
INTELLIGENT MANUFACTURING FOR PRODUCTION 

PLANNING BASED UPON HIERARCHICALLY COUPLED 

CONSTRAINED AND MULTIMODAL OPTIMIZATION 
 

 

 

 

 

 

 

 

 

 

A Dissertation 

Presented to 

The Academic Faculty 

 

 

 

 

by 

 

 

 

Manik Rajora 

 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy in the 

George W. Woodruff School of Mechanical Engineering 

 

 

 

 

 

 

 

Georgia Institute of Technology 

May 2018 

 

 

COPYRIGHT © 2017 BY MANIK RAJORA  



INTELLIGENT MANUFACTURING FOR PRODUCTION 

PLANNING BASED UPON HIERARCHICALLY COUPLED 

CONSTRAINED AND MULTIMODAL OPTIMIZATION 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approved by:   

 

 

  

Dr. Steven Y. Liang Advisor 

School of Mechanical Engineering 

Georgia Institute of Technology 

 Dr. Nagi Gebraeel 

School of Industrial & Systems 

Engineering 

Georgia Institute of Technology 

 

 

  

Dr. Shreyes N. Melkote 

School of Mechanical Engineering 

Georgia Institute of Technology 

 Dr. Jie Zhang 

College of Mechanical Engineering 

Donghua Unversity 

 

 

  

Dr. Roger Jiao 

School of Mechanical Engineering 

Georgia Institute of Technology 

 Dr. Wei Xu 

Intelligent Manufacturing Unit 

Shanghai Electric Academia Sinica 

   

  Date Approved: November 27, 2017 

 



 

 

 

 

 

 

 

 

 

 

 

To my grandparents Omveer Singh, Onkari Devi, Rajesh Kumari, and Dr. Chokhey 

Singh. 

 

 

 



 

iv 

ACKNOWLEDGEMENTS 

It is impossible for me to thank all the people that have influenced, inspired, and 

motivated me throughout this PhD process but I will try my best to do so. 

First and foremost, I would like to thank my advisor, Dr. Steven Y. Liang for 

providing me the opportunity to work with and learn from him and for his encouragement 

and guidance throughout my time as a Ph.D. student. I would also like to sincerely thank 

my committee members, Dr. Shreyes Melkote, Dr. Roger Jiao, Dr. Nagi Gebraeel, Dr. Wei 

Xu, and Dr. Jie Zhang for reviewing my dissertation and providing me with their valuable 

insights and comments. Special thanks go to Dr. Wei Xu, for all the valuable insight I have 

gained while working on various projects with him.  

Next, I would like to thank my colleagues, Dr. Yamin Shao, Alexander Shih, 

Zhipeng Pan, Yanfei Liu, and Dr. Zishan Ding. I would like to especially thank Pan Zou 

for the support she has provided me and allowing me to discuss with her my many ideas 

(the good, the bad, and the extremely bad) that made this dissertation possible. I have learnt 

a lot from her from all the projects we have worked. Also, thanks for introducing me to 

coffee, without which, my last year of PhD would not have been possible.  

I would like to thank my friends, Abhishek and Azad for all the life lessons I have 

learnt from them drinking bottomless coffee at Mel’s Diner. I also want to thank Mitra for 

always reminding me how close I was to the finish line even when it felt like it was nowhere 

in sight. Special thanks to Anand, Prashant, Sumit, and Sudhir for all the support you guys 

have provided me. Luke Yates, I thank you for introducing me to some of the finer cuisines 



 v 

in Atlanta and also for putting up with the smell of my awfully cooked food for the past 

four and a half years.  

My family has been one of my biggest source of inspiration. You guys believed in 

my abilities more than I ever could and without your constant and unconditional love and 

support I would not have made it through this rigorous PhD process. I would like to thank 

my family members, both in India and US, including Cheenu, Mitali, Yakshi, Nishtha, 

Nikki, as well as all my aunts and uncles. Next up are my parents, Yogendra and Vineeta 

Rajora and my brother Vaibhav. To my parents, thank you for providing Vaibhav and I can 

have all the opportunities to succeed in this world. Vaibhav, I appreciate you being there 

for me whenever I needed. 

Lastly, I want to thank Shanghai Electric Academia Sinica (SEAS) and Metals 

Industry Research and Development Center (MIRDC) for kindly providing me with the 

financial support as well as experimental data during my PhD.  

  



 vi 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS iv 

LIST OF TABLES viii 

LIST OF FIGURES xi 

LIST OF SYMBOLS xiii 

SUMMARY xvi 

CHAPTER 1. Introduction 1 

1.1 Overview and Motivation 1 
1.2 Research Goals and Objectives 2 
1.3 Research Approach 3 
1.4 Overview of Thesis 5 

CHAPTER 2. Literature Review 8 
2.1 Literature Review on Constrained Optimization Problems 8 

2.2 Literature review on Multimodal Optimization 10 
2.3 Summary 13 

CHAPTER 3. Identification and Mathematical Modeling of Hierarchically 

Coupled Constraint Optimization Problems 14 
3.1 Description of Hierarchically Coupled Constraint Optimization Problems 14 

3.2 Modeling of the solution 17 
3.2.1 Initial Solution Generator Operator 20 

3.2.2 Level-barrier based crossover operator 24 
3.2.3 Level-barrier based mutation operator 27 

3.3 Summary 30 

CHAPTER 4. OPTIMIZATION OF ASSEMBLY JOB-SHOP SCHEDULING 

PROBLEM 32 
4.1 Introduction to AJSSP 32 
4.2 Case Study 1 36 

4.2.1 Modelling of Solution 38 
4.2.2 Result and Comparison 44 

4.3 Case Study 2 of AJSSP 53 
4.4 Complexity Analysis of the Algorithm 55 
4.5 Summary 58 

CHAPTER 5. Solving Hierarchically Coupled Constraint Problem in 

Simultaneous Optimization of Neural Network Structure and Weights 60 

5.1 Introduction 60 
5.2 HCCs in NN weight and structure optimization 62 
5.3 Modelling of the solution 67 



 vii 

5.3.1 Initial solution creation 67 
5.3.2 Modified level-barrier based crossover operator 70 

5.3.3 Modified level-barrier based crossover operator 72 
5.4 Application of the modified algorithm to Case Studies 73 

5.4.1 Case Study 1 75 
5.4.2 Case Study 2 77 
5.4.3 Case Study 3 79 

5.4.4 Case Study 4 83 
5.5 Summary 84 

CHAPTER 6. Multimodal optimization of Hierarchically Coupled Constraint 

problems 86 
6.1 The clustering-optimization algorithm for MMO 86 
6.2 MMO of benchmark JSSP 90 

6.2.1 Modelling of solution 92 

6.2.2 Definition of feature 94 
6.2.3 Adaption of genetic operators 94 

6.2.4 Experimental Study 96 
6.3 MMO of benchmark PFSSP 104 

6.3.1 Modelling of PFSSP 106 

6.3.2 Experimental Study 108 
6.4 MMO of AJSSP 120 

6.5 Conclusion 129 

CHAPTER 7. Conclusions and Future Work 132 

7.1 Summary 132 
7.2 Conclusions 134 

7.3 Contributions 135 
7.4 Limitations 136 
7.5 Future Work 137 

REFERENCES 140 

 



 viii 

LIST OF TABLES 

Table 1 Information of the AJSSP used in case study 1 37 

Table 2 Parameter settings used for SGA and the proposed method 44 

Table 3 Comparison of SGA and the proposed method for the four different 

types of AJSS 

45 

Table 4 Parameter settings used to generate the convergence plots for the 

proposed algorithm 

47 

Table 5 The different crossover and mutation rates used to study their effects 

on the makespan for Problem D 

49 

Table 6 Additional settings used for the 27 test problems 51 

Table 7 Results obtained for the AJSSP with 2 levels of assembly. The 

highlighted results show that an APD of 0% was achieved 

51 

Table 8 Results obtained for the AJSSP with 3 levels of assembly. The 

highlighted results show that an APD of 0% was achieved 

52 

Table 9 Results obtained for the AJSSP with 4 levels of assembly. The 

highlighted results show that an APD of 0% was achieved 

52 

Table 10 Comparison of the performance of the proposed algorithm to that of 

Dileeplal and Narayanan’s algorithm proposed algorithm 

54 

Table 11 Parameters used to create a trained NN in the case studies 74 

Table 12 Comparison of results for the test data sets obtained by Azami et al. 

and the proposed algorithm 

76 

Table 13 Comparison of predicted surface roughness in the absence of 

nanofluids 

78 

 

Table 14 

Comparison of predicted surface roughness in the presence of 

nanofluids 

78 

Table 15 Comparison of results obtained using ANFIS and the proposed 

algorithm with spindle speed, welding speed, and plunge force as 

inputs 

80 



 ix 

Table 16 Comparison of results obtained using ANFIS and the proposed 

algorithm with EFI as an additional input 

81 

Table 17 Comparison of results obtained using classical NN and the proposed 

algorithm with EFI as an additional input 

82 

Table 18 Comparison of the results obtained using the proposed algorithm and 

regression analysis 

84 

Table 19 Parameters used for the proposed algorithm 97 

Table 20 Optimal makespan found using MMIA and the proposed algorithm 98 

Table 21 Multiple solutions found using MMIA and the proposed algorithm 99 

Table 22 Optimal makespan found by Perez et al. and using the proposed 

algorithm 

100 

Table 23 Multiple global optima found by Perez et al. and using the proposed 

MMO algorithm. (*) indicates that there were no global optima 

obtained and (**) indicates that the global optima was only obtained 

in a handful of simulations 

102 

Table 24 Known global optima to date and different global optima 

encountered by the proposed algorithm 

103 

Table 25 Parameters used for the three algorithms 109 

Table 26 Best optimal solution obtained by the different algorithm 109 

Table 27 Mean value and standard deviation of the optimal solution found 

after 10 independent simulations using the different algorithms 

111 

Table 28 Number of simulations in which the algorithms are able to converge 

to the best optimal solution (NC) 

112 

Table 30 Comparison of the best optimal solution found using the new hybrid 

algorithm and the previous three algorithms 

116 

 

Table 31 

Comparison of the mean value and standard deviation of the optimal 

solutions found using the new hybrid algorithm and from the 

previous three algorithms 

117 

Table 32 Comparison of the Nc found using the new hybrid algorithm and the 

previous three algorithms 

118 

Table 33 Comparison of the NO using the new hybrid algorithm and the 

previous three algorithms 

119 



 x 

Table 34 Parameters used for the three algorithms 121 

Table 35 Best optimal solution obtained by the different algorithms 122 

Table 36 Mean value and standard deviation of the optimal solution found 

after 10 independent simulations using the different algorithms 

123 

Table 37 Number of simulations in which the algorithms were able to 

converge to the best optimal solution (NC) 

124 

Table 38 Average number of best optimal solutions found (NO) using the 

different algorithms 

125 

Table 39 Comparison of the best optimal solution found using the new hybrid 

algorithm and the previous three algorithms 

127 

Table 40 Comparison of the mean value and standard deviation of the optimal 

solutions found using the new hybrid algorithm and from the 

previous three algorithms 

127 

Table 41 Comparison of the Nc found using the hybrid algorithm and the 

previous three algorithms 

128 

Table 42 Table 42. Comparison of the NO using the hybrid algorithm and the 

previous three algorithms 

128 

 

  



 xi 

LIST OF FIGURES 

Figure 1 Research approach for optimization of HCCOP 3 

Figure 2 Organization of the dissertation 7 

Figure 3 Example of MMO function.  11 

Figure 4 A brief flowchart of the proposed algorithm 19 

Figure 5 Flowchart of the initial solution generator operator 21 

Figure 6 The 0th level gene 22 

Figure 7 The 1st level gene 22 

Figure 8 The 2nd level gene 23 

Figure 9 The kth level gene 24 

Figure 10 Illustration of crossover on (ro-1) level gene of the hth sub-

chromosome constraining the variable 𝒃𝒋𝒐
(𝒓𝒐) 

26 

Figure 11 The illustration of mutation on 𝒓�𝒐
𝒕𝒉 level candidate of the hth sub-

chromosome 

30 

Figure 12 BOM of the four different simulated testing problems 38 

Figure 13 An example of the 1st sub-chromosome for problem type B 41 

Figure 14 A complete, feasible solution for problem type B 41 

Figure 15 An example of the 1st sub-chromosome created after the level-

barrier based crossover operator 

42 

Figure 16 Example of level-barrier based mutation operator 43 

Figure 17 Converge plots of Problems A, B, C, and D. The best solution was 

found after 10 generation for problems A and D, 18 generations for 

problem C, and 27 generations for Problem  

48 

Figure 18 Converge plots obtained using parameter settings I, II, and III for 

Problem D 

49 



 xii 

Figure 19 Polynomial fitting of runtime versus number of generations for A. 

Simulation Set 1 and B. Simulation Set 2 

57 

Figure 20 Example showing creation of initial sub-chromosomes with a 3-1-2-

2 NN structure. Sub-chromosomes A is top left, B is top right, and C 

is bottom 

69 

Figure 21 Example of infeasible solution created using the level-barrier based 

crossover proposed in Chapter 3 

70 

Figure 22 Figure showing an example of the modified level-barrier based 

crossover operator between 3-1-2-2 and a 3-2-2 NN structures 

72 

Figure 23 Offspring created after mutation of a 3-1-2-2 to a 3-2-2-2 NN 

structure 

73 

Figure 24 Flow chart of the proposed MMO algorithm 89 

Figure 25 An example of permutation coding in a 3x3 JSSP 93 

Figure 26 Figure demonstrating an example of the feature matrix for 3x3 JSSP 94 

Figure 27 Crossover operator adapted to permutation coding in a 3x3 JSSP 96 

Figure 28 Mutation operator adapted to permutation coding in a 3x3 JSSP 96 

Figure 29 Example demonstrating the modified crossover operator used in the 

MMO of PFSSP 

107 

Figure 30 Example demonstrating the modified mutation operator used in the 

MMO of PFSSP 

107 

 

  



 xiii 

LIST OF SYMBOLS  

na  nth independent variable 

1

(1)

mb  1m  independent variable belonging to the 1st level 

1aC  Constraint on the independent variable 1a  

1bC  Constraint on the independent variable 1b  

( )ix a  Frequency of occurrence of variable ia  

ial  Location of variable ia in the chromosome 

(1)
1b

l  Location of the variable 
(1)

1b  

1

(0)

jG  1j 0th level gene 

1

(0)

,j iw  Weight value of the independent variable ia for gene
1

(0)

jG  

2 1

(1)

,j jw  Weight value of the 1st level dependent variable 
1

(1)

jb for gene 
1

(1)

jG  

xw  Crossover level weight-value 

( )
x o

w r  Crossover weight value for the 
th

o
r  level 

px  Random integer between 1 and 
or

m  

m
w  Mutation level weight-value 

( )
m o

w r  Mutation weight value for 
th

o
r  level 

(0)CM  Mutation candidates for the 0th level 

CM  Mutation candidates for all levels 



 xiv 

( 1)

( 1)

( )
( )o

ro
m ro

r

b
CG c





 A vector containing gene groups belonging to the ro level that constraint 

the 
( )1

( 1)



o

ro

r

m
b dependent variable and have the length c 

rmP  Mutation probability (between 0 and 1)  

P Random integer which is between 1 and ( 1)or
m   

Q Random integer which is between 1 and the number of genes in c  

R Random integer which is between 2 and the number of genes in 

)(
)(

)1(

)(

QCG o

or

Pm

r

b


 

n Number of genes in )(
)(

)1(

)(

QCG o

or

Pm

r

b


-R 

output
  Number of biases of the output layer 

output
TF  Transfer function of the output layer 

i
  Number of neurons in the ith hidden layer 

1,input
nw  Number of weighted connections from the input layer to the 1st hidden 

layer 

1,input
w  Weighted connections from the input layer to the 1st hidden layer 

1
  Bias values for the 1st hidden layer 

PA1  1st parent chosen for crossover 

1PA
G  Number of levels for parent PA1 

1PA
LG  Length of genes for PA1 on crossover level 

RC Random number between 1 and the smaller of 
1PA

LG or 
2PA

LG  

Fr Froude number 

ks Bed roughness height 

h1 Upstream hydraulic jump 



 xv 

N Spindle Speed 

V Welding Speed 

Fz Plunge force 

EFI Emperical force index 

UTS Ultimate tensile strength 

S Solution set in which all unique optimal solutions are stored 



 xvi 

SUMMARY 

Hierarchically coupled constrained optimization problems (HCCOPs) are 

commonly encountered in the manufacturing industries, however, they haven’t been 

categorized as such. Due to a lack of clear definition to identify these problems, numerous 

techniques have been developed for the optimization of HCCOPs but these techniques are 

not universally applicable to all HCCOPs and are unable to cope with large scale problems. 

Furthermore, current techniques used for the optimization of these HCOOPs only provide 

a single optimal solution upon execution. Though the single optimal solution may 

theoretically satisfy the objective function, it might not be applicable in real life scenario.  

 This research will first focus on establishing an abstract definition and identifying 

the common principles amongst different HCCOPs. Next, based on the established 

definition and common principles, a new optimization technique, based on evolutionary 

computation, will be developed. The proposed algorithm will be developed in a way such 

that only feasible solutions are generated during the iterations of the algorithm thereby 

reducing its computational complexity. To validate the proposed algorithm, it will be 

utilized to optimize HCCOPs commonly encountered in the manufacturing industry such 

as assembly job-shop scheduling problem (AJSSP) and the simultaneous optimization of 

Neural Network (NN) structure and weight values. The research will also focus on 

developing a technique for the multimodal optimization (MMO) of HCCOPs i.e. obtain 

multiple solutions with the same objective value. To validate the proposed MMO approach, 

it will first be utilized for the MMO of benchmark job-shop scheduling problem (JSSP) 

and permutation flow-shop scheduling problem (PFSSP) followed by the MMO of AJSSP. 



 xvii 

This research would aid in the identification and MMO of HCCOP. The proposed 

algorithm could be easily applied to any HCCOP while requiring minimal changes. 

 

 

 

 



 1 

CHAPTER 1. INTRODUCTION 

1.1 Overview and Motivation 

Constrained optimization problems (COPs), in the form of linear or nonlinear 

equalities or inequalities, are commonly encountered in the manufacturing industry and 

theoretical application, due to the limit and interaction between related impact factors and 

resources. The presence of non-linear constraints makes these real-world problems quite 

challenging to solve, due to their multimodal and complex search space and disjoint 

feasible regions which render the search for an optimal solution difficult and inefficient. 

As such, researchers have proposed many different constraint handling techniques for the 

optimization problems.   

The different categories of constraint handling methods have shown promising 

results in solving some of the COPs, but there is no specific research of methodology being 

done on solving one special COP called HCCOP. HCCOP are a special type of COP which 

consists of both independent and dependent variables and the constraints on the ith level 

dependent variables (where i = 1,2,3…,n) are a function of the (i-1) level dependent 

variables and the constraints on 1st level dependent variables are a function of the 

independent variables. Though HCCOPs are commonly encountered, both in 

manufacturing industries as well as theoretical applications, there is no previous work done 

in identifying HCCOPs as such. Furthermore, the algorithms available for solving COPs 

require immense modifications in order to apply them to solve HCCOPs. Also, each type 

of HCCOP require a unique modification. Therefore, there is still an opportunity to identify 



 2 

the common principles amongst different HCCOPs and develop and algorithm that is 

capable of solving the different HCCOP without requiring major modifications. 

 Lastly, current techniques used to optimize HCCOPs such as AJSSP only provide 

a single optimal solution upon execution. Though this single optimal solution may satisfy 

the original objective function, it may not be applicable in real-life scenarios. Therefore, 

there is a need to develop a MMO algorithm in order to obtain multiple optimal solutions 

for the HCCOPs.  

1.2 Research Goals and Objectives 

Despite the extensive research in COPs, there is still an opportunity for classifying 

different optimization problems encountered in the manufacturing industry as HCCOPs 

developing a versatile algorithm capable of solving these problems. Furthermore, it is of 

great importance, in both theory as well as practical application, to develop an algorithm 

for the MMO of the scheduling problem. Therefore, the objective of the current research 

will be as follows: 

1. Develop definitions and identify the common principles to classify COPs as 

HCCOPs. 

2. Develop a versatile algorithm to optimize HCCOPs. 

3. Utilize the developed definition and common principles to identify HCCOPs 

in manufacturing industry as well as theoretical applications. 

4. Utilize the developed algorithm to optimize the classified HCCOPs. 

5. Develop a MMO algorithm to obtain multiple global optima for HCCOPs. 

6. Validate the proposed MMO by its application to JSSP, PFSSP, and AJSSP. 



 3 

1.3 Research Approach 

To develop an algorithm for optimizing HCCOPs, the common principles amongst 

different HCCOP must first be identified. A flowchart of the methodology is shown in 

Figure 1. 

Figure 1. Research approach for optimization of HCCOP 

As shown in the flowchart, the different types of variables that make up HCCOPs 

are first identified. Next, the constraints on these variables are identified along with their 

hierarchically coupled nature. Lastly, the features of these constraints are established and 

an optimization problem is formed. To solve the optimization problem, an algorithm based 

on evolutionary computation is proposed. To reduce computation complexity of the 

proposed algorithm, an initial solution generator, a level-barrier based crossover operator, 

and a level-barrier based mutation operator are developed. The new operators are 

developed in a way such that only feasible solutions are generated during its iterations. The 

new algorithm is also developed in a manner such that very minimal changes are required 

when it is used to optimize different HCCOP.  

 

Variables in HCCOP
• Independent Variables
• Dependent Variables

Constraints on the variables
• Regular Constraints
• Hierarchically Coupled 

Constraints

Features of the constraints
• Frequency of occurrence 

of the variable
• Value of the variable
• Positional Constraints

Identification of HCCOP

Generation of feasible initial 
solutions
• Initial solution 

generator

Generation of feasible solutions 
during the iterations of the 
algorithm
• Level-barrier based crossover
• Level-barrier based mutation

Optimization algorithm for HCCOP



 4 

 To validate the developed definitions and common principles, they are first utilized 

to classify the optimization of assembly job-shop scheduling problem (AJSSP) and the 

simultaneous optimization of Neural Network (NN) structure and weights as HCCOPs i.e. 

the variables along with the constraints and the features of these constraints are identified. 

Next, the proposed algorithm is used to optimize different case studies of  the two 

problems. First, the proposed initial solution generator is used to create feasible initial 

solutions for the two problems. Next, it is demonstrated how the proposed level-barrier 

based crossover and mutation operators can be used to create feasible solutions during the 

rest of the iterations of the algorithm. The results obtained by using the proposed algorithm 

are also compared with the results published in other literature. 

In the second part of the research, a MMO technique for HCCOP is developed. To 

enable MMO, the algorithm developed for optimization of HCCOPs is paired with k-means 

clustering algorithm [ 1 ]. In the proposed MMO algorithm, the solutions of every 

generation are clustered together, based on a feature matrix. New solutions are generated 

by utilizing the operators of the proposed algorithm within each cluster. By doing so, it can 

be ensured that the algorithm will converge to solutions having the same objective value 

but different features. As the research available in the optimization of AJSSP is not as 

extensive as in the optimization of job-shop scheduling problem (JSSP) and flow-shop 

scheduling problems (FSSP), no benchmark AJSSP are available. The lack of benchmark 

AJSSP means that the global optima of the AJSSP used in this research are unknown. Since 

the quality of solutions obtained during MMO is extremely important and multiple global 

optima are desired during the MMO of different problems, the proposed MMO algorithm 



 5 

is first used for the MMO of benchmark JSSP and permutation PFSSP, as their global 

optima is known, followed by the multimodal optimization of AJSSP. 

1.4 Overview of Thesis 

Figure 2 presents the technical roadmap of this dissertation, including motivation & 

significance, problem formulation, technical approach, methodology & solution, and 

validation & application.  

CHAPTER 1 discusses motivation and significance of this research topic along with a 

holistic view of research goals. CHAPTER 2 provides background information and a 

review of the present and past literature in the area of COPs and MMO. 

In CHAPTER 3, an abstract definition and the common principles used to identify some 

COPS as HCCOP are presented in. Next, an algorithm, based on evolutionary computation, 

to optimize the HCCOPs is also developed.  

In Chapters 4 and 5, the definitions and common principles are used to classify the 

optimization of AJSSP and simultaneous optimization of NN structure and weights values 

of HCCOPs. Next, the proposed algorithm is utilized to optimize these problems and the 

obtained results are compared with those published in literature. 

 In CHAPTER 6, the MMO technique is first developed. The performance of the 

proposed MMO is first validated by its application for the MMO of JSSP and PFSSP 

followed by its application for AJSSP.  



 6 

CHAPTER 7 concludes the dissertation with discussions of research limitation and 

future works.  

  



 7 

Motivation

• Unclassified 

Optimization Problem

• Lack of Versatile 

Methodology

• Industry Demands 

(Chapter 1)

Literature Review

• Constrained Optimization

• Multimodal Optimization

(Chapter 2)

• Assembly Job-Shop 

Scheduling

• Assembly Flow-Shop 

Scheduling

(Chapter 4)

• Optimization of NN 

Weights

• Optimization of NN 

Structure and Weights

(Chapter 5)

• Job-Shop Scheduling

• Permutation Flow-Shop 

Scheduling

• Multimodal Job-Shop 

Scheduling

(Chapter 6)

Motivation and Significance

Hierarchically 

Coupled 

Constrained 

Optimization 

Problems

Classification of 

Variables

• Independent 

Variables

• Multi-Level 

Dependent 

Variables

 Constraints

• Normal 

Constraints

• Hierarchically 

Coupled 

Constraints

• Feasibility of 

Solutions

Attributes of 

Constraints

• Frequency of 

Variables

• Value of 

Variables

• Location 

Constraints

(Chapter 3)

Multimodal Optimization

• Maintaining diversity of 

population

• Converge to global optima 

consistently

• Find multiple optimal solutions

(Chapter 6)

k-means 

clustering 

algorithm

Features 

identification of 

each individuals

(Chapter 6)

Clustering of 

solutions based on 

features

Crossover and 

Mutation within 

cluster 

Multimodal 

Optimization

• Job-Shop 

Scheduling 

Problems

• Permutation-

Flow-shop 

Scheduling 

Problems 

• Assembly 

Job-Shop 

Scheduling 

Problems

Evolutionary 

based 

Computation

Feasible Initial 

Solutions

• Segmented solution 

creation

• Multi-level gene 

representation

• Multi-chromosome 

structure

Assembly Job-

Shop Scheduling

(Chapter 4) 

Feasible Solutions 

During Iterations

• Level-barrier based 

crossover operator

• Level-barrier based 

mutation operator

• Self-adaptive 

chromosome length

Problem Formulation Methodology & Solution

Simultaneous 

Optimization of 

NN Structure and 

Weights 

(Chapter 5)

(Chapter 3)

• Conclusion

• Contributions

• Limitations

• Future Work

(Chapter 7)

Application & Validation

Figure 2. Organization of the dissertation 

 



 8 

 

CHAPTER 2. LITERATURE REVIEW 

The literature review is categorized into two parts: 1) research on COPs and 2) research 

on the different MMO techniques. The literature review on COPs discusses the categories 

of COPs and the algorithms proposed to deal with the different types of COPs. The 

literature review on MMO includes discussion about the concept behind MMO and the 

different techniques utilized for MMO. After the review, a summary of potential avenues 

for the current research is presented. Further literature review about the different algorithms 

used to optimize AJSSP, simultaneously optimize NN weight and structure, and for the 

MMO of JSSP is provided in Sections 4.1, 5.1, and 6.2 

2.1 Literature Review on Constrained Optimization Problems 

As mentioned earlier, COPs are omnipresent both in real-world problems and 

theoretical applications. Researchers have proposed various methods to solve these COPs. 

As discussed by Coello [2], constraint handling methods can be classified into five different 

categories: (1) Penalty functions, (2) Special representations and operators, (3) Repair 

algorithms, (4) Separation of objectives and constraints, and (5) Hybrid methods. 

Penalty functions [3,4,5] are commonly used to handle COPs by transforming them 

into unconstrained problems by adding or subtracting a certain value to or from the 

objective function based on the amount of constraint violation present in the solution. Over 

the years, different types of penalty functions have been proposed such as the death penalty 

[6], static penalty [7], dynamic penalty [8] etc. Implementation of the penalty functions is 



 9 

straightforward but they include drawbacks such as the sensitivity of the solutions to the 

penalty parameters and the lack of a guideline to determine the value of the user defined 

penalty parameters.  

Researchers have developed special representation schemes for problems where 

generic representation scheme might not be appropriate. Due to the change of 

representation, special operators are also designed. Koziel and Michalewicz [9 ] and 

Monson et al. [10] used decoders, a special operator that gives instructions on how to build 

a feasible solution, to transform constrained optimization problems into unconstrained ones 

via homomorphous mappings. Genetic Algorithm for Numerical Optimization for 

Constrained Problems (GENOCOP), proposed by Michalewicz and Janikow [11], reduces 

the search space through the elimination of equalities constraints with an equal number of 

problem variables. Though a competitive constraint-handling technique, its drawbacks 

include high computational cost (over 1.4 million fitness function evaluations required) 

and their inability to cope with non-linear constraints, or disjoint feasible regions.  

As the name suggests, the purpose of the repair algorithms is to ‘repair’ the infeasible 

solutions either for evaluation or to replace the original individual in the population as 

shown in the works of Chootinan et al. [12] and Pal et al. [13]. GENOCOP III, an extension 

of the original GENOCOP, proposed by Michalewicz and Nazhiyath [14], is also based on 

the same principle. Alducin et al. [15] used a repair method for DE to solve dynamic 

constrained problems. Fan et al. [16] proposed a repair operator, inspired by opposition-

based learning, that employed reverse correction strategy to fix solutions that violated the 

box-constraints. The main drawback of the repair algorithm includes high computational 



 10 

cost, the dependence on the availability of feasible solutions as reference to repair 

infeasible ones, and the need for modification for different applications.  

In separation of constraints and objectives, the constraints and objectives are handled 

separately unlike penalty functions, where the value of the objective function and constraint 

are assigned to a single fitness value. Methods such as coevolution [17], use of multi-

objective optimization [2], and behavioral memory [18] are some examples of techniques 

that employ separation of constraints and objectives. Deb [19] separated the objective and 

constraints by proposing three feasibility rules that are very popular and effective for 

handling constrained optimization. These feasibility-based rules have been used 

extensively with other hybrid evolutionary algorithms to solve linear and non-linear COPs 

problems as shown by Ma and Simon [20], Chen et al. [21], Zhou et al. [22], and Mohamed 

and Sabry [23]. Since the feasibility rule emphasizes feasible solutions to infeasible ones, 

their usage can lead to premature convergence or the need for high number of user inputs.  

 Literature review shows that there is a lack of categorization of COPs with 

HCCOPs as such. Furthermore, the algorithms available for the optimization of COPs 

currently used to solve HCCOPs are not universal and require immense modifications to 

solve the HCCOPs. Therefore, there is room to develop a methodology to identify and 

optimize the HCCOPs. 

2.2 Literature review on Multimodal Optimization 

Generally speaking, there are three different types of optimization problems [24]. 

The first type is referred to as classical optimization problem and the objective is to solve 

a single objective function which has a single global optimum. The second type of 



 11 

Figure 3. Example of MMO functions. 

optimization problems are called multi-objective optimization problems. As the name 

suggests, these problems have multiple objectives and the second type of optimization 

problem, rather than having a single objective function, the problem has multiple objectives 

functions and the solution to these problems is called Pareto-set. The third type of 

optimization problems, called MMO problems, again have a single objective function, but 

instead of having a single global optimum, the function has several global and local optima. 

The optimization objective for the third type of optimization problems is to find as many 

of these global and local optima as possible. Figure 3 shows an example of a MMO function 

with 5 global optima in (a) and a single global optimum and 4 local optima in (b).  

 

 

 

 

 

 

 Unlike classical optimization problems, the goal of MMO problems is to obtain 

multiple optimal solutions in a single execution of the algorithm by using niching methods. 

Distance between individuals is used to separate the individuals into different niches. 

Fitness sharing [ 25 ] and crowding [ 26 ] method are examples of classical niching 

techniques used for MMO. In fitness sharing, the diversity of the population is maintained 



 12 

by degrading an individual’s fitness based on the presence of other similar neighboring 

individuals. The degradation of the fitness takes place during the selection process and the 

degradation discourages similar individuals to occupy the same niche [27]. In crowding 

method, designed to ensure population diversity and prevent premature, a single individual 

is compared to a small random sample taken from the current population, and the most 

identical individual in the chosen sample is replaced. These niching techniques have been 

used as a foundation to create other niching techniques such as RTS [28], clearing [29], 

multinational GA [30], and speciation [31].  

 More recently, other meta-heuristics have been modified to induce niching 

behavior with Particle Swarm Optimization (PSO) and differential evolution (DE) being 

the most commonly used algorithms. In PSO, memory is to induce niching behavior. This 

is accomplished by splitting the swarm into two categories: 1. explorer-swarm which 

consists of current particles, and (2) memory-sawm which consist of best-known positions 

of the individuals of the swarm. Furthermore, classical niching techniques have also been 

used in conjunction with PSO for MMO [32,33,34,35].  

In DE [36], scaled differences between randomly sampled pairs of individuals is 

utilized to determine how individual’s vectors are modified to produce offspring. To 

incorporate niching into DE, probabilistic parent selection scheme based on fitness and 

proximity information has been proposed [ 37 ]. Parent-centric mutation strategies 

combined with crowding [38] and speciation [39] are also DE niching variants that have 

shown promising results in MMO. Clustering techniques have also been utilized for 

niching for MMO. K-means clustering, dynamic niche sharing [ 40 ], dynamic niche 



 13 

clustering [41], and species conserving GA [42] are some algorithms belonging to this 

category.  

As it can be seen, there is a plethora of work available on MMO, however, these 

techniques have only been tested on benchmark mathematical problems. Furthermore, the 

aim of these techniques is to find both global and local optima which increases their 

computational complexity. Also, it is possible for local optima to have much worse 

objective value than global optima which is undesirable in scheduling problems. Compared 

to the MMO of benchmark problems very little [24,93]  to no work is available in the MMO 

of scheduling problems and HCCOPs. 

2.3 Summary 

Based on literature reviews relating to COPs,  

In the area of MMO, niching techniques, clustering techniques, meta-heuristic 

algorithms with niching techniques have been developed. However, they have only 

been implemented on benchmark mathematical problems and are utilized for finding 

both global and local optima.  

To address these issues, this dissertation consists of the following tasks:  

1. Identification of common principles amongst different HCCOPs. 

2. Development of an algorithm to optimize the HCCOPs. 

3. Validation of the proposed algorithm by its application to different HCCOPs. 

4. Development and validation of an algorithm for MMO of scheduling problems 

and HCCOPs. 



 14 

CHAPTER 3. IDENTIFICATION AND MATHEMATICAL 

MODELING OF HIERARCHICALLY COUPLED CONSTRAINT 

OPTIMIZATION PROBLEMS 

In this chapter, the characteristics of HCCOP, specifically, its variables, the different 

categories of constraints on these variables, and the features of these constraints are first 

introduced. Next, to solve the HCCOP, a new algorithm is developed, based on 

evolutionary computation. An adaptive initial solution generator is proposed which capable 

of coping with the different constraints of HCCOP and create feasible initial solutions. 

Next, to create feasible solutions for every iteration of algorithm, level-barrier based 

crossover and mutation operators are proposed.  

3.1 Description of Hierarchically Coupled Constraint Optimization Problems 

The adjustable parameters in the HCCO can be divided into two categories, 

independent variables and dependent variables, as follows: 

Independent variables: 1 2, , , na a a  

The dependent variables can further be split into different levels of dependent variables as 

follows: 

The 1st level dependent variables: 
1

(1) (1) (1)

1 2, ,..., mb b b  

The 2nd level dependent variables: 
2

(2) (2) (2)

1 2, ,..., mb b b  



 15 

The kth level dependent variables: 
( ) ( ) ( )

1 2, ,...,
k

k k k

mb b b  

As the name suggests, HCCOPs have hierarchically coupled constraints that 

differentiate them from regular COPs. Constraints in the HCCO can be split into two 

categories; 1. basic constraints and 2. Hierarchically coupled constraints (HCCs). Basic 

constraints are the constraints on the independent variables. These constraints are not 

functions of other independent or dependent variables. These constraints can be written as: 

iaC ; where the independent variable 1a is subjected to 
iaC and i = 1, 2, 3,…, n 

HCCs are the constraints that exist on the dependent variables. These constraints 

are a function of independent and lower level dependent variables. The constraints on the 

1st level dependent variables are a function of the independent variables and can be written 

as: 

 (1)

1j
b

C ; where 1 11, 2,3...,j m . (1)

1j
b

C is the constraint on the dependent variable 
1

(1)

jb  and 

is a function of 1 2, ,..., na a a . 

The constraints on the 2nd level dependent variables are a function of the 1st level 

dependent variables and can be written as: 

( 2)

2j
b

C ; where 2 21,2,3,...,j m . ( 2)

2j
b

C is the constraint on the dependent variable 
2

(2)  jb  

and is a function of  
1

(1) (1) (1)

1 2, , , mb b b . 



 16 

Similarly, the constraints on the kth level dependent variables are a function of the 

(k-1) level dependent variables and can be written as:  

( )k
jk

b
C  ; 1,2,3,...,k kj m . ( )k

jk
b

C is the constraint on the dependent variable 
( )  
k

k

jb and is 

a function of 
( 1)

( 1) ( 1) ( 1)

1 2, , ,
k

k k k

jb b b


   .  

The objective then becomes: 

 min
1 2

(1) (1) (1) (2) (2) (2) ( ) ( ) ( )

1 2 1 2 1 2 1 2( , , , , , , , , , , , , , , , )
k

k k k

n m m mf a a a b b b b b b b b b  (1) 

 subject to 
iaC for 1, 2,3...,i n  (2) 

 
                     (1)

1j
b

C  for 1 11, 2,3...,j m  
 

   

                     ( )k
jk

b
C  for 1, 2,3...,k kj m   

The constraints on the independent and dependent variables mentioned above can 

have the following features:  

(1) The frequency of occurrence of the variable  

Let the frequency of occurrence of the variable 
ia be ( )ix a . Then,  

 *
00   ,)( Nttax i   OR 

*
2

*
121   ,  ,)( NtNttaxt i  , 

*)( Nax i   (3) 



 17 

(2) The value of the variable  

 Rvvvav i  2121  , ,  (4) 

(3) Position constraints i.e. if the final solution has sequence constraints then, constraints 

may be present on the location of the variables. For example, if the location of 
(1)

1b  is 

constrained by 
1 2, , , na a a , then this constraint can be represented as: 

 (1)
1

min{ } max{ | 1,  ,  } 1
iab

l l i n    (5) 

Where (1)
jb

l  represents the location of variable (1)

1b  in the solution while   represents the 

location of the independent variables. 

3.2 Modeling of the solution 

To accommodate for a variety of HCCOPs, solutions in the proposed algorithm will 

be represented using a multi-chromosome structure (if applicable) i.e. each aspect of the 

solution will be located in a different chromosome. From henceforth in the paper, each 

solution will be referred to as an individual (or chromosome) and each individual will be 

made up of multiple sub-chromosomes. Each sub-chromosome can be represented using 

different methods such as permutation or binary encoding and the information can be 

encoded by changing the following: (1) The location of the variables, (2) The frequency of 

the variables, and (3) The value of the variables. As mentioned earlier, to cope with the 

HCC’s and only search the feasible solution space, a new initial solution generator, level 



 18 

barrier based crossover, and level barrier based mutation operators are proposed in this 

paper. Figure 4 shows a brief flow chart of the proposed algorithm to solve HCCOPs. 



 19 

Identify the number of aspects of solution C

Use the classical creator to generate the sub-chromosome

Any hierarchically coupled constraints in each sub-chromosome?

Identify the independent variables and different levels of dependent 

variables

Use the proposed Initial Solution Generator Operator to generate the        

sub-chromosome

N

Y

Combine all the sub-chromosomes into one whole multi-chromosome

Repeat the creation process until the initial population is satisfied

Apply the Level barrier based crossover operator

Any hierarchically coupled constraints in each sub-chromosome?

Apply classical crossover operator

Apply the Level barrier based mutation operator

Any hierarchically coupled constraints in each sub-chromosome?

Apply classical mutation operator

Combine all the child sub-chromosomes into one whole child                

multi-chromosome

Combine all the child sub-chromosomes into one whole child                

multi-chromosome

Y

N

Repeat the crossover process until the enough crossover offspring are 

generated

Y

Repeat the mutation process until the enough mutation offspring are 

generated

N

Randomly choose the crossover parents

Randomly choose the mutation parent

Selection of this generation

Repeat the above operators until the terminal condition meets
 

Figure 4. A brief flowchart of the proposed algorithm 

 



 20 

The special operators mentioned in Figure 4 that enable the proposed algorithm to 

function on the HCCOPs are described in further details in the following sections. 

3.2.1 Initial Solution Generator Operator 

To create an initial population, all the sub-chromosomes of each chromosome must 

first be created. The generation of a solution that satisfies all HCCs is accomplished in 

multiple steps. First, a partial solution is created that satisfies the lowest level of the HCCs. 

Next, multiple partial solutions are appended together to satisfy the next level of HCCs. 

These steps are repeated until a complete solution is created that satisfies all the HCCs. 

Unlike the proposed initial solution generator operator, the creation operator used in 

classical GA generates a complete solution in a single step. This indicates that a solution 

created using the classical creation operator might not satisfy all the HCCs and therefore, 

might be infeasible. Since the proposed initial solution generator only creates feasible 

solutions, it significantly reduces the computation time required to find an optimal solution 

as the algorithm must only search the feasible solution space for an optimal solution. The 

overall flow chart of the initial solution generator is shown in Figure 5. 

 

 

 

 

 



 21 

Create the 0th level genes 

Identify independent variables and O different levels of dependent variables

 independent variables 

Create the kth level genes 

k=1

 (k-1)th  level genes 

and kth  level 

dependent variables

k=k+1

k   O?
Y

The h th sub-chromosome is created

N

Identify the number of sub-chromosomes needed C

h   C?

h=h+1

h=1

Generate the hth sub-chromosome by using the classical creator

Y
Any hierarchically coupled constraints in this sub-chromosome?

Y

N

The whole individual multi-chromosome is created
N

 

Figure 5. Flowchart of the initial solution generator operator 

The detailed steps of the initial solution generator are outlined below: 

Step 1.a: Create the 0th level genes 

For every 1st level dependent variable 
1

(1)

jb , create a 0th level gene
1

(0)

jG  which comprises of 

the independent variables that constrain the 1st level dependent variable 
1

(1)

jb , shown in 

Figure 6. 



 22 

a1 a2  a1  an

 

Figure 6. The 0th level gene 

The length of this gene is given by: 

 

1 1

(0) (0)

,

1

 ( ) ( )
n

j j i i

i

length G w x a


   (6) 

Where: 

 
1

1

(1)

(0)

,

1 If  constraints the 1  level dependent variable   

0 Otherwise                                                                   

st

i j

j i

a b
w


 



 (7) 

 



























)0(
,

)0(
,

)0(
1,

)0(
,

)0(
,

)0(
1,

)0(
,1

)0(
,1

)0(
1,1

)0(

111

111

nmimm

njijj

ni

www

www

www

w











 

 

(8) 

Step 1.b: For every 1st level dependent variable 
1

(1)

jb , create the 1st level gene 
1

(1)

jG ,shown in 

Figure 7, by placing the 1st level dependent variable after the 0th level genes. 

a1 a2  a1  an  
 

Figure 7. The 1st level gene 

The length of the 1st level gene is given by:  

 
1 1 1

(1) (0) (1) ( )  ( )  ( )j j jlength G length G x b   (9) 



 23 

)2(

2j
G    )1(

1G )1(
2G

)1(

1m
G

)2(

2j
b

)2(

2j
b

1

(1)

jG

Step 2: For every 2nd level dependent variable 
2

(2)

jb , create the 2nd level gene
2

(2)

jG , shown 

in Fig. 5, by combining all the 1st level genes 
1

(1)

jG that constraint the 2nd level dependent 

variable 
2

(2)

jb and placing the 2nd level dependent variable 
2

(2)

jb at the end. 

 

Figure 8. The 2nd level gene 

The length of the 2nd level gene is given by: 

 1

2 2 1 1 2

1

(2) (1) (1) (2)

,

1

( ) ( ) ( )
m

j j j j j

j

length G w length G x b


    (10) 

 
1 2

2 1

(1) (2)

(1)

,

1 If  constraints the 2  level gene   

0 Otherwise                                                 

nd

j j

j j

G b
w


 



 (11) 

 
( 1) ( 1)

( 1) ( 1)

( 1) ( 1)

( 1) ( 1) ( 1)

1,1 1, 1,

( 1) ( 1) ( 1)( 1)
,1 , ,

( 1) ( 1) ( 1)

,1 , ,

k k

k k k k k

k k k k k

k k k

j m

k k kk
j j j j m

k k k

m m j m m

w w w

w w ww

w w w

 

 

 

  

  

  

 
 
 
 


 
 
 
  

 

 

(12) 

Step 2 can be repeated until the kth level gene, shown in Fig. 6, is created. To create the kth 

level gene, the (k-1) level genes are combined and the  kth level dependent variable is placed 

at the end.  



 24 

 

Figure 9. The kth level gene 

The length of the kth level gene is given by: 

 ( 1)

( 1) ( 1)

( 1)

( ) ( 1) ( 1) ( )

,

1

( ) ( ) ( )
k

k k k k k

k

m

k k k k

j j j j j

j

length G w length G x b


 



 



    (13) 

 
( 1)

( 1)

( 1) ( )

( 1)

,

1 If  is a constraining ( 1)  level gene of  

0 Otherwise                                                                    

k k

k k

k th k

j jk

j j

G k b
w 








 


 
(14) 

 
( 1) ( 1)

( 1) ( 1)

( 1) ( 1)

( 1) ( 1) ( 1)

1,1 1, 1,

( 1) ( 1) ( 1)( 1)
,1 , ,

( 1) ( 1) ( 1)

,1 , ,

k k

k k k k k

k k k k k

k k k

j m

k k kk
j j j j m

k k k

m m j m m

w w w

w w ww

w w w

 

 

 

  

  

  

 
 
 
 


 
 
 
  

 

 

(15) 

As it can be noticed, when k = 2, Equation (13) is exactly the same with Equation 

(10). When utilizing this method for non-constrained problems, only thie 0th level gene will 

be used.  

3.2.2 Level-barrier based crossover operator 

The purpose of the level barrier based crossover operator is to generate feasible 

solutions for the next generation while maintaining the diversity of the population. Unlike 

the classical crossover operator, where the genes are switched based single-point, two 

points, or uniformly between the parents, crossover in the level barrier based crossover 

operator is performed on each level. First, a gene belonging to the kth level is selected from 

   
)(k

jk
b

)(k
jk

b( 1)

1

kG  ( 1)

2

kG 

( 1)

( 1)

k

k

jG




( 1)

( 1)

k

k

mG




k

k

jG



 25 

the two parents. Next, a (k-1) level gene that constraints the kth level gene is selected and 

its position in the two parents is switched. By switching the entire position of the (k-1)  

level gene, the HCCs of kth as well as the (k+1) are still satisfied. This would be difficult to 

achieve with the classical crossover operator as genes are selected randomly regardless of 

the level they belong to. The steps of the level barrier based crossover are shown below. 

First, for each level in the individual, define a Crossover Level Weight value 

 (2), (3), , ( ), , ( 1)x x x x o xw w w w r w k  , where 

 








                                                                    Otherwise 0

  level  in the utilized be illoperator wcrossover  If 1
)(

th
o

ox
r

rw  (16) 

Next, a pair of individuals from the current generation are selected (based on the 

roulette selection) for crossover and the following steps are taken. 

FOR all positive integer number 
or k  

          IF 1)( ox rw    THEN        

px   A random integer number between 1 and
or

m  

( 1)

( 1)
[ ]o

ro

r

jG


   Randomly selected gene which constraints the 
)( o

p

r

x
b variable. 

          Switch the positions of the 
( 1)

( 1)
[ ]o

ro

r

jG


  gene in the th
or  level of each parent  

         ELSE 

              Keep the parents’ original genes as the genes of the th
or level in the offspring 

         ENDIF 

ENDFOR 



 26 

C
r
o
ss

o
v
er

The change of corresponding sub-chromosome before and after the procedure is 

shown in Figure 10. 

 

Figure 10. Illustration of crossover on (ro-1) level gene of the hth sub-chromosome 

constraining the variable 𝒃𝒋𝒐
(𝒓𝒐) 

In Figure 10, Individuals A and B represent solutions (current generation) of the 

optimization problem, Individuals A’ and B’ represent solutions (next generation) of the 

optimization problem, 
1

( 1)
[ ]or

AG


represents the 1st gene of the (ro-1) level of individual A,  

and ( 1)

1

( , )
ro

A h

G
L  represents the location of 

( 1)

1
orG


in the hth sub-chromosome of Individual A.  

 

 

 

 

 

   

),(
)1(

2

hA

G or
L 

),(
)1(

1

hA

G or
L  ( 1)

( 1)

( , )
ro

j ro

A h

G
L 



),(
)1(

)1(

hA

G or

or
m

L 



1

( 1)
[ ]or

AG


2

( 1)
[ ]or

AG
 )( o

or

r

j
b)( o

or

r

j
b( 1)

( 1)
[ ]o

ro

r

AmG




( 1)

( 1)
[ ]o

ro

r

AmG




   

),(
)1(

2

hB

G or
L 

),(
)1(

1

hB

G or
L  ( 1)

( 1)

( , )
ro

j ro

B h

G
L 



),(
)1(

)1(

hB

G or

or
m

L 



1

( 1)
[ ]or

BG


2

( 1)
[ ]or

BG
 )( o

or

r

j
b)( o

or

r

j
b

( 1)

( 1)
[ ]o

ro

r

j BG




( 1)

( 1)
[ ]o

ro

r

BmG




   

),(
)1(

2

hA

G or
L 

),(
)1(

1

hA

G or
L  ( 1)

( 1)

( , )
ro

j ro

A h

G
L 



),(
)1(

)1(

hA

G or

or
m

L 



1

( 1)
[ ]or

AG


2

( 1)
[ ]or

AG
 )( o

or

r

j
b)( o

or

r

j
b

( 1)

( 1)
[ ]o

ro

r

j BG



( 1)

( 1)
[ ]o

ro

r

AmG




   

),(
)1(

2

hB

G or
L 

),(
)1(

1

hB

G or
L  ( 1)

( 1)

( , )
ro

j ro

B h

G
L 



1

( 1)
[ ]or

BG


2

( 1)
[ ]or

BG
 )( o

or

r

j
b)( o

or

r

j
b

( 1)

( 1)
[ ]o

ro

r

j AG




( 1)

( 1)
[ ]o

ro

r

BmG






 27 

3.2.3 Level-barrier based mutation operator 

The purpose of the level barrier based mutation operator is to increase the diversity 

of population by making small random changes to the parents. Unlike classical mutation 

operator, where the value of a randomly chosen gene or the location of two or more 

randomly chosen genes is altered, in the level barrier based mutation operator, the positions 

of multiple (k-1) level genes that have the same length and constrain the same kth dependent 

variable is switched. Since multiple (k-1) level genes that constraint the same kth level gene 

are repositioned, the HCCs of the kth as well as the (k+1) are still satisfied. This task would 

be difficult to accomplish with classical mutation operator as the value or position of 

randomly genes are altered, regardless of the levels. 

First, define a mutation rate,
mP  and for each level in the individuals, define a mutation 

level weight-value, mw where  )1(,),(,),2(),1(  kwrwwww mommmm   and )( om rw is given 

be: 

 








                                                                  Otherwise 0

level  in the utilized be illoperator wmutation  If 1
)(

th
o

om
r

rw  (17) 

To pick the genes whose positions will be switched, mutation candidates from each 

level must be picked. The mutation candidates of each level stored in the matrix CM , where 

},,,,,{
)1()()1()0( 


kr

CMCMCMCMCM o  and 



 28 

 











































)()2()1(

)()2()1(

)()2()1(

)()()(

)()()(

)()()(

)(

)1(

)1(

)1(

)1(

)1(

)1(

)1(
2

)1(
2

)1(
2

)1(
1

)1(
1

)1(
1

cCGCGCG

cCGCGCG

cCGCGCG

CM

o

or

or
m

o

or

or
m

o

or

or
m

o

or
o

or
o

or

o

or
o

or
o

or

o

r

b

r

b

r

b

r

b

r

b

r

b

r

b

r

b

r

b

r





 
(18) 

( 1)

( 1)

( )
( )o

ro
m ro

r

b
CG c





 : A vector containing gene groups belonging to the ro level that constraint 

the 
( )1

( 1)



o

ro

r

m
b dependent variable and have the length c . 

 1,  2,  ,c :  Length of genes. 

This method ensures that multiple genes from each level have the probability of 

being mutated which would lead to an increase in the diversity of the population. 

Once these variables have been defined, the following steps can be taken for the level 

barrier based mutation: 

rmP   A random number which is between 0 and 1. 

IF mrm PP    THEN 

     FOR all positive integer number 1or k   DO 

          IF 1)( om rw   THEN 

P   A random integer which is between 1 and )1( or
m .  

Q   A random integer which is between 1 and the number of genes in c.  

            R    A random integer which is between 2 and the number of genes in )(
)(

)1(

)(

QCG o

or

Pm

r

b
  



 29 

             n  the number of genes in )(
)(

)1(

)(

QCG o

or

Pm

r

b
 -R 

             FOR all positive integer number ( 1)i n   DO 

                      Let the i th gene of the gene group )(
)(

)1(

)(

QCG o

or

Pm

r

b
 takes the original position 

of
thiR )1(   gene. 

             ENDFOR 

 

             FOR all positive integer number 2n j R n     DO 

                      Let the j th gene of the gene group ( 1)

( )

( )
( )o

ro
m P

r

b
CG Q

 takes the original position of  

thnj )1(   gene. 

             ENDFOR  

          ELSE 

               keep the parent’s gene as the 
th

o
r  level offspring 

          ENDIF 

    ENDFOR 

ENDIF 

 

 

 

 

 

 



 30 

M
u

ta
ti

o
n

The change of corresponding sub-chromosome before and after the procedure is 

shown in Figure 11. 

 

 

 

 

 

 

 

Figure 11. The illustration of mutation on 𝒓�𝒐
𝒕𝒉 level candidate of the hth sub-

chromosome 

3.3 Summary 

This chapter presented an abstract definition and common principles used to identify 

HCCOPs as well as an algorithm proposed for optimizing these problems. Section 3.1, 

introduces the dependent and independent variables encountered in HCCOPs, the two 

categories of constraints on these variables, and the features of these constraints.  

Section 3.2 presents an algorithm to solve the HCCOPs. The proposed algorithm has 

four main features: 1. A multi-chromosome structure 2. An initial solution generator, 3. A 

level-barrier based crossover operator and 4. A level-barrier based mutation operator A 

multi-chromosome structure is utilized in the proposed algorithm to represent different 

 

 

 

 

 

 

  a
orG ][

)(

1 a
orG ][

)(

2 a
or

RG ][
)(

)( a
or

RG ][
)(

)1(  a
or

nRG ][
)(

)( 

),(
)(

1

hA

G or
L ),(

)(

2

hA

G or
L

),(
)(

)(

hA

G or

R

L
),(
)(

)1(

hA

G or

R

L



),(
)(

)(

hA

G or

nR

L



  a
orG ][

)(

1 a
orG ][

)(

2 a
or

nG ][
)(

)1( a
or

nG ][
)(

)2(  a
or

nRG ][
)(

)( 

),(
)(

1

hA

G or
L

),(
)(

)1(

hA

G or

R

L



),(
)(

)(

hA

G or

R

L ),(
)(

)1(

hA

G or

R

L



),(
)(

)(

hA

G or

nR

L





 31 

aspects of the solution (when applicable) and to ensure feasibility of the solutions generated 

during the iterations of the algorithm. The initial solution generator creates feasible initial 

solutions for the HCCOPs by creating multiple partial solutions that satisfy lower level of 

hierarchical constraints and then combining these partial solutions together to satisfy the 

next higher level of hierarchical constraints. In the level-barrier based crossover operator, 

feasibility of the solutions is ensured by switching the positions of a gene, which constraints 

the same dependent variable, in two individuals. In the level-barrier based mutation 

operator, the location of multiple genes, which have the same length and constraint the 

same dependent variable, is switched. 

In the following chapter, it is first demonstrated how AJSSP can be classified as 

HCCOP. Next, the proposed algorithm is utilized to optimize various AJSSP and its 

performance is compared to that of other algorithms used to solve AJSSP. A complexity 

analysis of the proposed algorithm is also performed. 

  



 32 

CHAPTER 4. OPTIMIZATION OF ASSEMBLY JOB-SHOP 

SCHEDULING PROBLEM  

In this chapter, the algorithm developed for HCCOPs in CHAPTER 3 is utilized for the 

optimization of AJSSP. It is first demonstrated how AJSSP can be classified as HCC 

problems using the definitions developed in the CHAPTER 3. Next, the initial solution 

generator, the level-barrier based crossover and mutation operators are utilized to 

demonstrate the creation of a feasible initial solution and feasible solutions during the 

iterations of the algorithm. To validate the performance of the proposed algorithm, it is 

used to optimize multiple AJSSP and its performance is compared against the performance 

of other algorithms utilized to optimize AJSSP. Lastly, a complexity analysis of the 

proposed algorithm is performed. 

4.1 Introduction to AJSSP 

AJSSP, an extension of the classical job-shop scheduling problems, has attracted 

researchers’ attention since it is commonly encountered in the production industry. In 

AJSSP, n ideal jobs, J1, J2, …, Jn, of varying processing times are assigned to m resources 

(usually machines). The objective is to allocate the available resources to the jobs to 

maximize (or minimize) performance indicators such as makespan, tardiness etc. However, 

unlike classical JSSP, AJSSP processes end-items with bill of materials (BOM). The BOM 

generates complex precedence structure in the form of assembly tress that exist on multiple 

levels. End-items are produce through the fabrication of succeeding and assembly 

operations. Each of these succeeding operations and their components may have their own 



 33 

specific BOM and routing. Higher level items cannot be processed until all the lower level 

items have been processed and assembled. Due to the complex precedence structures of 

operations issues related to production synchronization, coordination and pacing rise 

naturally in AJSSP and are much more impacting for scheduling than those evidenced in 

classical JSSP [43].  

Fattahi et al. [44] used a hierarchical branch and bound algorithm for minimizing the 

makespan of hybrid flow shop scheduling problems with assembly steps. The authors 

evaluated the performance of their algorithm under different bottleneck conditions and 

observed that the best results were obtained when the assembly stage was the bottleneck. 

Komaki and Kayvanfar [ 45 ] proposed several dispatching rules, lower bounds (LB) 

modified and applied Grey Wolf Optimizer for minimizing the makespan of two-stage 

asssembly flow shop scheduling problem with release time. The dispatching rules were 

based on release times, job processing times, and assembly times while the lower bound 

was based on workload of each stage of the assembly flow shop. The authors modified 

GWO and incorporated a local search algorithm to improve the performance of GWO. The 

experimental results showed that the proposed LB, dispatching rules and GWO could solve 

the assembly flow shop problem effectively. Yan, Wan and Xiong [46] proposed a hybrid 

variable neighborhood search – electromagnetism-like mechanism (VNS-ESM) algorithm 

optimize the weighted sum of maximum makespan, earliness and lateness in two-stage 

assembly flow shop scheduling problem. When applied to a variety of two-stage assembly 

flow shop problems, the authors observed that their proposed algorithm could outperform 

electromagnetism algorithm (EM) and variable-neighborhood search algorithm (VNS) 

while having the same running time. Komaki, Teymourian and Kayvanfar [47] used a 



 34 

hybrid artificial immune algorithm (HAIS) to minimize the makespan of a two-stage 

assembly hybrid flow shop scheduling problem. The authors first proposed a LB for the 

two-stage assembly hybrid flow shop scheduling problem and then developed a heuristic 

to solve the problem. When compared to existing methods, the proposed algorithm had 

better performance. Wong and Ngan [48] used hybrid Genetic Algorithm (GA) and hybrid 

particle swarm optimization (PSO) to minimize the makespan for an AJSSP. When applied 

to a variety of problems, the HGA outperformed the HPSO. Nataranjan et al. [49]  proposed 

and evaluated multiple priority dispatching rules for multi-level AJSSP. In their study, they 

changed the weight of the jobs and the utilization percentage of machines to minimize the 

flowtime and the tardiness. Paul et al. [50] combined dispatching rules such as First Come 

First Serviced (FCFS), Shortest Processing Time (SPT) etc. and Order Review/Release 

policies such as Interval Release (IR), Maximum Load (MXL) etc. to optimize three 

objectives i.e. mean flow time, mean tardiness, and machine utilization for AJSSP. Chan 

et al. [51] proposed a GA-based approach with lot sharing (LS) technique to solve AJSSP. 

Compared to a previous algorithm they had developed to solve AJSSP, their new algorithm 

had better performance for single objective optimization problems. Guo et al. [52] used 

combination of mathematical model and GA with a new chromosome representation, a 

heuristic initialization process and modified crossover and mutation operators for solving 

AJSSP. Thaigarajan and Rajendran [53] developed dispatching rules by incorporating the 

cost of holding and tardiness of jobs to solve dynamic AJSSP. Wang et al. [54] proposed 

a new repair operator based GA to repair the infeasible solutions when solving AJSSP. 

Liao, Lee, and Lee [55] used mixed integer programming (MIP) to optimize the makespan 

of a two-stage assembly scheduling problem with batch setup times. The authors first 



 35 

proposed an effective heuristic and to validate its performance, they applied it to a real-life 

scheduling problem. The results of the case study showed that it performed better than the 

scheduling system used in the shop floor. Seidgar et al. [56] used imperialist competitive 

algorithm (ICA) to minimize a weighted sum of makespan and mean completion time for 

a two-stage assembly flow shop with parallel machines in the first stage. The authors also 

used Artificial Neural Networks (ANNs) to calibrate the parameters of the proposed ICA.  

To validate their proposed algorithm, the authors compared its performance to that of a 

could theory-based simulated annealing algorithm (CSA) and observed that the proposed 

ICA had better performance. Seidgar et al. [ 57 ] proposed a simulated imperialist 

competitive algorithm to minimize the makespan in a two-stage assembly flow shop with 

machine breakdowns and preventive maintenance. The authors calibrated the parameters 

of the algorithm using ANNs and when applied to a case study, the proposed algorithm 

outperformed GA while having the same computational time. Dileeplal and Narayanan 

[58] used Tabu Search (TS) and GA for the multi-objective optimization of multiple stage 

assembly job shop scheduling problems with multiple products.   

To validate the proposed methodology, it is utilized to solve two different case studies 

of AJSSP optimization. In the 1st case study, an AJSSP with reentrant steps and parallel 

machines is considered and the results obtained from the proposed methodology are 

compared to the results obtained when standard GA (SGA) is used to solve the same 

problem. In the 2nd case study, the proposed algorithms performance is measured against 

the performance algorithms used by Dileeplal and Narayanan. In this case study, the 28 

test problems introduced by Dileeplal and are was used to compare the two works. The 



 36 

problems in the 1st case study are also used to demonstrate the HCCs in AJSSP as well as 

modelling of the solution using the algorithm developed in CHAPTER 3. 

4.2 Case Study 1 

As mentioned above, in this case study an AJSSP with reentrant steps and parallel 

machine was considered. A description of the problems is given below: 

1. On the shop floor, there are machines groups available. Each machine group has 3 

parallel machines. 

2. Each job had multiple parts being produced. As such, a job can be split into smaller 

batches and each batch can use a separate machine belonging to the same machine 

group 

3. No pre-emption of job operation is permitted 

4. The set-up times are not considered in these problems. 

5. Machines never break down. 

6. The machine group used for each operation of a job is known.  

7. A job can revisit a machine group for multiple operations. 

8. Operation constraints and assembly constraints must always be followed. 

The objective of the proposed algorithm and SGA is to find the optimal sequence of 

operations and the number of machines to use for each operation of a job that would 

minimize the makespan. To compare the two algorithms for simulated problems are used 

with different number of jobs, levels, and machine groups to simulate varying degrees of 

difficulty. The information about these problems is presented in Table 1 and the structure 

of the jobs or BOM is shown in Figure 12.  



 37 

Table 1. Information of the AJSSP used in case study 1 

Problem type # of levels # of Jobs 

# of 

Operations 

per Job 

# of machine 

groups 

A 2 7 3 2 

B 2 11 3 2 

C 3 23 3 3 

D 4 35 3 3 

 

 

 

 

 

 

 

 

 

 

 



 38 

  

A. B. 

 

C. 

 

D. 

Figure 12. BOM of the four different simulated testing problems  

4.2.1 Modelling of Solution 

For the 1st case study, each feasible solution needs two parts, the sequence of steps 

(1st sub-chromosome) and the number of parallel machines that each step can utilize (2nd 

sub-chromosome). These two parts are comparatively independent; therefore, every 

individual is encoded as a double-chromosome. The two sub-chromosomes are of equal 

3

1 2

7

4 5

6 3

1 2

7

4 5 6

11

10

8 9

1 2 4 5 6 8 9 10 12 13 14 15 17 18 19

3 7 11 16 20

21 22

23

1 2 4 5 7 8 9

3 6 10

29

33

11 12

13

14 15 16

17

18 19 20

21

22 23

24

25 26 27

28

30 31 35

34

34



 39 

length number and the ith location of sub-chromosome two represents the number of 

parallel machines used by the step in the ith location of sub-chromosome one.  

To eliminate the generation of infeasible solutions, permutation encoding is utilized 

in the 1st sub-chromosome. The frequency of occurrence of each job in the 1st sub-

chromosome, which corresponds to the number of operations of each job consist of regular 

constraints. The location of each job in the 1st chromosome, which corresponds to the 

sequence of jobs, can be regarded as the HCCs. Each component of the 2nd sub-

chromosome is constrained by a lower and upper bound, which corresponds to the 

minimum and maximum number of parallel machines the operation in the corresponding 

position in the 1st sub-chromosome is allowed to utilize during its production. Integer 

encoding is utilized for the 2nd sub-chromosome. Equation (19)-(22) show the constraints 

for problem B. 

 
( ,1)

3 1 2min{ } max{ ,  } 1Al l l   (19) 

 
( ,1)

7 4 5 6min{ } max{ ,  ,  } 1Al l l l   (20) 

 
( ,1)

10 8 9min{ } max{ ,  } 1Al l l   (21) 

 
( ,1)

11 3 7 10min{ } max{  , ,  } 1Al l l l   (22) 

Per Equation (19), the first occurrence of 3 in the 1st sub-chromosome of individual 

A must be after the last occurrence of 1 and 2 in i.e. the processing of job 3 can only be 

started after the completion of jobs 1 and 2. Similarly, according to Equation (20), the 



 40 

processing of job 7 can only be started after the completion of jobs 4, 5, and 6. According 

to equation (21), the processing of job 10 can only started after the completion of jobs 8 

and 9. Lastly, according to Equation (22), the processing of job 11 can only be started after 

the completion of jobs 3, 7, and 10. By combining Equations (19)-(22) it can also be said 

that the starting time of job 11 is not only constrained by jobs 3, 7, and 10 but also by jobs 

1, 2, 4, 5, 6, 8, and 9. Therefore, according to the definitions developed in section 2, 

Equation (22) represents a HCC. 

4.2.1.1  Initial solution set generation  

As discussed in CHAPTER 3, to create a solution, the 0th level genes are first 

created then the 1st level then the 2nd and so on. For problem B, the dependent variables 

constraint the 3rd job are jobs 1 and 2. Therefore a 0th level gene of length six is created 

which consists 1’s and 2’s. Next the operations of job 3 are appended in front of this 0th 

level gene to create a feasible 1st level gene. Similar steps are taken for jobs 7, and 10. To 

create the 1st sub-chromosome, the three 1st level genes are combined and the operations 

of job 11 are appended at end. Figure 13 shows an example of the 3 first level genes and 

the completed 1st sub-chromosome.  



 41 

4 5 6 1 2 1 2 8 1 4 5 8 6 4 5 6 8 2 3 9 7 7 9 9 10 3 3 10 10 7 11 11 11

1 2 1 3 2 1 2 3 1 3 2 2 1 2 2 3 1 2 3 1 3 3 1 1 1 3 3 2 2 1 3 3 3

 

Figure 13. An example of the 1st sub-chromosome for problem type B 

For the 2nd sub-chromosome, the only constraints are the limitations on the value 

of the variables, therefore, it can be created by generating a random array of integers with 

values ranging between 1 and 3. The combination of 1st and the 2nd sub-chromosome 

creates a complete solution as shown in Figure 14. 

 

Figure 14. A complete, feasible solution for problem type B 

The above procedure can be followed to make the entire initial solution set. 

4.2.1.2   Level-barrier based crossover operator 

To ensure the feasibility of the solution after crossover, the level barrier based 

crossover operator is used for the 1st sub-chromosome. As outlined earlier, in level barrier 

based crossover operator, the location of two identical genes from two individuals 

(individuals A and B), are switched. In Figure 15, the gene [4,5,6,7] is selected, and its 

position is switched in the two individuals. For the 2nd sub-chromosome, standard 

crossover can be used as there are no HCCs. 

1st sub-chromosome 

 

1 2 1 2 1 2 3 3 3

4 5 6 4 5 6 4 5 6 7 7 7

4 5 6 1 2 1 2 8 1 4 5 8 6 4 5 6 8 2 3 9 7 7 9 9

8 8 8 9 9 9 10 10 10

10 3 3 10 10 7 11 11 11

)1(
1G

)1(
2G

)1(
3G

)2(
1G

2nd sub-chromosome 



 42 

Figure 15. An example of the 1st sub-chromosome created after the level-barrier 

based crossover operator 

4.2.1.3  Level-barrier based mutation operator 

As mentioned in CHAPTER 3, in the level barrier based mutation operator, the 

location of multiple genes of the same length of the (k-1) level that constraint the same kth 

level dependent variables are switched to ensure the HCCs. Figure 16 shows an example 

of the level barrier based mutation operator. In the example, the 1st level is chosen for 

mutation and as there are only two genes in the 1st level that have the same length i.e. 

[1,2,3] and [8,9,10] their locations are switched. The level barrier based mutation operator 

only needs to be utilized for the 1st sub-chromosome due to the absence of HCCs from the 

2nd sub-chromosome. 

 

 

 

 8 9 1 8 9 4 8 1 4 4 5 1 2 2 9 5 5 6 2 10 10 6 3 3 6 7 7 10 3 7 11 11 11

4 5 6 1 2 1 2 8 1 4 5 8 6 4 5 6 8 2 3 9 7 7 9 9 10 3 3 10 10 7 11 11 11

C
r
o
ss

o
v
er

8 9 1 8 9 4 8 1 5 6 4 1 2 2 9 5 6 4 2 10 10 5 3 3 6 7 7 10 3 7 11 11 11

1st Sub-Chromosome of Individual 

B’ 

4 4 4 1 2 1 2 8 1 5 5 8 5 6 6 6 8 2 3 9 7 7 9 9 10 3 3 10 10 7 11 11 11

 

 

1st Sub-Chromosome of Individual A’ 

 
1st Sub-Chromosome of Individual B’ 

 



 43 

 

Figure 16. Example of level-barrier based mutation operator 

As SGA by itself is unable to cope with HCCs and operation constraints, linear 

constraints were used to ensure the feasibility of solution after creation, crossover, and 

mutation. The linear constraints are given by: 

 BAx     (23) 

Where A nxm matrix of 0’s, 1’s, and -1’s, x is a mx1 vector, representing the sequence of 

steps, and B is a mx1 vector of -1’s, where m is the number of total operations for all the 

jobs and n is the number of HCC and other constraints. For example, if the jobs [1,2,3] are 

considered, SGA has to ensure that the in any possible solution x, the 1st operation of job 1 

has to be performed before the 2nd of job 1 and the 2nd operation of job 1 is performed 

before the 3rd operation of job 1. At the same time, the 3rd operation of job 1 and 2 have to 

be performed before the 1st operation of job 3. For this example, the matrix A and vector B 

would take the following form: 

1 2 8 1 2 4 1 9 4 4 5 8 9 8 2 5 5 6 9 3 3 6 10 10 6 7 7 3 10 7 11 11 11

8 9 1 8 9 4 8 1 4 4 5 1 2 2 9 5 5 6 2 10 10 6 3 3 6 7 7 10 3 7 11 11 11

M
u

ta
ti

o
n

1st Sub-Chromosome of Individual A 

 

1st Sub-Chromosome of Individual A’ 

 



 44 



















































001100000

001000100

110000000

011000000

000110000

000011000

000000110

000000011

 A                           



















































1

1

1

1

1

1

1

1

  B  

So, the first row of the matrix A and vector B indicates that the difference between 

the sequence of the 1st operation of job 1 and the 2nd operation of job 1 has to be less than 

or equal to -1. Therefore, it is noticeable that for a large scale AJSSP the matrix A will be 

extremely large and finding unique solutions that satisfy the constraints would be 

extremely hard. 

4.2.2 Result and Comparison 

During the comparison, the number of generations and population size is varied 

until the SGA was able to find a solution. The settings are used for the proposed algorithm. 

The different settings of the number of generations and population sizes are shown in Table 

2. The results obtained for the four different problem types are shown in Table 3.. For SGA 

and the proposed method, the crossover rate is 0.95 and the mutation probability is 0.1. 

Table 2. Parameter settings used for SGA and the proposed method 

Parameter Settings Number of Generations Population Size 

1 50 50 

2 100 500 

3 500 500 



 45 

 

Table 3. Comparison of SGA and the proposed method for the four different types 

of AJSSP 

Problem Setting 

Makespan (Generation in which smallest 

makespan was first found) 

Proposed Algorithm SGA 

A 
1 54 (6) No Solution Found 

2 53 (14) 53 (63) 

B 
1 85 (7) No Solution Found 

2 82 (40) 82 (74) 

C 

1 180 (2) No Solution Found 

2 167 (25) No Solution Found 

3 167 (24) 171 (248) 

D 

1 290 (28) No Solution Found 

2 279 (40) No Solution Found 

3 275 (26) 289 (278) 

 

In problem type A, when the number of generations and population is low (50 

each), SGA is unable to obtain a sequence of operations that satisfied all the HCCs and 

operation constraints while the proposed algorithm is able to find a solution with a 

makespan of 54 units. When the number of generations is increased to 100 and population 

size to 500, SGA in able to obtain a makespan of 54 units (found in the 63rd generation) 

while the proposed method is able to find a makespan of 52 units (found in the 14th 

generation). For problem type B, when the number of generations and population are low, 

SGA is again unable to find an optimal sequence of operations while the proposed 

algorithm is able to find a makespan of 85 units. When the number of generations and 

population are increased to 100 and 500 respectively, both the SGA and the proposed 

method give a makespan of 82 units (found in the 74th and 42nd generation respectively).  



 46 

In problem type C, SGA is unable to find a solution when the number of generations 

and population are 50 each and also when the number of generations and population are 

100 and 500 respectively. However, when the same settings are used for the proposed 

algorithm, it gives a makespan of 180 and 167 units respectively. When the number of 

generations is further increased to 500, SGA gives a makespan of 171 units (found in the 

248th generation) while the proposed method gives a makespan of 167 units (found in the 

24th generation). Lastly, for problem type D, SGA is again unable to find a solution for the 

first 2 settings but found a solution that gave a makespan of 289 units (found in the 478th 

generation). The proposed method on the other hand, gives a makespan of 290, 279, and 

275 units for the 3 settings (found in the 24th, 28th, and 26th generation respectively). These 

results indicate that as the complexity of the problem increases, SGA is unable to find a 

solution that satisfies all the constraints with low number of generations and population, 

however, the proposed method is always able to find a solution, as the HCCs integrated 

into the method proposed. Although SGA is able to find a solution after increase the 

number of generations and population size, these solutions are found in the later 

generations, unlike the proposed method. 

The convergence speed (in terms of number of generations) is also observed at a 

specific population size, crossover rate, mutation probability, and generations for each 

problem. The parameter settings used for each problem are given in Table 4 while Figure 

17 shows the convergence plot for each problem.  

 

 



 47 

Table 4. Parameter settings used to generate the convergence plots for the proposed 

algorithm 

Problem Generations 
Population 

Size 

Crossover 

Rate 

Mutation 

Probability 

A 

100 

50 

0.95 0.10 
B 50 

C 100 

D 100 

 

Higher population size is used for Problems C and D due to the higher complexity 

of these problems. As it can be seen from Figure 17, for Problem A, the proposed algorithm 

converges (very little to no improvement in the mean fitness between generations) to a 

makespan of 54 time units after 15 generations, for Problem B, it converges to a makespan 

of 84 time units after 20 generations, for Problem C, if converges to a makespan of 170 

time units after 30 generations, and for Problem D, it converges to a makespan of 285 time 

units after 45 generations. These results show that regardless of the size of the problem, 

the proposed algorithm is able to converge rapidly to the best solutions found (given in  

Table 3). 

 



 48 

  

 

 

 

 

 

  

Figure 17. Converge plots of Problems A, B, C, and D. The best solution was found 

after 10 generation for problems A and D, 18 generations for problem C, and 27 

generations for Problem B 

Next, for Problem D, different settings of crossover and mutation rate are used, 

while keeping the generations and population size constant, to study their effects on the 

makespan for the problem. Problem D is chosen as it was the most complex of the four 

problems. The settings used are given in Table 5, while the corresponding plots are shown 

in Figure 18. 

. 

Best Solution found 
after the 18th iteration 

Best Solution found 
after the 10th iteration 

Best Solution found 
after the 10th iteration 

Problem A Problem B 

 

Problem C 

 

Problem D 

 

Best Solution found 
after the 27th iteration 



 49 

Table 5. The different crossover and mutation rates used to study their effects on 

the makespan for Problem D 

Parameter 

Settings 
Generations 

Population 

Size 

Crossover 

Rate 

Mutation 

Probability 

I 

100 100 

0.75 0.10 

II 0.85 0.20 

III 0.95 0.30 

  

Figure 18. Converge plots obtained using parameter settings I, II, and III for 

Problem D 

As it can be seen from Figure 18, when a relatively low mutation probability was 

used (parameter settings I), the proposed algorithm found a makespan of 286 time units 

   

 

 

 

 

 

 

Best Solution found 
after the 15th iteration 

Best Solution found 

after the 15th iteration 

Setting I Setting II 

 

Best Solution found 
after the 25th iteration 

Setting III 



 50 

after 15 generations. When the mutation probability was increased to 0.20 (parameter 

settings II), there was a larger difference between the mean fitness value and the best fitness 

value compared to the parameter settings I, but the proposed algorithm was able to find a 

best solution of 286 times units after 15 generations, similar to the makespan obtained 

using parameter settings I. When the mutation probability was further increased, as in 

parameter settings III, the difference between the mean and best fitness value increased but 

the proposed algorithm was still able to find a makespan of 285 time units though this 

makespan was achieved after 25 generations. It can be observed from these results that 

regardless of the parameter settings used; the proposed algorithm was always able to 

converge to an optimized makespan that is close to best makespan obtained (275 time 

units), which demonstrates the robustness of the proposed algorithm.  

To further evaluate the performance of the proposed algorithm, 27 additional 

AJSSP are generated with 9 problems having 2 assembly levels, 9 problems having 3 

assembly levels, and 9 problems having 4 assembly levels. The proposed algorithm was 

used to optimize each problem 30 times and the average percent deviation (APD) was 

recorded for each problem, given by Equation (24). The objective of these simulations was 

to verify the stability of the proposed algorithm i.e. observe whether the algorithm could 

converge to the “best solution” when applied to the same problem multiple times. The “best 

makespan” mentioned in Equation (24) refers to the best makespan obtained by the 

proposed algorithm. The settings of the 27 test problems are given in Table 6. For the 27 

test problems, an iteration limit of 100, population size of 100, crossover rate of 0.95, and 

mutation probability of 0.1 were used. Table 7 shows the results obtained for the problems 

having 2 levels of assembly, Table 8 shows the results obtained for the problems having 3 



 51 

levels of assembly, and Table 9 shows the results obtained for the problems having 4 levels 

of assembly. 

 

1

 100

 

t
t

i

makespan best makespan
APD

t best makespan


   (24) 

Table 6. Additional settings used for the 27 test problems 

Range of assembly levels [2, 4] 

Range of jobs required to create an assembly [1,4] 

Range of number of operations in each job [1,4] 

Range of processing time for each operation 

(time units) 
[5,20] 

 

Table 7. Results obtained for the AJSSP with 2 levels of assembly. The highlighted 

results show that an APD of 0% was achieved 

Problem # 

Total 

Number of 

Jobs 

Operations 

per Job 

Best 

Makespan 

Found 

(time units) 

Average 

Makespan 

Found 

(time units) 

Average 

Percentage 

Deviation 

(%) 

1 9 3 181.00 182.50 0.81 

2 10 2 111.00 111.00 0.00 

3 12 1 150.00 150.00 0.00 

4 12 1 173.00 173.00 0.00 

5 13 3 198.00 198.30 0.13 

6 15 2 206.00 206.00 0.00 

7 17 4 278.00 286.50 3.05 

8 18 3 250.00 252.60 1.03 

9 18 3 280.00 282.40 0.87 



 52 

Table 8. Results obtained for the AJSSP with 3 levels of assembly. The highlighted 

results show that an APD of 0% was achieved 

Problem # 

Total 

Number of 

Jobs 

Operations 

per Job 

Best 

Makespan 

Found 

(time units) 

Average 

Makespan 

Found 

(time units) 

Average 

Percentage 

Deviation 

(%) 

1 24 3 367.00 367.37 0.10 

2 26 1 350.00 350.00 0.00 

3 29 4 465.00 472.77 1.67 

4 34 2 487.00 487.00 0.00 

5 40 2 392.00 392.53 0.14 

6 40 4 580.00 588.57 1.48 

7 41 1 550.00 550.00 0.00 

8 43 2 587.00 587.00 0.00 

9 45 1 528.00 528.00 0.00 

 

Table 9. Results obtained for the AJSSP with 4 levels of assembly. The highlighted 

results show that an APD of 0% was achieved 

Problem # 

Total 

Number of 

Jobs 

Operations 

per Job 

Best 

Makespan 

Found 

(time units) 

Average 

Makespan 

Found 

(time units) 

Average 

Percentage 

Deviation 

(%) 

1 53 3 717.00 717.33 0.05 

2 63 2 864.00 864.00 0.00 

3 63 3 832.00 832.00 0.00 

4 67 1 840.00 840.00 0.00 

5 69 1 911.00 911.00 0.00 

6 71 3 929.00 929.58 0.06 

7 72 2 911.00 911.00 0.00 

8 80 1 1057.00 1057.00 0.00 

9 80 3 908.00 908.00 0.00 

 

 



 53 

As it can be observed from Table 7, for problems with 2 levels of assembly, the 

algorithm had an APD of 0% for 4 out of the 9 problems and had an APD of less than 4% 

for the remained of the 5 problems. For the problems with 3 levels of assembly (Table 8), 

the algorithm achieved an APD of 0% for 5 out of the 9 problems and had a APD of less 

than 2% for the remaining 4 problems. Finally, for problems with 4 levels of assembly 

(Table 9), the algorithm had an APD of 0% for 7 out of the 9 problems and an APD of less 

than 1% for the remaining 2 problems. These results show that regardless of the size of the 

problem, the algorithm was able to achieve a very low APD, thus verifying its stability. 

4.3 Case Study 2 of AJSSP 

In the 2nd case study, the performance of the proposed algorithm was measured 

against the performance the GA and Tabu Search (TS) algorithms used by Dileeplal and 

Narayanan for the optimization of AJSSP. Dileeplal and Narayanan created 28 test AJSSP 

problems to evaluate the performance of their algorithm. In each of the test problem, 

multiple products were being created on a shop-floor and each product was created through 

an assembly process. Each product on the shop floor had either a flat (single level of 

assembly with 3-12 components per assembly), tall (2-6 level assemblies with 2-4 

components per assembly), or complex structure (2-3 level of assembly with 2-4 

components per assembly). The authors evaluated the performance of their algorithm based 

on three performance indicators: 1. Makespan, 2. Tardiness, and 3. Weighted sum of 

makespan and Tardiness.  In this paper, the proposed algorithm was used to optimize the 

makespan of the 28 AJSSP mentioned in Dileeplal and Narayanan’s works and the results 

obtained using the proposed algorithm were compared to those obtained by Dileeplal and 



 54 

Narayanan. Table 10 compares the results obtained using the two different methods. In 

Table 10, the % improvement is obtained through Equation (25). 

 change in makespan
% improvement = 

makespan obtained using proposed algorithm
 (25) 

Where, 

 change in makespan = makespan obtained using Deleeplals' algorithm - makespan obtained using proposed algorithm  (26) 

Table 10. Comparison of the performance of the proposed algorithm to that of 

Dileeplal and Narayanan’s algorithm proposed algorithm 

Problem 

# 

Makespan obtained using the 

proposed algorithm (time 

units) 

Best makespan obtained by 

Dileeplal and Narayanan 

(time units) 

% 

improvement 

1 78 77 -1.28 

2 88 90 2.27 

3 93 100 7.52 

4 110 110 0.00 

5 135 135 0.00 

6 125 125 0.00 

7 113 118 4.42 

8 128 129 0.78 

9 134 134 0.00 

10 131 154 17.50 

11 162 171 5.50 

12 174 165 -5.17 

13 232 228 -1.74 

14 226 221 -2.21 

15 233 228 -2.14 

16 237 241 1.68 

17 90 91 1.11 

 



 55 

Table 10 continued. 

Problem 

# 

Makepsan obtained using the 

proposed algorithm (time 

units) 

Best makespan obtained by 

Dileeplal and Narayanan 

(time units) 

% 

improvement 

18 98 104 6.12 

19 86 89 3.48 

20 97 97 0.00 

21 107 108 0.93 

22 121 121 0.00 

23 146 139 -4.79 

24 171 171 0.00 

25 177 177 0.00 

26 199 199 0.00 

27 205 202 -1.46 

28 215 215 0.00 

As it can be observed from Table 10, the proposed algorithm was able to find an 

equal or better makespan than that reported by Dileeplal and Narayanan on 21 out of the 

28 problems. The proposed algorithm was able to improve upon the makespan found by 

Daleeplal and Narayanan by as high as 17%. Even though it was unable to find the best 

makespan for 7 test problems, the proposed algorithm was able to find a solution within 

5% of the solution obtained by Dileeplal and Narayanan. These results indicate that the 

proposed algorithm can cope with AJSSP with multiple products being produced. 

4.4 Complexity Analysis of the Algorithm 

The proposed algorithm is an evolutionary computation method that is applied to 

several different AJSSP problems of varying size. Therefore, it is necessary that the 

algorithm perform efficiently in real time to consistently function without needing 

significant amount of computing resource. The time complexity of the proposed algorithm 



 56 

is analyzed by observing the real-time performance of the proposed algorithm on different 

problems of varying sizes. 

In the AJSSP, the size of the problem can be significantly altered by varying two 

features: 1). the number of jobs and 2). the number of assembly levels. Therefore, to 

evaluate the time complexity of the proposed algorithm, two groups of simulation were 

designed. In the first simulation, 16 test problems were created and each problem had equal 

number of assembly levels but different number of total job. In the second simulation, 6 

test problems were created and each test problem had equal number of jobs however, the 

total number of assembly levels in the test problems were varied. Next, the proposed 

algorithm was used to optimize the test problems with an iteration limit of 100 and the and 

the runtime was recorded. Finally, the recorded runtime is plotted and polynomial fitting 

was used to estimate the growth function of the running time. The time complexity of the 

algorithm is then determined from the fitted growth function. Figure 19-A shows the actual 

running time (in seconds) versus the number of iterations and the fitted model used to 

predict the behavior of the runtime for simulation set 1 while Figure 19-B shows it for 

simulation set 2.    

 

 



 57 

A B 

Figure 19. Polynomial fitting of runtime versus number of generations for A. 

Simulation Set 1 and B. Simulation Set 2 

As it can be seen from Figure 19, the algorithm runs in polynomial time of some 

degree, and the fitted models estimate the order of polynomial time the algorithm runs in 

for each simulation set. For simulation set 1, the time complexity is O(n3) indicating that 

the algorithm runs in polynomial time of degree 3. This shows that as the total number of 

jobs increase while the number of assembly levels are kept constant, the runtime of the 

algorithm increases. However, for simulation set 2, the complexity is - O(n5) indicating 

that as the number of assembly levels are increased while the total number of jobs kept 

constant, the runtime of the algorithm decreases in polynomial time of degree 5. Since all 

the problems in simulation set 2 have the exact same chromosome length (determined by 

the total number of jobs), the feasible solution space decreases as the number of assembly 

levels increase. This consequently leads to a decrease in the runtime of the algorithm as the 

proposed algorithm only needs to search a smaller region for an optimal solution. 

 

 



 58 

4.5 Summary 

In this chapter, the algorithm proposed in CHAPTER 3 for HCCO is utilized for the 

optimization of AJSSP. Its performance is validated by using it to optimize several 

different AJSSP. In Section 4.1, AJSSP is introduced along with the previous work done 

in optimization of AJSSP. 

 Section 4.2 presents the first case study used to validate the performance of the 

proposed algorithm. In this section, several different AJSSP cases are formulated with 

different number of assemblies, jobs, and processing times. These problems are first 

utilized to demonstrate how AJSSP can be classified as a HCCOP. Next, the operators of 

the proposed algorithm are used to demonstrate the generation of a feasible initial solution 

as well as generation of feasible solutions during the iterations of the algorithm for the 

optimization of AJSSP. The performance of the proposed algorithm is compared to the 

performance of SGA on the formulated problems and the results show that the proposed 

algorithm has superior performance compared to SGA. The APD of the proposed algorithm 

is also less than 2% which indicates its stability. The convergence plots for selected 

problems also indicate the robustness of the proposed algorithm. 

 In Section 4.3, the performance of the proposed algorithm is measured against the 

algorithm proposed by Dileeplal et al. The AJSSP cases proposed by Dileeplal et al. are 

used to compare the two algorithms and the results show that the proposed algorithm was 

able to find a better solution for 21 out of the 28 problems. The proposed algorithm was 

able to improve upon the makespan by as much as 17%.  



 59 

In Section 4.4, a time complexity analysis of the proposed algorithm is performed 

by varying the number of assembly levels and the number of jobs. The algorithm has a time 

complexity of O(n3) with respect to the number of jobs and a time complexity of - O(n5) 

with respect to the number of assembly levels.   



 60 

CHAPTER 5. SOLVING HIERARCHICALLY COUPLED 

CONSTRAINT PROBLEM IN SIMULTANEOUS 

OPTIMIZATION OF NEURAL NETWORK STRUCTURE AND 

WEIGHTS 

In this chapter, the methodology developed for the optimization of HCCOPs in 

CHAPTER 3 is utilized for the simultaneous optimization of Neural Network (NN) 

structure and weights. It is first demonstrated how simultaneous optimization of NN 

structure and weights can be classified as a HCCOP using the definitions developed in the 

CHAPTER 3. Next, the initial solution generator, the level-barrier based crossover and 

mutation operators are utilized to demonstrate the creation of a feasible initial solution and 

feasible solutions during the iterations of the algorithm. To validate the performance of the 

proposed algorithm, it is used to create a NN model for four different problems and its 

performance is compared against other algorithms used to create a NN.  

5.1 Introduction 

NNs [59], are a soft computing techniques that are commonly used in a variety of 

fields for the purpose of input-output mapping due to their ability to map from one 

multivariable space to another and to approximate functions according to the desired 

degree of accuracy. Another major advantage of NN is that the shape of the approximation 

function does not have to be assumed before training. During the training phase of the NN, 

its weight and bias values are updated with the aim of minimizing the difference between 

the predicted and the actual values. Over the years, many researchers have used different 



 61 

techniques for training the weight and bias values to ensure convergence to optimal or near-

optimal solutions. These techniques include Genetic Algorithm (GA) [60,61,62,63,64], 

Artificial Bee Colony (ABC) [ 65 , 66 , 67 , 68 ], Particle Swarm Optimization (PSO) 

[69,70,71,72] etc. Though these techniques have significantly improved the prediction 

capabilities of the NNs, determining the optimal structure of NN (number of hidden layers, 

hidden neurons in each hidden layer, and transfer function of each hidden layer) is still a 

tedious task. Determining the optimal NN structure is an important task the correct NN 

structure can increase its prediction accuracy tremendously. However, NN structure are 

highly problem dependent and are determined by human experts using a trial-and-error 

based approach. Due to the large combination of the NN parameters, finding the optimal 

NN structure through a trial-and-error based approach is infeasible and as such, several 

researchers have attempted to create an algorithm for NN structure and weight 

optimization.  

Loghmanian et al. [73] used a multi-objective genetic algorithm for the structure 

optimization of NN. In their study, the number of hidden nodes and input and output lags 

were optimized, while the number of hidden layers were kept constant. Shao and Li [74] 

used PSO to optimize the number of hidden nodes and weights of NN. Their proposed 

method was used for finding the best NN structure that would create a prediction model 

for real world medical problems. Mendivil et al. [75] optimized the number of hidden 

layers and number of hidden neurons by using binary encoding with fixed chromosome 

length of GA. Kopel [76] also used GA to optimize the number of hidden layers, number 

of hidden neurons, and the range of the initial weight values of NN by using binary 

encoding with fixed chromosome length.  



 62 

Though these techniques have made the process of finding the optimal NN structure 

easier, they have the following drawbacks associated with them: 

1. They do not allow for flexibility of number of neurons in each hidden layer. 

2. They do not allow for optimization of both structure and weights 

simultaneously. 

3. The chromosomes have a fixed length. This indicates that part of the 

chromosome can contain irrelevant information.  

4. The number of hidden layers is fixed and the connections between the hidden 

layers are altered. 

To overcome these drawbacks, the algorithm proposed in CHAPTER 3 is utilized for 

the simultaneous optimization of NN weights and structure. However, as it will be seen 

later on in this chapter, the operators proposed in CHAPTER 3 have been slightly modified 

due to the nature of the problem and to ensure feasible solutions throughout the iterations 

of the algorithm. In order to apply the proposed algorithm to the problem under 

consideration, it is also assumed that the NN is a fully connected. 

5.2 HCCs in NN weight and structure optimization 

The NN structure and weight optimization problem comprises of constants (problem 

specific) and variables (both independent and dependent). The constants of the problem are 

the following: 

1. Number of inputs, input. 

2. Number of outputs, output.  



 63 

3. Number of biases of the output layers, output
 . 

The NN structure and weight optimization has the following independent variables: 

1. Numbers of neurons in the 1st hidden layer, 1
 . 

The 1st level dependent variables are then given by:  

1. Number of weighted connections, 1,input
nw , from the input layer to the 1st hidden 

layer. These weighted connections are represented by 1,input
w .  1,input

nw and 1,input
w  are 

given by:  

 
1

1,

1 1

0 if  = 0             

*  if  > 0
input

nw
input



 


 


 (27) 

 
1

1,

1 1

   0              

*    0         
input

empty matrix if
w

input matrix if



 


 


 (28) 

 

2. Transfer function of the 1st hidden layer, 1
TF . Where, 

 
1

1

1

N/A if = 0                                                                           

Hyperbolic- tangent or log  sigmoid if > 0                          
TF






 


 (29) 

3. Number of biases, 1
 , in the 1st hidden layer. These biases are represented by 1



where:  



 64 

 
1

1

1 1

   0             

*1   0               

empty matrix if

matrix if




 


 


 (30) 

4. Numbers of neurons in the 2nd hidden layer, 2
 . 

 
1

2

2 2

0 if = 0              

0,1,2,...  if > 0k







 


 (31) 

5. Number of weighted connections, ,output input
nw from the input layer to the output 

layer. These weighted connections are represented by ,output input
w . ,output input

w and 

,output input
nw is given by:  

 
1

,

1

0 if  > 0                   

*  if  = 0
output input

nw
input output






 


 (32) 

 
1

,

1 1

   >0            

*    0     
output input

empty matrix if
w

input matrix if



 


 


 (33) 

The 2nd level dependent variables are then given by:  

1. Number of weighted connections, 2,1
nw , from the 1st hidden layer to the 2nd  hidden 

layer. These weighted connections are represented by 2,1
w .  2,1

nw and 2,1
w  are 

given by:  



 65 

 
2

2,1

1 2 2

0 if  = 0        

*  if  > 0
nw



  


 


 (34) 

 
2

2,1

2 1 2

   0         

*    0        

empty matrix if
w

matrix if



  


 


 (35) 

 

 

2. Transfer function of the 2nd hidden layer, 2
TF . Where, 

 
2

2

2

N/A if = 0                                                                           

Hyperbolic- tangent or log  sigmoid if > 0                          
TF






 


 (36) 

3. Number of biases, 2
 , in the 2nd hidden layer. These biases are represented by 2



where:  

 
2

2

2 2

   0             

*1   0               

empty matrix if

matrix if




 


 


  (37) 

4. Numbers of neurons in the 3rd hidden layer, 3
 . 

 
2

3

3 2

0 if = 0              

0,1,2,...  if > 0k







 


 (38) 

5. Number of weighted connections, ,1output
nw from the 1st hidden layer to the output 

layer. These weighted connections are represented by ,1output
w . ,1output

w and 

,1output
nw is given by:  



 66 

 
2

,1

1 2

0 if >0                

*  if 0
output

nw
output



 


 


 (39) 

 
2

,1

1 2

   0                

*    0         
output

empty matrix if
w

output matrix if



 


 


 (40) 

 

The kth level dependent variables are then given by:  

1. Number of weighted connections, ,( 1)k k
nw

 from the (k-1) layer to the kth hidden 

layer. These weighted connections are represented by ,( 1)k k
w

  and ,( 1)k k
nw

 is given 

by:  

 
,( 1)

( 1)

0 if  = 0            

*  if  > 0

k

k k

k k k

nw


  




 



 
(41) 

 

,( 1)

( 1)

   = 0          

*   0                

k

k k

k k k

empty matrix if
w

if



  




 


 (42) 

2. Transfer function of the kth hidden layer, k
TF . Where,  

 N/A if = 0                                                                           

Hyperbolic- tangent or log  sigmoid if > 0                          

k

k

k

TF





 


 (43) 

3. Number of biases, k
 , in the kth hidden layer. These biases are represented by k



where:  



 67 

    0             

*1   0               

k

k

k k

empty matrix if

matrix if




 


 


 (44) 

4. Numbers of neurons in the (k+1) hidden layer, ( 1)k


 . 

 
( 1)

( 1)

0 if = 0                  

0,1,2,...  if > 0

k

k

k kk









 



 (45) 

5. Number of weighted connections, ,( 1)output k
nw

 from the (k-1) hidden layer to the 

output layer. These weighted connections are represented by ,( 1)output k
w

 . ,( 1)output k
w



and ,( 1)output k
nw

 is given by:  

 
,( 1)

( 1)

0 if >0                     

*  if 0

k

output k

k k

nw
output



 




 



 (46) 

 
,

   0                  

*    0         

k

output k

k k

empty matrix if
w

output matrix if



 


 


 (47) 

5.3 Modelling of the solution 

5.3.1 Initial solution creation 

To create an array of in the initial solutions, the following steps must be taken: 

1. Create three empty sub-chromosome A, B, and C. Sub-chromosome A contains 

information about the weighted connections between the layers, sub-chromosome 



 68 

B contains information about the bias values of each layer, and sub-chromosome C 

contains information about the transfer function of each hidden layer. 

2. Determine the number of hidden layers by generate a random integer between 1 

and 𝛾𝑚𝑎𝑥 (maximum number of hidden layers). 

3. Generate a random integer, 𝛼1, between 1 and 𝛼𝑚𝑎𝑥 (maximum number of hidden 

neurons allowed in any hidden layer) to determine the number of neurons in the 1st 

hidden layer. 

4. For sub-chromosome A, generate 𝑛𝑤1,𝑖𝑛𝑝𝑢𝑡�random numbers between -1 and 1 that 

occupy the positions 1 through 𝑛𝑤1,𝑖𝑛𝑝𝑢𝑡 . Call these the 1st level gene of sub-

chromosome A.  

5. For sub-chromosome B, generate  𝑛𝛽1�random numbers between -1 and 1 that 

occupy the 1 though  𝑛𝛽1positions. Call these the 1st level gene of sub-chromosome 

B. 

6. For sub-chromosome C, generate a random number between 0 and 1. A value of 0 

represents hyperbolic-tangent sigmoid and a value of 1 represents log-sigmoid 

transfer function. This value will occupy the 1st position of the 1st level gene of 

sub-chromosome C. 

7. Repeat steps 3-6 until the (i-1) genes for sub-chromosome A, B, and C have been 

created. Append all the genes of each sub-chromosome together in increasing 

numerical values.   

8. For the output layer, for sub-chromosome A, generate 𝑛𝑤𝑖,𝑜𝑢𝑡𝑝𝑢𝑡�random numbers 

between -1 and 1, and append them in front of sub-chromosome A. For sub-

chromosome B, generate 𝑛𝛽𝑜𝑢𝑡𝑝𝑢𝑡 random numbers between -1 and 1 and append 



 69 

them in front of sub-chromosome B. For sub-chromosome C, assign a value of 2, 

indicating a linear transfer function and append this value in front of sub-

chromosome C. 

9. Append all the sub-chromosomes together to create the final chromosome. 

An example of the initial solution generator is shown below in Figure 20.  

 

 

Figure 20. Example showing creation of initial sub-chromosomes with a 3-1-2-2 NN 

structure. Sub-chromosomes A is top left, B is top right, and C is bottom 

A key characteristic of the creation method is that since the total layers of each 

initial solution can be different, each solution can have different number of gene levels. 

Therefore, if the level-barrier based crossover operators from Chapter 3 are used, they will 

produce infeasible solutions in subsequent generations. Let’s take an example of crossover 

being performed on the 1st level gene of sub-chromosome A of a 3-1-2-2 and a 3-2-2 NN 



 70 

structure. The 1st level gene of sub-chromosome A of the 3-1-2-2 structure will contain 3 

numbers representing the weight values from the input layer to the 1st hidden layer, while 

the 1st level gene of sub-chromosome A of the 3-2-2 NN structure will contain 6 numbers 

representing the weight values from the input layer to the 1st hidden layer. If the previously 

developed level-barrier based crossover technique is used here, the solution will become 

infeasible as the 1st level gene of the 3-1-2 NN structure will have extra weight values while 

the 3-2-2 NN structure will have insufficient weight values. This example is illustrated in 

Figure 21. When the crossover method is used for sub-chromosome B, infeasible solutions 

can also be created. To avoid these scenarios, a modified version of the level-barrier based 

crossover operator developed in CHAPTER 3 is proposed below. 

1

1,2w 2

1,2w1

,1 inputw 2

,1 inputw 3

,1 inputw 1

2,outputw 2

2,outputw 3

2,outputw 4

2,outputw
1

,1 inputw 2

,1 inputw 3

,1 inputw
1

1,outputw 2

1,outputw 3

3,outputw 4

4,outputw
4

,1 inputw 5

,1 inputw 6

,1 inputw

1

1,2w 2

1,2w 1

,1 inputw 2

,1 inputw 3

,1 inputw1

2,outputw 2

2,outputw 3

2,outputw1

,1 inputw 2

,1 inputw 3

,1 inputw
1

1,outputw 2

1,outputw 3

3,outputw 4

4,outputw
4

,1 inputw 5

,1 inputw 6

,1 inputw 4

2,outputw

Not 

needed
Not 

available

Sub-chromsome A of Parent A Sub-chromosome A of Parent B

Sub-chromsome A of Offspring A’ Sub-chromosome A of Offspring B’

Original

Crossover

 

Figure 21. Example of infeasible solution created using the level-barrier based crossover 

proposed in Chapter 3 

5.3.2 Modified level-barrier based crossover operator 

The steps of the improved crossover operator are: 

1. Select a pair of parents, PA1 and PA2, to perform crossover based on roulette wheel 

selection. 



 71 

2. Determine the number of levels for each parent, 
1PA

G and 
2PA

G  respectively.  

3. Generate a random integer between 1 and 
1PA

G or 
2PA

G  (whichever is smaller) to 

determine the level on which crossover is performed,  

4. For sub-chromosome A, determine the length of gene for PA1 and PA2 on the 

crossover level, 
1PA

LG  and
2PA

LG respectively. Generate a random integer, RC1,  

between 1 and 
1PA

LG  or
2PA

LG  (whichever is smaller). Switch the bits of the two 

parents in the crossover level located in the position 1 to RC1.  

5. Repeat step 4 for sub-chromosome B. 

6. For sub-chromosome C, switch the bits on the crossover level between the two 

parents. 

7. Repeat steps 3-6 for all the pairs of parents. 

An example of crossover between a 3-1-2-2 and a 3-2-2-2 NN structures is shown below 

in Figure 22. 



 72 

1

1,2w 2

1,2w1

,1 inputw 2

,1 inputw 3

,1 inputw 1

2,outputw 2

2,outputw 3

2,outputw 4

2,outputw

1

1 1

2 2

2
1

output 2

output

1TF 2TF outputTF

1

,1 inputw 2

,1 inputw 3

,1 inputw
1

1,outputw 2

1,outputw 3

3,outputw 4

4,outputw

1

1
2

1 1

output 2

output

1TF outputTF

4

,1 inputw

1

1,2w 2

1,2w3

,1 inputw 1

2,outputw 2

2,outputw 3

2,outputw 4

2,outputw

1

11

2 2

2
1

output 2

output

1TF
2TF outputTF

1

,1 inputw 2

,1 inputw
3

,1 inputw
1

1,outputw 2

1,outputw 3

3,outputw 4

4,outputw

1

1
2

1 1

output 2

output

1TF outputTF

4

,1 inputw1

,1 inputw 2

,1 inputw

Parent A Parent B

Offspring A’ Offspring B’

5

,1 inputw 6

,1 inputw

Improved 

Crossover

 

Figure 22. Figure showing an example of the modified level-barrier based crossover 

operator between 3-1-2-2 and a 3-2-2 NN structures 

5.3.3 Modified level-barrier based crossover operator 

To use the mutation operator mentioned in Chapter 3, each ith level gene must be 

comprised of several genes from the (i-1) level as well as the dependent variables of the ith 

level. As mentioned above, in the NN structure and weight optimization problem, only a 

single gene from the (i-1) and the dependent variables of the ith level make up the gene of 

the ith level. Therefore, the level-barrier based mutation operator developed in Chapter 3 

cannot be used in NN structure and weight optimization. Since the purpose of mutation is 

to diversify the population, a possible way to achieve this is by: 



 73 

1. Addition of a hidden neuron in a hidden layer. 

2. Removal of a hidden neuron from a hidden layer 

3. Addition of a hidden layer 

4. Removal of a hidden layer 

In each of the scenario, the length of sub-chromosomes A, B, and C are adjusted 

accordingly such that the number of weight values correspond to the new NN structure. An 

example of how the solution structure would change if a NN structure is mutated from 3-

1-2-2 to 3-2-2-2 is shown in Figure 23. 

1

1,2w 2

1,2w1

,1 inputw 2

,1 inputw 3

,1 inputw 1

2,outputw 2

2,outputw 3

2,outputw 4

2,outputw

1

1,2w 2

1,2w1

,1 inputw 2

,1 inputw 3

,1 inputw 1

2,outputw 2

2,outputw 3

2,outputw 4

2,outputw
4

,1 inputw 5

,1 inputw 6

,1 inputw 3

1,2w 4

1,2w

Added weights Added weights

Sub-chromsome A of Parent A

Sub-chromsome A of Offspring A’ after mutation

 

Figure 23. Offspring created after mutation of a 3-1-2-2 to a 3-2-2-2 NN structure 

5.4 Application of the modified algorithm to Case Studies 

In this section, the modified version of the algorithm was utilized to create a NN for 

a variety of case studies in order to validate its performance. The case studies included 

prediction of: 

1. Roller length of hydraulic jump on a rough channel bed 



 74 

2. Surface roughness in CNT nanofluids based grinding process 

3. Tensile strength of friction stir weld joints 

4. Surface roughness in end face milling process 

The parameters of the modified algorithm used for building the NN in these case studies 

are given in Table 11. 

Table 11. Parameters used to create a trained NN in the case studies 

Number of 

Generations 

Initial 

Population 

Size 

Crossover 

Rate 

Mutation 

Rate 

Elite 

Children max
  max

  

100 100 0.85 0.15 5% 3 10 

During the training procedure, it was noticed that since both the structure and the weights 

of the NN were being optimized simultaneously, the proposed algorithm had difficulty converging 

to optimal weight values. Therefore, to improve local convergence, once the NN weights and 

structure were trained using the proposed algorithm, the weights were further trained using 

Levenberg-Marquardt (LM) [77] algorithm. The data sets in the case studies were divided into 

training, validation, and testing data sets. During the optimization process, the NN structure and 

weight values were changed with respect to the mean squared error (MSE), given by Equation (48), 

of the training data set.   

 2

1

1 n

i i

i

MSE Y Y
n





   
 

  (48) 

To avoid overfitting, the NN structure and weight values that gave the lowest MSE for the 

validation data set were used. Once the NN weight and structure was completed, its prediction 

accuracy was validated using the testing data set.  

 



 75 

5.4.1 Case Study 1  

Azimi et al. [78] used an adaptive neuro-fuzzy inference system (ANFIS) proposed 

by Jang [79] for prediction of roller length of hydraulic jump on a rough channel bed. They 

trained the ANFIS using a firefly algorithm (FA) [80] to overcome the drawbacks of 

ANFIS trained using backpropagation. Hydraulic jumps are caused due to the 

transformation of supercritical to subcritical flow regime. These hydraulic jumps usually 

occur downstream of structures such as ogee spillways, control gates, and weirs and are 

used for water purification, irrigation, prevent air locking etc. Identification of hydraulic 

jumps is important for energy dissipation below hydraulic structures and roller length is 

one of the key parameters that can help in the accurate identification of the hydraulic jumps 

[81]. Through their literature review, Azimi et al. found that Froude number (Fr), ratio of 

bed roughness height (ks) to flow depth upstream of hydraulic jump (h1), and ratio of flow 

depth downstream of hydraulic jump (h2) to upstream as the factors possibly affecting the 

ratio roller length to flow depth upstream. In their study, Azimi et al. created four different 

models with different combinations of input parameters to find the best model for 

predicting the ratio of roller length to flow depth upstream of hydraulic pump. The four 

models were: 

 
2

1 1 1

, ,
hLr ks

f Fr
h h h

 
  

 

 (49) 

 
2

1 1 1

,
hLr ks

f
h h h

 
  

 

 (50) 

 



 76 

 

1 1

,
Lr ks

f Fr
h h

 
  

 

 (51) 

 
2

1 1

,
hLr

f Fr
h h

 
  

 

 (52) 

The data used to create the models was obtained from a study conducted by Carollo 

et al. [82] and was split into training (70%) and testing (30%) data sets by Azimi et al. Five 

indicators were used to measure the performance of created models: mean absolute 

percentage error (MAPE), root-mean-square error (RMSE), correlation coefficient (R), 

scatter index (SI), and BIAS. The results obtained in their study were compared to the NN 

created using the modified HCGA algorithm. To train the NN-HCCP-lm model, the data 

was split into training (50%), validation (20%), and testing (30%) data sets. The results are 

shown in Table 12.  

Table 12. Comparison of results for the test data sets obtained by Azami et al. and 

the proposed algorithm 

Model # Algorithm MAPE (%) RMSE SI BIAS R 

1 

Proposed 

Algorithm 
6.01 1.53 0.08 0.16 0.97 

ANFIS-FA 7.61 1.77 0.09 0.19 0.97 

% improve 21.04 13.61 14.23 11.87 0.39 
       

2 

Proposed 

Algorithm 
6.48 1.74 0.09 0.19 0.97 

ANFIS-FA 9.93 2.20 0.12 0.23 0.95 

% improve 34.71 21.02 23.88 15.79 1.58 
       

3 

Proposed 

Algorithm 
7.41 1.90 0.10 0.20 0.96 

ANFIS-FA 10.07 2.62 0.14 0.25 0.93 

% improve 26.36 27.54 28.76 18.69 3.06 



 77 

Table 12 continued. 

Model # Algorithm MAPE (%) RMSE SI BIAS R 

4 

Proposed 

Algorithm 
8.28 1.95 0.10 0.18 0.97 

ANFIS-FA 10.22 2.19 0.11 0.23 0.95 

% improve 18.94 11.12 7.99 21.40 1.78 

As it can be seen from Table 12, for all the models, the NN created using the 

proposed algorithm had higher prediction capabilities than ANFIS-FA algorithm. The 

range of increase in MAPE, RMSE, SI, BIAS, and R were 18.94% (4th model) to 34.71% 

(2nd model), 11.12% (4th model) to 27.54% (3rd model), 7.99% (4th model) to 28.76% (3rd 

model), 11.87% (1st model) to 21.40% (4th model), and 0.39% (1st model) to 3.06% (3rd 

model) respectively.  

5.4.2 Case Study 2 

Grinding is a versatile finishing technique that can produce parts with a very high 

surface finish commonly and is commonly used in the industry. In recent years, nanofluids 

have replaced traditional macro fluids as the nanofluids have higher heat transfer 

capabilities and also produce better surface finish after grinding. Accurately predicting the 

surface roughness in grinding based on input parameters is an important topic as it can help 

minimize the number of defected parts and increase the production efficiency. To 

overcome this challenge, Prabhu et al. [ ] used regression analysis, neural networks, and 

fuzzy logic to model the relationship between the process parameters (speed, feed, and 

depth of cut) and the performance indicators (surface roughness with and without 

nanofluids). In their study, Prabhu et al. carried out grinding of AISI D3 Tool steel based 

on L8 orthogonal array of Taguchi design of experiments. Each of the input parameters 



 78 

had 2 levels therefore, a total of 8 experiments were conducted with different combinations 

of the input parameters. To study the effect of nanofluids on the grinding process, another 

8 experiments were performed without the use nanofluids. Once the experimental data was 

accumulated, the three different techniques mentioned above were used to create an input-

output model and study the effects of different parameters on the surface finish. When 

creating a prediction model with the proposed algorithm, 6 data points were used for 

training, 1 for validation, and 1 for testing. The relative error obtained using the proposed 

algorithm as well as those obtained by Prabhu et al. are shown in Table 13 and Table 14. 

Table 13. Comparison of predicted surface roughness in the absence of nanofluids 

Experiment # 

Regression 

relative error 

(%) 

Classical NN 

relative error 

(%) 

Fuzzy logic 

relative error 

(%) 

Proposed 

algorithm 

relative error 

(%) 

1 10.86 2.68 1.32 2.63 

2 4.15 0.05 1.79 20.51 

3 8.51 4.32 1.62 0.00 

4 0.34 11.31 0.34 0.00 

5 0.67 2.78 12.81 1.75 

6 6.01 1.05 0.71 0.00 

7 3.72 1.11 1.37 0.00 

8 10.87 3.5 7.5 0.00 

MAPE (%) 5.64 3.35 3.43 3.11 

 

Table 14. Comparison of predicted surface roughness in the presence of nanofluids 

Experiment # 

Regression 

relative error 

(%) 

Classical NN 

relative error 

(%) 

Fuzzy logic 

relative error 

(%) 

Proposed 

algorithm 

relative error 

(%) 

1 5.87 1.92 2.31 0.00 

2 3.40 2.00 2.00 0.00 

3 6.63 1.92 9.23 3.85 

4 1.48 10.30 3.70 0.00 

5 5.22 6.36 1.52 0.00 



 79 

Table 14 continued. 

Experiment # 

Regression 

relative error 

(%) 

Classical NN 

relative error 

(%) 

Fuzzy logic 

relative error 

(%) 

Proposed 

algorithm 

relative error 

(%) 

6 1.10 5.83 2.78 0.00 

7 0.06 4.75 5.00 5.00 

8 7.79 0.29 0.88 5.88 

MAPE (%) 3.94 4.17 3.43 1.84 

 

As it can be seen from Table 13 and Table 14, the NN created using the proposed algorithm 

had better prediction capabilities than regression analysis, classical NN, and fuzzy logic. 

The MAPE obtained using proposed algorithm (3.11%) was 44.82% better than the MPAE 

obtained using regression analysis, 7.09% better than MAPE obtained using classical NN, 

and 9.32% better than the MAPE obtained using fuzzy logic. When nanofluid was used, 

the NN created using the proposed algorithm still had better prediction accuracy than the 

three techniques used by Prabhu et al. The MAPE of 1.84% obtained using the proposed 

algorithm was 53.31%, 55.86%, and 46.29% better than the MAPE obtained using 

regression analysis, classical NN, and fuzzy logic respectively.  

5.4.3 Case Study 3 

Friction-stir-welding (FSW) is a solid-state joining process in which two facing 

surfaces are joined together by application of heat and followed by the use of mechanical 

pressure. A major challenge in FSW is selection of welding parameters that would 

minimize the defect and create a joint with high strength. As stated by Dewan et al. [83] 

the quality of the FSW joint can be affected by both welding process parameters such as, 

spindle speed, welding speed, plunge depth etc., and environmental factors such as welding 



 80 

cooling, pre-weld cooling, weld location etc. Since the relationship between the process 

parameters and weld quality can be highly non-linear and complex and finding the optimal 

process parameters that would increase the weld quality is very important, the development 

of an accurate prediction model is necessary. To overcome these challenges, Dewan et al. 

used ANFIS to create a forward prediction model between the process parameters i.e. 

spindle speed (N), welding speed (V), plunge force (Fz), and empirical force index (EFI) 

and the performance indicators i.e. ultimate tensile strength (UTS) of the weld. In their 

experimental procedure, Dewan et al. ran 73 experiments while varying the 4 process 

parameters to observe their effects on the UTS of the weld. In the first step of their 

modeling procedure, Dewan et al. only used a combination of spindle speed, welding 

speed, and plunge force to predict the UTS of the weld. They also varied the membership 

function of the input parameters to create an accurate prediction model. RMSE and MAPE 

of the testing set (30% of all experimental data) was used to evaluate the prediction 

capabilities of the trained ANFIS. To create an NN prediction model using the proposed 

algorithm, 43 data sets were used for training, 15 were used for validation, and 15 for 

testing. A comparison of the results is shown in Table 15. 

Table 15. Comparison of results obtained using ANFIS and the proposed algorithm 

with spindle speed, welding speed, and plunge force as inputs  

Model # 

Inputs RMSE MAPE (%) 

N V Fz ANFIS 
Proposed 

Algorithm 

% 

improve 
ANFIS 

Proposed 

Algorithm 

% 

improve 

1 X   50.74 37.26 26.57 14.70 10.34 29.66 

2  X  50.80 34.53 32.03 15.17 9.19 39.42 

3   X 51.60 39.64 23.18 15.99 11.8 26.20 

4 X X  50.40 37.04 26.51 14.65 10.95 25.26 

5  X X 43.29 36.49 15.71 12.45 11.00 11.65 

6 X  X 45.56 33.38 26.73 13.67 9.72 28.90 

7 X X X 36.87 30.27 17.90 10.92 8.46 22.53 



 81 

 

As it can be seen from Table 15, for each of the models, the NN created using the 

proposed algorithm was able to predict the outputs to a higher degree of accuracy than the 

ANFIS as indicated by the RMSE and MAPE values. The range of change in MAPE and 

RMSE was 11.65% to 39.42% and 15.71% to 32.03% respectively. To increase the 

accuracy of the prediction model Dewan et al. then updated their models by included EFI 

as an input. The combinations of inputs were again varied to find the best combination of 

inputs that would create a prediction model with the highest predictive capabilities. The 

same combinations were used in the process of building a NN using the proposed 

algorithm. These results are shown in Table 16.   

Table 16. Comparison of results obtained using ANFIS and the proposed algorithm 

with EFI as an additional input 

Model # 

Inputs RMSE MAPE (%) 

N V Fz EFI ANFIS 
Proposed 

Algorithm 

% 

improve 
ANFIS 

Proposed 

Algorithm 

% 

improve 

1    X 36.51 34.80 4.68 9.90 7.99 19.29 

2 X   X 34.76 30.43 12.46 9.34 8.54 8.57 

3  X  X 30.84 26.79 13.13 8.28 7.41 10.51 

4   X X 31.82 29.13 8.45 8.78 7.42 15.49 

5 X X  X 31.02 22.84 26.37 7.96 6.13 22.99 

6 X  X X 31.86 24.34 23.60 7.87 7.24 8.01 

7  X X X 29.70 24.37 17.95 7.75 6.44 16.90 

8 X X X X 30.68 27.85 9.22 7.81 7.39 5.38 

 When EFI was added as an input both the MAPE and RMSE decreased for both the 

ANFIS and the NN created using the proposed algorithm. The lowest MAPE and RMSE 

for the ANFIS and the proposed algorithm were 7.75% and 29.70 (7th model) and 6.13% 

and 22.84 (5th model) respectively. As shown in Table 16, with the addition of the extra 

input the MAPE and RMSE provided by the proposed algorithm was better than that 



 82 

provided by ANFIS. The RMSE changed from 4.68% to 26.37% while the MAPE changed 

from 5.38% to 22.99%.  

 In their last modeling procedure, Dewan et al. used ANN trained using LM to 

create a forward prediction model. They again varied the combination of input parameters 

to create the most accurate prediction model. 70% of the total data set available was used 

for training, 15% was used for validation and 15% was used to test the trained model. The 

same input combinations and data splits were for the proposed algorithm and the results 

are shown below 

Table 17. Comparison of results obtained using classical NN and the proposed 

algorithm with EFI as an additional input 

Model # 

Inputs RMSE MAPE (%) 

N V Fz EFI NN 
Proposed 

Algorithm 

% 

improve 
NN 

Proposed 

Algorithm 

% 

improve 

1 X X X X 41.03 24.56 67.06 12.38 7.40 67.30 

2  X X X 38.28 19.80 93.33 10.64 5.89 80.65 

3 X X X  46.36 27.14 70.82 12.90 7.76 66.24 

4 X X  X 42.27 21.03 101.00 11.61 4.69 147.55 

5 X  X X 38.87 28.67 35.58 10.85 7.90 37.34 

6 X X   61.79 37.26 65.83 17.39 9.89 75.83 

7 X  X  52.52 23.36 124.83 15.18 6.12 148.04 

8 X   X 45.62 20.25 125.28 12.59 6.12 105.72 

9  X X  56.85 33.70 68.69 16.05 8.92 79.93 

10  X  X 43.50 28.77 51.20 11.57 7.18 61.14 

11   X X 43.31 27.58 57.03 11.95 8.61 38.79 

12    X 49.68 30.44 63.21 13.00 8.91 45.90 

13   X  68.71 35.32 94.54 19.14 9.38 104.05 

14  X   57.14 30.84 85.28 16.46 8.65 90.29 

15 X    53.35 28.10 89.86 15.66 8.00 95.75 

   

The NN created using the proposed algorithm proved to be much more accurate at 

predicting the UTS for FSW than NN trained using LM as seen from Table 17. The RMSE 

and the MAPE of the classical NN varied from 38.28 to 61.79 and 10.64% to 19.14% 



 83 

respectively while the RMSE and MAPE of proposed algorithm varied from 21.03 to 37.26 

and 5.89% to 9.89%. These results show that the proposed algorithm was better at creating 

a prediction model with any combinations of prediction models. Compared to classical NN, 

the proposed algorithm reduced the RMSE from 35.58% to 125.25% and the MAPE from 

37.34% to 148.04%.  

5.4.4 Case Study 4 

As stated earlier, surface roughness is a required specification of machined products 

and is used to specify the quality of the finished product. Many researchers [84,85,86] have 

suggested that the main factors that affect surface roughness are feed, speed, and depth of 

cut. Selecting the optimal combinations of the process parameters is essential in order to 

maximize the lifespan of both the workpiece and the tool but an accurate prediction is 

required to achieve this objective. To avoid costly trial-and-error process in machining 

parameter determination Zhang et al. [87], proposed a Gaussian process regression (GPR) 

for modeling and predicting the surface roughness in end face milling. In their study, Zhang 

et al. first used ran 48 experiments while varying the spindle speed, depth of cut, and feed 

rate. The experimental data was then divided into training (36) and testing sets (48).  The 

data provided by Zhang et al. was used to create NN using the proposed algorithm with 24 

sets being used for training, 12 for validation, and 12 for testing.  A comparison of the 

results obtained using the two techniques is shown in Table 18.  

 



 84 

Table 18. Comparison of the results obtained using the proposed algorithm and 

regression analysis 

Experiment # 

Gaussian process 

regression 

relative error 

(%) 

Proposed 

algorithm 

relative error 

(%) 

% improve 

1 34.41 7.59 77.95 

2 16.24 4.29 73.60 

3 19.82 7.61 61.59 

4 13.61 1.20 91.16 

5 2.15 3.86 -79.54 

6 12.17 1.92 84.24 

7 13.94 19.48 -39.70 

8 15.18 31.45 -107.16 

9 24.94 24.98 -0.17 

10 9.78 2.24 77.12 

11 4.26 1.44 66.08 

12 22.03 13.21 40.04 

MAPE (%) 15.71 9.94 58.08 

 

As it can be observed from Table 8, for experiment # 5, 7, 8, and 9, the relative 

error of GPR was lower than that of the NN created using the proposed algorithm. 

However, NN created using the proposed algorithm had a MAPE of 9.94% while GPR had 

a MAPE of 15.71% for all the 12 experiments. This indicates that overall, the NN created 

using the proposed algorithm provided a 58.08% improvement over GPR.  

5.5 Summary 

In this chapter, the algorithm proposed in CHAPTER 3 for HCCO is utilized for the 

simultaneous optimization of NN structure and weight values. Its performance is validated 

by using it to create NN for several different modelling problems. In Section 5.1, NNs are 

introduced along with the previous work done in simultaneous optimization of NN 

structure and weight values. 



 85 

 Section 5.2 demonstrates how simultaneous NN structure and weight optimization 

problem can be classified as a HCCOP. In this section, the different variables are 

introduced as well as the HCC in the NN structure and weight optimization problem. In 

Section 5.3 shows how the initial solution is created using the proposed algorithm. Next, 

the modified operators of the proposed algorithm are introduced and they are utilized to 

demonstrate how feasible solutions are created during the iterations of the algorithm.  

In Section 5.4 the proposed algorithm is utilized to create a NN model for the 

prediction of roller length of hydraulic jump on a rough channel bed, surface roughness in 

a grinding process, UTS in friction-stir welding process, and surface roughness in end 

milling process. The results show that prediction model created using the proposed 

algorithm had better prediction accuracy than prediction models created using classical 

NN, ANFIS, regression analysis, and gaussian-process regression. 

  



 86 

CHAPTER 6. MULTIMODAL OPTIMIZATION OF 

HIERARCHICALLY COUPLED CONSTRAINT PROBLEMS 

In this chapter, a clustering-optimization algorithm is proposed for the MMO of 

HCCOP. This is achieved by combining k-means clustering algorithm with the algorithm 

proposed for optimization of HCCOP in CHAPTER 3. In this chapter, the steps of the 

hybrid algorithm is first outlined. Due to a lack of work in the MMO of HCCOP, the 

performance of the proposed algorithm is validated by utilizing it for the MMO of 

benchmark JSSPs. The performance of the proposed algorithm is compared to the 

performance of other algorithms used for MMO of JSSP. Next, the proposed algorithm and 

the algorithms used for the MMO of JSSP are modified and used for the MMO of 

benchmark permutation flow-shop scheduling problem (PFSSP) and their performance is 

compared. Finally, the algorithms are modified and used for the MMO of AJSSP.  

6.1 The clustering-optimization algorithm for MMO 

The clustering-optimization approach proposed in this dissertation assumes that a 

problem may have multiple global optima, however, these global optima will have different 

features. By combining a clustering algorithm with any metaheuristic algorithm, the hybrid 

algorithm will not only be able to converge to the multiple global optima but also the unique 

features that differentiate these global optima. Classical k-means clustering algorithm is 

known as an easy algorithm for clustering and is a widely applied unsupervised learning 

approach. Therefore, the hybrid MMO algorithm is created by combining k-means 

clustering algorithm with GA for the MMO of JSSP and PFSSP and the algorithm proposed 



 87 

in CHAPTER 3 for the MMO of AJSSP. Therefore, the proposed algorithm can be utilized 

for the MMO of both COPs as well as HCCOPs.  

 In the proposed MMO algorithm, k-means clustering algorithm if first used to cluster 

solutions depending on their features. Next, adapted crossover and mutation operators of 

GA are utilized within each cluster to generate population for the next generation. Due to 

the encoding method used, different solutions can lead to the same makespan value in JSSP 

and AJSSP. Therefore, only optimal solutions that provide a unique schedule, are 

considered. To study the exploration capabilities of the proposed MMO algorithm all 

optimal solutions that provide a unique schedule for JSSP are saved in the optimal solution 

set. The optimal solution set is then compared to the different number of optimal solutions 

provided in other literature. The optimal solution set is different than the final solution set 

i.e.   final population optimal solution set . The basic procedure of proposed MMO algorithm 

is described as follows and a detailed flow chart is presented in Figure 24. In Figure 24, S 

refers to the solution set in which all unique optimal solution encountered by the algorithm 

are stored and B is the fitness value of the optimal solution set.  

Step 1: Define the fitness function of the specific case study. In this study, the maximum 

completion time (makespan) was used as the fitness value; 

Step 2: Define the parameters for k-means clustering algorithm (k value) and GA 

(population size, crossover rate, mutation rate, generation limit) and initialize the best 

solution set; 

Step 3: Generate the initial population; 



 88 

Step 4: Evaluate the current population, calculate the feature matrix of every solution and 

update the best solution set; 

Step 5: Using k-means clustering algorithm, divide the current population into k clusters, 

based on the features calculated in Step 4; 

Step 6: Within each cluster, select elite individuals that will be a part of the next generations 

population. 

Step 7: Within each cluster, select individuals for crossover using roulette wheel selection 

to produce offspring for the next generation.  

Step 8: Randomly select individuals (based on mutation probability) and mutate them. 

Step 7: Repeat Steps 4-8 until the generation limit is reached. Output the final population 

and the best solution set;  

  



 89 

Generate initial solutions as the first generation

Calculate the feature for every individual of the current i th generation

Use crossover operator within each cluster to generate new solutions

Use mutation operator within each cluster to generate new solutions

Reach the terminal condition?

i=i+1, form the i th generation

Calculate the fitness value of every individual

Save the best fitness value fitnessi  and the corresponding solutions Si

Compare fitnessi  to Best

i=1, Best=+ ,  S={}

Best=fitnessi ,  S=SiS= S   Si

 fitnessi  < Best fitnessi  = Best

Best=Best ,  S=S

 fitnessi  > Best

Group the individuals into different clusters

N

Output  Best and S

Y

 

Figure 24. Flow chart of the proposed MMO algorithm 

 

 



 90 

6.2 MMO of benchmark JSSP 

Job-shop scheduling problem (JSSP) is a classical problem in operation research in 

which n ideal jobs, J1, J2, …, Jn, of varying processing times are assigned to m resources 

(usually machines). The objective is to allocate the available resources to the jobs to 

maximize (or minimize) performance indicators such as makespan, tardiness etc. Like any 

scheduling problem, there are constraints and assumptions associated with JSSPs and in 

this paper these constraints and assumptions are:  

1. On the shop floor, all machines are independent from each other. 

2. The operation of all the jobs have deterministic processing times. 

3. No pre-emption of job operation is permitted 

4. The set-up times are not considered in these problems. 

5. No machine down-time or maintenance time is considered. 

6. The machine used for each operation of a job is known and fixed.  

7. A job cannot revisit a machine group for more than one operation. 

8. Operation constraints must always be followed. 

Known as NP-hard problem, JSSPs has aroused the attention and efforts of many 

researchers, who have used various techniques to achieve the desired goal. Qing-dao-er-ji 

and Wang [88] proposed a new hybrid genetic algorithm (GA) for the optimization of JSSP. 

Their proposed method had modified selection, crossover, and mutation operator that were 



 91 

designed to increase the diversity of the population. In addition, a local search operator was 

also developed to improve the quality of the solution, a common drawback of GA. Jorapur 

et al. [89] developed a new technique to enhance the quality of the initial population used 

in GA. Their proposed method could obtain better percentage deviation for benchmark 

problems compared to other methods used in literature. Chang et al. [90] combined 

Taguchi method and GA to solve flexible job shop scheduling problem (FJSSP), a special 

kind of JSSP with parallel machines. To avoid infeasible solutions, the authors developed 

a novel technique to encode only feasible solutions in the initial chromosomes and then 

embedded Taguchi method in the mating operator to increase the effectiveness of GA. 

When applied to benchmark problems, the authors proposed method obtained better 

performance than other commonly used methods. Bagheri et al. [91] used an artificial 

immune algorithm (AIA) for minimization of makespan of FJSSP. The authors tested 

several strategies for generating initial population, selection of new individuals, and 

mutation to converge to the optimal solution. Tsai et al. [92] developed a modified 

Taguchi-immune algorithm (MTIA) that was successfully used for global numerical and 

JSSP optimization. The authors combined Taguchi-method with AIA to have better local 

and global convergence and the application of the proposed algorithm to benchmark 

problems showed the robustness of the proposed algorithm.  

In contrast to traditional optimization of JSSP, very little work has been done in the 

MMO of JSSP. Luh and Chueh [93] proposed a multimodal immune algorithm (MMIA) 

for MMO of JSSP. The authors tested the ability their proposed algorithm to find multiple 

global optima on benchmark JSSP. Their experimental results showed that not only were 

they able to find the global optima for 89.5% of the problems tested but they were also able 



 92 

to find multiple schedules with the optimal makespan. Perez et al. modified several 

multimodal GA’s for the MMO of benchmark JSSPs. In their study, Perez et al. [24] tested 

sharing fitness GAs, clearing based GAs and species competition based GAs on eight 

benchmark JSSPs. Their experimental results showed that sharing fitness GAs provided 

the best results when finding a global optimum was the only objective while clearing based 

GAs and species competition based GAs helped obtain the most number of global optima.  

Though the algorithms developed for the MMO of JSSP are able to provide multiple 

optimal schedules, they have a few drawbacks. These algorithms either provide very few 

optimal solutions or are unable to consistently converge to the global optima. Therefore, 

the MMO algorithm developed in Section 6.1 is utilized to consistently converge to the 

global optima while providing a sufficient amount of optimal solutions. 

6.2.1 Modelling of solution 

As mentioned earlier, GA is used for the optimization procedure. The optimization 

objective is to find the sequence of operations on each machine that would lead to a 

minimization of the makespan. An important aspect of GA is to determine how to code the 

solutions. Over the years, many different methods have been used to encode the solutions 

of JSSP such as the direct method [94], the binary method [95], the circular method [96], 

and the permutation with repetition [ 97 ] method. In the proposed MMO algorithm, 

permutation with repetition is used to represent the solutions as it avoids infeasible 

solutions entirely, an important requirement for JSSPs. The length of the chromosome 

(solution) can be determined by the size of the problem. For example, as shown in Figure 

25, for a 3x3 problem (3 jobs with 3 operations each) the chromosome length will be 9. 



 93 

Figure 25 also demonstrates how the solution is represented using permutation with 

repetition encoding. 

3 1 2 2 3 3 1 2 1

Solution representation

First operation of Job 3

First operation of Job 1

First operation of Job 2

Second operation of Job 2

Second operation of Job 3

Third operation of Job 3

Second operation of Job 1

Third operation of Job 2

Third operation of Job 1

M1

M1

M1

M2

M2

M2M3

M3

M3Workpieces

J1

J2

J3

Operation constraints One possible order on machines

 

Figure 25. An example of permutation coding in a 3x3 JSSP 

 

 



 94 

6.2.2 Definition of feature 

During the optimization process, the solutions have to be clustered together into 

different clusters using k-means clustering algorithm. In order to cluster the solutions 

together, some features of the solutions have to be defined that indicate the uniqueness of 

each solution. In this study, the feature of a solution is defined as a matrix of sequence 

difference between every two machines in the workshop. Figure 26 shows an example of 

how the feature for a solution is calculated. The number of columns equals to the number 

of machines m and the number of rows equals to the number of combination 𝐶𝑚
2 , therefore, 

the size of the feature matrix is 𝐶𝑚
2 �˟ 1. 

J1

J2

J3

J1

J2

J3

J1 J2 J3M1

M2

M3

|1-2|+|2-3|+|3-1|

=4

|2-3|+|3-1|+|1-2|

=5

|1-3|+|2-1|+|3-2|

=5

Feature matrix=[4;

                           5;

                          5]

1

Difference between the sequences on M1 and M2

Difference between the sequences on M2 and M3

Difference between the sequences on M1 and M3

 

Figure 26. Figure demonstrating an example of the feature matrix for 3x3 JSSP 

6.2.3 Adaption of genetic operators 

In the optimization process, genetic operators are utilized to produce the population 

belonging to the next generation. As mentioned earlier, to only deal with feasible solutions, 



 95 

permutation with repetition encoding method is used. In order to continue to deal with only 

feasible solutions, appropriate crossover and mutation operator must be utilized as dealing 

with only feasible solutions can greatly reduce the computation cost. In the crossover 

operator, the half the number of jobs of the problem under consideration are randomly 

selected. Next, the corresponding genes are switched in both the parents. An example of 

the crossover process is shown in Figure 27. In the example, jobs 2 and 3 are randomly 

chosen and the corresponding genes ([3,2,3,2,3,2] in Parent A and [2,2,2,3,3,3] in Parent 

B) are switched. The crossover operator is limited to solutions belonging to the same cluster 

in order to preserve some features of the cluster. Similarly, in the mutation operator, two 

jobs are randomly chosen and their corresponding location within the solution is switched. 

An example of the mutation operator for a problem with three jobs and each job having 

three operations is shown in Figure 28. In the mutation operator, two jobs are first selected 

(in Figure 28, jobs 2 and 3 are selected) and the location of the genes belonging to the 

selected jobs is switched. In the example shown in Figure 28, the genes for jobs 2 and 3 

appear is the order [3,2,3,2,3,2]. After mutation, the order of the genes is changed to 

[2,3,2,3,2,3] and the new parent is given as [1,2,3,2,3,2,1,3,1].  As it can be seen from 

Figure 27 and Figure 28, using the crossover and mutation operator only creates feasible 

solution. 



 96 

1 3 2 3 2 3 1 2 1Parent A

1 1 1 2 2 2 3 3 3Parent B

1 1 1Child A 

1 1 1Child B 

3 2 3 2 3 2

2 2 2 3 3 3

1 2 2 2 3 3 1 3 1

1 1 1 3 2 3 2 3 2

 

Figure 27. Crossover operator adapted to permutation coding in a 3x3 JSSP 

 

1 3 2 3 2 3 1 2 1

1 2 3 2 3 2 1 3 1
 

Figure 28. Mutation operator adapted to permutation coding in a 3x3 JSSP 

6.2.4 Experimental Study 

The effectiveness of the proposed MMO algorithm is measured using two 

indicators: 1. the ability to converge to the global optima and 2. the ability to find multiple 

optimal solutions. Furthermore, the performance of the algorithm is also measured against 

the performance of the algorithms used by Perez et al. and Luh and Chueh for MMO of 

JSSP. 



 97 

6.2.4.1 Case Study 1 

As mentioned earlier, Luh and Chueh proposed a MMIA for MMO of benchmark 

JSSP. The authors first tested the ability of their algorithm to converge to the global optima 

by employing it to 19 benchmark problems (MT10, MT20, LA01-LA11, LA17, LA19, LA21, 

LA31). The 19 benchmark problems were chosen as they had varying dimensions i.e. 6 to 

30 jobs and 5 to 10 machines. The parameters of MMIA were adopted based on the size of 

the problem. For example, since it is relatively easy to find the global optima of MT06 

compared to that of LA31, the algorithm was only run for 100 iterations with a population 

size of 36 when used to optimize MT06 while the iteration limit and population size were 

1000 and 600 when it was used to optimize LA31. To ensure fair comparison, the 

parameters used for the proposed algorithm were the same as those used by Luh and Chueh. 

These parameters are listed in Table 19 while the best solution found using MMIA and the 

proposed algorithm as well as the best-known solution for the problems under 

consideration are listed in Table 20. 

For the proposed algorithm, an additional parameter needs to be specified i.e. the 

value of k. A k value of 3 was determined to provide the best results, both in terms of 

converging to and finding multiple optimal solutions, after multiple simulation runs. 

Table 19. Parameters used for the proposed algorithm 

Instance size (job x machine) 6x6 10x5 15x5 20x5 10x10 15x10 30x10 

Generation Limit 100 500 1000 

Population Size Job x Machine 2 x (job x machine) 

Chromosome Length 36 50 75 100 100 150 200 

 



 98 

Table 20. Optimal makespan found using MMIA and the proposed algorithm 

Instance Size 
Best-known 

solution 
MMIA 

Proposed 

MMO 

Algorithm 

MT06 6x6 55 55 55 

MT10 10x10 930 955 937 

LA01 10x5 666 666 666 

LA02 10x5 655 655 655 

LA03 10x5 597 597 597 

LA04 10x5 590 590 590 

LA05 10x5 593 593 593 

LA10 15x5 958 958 958 

LA14 20x5 1292 1292 1292 

LA17 10x10 784 784 784 

LA31 30x10 1784 1784 1784 

 

For problems MT06, LA01-LA05, LA10, LA14, LA17, and LA31 both, the proposed 

MMO algorithm and MMIA are able to converge to the best-known solutions. For MT10, 

neither the proposed MMO algorithm nor MMIA are able to converge to the global 

optimum however, the proposed MMO algorithm is able to converge to a better solution 

(937) than MMIA (955). Once the convergence ability of MMIA was verified, Luh and 

Chueh utilized MMIA for MMO of five benchmark JSSPs. The authors chose the five 

benchmark JSSPs (10x5, 15x5, 20x5, 10x10, and 30x10) with different dimensions and 

degree of difficulty to validate the convergence capabilities as well as the ability of the 

algorithm to find multiple solutions. The proposed MMO algorithm is also utilized to try 

and find multiple global optima of these five problems. The results obtained using MMIA 

and the proposed MMO algorithm are given in Table 21.  



 99 

Table 21. Multiple solutions found using MMIA and the proposed algorithm 

Instance 

Number of optimal 

solutions found using 

MMIA 

Number of optimal 

solutions found using 

the proposed MMO 

algorithm 

MT06 5 22 

LA05 5 41 

LA10 9 37 

LA14 9 144 

LA17 3 26 

LA31 2 31 

 

According to Table 4, MMIA was able to find 5, 5, 9, 9, 3, and 2 optimal solutions 

for MT06, LA05, LA10, LA14, LA17, and LA31 respectively while the proposed MMO 

algorithm found 22, 41, 37, 144, 26, and 31 solutions for those problems. The results in 

Table 4 show that even though both the algorithms managed to find multiple optimal 

solutions for the five problems under consideration, the proposed MMO algorithm is able 

to find a much larger amount of optimal solutions compared to MMIA. The combined 

results of Tables 3 and 4 that the proposed MMO algorithm is able to outperform MMIA 

in terms of converging to and find multiple global optima.  

6.2.4.2 Case Study 2 

In the second case study, the performance of the proposed MMO algorithm is 

compared to the performance of the algorithms used by Perez et al. Perez et al. used 

adaptive niche hierarchical genetic algorithm (ANHGA), niche identification techniques 

with sharing fitness (NIT), classical clearing method (CM), restricted competition selection 

method (RCS), restricted competition selection with pattern search method (RCS_PSM), 



 100 

species conserving genetic algorithm (SCGA), and quick hierarchical fair competition 

(QHFC) for MMO of benchmark JSSPs. The authors evaluated the algorithms based on 

their ability to converge to the global optimum as well as finding multiple global optima. 

The converging capabilities of the algorithms was determined by their application to LA01-

LA05, MT06, MT10, and MT20. In the first part of their experiments, the authors utilized 

each algorithm with the aim of finding the global optima of each problem. To test the 

stability of each algorithm, 30 repetitions were performed and the average optimal value 

was reported. Since the authors found that different algorithms were suitable for finding 

the optimal solution and MMO, the results obtained using those algorithms are given in 

this section. The parameters used by Perez et al. for the simulations were as follows: 

• Population size: 100 

• Stop conditions: Number of evaluations, 100,000 for MT06, LA01, and LA05 

300,000 for LA02, LA03, and LA04, and 500, 000 for MT10 and MT20.  

• Runs: 30 repetitions for each problem. 

In contrast to the settings used by Perez et al., the 10,000 iterations were used for 

MT06, LA01-05 and 20,000 for MT10 and MT20. Table 22 shows average optimal 

solution obtained by Perez et al. as well as those obtained using the proposed algorithm.  

Table 22. Optimal makespan found by Perez et al. and using the proposed algorithm 

Instance 

Best-

known 

solution 

ANHGA RCS RCS_PSM SCGA 

Proposed 

MMO 

Algorithm 

MT06 55 55.00 55.00 55.00 55.00 55.00 

MT10 930 979.00 988.17 1006.07 989.70 958.90 

 



 101 

Table 22 continued. 

Instance 

Best-

known 

solution 

ANHGA RCS RCS_PSM SCGA 

Proposed 

MMO 

Algorithm 

MT20 1165 1213.03 1235.47 1284.80 1237.97 1177.50 

LA01 666 666.00 666.00 666.00 666.00 666.00 

LA02 655 660.63 663.03 667.50 678.13 656.80 

LA03 597 608.97 609.23 609.90 609.60 597.00 

LA04 590 595.97 606.73 602.80 600.63 590.90 

LA05 593 593.00 593.00 593.00 593.00 593.00 

 

It can be seen from that all the algorithms are able to find the global optima of 

MT06, LA01, and LA05 as it is relatively easy to find their global optima. The best average 

makespan found by Perez et al.  for MT10, MT20, and LA01-LA04 were 969.00, 1213,03, 

660.63, 608.97, and 595.97 respectively (obtained using ANHGA). The proposed MMO 

algorithm gave an average optimal makespan of 958.90, 1177.60, 656.80, 597.00, and 

590.09 for those problems. These results indicate that the proposed MMO algorithm is able 

to find better optimal solutions while requiring much less iterations.  

Next, Perez et al. utilized the algorithms to find multiple global optima for the 

benchmark problems listed in Table 22. Similar to the previous simulations, the authors 

utilized their algorithm on each problem 30 times and noted the average number of 

different global optima obtained. If, for example, out of 30 runs, the global optima were 

only found in 27 runs, then the average was calculated using those 27 runs. It should be 

noted that the maximum number of different optima that could be found was the lower 

number between the population size and total number of global optima for the particular 

problem. For example, the population size used in these simulations was 100, however 



 102 

there are only 55 different known global optima for MT06. Therefore, 55 is the maximum 

number of different global optima that can be obtained for MT06. The average number of 

global optima obtained by Perez et al. and using the proposed MMO algorithm are shown 

in Table 23. 

Table 23. Multiple global optima found by Perez et al. and using the proposed 

MMO algorithm. (*) indicates that there were no global optima obtained and (**) 

indicates that the global optima was only obtained in a handful of simulations 

Instance ANHGA RCS RCS_PSM SCGA 

Proposed 

MMO 

Algorithm 

MT06 11.70 49.67 48.63 48.07 6.4 

MT10 2.22** 1** * * * 

MT20 1** 1** * * * 

LA01 30.54 100.00 99.90 93.37 12.1 

LA02 16.86 100.00 99.95 99.00 6.20 

LA03 12.40 * * 95** 8.90 

LA04 19.50 50** 50** 94** 7.60 

LA05 39.73 100.00 100.00 98.93 25.50 

 

For MT06, RCS used by Perez et al. obtained an average of 49.67 global optima 

while the proposed algorithm only obtained 6.4. For MT10, ANHGA was able to obtain 

2.22 global optima but very few runs were actually able to converge to the global optima 

(as indicated by **). The proposed MMO algorithm, on the other hand, is unable to 

converge to the global optima in any of runs. Similar results are obtained for MT20. For 

LA01 and LA02, RCS was able to obtain 100 different global optima while the proposed 

MMO algorithm is only able to obtain 12.1 and 6.2 global optima respectively. Though 

SCGA was able to obtain 95 global optima for LA03, very few runs were successful. 

However, ANHGA was more successful as it was able to obtain 12.40 global optima on 



 103 

average (for more simulations) while the proposed MMO algorithm obtained 8.9. For 

LA04, ANHGA obtained an average of 19.50 global optima while the proposed algorithm 

obtained 7.60. Lastly, for LA05, both RCS and RCS_PSM obtained 100.00 global optima 

while the proposed algorithm only obtained 25.50 It is evident from the results in Table 6 

that the proposed MMO algorithm is unable to obtain as many global optima as the 

algorithms used by Perez et al.. It should be noted that the iteration limit was set to 10,000 

for MT06, LA01-LA05 and 20,000 for MT10 and MT20 when being solved using the 

proposed algorithm. These numbers were much higher, 100,000 – 300,000, when solved 

by Perez et al.. The low number of iterations could be a cause of the fewer number of global 

optima obtained by the proposed algorithm. Thought the number of global optima were 

lower, the proposed MMO algorithm has equal or better convergence than any of the 

algorithms used by Perez et al. while requiring fewer iterations 

Lastly, as stated earlier, the total number of global optima encountered by the 

proposed MMO algorithm during its iterations are also stored. These numbers are given in 

Table 24 and along with the known number of different global optima. 

Table 24. Known global optima to date and different global optima encountered by 

the proposed algorithm 

 MT06 MT10 MT20 LA01 LA02 LA03 LA04 LA05 

Different 

global optima 

known to date 

55 4 1 26813 5321 706 143 48471 

Global optima 

found by 

proposed 

MMO 

algorithm 

22 - - 64921 2388 194 1225 335606 

 



 104 

Since the proposed MMO algorithm is unable to converge to the global optima for 

MT10 and MT20, the corresponding values are 0 in Table 24. For LA01, LA04, and LA05 

the proposed MMO algorithm is able to find 38108, 1082, and 287,135 new solutions. 

Though it only found some of the known solutions for the remaining problems, the number 

of global optima encountered for problems LA01-LA05 are much larger than the 

population size (100). These results show that the algorithm is able to search the solution 

space effectively and find a large amount of global optima and the number of encountered 

by the algorithm is not just limited to the population size. 

6.3 MMO of benchmark PFSSP 

Permutation flow-shop scheduling problem (PFSSP), a variation of the classical flow-

shop scheduling problem (FSSP), is a problem in operation research in which n ideal jobs, 

J1, J2, …, Jn, of varying processing times are assigned to m resources (usually machines). 

The objective is to allocate the available resources to the jobs to maximize (or minimize) 

performance indicators such as makespan, tardiness etc. In classical FSSP, for n jobs on m 

machines, there are (n!)m different alternatives for sequencing jobs on machines, while in 

permutation problems, the search space is reduced to n!. PFSSP has the same constraints 

as JSSP but with an additional constraint that all the jobs must enter the machines in the 

same order.  

Since PFFSP are commonly encountered in production environment, researchers have 

come up with many techniques to optimize their key performance indicators (KPIs). Liu 

and Liu [98] used a hybrid discrete artificial bee colony algorithm for minizine the 

makespan in PFSSP. They utilized Greedy Randomized Adaptive Search Procedure 



 105 

(GRASP) to create the initial population and operators such as insert, swap, path relinking 

to generate new solutions. The authors also improved the local search by further optimizing 

the best solution. When applied to PFFP, their algorithm had superior performance 

compared to other algorithms such as particle sawm optimization (PSO) algorithm, hybrid 

genetic algorithm (HGA), etc. Govindan et al. [99] combined decision tree (DT) and scatter 

search (SS) algorithms to solve PFSSP. DT was used initially to convert the problem into 

a tree structure using the entropy function followed by SS to do an extensive investigation 

of the solution space. Simulation results and statistical test comparisons showed the 

advantage to the authors proposed algorithm. Ancău [100] proposed two algorithms for 

solving PFSSP 1. A constructive greedy heuristic (CG) and 2. Stochastic greedy heuristic 

(SG). The CG was based on a greedy selection while the SG was a modified version of CG 

with iterative stochastic start. The authors validated the proposed algorithms by using them 

to solve benchmark problems and the results showed that the algorithm was able to come 

within 6% of the best-known solution. Zobolas et al. [101] created a hybrid algorithm by 

combining greedy heuristic, GA, and variable neighborhood search (VNS) algorithm. The 

hybrid algorithm was able to take advantage of both GA and VNS and obtain the best-

known makespan for the benchmark problems in short computational time.   

In contrast to the work available in the optimization of PFSSP, no work has been done 

in the MMO of PFSSP. Therefore, the proposed MMO algorithm proposed is utilized for 

the MMO of PFSSP. However, a few changes are made to the operators of GA as the 

constraints in PFSSP are different than those in JSSP. 

 



 106 

6.3.1 Modelling of PFSSP 

Similar to the MMO of JSSP, the objective in MMO of PFSSP is to find the 

sequence of operations that would lead to a minimization of makespan. As the jobs must 

be processed in the same order on each machine in PFSSP, a solution is created using 

permutation encoding for a single machine. However, unlike JSSP, the length of the 

chromosome would only be three for a 3x3 problem.  

In the modified crossover operator, half the number of jobs of the problem under 

consideration are randomly select. Next, the corresponding genes are switched in both the 

parents. An example of the crossover process is shown in Figure 29 for a FSSP with nine 

jobs. In the example, jobs 2, 3, 4, 5, 6, and 9 are randomly chosen and the corresponding 

genes ([3,2,4,9,5,6] in Parent A and [2,3,6,9,5,4] in Parent B) are switched. The crossover 

operator is again limited to solutions belonging to the same cluster in order to preserve 

some features of the cluster. Similarly, in the mutation operator, half the jobs are randomly 

chosen and their corresponding location within the solution is switched. An example of the 

mutation operator is shown in Figure 30. As it can be seen from Figure 29and Figure 30, 

using the crossover and mutation operator only creates feasible solution. 



 107 

1 3 2 4 9 5 8 6 7Parent A

1 7 8 2 3 6 9 5 4Parent B

1 8 7Child A 

1 7 8Child B 

3 2 4 9 5 6

2 3 6 9 5 4

1 2 3 6 9 5 8 4 7

1 7 8 3 2 4 9 5 6

 

Figure 29. Example demonstrating the modified crossover operator used in the 

MMO of PFSSP 

 

1 3 2 5 6 9 7 4 8

1 2 3 6 5 4 7 9 8
 

Figure 30. Example demonstrating the modified mutation operator used in the 

MMO of PFSSP 

 The feature used to cluster each solution was defined as the order of operations of 

jobs of that particular solution. For example, the feature of Parent A shown in Figure 29 

would be [1, 3, 2, 4, 9, 5, 8, 6, 7] while that of Parent B would be [1, 7, 8, 2, 3, 6, 9, 5, 4]. 

 

 



 108 

6.3.2 Experimental Study 

Next, to measure the performance of the proposed MMO algorithm, it is used for the 

MMO of multiple PFSSP. The sharing fitness algorithm and clearing method (CM) used 

by Perez et al. for the MMO of JSSP are also utilized for the MMO of PFSSP. The 

performance of the three algorithms are then compared using 18 benchmark problems from 

various datasets. The first nine problems are proposed by Carlier (1978), the next eight are 

proposed by Reeves (1995) and the last one is proposed by Heller (1960). To better assess 

the algorithms, 10 independent simulations are performed for each test problems. The 

performance of the algorithms used is then measured based on four indicators: 1. The best 

solution found in the 10 simulations, 2. The mean value and the standard deviation of the 

optimal solution found for the 10 simulations, 3. The number of times the algorithms 

converged to the best optimal solution and 4. The average number of best optimal solutions 

found for the 10 simulations. For indicator number 4, only simulations in which the 

algorithm converged to the best solution from (1) are taken into consideration i.e. if the 

algorithm only converged to the best solution in 4 out of the 10 simulations, then the 

average number of optimal solutions found is calculated using those 4 simulations. The 

parameters used for the three algorithms are determined after numerous simulations and 

are given in Table 25.  

 

 



 109 

Table 25. Parameters used for the three algorithms 

 Generations 
Population 

Size 
Algorithm Specific Parameters 

Proposed 

Algorithm 

1000 200 

Number of clusters = 3 

Sharing 

Fitness 
share = 0  = 1 

Clearing 

Method 
share = 10 

Maximum 

niche size = 1 

 

6.3.2.1 The best solution found 

As mentioned above, 10 independent simulations are ran for each test problem using 

the algorithms. The first method used to compare the performance of these algorithms is 

by observing the best solution obtained in 10 simulations. The results obtained by these 

algorithms are also compared to the best-known solution in available in literature. These 

results are shown in Table 26.  

Table 26. Best optimal solution obtained by the different algorithm 

Problem 

Best-known 

solution in 

literature 

Proposed 

MMO 

Algorithm 

Sharing fitness CM 

Rec-01 1247 1249 1249 1379 

Rec-03 1109 1111 1114 1187 

Rec-05 1242 1245 1245 1307 

Rec-07 1566 1566 1589 1733 

Rec-09 1537 1537 1600 1706 

Rec-11 1431 1431 1475 1614 

Rec-13 1930 1954 1980 2145 

Rec-15 1950 1962 2007 2156 

Rec-17 1902 1919 1989 2178 

     

Car-01 7038 7038 7038 7038 

Car-02 7166 7166 7166 7565 



 110 

Table 26 continued. 

Problem 

Best-known 

solution in 

literature 

Proposed 

MMO 

Algorithm 

Sharing fitness CM 

Car-03 7312 7312 7312 7399 

Car-04 8803 8803 8003 8410 

Car-05 7720 7720 7720 7720 

Car-06 8505 8505 8505 8505 

Car-07 6590 6590 6590 6590 

Car-08 8366 8366 8366 8366 

     

Hel-02 137 137 139 154 

 

 According to Table 26, of the algorithms used for the MMO of PFSSP, both the 

proposed MMO algorithm and sharing fitness algorithm are able to find the best-known 

solutions for all the Carlier benchmark problems while CM is able to find the best-known 

solution for Car-01, 05, 06, 07, and 08. For the Reeves problems, the proposed MMO 

algorithm has the best performance as it is able to converge to the best-known solution for 

Rec-07 and 09 and is within 1% for rest of the problems. Sharing fitness and CM are unable 

to converge to any of the best-known solutions for the Reeves problems and are within 4% 

and 15% of the best-known solutions. Similarly, only the proposed MMO algorithm 

converges to the best-known solution of the Heller problem while sharing fitness and CM 

are unable to. These results indicate that the proposed MMO algorithm has the best 

performance in terms of finding the best optimal solution.  

6.3.2.2 Mean value and standard deviation of the optimal solution 

Next, to evaluate the stability of the algorithms, the mean value and the standard 

deviation of the optimal solution found in the 10 simulations are calculated. Since these 



 111 

are 10 independent simulations, the starting points are randomized in each simulation. 

These results are shown in Table 27.  

Table 27. Mean value and standard deviation of the optimal solution found after 10 

independent simulations using the different algorithms 

Problem Number 

Mean value and 

standard deviation 

of the optimal 

solution found 

using the proposed  

MMO algorithm 

Mean value and 

standard deviation 

of the optimal 

solution found 

using the sharing 

fitness 

Mean value and 

standard 

deviation of the 

optimal solution 

found using CM 

Rec-01 1249.00 ± 0.00 1302.30 ± 30.65 1429.40 ± 29.14 

Rec-03 1111.00 ± 0.00 1136.4 ± 15.61 1246.50 ± 29.01 

Rec-05 1245.00 ± 0.00 1266.20 ± 39.63 1360.90 ± 25.59 

Rec-07 1579.00 ± 8.07 1622.20 ± 25.21 1771.20 ± 24.48 

Rec-09 1567.70 ± 16.54 1625.40 ± 12.29 1767.60 ± 30.15 

Rec-11 1440.80 ± 11.78 1505.2 ± 21.82 1669.00 ± 29.45 

Rec-13 1956.90 ± 2.28 2029.50 ± 30.87 2218.70 ± 38.50 

Rec-15 1974.30 ± 6.31 2026.80 ± 12.92 2189.30 ± 20.34 

Rec-17 1944.30 ± 11.62 2024.60 ± 20.67 2219.13 ± 21.71 

    

Car-01 7038.00 ± 0.00 7038.00 ± 0.00 7468.50 ± 276.02 

Car-02 7166.00 ± 0.00 7166.00 ± 0.00 7862.30 ± 163.70 

Car-03 7312.00 ± 0.00 7351.40 ± 43.06 7832.50 ± 266.94 

Car-04 8803.00 ± 0.00 8813.40 ± 32.89 8468.30 ± 70.84 

Car-05 7720.00 ± 0.00 7759.70 ± 38.77 7731.20 ± 16.48 

Car-06 8505.00 ± 0.00 8550.50 ± 31.40 8511.50 ± 20.55 

Car-07 6590.00 ± 0.00 6600.60 ± 22.37 6590.00 ± 0.00 

Car-08 8366.00 ± 0.00 8366.00 ± 0.00 8366.00 ± 0.00 

    

Hel-02 137.00 ± 0.00 143.00 ± 1.89 155.90 ± 1.45 

 

For the Reeves problems, the proposed MMO algorithm has the best performance as its 

average optimal value is much closer to the best-known solution than that of sharing fitness 

and CM. The standard deviation varies between 0.00 and 16.54 for the proposed MMO 

algorithm while it varied between 15.61 and 39.63 for sharing fitness and 20.34 and 30.15 

for CM.  Similar results are obtained for the Carlier problems. The proposed MMO 



 112 

algorithm is always able to converge to the best-known solution and therefore, has a 

standard deviation of 0.00. Sharing fitness has a 100% convergence rate to the best-known 

solutions of problems 1, 2, and 8 while CM has a 100% convergence rate to the best-known 

solutions of problems 7 and 8. For the rest of the problems, the standard deviation varies 

between 22.37 and 43.06 for sharing fitness and 20.55 and 276.02 for CM.  Lastly, for 

Heller, the proposed MMO algorithm again has a 100% convergence rate to the best-known 

solution while sharing fitness and CM are unable to do so. These results show the 

robustness of the proposed MMO algorithm i.e. its ability to converge to the best optimal 

solution consistently.  

6.3.2.3 Number of times the algorithm converged to the optimal solution 

To ensure that the algorithms can find multiple solutions consistently, the number of 

simulations in which the algorithms converge to the best-known solution (NC) is also 

recorded. Since none of the algorithms converge to majority of the best-known solution 

for the Reeves problems, the best optimal solution found is used instead. For example, the 

best-known solution for Rec-01 is 1247 while the best optimal solution found by the 

algorithms is 1249, therefore, 1249 is used to calculate NC. The results for NC are given in 

Table 28. 

Table 28. Number of simulations in which the algorithms are able to converge to the 

best optimal solution (NC) 

Problem Number 

NC obtained using 

the proposed 

MMO algorithm 

NC obtained using 

sharing fitness 

NC obtained using 

CM 

Rec-01 2 1 0 

Rec-03 8 0 0 

Rec-05 1 0 0 



 113 

Table 28 continued. 

Problem Number NC obtained using 

the proposed 

MMO algorithm 

NC obtained using 

sharing fitness 

NC obtained using 

CM 

Rec-07 10 0 0 

Rec-09 10 0 0 

Rec-11 4 0 0 

Rec-13 1 0 0 

Rec-15 2 0 0 

Rec-17 1 0 0 

    

Car-01 10 10 2 

Car-02 10 10 0 

Car-03 10 4 0 

Car-04 10 9 0 

Car-05 10 3 6 

Car-06 10 3 9 

Car-07 10 8 10 

Car-08 10 10 10 

    

Hel-02 10 0 0 

 

 Since CM has the worst optimal solution of the three algorithms for the Reeves 

problems its NC’s are 0. Similarly, sharing fitness is unable to find the best optimal solution 

for all but problem 1 and therefore, its NC’s for those problems is 0. The proposed MMO 

algorithm has the best performance of the three algorithms compared. It has a NC of 10 for 

problems 7 and 9, 1 for problems 5, 13, and 17, 2 for problems 1 and 15, 4 for problem 11, 

and 8 for problem 3.  

 As the proposed MMO algorithm has a 100% convergence rate to the best-known 

solution for all the Carlier problems, its NC’s for them is 10. Sharing fitness also has a NC 

of 10 for problems, 1, 2, and 8 and has a NC of 4, 9, 3, 3, and 8 for the remaining problems. 

CM has the worst performance as it is unable to converge to the best-known solution for 



 114 

problems 2, 3, and 4. It has an NC of 2, 6, and 9 for problems 1, 5, and 6 respectively and 

had an NC of 10 for problems 7, and 8. Lastly, for the Heller problem, the proposed MMO 

algorithm has an NC of 10 while the other two algorithms have an NC of 0. These results 

further solidify the argument that the proposed MMO algorithm has the best performance 

of the three algorithms as it is able to converge to the best optimal solution consistently. 

6.3.2.4 Average number of best optimal solutions found (NO) 

Lastly, the average number of best optimal solutions found for each test problem using 

the different algorithms is compared. For this index, only simulations that have a NC of 

greater than 0 are used. For example, since the proposed MMO algorithm has a NC of two 

for Rec-01, NO is calculated using the results of those two simulations. NO for the different 

test problems using the different algorithms are given in Table 29.  

Table 29. Average number of best optimal solutions found ((NO) using the different 

algorithms 

Problem 

Number 

NO obtained 

using the 

proposed MMO 

algorithm 

NO obtained 

using sharing 

fitness 

NO obtained 

using CM 

Rec-01 6.60 18.00 0.00 

Rec-03 6.80 0.00 0.00 

Rec-05 4.20 0.00 0.00 

Rec-07 3.00 0.00 0.00 

Rec-09 4.00 0.00 0.00 

Rec-11 3.00 0.00 0.00 

Rec-13 3.00 0.00 0.00 

Rec-15 2.00 0.00 0.00 

    

Rec-17 3.00 0.00 0.00 

    

Car-01 37.90 40.00 58.50 

Car-02 30.40 9.89 0.00 

Car-03 6.20 1.25 0.00 



 115 

Table 29 continued. 

Problem 

Number 

NO obtained 

using the 

proposed MMO 

algorithm 

NO obtained 

using sharing 

fitness 

NO obtained 

using CM 

Car-04 13.5 8.67 0.00 

Car-05 1.90 1.00 1.00 

Car-06 1.00 1.00 1.00 

Car-07 1.00 1.00 1.00 

Car-08 1.00 1.00 1.00 

    

Hel-02 6.30 0 0.00 

 Like the previous three indicators, the proposed MMO algorithm has significantly 

better performance than sharing fitness and CM. Though sharing fitness is able to find 18 

solutions for Rec-01, it is unable to find multiple optimal solutions for rest of the Reeves 

problems. The proposed MMO algorithm is able to find 2 to 6.8 optimal solutions for all 

the Reeves problems. CM is unable to find multiple best optimal solutions for any of the 

Reeves problems as it never converged to the best optimal solution. 

Though both CM and sharing fitness are able to find more best optimal solutions 

compared to the proposed algorithm for Car-01, their performance is worse for problems 

2,3,4, and 5. The proposed MMO algorithm found 30.40, 6.20, 13.50, and 1.90 different 

best-known solutions on average for those problems while sharing fitness only obtained 

9.89, 1.25, 8.67 and 1.00 and CM obtained 0.00 for all of them. All the algorithms are only 

able to find 1.00 different optimal solutions for problems 6-8 indicating that the global 

optimal solution is a unique one. Lastly, for the Heller problem, the proposed MMO 

algorithm again has the best performance as it is able to obtain 6.30 different best-known 

solutions on average while both sharing fitness and CM obtained 0.00. These results 



 116 

indicate that the proposed algorithm is able to consistently converge to the best optimal 

solution for all the test problems while finding multiple best optimal solutions. 

6.3.2.5 Hybrid Algorithm 

 An attempt is also made to combine the proposed MMO algorithm with sharing 

fitness to take advantage of both the algorithms i.e. the ability of the proposed algorithm to 

consistently converge to the best optimal solution and the ability of sharing fitness to find 

multiple best optimal solutions. The above task is accomplished by calculating the distance 

used in the sharing fitness method using the feature matrix of the proposed MMO 

algorithm. This distance is calculated using Equation (53). 

 ( , ) = i jd i j F F  (53) 

Where, Fi is the feature matrix of Individual i and Fj is the feature matrix of 

Individual j. For the hybrid algorithm, a share  value of 10 is used. The results obtained using 

the new hybrid algorithm are compared to the best results obtained from the proposed 

MMO algorithm, sharing fitness and CM. These results are given  

Table 30. Comparison of the best optimal solution found using the new hybrid 

algorithm and the previous three algorithms 

Problem Number 

Best optimal solution 

found using the new 

hybrid algorithm 

Best optimal solution 

found using previous 

three algorithms 

Rec-01 1280 1249 

Rec-03 1124 1111 

Rec-05 1249 1245 

Rec-07 1584 1566 

Rec-09 1590 1537 



 117 

Table 30 continued. 

Problem Number Best optimal solution 

found using the new 

hybrid algorithm 

Best optimal solution 

found using previous 

three algorithms 

Rec-11 1457 1431 

Rec-13 2003 1954 

Rec-15 2012 1962 

Rec-17 2008 1919 

   

Car-01 7038 7038 

Car-02 7166 7166 

Car-03 7312 7312 

Car-04 8803 8803 

Car-05 7720 7720 

Car-06 8505 8505 

Car-07 6590 6590 

Car-08 8366 8366 

   

Hel-02 139 137 

 

Table 31. Comparison of the mean value and standard deviation of the optimal 

solutions found using the new hybrid algorithm and from the previous three 

algorithms 

Problem Number 

Best mean value and 

standard deviation of the 

optimal solution found 

using the new hybrid 

algorithm 

Best mean value and 

standard deviation of the 

optimal solution found 

using the previous three 

algorithms 

Rec-01 1310.60 ± 17.66 1249.00 ± 0.00 

Rec-03 1139.80 ± 13.10 1111.00 ± 0.00 

Rec-05 1269.60 ± 11.28 1245.00 ± 0.00 

Rec-07 1623.90 ± 29.44 1579.00 ± 8.07 

Rec-09 1617.70 ± 18.60 1567.70 ± 16.54 

Rec-11 1457.20 ± 17.76 1440.80 ± 11.78 

Rec-13 2042.20 ± 21.90 1956.90 ± 2.28 

Rec-15 2047.60 ± 30.31 1974.30 ± 6.31 

Rec-17 2028.00 ± 13.72 1944.30 ± 11.62 

   

Car-01 7038.00 ± 0.00 7038.00 ± 0.00 

Car-02 7187.00 ± 66.41 7166.00 ± 0.00 

Car-03 7382.10 ± 27.89 7312.00 ± 0.00 



 118 

 

Table 31 continued. 

Problem Number 

Best mean value and 

standard deviation of the 

optimal solution found 

using the new hybrid 

algorithm 

Best mean value and 

standard deviation of the 

optimal solution found 

using the previous three 

algorithms 

Car-04 8803.00 ± 0.00 8803.00 ± 0.00 

Car-05 7745.70 ± 18.37 7720.00 ± 0.00 

Car-06 8561.20 ± 71.27 8505.00 ± 0.00 

Car-07 6605.90 ± 25.60 6590.00 ± 0.00 

Car-08 8366.00 ± 0.00 8366.00 ± 0.00 

   

Hel-02 143.10 ± 1.66 137.00 ± 0.00 

 

Table 32. Comparison of the Nc found using the new hybrid algorithm and the 

previous three algorithms 

Problem Number 
NC obtained using the 

new hybrid algorithm 

Best NC obtained using 

the previous three 

algorithms 

Rec-01 0 2 

Rec-03 0 8 

Rec-05 0 1 

Rec-07 0 10 

Rec-09 0 10 

Rec-11 0 10 

Rec-13 0 1 

Rec-15 0 2 

Rec-17 0 1 

   

Car-01 10 10 

Car-02 9 10 

Car-03 1 10 

Car-04 10 10 

Car-05 2 10 

Car-06 4 10 

Car-07 7 10 

Car-08 10 10 

   



 119 

Hel-02 0 10 

 

Table 33. Comparison of the NO using the new hybrid algorithm and the previous 

three algorithms 

Problem Number 
NO  obtained using the 

new hybrid algorithm 

Best NO obtained using 

the previous three 

algorithms 

Rec-01 0.00 18.00 

Rec-03 0.00 4.20 

Rec-05 0.00 3.00 

Rec-07 0.00 4.00 

Rec-09 0.00 3.00 

Rec-11 0.00 3.00 

Rec-13 0.00 2.00 

Rec-15 0.00 3.00 

Rec-17 0.00 6.80 

   

Car-01 33.80 58.50 

Car-02 17.11 30.40 

Car-03 1.00 6.20 

Car-04 12.20 13.5 

Car-05 1.00 1.90 

Car-06 1.00 1.00 

Car-07 1.00 1.00 

Car-08 1.00 1.00 

   

Hel-02 0.00 6.30 

  

As it can be seen from the results above, the new hybrid algorithm is able to achieve 

the same best optimal makespan for the Carlier problems but not for the Reeves and Heller 

problems. In terms of the mean value and standard deviation of the optimal solution found, 

the new hybrid algorithm has similar performance to the best results obtained using the 

previous three algorithms for Carlier problems 1, 4, and 8 while it has higher mean value 

and standard deviation for rest of the benchmark problems. When comparing Nc, the hybrid 



 120 

algorithm is able to converge to the best optimal solutions in all 10 simulations for Carlier 

problems 1, 4, and 8 but is unable to achieve similar results for the remaining problems. In 

terms of NO, the new hybrid algorithm is unable to obtain more optimal solutions for any 

of the benchmark problems. These results indicate that the new hybrid algorithm did not 

have a superior performance compared to the best performance obtained using the previous 

three algorithms.  

 The results from the MMO of the benchmark PFSSP show that the proposed MMO 

algorithm has the best performance in terms of the best optimal solution found, the mean 

value and standard deviation of the optimal solution found, number of times the algorithm 

converges to the best optimal solution, and different amount of best optimal solutions 

found. 

6.4 MMO of AJSSP 

Since the proposed MMO algorithm showed promising results when utilized for the 

MMO of JSSP and PFSSP, it is utilized for the MMO of AJSSP. The feature matrix used 

in the proposed algorithm has to be redefined as AJSSP has different features than JSSP 

and PFSSP i.e. not even job will visit all the machines on the shop floor.  Therefore, for 

AJSSP, the feature matrix of a solution is calculated by taking the difference between two 

machines with the same amount of jobs.  

The AJSSP problems proposed by Dileeplal et al. are used to test the algorithms. To 

better assess the algorithms, 10 independent simulations are performed for each test 

problems. The performance of the algorithms used is measured based on four indicators: 

1. The best solution found in the 10 simulations, 2. The mean value and the standard 



 121 

deviation of the optimal solution found for the 10 simulations, 3. The number of times the 

algorithms converged to the best optimal solution and 4. The average number of best 

optimal solutions found for the 10 simulations. For indicator number 4, only simulations 

in which the algorithm converged to the best solution from (1) are taken into consideration 

i.e. if the algorithm only converged to the best solution in 4 out of the 10 simulations, then 

the average number of optimal solutions found was calculated using those 4 simulations. 

The parameters used for the three algorithms were determined after numerous simulations 

and are given in Table 34.  

Table 34. Parameters used for the three algorithms 

 Generations 
Population 

Size 
Algorithm Specific Parameters 

Proposed 

Algorithm 

1000 200 

Number of clusters = 3 

Sharing 

Fitness 
share = 0  = 1 

Clearing 

Method 
share = 50 

Maximum 

niche size = 1 

 

6.4.1.1 The best solution found. 

As mentioned above, 10 independent simulations are ran for each test problem using 

the algorithms. The first method used to compare the performance of these algorithms is 

observing the best solution obtained by each algorithm during those 10 simulations. The 

results obtained by these algorithms are also compared to the results obtained by Dileeplal 

et al. These results are shown in Table 34.   

 



 122 

Table 35. Best optimal solution obtained by the different algorithms 

Problem 

Number 

Best optimal 

solution 

found by the 

Dileeplal et 

al. 

Best optimal 

solution found 

by the 

proposed 

MMO 

algorithm 

Best optimal 

solution found 

using sharing 

fitness 

Best optimal 

solution 

found using 

CM 

1 78 77 78 81 

2 88 88 88 93 

3 100 98 99 101 

4 110 110 110 113 

5 135 135 135 136 

6 125 125 125 128 

7 118 110 118 117 

8 129 129 134 136 

  

According to Table 35, of the algorithms used for the MMO, the proposed MMO 

algorithm is able to find the best solutions for problems 1 (77), 3 (98), 7 (110), and 8 (129). 

The solutions for problems 1, 3, and 7 represent an improvement of 1.28%, 2.00%, and 

6.78% respectively compared to the solutions found by Dileeplal et al.. For problems 2, 4, 

5, and 6 both, the proposed MMO algorithm and sharing fitness are able to find the same 

best optimal solutions of 88, 110, 135, and 125 respectively. For all the test problems, CM 

is unable to obtain the best optimal solution, however, it has slightly better performance 

than sharing fitness for problem 7 (117 vs 118). These results indicate that the proposed 

MMO algorithm has the best performance in terms of finding the best optimal solution.  

6.4.1.2 Mean value and standard deviation of the optimal solution. 

Next, to evaluate the stability of the algorithms, the mean value and the standard 

deviation of the optimal solution found in the 10 simulations is calculated. Since these are 



 123 

10 independent simulations, the starting points are randomized in each simulation. Since 

no information was provided by Dileeplal et al. about the mean value and standard 

deviation of the best optimal solution found, the results were only compared for the 

proposed algorithm, sharing fitness, and CM. These results are shown in Table 36.  

Table 36. Mean value and standard deviation of the optimal solution found after 10 

independent simulations using the different algorithms 

Problem Number 

Mean value and 

standard deviation 

of the optimal 

solution found 

using the proposed 

MMO algorithm 

Mean value and 

standard deviation 

of the optimal 

solution found 

using the sharing 

fitness 

Mean value and 

standard 

deviation of the 

optimal solution 

found using CM 

1 77.80 ± 0.42 81.40 ± 1.51 84.40 ± 1.90 

2 88.40 ± 0.97 90.30 ± 1.70 99.50 ± 2.84 

3 99.50 ± 0.71 101.60 ± 0.97 101.78 ± 0.44 

4 110.00 ± 0.00 111.50 ± 1.96 114.80 ± 1.62 

5 135.00 ± 0.00 135.00 ± 0.00 142.10 ± 3.28 

6 125.00 ± 0.00 125.80 ± 1.40 133.80 ± 4.92 

7 113.90 ± 1.60 118.90 ± 0.74 120.70 ± 1.95 

8 130.70 ± 0.95 136.40 ± 1.17 138.90 ± 2.13 

 

For problems 1, 2, 3, 4, 6, 7, and 8 the proposed MMO algorithm is able to obtain better 

a mean value and standard deviation of the optimal solution compared to sharing fitness 

and CM. For problems 4, 5, and 6 the proposed MMO algorithm has a mean value of 

110.00, 135.00, and 125.00 and standard deviation of 0.00 indicating that the algorithm is 

able to converge to the best optimal solution in all of the simulations. Sharing fitness is 

also able to converge to the best optimal solution in all of the simulations for problem 5 

and has better performance compared to CM. These results show the robustness of the 



 124 

proposed MMO algorithm i.e. its ability to converge to the best optimal solution 

consistently.  

6.4.1.3 Number of times the algorithm converged to the optimal solution. 

To ensure that the algorithms can find multiple solutions consistently, the number of 

simulations in which the algorithms converge to the best optimal solution (NC) is also 

recorded. Here, only simulations in which the algorithms converge to the best optimal 

solution is recorded i.e. if the best optimal solution is 77 while the algorithm only 

converged to this solution 4 out of the 10 solutions, then NC is 4. The results for NC are 

given in Table 4. 

Table 37. Number of simulations in which the algorithms were able to converge to 

the best optimal solution (NC) 

Problem Number 

NC obtained using 

the proposed MMO 

algorithm 

NC obtained using 

sharing fitness 

NC obtained using 

CM 

1 2 0 0 

2 8 0 0 

3 1 0 0 

4 10 6 0 

5 10 10 0 

6 10 3 0 

7 1 0 0 

8 2 0 0 

 

 Since CM is unable to find the best optimal solution (Table 35), its NC for all 

problems is 0. Similarly, sharing fitness is to find the best optimal solution for problems 1, 

2, 3, 7, and 8, therefore, its NC for those problems is 0. Sharing fitness, however, is able to 

converge to the best optimal solution for problems 4, 5, and 6 and its NC for those problems 



 125 

is 6, 10 and 3 respectively. The proposed MMO algorithm has the best performance of the 

three algorithms compared. It had a NC of 10 for problems 4, 5, and 6, 8 for problem 2, 2 

for problems 1, and 8, and 1 for problem 3 and 7. These results further solidify the argument 

that the proposed MMO algorithm is able to converge to the best optimal solution 

consistently. 

6.4.1.4 Average number of best optimal solutions found (NO) 

Lastly, the average number of best optimal solutions found for each test problem using 

the different algorithms is compared. Similar to the section above, only simulations that 

have a NC of greater than 0 are used. For example, since sharing fitness has a NC  of 6 for 

problem 4, NO is calculated using the results of those 6 simulations. NO for the different test 

problems using the different algorithms are given in Table 5.  

Table 38. Average number of best optimal solutions found (NO) using the different 

algorithms 

Problem Number 
NO  obtained using 

the proposed 
MMO algorithm 

NO obtained using 
sharing fitness 

NO obtained 
using CM 

1 6.50 0.00 0.00 

2 5.75 0.00 0.00 

3 2.00 0.00 0.00 

4 16.40 200.00 0.00 

5 33.40 200.00 0.00 

6 14.60 199.71 0.00 

7 2.00 0.00 0.00 

8 8.00 0.00 0.00 

 

 Unlike the previous three indicators, sharing fitness has significantly better 

performance than the proposed algorithm and CM. For the problems where sharing fitness 



 126 

has an NC of greater than 0 (4, 5, and 6), it is able to find almost 200 different best optimal 

solutions. In contrast, the proposed MMO algorithm is only able to find 16.40, 33.40, and 

14.60 different optimal solutions for those problems. However, unlike sharing fitness, since 

the proposed MMO algorithm is able to converge to the best optimal solutions for the 

problems 1, 2, 3, 7, and 8, it has a NO of 6.50, 5.75, 2.00, 2.00, and 8.00 for those problems 

respectively. As CM is unable to converge to the best optimal solution for any of the 

problems, its NO is 0 for all of them. These results indicate that though the proposed MMO 

algorithm is unable to find as many best optimal solutions as sharing fitness, it is able to 

consistently converge to the best optimal solution for all the test problems while finding 

multiple best optimal solutions. 

6.4.1.5 Hybrid algorithm 

 As sharing fitness is able to find much more best optimal solutions than the 

proposed algorithm, it is again combined with the proposed algorithm in order to create a 

hybrid algorithm. Similar to the hybrid algorithm used in Section 6.2 and Section 6.3, the 

hybrid algorithm in this section utilizes the feature matrix used in the proposed algorithm 

for sharing fitness. For the hybrid algorithm, the value of share  is changed to 500. The 

performance of the hybrid algorithm is then compared to the performances of best solutions 

found using the three methods. The results are given in the Tables below. 

 



 127 

Table 39. Comparison of the best optimal solution found using the new hybrid 

algorithm and the previous three algorithms 

Problem Number 

Best optimal 

solution found 

using the hybrid 

algorithm 

Best optimal 

solution found 

using previous 

three algorithms 

1 78 77 

2 88 88 

3 98 98 

4 110 110 

5 135 135 

6 125 125 

7 114 110 

8 131 129 

 

 

Table 40. Comparison of the mean value and standard deviation of the optimal 

solutions found using the new hybrid algorithm and from the previous three 

algorithms 

Problem Number 

Best mean value and 
standard deviation 

of the optimal 
solution found using 
the hybrid algorithm 

Best mean value and 
standard deviation 

of the optimal 
solution found using 

the previous three 
algorithms 

1 78.00 ± 0.02 77.80 ± 0.42 

2 88.70 ± 0.95 88.40 ± 0.97 

3 99.20 ± 0.63 99.50 ± 0.71 

4 110.00 ± 0.00 110.00 ± 0.00 

5 135.00 ± 0.00 135.00 ± 0.00 

6 125.00 ± 0.00 125.00 ± 0.00 

7 117.20 ± 1.32 113.90 ± 1.60 

8 132.70 ± 1.42 130.70 ± 0.95 

 



 128 

Table 41. Comparison of the Nc found using the hybrid algorithm and the previous 

three algorithms 

Problem Number 
NC obtained using 

the hybrid algorithm 

Best NC obtained 

using the previous 

three algorithms 

1 0 2 

2 6 8 

3 1 1 

4 10 10 

5 10 10 

6 10 10 

7 0 1 

8 0 2 

 

Table 42. Comparison of the NO using the hybrid algorithm and the previous three 

algorithms 

Problem Number 
NO  obtained using 

the hybrid algorithm 

Best NO obtained 

using the previous 

three algorithms 

1 3.17 6.50 

2 3.00 5.75 

3 3.00 2.00 

4 3.50 200.00 

5 5.70 200.00 

6 3.10 199.71 

7 0.00 2.00 

8 0.00 8.00 

 

As it can be seen from Table 39, the hybrid algorithm is able to achieve the same 

best optimal makespan for problems 2-6 but is unable to do so for problems 1, 7, and 8. In 

terms of the mean value and standard deviation of the optimal solution found, the hybrid 

algorithm has better performance on problem 3 and is able to obtain the same results as the 



 129 

previous three algorithms for problems 4, 5, and 6. For the remaining problems, the 

previous three algorithms provide has slightly better solutions than the hybrid algorithm. 

When comparing Nc, the new hybrid algorithm is able to converge to the best optimal 

solutions in all 10 simulations for problems 4, 5, and 6 and also has same performance as 

the previous three algorithms for problem 3. For problems 1, 2, 7, and 8, however, the 

previous three algorithms have slightly better performance. In terms of NO, the hybrid 

algorithm is able to obtain more optimal solutions on average for problem 3, but for the 

remaining problems, either the proposed algorithm or sharing fitness algorithm is able to 

provide more optimal solutions. These results indicate that the new hybrid algorithm does 

not have a superior performance compared to sharing fitness or the proposed algorithm. 

 The results from the application of the proposed MMO algorithm to various JSSP, 

PFSSP, and AJSSP demonstrate its capability to converge to best optimal solution 

consistently while finding multiple best optimal solutions. The hybrid algorithm created 

using the proposed MMO algorithm and sharing fitness algorithm is unable to match the 

performance of sharing fitness or the proposed MMO algorithm. It should also be noted 

that the proposed MMO algorithm is able to obtain similar or better results than sharing 

fitness and CM for JSSP, PFSSP, and AJSSP while requiring minor changes to the 

algorithm and its parameters. In contrast, sharing fitness and CM have parameters that are 

highly problem dependent and require significant fine tuning. 

6.5  Conclusion 

In this chapter, an algorithm is proposed for the MMO optimization of HCCOP, 

specifically AJSSP. This is accomplished by utilizing k-means clustering algorithm to 



 130 

cluster the solutions of every generation, based on their features, and then using the 

algorithm proposed in CHAPTER 3 for optimization. Due to a lack of benchmark AJSSP, 

the performance of the proposed MMO algorithm is verified by its application for the 

MMO of JSSP and PFSSP. For the MMO of JSSP and PFSSP, GA is used for optimization 

instead of the algorithm proposed in CHAPTER 3. In Section 6.1, the proposed MMO 

optimization algorithm is introduced and its steps are outlined. 

 In Section 6.2, the proposed MMO algorithm is utilized for the MMO of benchmark 

JSSP.  First, it is demonstrated how GA is used to model a solution for JSSP followed by 

the feature matrix used to cluster solutions. Next, the crossover and mutation operators 

used to generate feasible solutions are developed. The performance of the proposed MMO 

algorithm is compared to the performance of the algorithms proposed by Luh and Chueh 

and Perez et al.  The results of the case studies show that the proposed MMO is able to find 

better and more optimal solutions than the algorithm proposed by Luh and Chueh and 

better, but fewer, optimal solutions than the algorithm used by Perez et al. The proposed 

MMO algorithm is also able to find new global optima for some of the benchmark problems 

that have not been reported in previous literature. 

In Section 6.3, the proposed MMO algorithm is utilized for the MMO of benchmark 

PFSSP.  First, it is demonstrated how GA is used to model a solution for PFSSP followed 

by the feature matrix used to cluster solutions. Next, the crossover and mutation operators 

used to generate feasible solutions are developed. Sharing fitness and CM algorithm are 

also modified and used for the MMO of PFSSP and the performance of the three algorithms 

is compared. The results show that the proposed MMO algorithm is able to obtain better 

and more best optimal solutions than sharing fitness and CM. A hybrid algorithm is next 



 131 

developed by combining the proposed MMO algorithm and sharing fitness. However, the 

hybrid algorithm is unable to obtain better results than sharing fitness or the proposed 

MMO algorithm.  

  In Section 6.4, the proposed MMO algorithm is utilized for the MMO of 

benchmark AJSSP.  The feature matrix is again redefined as the constraints for AJSSP are 

different than those of JSSP and PFSSP. The proposed MMO algorithm along with sharing 

fitness and CM are used for the MMO of the AJSSP problems proposed by Dileeplal et al. 

Similar to the results obtained in Section 6.3, the proposed MMO has better performance 

than CM and sharing fitness. The hybrid algorithm was also unable to get better results 

than those obtained using the three algorithms. The results obtained in this Chapter show 

that the proposed MMO algorithm can be used for the MMO of various problems without 

having to significantly change its parameters unlike CM and sharing fitness. 

  



 132 

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 

7.1 Summary 

This dissertation presents a method to identify and optimize HCCOPs as well as an 

algorithm for the MMO of various scheduling and HCCOPs. The algorithm utilized to 

optimize HCCOPs is based on evolutionary computation while the MMO algorithm is 

created by combining the proposed optimization algorithm and a clustering technique. In 

CHAPTER 3, the abstract definition and common principles to identify HCCOPs are first 

developed. Next, to optimize the HCCOPs, a new versatile algorithm, based on 

evolutionary computation, is proposed. The algorithm is developed in a way such that only 

the feasible solution space is searched during the iterations of the algorithm in order to 

reduce its complexity. This is accomplished by utilizing the proposed initial solution 

generator, level-barrier based crossover, and level-barrier based mutation operator. The 

proposed operators ensure that the multi-level HCCs are always satisfied, thereby creating 

only feasible solutions.  

In CHAPTER 4, the proposed algorithm is utilized for the optimization of AJSSP. 

The optimization of AJSSP is first established as a HCCOP based on the definitions 

developed in CHAPTER 3. Next, it is demonstrated how the solution can be modeled using 

proposed operators of the algorithm. The performance of the proposed algorithm is verified 

by using it to optimize various AJSSP and comparing its performance to the performance 

of other algorithms used for the optimization of AJSSP. The proposed algorithm is able to 

obtain better or equivalent results than other algorithms for 75% of the problem. 

Convergence plots generated by varying the parameters of the algorithm are used to 



 133 

demonstrate the robustness of the proposed algorithm. A complexity analysis of the 

proposed algorithm is also performed.  

  In CHAPTER 4, the proposed algorithm is utilized for the simultaneous 

optimization of NN structure and weights. First, it is demonstrated how the above problem 

can be classified as HCCOP using the definitions established in CHAPTER 3 followed by 

the procedure used to create feasible initial solutions as well as feasible solutions during 

rest of the iterations using the proposed algorithm. The performance of the proposed 

algorithm is verified by using it create a NN prediction model for four different case studies 

and comparing the prediction accuracy of the model created using the proposed algorithm 

to those created by other algorithms. The results show that prediction model created using 

the proposed algorithm had better prediction accuracy than prediction models created using 

classical NN, ANFIS, regression analysis, and gaussian-process regression. 

In CHAPTER 6, an algorithm is proposed for the MMO optimization of HCCOPs. 

This is accomplished by combining k-means clustering algorithm with the algorithm 

proposed for the optimization of HCCOPs. Due to a lack of benchmark problems for 

AJSSP, the performance of the proposed MMO algorithm is validated by using it for the 

MMO of JSSP and PFSSP. For the MMO of JSSP and PFSSP, the proposed algorithm for 

the optimization of HCCOPs is replaced with GA. The performance of the proposed MMO 

algorithm is compared to other algorithms used for MMO and the results show that the 

proposed MMO algorithm is able to obtain better but fewer optimal solutions for JSSP and 

better and more optimal solutions for PFSSP. When utilized for the MMO of AJSSP, the   

proposed algorithm has much better performance than other algorithms. The MMO results 



 134 

show that the proposed algorithm can be applied to different problems without significantly 

changing the parameters of the algorithm. 

7.2 Conclusions 

The research presented in this dissertation was driven by the need for a methodology 

to identify HCCOPs and a versatile algorithm for their optimization. The research has 

shown that there are some common principles amongst different HCCOPs that can be used 

to classify them as such. The proposed algorithm was based on evolutionary computation 

and was developed in a way such that only the feasible solution space was searched which 

reduces its computation complexity. When utilized for the optimization of various AJSSP, 

the proposed algorithm had better results than SGA and generally better solutions than the 

algorithm proposed by Dileeplal et al. The NN prediction model built using the proposed 

algorithm also had better prediction accuracy than other methods used in published 

literature. The successful application of the proposed algorithm to different HCCOPs 

without requiring immense changes demonstrate its versatility. 

MMO optimization of the HCCOPs is also an important topic as a single solution 

may satisfy the initial objective function, it might not be applicable in real-life. The MMO 

algorithm was developed by combining a clustering algorithm with the proposed algorithm 

for the MMO of HCCOPs and GA for the optimization of JSSP and PFSSP. The results 

from the MMO of JSSP show that the MMO algorithm was able to obtain better results 

while requiring fewer iterations than other algorithms used.  Similar results were obtained 

when the proposed MMO algorithm was utilized for the MMO of PFSSP and AJSSP. The 



 135 

proposed MMO algorithm was able to obtain these results without requiring significant 

changes being made to its parameters which demonstrates its ease of use. 

7.3 Contributions 

The intellectual contributions of the research presented are as follows: 

• Proposed a methodology to identify and model HCCOPs. 

• Developed an algorithm to optimize various HCCOPs without requiring 

significant changes.  

• Validated the performance of the methodology and the proposed algorithm 

by using it to optimize various AJSSP and for the simultaneous optimization 

of NN structure and weights and comparing the results obtained with 

published results. 

• Developed an algorithm for the MMO of JSSP, PFSSP, and HCCOPs (AJSSP 

specifically). The proposed MMO is capable of performing MMO for the 

specified problems without requiring significant changes. 

• Validated the performance of the proposed MMO algorithm with other 

researchers’ published results. 

The work presented in this dissertation has also been successfully applied for several 

industrial applications. It has been used to create a NN prediction model for advanced 

manufacturing processes such as electrochemical micro-machining (EMM) and freeform 

electrochemical machining (ECM). The proposed MMO algorithm has been utilized to 

obtain multiple optimal process parameter combinations for the process of EMM and ECM. 

The methodology developed in CHAPTER 3 has been utilized to classify scheduling 



 136 

problem encountered in a manufacturing industry as well as the production of stator core 

as HCCOPs. The algorithm has also been utilized successfully for optimization the process 

parameters in the production of stator core. 

7.4 Limitations 

This research explores the identification and optimization of HCCOPs yet it suffers 

several limitations. 

1. Optimization of AJSSP: As demonstrated in CHAPTER 4, new solutions are 

generated using the level-barrier based crossover and level-barrier based mutation 

operators. However, if the problem under consideration only has one level of dependent 

variables, then the level-barrier based crossover operator cannot be utilized. A problem 

with only one level of dependent variables will only have a single 1st level gene. As the 

level-barrier based crossover operator changes the position of entire genes in two 

different solutions, switching the position of the 0th or 1st level gene in a problem with 

one level of dependent variables would result in the duplication of the parents. 

Similarly, unless each level has multiple genes of the exact same length, the level-

barrier based mutation operator cannot be utilized. This severely impacts the 

performance of the algorithm as mutation is a crucial for searching the unexplored 

solution space. Also, if the problem only has a single level of dependent variables, then 

the level-barrier based mutation operator degrades into classical mutation operator.  

2. Simultaneous Optimization of NN structure and weights: As mentioned in 

CHAPTER 5, in order to simultaneously optimize NN structure and weight values 

using the proposed algorithm, a fully connected NN structure has to be assumed. If the 



 137 

NN is not fully connected, then the connection information needs to be encoded as well. 

However, this can lead to extremely large chromosomes, thereby severally reducing 

the computation speed of the algorithm. Furthermore, if the connection information is 

encoded in the solution, infeasible solutions would also be created using the proposed 

operators. Infeasible solutions would be created as a result of the level-barrier based 

crossover and level-barrier based mutation operator i.e. if there is a change in the 

number of connection between different layers then the corresponding size of the 

weight and bias matrix would be too large or too small.   

3. MMO of HCCOP: In order to cluster solutions using k-means clustering algorithm, 

some features of the solutions had to be defined and these features were extracted from 

the encoded solution. However, if the features are unable to be encoded into the 

solution, then the proposed algorithm cannot be utilized for MMO. Furthermore, all the 

limitations that apply to the optimization of AJSSP also apply to the MMO of AJSSP. 

7.5 Future Work 

The proposed methodology provides a solid foundation for identifying HCCOPs. 

Though it was used to successfully identify two different problems as HCCOPs, the 

developed definition and common principles need to be further refined by utilizing them 

to identify additional manufacturing as well as theoretical problems as HCCOPs.   

The proposed algorithm is only used to optimize the makespan of AJSSP. However, 

in scheduling problems, many other KPIs such as tardiness, maximum lateness etc. are also 

important. Also, the minimization of one KPI can lead to a worse value of another KPI (for 

example, minimization of makespan can lead to a worse tardiness value) [58]. Therefore, 



 138 

the performance of the proposed algorithm with other KPIs as the objective needs to be 

studied. Multi-objective optimization of AJSSP is another area in which the proposed 

algorithm should be used. Furthermore, real-life AJSSP are more complex due to the 

presence of constraints. Since the algorithm was utilized successfully for test problems, it 

should be utilized to optimize real-life AJSSP and improvements should be made based on 

the results obtained.  

When utilized for the simultaneous optimization of NN weight and structure, the 

training of the weights had to be supplemented with the use of LM algorithm due to issues 

with local convergence. Further investigation needs to be performed in order to improve 

the local convergence capabilities of the proposed algorithm. Also, limitations were put on 

the maximum number of hidden layers and maximum number of neurons per hidden layer 

in order to reduce the computation time. This aspect of the algorithm also needs to be 

further investigated. 

Similar to the optimization of AJSSP, the proposed MMO algorithm was only 

utilized to minimize the makespan of JSSP, PFSSP, and AJSSP. Further analysis needs to 

be performed by utilizing the proposed MMO with other KPIs as the objective. The MMO 

algorithm should also be used to optimize real-life manufacturing problems which are more 

complex and consist of real-life constraints. Lastly, only a few MMO techniques were 

tested in dissertation. Further analysis should be done by modifying other existing MMO 

techniques and comparing the results obtained with those presented in this dissertation.   

With the above enhancements to the current methodology and the algorithms, the 

techniques presented can progress towards becoming more reliable, and robust method for 



 139 

identifying HCCOPs and optimizing them. The results will be realized as a useful tool in 

solving various optimization problems faced in the manufacturing industry as well as 

theoretical application. 

 

  



 140 

REFERENCES 

[1]  Hartigan, J.A. and Wong, M.A., 1979. Algorithm AS 136: A k-means clustering 

algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 

28(1), pp.100-108. 

[2]  Coello, C.A.C., 2002. Theoretical and numerical constraint-handling techniques 

used with evolutionary algorithms: a survey of the state of the art. Computer 

methods in applied mechanics and engineering, 191(11), pp.1245-1287. 

[3]  De Melo, V.V. and Iacca, G., 2014. A modified covariance matrix adaptation 

evolution strategy with adaptive penalty function and restart for constrained 

optimization. Expert Systems with Applications, 41(16), pp.7077-7094. 

[4]  Gandomi, A.H., Yang, X.S., Alavi, A.H. and Talatahari, S., 2013. Bat algorithm 

for constrained optimization tasks. Neural Computing and Applications, 22(6), 

pp.1239-1255. 

[5]  Pearson, J.W., Stoll, M. and Wathen, A.J., 2014. Preconditioners for state‐

constrained optimal control problems with Moreau–Yosida penalty function. 

Numerical Linear Algebra with Applications, 21(1), pp.81-97. 

[6]  Watanabe, K. and Hashem, M.M.A., 2004. Evolutionary Optimization of 

Constrained Problems. In Evolutionary Computations (pp. 53-64). Springer Berlin 

Heidelberg. 

[7]  Ali, M.M., Golalikhani, M. and Zhuang, J., 2014. A computational study on 

different penalty approaches for solving constrained global optimization problems 

with the electromagnetism-like method. Optimization, 63(3), pp.403-419. 

[8]  Snyman, J.A., Stander, N. and Roux, W.J., 1994. A dynamic penalty function 

method for the solution of structural optimization problems. Applied Mathematical 

Modelling, 18(8), pp.453-460. 

[9]  Koziel, S. and Michalewicz, Z., 1999. Evolutionary algorithms, homomorphous 

mappings, and constrained parameter optimization.Evolutionary 

computation, 7(1), pp.19-44. 

 



 141 

 

[10]  Monson, C.K. and Seppi, K.D., 2005, September. Linear equality constraints and 

homomorphous mappings in PSO. In 2005 IEEE Congress on Evolutionary 

Computation (Vol. 1, pp. 73-80).  

[11]  Michalewicz, Z. and Janikow, C.Z., 1996. GENOCOP: a genetic algorithm for 

numerical optimization problems with linear constraints. Communications of the 

ACM, 39(12es), p.175. 

[12]  Chootinan, P. and Chen, A., 2006. Constraint handling in genetic algorithms using 

a gradient-based repair method. Computers & operations research,33(8), pp.2263-

2281. 

[13]  Pal, K., Saha, C., Das, S. and Coello, C.A.C., 2013, June. Dynamic constrained 

optimization with offspring repair based gravitational search algorithm. In 2013 

IEEE Congress on Evolutionary Computation (pp. 2414-2421).  

[14]  Michalewicz, Z. and Nazhiyath, G., 1995, December. Genocop III: A co-

evolutionary algorithm for numerical optimization problems with nonlinear 

constraints. In Evolutionary Computation, 1995., IEEE International Conference 

on (Vol. 2, pp. 647-651).  

[15]  Ameca-Alducin, M.Y., Mezura-Montes, E. and Cruz-Ramírez, N., 2015, July. A 

Repair Method for Differential Evolution with Combined Variants to Solve 

Dynamic Constrained Optimization Problems. In Proceedings of the 2015 Annual 

Conference on Genetic and Evolutionary Computation (pp. 241-248).  

[16]  Fan, Z., Li, W., Cai, X., Lin, H., Xie, S. and Goodman, E., 2015. A new repair 

operator for multi-objective evolutionary algorithm in constrained optimization 

problems. arXiv preprint arXiv:1504.00154. 

[17]  Paredis, J., 1995. Coevolutionary computation. Artificial life, 2(4), pp.355-375. 

[18]  Schoenauer, M. and Xanthakis, S., 1993, July. Constrained GA optimization. In 

ICGA (pp. 573-580). 

[19]  Deb, K., 2000. An efficient constraint handling method for genetic 

algorithms. Computer methods in applied mechanics and engineering,186(2), 

pp.311-338. 



 142 

 

[20]  Ma, H. and Simon, D., 2011. Blended biogeography-based optimization for 

constrained optimization. Engineering Applications of Artificial Intelligence,24(3), 

pp.517-525. 

[21]  Chen, H., Zhou, Y., Guo, P., Ouyang, X., He, S. and Zheng, H., 2013. A hybrid 

invasive weed optimization with feasibility-based rule for constrained optimization 

problem. Przegląd Elektrotechniczny, 89(4), pp.160-167. 

[22]  Zhou, Y., Zhou, G. and Zhang, J., 2013. A hybrid glowworm swarm optimization 

algorithm for constrained engineering design problems. Appl. Math. Inf. Sci, 7(1), 

pp.379-388.  

[23]  Mohamed, A.W. and Sabry, H.Z., 2012. Constrained optimization based on 

modified differential evolution algorithm. Information Sciences, 194, pp.171-208. 

[24]  Pérez, E., Posada, M. and Herrera, F., 2012. Analysis of new niching genetic 

algorithms for finding multiple solutions in the job shop scheduling. Journal of 

Intelligent manufacturing, 23(3), pp.341-356. 

[25]  Goldberg, D.E. and Richardson, J., 1987, July. Genetic algorithms with sharing for 

multimodal function optimization. In Genetic algorithms and their applications: 

Proceedings of the Second International Conference on Genetic Algorithms (pp. 

41-49). Hillsdale, NJ: Lawrence Erlbaum. 

[26]  De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive 

systems (Doctoral dissertation, University of Michigan). Dissertation Abstracts 

International, 36(10), 5140B. (University Microlms No. 76-9381). 

[27]  Li, X., Epitropakis, M.G., Deb, K. and Engelbrecht, A., 2017. Seeking multiple 

solutions: an updated survey on niching methods and their applications. IEEE 

Transactions on Evolutionary Computation, 21(4), pp.518-538. 

[28] Harik, G.R., 1995, July. Finding Multimodal Solutions Using Restricted 

Tournament Selection. In ICGA (pp. 24-31). 

[29]  Pétrowski, A., 1996, May. A clearing procedure as a niching method for genetic 

algorithms. In Evolutionary Computation, 1996., Proceedings of IEEE 

International Conference on (pp. 798-803). IEEE. 



 143 

 

[30]  Ursem, R.K., 1999. Multinational evolutionary algorithms. In Evolutionary 

Computation, 1999. CEC 99. Proceedings of the 1999 Congress on (Vol. 3, pp. 

1633-1640). IEEE. 

[31]  Li, J.P., Balazs, M.E., Parks, G.T. and Clarkson, P.J., 2002. A species conserving 

genetic algorithm for multimodal function optimization. Evolutionary 

computation, 10(3), pp.207-234. 

[32]  Brits, R., Engelbrecht, A.P. and van den Bergh, F., 2007. Locating multiple optima 

using particle swarm optimization. Applied Mathematics and Computation, 189(2), 

pp.1859-1883. 

[33]  Bird, S. and Li, X., 2006, July. Adaptively choosing niching parameters in a PSO. 

In Proceedings of the 8th annual conference on Genetic and evolutionary 

computation (pp. 3-10). ACM. 

[34]  Parrott, D. and Li, X., 2006. Locating and tracking multiple dynamic optima by a 

particle swarm model using speciation. IEEE Transactions on Evolutionary 

Computation, 10(4), pp.440-458. 

[35]  Zhan, Z.H., Zhang, J., Li, Y. and Chung, H.S.H., 2009. Adaptive particle swarm 

optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B 

(Cybernetics), 39(6), pp.1362-1381. 

[36]   Fleetwood, K., 2004, November. An introduction to differential evolution. In 

Proceedings of Mathematics and Statistics of Complex Systems (MASCOS) One 

Day Symposium, 26th November, Brisbane, Australia. 

[37]  Biswas, S., Kundu, S. and Das, S., 2015. Inducing niching behavior in differential 

evolution through local information sharing. IEEE Transactions on Evolutionary 

Computation, 19(2), pp.246-263. 

[38]  Biswas, S., Kundu, S. and Das, S., 2014. An improved parent-centric mutation 

with normalized neighborhoods for inducing niching behavior in differential 

evolution. IEEE transactions on cybernetics, 44(10), pp.1726-1737. 

 



 144 

 

[39]  Hui, S. and Suganthan, P.N., 2016. Ensemble and arithmetic recombination-based 

speciation differential evolution for multimodal optimization. IEEE transactions on 

cybernetics, 46(1), pp.64-74. 

[40] Hui, S. and Suganthan, P.N., 2016. Ensemble and arithmetic recombination-based 

speciation differential evolution for multimodal optimization. IEEE transactions on 

cybernetics, 46(1), pp.64-74. 

[41]  Della Cioppa, A., De Stefano, C. and Marcelli, A., 2007. Where are the niches? 

Dynamic fitness sharing. IEEE Transactions on Evolutionary Computation, 11(4), 

pp.453-465. 

[42]  Li, J.P., Balazs, M.E., Parks, G.T. and Clarkson, P.J., 2002. A species conserving 

genetic algorithm for multimodal function optimization. Evolutionary 

computation, 10(3), pp.207-234. 

[43]   Pereira, M.T. and Santoro, M.C., 2011. An integrative heuristic method for 

detailed operations scheduling in assembly job shop systems. International Journal 

of Production Research, 49(20), pp.6089-6105. 

[44]  Fattahi, P., Hosseini, S.M.H., Jolai, F. and Tavakkoli-Moghaddam, R., 2014. A 

branch and bound algorithm for hybrid flow shop scheduling problem with setup 

time and assembly operations. Applied Mathematical Modelling, 38(1), pp.119-

134. 

[45]  Komaki, G.M. and Kayvanfar, V., 2015. Grey Wolf Optimizer algorithm for the 

two-stage assembly flow shop scheduling problem with release time. Journal of 

Computational Science, 8, pp.109-120. 

[46]  Yan, H.S., Wan, X.Q. and Xiong, F.L., 2014. A hybrid electromagnetism-like 

algorithm for two-stage assembly flow shop scheduling problem. International 

Journal of Production Research, 52(19), pp.5626-5639.    

[47]   Komaki, G.M., Teymourian, E. and Kayvanfar, V., 2016. Minimising makespan in 

the two-stage assembly hybrid flow shop scheduling problem using artificial 

immune systems. International Journal of Production Research, 54(4), pp.963-983 

[48]   Wong, T.C. and Ngan, S.C., 2013. A comparison of hybrid genetic algorithm and 

hybrid particle swarm optimization to minimize makespan for assembly job shop. 

Applied Soft Computing, 13(3), pp.1391-1399 



 145 

 

[49]   Natarajan, K., Mohanasundaram, K.M., Babu, B.S., Suresh, S., Raj, K.A.A.D. and 

Rajendran, C., 2007. Performance evaluation of priority dispatching rules in multi-

level assembly job shops with jobs having weights for flowtime and tardiness. The 

International Journal of Advanced Manufacturing Technology, 31(7), pp.751-761. 

[50]  Paul, M., Sridharan, R. and Ramanan, T.R., 2015. An Investigation of Order 

Review/Release Policies and Dispatching Rules for Assembly Job Shops with 

Multi Objective Criteria. Procedia-Social and Behavioral Sciences, 189, pp.376-

384. 

[51]  Chan, F.T.S., Wong, T.C. and Chan, L.Y., 2008. Lot streaming for product 

assembly in job shop environment. Robotics and Computer-Integrated 

Manufacturing, 24(3), pp.321-331 

[52]   Guo, Z.X., Wong, W.K., Leung, S.Y.S., Fan, J.T. and Chan, S.F., 2006. 

Mathematical model and genetic optimization for the job shop scheduling problem 

in a mixed-and multi-product assembly environment: a case study based on the 

apparel industry. Computers & Industrial Engineering, 50(3), pp.202-219. 

[53]  Thiagarajan, S. and Rajendran, C., 2003. Scheduling in dynamic assembly job-

shops with jobs having different holding and tardiness costs. International Journal 

of Production Research, 41(18), pp.4453-4486. 

[54]  Fuji, W., Jianwei, M., Di, S., Wei, L. and Xiaohong, L., 2012, July. Research on 

repair operators in the whole space search genetic algorithm of assembly job shop 

scheduling problem. In 2012 7th IEEE Conference on Industrial Electronics and 

Applications (ICIEA), pp. 1922-1927 

[55]  Liao, C.J., Lee, C.H. and Lee, H.C., 2015. An efficient heuristic for a two-stage 

assembly scheduling problem with batch setup times to minimize makespan. 

Computers & Industrial Engineering, 88, pp.317-325 

[56]  Seidgar, H., Kiani, M., Abedi, M. and Fazlollahtabar, H., 2014. An efficient 

imperialist competitive algorithm for scheduling in the two-stage assembly flow 

shop problem. International Journal of Production Research, 52(4), pp.1240-1256 

[57]  Seidgar, H., Zandieh, M., Fazlollahtabar, H. and Mahdavi, I., 2016. Simulated 

imperialist competitive algorithm in two-stage assembly flow shop with machine 

breakdowns and preventive maintenance. Proceedings of the Institution of 

Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(5), 

pp.934-953. 



 146 

 

[58]  Dileeplal, J. and Narayanan, K.P., 2012. Multi-objective assembly job shop 

scheduling using genetic algorithm and tabu search (Doctoral dissertation, Cochin 

University of Science and Technology). 

[59]  Narendra, K.S. and Parthasarathy, K., 1990. Identification and control of 

dynamical systems using neural networks. IEEE Transactions on neural networks, 

1(1), pp.4-27. 

[60]  Sedki, A., Ouazar, D. and El Mazoudi, E., 2009. Evolving neural network using 

real coded genetic algorithm for daily rainfall–runoff forecasting. Expert Systems 

with Applications, 36(3), pp.4523-4527. 

[61]  Karegowda, A.G., Manjunath, A.S. and Jayaram, M.A., 2011. Application of 

genetic algorithm optimized neural network connection weights for medical 

diagnosis of pima Indians diabetes. International Journal on Soft Computing,2(2), 

pp.15-23. 

[62]  Ding, S., Su, C. and Yu, J., 2011. An optimizing BP neural network algorithm 

based on genetic algorithm. Artificial Intelligence Review, 36(2), pp.153-162. 

[63]  Kim, S. and Kim, H.S., 2008. Neural networks and genetic algorithm approach for 

nonlinear evaporation and evapotranspiration modeling. Journal of Hydrology, 

351(3), pp.299-317. 

[64]   Fu, Z., Mo, J., Chen, L. and Chen, W., 2010. Using genetic algorithm-back 

propagation neural network prediction and finite-element model simulation to 

optimize the process of multiple-step incremental air-bending forming of sheet 

metal. Materials & design, 31(1), pp.267-277. 

[65]  Karaboga, D. and Ozturk, C., 2009. Neural networks training by artificial bee 

colony algorithm on pattern classification. Neural Network World, 19(3), p.279. 

[66]  Ozturk, C. and Karaboga, D., 2011, June. Hybrid artificial bee colony algorithm 

for neural network training. In 2011 IEEE Congress of Evolutionary Computation 

(CEC) (pp. 84-88). IEEE. 

[67]  Irani, R. and Nasimi, R., 2011. Application of artificial bee colony-based neural 

network in bottom hole pressure prediction in underbalanced drilling.Journal of 

Petroleum Science and Engineering, 78(1), pp.6-12. 



 147 

 

[68]  Zhang, Y., Wu, L. and Wang, S., 2011. Magnetic resonance brain image 

classification by an improved artificial bee colony algorithm. Progress In 

Electromagnetics Research, 116, pp.65-79. 

[69]  Mirjalili, SeyedAli, Siti Zaiton Mohd Hashim, and Hossein Moradian Sardroudi. 

"Training feedforward neural networks using hybrid particle swarm optimization 

and gravitational search algorithm." Applied Mathematics and Computation 

218.22 (2012): 11125-11137. 

[70]  Amjady, N., Keynia, F. and Zareipour, H., 2011. Wind power prediction by a new 

forecast engine composed of modified hybrid neural network and enhanced 

particle swarm optimization. IEEE transactions on sustainable energy, 2(3), 

pp.265-276. 

[71]  Bashir, Z.A. and El-Hawary, M.E., 2009. Applying wavelets to short-term load 

forecasting using PSO-based neural networks. IEEE transactions on power 

systems, 24(1), pp.20-27 

[72]  Das, G., Pattnaik, P.K. and Padhy, S.K., 2014. Artificial Neural Network trained 

by Particle Swarm Optimization for non-linear channel equalization.Expert 

Systems with Applications, 41(7), pp.3491-3496. 

[73]  Loghmanian, S.M.R., Jamaluddin, H., Ahmad, R., Yusof, R. and Khalid, M., 2012. 

Structure optimization of neural network for dynamic system modeling using 

multi-objective genetic algorithm. Neural Computing and Applications, 21(6), 

pp.1281-1295. 

[74]  Zhang, C., Shao, H. and Li, Y., 2000. Particle swarm optimisation for evolving 

artificial neural network. In Systems, Man, and Cybernetics, 2000 IEEE 

International Conference on (Vol. 4, pp. 2487-2490). IEEE 

[75]  Mendivil, S.G., Castillo, O. and Melin, P., 2008. Optimization of artificial neural 

network architectures for time series prediction using parallel genetic algorithms. 

In Soft Computing for Hybrid Intelligent Systems (pp. 387-399). Springer Berlin 

Heidelberg 

[76]  Kopel, A., 2012. NEURAL NETWORKS PERFORMANCE AND STRUCTURE 

OPTIMIZATION USING GENETIC ALGORITHMS (Doctoral dissertation, 

California Polytechnic State University, San Luis Obispo) 



 148 

 

[77]  Levenberg, K., 1944. A method for the solution of certain non-linear problems in 

least squares. Quarterly of applied mathematics, 2(2), pp.164-168. 

[78]  Azimi, H., Bonakdari, H., Ebtehaj, I. and Michelson, D.G., A combined adaptive 

neuro-fuzzy inference system–firefly algorithm model for predicting the roller 

length of a hydraulic jump on a rough channel bed. Neural Computing and 

Applications, pp.1-10. 

[79]  Jang, J.S., 1993. ANFIS: adaptive-network-based fuzzy inference system.IEEE 

transactions on systems, man, and cybernetics, 23(3), pp.665-685 

[80]  Yang, X.S., 2010. Firefly algorithm, stochastic test functions and design 

optimisation. International Journal of Bio-Inspired Computation, 2(2), pp.78-84. 

[81]  Carollo, F.G., Ferro, V. and Pampalone, V., 2012. New Expression of the 

Hydraulic Jump Roller Length. Journal of Hydraulic Engineering, 138(11), 

pp.995-999. 

[82]  Carollo, F.G., Ferro, V. and Pampalone, V., 2007. Hydraulic jumps on rough beds. 

Journal of Hydraulic Engineering, 133(9), pp.989-999. 

[83]  Dewan, M.W., Huggett, D.J., Liao, T.W., Wahab, M.A. and Okeil, A.M., 2016. 

Prediction of tensile strength of friction stir weld joints with adaptive neuro-fuzzy 

inference system (ANFIS) and neural network. Materials & Design, 92, pp.288-

299. 

[84]  Wang, X. and Feng, C.X., 2002. Development of empirical models for surface 

roughness prediction in finish turning. The International Journal of Advanced 

Manufacturing Technology, 20(5), pp.348-356. 

[85]  Lin, W.S., Lee, B.Y. and Wu, C.L., 2001. Modeling the surface roughness and 

cutting force for turning. Journal of Materials Processing Technology,108(3), 

pp.286-293. 

[86]  Kirby, E.D., Zhang, Z. and Chen, J.C., 2004. Development of an accelerometer-

based surface roughness prediction system in turning operations using multiple 

regression techniques. Journal of Industrial Technology, 20(4), pp.1-8. 



 149 

 

[87]  Zhang, G., Li, J., Chen, Y., Huang, Y., Shao, X. and Li, M., 2014. Prediction of 

surface roughness in end face milling based on Gaussian process regression and 

cause analysis considering tool vibration. The International Journal of Advanced 

Manufacturing Technology, 75(9-12), pp.1357-1370. 

[88]  Wang, Y., 2012. A new hybrid genetic algorithm for job shop scheduling problem. 

Computers & Operations Research, 39(10), pp.2291-2299. 

[89]  Jorapur, V.S., Puranik, V.S., Deshpande, A.S. and Sharma, M., 2016. A promising 

initial population based genetic algorithm for job shop scheduling problem. Journal 

of Software Engineering and Applications, 9(05), p.208. 

[90]  Chang, H.C., Chen, Y.P., Liu, T.K. and Chou, J.H., 2015. Solving the flexible job 

shop scheduling problem with makespan optimization by using a hybrid Taguchi-

genetic algorithm. IEEE Access, 3, pp.1740-1754. 

[91]  Bagheri, A., Zandieh, M., Mahdavi, I. and Yazdani, M., 2010. An artificial 

immune algorithm for the flexible job-shop scheduling problem. Future Generation 

Computer Systems, 26(4), pp.533-541. 

[92]  Improved immune algorithm for global numerical optimization and job-shop 

scheduling problems. 

[93]  Luh, G.C. and Chueh, C.H., 2009. A multi-modal immune algorithm for the job-

shop scheduling problem. Information Sciences, 179(10), pp.1516-1532. 

[94]  Bruns, R., 1993, June. Direct chromosome representation and advanced genetic 

operators for production scheduling. In Proceedings of the 5th International 

Conference on Genetic Algorithms (pp. 352-359). Morgan Kaufmann Publishers 

Inc. 

[95]  Nakano, R. and Yamada, T., 1991, July. Conventional genetic algorithm for job 

shop problems. In ICGA (Vol. 91, pp. 474-479) 

[96]  Fang, H.L., Ross, P. and Corne, D., 1993. A promising genetic algorithm approach 

to job-shop scheduling, rescheduling, and open-shop scheduling problems (pp. 

375-382). University of Edinburgh, Department of Artificial Intelligence. 



 150 

 

[97]  Mattfeld, D.C., 2013. Evolutionary search and the job shop: investigations on 

genetic algorithms for production scheduling. Springer Science & Business Media 

[98]  Liu, Y.F. and Liu, S.Y., 2013. A hybrid discrete artificial bee colony algorithm for 

permutation flowshop scheduling problem. Applied Soft Computing, 13(3), 

pp.1459-1463. 

[99]  Govindan, K., Balasundaram, R., Baskar, N. and Asokan, P., 2017. A hybrid 

approach for minimizing makespan in permutation flowshop scheduling. Journal 

of Systems Science and Systems Engineering, 26(1), pp.50-76. 

[100]  Ancău, M., 2012. On solving flowshop scheduling problems. Proceedings of the 

Romanian Academy. Series A, 13(1), pp.71-79 

[101]  Zobolas, G.I., Tarantilis, C.D. and Ioannou, G., 2009. Minimizing makespan in 

permutation flow shop scheduling problems using a hybrid metaheuristic 

algorithm. Computers & Operations Research, 36(4), pp.1249-1267 


