for which we use the GA. White boxes represent the 

parallelization modules, in which MPI is used to scatter and gather the parameters across 

processes. The red box is the potential module which calls the LAMMPS potential library. 

Objective function calculation is handled by the error module, the grey box. The black 

boxes are tasks performed by the user-input module, in which settings influence all 

modules, and training data is input to the error calculation. 
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potential calculator module driven by LAMMPS, contains the library of potentials and the 

code to calculate fitting quantities with the potentials. Error is calculated after potential 

quantities are obtained via the error module given by the grey box. Resulting errors for 

every individual in the population are then gathered from all processors onto a single 

master node which performs GA operations on individual parameter sets. As seen in Figure 

9, the user-input module represented by black boxes affects all the other modules via 

settings declared by the user. This results in an easy-to-use program that allows the 

convenient changing of a wide variety of settings for potential fitting experimentation. The 

POPS program modules all combine to form a coherent package that optimizes potential 

parameters, as shown in Figure 9. These modules culminate together to alleviate the three 

main existing issues in potential optimization, and these issues posed major barriers to 

answering the key scientific questions of interest and testing of the noted hypotheses in this 

thesis.  

4.3 Discovering the POPs Recipe 

Model systems to investigate the proposed questions and hypotheses will include 

semiconductor crystals, mainly crystalline silicon (c-Si) and crystalline germanium (c-Ge). 

Traditional analytical potentials for these systems, namely Tersoff and Stillinger-Weber, 

will serve as functional forms to reproduce quantum mechanical forces. Since c-Si is a 

simple and technologically relevant material, this was the first material used for testing. 

The Tersoff potential was the original potential used for c-Si, so this original fitting tests 

involved this functional form. The key question is what is the “recipe” or set of quantities 

(i.e., ingredients) that must be included in an objective function for it to consistently and 

accurately optimize for reproduction of phonon properties determined from DFT? The 



 77 

objective function can be any form of error, such as mean percent error (MPE), root mean 

squared error (MSE), etc. The MPE is a convenient way to assess a fit, and it therefore 

made sense to choose the force MPE as the original objective function. This led to an 

objective function of the form 
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where M  is the total number configurations, mN  is the number of atoms in configuration 

m , 0

mnF  is the reference DFT force on atom n  in configuration m  and mnF  is the potential 

force on atom n  in configuration m . The double brackets indicate magnitudes of the 

vectors. While Equation 42 allowed for convenience in thinking about quality of fit to 

forces, it was not a suitable candidate for optimization. This was clear when the error of 

this optimization hardly decreased as a function of generations in the GA. Further 

investigation of this issue led to the realization that small forces on the order of 10-6 eV/Å 

caused Equation 42 to diverge, and when using 100 configurations of 64 atoms, these 

occurrences were not uncommon. This led to the abandonment of fitting to MPE, but the 

quantity is still useful to assess the validity of training errors. A more appropriate and 

simple force objective function was developed, resulting in  
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which is not unitless. This objective function led to better force fitting success, and it was 

still possible to track the evolution of the more meaningful MPE quantity in Equation 42 
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as Equation 43 was optimized. Before any fitting needs can be performed, a training set 

needs to be clarified. The training set for this first test includes 50 ( 50M ) c-Si 

configurations of 64 atoms, where each configuration contains atoms randomly displaced 

from equilibrium by up to 0.3Å. The forces were calculated using DFT with the PBE 

exchange-correlation functional, which has been shown to predict accurate forces and IFCs 

in c-Si 34. Using Equation 43 as the objective function, the Tersoff potential was optimized 

against these forces and Figure 10 shows the evolution of the MPE as a function of GA 

iterations. 

 

 

 

 

 

Figure 10 – Force MPE evolution vs. GA generations for 5 trials of Tersoff c-Si fitting to 

forces in 50 configurations of 64 atoms. Each line in this figure is a separate trial GA fit, 

starting from a different random population. All trials converged around 40 generations 

with an average of 9.4% error in forces. 

Figure 10 was the first successful fitting experiment in the sense that some fits were below 

the original target of 10% error in forces. All 5 trials in Figure 10 all started from random 

positions in the parameter search space according to the GA, and all trials achieved below 

a 20% error in forces. It is important to note here that this successful fitting experiment 

was only possible by allowing the parameter ranges in the GA optimization to span a large 
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enough range. This was realized since original fitting experiments, containing small ranges 

for parameter searches, resulted in many parameters approaching the boundary of the 

allowed interval. This showed that the best minimum according to the GA existed outside 

of the allowed parameter interval. Performing this analysis for many trials of GA 

optimization, and finding that some trials result in parameters that lie on the boundary of 

allowed intervals, is a convenient way of showing that the parameter intervals must be 

expanded. This procedure was repeated through trial and error until it was found that a 

parameter range spanning 2 orders of magnitude was chosen for each Tersoff parameter. 

Of the 5 GA trials in Figure 10, all starting from random positions in search space, only 

one resulted in a potential that exhibited stable MD simulations. While this was concerning 

and will soon be addressed, it was still of interest to test the hypothesis of 10% error in 

forces yielding a 10% error in thermal conductivity via the GK formula. At 300 K the 

thermal conductivity error of this optimized Tersoff potential with experimental values185 

was over 100%, thus disproving our hypothesis that a 10% error in forces, will 

automatically lead to a ~ 10% error in thermal conductivity. This further confirms that 

Hypothesis 1 is incorrect; fitting only to forces is not sufficient to obtain a potential that 

will accurately predict phonon properties. This result was surprising. Even more 

problematic was the fact that 6 out of 7 of the potentials in this test yielded unstable 

dynamics in MD simulations. Instability in MD, herein, is defined as unrealistic and sudden 

changes in quantities such as the potential energy and temperature, which therefore lead to 

unrealistic dynamics (e.g., c-Si explodes and behaves like a gas at room temperature). This 

is a domino effect, since unrealistic interactions can result in large displacements that 

increase the potential energy and force, which tend to cause the system to fall apart as the 
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simulation proceeds. This problem was more drastic than the inaccurate thermal 

conductivity, since stable potentials are needed just to perform MD simulations in the first 

place.  

Although most previous works involve fitting to experimental values of elastic 

constants 80,85, they still never explicitly discuss the issue of stability. This is because by 

fitting to experimental elastic constants, satisfaction of the Born elastic, elastic stability 

criteria is automatically ensured 65,186-188. Fitting to elastic constants is undesirable, 

however, since elastic constant calculation and corresponding stability criteria are not 

general for any crystal structure or material 65. Relying on the availability of experimental 

data would also be restrictive and disable predictive capability. Previous works also fit to 

structural quantities like the lattice parameter 80,85, under the proper assumption that by 

reproducing the structural parameters of the lattice that stability should be increased. The 

average error in DFT lattice parameter for the results in Figure 10 was 5%, which is actually 

quite poor, as the widely used parameterizations developed by Tersoff himself possessed a 

~1% error in experimental lattice parameters 71. This suggests that fitting only to forces 

does not ensure structural property agreement, which may be the reason for a 

corresponding instability of the potentials. Analytical derivation of the lattice parameter 

from the potential is a challenging mathematical task, as it would have to be coded for 

every specific potential that is fit to. Instead, fitting to the DFT energy of many 

configurations with different volumes was identified as an alternative to capture the volume 

associated with the minimum energy (i.e., the lattice parameter).  

4.3.1 Energy Shape and Lattice Parameter 
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In theory, by fitting to the energies of DFT configurations containing various 

volumes, the lattice parameter be accurately captured. The objective function of Equation 

43 was therefore modified to include energies of each configuration, resulting in  

ffee zwzwZ   (44) 

where ez  is some normalized error for energy and 
fz  is some normalized error for force, 

and the w  values are their corresponding weights. A successful normalization was found 

by dividing the square error of each quantity by the sum of all the references quantities, 

thus resulting in  
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for forces, where N  is the total number of atoms in the entire training set and 
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for energies, where 0

mE  is the reference DFT energy and mE is the potential energy of 

configuration m  calculated via the potential. It is important to note here that the absolute 

value of energy is not of interest in the development of POPs. This is most apparent when 

considering the TEP of Equation 22, since the IFCs determine phonon properties, and the 
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scaling of the PES by an arbitrary constant would not influence its derivatives, and 

therefore has no impact on the dynamics. To better capture the relative contributions of 

different configurations to the potential energy, the energies in Equation 46 are all 

subtracted by the energy of the equilibrium structure with the lowest (i.e., most negative) 

energy. With the definitions of ez  and 
fz , Equation 44 will serve as the objective function 

when testing the ability of a potential to reproduce the DFT energy-volume curve and 

lattice parameter, and will enable assessing whether this will improve MD stability. 

 Performing the same c-Si Tersoff fitting discussed previously, with 50 randomly 

displaced configurations and 50 GA trials, more “volume configurations” were added to 

the training set. These included 20 configurations with the equilibrium lattice parameter 

and other volumes with lattice parameters +/- 5% from the equilibrium value, along with 

10 configurations extending beyond +/- 2.0 A. The results confirmed that fitting to different 

volumes of DFT training data reduced the error in lattice parameter between the potential 

and DFT. This also resulted in more stable c-Si Tersoff potentials. Out of the 50 trials, 

about 60% were stable in MD. To test the generality of the POPs program, the Tersoff 

potential was parameterized for a material with 2 atom types – zinc-blende GaAs. The 

results for fitting to the energy-volume curve are shown in Figure 11.  This GaAs Tersoff 

potential resulted in stable MD simulations, and the force error averaged 15% for all 50 

trials.  
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Figure 11 – Energy-volume curve fitting for GaAs. The error in lattice parameter for this 

fit was on the order of 0.1%, which is more than an order of magnitude increase from fitting 

experiments where the volume configurations were not included.  

The potentials at this point were optimized with Equation 44 as the objective function, 

resulting in excellent lattice parameter agreement ~ 0.1%. While the number of stable 

potentials obtained via 50 GA trials increased compared to just fitting to forces, yet there 

were still occurrences of unstable potentials. In these unstable potentials, the expansion 

associated with elevated temperatures in NPT simulations caused volumetric and pressure 

instabilities in the lattice. A graphical picture of the observations leading to this analysis is 

shown in Figure 12 below 

 

 

 

 



 84 

 

 

 

 

 

Further analysis of the MD quantities as a function of time showed that pressure 

instabilities occur in sync with volume instabilities during a NPT simulation. It could be 

the case that although the forces possess low errors, errors in the pressure virial contribute 

to massive errors in the stress tensor. This was indeed the case, judged by taking 

configurations at the point before total instability of the system occurs (i.e., potential 

energy and pressure oscillations deviate over 100% from initial values) and comparing the 

stress tensor components of these configurations with the stress tensor components from 

DFT calculations. The errors were on the order of 1,000%, thus showing that the current 

potentials optimized for energy and force are not accurately reproducing the stress tensor. 

Although the analysis in Figure 12 does not prove that pressure instabilities lead to unstable 

MD simulations, it does show that the stresses calculated by the potential can exhibit large 

errors that coincide with destabilization of the supercell. This is further supported by the 

fact that the potential energy, which only depends on the position of atoms, oscillates near 

Figure 12 – Pressure instabilities occurring before potential energy instability in a MD 

simulation. Notice how the pressure deviation from the starting value begins to go unstable 

(rise) before the potential energy deviation begins to rise. 
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zero error until the pressure reaches an unreasonably large value, thus causing the system 

to collapse. This sort of analysis led to the idea of including stress in the objective function. 

4.3.2 The Need for Stress 

The potentials in Section 4.1.1, fit only to forces and energy as a function of 

volume, experienced instabilities seemingly due to pressure oscillations as shown in Figure 

10. Other authors included elastic constants to overcome this problem and guarantee Born’s 

elastic stability criteria 65 as discussed in Chapter 2, but they cannot be easily generalized 

to any potential or structure. Alternatively, since the elastic constants depend on the stress 

tensor for a variety of strains, it was hypothesized that fitting to the stress tensor on a variety 

of system volumes would result in increased stability. The stress tensor components for a 

static configuration can be calculated in a system of atoms from the virial theorem via 189 
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where  and   represent Cartesian coordinates, i is the   coordinate of atom i , and 


iF  is the force on atom i  in the   direction. The objective function of Equation 44 was 

then extended to incorporate a stress error term, resulting in  

sseeff zwzwzwZ   (48) 

where the stress error sz  is given by 
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where 
0

mp  and 
mp  are the 

thp  symmetric stress tensor components of configuration m 

for the reference and potential, respectively. The normalization by 6 and sums over 6 

components come from the fact that the 9-element stress tensor is symmetric since 

 SS  . Using the objective function in Equation 48 to parameterize the Tersoff 

potential for c-Si resulted in, again for 50 GA trials, resulted in nearly all stable potentials, 

especially at higher temperatures. Even with the increase in stability, however, the thermal 

conductivity error calculated via the GK method was still large at 62% for the best fit. In 

order to achieve better thermal conductivity predictions, the objective function requires a 

property related to phonons that can easily be calculated on the fly for the potentials. The 

formalism in Chapter 3 stems from the IFCs, or 2nd and 3rd derivatives of the energy, these 

were the next quantities to be added.   

4.3.3 Higher Order Derivatives of Energy 

There are two main reasons for fitting to the IFCs: (1) fitting to the derivatives of 

forces can help further resolve the force accuracy for the GK calculation and (2) according 

to the PGM, the IFCs directly influence the thermal conductivity. Here it is important to 

note a rather surprising finding from these preliminary optimizations, namely that it is 

possible that a potential can reproduce total forces well, with incorrect force contributions 

coming from different atoms. Initially, it was assumed that calculating nearly correct forces 
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for many different atoms averaged over many different configurations would filter down 

to a unique set of force contributions coming different neighboring atoms. However, it was 

deduced from the preliminary fitting tests that this is actually not true, and it is therefore 

necessary to force the potentials to try and reproduce the actual force contributions arising 

from different neighbors. This is a much more stringent requirement, but fitting to the 

derivatives of a function also allows for a better representation of the function itself, 

especially in the case of an interatomic PES 190. Fitting to higher derivatives should 

therefore allow for better fits, since more information about the surface is provided. The 

2nd order 3rd order IFCs were therefore added to the objective function due assuming that 

this would also improve the poor thermal conductivity predictions of previous fits which 

were only fit to force, energy and stress. Inclusion of the IFCs into the objective function 

requires separate error terms for the 2nd and 3rd order IFCs. Following the normalized 

format of previous errors, the error for 2nd order IFCs 2ifcz  is given by 
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where 0

i  are the reference 2nd order IFC and i  are the 2nd order IFCs for the potential, 

and the sum runs over 2IFCN  number of 2nd order IFCs. The error for 3rd order IFCs 3ifcz  

is given by 
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where 0

i  are the reference 3rd order IFCs and i  are the 3rd order IFCs for the potential 

and the sum runs over 3IFCN  number of 3rd order IFCs. The number of IFCs included in 

the error of Equation 50 and Equation 51 depend on the cutoff of the interactions used in 

the potential. Inclusion of these errors into the total objective function of Equation 48  

yields 

3222   ifcifcifcifceesseeff zwzwzwzwzwzwZ  (52) 

Crystalline germanium (c-Ge) served as a test system for the new objective function in 

Equation 52. Following the same experiments in the previous sections, the fitting 

composed of 100 GA trials, 100 randomly displaced configurations and 20 volume 

configurations, using 1000 individuals and a mutation rate of 0.5. The chosen potential as 

a combination of a short range Tersoff potential plus a long-range van der Waals and 

Coulomb potential (TVC). The long-range terms were added to give more flexibility to the 

potential. The best result from all trials yielded a TVC potential with 4.9% force error, 

which was about twice as good compared to previous attempts. MD simulations with the 

potential were also stable since the stress and volume were also included. The thermal 

conductivity was calculated via the ensemble method 182 using the GK formula over a 

variety of temperatures, and the results are shown below compared to experiments 
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185,191,192 for isotopic and natural compositions of c-Ge. 

 

Figure 13 – Thermal conductivity as a function of temperature for c-Ge using the 

optimized TVC potential, calculated via the GK method. Excellent agreement with 

experiments as a function of temperature are shown. 

 The thermal conductivity values were calculated using the ensemble averaging method 

with 100 ensembles for each temperature, and a simulation time of 2 ns. The thermal 

conductivity was extracted from the thermal conductivity accumulations using the first 

avalanche method 193. An example of the application of this method is shown in Figure 14 

to extract the thermal conductivity value at 200 K in Figure 14.  

 

 



 90 

 

 

 

 

 

 

 

 

The final components needed to create a potential that can reproduce the thermal 

conductivity, were the 2nd and 3rd order IFCs. The results using the full objective function 

in Equation 52 yield potentials with both stable MD and accurate phonon transport 

properties. These preliminary fitting tests therefore concluded the investigation of a recipe 

to create POPs, confirms the utility of the POPs Tenets, and answers many of the proposed 

questions and hypotheses. 

4.4 Answered Questions  

First and foremost, Question 1 of what quantities to use in the potential fitting process 

was answered. Hypothesis 1, that fitting only to forces are sufficient, turned out to be false. 

Originally, fitting only to forces yielded potentials with unstable dynamics (i.e., large 

fluctuations in potential energy leading to unphysical dynamics). Even when stability was 

Figure 14 – Thermal conductivity accumulation for c-Ge at 200 K. The black line is the 

accumulation and the red line is the value of 129 W/mK extracted from the first avalanche 

method. 
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improved by fitting to energy-volume curves and stresses, force errors of < 10% still 

resulted in inaccurate thermal conductivity calculations. Inclusion of the force derivatives 

or IFCs, inspired by LD theory in Chapter 3, resulted in accurate thermal conductivity 

predictions for c-Ge. These results answer question, at least for this system, and provide 

the recipe of five main quantities (force, energy-volume, stress, 2nd order IFC, 3rd order 

IFC) to produce a stable POP. Question 2, involving how closely can analytical potentials 

match quantum mechanical quantities such as forces in covalent solids, was also answered 

to show that it is at least possible that analytical functional forms can achieve a < 10% error 

in forces. This is surprising since previous work for metals, which contain a more 

homogenous and less complicated electronic structure 166, resulted in force-fitting errors of 

20% 194. It also seems that traditional analytical potentials, such as Tersoff, will reproduce 

thermal conductivity if parameterized for such a purpose (i.e., to the forces and IFCs), thus 

confirming Hypothesis 2. Hypothesis 3 regarding the existence of different parameter sets 

to reproduce small forces about equilibrium was shown to be true with the force fitting 

experiment of Figure 10. The main remaining question to be answered is Question 4, of 

whether fitting to long-range forces will result in accurate phonon frequency calculations 

at the Brillouin zone boundaries. To further investigate this question and confirm the 

viability of the POPs Tenets and approach, a formal application of the recipe discovered 

herein will be applied to a few different potentials for c-Si and c-Ge.  
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 EXAMPLES: CRYSTALLINE SILICON AND 

GERMANIUM 

This chapter applies the knowledge from Chapters 2, 3 and 4 to worked examples for 

two simple systems – diamond structured crystalline silicon and germanium (c-Si and c-

Ge, respectively). Attaining the training set/fitting targets, will first be discussed with 

special considerations regarding the number of certain configurations and types of 

configurations. Choosing the potentials to test the POPs Tenets, method, and the POPs 

program will also be discussed, along with their respective functional forms. Results will 

be presented in terms of errors in training quantities, along with how these errors relate to 

the target goal of reproducing phonon properties.  

5.1 Obtaining the Training Set 

Before parameterization of potentials ensues, a set of fitting quantities and their 

associated atomic positions must be obtained. This training set will contain everything that 

the potential is parameterized against, and the first step in obtaining it is choosing DFT 

settings that will produce accurate fitting quantities. Accurate in this sense means accurate 

forces for varying displacements around the equilibrium positions, and therefore accurate 

force constants and phonon properties. The phonon properties can be tested by taking 

force-displacement data obtained from DFT, fitting the TEP of Equation 21 to obtain force 

constants, and then using these force constants with Equations 28 and 41 to calculate 

phonon dispersion and thermal conductivity. These quick checks at least show that the 

force constants obtained from the DFT data are accurate, and therefore the forces and DFT 
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settings are accurate. For non-crystalline systems, where phonon dispersion and thus PGM 

based expressions for thermal conductivity cannot be defined, other parameters such as the 

bulk modulus can be verified from DFT energy-volume and pressure-volume data.  

5.1.1 DFT Settings 

The DFT calculations for c-Si were performed on 64 atom supercells using VASP 

153, employing the GGA, with plane augmented wave pseudopotentials 195 and the PBE 

functional 172 was used for the exchange-correlation energy. For both c-Si and c-Ge, 

pseudopotentials with s2p2 valence electron hybridizations were used, resulting in 4 valence 

electrons that enter the electronic structure calculation. Energy cutoffs of 245.3 eV and 

174.0 eV were employed for the wave functions in c-Si and c-Ge, respectively. For both c-

Si and c-Ge, a 666   Monkhorst-Pack 196 q -point grid was used as the domain for charge 

density calculations, and electronic structure was converged to within 10-5 eV. The forces 

were converged to 10-4 eV/Å. These settings were applied to obtain the energy and forces 

associated with configurations where atoms are randomly displaced from their equilibrium 

site, as well as the configurations where atoms are positioned on their geometric lattice site, 

but the lattice parameter is varied. All atoms in the randomly displaced configurations were 

displaced up to 0.1 Å, resulting in forces on the order of 0.1-1 eV/Å for each atom.  

GGA and PAW pseudopotentials were chosen since these yielded accurate lattice 

parameters under DFT relaxation of the primitive cell for both c-Si and c-Ge. Energy 

cutoffs and q -point grids must be chosen such that a measure of energy is converged in 

the DFT calculations. A convenient and meaningful measure of energy is the cohesive 

energy; the difference between the total calculated ground-state energy of the atomic 
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system and the sum of all single-atom ground-state energies 117. For example, the cohesive 

energy of a 64-atom c-Si system is the total ground-state energy of the 64-atom system 

minus 64 ground-state energies of single silicon atoms. By this definition, the cohesive 

energy is the energy required to separate the atoms of the system (i.e., break the bonds) 117. 

The energy cutoffs and q -point grids were both chosen such that the total cohesive energy 

of the system converged to within 10-2 eV. This was accomplished by sampling increasing 

numbers of q -points in the grid using a literature recommended values for the energy cut-

off, until the total cohesive energy converged. Using these converged q -point values, the 

energy cut-off was then sampled with increasing values until the cohesive energy again 

converged within 10-2 eV, and these converged energy cut-offs were only slightly higher 

than values recommended in literature for phonons 34.  

5.1.2 Equilibrium Structures 

The goal here is to capture configurations of atoms that are perturbed about from 

their equilibrium sites, so that the fitting captures these perturbations and associated forces 

and force constants that underlie the LD formalism introduced in Chapter 2. The 

assumptions for eliminating the first two terms of the TEP in Equation 22 also hinge on the 

requirement that the structure is at an energetic minimum with zero forces on the atoms. 

Thus, an equilibrium structure must be obtained. It is also important to obtain an 

equilibrium structure with an equilibrium lattice parameter since the lattice parameter 

influences the phonon calculations based on reciprocal lattice vectors, as seen in Chapter 

2. To calculate the DFT lattice parameter, configurations with equilibrium diamond 

structure positions were sampled over a variety of volumes. The resulting energy-volume 
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dataset was then fit to the Birch-Murnaghan isothermal equation of state 197, which gives 

the cohesive energy E as a function of volume V as, 
















































































3/2

0

2
3/2

0'

0

3
3/2

000
0 4611

16

9
)(

V

V

V

V
B

V

VBV
EVE  (53) 

Where 0E  is the minimum energy of the energy-volume curve, 0V  is the volume associated 

with the minimum energy, 0B  is the bulk modulus, and 
'

0B  is the derivative of bulk 

modulus with respect to pressure. These quantities can all be treated as fitting parameters 

to the energy-volume dataset. The GA can be used to calculate these parameters for a given 

energy-volume dataset. To test the accuracy of the equilibrium lattice parameter, which is 

the cubed root of the 0V  parameter in Equation 53, energy-volume data from DFT can be 

taken over a range of volumes and then fit to the Birch-Murnaghan equation of state. The 

result for c-Si is shown in Figure 15. 

 

 

 

 

 

Figure 15 – Energy-volume data for c-Si fit to the BM equation of state. 
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The energy-volume data in Figure 15 was chosen over a few angstroms, and the fit to the 

BM equation of state yielded a better idea of where the equilibrium zero pressure lattice 

parameter for the DFT calculations lies, around 5.5 A as shown. A more accurate resolution 

can be obtained by fitting a parabola to the small region around this value, plus or minus a 

few hundredths of an angstrom. The results showing the c-Si lattice parameter are shown 

in Figure 16. 

 

 

 

 

 

 

After the range of DFT lattice parameter is found via a BM fit, the exact lattice parameter 

can be calculated from a fit to smaller spaced volume data as shown in Figure 16. This 

procedure was performed for both c-Si and c-Ge, yielding lattice parameters that were 

0.70% and 0.49% off from experimental values 198,199. Obtaining these equilibrium 

structures with accurate agreement to experimental structural parameters is important for 

the generation of more training data, as well as ensuring the Brillouin zone is accurately 

sampled during phonon dispersion calculations via Equation 28. With equilibrium 

Figure 16 – Narrow energy-volume from c-Si DFT with a parabola fit. 
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structural quantities like the lattice parameter obtained in agreement with experiment, it is 

now safe to construct fitting data such as forces and stresses arising from perturbing the 

atoms about their equilibrium positions.   

5.1.3 Perturbed Structures 

It was shown in Chapters 3 and 4 that structures perturbed from equilibrium are 

necessary to include in fitting to capture forces, energies and stresses associated with these 

perturbations, thus ensuring various types of stability in MD simulations. The training set 

here for both c-Si and c-Ge included 300 displaced configurations and 50 volume 

configurations, consisting of the lattice parameter spanning +/- 5% around the equilibrium 

value. The amount of displacements chosen for the displaced configurations was motivated 

by the desire to reproduce forces near the regime where the harmonic approximation is 

most valid. Small displacements only 0.01 Å have been shown to reproduce harmonic 

forces leading to accurate phonon frequencies in both crystals 33. To determine the 

magnitude required to capture anharmonic forces and ensure dynamical stability in a MD 

simulation, DFT-MD simulations of small unit cells showed the root mean squared 

displacement of atoms to have an average of 0.3 Å at 600 K. The randomly displaced 

configurations therefore included displacements up to 0.5 Å to better resolve the high 

temperature phase space.  

 Random displacements were generated by taking the equilibrium relaxed structure 

corresponding to the minimum of the energy-volume curve in Figure 16, and then adding 

random displacements from [-0.3 Å, 0.3 Å] to the Cartesian position components. The 

choice of 0.3 Å for each coordinate is chosen such that the maximum norm of the 
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displacement vector corresponds to the previously mentioned 0.5 Å. Half of the 300 

displaced configurations consisted of these “large” displacements, while the other half 

consisted of small displacements up to 0.01 Å. Inclusion of the smaller displaced 

configurations ensured that the harmonic phase space associated and phonon frequencies 

could accurately be captured. Although the forces are a first step in obtaining a full training 

set to create POPs, fitting to force derivatives is also necessary for stability and accurate 

phonon properties. Perturbed configurations and their resulting forces were used to 

calculate these derivatives.  

5.1.4 IFC Calculation 

IFCs were calculated using the DDM discussed in Chapter 2, in which force-

displacement data from perturbed configurations were fit to a TEP. Fitting parameters in 

the TEP represent the IFCs, so these values can be obtained by fitting directly to DFT 

forces. In theory, only a displacement of one atom in a single Cartesian direction is needed 

to calculate accurate 2nd order IFCs in diamond structured materials 33. In practice, 

however, when developing a potential optimized for phonon properties while remaining 

stable in MD simulations, it is of interest to ensure that the IFCs are still accurate when 

calculated using more diverse configurations. For this reason, the IFCs were calculated 

during the optimization process by using 50 of the randomly displaced configurations. This 

ensures that the IFCs calculated by the potential are still accurate in this more complex part 

of phase space, instead of just at a single point given by one displacement. The cutoff of 

the TEP calculating during the optimization process was chosen so that the phonon 

dispersion converged in both c-Si and c-Ge, which includes 9th nearest neighbors. The 

discussion in the next section on choosing functional forms for this system was influenced 
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by these findings, as the cutoff for the potential for each atom must include interactions 

that extend to the 9th nearest neighbor of that atom.  

5.2 Choosing Interatomic Potentials 

Semiconductor and insulator materials already have many functional forms made for 

their study in MD simulations, created by previous researchers decades ago 66,71. While 

these potentials have been shown to perform stable MD with semiconductor materials, they 

are still short-range potentials that lack the necessary long-range interactions required to 

reproduce correct phonon dispersions 80. The potentials chosen for this study were therefore 

be a combination of traditional short-range and long-range potentials. Traditional short-

range potentials have been shown to stabilize diamond lattices 58,66, so this is a necessity. 

Traditional long-range potentials utilize the 2-body radial descriptor discussed in Chapter 

2, and Hypothesis 4 assumes these potentials can capture long-range interactions associated 

with phonon frequencies at Brillouin zone boundaries.  Long-range 3-body potentials have 

not been developed or used extensively in the literature, therefore this work only includes 

long range 2-body terms. The difficulty in applying long-range 3-body potentials lies in 

the fact that the existing functional forms for 3-body potentials possess a single parameter 

for the angle in a triplet of atoms, and this only makes sense for 1st nearest neighbors, since 

all 1st nearest neighbors possess identical angles with respect to a central atom. If one were 

to extend a 3-body interaction beyond first nearest neighbors, then defining the equilibrium 

angle would require different definitions for different triplets, which would be cumbersome 

to implement and would only make sense for the single crystal structure being studied, i.e., 

the potential would not be transferable. Another difficulty lies in the computational expense 

of using long-range 3-body interactions, as the number of triplet evaluations would scale 
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with radius to the fourth power. For short-range interactions, however, a classical 

functional form for semiconductors is the Tersoff potential 71, so this was chosen. Another 

traditional choice is the Stillinger-Weber potential 66. To deviate from traditional choices 

for these functional forms, a Morse + 3-body harmonic potential was also be chosen as a 

combination of Equations 10 and 12. These short-range potentials possess the necessary 

physics (3-body interactions) to stabilize a diamond-structured lattice 65. For the long-range 

potentials, there are a few traditional options to address Question 4, regarding whether 

these traditional forms can accurately capture phonon frequencies. 

 Based on traditional physical knowledge of long-range interactions in atomic 

systems, especially crystals, prior work has shown that these interactions exist in the form 

of van der Waals forces and Coulomb forces 117. The van der Waals interactions have been 

shown to decay as 
6

1

r
 and Coulomb forces decay as the inverse of interatomic distance117. 

Recent advances in computing the Coulomb potential allow for quicker and more accurate 

calculations in terms of force cutoffs, particularly with the damped-shifted-force (DSF) 

model 128. This form of the Coulomb potential was therefore used in this study. More 

flexibility for long-range interactions can be added with the addition of other potentials, 

such as the van der Waals type Buckingham and Born potentials. A combination of short-

range 3-body interactions and long-range 2-body interactions was hypothesized to possess 

the necessary physics to both stabilize the diamond lattice, along with providing the long-

range interactions necessary to reproduce proper phonon dispersion. The three potentials 

to illustrate the POPS method with c-Si and c-Ge were therefore the (1) Tersoff + 

Buckingham + Coulomb (TBC) potential, (2) Stillinger-Weber + Buckingham + Coulomb 
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(SWBC) potential and (3) the Morse + 3-body + Born + Coulomb (M3BC) potential. With 

these functional forms declared, and the training set obtained from Section 5.1, the fitting 

procedure utilizing the POPS program and recipe were ready for testing. 

5.3 GA Fitting 

The GA in the POPS program was used to minimize the objective function in 

Equation 52. The weights for fitting quantities were chosen such that fw = 0.15, 
ew = 0.25, 

sw = 0.2, 2ifcw = 0.2, 3ifcw = 0.2. Before the fitting is accomplished, however, settings for 

the GA must be chosen so that the fitting has guidelines to abide by. Previous fitting 

experiments in Chapter 4 found that most fits converged within 150 generations of the GA, 

and a population size of 1,000 was sufficient, so these settings were chosen. It was also 

helpful to employ a high mutation rate and therefore avoid local minima in the first round 

of fitting. For the first fitting trial, a mutation rate of 0.5 was chosen to seek out more 

diverse regions of the parameter search space. The elite percentage was chosen to be 5%, 

thus ensuring that the top 5% of the population for each generation survived the selection 

process. A mutation rate of 10% was used in the second round of fitting so that the 

converged local minimum found by the first round could be optimized further. The above 

procedure was repeated in parallel for 50 different trials, resulting in many local minima, 

although some trials found the same local minimum. The training set included a total of 

350 configurations as mentioned in Section 5.1, namely 150 randomly displaced 

configurations up to 0.5 Å, 150 randomly displaced configurations up to 0.01 Å, and 50 

volume configurations. The 1,000 individuals in the population were parallelized over 25 

processes for each trial, thus resulting in a total fitting time of 2 hours for 150 generations. 
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It should be noted that fitting potentials within 2 hours is a major step forward in terms of 

speed, as many previous works have required months of computational time to find a single 

solution 51,56,121,122,132,200 

5.4 Results 

The average objective function convergence for both c-Si and c-Ge for all three potentials 

as a function of iterations is shown in Figure 17. 

 

 

 

 

 

 

As seen in Figure 17, the TBC and M3BC potentials decreased the objective function error 

of Equation 52 by about 3 orders of magnitude. The SWBC potential, however, did not 

decrease over a single order of magnitude. This shows that at least in the parameter space 

that was being searched, the SWBC potential cannot simultaneously reproduce the forces, 

energies, stresses and IFCs of the training data. It is important to note here that the 

Figure 17 – Objective function convergence as a function of iterations. The black line 

represents the TBC potential, the red line is the M3BC potential, and the black line is the 

SWBC potential. Each line in this figure is an average over all 50 trials performed in the 

fit, for both c-Si and c-Ge. 
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parameter space being searched in SWBC was the same as the other potentials; all 

parameters spanned 2 orders of magnitude. This range was found, also in agreement with 

the first Tersoff fitting experiment in Chapter 4, to result in fitted parameters that did not 

approach the intervals of allowed parameter values. The failure of the SWBC potential was 

attributed to the fact that stresses and IFCs were could never decrease in error 

simultaneously – all fits either possessed low stress errors and high IFCs errors or vice 

versa. Regardless, this type of analysis is beneficial in the sense that it shows that it is 

possible for this approach to determine that a given potential is incapable of reproducing 

the training data in the parameter search space under consideration. Thus, it can be largely 

concluded that the SWBC functional form cannot be used to model c-Si accurately for 

phonons. Even more beneficial is the fact that the training can take a couple hours as 

opposed to a couple days or weeks presented by other methods and programs 124, so ruling 

out an entire functional form no longer takes large amounts of time. Furthermore, this 

brings more confirmation to Hypothesis 3 that many different parameter sets exist for 

traditional potentials to describe thermal properties, since each line in Figure 17 is the 

average objective function error of 50 random GA trials converging to vastly different 

regions of the parameter search space. Due to the failure of SWBC in the parameter search 

space under consideration, the top three TBC and M3BC potentials with the lowest 

objective function errors were selected for deeper evaluation of their errors and phonon 

properties. 

5.4.1 Errors in Training and Validation Data 

While the evolution of the objective function is shown in Figure 17, the value of the Z itself 

is not particularly useful, judging by its form in Equation 52. A much more intuitive 
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measure of error, which is not suitable for fitting, as mentioned in Chapter 4, is the mean 

percent error (MPE) given by  





M

m m

mm

t

pt

M
MPE

1
%100  (54) 

Where mt  is the target value (DFT) and mp  is the predicted value (potential calculated 

value) of configuration m . The target and predicted values in Equation 54 can be any 

quantity included in the training, such as forces or energies. The errors on the training data 

are not as useful as errors for validation data, namely data that was not included in the 

fitting procedure. Validation errors are of more interest since the potentials will be used in 

MD simulations that sample phase space outside of which they were trained for. The 

validation data therefore included 50 randomly displaced configurations for which the 

potentials were not trained on. The errors presented in this section apply Equation 54 to 

each of the quantities included in the objective function to calculate the MPE of these 

quantities. Taking the top three candidates of the fitting process for each of the three 

potentials, Table 1 summarizes the errors in terms of percentage for each of the training 

quantities for c-Si. The values entered in this table are the mean percent error (MPE) for 

each training quantity, given by Equation 54. The IFC2 and IFC3 quantities are the 2nd and 

3rd order IFCs, respectively.  
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Table 1 – MPE (%) Validation Set Errors for c-Si 

 TBC-1 TBC-2 TBC-3 M3BC-1 M3BC-2 M3BC-3 

Force 3.1 3.7 4.4 3.9 5.8 6.2 

Energy  0.09 0.06 0.14 0.11 0.07 0.15 

Stress 16 13 19 15 26 18 

IFC2 17 22 26 29 22 24 

IFC3 8.2 10 10 9.5 15 18 

 

The results for c-Si show that all potentials yielded force errors less than 10%. The low 

errors in energy contribute to almost exact agreements with the lattice parameter. Table 2 

summarizes the MPE metrics for c-Ge. 

 

 

 

 

 

 



 106 

Table 2 – MPE (%) Validation Set Errors for c-Ge 

 TBC-1 TBC-2 TBC-3 M3BC-1 M3BC-2 M3BC-3 

Force 2.8 4.7 5.1 6.3 4.9 7.5 

Energy  0.05 0.03 0.06 0.09 0.14 0.07 

Stress 14 18 15 22 19 13 

IFC2 20 22 26 41 31 19 

IFC3 14 9.7 12 15 11 24 

 

Table 2 shows that the validation errors for the TBC and M3BC potentials for c-Ge are like 

c-Si in Table 1, in the sense that energy agreement is the best, followed by force as the next 

best. Stresses and IFCs exhibit worse agreements in percent error. The difficulty in 

exhibiting stress errors below 10% is due to the complicated off-diagonal stress tensor 

components associated with randomly displaced configurations. The stress errors for only 

the volume configurations exhibited errors around 1%, since these configurations 

possessed equilibrium lattice sites and therefore no off-diagonal stress tensor components. 

 For both c-Si and c-Ge it is apparent that the IFC errors were the highest, especially 

the IFC2 errors. Further investigation showed that the majority of the IFC2 error was due 

to long-range 2nd order IFCs, which was surprising due to the fact that long-range 2-body 

potentials were included, and it was hypothesized that the GA would therefore be able to 

match these IFCs. In contrast, the first nearest neighbor 2nd order IFCs exhibited nearly 
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exact agreement. The 3rd order IFCs also exhibited somewhat better agreements to training 

data compared to 2nd order IFCs, mainly since the 3rd order IFCs in the training data only 

extended out to first nearest neighbors. A deeper discussion on these IFC errors is given in 

Chapter 6.  

5.4.2 Structural Property Agreement 

Table 1 and Table 2 show that energy errors for all the fitted potentials exhibited 

excellent agreement consistently below 1%. It is important to recall here that 50 

configurations of varying volumes were included in the training set. The low energy errors 

therefore included these configurations, thus accurately capturing the energy as a function 

of volume. This excellent agreement in energy as a function of volume directly leads to 

excellent agreements in equilibrium lattice parameters for c-Si and c-Ge. Figure 18 shows 

a graphical example of this agreement for c-Si. 
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The energy associated with the lattice parameter in Figure 18 is taken to be 0 eV due to the 

all configuration potential energies being subtracted by the minimum energy at the 

equilibrium lattice parameter. This figure shows how the lattice parameter, or cubed root 

of the system volume, matches the DFT value for all the c-Si POPs. Similar results ensued 

for c-Ge. Table 3 below shows the percent errors in lattice parameter for c-Si and c-Ge 

across the top 3 candidates for TBC and M3BC potentials. The lattice parameters are shown 

to be consistently below 0.1% error from the DFT value.  

 

 

 

Figure 18 – Energy vs. lattice parameter for DFT and various c-Si POPs. 
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Table 3 – Lattice parameter percent errors for various POPs in c-Si and c-Ge. 

 TBC-1 TBC-2 TBC-3 M3BC-1 M3BC-2 M3BC-3 

c-Si 0.010 0.013 0.009 0.010 0.025 0.008 

c-Ge 0.012 0.007 0.018 0.014 0.006 0.022 

The DFT lattice parameter values of 5.47 Å and 5.74 Å for c-Si and c-Ge, respectively, 

exhibited small errors from the experimental values of 5.43 and 5.66 198,199. Since the target 

for the POPs is DFT, however, errors with respect to DFT values are of interest. The 

excellent agreement with DFT lattice parameter for all the POPs ensures that the Brillouin 

zone itself is scaled correctly via Equation 28 to obtain the frequencies as a function of 

directions in the Brillouin zone. This is the first and most fundamental step in achieving 

accurate phonon frequencies, since Brillouin zone space is defined in terms of inverse 

lattice parameter. With these fitting errors in mind, calculating thermal conductivity with 

these potentials further answers Question 1, specifically was it sufficient to fit to these 

quantities to yield accurate thermal property prediction? To answer this question, the top 

three POPs containing the lowest objective function errors for each functional form and 

each system were chosen for phonon property calculations. 

5.4.3 Phonon Thermal Conductivity 

Phonon thermal conductivity is an example of an anharmonic property, depending 

explicitly on IFCs beyond 2nd order. The thermal conductivity of the POPs generated in 

this study was calculated via the BTE using the RTA, via Equation 41. In the limit of 

applicability to crystals, the BTE method has been shown to be equivalent to GK 
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calculations using EMD 42,201. However, the BTE method is much faster to evaluate, and 

can conveniently be done using Alamode. Using the BTE based approach will then allow 

for the comparison of POPs thermal conductivities to DFT thermal conductivity utilizing 

DFT IFCs in the BTE approach. The 3rd order IFCs required for this calculation were 

generated using randomly displaced configurations up to 0.05 Å, and fitting the resulting 

force-displacement data to the TEP of Equation 22 via least squares. The fitting procedure 

is the same as obtaining the 2nd order IFCs, except that the force-displacement data contains 

configurations of larger displacements to sample anharmonic regions of the potential. The 

thermal conductivity results for the c-Si TBC potentials are shown in Figure 19, compared 

to low and high temperature experimental results of Inyushkin 202 and Glassbrenner 185. 

 

 

 

 

 

 

Figure 19 – Thermal conductivity of c-Si for the TBC POPs. The red, blue and grey lines 

are the TBC-1, TBC-2 and TBC-3 POPs, respectively. The black line is DFT and circles 

and squares are experiments. Dashed lines are added to show that the c-Si TBC potentials 

are well within 10% of DFT values across the entire range of temperatures. The blue and 

red dotted lines show original Tersoff and SW calculated values, respectively. Red circles 

and squares are experimental results from literature. 
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The c-Si TBC potentials exhibit excellent agreement to the DFT thermal conductivity with 

across the entire range of temperatures in Figure 19, with the TBC-1 potential only 

deviating by a few percent. The c-Si M3BC potential thermal conductivities are shown in 

Figure 20. The circles and squares in Figure 19 and Figure 20 are experimental values 

185,202, and dotted red and blue lines are the original Tersoff 71 and Stillinger-Weber 66 

parameter sets. 

 

 

 

 

 

 

 

 

 

Figure 20 - Thermal conductivity of c-Si for the M3BC POPs. The red, blue and grey lines 

are the M3BC-1, M3BC-2 and M3BC-3 POPs, respectively. The black line is DFT and 

circles and squares are experiments. Dashed lines are added to show that the c-Si M3BC 

potentials are within 15% of DFT values across the entire range of temperatures. 
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The c-Si M3BC potentials exhibit thermal conductivity errors compared to DFT up to 13%, 

due to poorer agreement in 3rd order IFCs shown in Table 1. The TBC potentials were able 

to more accurately reproduce these higher order IFCs due to the inherent flexibility of the 

Tersoff portion of the potential, which well exceeds the flexibility of the short-range Morse 

+ 3-body harmonic potentials. The thermal conductivity for the c-Ge TBC potentials is 

shown in Figure 21, compared to experiments of Ozoghin 191 and Glassbrenner 185. 

 

 

 

 

 

 

Figure 21 - Thermal conductivity of c-Ge for the TBC POPs. The red, blue and grey 

lines are the TBC-1, TBC-2 and TBC-3 POPs, respectively. The black line is DFT and 

circles and squares are experiment. Dashed lines are added to show that the c-Ge TBC 

potentials are within 10% of DFT values across the entire range of temperatures. The 

original Tersoff parameter set for c-Ge is shown as a dotted blue line.  
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The c-Ge TBC POPs fall within 15% error from DFT thermal conductivity. The circles and 

squares, again, are experimental values 185,191 and the blue dotted line is the thermal 

conductivity using the original Tersoff parameters 112. The thermal conductivity results for 

the top three c-Ge M3BC POPs are shown in Figure 22. 

 

 

 

 

 

 

The thermal conductivities of all POPs for c-Si and c-Ge show excellent agreement with 

DFT over the range of temperatures from 100 K to 1000 K, especially compared to original 

potentials for such systems. The best agreements, seen with the c-Si TBC-1 potential, 

corresponds with excellent agreements in 3rd order IFCs from Table 1. Contrarily, the worst 

agreement with DFT thermal conductivity with c-Ge M3BC-3 is seen from the poorer 

agreements in 3rd order IFCs in Table 2. These thermal conductivity results suggest that all 

Figure 22 - Thermal conductivity of c-Ge for the M3BC POPs. The red, blue and grey 

lines are the M3BC-1, M3BC-2 and M3BC-3 POPs, respectively. The black line is DFT 

and circles and squares are experiments. Dashed lines are added to show that the c-Ge 

M3BC potentials are within 15% of DFT values, except for deviations in M3BC-3 which 

deviate up to 17% at higher temperatures.  
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the POPs sufficiently reproduce the necessary quantities to predict thermal conductivity 

within ~10% error of accurate DFT predictions. This also suggests that the POPs developed 

herein accurately capture the anharmonic properties of the potential sufficiently to achieve 

such agreement. The c-Si TBC-1 potential, for example, possessed the best agreement to 

DFT thermal conductivity (< 2% error across all temperatures) and possessed the lowest 

IFC3 error (< 10%) as seen in Table 1. While the anharmonic properties of the lattice are 

well described using these POPs, it is equally important to accurately describe harmonic 

properties since these determine modes in the material 35. Phonon frequencies as a function 

of directions in the Brillouin zone, or phonon dispersions, are an excellent measure the 

harmonic behaviour 26 and will therefore be used to further investigate the efficacy of these 

POPs. 

5.4.4 Phonon Dispersions 

Harmonic properties are observed via the 2nd order IFCs, which enter phonon 

frequency calculations or phonon dispersions for crystalline materials 116. Phonon 

dispersions for DFT and the obtained POPs are calculated via the direct displacement 

method herein, by obtaining the 2nd order IFCs via fitting force-displacement data to the 

TEP in Equation 22. The IFCs are then used to calculate the phonon frequencies as a 

function of directions in the Brillouin zone via Equation 28. This procedure was replicated 

for c-Si and c-Ge for all the POPs, using randomly displaced configurations up to 0.01 Å 

for the force-displacement data involved in TEP fitting. The TEP fitting process involved 

least squares minimization in the Alamode program 116. Alamode was also used to solve 

for the phonon frequencies via Equation 28.  Despite the relatively large 2nd order IFC 

(IFC2) errors in Table 1 and Table 2, compared to other fitting quantities, the phonon 
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dispersions of POPs for c-Si and c-Ge exhibited qualitative agreement to DFT quantities. 

The phonon dispersion for the c-Si TBC potentials are shown in Figure 23, along with DFT 

and neutron scattering experimental values 203. 

 

 

 

 

 

 

The phonon dispersions for the c-Si M3BC potentials are shown in Figure 24. 

 

 

 

 

 

 

Figure 23 – Phonon dispersion for c-Si TBC POPs. The red, grey and blue lines are the 

TBC-1, TBC-2 and TBC-3 potentials, respectively. The black lines are the DFT (target), 

and the white squares are experimental neutron scattering values from literature. 
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While Figure 23 and Figure 24 show qualitative agreement to DFT and experimental 

results, DFT still vastly outperforms the POPs in experimental phonon dispersion 

agreement. It is important to compare to existing parameter sets, however, to show that the 

POPs at least outperform traditionally used potentials. Phonon dispersions compared to 

DFT and experimental results for the original Tersoff 71 and Stillinger-Weber 66 are shown 

in Figure 25. 

Figure 24 – Phonon dispersion for c-Si M3BC POPs. The red, grey and blue lines are the 

M3BC-1, M3BC-2 and M3BC-3 potentials, respectively. The black lines are the DFT 

(target), and the white squares are experimental values.  
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Although the c-Si POPs don’t exactly match DFT phonon dispersions, they still perform 

much better than existing potentials still used today as seen in Figure 25. Especially in the 

optical phonon branches (higher frequencies), the original Tersoff 71 and Stillinger-Weber 

66 potentials tend to overestimate the frequencies. The POPs developed herein are therefore 

a major improvement over these original potentials in terms of harmonic phonon 

Figure 25 – Phonon dispersion curves for c-Si using the original Tersoff and Stillinger-

Weber potentials (blue and red lines, respectively) compared to DFT and experimental 

values (black lines and white squares, respectively). 
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properties. Similar qualitative agreement was seen with c-Ge, the phonon dispersions for 

the c-Ge TBC potentials are shown in Figure 26 compared to experimental values 204 

 

 

 

 

 

 

 

The phonon dispersions for the c-Ge M3BC potentials are shown in Figure 27, along with 

DFT and the same experimental values 204.  

 

 

 

 

Figure 26 – Phonon dispersions for c-Ge TBC potentials. The red, grey and blue lines are 

the TBC-1, TBC-2 and TBC-3 potentials, respectively. The black line is the DFT (target) 

phonon dispersion, and white squares are experimental values.  
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As seen in the phonon dispersion figures, all the of the c-Si and c-Ge POPs exhibit decent 

agreement in dispersion. Figure 27 is notable due to the worsening trend of phonon 

dispersions between the POPs. Referring to Table 2, the IFC2 errors for c-Ge M3BC 

potentials follow the same trend as seen in Figure 27. This example shows that, at least for 

this test case, the agreement in 2nd order IFCs can be proportional to the qualitative 

agreement and frequency accuracy in the Brillouin zone. Such an observation better 

supports Tenet 3 of the POPs approach, noting that the viability of a potential to predict 

phonon frequencies is determined by its agreement in 2nd order IFCs. All the POPs, 

however, were unable to reproduce the well-known flattening of the acoustic branch at the 

X  point of the Brillouin zone boundary. The Brillouin zone boundary corresponds to long-

range interatomic interactions and IFCs 115,116. According to Hypothesis 4, inclusion of 

traditional long-range potentials should have accurately captured these long-range 

Figure 27 - Phonon dispersions for c-Ge M3BC potentials. The red, grey and blue lines 

are the M3BC-1, M3BC-2 and M3BC-3 potentials, respectively. The black line is the DFT 

(target) phonon dispersion, and white squares are experimental values. 
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interactions, thereby resulting in the characteristic flattening at the X  point. None of the 

potentials were able to resolve these long-range IFCs nor the corresponding phonon branch 

flattening and thus we conclude that Hypothesis 4 is incorrect/not true. Furthermore, IFC2 

errors for all potentials seemed to be the highest error quantities associated with these POPs 

(Table 1 and Table 2). Investigating this further, it is apparent that over 90% of the IFC2 

errors are the long-range harmonic IFCs. This is rather surprising since 50 trials of the GA, 

all finding vastly different parameter sets, were not able to achieve accurate long-range 

harmonic IFCs despite the addition of long-range potentials. Inability of traditional long-

range potentials to properly match the phonon dispersion curves shows that Hypothesis 4 

was wrong, and that this issue warrants further investigation. 

5.5 Summary 

This chapter walked through application of the POPs Tenets to c-Si and c-Ge, 

namely the attempted reproduction of forces, 2nd and 3rd order IFCs by fitting via the GA 

for three different functional forms. Brute force fitting for 50 trials with the GA showed 

that some potentials, namely SWBC in this case, are not able to simultaneously reproduce 

all quantities in the objective function. Average error in DFT fitting targets across all fitting 

trials for the TBC and M3BC potentials decreased by three orders of magnitude, thus 

confirming Hypothesis 3 and the validity of Tenet 4 that multiple parameter sets exist to 

match quantities relevant to phonons (i.e., forces and IFCs). This is further confirmed by 

showing that the top three POPs for each case resulted in accurate thermal conductivity 

predictions (<10% error in experiments). Despite accurate thermal conductivity prediction, 

especially compared to the original Tersoff and Stillinger-Weber potentials, none of the 

POPs could properly match DFT or experimental phonon dispersions. This was surprising 
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since traditional long-range 2-body interactions were included, thus showing that 

Hypothesis 4 is false; it seems that traditional long-range interactions cannot accurately 

capture long-range harmonic IFCs. This is not an issue of the fitting procedure but rather 

an issue of the underlying descriptions of atomic geometry in these potentials; the 2-body 

radial geometric descriptor discussed in Chapter 2. It is desirable to accurately predict both 

thermal conductivity and harmonic modal properties so that we may calculate accurate 

thermal conductivity for the proper underlying reasons (i.e., the vibrational modes that 

contribute to it) 35,54. This therefore warrants an investigation on the failure of traditional 

long-range potentials to properly predict harmonic phonon properties, so that such issues 

may be alleviated.  
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 MODELING LONG-RANGE INTERACTIONS 

While the POPs obtained in Chapter 5 performed well at predicting thermal 

conductivity, they failed to properly predict phonon dispersion curves. This main 

discrepancy was mainly seen at the Brillouin zone boundaries, associated with long-range 

interatomic interactions 43,115,116. Since parameters of long-range central potentials, 

utilizing the pairwise distance geometric descriptor, were exhaustively searched using the 

GA, this shows that something may be wrong with the functional forms of such potentials 

that limits their ability to describe long-range interactions. 

6.1 Limitations of Central Potentials 

Central potentials assume that the energy of interaction between two bodies depends 

only on the radial distance between those bodies. The radial symmetry associated with a 

potential depending on this geometry assumes that changes in the perpendicular directions 

about a given radial axis are all equivalent, and therefore the potential cannot resolve 

differences in these directions if they exist. In fact, radial potentials can mathematically 

only experience two unique IFCs in the radial and tangential direction. Therefore, it is clear 

that a radial based functional form is intrinsically incapable of describing the 9 different (6 

unique) 2nd order IFCs needed for every pair. This is mathematically realized since a central 

potential only possesses 2 unique 2nd derivatives in the radial and tangential directions, 
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, respectively. Since central potentials can only possess two unique 

IFCs, they cannot capture the true nature of IFCs given by their definition in the TEP of 

Equation 22. The true 2nd order IFCs form a matrix of 9 IFCs for each 2-body interaction. 
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This is often a symmetric matrix, resulting in 6 unique IFCs for each 2-body interaction 

173. In many crystalline materials, especially those with more than a single basis such as 

diamond c-Si and c-Ge, these 6 IFCs can all be unique 34,173. Central potentials are unable 

to resolve these unique IFCs for a single 2-body interaction, due to the fact they only have 

two unique IFCs. This limitation is more readily visualized in three dimensions in Figure 

28, which further elucidates the issue of radial symmetry with central potentials. 

 

 

 

 

 

 

 

The top atom in Figure 28 may move in the plane of the cone, which is parallel to the xy  

axis. Two blue vectors represent possible motions in the x  or y  direction, and every other 

motion in this plane is defined as a linear combination of these vectors. According to central 

Figure 28 – Visualization of a radial 2-body interaction described by a central potential. 

All motions of the top atom in any direction in the plane of the cone (e.g., the blue vectors) 

are considered equal due to radial symmetry. 
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potentials, these two motions result in identical forces and therefore yield identical IFCs, 

due to radial symmetry. Originally unknown prior to the investigation of Question 4, this 

assumption was shown in early works to be incorrect for covalent solids due to their highly 

inhomogeneous electronic structure 205. Earlier researchers in LD also noted that central 

forces are not sufficient to achieve phonon frequency flattening at  Brillouin zone 

boundaries 206, but such work has eluded the modern use of long-range central potentials 

for phonon properties 79. This further confirms that Hypothesis 4 is incorrect; traditional 

long-range potentials do not possess the necessary flexibility to properly describe phonon 

frequencies at the Brillouin zone boundaries in semiconductors, no matter how they are 

parameterized. Therefore, central potentials will never in general result in accurate phonon 

dispersions at the edges of the Brillouin zone, although some special cases may work (e.g., 

a noble element crystal). 

This limitation of central potentials has greatly eluded the modern phonon transport 

community, with many reports stating that they were simply unable to reproduce elastic 

properties properly 85. More recent studies simply state the inability of typical pairwise 

central potentials to exactly reproduce phonon dispersions, without further investigation or 

discussion 81,207-209. Since a major goal of atomistic phonon transport is to accurately study 

phonon transport properties in terms of the correct modes and frequencies, and accurate 

frequencies may only be obtained via long-range interactions 116, it is important to highlight 

and alleviate this issue associated with traditionally used long-range central potentials. This 

is a limitation of the models used and not of the parameterization process. To progress 

further, traditionally used potentials must be abandoned in favor of potentials that can more 

accurately reproduce modal characteristics and phonon frequencies. Specifically, 
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potentials possessing flexibility for long-range radially asymmetric interactions are 

required to describe all of the unique IFCs.  

6.1.1 Long-Range Radially Asymmetric Interactions 

Uniqueness of the IFCs for different directions in long-range interactions cannot be 

explained in terms of simple 2-body radial geometry descriptors, and these interactions 

extend well beyond 1st nearest neighbors. Clearly, a new description of geometry is needed 

in order alleviate this issue. One possibility is incorporating long-range 3-body angular 

interactions along with the radial interactions. Figure 29 shows how the N-body expansion 

in Equation 6, using only harmonic terms, truncated up to 3-body interactions can 

reproduce exact 1st nearest neighbor IFCs in c-Si. The potential used in this figure is given 

by 

  
ij ijk

ijkij krrkU 2

03

2

02 )()(   (55) 

where 0r  and 0  are parameters representing the equilibrium 2-body distances and angles 

for the 1st nearest neighbors, respectively. Parameterizing this potential using the GA yields 

a 2-dimensional optimization problem to solve for 2k  and 3k , the constants affecting the 
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strength of two and three body interactions, respectively. The only quantities included in 

the objective function were the 2nd order IFCs.  

 

 

 

 

 

The GA could exactly reproduce the 2nd order IFCs up to 1st nearest neighbor using the full 

expression in Equation 55. When only the two-body term was used, however, the problem 

turns into a simple one-dimensional optimization and there is no good solution, as shown 

by the disagreement of the blue dashed line in Figure 29. This shows that a Equation 55 

can match results of the TEP and resolve its IFCs, but applying this potential past 1st nearest 

neighbors is problematic due to the need of a unique angle term for longer ranged 

neighbors.  An easier alternative is using the TEP, which serves as the definition of the 

IFCs themselves in Equation 22. More importantly, the TEP describes geometry in such a 

way that the uniqueness of IFCs in all directions can be resolved. The convergence of TEP 

phonon dispersion as cutoff is increased for c-Si is shown in Figure 30.  

Figure 29 – Two and three body harmonic potential including first nearest neighbors of c-

Si. The black line is the TEP truncated up to first nearest neighbors, the red dashed line is 

the two and three body harmonic potential, and the blue dashed line is just the two body 

harmonic potential. The 2+3 body harmonic potential can exactly reproduce first neighbor 

TEP results, unlike the 2-body potential alone. 
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Figure 30  shows that as the cutoff of the TEP is increased from 1st nearest neighbour (1NN) 

interactions up to 9th nearest neighbors (9NN), the predicted phonon frequencies converge 

to experimental values. It is also seen that the long-range 2nd order TEP can reproduce the 

characteristic frequency flattening at the Brillouin zone boundary, unlike the long-range 

central potentials used in Chapter 5. The long-range 2nd order TEP  exactly reproduces the 

correct phonon dispersion as compared to DFT, and therefore accurately describes the 

modal characteristics of the system. The TEP is therefore a candidate for serving as a POP 

functional form. While the TEP can exactly reproduce derivatives of the energy by 

definition, thus fully satisfying the POPs Tenet 2, its reported use in MD simulations is 

minimal, and the few applications of the TEP did not involve MD simulations above room 

temperature 210. Thus further investigation into the use of the TEP for MD was needed. 

 

Figure 30 – 2nd order TEP phonon dispersions for various cutoffs in c-Si. The cutoffs range 

from values including 1st nearest neighbors (NN) up to 9th NN, for which the phonon 

dispersion converges almost exactly with experiment. 
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6.2 Molecular Dynamics with the TEP 

The 2nd order TEP potential will be denoted as TEP-2, expansions up to 3rd order will 

be denoted TEP-3, expansions up to 4th order will be denoted TEP-4, and so forth. When 

trying to perform MD simulations using TEP-2, c-Si was only stable up to 100 K. The 

system would quickly fall apart, and atoms would experience large displacements, noted 

by the surge in potential energy in Figure 31. 

 

 

 

 

 

The immediate cause of this instability was unclear and raised important question; if the 

forces and IFCs predicted by the TEP are accurate, what causes the instability? Unlike the 

instabilities observed in Chapter 4 which seemed to arise from errors in pressure and stress 

compared to DFT, the TEP predicts accurate stresses (<10%) for randomly displaced 

configurations. Furthermore, it is of interest to incorporate the TEP in MD simulations of 

thermal transport, so we can reap the benefits that general MD methods have over the PGM, 

which begs a seocnd question; will eliminating the unknown cause of instability allow the 

Figure 31 – TEP instability at 300 K for c-Si in a NVE ensemble. The rise in potential 

energy around 10 ps denotes unphysically large atomic displacements when the system 

collapses. 
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TEP to be used in MD simulations? First and foremost, the first question dealing with the 

underlying cause of instability must be investigated. Originally, it was hypothesized that 

the 2nd order interactions, which diverge to positive and negative infinity potential energy 

as shown by the TEP-2 PES in Figure 32, lead to unrealistically large forces and energies 

at high temperatures (large displacements). 

 

 

 

 

 

Potential energy for the TEP-2 in Figure 32 is plotted in terms of the TEP geometric 

descriptors, the displacements of atoms i  and j  in   and   Cartesian directions. It is 

evident that the slope of this PES increases linearly, and that for large displacements, the 

resulting forces would diverge. This led to the original hypothesis that the harmonic 

approximation of the TEP-2 leads to instabilities for higher temperatures, or large 

displacements. With this hypothesis in mind, it was of interest to investigate how the TEP 

PES could be modified somehow, so that these large forces no longer arise.  

Figure 32 – TEP-2 PES for a single 2-body interaction as a function of displacements of 

atoms i and j. The divergence to negative infinity was the original hypothesis for 

instabilities at elevated temperatures corresponding to large displacements. 
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6.3 Enhancing TEP Stability 

Attempts at enhancing stability of the TEP in MD simulations were be based on the 

hypothesis that large forces in the harmonic approximation are invalid, and thus cause 

instability. Several potential solutions were then devised to obtain more stable forces: (1) 

using higher order expansions in the TEP, (2) combining a long-range TEP to get correct 

long-range IFCs, along with traditional stable short-range potentials like Tersoff, and (3) 

modifying the TEP PES to smooth the divergence and large forces. Incorporating higher 

order expansions was the simplest of these tasks, since IFCs up to 4th order are readily 

calculable 116 and was thus tried first. 

6.3.1 Higher Order Expansions 

A previous study performed MD simulations using the TEP truncated to a 4th order 

expansion (TEP-4), and calculated accurate thermal conductivity up to room temperature 

in covalent alloys 210. Accurate thermal conductivity in c-Si requires 3rd order IFCs up to 

2nd nearest neighbors when using the BTE 116, and the 4th order terms were suggested in 

previous studies to ensure greater stability in MD simulations 210. TEP-4 MD simulations 

were therefore tested with c-Si and were indeed more stable than TEP-2, with stability 

occurring up to 300 K. Higher temperatures, however, resulted in unstable dynamics and 

similar surges in potential energy as seen in Figure 31. It was therefore thought that 4th 

order terms were not sufficient for higher temperatures, but calculating 5th and 6th order 

terms is quite challenging 116,173. Simple 6th order self interactions, however could readily 

be added in the following form: 
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
i

iiuU 6  (56) 

where i  is a parameter prefactor governing the strength of the self-interaction. For large 

values of i  a potential well is created around the atoms that creates large restoring forces 

when the atoms move far from equilibrium. The harmonic phonon dispersion with small 

displacements is therefore only slightly affected, as shown via Figure 33. 

 

 

 

 

 

Figure 33 shows how the 6th order term of Equation 56 hardly affects the phonon dispersion 

and 2nd order IFCs, which may be worth it for the sake of additional MD stability. It was 

thought that such an interaction would create a strong potential well for each atom, thus 

restricting them from vibrating too far away from their equilibrium positions. The MD 

using the 6th order TEP added to Equation 56 indeed exhibited seemingly stable dynamics 

up to 1000 K, but the dynamics were visually and obviously unrealistic. Atoms tended to 

Figure 33 – Phonon dispersion for TEP + 6th order term given in Equation 56, with a 

prefactor value of 100 
6Å/eV . The black line is the original DFT TEP-2 and the red dashed 

line is the TEP-4 + 6th term. 
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vibrate with a mean square displacement over an order of magnitude higher than what the 

originally should according to DFT-MD simulations, and the forces were more than an 

order of magnitude higher than what is seen during an MD simulation below 1,000 K. This 

suggests that the artificial well generated by Equation 56 leads to unrealistic dynamics at 

elevated temperatures, even though potential energy and dynamical stability are satisfied. 

Nevertheless, accurate dynamics and phonon transport at higher temperatures is necessary 

to utilize MD simulations to study such phenomena. If the 6th order term resulted in too 

much restriction, although it was stable, it was thought that traditional analytical potentials 

such as Tersoff, which are known to possess MD stability when properly parameterized 

58,66, might be able to cancel out the instability of the TEP when the two potentials are 

combined. 

6.3.2 Anharmonic Core Potentials + TEP 

The addition of higher order TEP terms only seemed to increase MD stability up to 

room temperature, and the addition of an artificial 6th order well increased stability but 

again resulted in unrealistic forces and dynamics at elevated temperatures. It was therefore 

hypothesized that the 2nd order TEP could be used as a long-range potential along with 

some traditional potential, such as Tersoff or Morse, for the anharmonic first nearest 

neighbor interactions. The anharmonic core potential was assumed to be able to stabilize 

the system better than just the pure TEP, since the largest IFCs and forces stem from first 

nearest neighbors and decay rapidly with distance 33. Parameterization of a Tersoff + TEP-

2 using the GA in the POPS program yielded solutions that possess negligible errors in 2nd 

order IFCs, but the stability of these potentials was no better than the TEP expanded up to 

4th order.  



 133 

The attempts at stabilizing the TEP up to this point involved additions to the TEP-

2 functional form in the form of higher order expansions, and short-range traditional 

potentials. All these attempts still resulted in unstable TEP dynamics, especially near room 

temperature and above. It therefore seemed at that point, that additions to the TEP would 

not alleviate the stability issue, and that modifications to the PES itself must be required. 

Observing the TEP-2 PES in Figure 32, and noting the hypothesis that the divergence of 

forces and potential energy at large displacements causes instability, it was therefore of 

interest to alleviate this divergence by modifying the TEP-2 PES. This can be achieved 

using cutoff functions to smooth the PES to constant potential energy at large 

displacements, thus resulting in zero forces at large displacements at higher temperatures.  

6.3.3 TEP with Cutoff Functions 

To alleviate the potential energy divergence seen in Figure 32 for the TEP-2, 

mathematical formulations were developed to smooth the transition such that the slope of 

the PES would decrease at large displacements. The goal here was to come up with 

mathematical formulations that smoothed the TEP-2 PES past a certain displacement. An 

easily visualized example of such smoothing for the TEP-2 self-interaction is shown in 

Figure 34. 
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Figure 34 shows the first attempt at smoothing the TEP-2 function, and this example begins 

smoothing around a displacement magnitude of 0.04 Å as shown in the figure. The theory 

built into producing Figure 34 revolved attempting to smoothly connect two functions. The 

procedure for the smoothing involved first choosing cutoff functions for each side of the 

parabolic shape, )(1 xs  and )(2 xs . The choices here were the hyperbolic tangent cutoffs 


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xs tanh5.05.0)(2 . A function is then defined 

such that  )(1)()( 11 xsxxsaxh  , which is the function xxy )(  converging to the 

constant a  on the right side. Another function is then defined such that 

 )(1)()()( 21 xsaxsxhxf  , which is )(xh  converging to a  on the left side. 

Rearranging to get in a different form and factoring out an x, we have 

Figure 34 – Smoothing of the TEP-2 self-interaction. The blue line is the original TEP-2 

and the red line incorporates a smoothing function. 
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For two independent variables x  and y  we can now write      yfyxfxyxf cc ),( , 

which is in the form of the TEP-2 multiplied by cutoff functions for each displacement. 

The TEP-2 with cutoff functions is therefore given by 
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The parameter a  in Equation 57 determines the cutoff distance and b  determines the 

sharpness of the cutoff. Care must be taken with Equation 57 to only apply the cutoff 

function when the displacement is nonzero, otherwise a non-real number occurs since the 

independent variable appears in a denominator. A simple if-statement in the MD code 

prevents this, namely if the displacement is nonzero, then use Equation 58, otherwise, use 

the normal TEP in Equation 22. 

 It was hypothesized that the use of Equation 58 combined with an anharmonic first 

nearest neighbor potential such as Tersoff would allow for stable MD simulations. Varying 

values of the a  and b  parameters were therefore tested in MD simulations of 1 ns up to 

1000 K, using a 0.5 fs timestep. While certain combinations of a  and b  yielded more 

stability at elevated temperatures than the original pure TEP, in the sense that stable MD 

existed for longer times, all the cases failed before 1 ns. The type of instability was different 

than for the pure TEP case. This was no longer a dynamical instability where the atoms 

vibrated out of their equilibrium sites at low temperatures. Instead, the issue now was that 
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the entire system of atoms would always translate in a random direction for MD 

simulations initialized with random velocities. Normally in MD simulations, the system 

center of mass remains fixed, unless an external force is applied to make the system 

translate 211. Incorporating the TEP-2 with cutoff functions in 58, however, would result in 

translating MD simulations where the center of mass translates. The extremity of this 

translation is seen in Figure 35, where the center of mass deviates well over 100 Å from 

the original center of mass within 1 ns of simulation time. 

 

 

 

 

 

Translations involved with using the TEP with cutoff functions in Equation 58 caused the 

entire system to translate greatly from its initial position, thus effectively translating outside 

the potential well which approximates the TEP-2 in Figure 34. It is critical to note here that 

the TEP-2 potential well does not translate with the system, since the geometric descriptors 

(atomic displacements) of the TEP reference absolute Cartesian coordinates for 

equilibrium positions. This was problematic in terms of phonon calculations since the 

Figure 35 -  Center of mass distance from the initial position as a function of time during 

a 300 K MD simulation of c-Si using the TEP with cutoff functions in Equation 58. 
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system would translate outside the region described by the TEP and into the cutoff region 

in the flat area of the red curve in Figure 34, thus effectively shutting off the TEP forces.  

In the absence of TEP forces, the system retains the intrinsic stability of the Tersoff 

potential, but the original problem of properly describing IFCs remains. Alleviating this 

translation issue was therefore of utmost importance in utilizing the cutoff TEP for MD 

simulations. It was originally hypothesized that this translation was due to the bump of the 

blue curve seen in Figure 34, but the mathematical formulation developed here did not 

allow for alleviation of this bump unless the function becomes less smooth, which would 

negatively affect stability in a different way, by introducing a discontinuity. A different 

formulation of the cutoff TEP was therefore be developed. 

 To avoid the bumps of the previously developed cutoff TEP, another functional 

form approximation to the TEP was sought that more smoothly approached zero slope at 

the cutoff distance without experiencing any bumps in the PES. This led to the development 

of the following hyperbolic tangent approximation to the TEP-2, given in Equation 59 
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where the cutoff at which the potential starts to decrease in slope is given by 
cr . The PES 

for non-self-interactions is given by Figure 36.  

 

 

 

 

 

 

 

Although the hyperbolic tangent approximation to the TEP is smoother, surprisingly, the 

center of mass translation in MD simulations still occurred. It was hypothesized that the 

linear momentum could be redistributed every timestep to freeze the system from 

translating, thus forcing the atoms to reside in the TEP PES. While this fixed the translation 

issue, this caused the temperature to rise along with the original potential energy instability 

seen in Figure 31. This shows that even in the absence of TEP-2 forces associated with 

large displacements, unstable dynamics still resulted.  

The original hypothesis that eliminating the larger forces for large displacements 

would yield stability was therefore wrong. This begged the question of when does the 

harmonic approximation (i.e., TEP-2) become a poor representation of the PES, namely at 

Figure 36 – PES of the hyperbolic tangent approximation to the TEP via Equation 59. 
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what level of displacement does the anharmonicity cause a strong deviation from TEP-2? 

The answer to this question was probed by using DFT, specifically by displacing a single 

atom from equilibrium in a crystal. In this test case, the displaced atom will possess the 

only nonzero displacement, and will therefore it will be the only atom responsible for the 

forces experienced by all other atoms via the TEP-2 force equation: 


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

j

j

iji uF 
,

 (60) 

Displacing a single atom j  in the   Cartesian direction will therefore influence the force 

on atom i  in the   direction, linearly in proportion to the 2nd order IFC 

ij . 

Conceptually, one would expect the forces on all other atoms to initially be linear with 

respect to the one atom being displaced. This would correspond to the regime where the 

harmonic approximation is most applicable and TEP-2 would accurately capture the slope. 

However, the premise of the previous hypothesis that the forces become too large for large 

displacements is predicated on the notion that at some level of displacement, we would 

expect to see major deviations from the initial linear trend yielding much smaller forces 

than would be predicted by TEP-2. To test the validity of this harmonic approximation, a 

single atom in a c-Si crystal was incrementally displaced in the x  direction up to 0.4 Å. 

The resulting forces on other atoms were calculated via DFT, using the same settings in 

Section  5.1.1. The forces on 1st NN atoms, of the displaced atom, are shown in Figure 37.  
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Note that many forces in a crystal will be identical when a single atom is displaced, due to 

symmetry in the interactions 173. It is apparent that the forces on 1st NN atoms follow a 

mostly linear trend as predicted by the harmonic approximation, although there is some 

anharmonicity apparent. However, looking a little further beyond the 1st neighbors of the 

displaced atom, Figure 38 shows the forces on 2nd and 3rd NN atoms. 

 

 

 

 

Figure 37 – Forces on 1st NN atoms of an atom that is incrementally displaced up to 0.4 Å. 

The temperature associated with these displacements, calculated via DFT-MD, is shown 

on the top axis.  
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As seen in Figure 38, forces on 2nd and 3rd NN atoms are also linear as a function of 

displacement. Figure 30 shows that phonon dispersion in c-Si begins to flatten at the 

Brillouin zone boundary when 5th NN interactions are included, so it is also of interest to 

determine whether these forces are also linear and valid under the harmonic approximation 

for large displacements (high temperatures). Forces on 4th and 5th NN atoms for this 

experiment are shown in Figure 39. 

Figure 38 – Linear forces on 2nd and 3rd NN atoms of an atom that is incrementally 

displaced up to 0.4 Å. The temperature associated with these displacements, calculated via 

DFT-MD, is shown on the top axis. 
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2-body forces on the longer-range interactions, between 4th and 5th NNs, are also seen to 

exhibit linearity. This reveals that the original hypothesis, which suspected that divergent 

forces associated with the harmonic approximation lead to instabilities, was in fact wrong 

because the harmonic approximation for 2-body interactions seems to be valid up to 

displacements associated with high temperatures (> 300 K). This begged the question; if 

the TEP is predicting the correct behaviour of forces, what is causing its instability in MD 

simulations? 

6.3.4 Failure of the TEP for MD 

Investigating the TEP instability further, namely the instability in potential energy 

seen in Figure 31, the potential energy fluctuations seemed to arise from fluctuations in 

Figure 39 – Linear forces on 4th and 5th NN atoms of an atom that is incrementally 

displaced up to 0.4 Å. The temperature associated with these displacements, calculated via 

DFT-MD, is shown on the top axis. 
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total energy (kinetic plus potential). This was originally not suspected, since all MD 

simulations performed in these tests used the NVE ensemble, which should conserve total 

energy 212. The TEP, however, seemed to experience large fluctuations in total energy 

regardless of using cutoff functions. Combining this lack of energy conservation with the 

observed translations seen with the center of mass movement in Figure 35, it was deduced 

that system linear momentum was not being conserved. Originally this was overlooked, 

but the source of the problem is the fact that the TEP geometry descriptors lack the 

translational and rotationally invariant features discussed in Chapter 2. Since absolute 

Cartesian positions are referenced in the displacement geometry descriptors of Equation 

23, applying a translation operation results in a large displacement and a fictitiously large 

amount of energy. If the entire system translates, without changing the relative distances 

or displacements between atoms, the energy will therefore change; likewise, for rotation. 

According to Noether’s theorem 126, such a system will not conserve linear or rotational 

momentum, which could be responsible for the observed translations seen in Figure 35. 

The TEP therefore does not conserve total energy, as noted in Figure 40. 

 

 

 

 

 

 



 144 

 

 

 

 

 

 

Figure 40 shows that the percent deviation in total energy from the starting value increases 

up to six orders of magnitude. The Tersoff potential in Figure 40, however, possesses 

invariant geometric descriptors and experiences small oscillations in total energy on the 

order of normal numerical error for MD simulations 213. This intrinsic and fundamental 

issue with the TEP renders it only useful as a LD model, as it cannot be used to perform 

energy-conserving MD simulations 26.  These investigations still showed what is necessary 

to create a potential that can exactly predict phonon frequencies, while still performing 

stable MD simulations. Such a potential will allow MD to be performed with more exact 

representations of vibrational modes in the system; this will aid in modern MD approaches 

to calculating modal contributions to thermal transport such as GKMA 35 and ICMA 54. An 

interatomic potential that can perform this task must (1) possess invariant geometric 

Figure 40 – Deviation of the total energy from the initial value in a 300 K c-Si MD 

simulation for the TEP (black line) and a Tersoff potential (blue line). The simulation was 

performed using the NVE ensemble. 
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descriptors for stable MD, and (2) possess flexibility to describe unique IFCs in all three 

Cartesian directions. Development of such a potential is beyond the scope of this work, but 

these investigations showed what needs to be done in this regard. 
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 CONCLUSIONS 

Important questions dealing with the development of POPs were answered in this 

thesis, starting with Question 1 of what fitting quantities are required to produce potentials 

that are guaranteed to predict phonon properties. It was shown in Chapter 4 that fitting a 

potential for a c-Ge system to 2nd and 3rd order IFCs yielded accurate thermal conductivity 

predictions. This was further confirmed for the TBC and M3BC potentials in c-Ge and c-

Si in Chapter 5. Other fitting quantities, namely energy-volume curves and stresses, were 

necessary for stable MD simulations. Although it was originally hypothesized via 

Hypothesis 1 that fitting only to forces for many displacements would be sufficient, the 

IFCs were the main factor in obtaining potentials that accurately predicted thermal 

conductivity. Question 2 dealt with how closely traditional analytical functional forms 

could accurately match DFT forces. It was shown in Table 1 and Table 2 that it was in fact 

possible for DFT forces to be reproduced with less than 10% error for many of the fitting 

cases.  

The viability of traditional analytical potentials for thermal transport was also 

investigated. Many traditional potentials, even for simple crystalline systems such as c-Si 

and c-Ge, do not accurately predict thermal conductivity as shown in Chapter 5. Since the 

few previous attempts by other authors to optimize potentials for thermal transport 

properties were unsuccessful 80,81,83,85,124, it was not known if traditional functional forms 

have the ability to accurately predict thermal transport properties if optimized for such a 

task. Hypothesis 2 posited that traditional potentials possess the flexibility to describe small 

forces resulting from displaced atoms about equilibrium since these quantities are 
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associated with thermal vibrations about equilibrium, and traditional potentials were made 

for seemingly more complex tasks. It was shown that Hypothesis 2 was true, since 

combinations of traditional potentials for c-Si and c-Ge in Chapter 5 yielded accurate 

thermal conductivity predictions (i.e., < 10% error) as compared to experiments and DFT.  

The method in which the potentials were parameterized via random optimization 

with the GA confirms that many solutions may exist for traditional potentials to describe 

phonons. Question 3 posited whether not inferring any physical meaning to the parameters, 

would result in accurate fits and many new solutions. This was investigated using the GA 

in the POPs program to thoroughly explore the parameter search space in a stochastic 

manner. Hypothesis 3 suggested that this is a valid approach since traditional analytical 

functional forms were overdesigned for the study of simple forces associated with 

displacements about equilibrium positions, and should therefore possess many parameter 

sets that may not have physical meaning. It was found in Chapters 4 and 5, that this was 

indeed the case; many separate trials of GA optimizations, resulting in different parameter 

sets, resulted in < 10% error in forces and decent thermal conductivity prediction. By 

treating every parameter as a purely mathematical quantity and not restricting the 

parameter search ranges to what could be physically reasoned, many new and accurate 

solutions emerged.  

 A known limitation of traditional potentials for semiconductors, especially for 

phonons, is their absence of long-range interactions 80,83,85. This results in accurate phonon 

dispersion calculations since phonon frequencies at the Brillouin zone boundaries rely on 

long-range interatomic interactions. Question 4 raised the question; will traditional long-

range functional forms accurately capture these frequencies if parameterized to do so? It 
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was hypothesized that these potentials could, for the same reason that traditional long-range 

potentials could reproduce thermal properties. It was shown, however, that traditional long-

range potentials, which are all based on 2-body radial interactions, cannot properly 

reproduce the phonon dispersion when parameterized to match 2nd order IFCs from DFT. 

In fact, Table 1 and Table 2 showed the errors in 2nd order IFCs were the highest in the 

fitting procedure. Despite this limitation, many solutions (i.e., different parameter sets) 

were found that accurately predicted thermal conductivity. 

With these questions and hypotheses answered, it was of still of interest to investigate 

the results of Question 4, as traditional long-range potentials seemed unable to reproduce 

phonon frequencies at Brillouin zone boundaries. While the long-range radial descriptors 

lack the necessary flexibility to accomplish such a task, the TEP can exactly match the 2nd 

order IFCs which dictate the phonon dispersion. The TEP, however, was unstable in MD 

simulations, and many attempts described in Chapter 6 were unable to overcome the 

stability issues. It was finally realized that the core issue was the fact that in the TEP, the 

displacements of atoms from equilibrium are not invariant geometric descriptors. As a 

result, the TEP does not yield energy-conserving MD simulations with stable dynamics. 

This investigation showed the main requirements of a potential that can accurately predict 

harmonic phonon properties while performing stable MD simulations. Such a potentials 

must: (1) possess flexibility to uniquely describe 2nd order IFCs in all three Cartesian 

directions and (2) possess invariant geometric descriptors. While development of such a 

functional form was outside the scope of this work, it is the next logical step for future 

work.  
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The questions answered in this thesis are a first step in obtaining potentials that 

accurately predict phonon and thermal properties. A recipe was formulated, summarized 

as the POPs Tenets, and a method revolving around a powerful POPs program was 

developed. The POPs program alleviates three major issues known in potential 

development 79,123,124: (1) it is generally applicable to a wide variety of potentials and fitting 

parameters due to coupling with the LAMMPS package, (2) it performs fast optimization 

(< 1 day) due to a massively parallel framework, and (3) it provides a user-interface to 

conveniently experiment with different optimization procedures for different systems and 

potentials. Especially when applied to the development of POPs from DFT quantities, the 

POPs program allows one to obtain classical analytical potentials possessing the linear 

computational scaling of MD with accuracy close to DFT. The findings herein therefore 

provide insight and methods into developing POPs, which greatly benefits the use of 

classical potentials in MD simulations to study thermal transport. 
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