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SUMMARY 

Carbon Fiber Reinforced Plastics (CFRP) have become indispensable structural 

materials in the aerospace industry. They offer much higher specific stiffness and strength 

compared to the aluminum alloys that they have come to replace. The ability to tailor the 

stiffness and strength of composite laminates is a unique advantage over metals allowing 

for optimization at the material level. 

The ability to tailor the stiffness and strength for applications has been limited by 

the standardization of laminate design by the aerospace industry. Laminate design has been 

standardized into a set of rules, which limit the options available to a designer. Current 

laminate design allows for alignment of fiber reinforcement along only four standard 

directions. Other restrictions such as symmetry about the mid plane and balance are also 

strictly enforced. This thesis studies the effects of using non-standard (NS) angles for the 

ply orientation when designing a laminate. 

To develop NS designs that can be easily compared with standard designs, this 

study proposes a stiffness matching method. This method allows one to design non-

standard laminates that match the in-plane stiffness of standard composite layups. This 

method has been validated against a stiffness matching method proposed prior to this work.  

NS designs that match the stiffness of a typical wing skin layup were developed 

based on the stiffness matching method proposed in this thesis. The theoretical strengths 

of these NS designs were calculated based on First Ply Failure (FPF) theory. Based on the 

significantly improved theoretical strengths of the NS designs when compared to the 
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standard wing skin design, physical samples of the standard and NS designs were 

fabricated and tested. 

As notched compressive strength is often the limiting factor in composite 

structures, Open Hole Compression (OHC) testing has been carried out on non-standard 

and standard designs. The failure modes and failure strengths for the designs were 

analyzed. The NS designs were observed to be weaker due to fiber discontinuity. 

Modifications to the testing method have been proposed for accurate characterization of 

the strength of NS laminates



1 

 

CHAPTER 1  

INTRODUCTION 

1.1 Laminate Design in the Aerospace Industry 

Composite materials have been used by mankind for centuries. From the composite 

bow used by the Mongols to tow steered composites at the cutting edge today, the use of 

composites as structural materials has grown as the understanding of their capabilities and 

failings has improved.  

As composites started replacing metals in aircraft structures, laminates were 

designed to mimic the behavior of metals, which are isotropic materials. This philosophy 

of using “quasi-isotropic” laminates that behave similar to metals has resulted in engineers 

treating composites as ‘black aluminum’ [25]. This practice has worked well to ease the 

transition from metal to composite structures. These practices however limit the extent to 

which composites can be tailored to best fit their intended uses. 

In the 1960’s, the aerospace industry agreed upon a set of rules for the design of 

laminate materials [1]. These rules have been found to be robust and act as vital guidelines 

for designers. These rules require all laminate designs to maintain symmetry and balance, 

and exclusively use standard angled fiber reinforcement. These rules have been found to 

limit the potential of laminate materials [1]. This work will focus on the orientation of the 

fiber reinforcement within laminates. 

At present, one of the fundamental rules of laminate design is the use of four 

standard angles when designing a composite layup, as shown in Figure 1.1. These angles 
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are 0˚, 45˚, -45˚ and 90° [2], with 0˚ being the expected primary loading direction. A typical 

standard angled laminate is shown in Figure 1.1. The laminate in Figure 1.1 follows all of 

the rules prescribed by the aerospace industry. The fiber orientations are aligned along the 

standard angles. The laminate is “balanced,” i.e., for every ply with an off-axis orientation 

𝜃, there is a corresponding ply with an orientation −𝜃. The laminate is also symmetric 

about the mid-plane.   

 

Figure 1.1 Standard angle laminate 

These designs based on simple 0˚ ±45˚ /90˚ configurations were also used to 

broadly match the stiffness of aluminum alloys [28]. As effective as these standard 

practices are, the stringent use of only four angles limits the range of possible stiffness and 

strength combinations available when designing a composite material [7]. 
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Lately there has been an increasing interest in moving past the entrenched rules 

towards non-standard laminates, those that do not follow the 0˚ +/-45˚ 90˚ laminate layup 

rules. Multiple studies have found various benefits of using non-standard angles [1], [7] 

and [30]. This thesis is a step in that direction. 

Notches and holes in composites present challenges. Fastener holes often limit the 

operating strain in structures [27]. Drilled holes compromise the structure of composites as 

they lead to delamination and breakage of the fibers as the drill bit enters and exits the part 

[4]. On average, more than 12,000 holes are drilled into a single wing set during 

manufacture [13]. Hence, the strength of composite materials with stress concentrations is 

a central design issue often dictating the design allowables for the entire structure [20]. 

Any shift away from standard designs must consider the notched strength of the proposed 

designs and compare them with existing designs. 

The current practice of dealing with notches and holes in composite structures is 

based on practices used for metals, whereby reinforcement and increased thickness around 

holes reduce stress concentrations. Figure 1.2 shows an example of annular reinforcement 

rings used to reinforce holes in laminated plates. These rings add additional weight and 

complexity to the structure. Stronger laminates could help eliminate these additional parts. 

The benefits of improved strength are two-fold: (a) lighter structures make the overall 

aircraft more efficient and (b) reduced material costs. 
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Figure 1.2 Reinforcement ring around a hole in a laminate plate [5] 

These practices curtail the ability to utilize the unique opportunities presented by 

composites. The ability to orient fibers along the load paths that are present near notches 

has not been utilized to the maximum possible extent. Current laminates are restricted to 

the four standard angles, which may or may not align well with the stresses present at a 

notch.  

To better tailor laminates for improved performance, two approaches are currently 

being investigated. The first is the use of angles other than standard angles, termed Non-

Traditional/Non-Standard (NS) angles. NS designs are laminate designs in which the fiber 

reinforcement orientations are not constrained to the four standard directions [1]. Angles 

that conform better to the part geometries should improve fiber continuity. NS angles, such 

as ±23˚, can be paired with other angles, like ±80˚, to produce laminates that are better 

tailored for the specific part functionality 

These laminates could be used to align the fibers with the shape of cut outs in any 

structure. This will allow better tailoring of the fibers to the stresses concentrated at the 

notch, thereby allowing for purposefully designed laminates for holes and notches. Based 
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on the part geometry and application more suitable fiber orientations that are not limited to 

the four standard angles can be created. This opens up more opportunities to leverage the 

flexibility offered by laminate materials in terms of directional stiffness and strengths.  

The second method is the use of tow steering, seen in Variable Angle Tow (VAT) 

composites. VAT composites are laminated materials in which the fiber reinforcement 

orientation varies over the plane of each ply, they exhibit variable stiffness [23]. Figure 1.3 

shows the structure of a VAT laminate. 

 

Figure 1.3 Variable angle tow composite schematic [6] 

Even though VAT composites potentially offer upto 38% of weight savings over 

conventional designs [2] and have the maximum potential for tailoring stiffness and 

strength to expected load paths, their mechanics and analysis are more complex than 

unidirectional fiber reinforced laminated composites. Hence, extensive research is still 

required before they can be used as structural materials.  
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When stiffness is considered, NS angle composites allow for a larger design space 

when compared to standard angle composites [7]. This is demonstrated in Figure 1.4 where 

the range for possible in-plane responses for standard and NS designs are compared. The 

design space for a laminate can be defined in multiple ways. This thesis considers the range 

of in-plane stiffness responses. These responses depend on the orientation of fiber 

reinforcement, the stacking sequence of plies, and the individual contributions of each 

orientation towards the total laminate thickness. 

 

Figure 1.4 Comparison of in-plane stiffness design space [7] 

However, the NS design space is more difficult to navigate as the possible number 

of laminate designs are infinite and a reasonable design space is required. To help transition 

from the standard angle design space to this larger possible design space, a benchmark for 

comparing current designs to possible future designs is required. Butler et al. [7] developed 

a mathematical formulation that computes a range of NS designs that match the in-plane 
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stiffness of any given design. This is applied to three layups that are widely seen across the 

aerospace industry. It allows for a direct comparison between traditional and non-

traditional layups and formed the basis of this thesis. NS designs that match the stiffness 

of standard designs will be able to perform the same functions as standard designs. Their 

only difference lies in the respective laminate strengths. NS designs can replace existing 

standard designs and help transition away from standard designs in the same manner that 

the “black aluminum” treatment of composites has helped in the transition away from 

metallic structures. 

The strength of stiffness-matched NS designs with the strength of standard designs 

will be compared to the respective standard designs. Both sets of designs will have the 

same thickness, i.e., components made up of these laminates will have the same mass and 

stiffness. Hence the strengths of layups with the same mass and stiffness will be compared, 

thereby allowing one to determine if NS designs are stronger or weaker than standard 

designs. Stronger NS designs will allow for reduced ply and laminate thickness resulting 

in weight savings, which also leads to material cost reduction. 

The primary goal of this thesis is to assess non-standard angle laminate designs and 

compare them to existing standard designs. The properties used for comparing the designs 

in this work are the stiffness and strength of the laminates. To aid this goal, NS designs 

that match the stiffness of existing standard designs were used.   

Studies conducted on NS laminates by Butler [7] and by Tsai [1] highlight multiple 

advantages of using NS designs. However, the studies do not extend to the strength of these 

designs. The strength of these NS designs will allow one to estimate any change in the 
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overall weight of structures made up from NS laminates when compared to existing 

standard designs.  

1.2 Thesis Overview 

Current standard laminate design practices have been very effective. These practices 

have made laminate design and analysis accessible. First, laminate theory will be presented. 

Next, the rationale behind standard laminate design will be discussed. This will help one 

appreciate the possible paths that can be taken, so that one may move beyond standard 

rules to a more optimal set of laminate design practices. 

Chapter 2 provides a review of composite mechanics. The framework of this theory 

is used extensively in all subsequent chapters to develop and analyze layup designs. The 

motivations for stiffness matching are discussed in detail. Common methods used to 

perform preliminary analysis on layup designs are then discussed. These methods will be 

applied to compare existing standard designs to NS designs in chapter 4. The NS designs 

will be based on solutions from stiffness matching.  

Chapter 3 details a method developed to design non-traditional laminates that match 

the in-plane stiffness of standard laminates. Stiffness matching has been performed to limit 

the possible designs being compared to standard designs. NS designs that match the 

stiffness of standard layups can be used to replace existing parts made of standard layups 

without affecting the overall aircraft design. Furthermore, it allows one to maintain 

constant stiffness regardless of laminate thickness. A detailed inquest into this method is 

carried out. The results of the method developed are checked against those found by Butler 

et al.[7] and good agreement is seen between both. This method is then extended to perform 
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stiffness matching. This allows one to better control the thickness of a laminate which aids 

in reducing material costs. Detailed discussions on the benefits of stiffness matching are 

presented in the conclusions. 

Initially, the method for stiffness matching are developed for a special case when 

both standard and NS designs have the same thickness, i.e., the same number of plies. This 

method is extended to perform stiffness matching when the NS design may or may not 

have the same thickness as the standard design. The solutions for both formulations are 

found to be identical, i.e., the solutions for stiffness matching are independent of the 

number of plies in the NS design.  

Chapter 4 introduces the concept of stress distributions developed in a laminate 

under loading. This forms the framework for evaluating the First Ply Failure (FPF) loads 

for the layups being studied. The FPF approach is utilized to predict the ultimate strength 

of NS designs detailed in chapter 3 and contrasts them with the predicted ultimate 

performance of standard angle laminates. Theoretical strengths will help in performing an 

initial assessment of the performance of NS designs when compared to a standard design 

of the same stiffness.   

Chapter 5 discusses experiments performed to investigate the Open Hole 

Compression (OHC) strength of the NS layups. OHC strength is used by the aerospace 

industry as the maximum allowable stress for most composite structures under 

compression. Experimental values for the OHC strength of various NS and standard layups 

are measured and analyzed.  
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Chapter 6 presents a discussion of the experimental results and the experimental 

techniques themselves from which the conclusions have been drawn. Finally, suggestions 

for future work are presented. 
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CHAPTER 2  

BACKGROUND 

In order to better understand the project scope, the differences between traditional 

isotropic materials and orthotropic materials are presented. Based upon this, a review of 

composite laminate theory is presented. Then, methods based on the framework of laminate 

theory, which are utilized to characterize the stiffness and strength of laminates, are 

described. Finally, meaningful NS designs will be developed, analyzed using the methods 

mentioned above, and contrasted with existing standard laminate designs. 

Continuous fiber reinforced composites are materials that primarily consist of two 

separate materials. A fiber, which acts as reinforcement, carries majority of the load and 

the matrix, which is typically a polymer, holds the fibers together in a structural unit, 

protects them from external damage, and distributes the loads to the fibers, as shown in 

Figure 2.1 [4]. 
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Figure 2.1 Carbon fiber reinforced composite [9] 

As fiber-reinforced materials are not isotropic, the concept of stiffness is more 

complex and not intuitive when compared to most engineering materials. This isotropy is 

a tacit assumption used for designers and researchers when using traditional engineering 

materials. As isotropic material models are sufficient to model the overwhelming majority 

of materials, the transition to working with orthotropic material models in which stiffness 

is a function of the material orientation can be challenging and counter intuitive.  

The stress-strain relationship for a linear-elastic isotropic material according to 

classical plate theory is given in Equation 1, where E is Young’s Modulus and ν is 

Poisson’s ratio. But, when dealing with laminated composites, this relationship does not 

apply. As it can be seen from Equation 1, only two elastic constants are required and there 

are no terms that take into account the orientation of an anisotropic material.  
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[

𝝈𝟏𝟏

𝝈𝟐𝟐

𝝈𝟏𝟐

] =
𝑬

𝟏 − 𝝂𝟐
[
𝟏 𝝂 𝟎
𝝂 𝟏 𝟎
𝟎 𝟎 𝟏 − 𝝂

] [

𝝐𝟏𝟏

𝝐𝟐𝟐

𝝐𝟏𝟐

] 
(1) 

 

The stiffness of any linear elastic material can be considered as a special case of a 

general linear elastic anisotropic material. To describe the stiffness of an anisotropic 

material, a tensor known as the elastic tensor (Equation 2) is used. The elements of this 

tensor are elastic constants that describe the relationships between different components of 

stress and strain. This tensor is denoted by [C] [10]. The stress strain relationship for 

anisotropic materials is described by the Equation 3 [10]. The 1, 2, and 3 directions denote 

the normal response whereas the 4, 5, and 6 directions denote the shear response. 

 

𝑪𝜶𝜷 =

[
 
 
 
 
 
𝑪𝟏𝟏 𝑪𝟏𝟐 𝑪𝟏𝟑 𝑪𝟏𝟒 𝑪𝟏𝟓 𝑪𝟏𝟔

𝑪𝟐𝟏 𝑪𝟐𝟐 𝑪𝟐𝟑 𝑪𝟐𝟒 𝑪𝟐𝟓 𝑪𝟐𝟔

𝑪𝟑𝟏 𝑪𝟑𝟐 𝑪𝟑𝟑 𝑪𝟑𝟒 𝑪𝟑𝟓 𝑪𝟑𝟔

𝑪𝟒𝟏 𝑪𝟒𝟐 𝑪𝟒𝟑 𝑪𝟒𝟒 𝑪𝟒𝟓 𝑪𝟒𝟔

𝑪𝟓𝟏 𝑪𝟓𝟐 𝑪𝟓𝟑 𝑪𝟓𝟒 𝑪𝟓𝟓 𝑪𝟓𝟔

𝑪𝟔𝟏 𝑪𝟔𝟐 𝑪𝟔𝟑 𝑪𝟔𝟒 𝑪𝟔𝟓 𝑪𝟔𝟔]
 
 
 
 
 

 

(2) 

 

 

 

[
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=
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 (3) 
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Based on the properties of different materials, the elastic tensor can be simplified 

and relations between elements can be identified such that the number of independent 

elastic constants required to describe a material can be reduced from the 36 required for a 

general anisotropic material. Isotropic materials have only two independent elastic 

constants and their stiffness tensor can be simplified into the form shown in Equation 4.  

 

𝐶𝛼𝛽 =

[
 
 
 
 
 
 
 
 
𝐶11 𝐶12 𝐶12 0 0 0
𝐶12 𝐶11 𝐶12 0 0 0
𝐶12 𝐶12 𝐶11 0 0 0

0 0 0
𝐶11 − 𝐶12

2
0 0

0 0 0 0
𝐶11 − 𝐶12

2
0

0 0 0 0 0
𝐶11 − 𝐶12

2 ]
 
 
 
 
 
 
 
 

 (4) 

 

For unidirectional fiber reinforced composites, the special case of a transversely 

isotropic material is used. Transversely isotropic materials are defined by an axis of 

material symmetry, i.e., the direction with respect to which the material has identical 

properties. The axis of symmetry is the orientation of the fiber reinforcement, e.g., the z 

axis. The other two directions, x and y, are perpendicular to this axis, i.e., the z axis, and 

to each other. The x-y plane is referred to as the plane of isotropy [32]. Hence, a transverse 

isotropic model describes a material that is isotropic in one plane and has a different 

stiffness in the direction perpendicular to the isotropic plane. This model requires five 

independent elastic constants to populate the stiffness tensor and is shown in Equation 5 
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[10]. Figure 2.1 demonstrates this property of unidirectional composites as the material is 

seen to be isotropic in the plane perpendicular to fiber direction. 

 

𝐶𝛼𝛽 =

[
 
 
 
 
 

𝐶11 𝐶11 − 2𝐶66 𝐶13 0 0 0
𝐶11 − 2𝐶66 𝐶11 𝐶13 0 0 0

𝐶13 𝐶13 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶44 0
0 0 0 0 0 𝐶66]

 
 
 
 
 

 (5) 

 

As classical plate theory is only valid for isotropic materials, a different theory is 

utilized for anisotropic materials. The mathematical framework used to deal with these 

anisotropic materials for the case when layers composed of differently oriented fiber 

reinforcements are stacked on top of each other is presented in the following section. This 

framework is called Classical Laminate Theory (CLT). CLT was developed to model ply-

wood [1]. It has found extensive application in modeling the stresses and strains developed 

in carbon fiber composites.  

2.1 Classical Laminate Theory Review 

The methods used in this thesis to perform stiffness matching and estimate strength 

heavily depend on the framework of Classical Laminate Theory (CLT). A review of CLT 

is presented below. As unidirectional fiber-reinforced, composites are transversely 

isotropic materials, classical plate theory, which is typically used for structures made of 

metals or other isotropic materials, cannot be used to describe their stress-strain 
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relationship. CLT is used to accurately describe the response of a laminate in which layers 

with fibers running along different orientations are stacked on top of each other. CLT 

considers the transversely isotropic nature of each ply to model the stresses and strains in 

each ply when a laminate is subjected to mechanical or thermal loading.  

2.1.1 Assumptions in Classical Laminate Theory: 

The following are the assumptions used in CLT [10]: 

1) The laminate consists of perfectly bonded layers (or plies). 

2) The normals to the mid-plane of the laminate remain straight and normal to the 

deformed mid-plane after deformation (Kirchhoff hypothesis for plates and 

Kirchhoff-Love hypothesis for shells). 

3) The normals to the mid-plane of the laminate do not change length (constant 

thickness). 

2.1.2 Co-ordinate Systems used for Classical Laminate Theory: 

The global co-ordinate system, also referred to as the balancing axes for CLT are 

denoted by (x, y, z) with x and y as the in-plane axes and z as the thickness direction. The 

origin lies on the mid-plane of the laminates shown in Figure 2.2. 
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Figure 2.2 Co-ordinate system for classical laminate theory [10] 

Each ply is assigned a number, the bottom most ply being ‘1’ and the top most 

being ‘N’. Each ply has its own local or material co-ordinate system, which is defined by 

‘1’ being the fiber direction for that ply and ‘2’ being the direction perpendicular to the 

fiber direction, as shown in Figure 2.3.  

 

Figure 2.3 Material co-ordinate system [7] 
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The building block for CLT is the [Q] matrix. It contains the material properties of 

a single ply in its material co-ordinate system, i.e., the co-ordinate. Based on this matrix, 

the stiffness responses for laminates composed of multiple plies stacked in arbitrary 

orientations can be formulated. The responses of laminates made from multiple plies 

stacked on top of each other will be described later in this chapter. 

The [Q] matrix is detailed in Equation 6. Here E11 is the Young’s modulus along 

the fiber direction, E22 is the in-plane Young’s modulus perpendicular to the fiber direction, 

and G12 is the shear modulus [10]. It must be noted that it is a symmetric matrix.  

 

[Q] =

[
 
 
 
 

E11

1 − ν12. ν21

ν12 E22

1 − ν12. ν21
0

Q12

E22

1 − ν12ν21
0

0 0 G12]
 
 
 
 

 (6) 

 

The invariants of the [Q] matrix are called stiffness invariants. They are 

independent of material orientation and simplify the rotation of this matrix that is used 

extensively throughout CLT. These invariants can be calculated as shown in Equations 7-

11.  

 
U1 =

1

8
(3Q11 + 3Q22 + 2Q12 + 4Q66) (7) 
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𝑈2 =

1

2
(𝑄11 − 𝑄22) (8) 

 

 
U3 =

1

8
(Q11 + Q22 − 2Q12 − 4Q66) (9) 

 

 
U4 =

1

8
(Q11 + Q22 + 6Q12 − 4Q66) (10) 

 

 
U5 =

1

8
(Q11 + Q22 − 2Q12 + 4Q66) (11) 

 

This [Q] matrix can be rotated according to individual ply orientations to give the 

[𝑄] matrix, which represents the stiffness matrix for an individual ply in the global co-

ordinate system. The elements of the [𝑄] can be calculated by Equations 12-17. 

 𝑄11 = 𝑄11 𝑐𝑜𝑠4𝜃 + 2(𝑄12 + 2𝑄66)𝑠𝑖𝑛
2𝜃𝑐𝑜𝑠2𝜃 + 𝑄22𝑠𝑖𝑛

4𝜃 (12) 
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 𝑄12 = 𝑄12 (𝑠𝑖𝑛
4𝜃 + 𝑐𝑜𝑠4𝜃) + (𝑄11 + 𝑄22 − 4𝑄66)𝑠𝑖𝑛

2𝜃𝑐𝑜𝑠2𝜃 (13) 

 

 𝑄22 = 𝑄11 𝑠𝑖𝑛
4𝜃 + 2(𝑄12 + 2𝑄66)𝑠𝑖𝑛

2𝜃𝑐𝑜𝑠2𝜃 + 𝑄22𝑐𝑜𝑠4𝜃 (14) 

 

 𝑄16 = (𝑄11 − 𝑄12 − 2𝑄66)𝑠𝑖𝑛𝜃𝑐𝑜𝑠3𝜃 + (𝑄12 − 𝑄22 + 2𝑄66)𝑠𝑖𝑛
3𝜃𝑐𝑜𝑠𝜃 (15) 

 

 Q26 = (Q11 − Q12 − 2Q66)sin
3θcosθ + (Q12 − Q22 + 2Q66)sinθcos3θ (16) 

 

 Q66 = (Q11 + Q22 − 2Q12 − 2Q66)sin
2θcos2θ + Q66(sin

4θ + cos4θ) (17) 

 

Another method for computing the [𝑄] matrix is through the use of stiffness 

invariants, which are shown in Equations 18-23. 

 Q11 = U1 + U2 cos(2θ) + U3cos (4θ) (18) 
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 Q22 = U1 − 𝑈2 cos(2θ) + U3cos (4θ) (19) 

 

 Q12 = U4 − U3 cos(4θ) (20) 

 

 Q66 = U5 − U3cos (4θ) (21) 

 

 
Q16 =

1

2
U2 sin (2θ) + U3cos (4θ) (22) 

 

 
Q26 =

1

2
U2 sin (2θ) − U3cos (4θ) (23) 

 

where 𝜃 is the angle of the fibers with respect to the global x-axis.  

For each lamina [𝑄] must be computed and the elements of these rotated matrices 

are then used to calculate the laminate level stiffness matrices There are three laminate 

level stiffness matrices, [A], [B], and [D].  
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The [A] matrix describes the in-plane extensional response whereas the [D] matrix 

describes the bending response of a laminate. The [B] matrix is the coupling stiffness 

matrix and describes the coupling between in-plane and out of plane responses [10]. These 

can be computed for any laminate as shown in Equations 24-26.  

 

Amn = ∑(Qmn
̅̅ ̅̅ ̅̅ )j(hj − hj−1)

N

j=1

 (24) 

 

 
Bmn =

∑ (Qmn)̅̅ ̅̅ ̅̅ ̅
j(hj

2 − hj−1
2 )N

j=1

2
 (25) 

 

 
Dmn =

∑ (Qmn
̅̅ ̅̅ ̅̅ )j(hj

3 − hj−1
3 )N

j=1

3
 (26) 

 

where N is the total number of plies, hj is the top z co-ordinate of the jth layer, and (𝑄𝑚𝑛
̅̅ ̅̅ ̅̅ )j 

is the element corresponding to the rotated Q matrix of the jth ply 

The stiffness of the laminate is represented by these matrices and the equivalent in-

plane Young’s and shear moduli of the laminate can be calculated from Equations 27-29.  

 
Exx = (A11 −

A12
2

A22
)

1

N ∗ thickness of ply 
 (27) 
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Eyy = (A22 −

A12
2

A11
)

1

N ∗ thickness of ply 
 (28) 

 

 
𝐺𝑥𝑦 =

𝐴66

𝑁 ∗ 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑝𝑙𝑦
 (29) 

 

2.1.3 Force and moment resultants: 

The in-plane forces per unit length [N] can be described as the through thickness 

integral of the planar stresses in the laminate, described in Equations 30-32.  

 
𝑁𝑥𝑥 = ∫ 𝜎𝑥𝑥𝑑𝑧

ℎ/2

−ℎ/2

 (30) 

 

 
𝑁𝑦𝑦 = ∫ 𝜎𝑦𝑦𝑑𝑧

ℎ/2

−ℎ/2

 (31) 

 

 
𝑁𝑥𝑦 = ∫ 𝜎𝑥𝑦𝑑𝑧

ℎ/2

−ℎ/2

 (32) 
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The constitutive equations relating the stress resultants to the strains and curvatures 

are shown in Equation 33. 

 

[

𝑁𝑥𝑥

𝑁𝑦𝑦

𝑁𝑥𝑦

] = [𝐴] [

𝜖𝑥𝑥

𝜖𝑦𝑦

𝜖𝑥𝑦

] + [𝐵] [

𝜅𝑥𝑥

𝜅𝑦𝑦

𝜅𝑥𝑦

] (33) 

 

The moment per unit length [M] can be described as the through thickness integral 

of the planar moments in the laminate, as shown in Equations 34-36.  

 
𝑀𝑥𝑥 = ∫ 𝜎𝑥𝑥𝑧𝑑𝑧

ℎ/2

−ℎ/2

 (34) 

 

 
𝑀𝑦𝑦 = ∫ 𝜎𝑦𝑦𝑧𝑑𝑧

ℎ/2

−ℎ/2

 (35) 

 

 

𝑀𝑥𝑦 = ∫ 𝜎𝑥𝑦𝑧𝑑𝑧

ℎ
2

−
ℎ
2

 (36) 
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The constitutive equations relating the moment resultants to the strains and 

curvatures are shown in Equation 37 

 

[

Mxx

Myy

Mxy

] = [B] [

𝜖𝑥𝑥

𝜖𝑦𝑦

𝜖𝑥𝑦

] + [D] [

kxx

kyy

kxy

] (37) 

 

where 

Nxx= force resultant in the x-direction (per unit width) 

Nyy= force resultant in the y-direction (per unit width) 

Nxy= shear force resultant (per unit width) 

Mxx= bending moment resultant in the yz plane (per unit width) 

Myy= bending moment resultant in the xz plane (per unit width) 

Mxy= twisting moment resultant (per unit width). 

Also, the strain and curvature vectors that define the midplane strains and 

curvatures developed in the laminate are 

[

ϵxx

𝜖𝑦𝑦

ϵxy

]= mid-plane stains of the laminate  

and 
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[

κxx

κyy

κxy

]= curvatures of the laminate.  

These matrices and vectors can be assembled into one system of equations as shown 

in Equation 38. Equation 38 describes the response of a laminated plate under mechanical 

loading. 

 [
𝑁
𝑀

] = [
𝐴 𝐵
𝐵 𝐷

] [
𝜖𝑜

𝜅
] (38) 

Based on this framework, a stiffness matching method is developed in Chapter 3. 

Furthermore, these equations are utilized to predict the strength of selected laminate 

designs.   

 

2.2 Common Laminate Design Practices 

Laminated composite structures provide improved design flexibility as compared 

to metallic materials, with the possibility of tailoring their stiffness and strength by 

selecting fiber orientations. Therefore, dedicated design methods that take into account 

composite materials specificities are required [15]. 

All laminates are currently designed based on a fixed set of rules. The rules, which 

are presented below, simplify the process used by designers to define the layups of the 

layers that form laminates. Standard layups currently in use by industry are based on these 

guidelines. As NS designs are currently unconstrained by any rules, it is important to 

understand the deviations from existing practice so as to better leverage existing 
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knowledge. When a laminate is designed, the inputs, such as the required stiffness, damage 

tolerance, and strength, are considered. These are used to guide the selection of fiber angles 

in each ply, their stacking sequence, and the thickness ratios.  

However, as an infinite number of angles in infinite combinations can be used, this 

problem is very hard to tackle and optimize. Therefore, laminate design was standardized 

in the aerospace industry from very early on. These standardized rules make laminate 

design accessible and introduces robustness. The well-known rules are listed below:  

1) Laminates must have mid-plane symmetry (to avoid warpage from curing). 

2) Only four angles may be used: 0°, 45°, -45°, and 90°. 

3) The 10% rule that requires each of the four ply orientations to be at least 10% of 

the total laminate thickness. 

4) Laminates must be balanced, i.e., the off-axis plies of 45˚ and -45˚ must be 

selected in pairs. Thus, the in-plane stiffness of the laminate must remain 

orthotropic. There will be no shear coupling components, i.e., A16 and A26 are 

zero [1]. 

These rules simplify the design problem and the behavior of the laminates themselves. 

However, these rules discretize the design space, i.e., limit the number of options from 

which a designer can select. 

Based on the type of component being manufactured, the relative thickness ratios of 

standard angles are varied. For wing skins, the standard angles 0°/±45°/90° are used in 

relative ratios of 44/44/12, respectively. The percentages for stiffeners are 60/30/10 and for 
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spars the percentages are 10/80/10 [7]. In this thesis, the strength of NS designs will be 

compared to a standard wing skin design that is based on these rules. 

2.3 Stiffness Matching 

Stiffness matching allows for easy comparison between standard and NS designs 

in the strength domain. Further, stiffness matching allows for existing designs to be 

replaced with non-standard laminates without affecting the larger scale design of the 

aircraft. Stiffness matching allows one to develop NS laminate designs that are directly 

comparable to standard designs.  

Two primary factors considered when designing composite laminates are stiffness 

and ultimate strength. The stiffness defines the response to loads encountered by a 

component during its service life, whereas the ultimate strength defines the safety of the 

design. Both of these factors must be considered when comparing standard and non-

standard angle composites.  

The stiffness and strength of laminates are intertwined, on the lamina level in the 

direction of the maximum stiffness, i.e., along the fiber reinforcement, which is also the 

direction along which maximum stiffness is seen. As most components must be able to 

withstand loading from multiple directions, tradeoffs must be made so that the laminate 

can perform adequately when loaded in multiple directions. The interaction between 

strength and stiffness is more complex when multi-directional laminates are used and 

performance in one domain may not necessarily translate to good performance in another.  
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The shift towards non-standard angle composites cannot come at any cost to 

performance in either the stiffness or strength domains. To facilitate the transition from 

standard angle composites, a good starting point was identified by Butler et al. [7] with the 

design of NS laminates with the same performance in the stiffness domain as existing, 

traditional laminates.  

If the stiffness of standard and non-standard angle laminates are kept constant and 

other variables such as ultimate strength, formability, and manufacturing costs are 

compared, then designers can identify the most optimal laminates within a range of designs 

that provide the same in-plane response under loading.  

Butler et al. [7] performed stiffness matching for layups used in three types of 

components: wing skins, spars, and stiffeners. The NS designs developed by Butler’s 

stiffness matching method are shown in Figure 2.4. They found that non-standard angles 

offer greatly improved forming compatibility, i.e., the plies can be more easily formed into 

complex shapes when compared to standard angle composites before curing, while 

maintaining the same post cured in-plane stiffness as standard angles composites. This 

improved compatibility between the pairs of non-standard angles reduces the likelihood of 

fiber wrinkle defects. An alternate method for stiffness matching has been developed in 

this thesis and has been used to develop NS designs that have been compared with a 

standard wing skin layup in terms of strength. 
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Figure 2.4 Angle pairs and relative rations for non-standard layups [7] 

 

2.4 Strength of Laminates 

Strength design is often employed for composite aircraft structures. A primary 

concern when designing aircraft is to minimize weight. For this reason, the stresses 
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experienced by the structure are of the same order of magnitude as the material strength 

[10]. The comparison of the strengths of NS designs to standard designs of the same 

stiffness highlights any potential weight savings. 

The complexity of designing with composites is in part due to the large number of 

damage mechanisms that influence the properties of the material when it undergoes loading 

[30]. Structural analysis is generally performed by comparing the stresses developed at the 

location of interest as a result of the applied loads within allowable maximum limits [11]. 

For isotropic materials, the Von Mises and Tresca yield criteria are widely used. 

Continuous fiber composites are not isotropic, hence different failure criteria must be used. 

A multitude of failure theories have been proposed for fiber reinforced composites, 

for example maximum stress [10], Tsai-Wu [35], and Tsai-Hill [8]. However, the failure 

mechanisms of composite structures are not completely understood yet [10]. As there is 

still much to be learned regarding the failure mechanisms of composites, the selection of 

failure criteria has a vital impact on the accuracy of the predictions of any structural 

analysis performed on laminates. This thesis utilizes the maximum stress theory because it 

is readily implemented and reasonable agreement is seen with experimental data.  

2.4.1 Maximum Stress Criterion: 

Maximum stress theory compares stress in each material direction independently 

with material strength [33]. For this theory to be applied, the stresses in each ply must be 

calculated according to CLT and then the stresses for each ply that are found in global co-

ordinates must be rotated to its material co-ordinate system and checked against the 
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allowable limits to determine if a laminate design is safe for a particular load. Failure is 

said to occur if any of the conditions in Equations 39-41 is violated. 

 −𝑆𝐿𝑐 < 𝜎11 < 𝑆𝐿𝑡 (39) 

 −𝑆𝑇𝑐 < 𝜎22 < 𝑆𝑇𝑡 (40) 

 −𝑆𝐿𝑇𝑠 < 𝜏12 < 𝑆𝐿𝑇𝑠 (41) 

2.4.2 First Ply Failure Theory 

The initial failure of the first ply within a laminate under loading can be predicted 

by applying first ply failure theory [31]. The FPF load indicates the minimum load at which 

damage occurs within a laminate. The first ply failure approach utilizes the constitutive 

relations from CLT to calculate the global stresses sustained by each ply based on applied 

loading. These stresses are transformed from the global co-ordinate system to the local co-

ordinate system of each ply as shown in Equation 42  

 
[

𝜎1

𝜎2

𝜎6

] = [𝑇1] [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

] (42) 

where [𝑇1] represents the transformation matrix detailed in Equation 43 

 
[𝑇1] = [

𝑚2 𝑛2 2𝑚𝑛
𝑛2 𝑚2 −2𝑚𝑛

−𝑚𝑛 𝑚𝑛 𝑚2 − 𝑛2

] (43) 

where 𝑚 = sin 𝜃 and 𝑛 = cos 𝜃  reference [10]. 
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Individual ply stresses in the material co-ordinate system are used as inputs for the 

most appropriate failure criteria and the progression of the failure of plies can be predicted 

to determine which plies fail first. As a result, an assessment of the safety of the design can 

be made. In general, a laminate under study is loaded incrementally and the stresses of each 

ply are checked against the failure criteria at each load step. Once a failure criteria is 

exceeded, the lamina that exceeds the allowable material strength is said to have failed. 

The progression of failure can be studied by extending this method. Once FPF occurs, the 

stiffness of the failed ply is degraded. The load applied to the laminate is increased to arrive 

at the ultimate failure load at which all plies have failed. This process is shown in Figure 

2.5. 

 

Figure 2.5 Analysis of laminate strength and load-deformation behavior [33] 
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Coupling the first ply failure theory with the maximum stress criterion enables one 

to predict the failure of standard as well as NS Layups. The predicted strengths have been 

used to highlight the advantages of NS designs in Section 4.3. 

2.5 Chapter Summary 

In this chapter, the theoretical framework of classical laminate theory was 

reviewed. This theory helps one to characterize the stiffness of a laminate and define the 

constitutive relationships for laminate materials. The common laminate design rules and 

the importance of rules such as symmetry and balance were discussed.  As these rules 

define standard laminate design, one can now understand the effect of standard rules on 

laminate mechanics. 
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CHAPTER 3  

STIFFNESS MATCHING METHOD 

Stiffness matching provides a range of non-standard layup designs that match the 

stiffness of a certain standard layup. These designs can be subjected to various tests to 

compare them with the existing standard design.  

Butler et al. developed a stiffness matching method [7]. The stiffness matching 

method outlined below takes inspiration from Butler et al. to compute the range of non-

standard laminates which match the stiffness of an arbitrary laminate. The method 

presented in this thesis uses an alternate approach but arrives at the same results seen by 

Butler et al. 

The motivation behind developing this method is two-fold. The code developed to 

implement this method can be altered for further investigations into NS layups and allows 

one to compute the exact angle pairs and thickness ratios, which is not possible when one 

refers to the chart presented in Butler’s study. 

As seen in the CLT review in Section 2.1, the in-plane response of a laminate is 

defined by the [A] and [B] matrices and is given by Equation 33. 

[

Nxx

Nyy

Nxy

] = [A] [

ϵxx

ϵyy

ϵxy

] + [B] [

κxx

κyy

κxy

] (33) 

As the B matrix can be assumed to be zero for symmetric laminates, this system of 

equations reduces to Equation 44. 
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[

Nxx

Nyy

Nxy

] = [A] [

ϵxx

ϵyy

ϵxy 
] (44) 

It can be seen that to match the in-plane response of a standard angle laminate. A 

symmetrical NS laminate must have an identical [A] matrix. 

The method, based on the assumptions presented below, requires NS layups to 

match the [A] matrix of an arbitrary standard angle composite. The applications and 

limitations of this method are discussed in Section 3.6. 

3.1 Formulation of In-Plane Stiffness Matching Method 

To match the in-plane stiffness of a standard angled laminate with a set of NS 

designs, first the in-plane stiffness of the standard design is required. In this thesis, the 

standard wing skin layup is utilized as the standard angle layup. The standard wing skin 

layup is outlined in Table 3.1 and discussed in Section 3.2. Once the stiffness required from 

NS designs, i.e., the A matrix of the standard angles, has been calculated, then the number 

of angles in the NS design used must be constrained. Standard angle designs have four 

angles, i.e., 0˚, 45˚, -45˚, 90˚. To allow for validation of the results against the study 

conducted by Butler et al. [7], the same number of NS angles, i.e., two, has been used. 

The following assumptions are used to develop the stiffness matching method. 

1. Each ply within the laminate has the same thickness. 

2. The NS angle laminate consists of a pair of angles being ±ψ,±φ. 

3. The thickness proportion of plies with angles ±ψ is 𝛾. 
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4. The standard and non-standard angled laminates are made up of the same 

material.  

5. The NS laminates are symmetric. 

Now that the design space has been adequately constrained, stiffness matching can be 

performed within this space by utilizing the framework of CLT. Equation 24 is presented 

again 

 

Amn = ∑(𝑄𝑚𝑛
̅̅ ̅̅ ̅̅ )j(ℎ𝑗 − ℎ𝑗−1)

N

j=1

 (24) 

where i, j =1, 2, 6 and N is the total number of plies. Substituting the values of the indices 

results in Equations 45-48.  

 

A11 = ∑(U1 + U2 cos(2θ𝑘) + U3cos (4θ𝑘))(𝑡𝑝𝑙𝑦)

N

k=1

 (45) 

 

A12 = ∑(U4 − U3 cos(4θ𝑘) ) (𝑡𝑝𝑙𝑦)

N

k=1

 (46) 

 

A22 = ∑(U1 − cos(2θ𝑘) + U3 cos(4θ𝑘))(𝑡𝑝𝑙𝑦)

N

k=1

 (47) 

 

A66 = ∑(U5 − U3cos (4θ𝑘))(𝑡𝑝𝑙𝑦)

N

k=1

 (48) 

As [A] is symmetric, Equation 49 results. 
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 𝐴21 = 𝐴12 (49) 

Now let the standard angled laminates have an A matrix denoted by [AS] and the 

non-standard angled laminates have an A matrix [AN]. For in-plane stiffness matching, the 

condition detailed in Equation 50 must be enforced. 

 [AS] = [AN] (50) 

As the non-standard angle ±ψ has a thickness fraction γ, the latter non-standard 

angle ±φ will have a thickness fraction of 1 − 𝛾. The number of plies with angle ± ψ, 

denoted by 𝑁𝜓, is given by Equation 51. 

 Nψ =  N ∗  γ (52) 

Similarly, the number of plies with angle ±𝜙 , denoted by 𝑁𝜙 is given by Equation 52. 

 Nϕ =  N ∗ (1 −  γ) (52) 

These three parameters, ψ,ϕ, γ, allow one to begin the process of arriving at a non-

standard layup that matches a given stiffness. Now because cos (θ) is an even function, i.e., 

cos(𝜃) = cos(−𝜃), the non-standard angles may be either positive or negative. Keeping in 

mind the assumption that the NS laminate is symmetric about the mid plane and that 

balance must be maintained as much as possible, one can arrive at a discrete design. 

For a non-standard angled laminate, the elements of the A matrix can be calculated 

as demonstrated by Equations 53-56. 
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 𝐴11
𝑁 = Nγ(U1 + U2 cos(2ψ) + U3 cos(4ψ))(𝑡𝑝𝑙𝑦)

+ N(1 − γ)(U1 + U2 cos(2ϕ) + U3 cos(4ϕ))(𝑡𝑝𝑙𝑦) 

(53) 

 𝐴22
𝑁 =  Nγ(U1 − 𝑈2 cos(2ψ) +  U3 cos(4ψ))(𝑡𝑝𝑙𝑦) +  𝑁(1 − 𝛾)(U1 

− 𝑈2cos(2ϕ) +  U3 cos(4ϕ))(𝑡𝑝𝑙𝑦) 
(54) 

 𝐴12
𝑁 = Nγ(U4 − U3 cos(4𝜓) ) (𝑡𝑝𝑙𝑦) + N(1 − γ)(U4 

− U3 cos(4ϕ𝑗) ) (𝑡𝑝𝑙𝑦) 

(55) 

 𝐴66
𝑁 = Nγ(U5 − U3 cos(4ψ𝑗))(𝑡𝑝𝑙𝑦) + 𝑁(1 − 𝛾)(U5 

− U3cos (4ϕ𝑗))(𝑡𝑝𝑙𝑦) 

(56) 

The elements of [AS], which are calculated based on the material, type of standard 

layup, and number of plies in the standard layup, can be equated to the symbolic equations 

for the elements of [AN], as shown in Equations 57 and 58. 

 𝐴11
𝑠 = 𝐴11

𝑁  (57) 

 𝐴22
𝑠 = 𝐴22

𝑁  (58) 

By setting the value of ψ at finite increments between 0˚ and 90˚ and solving these 

two equations for φ and γ, the range of laminate designs with a pair of angles that match a 

given stiffness results. It must be noted that every angle ψ does not have a possible 

complementary angle 𝜙; hence the range of designs is bound by the input stiffness and 

varies depending on the stiffness of the standard angled laminate used. 
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3.2 Stiffness Matching for a Standard Wing Skin Layup 

A standard wing skin layup as described in [7] will be used as the input to compute 

the range of possible NS designs that will match its in-plane stiffness. To facilitate an easy 

comparison between the standard wing skin and NS designs, it was decided to use the same 

number of plies for both standard and NS designs. For wing skins, the standard angles 

0°/±45°/90° are used in relative ratios of 44/44/12 [7]. The closest physically realizable 

approximation of these ratios was used while keeping the numbers of plies to a minimum. 

The standard wing skin design hence has a minimum total of eighteen plies, which was 

fixed as the total number of plies for NS designs. The standard wing skin layup based on 

these considerations is shown in Table 3.1. The layup in Table 3.1 was used as the input 

for a MATLAB code that implements the stiffness matching method described in Section 

3.1. The MATLAB code is presented in Appendix A. 
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Table 3.1 Standard Wing Skin Design 

Standard Wing Skin Design 

Ply 

Number 

Ply Orientation 

(Degrees) 

1 0 

2 0 

3 0 

4 0 

5 45 

6 -45 

7 45 

8 -45 

9 90 

10 90 

11 -45 

12 45 

13 -45 

14 45 

15 0 

16 0 

17 0 

18 0 
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Figure 3.1 show the pairs of angles, i.e., ±ψ° and ±φ°, as well as a plot of ψ° vs γ 

that match the stiffness of an NS design to a standard wing skin layup shown in Table 3.1 

and when the number of plies of standard angle and NS laminates is the same. 

 

Figure 3.1 Designs for stiffness matched non-standard laminates 

The results in Figure 3.1 have been compared to the results presented by Butler et 

al. in Figure 2.3 and in Table 3.2. Good agreement between both is seen. From Figure 3.1, 
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NS layups that match the in-plane stiffness of the standard wing skin design shown in Table 

3.1 can be designed. The NS designs selected for detailed study are shown in Tables 3.3-

3.5.   

3.3 Validation of Method 

As the method developed in this thesis differs from the method proposed by Butler, 

the results of both methods have been compared to check its validity. The angle pairs and 

thickness ratios resulting in this thesis’ method were compared to the results presented by 

Butler et al. [7] and are shown in Table 3.1  

Based on the method in Section 3.1, NS designs that match the stiffness of the 

standard wing skin layup can be defined. To define a NS design, one must select a value 

for the primary angle, i.e., the angle closer to zero degrees denoted by 𝜙𝑖.This angle can 

be considered as the ‘input parameter.’ For every primary angle there is a corresponding 

complimentary angle, i.e., the angle closer to ninety degrees 𝜓𝑖. The thickness fraction of 

the complimentary angle 𝜓𝑖, 𝛾𝑖 can be found from Figure 3.1. Hence 𝜓1 , 𝛾1 can be 

considered as ‘output parameters,’ which depend on the input parameter. Using these three 

parameters, an NS design that matches the stiffness of a standard design can be defined. 

On using the same value for the ‘input parameter,’ i.e., the primary angle for both 

methods, one can compare the ‘output parameters,’ i.e., the complimentary angle and the 

thickness ratio of the complimentary angle calculated according to the method proposed 

by Butler et al.[7] and the method shown in Section 3.1. Several values of the primary 

angle for the standard wing skin layup have been used as an input, the complimentary angle 

and thickness fractions of the primary and complimentary angles calculated according to 
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the method proposed by Butler et al. and the method shown in Section 3.1 are compared in 

Table 3.2.   

  

Table 3.2 Comparison of NS designs from Butler’s method and A based method 

Method  

Primary 

Angle 

(Degrees)  

Thickness 

Fraction  

Complimentary 

Angle 

(Degrees) 

Thickness 

Fraction  

Butler 4.00 0.51 55.00 0.49 

A 

matrix 3.75 0.49 55.00 0.51 

Butler 10.00 0.57 57.00 0.43 

A 

matrix 10.48 0.55 57.00 0.45 

Butler 15.00 0.60 60.50 0.40 

A 

matrix 14.86 0.61 60.00 0.39 

Butler 20.00 0.70 67.00 0.30 

A 

matrix 20.02 0.70 67.00 0.30 

Butler 24.00 0.80 85.00 0.20 

A 

matrix 24.00 0.80 86.00 0.20 
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3.4 Stiffness Matching for Dissimilar Number of Ply Counts 

3.4.1 Motivation 

This section extends the method developed in Section 3.1 to compute designs for 

non-standard angled laminates that do not have the same thickness as the standard angled 

input laminates. The reasons for this are two-fold. First, one needs to ensure that the non-

standard layups are balanced and symmetric. For a balanced, non-standard angle 

composite, an even number of plies for each non-standard angle is required on both sides 

of the plane of symmetry. For a typical wing skin layup with the angles 0°, ±45°, 90° and 

the corresponding thickness fractions 12/44/44, the closest approximation to these ratios 

results in a total of eighteen plies. With a total of eighteen plies, there are nine plies above 

and below the plane of symmetry. For a laminate to be balanced, for each ply with an 

orientation 𝜃 there must be another ply with the orientation – 𝜃. To maintain symmetry and 

balance, an even number of plies is required on each side of the plane of symmetry. The 

NS 18 ply laminate designs do not have an even number of plies on both sides of the plane 

of symmetry, one cannot design a balanced laminate. If the NS design can be modified to 

have an even number of plies on both sides of the plane of symmetry, then a balanced and 

symmetric NS layup can be designed. 

The second motivation is that the ability to incrementally increase or decrease the 

number of plies in a laminate while maintaining the stiffness gives the designer greater 

flexibility to make more measured changes to a laminate design. This can also help to 

reduce the number of plies while maintaining stiffness.  
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Even though the NS designs have the same stiffness as standard angle composites, 

they may or may not have the same strength. The strength of NS designs still requires 

rigorous investigation as the failure mechanisms of NS designs are not well understood. 

Higher strengths will allow for potential weight savings. To implement any possible weight 

savings two approaches may be used, the use of thinner plies or a reduced ply count.  

In recent years, important progress has been made in the development of composite 

laminates using thinner plies. Nowadays, thin-ply composite materials are commercially 

available down to about 20 μm per ply depending on the type of fiber [19]. This work will 

look at reduced ply counts. Reduced ply counts have the benefit of reduced layup time as 

well as the ability to use existing material for experimental validation.  

When trying to achieve stiffness matching for dissimilar ply counts, the matching 

of [AN] and [AS] may or may not result in stiffness matching because the equivalent 

modulus depends on both the [A] matrix and the number of plies within the laminate. 

Hence, a more rigorous approach is required in which the [AS] matrix must be scaled to 

obtain values of individual elements to which the elements of the [AN] must be equated.  

It was found that dividing the [AS] by the number of plies in the standard layup and 

then multiplying it by the number of plies in the non-standard layup gives the correctly 

scaled matrix that can be used to equate the elements of the [AN] matrix. The proof of this 

is presented in Section 3.4.2. 
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3.4.2 Formulation for Performing Stiffness Matching Independent of Ply Count 

To maintain the same stiffness, i.e., the same effective modulus, the condition 

𝐸𝑥𝑥
𝑆 = 𝐸𝑥𝑥

𝑁  must be enforced. Let ‘n’ be the number of plies in the non-standard angle layup. 

This allows one to test the solution for its dependence on the number of plies in the NS 

layup. Substituting the corresponding elements of both laminates into Equation 27 

produces Equation 59.  

 
(𝐴11

𝑆 −
(𝐴12

𝑆 )
2

𝐴22
𝑠 )

1

𝑁∗𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑝𝑙𝑦 
= (𝐴11

𝑁 −
(𝐴12

𝑁 )2

𝐴22
𝑁 )

1

𝑛∗𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑝𝑙𝑦 
 (59) 

Comparing the corresponding elements of the [A] matrices results in Equation 60.  

 
𝐴11

𝑆
1

𝑁 ∗ 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑝𝑙𝑦 
= 𝐴11

𝑁
1

𝑛 ∗ 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑝𝑙𝑦 
 (60) 

On simplification, a more compact relationship between the elements of the [A] matrices 

results in Equation 61. 

 𝐴11
𝑆

𝑛

𝑁 
= 𝐴11

𝑁  (61) 

   

Similarly, comparing the other elements of the [A] matrix results in  

 (𝐴12
𝑆 )2

𝐴22
𝑠

1

𝑁 
=

(𝐴12
𝑁 )2

𝐴22
𝑁

1

𝑛 
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upon rearranging,  

 (𝐴12
𝑆 )2

𝐴22
𝑠

𝑛

𝑁 
=

(𝐴12
𝑁 )2

𝐴22
𝑁  

further manipulation results in 

 
(𝐴12

𝑆 ∗
𝑛
𝑁

)
2

𝐴22
𝑠 ∗

𝑁2

𝑛2
∗

𝑛

𝑁 
=

(𝐴12
𝑁 )2

𝐴22
𝑁  

additional simplification results in 

 
(𝐴12

𝑆 ∗
𝑛
𝑁)

2

𝐴22
𝑠 ∗

𝑁

𝑛
=

(𝐴12
𝑁 )2

𝐴22
𝑁  

comparing corresponding terms results in 

 
(𝐴12

𝑆 ∗
𝑛

𝑁
)
2

= (𝐴12
𝑁 )2  

finally, leading to Equation 62. 

 𝐴12
𝑆 ∗

𝑛

𝑁
= 𝐴12

𝑁  (62) 

Performing similar manipulations with the remaining corresponding elements of the [A] 

matrices 

1

𝐴22
𝑠 ∗

𝑁

𝑛
=

1

𝐴22
𝑁  



49 

 

results in Equation 63.  

 𝐴22
𝑠 ∗

𝑛

𝑁
= 𝐴22

𝑁  (63) 

Now, the only unconstrained pair of corresponding elements are the elements 

defining the shear response of the laminate. Hence, to constrain these elements of the [A] 

matrix, one utilizes the effective shear moduli of the respective laminates. For 𝐺𝑥𝑦
𝑆 = 𝐺𝑥𝑦

𝑁 , 

i.e., identical in-plane shear response, one uses the Equation 29. Substituting the elements 

of both laminates and then equating them to each other as carried out previously results in 

Equation 64. 

 𝐴66
𝑆

𝑁 ∗ 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑝𝑙𝑦
=

𝐴66
𝑁

𝑛 ∗ 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑝𝑙𝑦
 (64) 

Simplification results in Equation 65.  

 𝐴66
𝑠 ∗

𝑛

𝑁
= 𝐴66

𝑁  (65) 

As the same relationship is seen between corresponding elements of the [A] matrix, 

this relationship can be extended to the entire matrix. Hence, to achieve the stiffness 

matching of laminates with different numbers of plies, one needs to alter the previous 

calculations by scaling the A matrix of the standard angle laminates before equating it to 

the symbolic equations consisting of the non-standard angled laminate angles using 

Equation 66. 
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 [𝐴𝑆] ∗
𝑛

𝑁
= [𝐴𝑁] (66) 

Performing the same set of calculations for stiffness matching as above but now 

with the scaled A matrix for standard angle composites yields the angle pairs and ratios for 

stiffness matching laminate designs. As a NS laminate with a smaller thickness than the 

standard angle design would aid in reducing overall weight, the number of plies in the NS 

designs was initially reduced compared to standard design, i.e., the stiffness of a relatively 

thinner NS laminates was matched with the standard wing skin design. Figure 3.2 contains 

a plot of the angle pairs, i.e., 𝜓 𝑣𝑠 𝜙, and a plot of 𝜓 𝑣𝑠 γ that matches the stiffness of a 16 

ply, non-standard angled laminate to an 18-ply wing skin layup.  
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Figure 3.2 Designs for non-standard laminates made of 16 plies that match the 

stiffness of an 18 ply laminate 

The solutions, i.e., the angle pairs 𝜙, 𝜓 and the thickness fractions corresponding 

to these angles described by the Figure 3.2, are the same as the solutions when the NS 

designs are assumed to have the same thickness as the standard designs shown in Figure 

3.1. Hence, further variations of the number of NS layup plies were tested to check the 

variation in the range of possible laminate designs and the results are presented in the 

Figures 3.3 and 3.4. In Figure 3.3, the number of plies in the NS design were further 
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reduced to determine if a larger difference between the number of plies in the NS and 

standard designs causes a shift in the solution. The solutions, i.e., the angle pairs 𝜙, 𝜓 and 

the thickness fractions corresponding to these angles, remain unchanged.  

 

Figure 3.3 Designs for non-standard laminates made of 14 plies which match the 

stiffness of an 18 ply laminate 

In Figure 3.4, the NS design was set to be thicker than the standard design. This 

was done to check if the solution changes when the NS design has a larger number plies as 

compared to the standard design. This exercise also resulted in the same solution as the 

original solution presented in Figure 3.1.  
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Figure 3.4 Designs for non-standard laminates made of 20 plies which match the 

stiffness of an 18 ply laminate 

Every iteration results in the same set of solutions; hence, it can be concluded that 

the stiffness matching solutions are independent of the thickness of the NS designs. A proof 

of the independence of the stiffness matching solutions from the number of plies in the NS 

design is now presented in Section 3.5 of this chapter. 
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3.5 Independence of Solution from Ply Count 

As seen above in Figures 3.2-3.4, the angle pairs and the angle ply ratios remain 

constant when the number of plies in the NS design are varied. The proof below describes 

why stiffness matching for laminates of different thickness was equivalent to stiffness 

matching of laminates with the same thickness resulting in the same solutions regardless 

of thickness of the non-standard angled laminate.  

Equation 66 shows the condition that takes into account the thickness of both 

laminates so that the same stiffness is maintained when the standard angle and NS layups 

have different thicknesses. 

 [𝐴𝑆] ∗
𝑛

𝑁
= [𝐴𝑁] (66) 

Let the elements of a non-standard angled laminate with the same thickness as the 

standard design be denoted by [AN1] and the elements of non-standard angled laminate 

with different thickness be [AN2]. Now taking 𝐴11
𝑆  for the laminates to have the same 

stiffness, the conditions shown in Equations 67 and 68 must be met.  

 𝐴11
𝑆 = 𝐴11

𝑁1 = Nγ(U1 + U2 cos(2ψ) + U3 cos(4ψ))(𝑡𝑝𝑙𝑦)

+ N(1 − γ)(U1 + U2 cos(2ϕ) + U3 cos(4ϕ))(𝑡𝑝𝑙𝑦) 

(67) 

 𝐴11
𝑁2 =  nγ(U1 + U2 cos(2ψ) + U3 cos(4ψ))(𝑡𝑝𝑙𝑦)

+   n(1 − γ)(U1 + U2 cos(2ϕ) + U3 cos(4ϕ))(𝑡𝑝𝑙𝑦) 

(68) 
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As discussed above, when two laminates have different ply counts, then the 

condition demonstrated by Equation 69 must be met for matched stiffness response.  

 𝐴11
𝑆

𝑛

𝑁
= 𝐴11

𝑁2 (69) 

Starting with Equation 67 

𝐴11
𝑁1 = N(γ(U1 + U2 cos(2ψ) + U3 cos(4ψ))(𝑡𝑝𝑙𝑦)

+ (1 − γ)(U1 + U2 cos(2ϕ) + U3 cos(4ϕ))(𝑡𝑝𝑙𝑦)) 

and dividing the entire equation by ‘N’ results in the following. 

𝐴11
𝑁1

𝑁
= γ(U1 + U2 cos(2ψ) + U3 cos(4ψ))(𝑡𝑝𝑙𝑦)

+ (1 − γ)(U1 + U2 cos(2ϕ) + U3 cos(4ϕ))(𝑡𝑝𝑙𝑦) 

Multiplying the numerator and denominator of the right-hand side of the equation by ‘n’ 

results in  

𝐴11
𝑆

𝑁
=

n(γ(U1 + U2 cos(2ψ) + U3 cos(4ψ))(𝑡𝑝𝑙𝑦) +

(1 − γ)(U1 + U2 cos(2ϕ) + U3 cos(4ϕ))(𝑡𝑝𝑙𝑦))

𝑛
 

On simplifying, Equation 70 results.  

 𝐴11
𝑆

𝑁
=

𝐴11
𝑁2

𝑛
 (70) 
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Equation 70 is the same as Equation 69. Hence, the solution for performing stiffness 

matching for laminates with different thicknesses can be arrived at from the solution for 

laminates of the same thickness. This means that the solution for stiffness matching is 

independent of thickness and both ‘N’ and ‘n’ are arbitrary. Hence the solutions for 

stiffness matching for the same thickness laminates extends to any thickness. 

This result gives one an enormous amount of flexibility; the same solution can be 

used to perform stiffness matching regardless of the number of plies within the NS design. 

This gives the designer the ability to incrementally alter the thickness of the laminate 

without affecting its stiffness. This was not possible with earlier standard designs. 

3.6 Discussions on Stiffness Matching and NS designs 

Based on the Figure 3.1, several symmetric physically realizable discreet layup 

designs can be created. The method detailed above and the method developed by Butler 

both assume that the thickness proportion of each NS angle is continuous. In reality, UD 

laminates have standardized and discrete ply thickness. This discretizes the possible 

thickness ratios for both angle pairs; hence, the entire range of theoretically possible 

designs are not physically realizable. In most cases, approximations must be made.  

Butler’s method uses a continuous input for the standard designs, whereas the 

method presented in this thesis utilizes a discretized physically realizable input to more 

accurately represent a discrete layup. Neither method enforces any rules regarding 

symmetry or balance, which are important considerations when selecting a laminate design. 

Hence, these rules be taken into account when selecting a design from Figure 3.1. 
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Balancing standard angle designs requires that only the plies with orientations of ±45˚ be 

balanced, whereas 0˚ and 90˚ plies are inherently balanced.  

As the conditions enforced only govern the in-plane stiffness, the out of plane 

stiffness, which is described by the [D] matrix, is not uniform across the range of NS 

designs. This results in variations in the out of plane performance even though the in-plane 

stiffness response remains the same. This variation of out of plane performance gives one 

the unique opportunity to tailor the laminates for improved buckling performance.  

The method developed for stiffness matching above uses two angles to define the 

entire laminate, namely 𝜙, 𝜓. Having fewer ply angles simplifies the layup process and 

makes homogenization of the laminate easier. Homogenization is the process in which the 

stacking sequence of the laminate is altered to disperse all angles uniformly throughout the 

laminate. Homogenization is shown in Figure 3.5, where the blue layers represent plies 

with orientation 0˚ and the yellow layers represent plies with orientation 90˚. 

Homogenization helps make laminates tougher and stronger [1]. Furthermore, the 

homogenization of asymmetric laminates can lead to weight and cost savings [24]. 

 

Figure 3.5 Homogenization of [0/90] with different ply thickness and repeats [1] 
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Any laminates with identical stiffness will exhibit the same stress-strain response 

when in service. This allows for the use of NS laminates to replace existing laminates 

without affecting the larger scale design of aircraft.  

Stiffness matching also allows one to maintain the stiffness of a laminate regardless 

of total ply count. This property gives the designer much greater flexibility in terms of 

controlling stiffness when compared to standard angle composites.  

Connections and joints are another area where composites continue to be treated as 

‘black aluminum.’ Stiffness matching can be utilized to reduce the stiffness mismatch 

between parts with different layups and can be vital for improving the performance of 

joints, which have been noted to be very sensitive to stiffness mismatch [25].  

3.7 Layups Chosen for Further Investigation 

From Figure 3.1, three NS designs that match the stiffness of the standard wing skin 

layup were created. These designs will be used to compare the strength of NS layups with 

the standard wing skin layup in Chapters 4 and 5. Higher strength will result in potential 

weight savings.  

The only rule imposed on these designs was symmetry about the mid plane of the 

laminate. Symmetry about the mid plane has been enforced because CLT yields large errors 

when analyzing asymmetrical laminates [33]. When a NS layup is defined, it is necessary 

to define the total number of plies, so that the number of plies of each NS angle can be 

determined. From Figure 3.1, if one chooses 𝜙 = 0˚, then the complementary angle 𝜓 =

55˚ and 𝛾 =  0.4935. Upon rounding 𝛾 to 0.5, the number of plies with angle 𝜙, 𝑁𝜙 = 9 
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and the number of plies with angle Ψ ,𝑁𝜓 = 9. This design, although physically realizable, 

cannot be symmetrical about the mid-plane. For symmetry about the mid plane in a 

laminate, the total number of plies for each angle must be even, therefore this NS design 

was rejected. Furthermore, designs with 𝜙 close to 0˚ would ostensibly perform very 

similarly to standard designs because 0˚ is a standard angle, whereas the corresponding NS 

angle 𝜓 is in the range of 55˚ and is close to 45˚, which is also a standard angle. Hence, 

three designs from the curve in Figure 3.1 that allow for symmetry about the mid-plane 

were chosen and are presented in Tables 3.3-3.5.  
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Table 3.3: NS design #1 

NS design #1 

Ply Number Ply Orientation (Degrees) 

1 14 

2 -14 

3 14 

4 -14 

5 14 

6 60 

7 -60 

8 60 

9 -60 

10 -60 

11 60 

12 -60 

13 60 

14 14 

15 -14 

16 14 

17 -14 

18 14 
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Table 3.4: NS design #2 

NS design #2 

Ply 

Number 

Ply Orientation 

(Degrees) 

1 19 

2 -19 

3 19 

4 -19 

5 19 

6 -19 

7 65 

8 -65 

9 65 

10 65 

11 -65 

12 65 

13 -19 

14 19 

15 -19 

16 19 

17 -19 

18 19 
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Table 3.5: NS design #3 

NS design #3 

Ply 

Number 

Ply Orientation 

(Degrees) 

1 23 

2 -23 

3 23 

4 -23 

5 23 

6 -23 

7 23 

8 80 

9 -80 

10 -80 

11 80 

12 23 

13 -23 

14 23 

15 -23 

16 23 

17 -23 

18 23 
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It must be noted that apart from symmetry, the stacking sequence of the angles of 

the individual layers does not affect the in-plane stiffness of the designs. Optimization of 

the stacking sequence may be investigated in future studies. The strength of these designs 

will be compared to the standard wing skin design. The robustness of these designs under 

various loads will allow one to determine if NS designs present any advantages over 

standard designs. 

3.8 Chapter Summary 

A stiffness matching method was proposed and validated. The solutions of this 

method proved to be independent of the thickness of the NS designs. Three NS designs 

were developed. The strength of these designs is predicted in Chapter 4 and experimentally 

measured in Chapter 5. 
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CHAPTER 4  

STRESS DISTRIBUTION AND FIRST PLY FAILURE METHOD 

4.1 Stress Distributions in a Laminated Material 

The ability to visualize the stress state of a laminate and to estimate its strength is 

vital when evaluating performance of a laminate design in the strength domain. These 

estimates help to reduce testing costs by allowing for an informed decision on which 

laminates should be fabricated for testing. In this chapter, the stress distribution developed 

within standard wing skin design and the NS designs shown in Tables 3.3-3.5 will be 

calculated for various types of loadings. These stress distributions will help one to 

understand if the NS designs are sufficiently robust when compared to standard angle 

designs. These stress distributions will be used to calculate the FPF loads for the standard 

wing skin and NS designs. These loads will be compared to determine which designs offer 

greater strength.   

When a laminate is loaded in a given direction, different plies carry varying 

fractions of the total load. This is a result of the different stiffness of the plies within the 

laminate. Plies that exhibit greater stiffness in the loading direction carry a larger fraction 

of the load. Hence, a distribution of stresses is developed within the laminate. This is shown 

in Figure 4.1, where a uniform strain results in non-uniform stress distribution within the 

laminate. These stress distributions help in visualizing the effect of global loads on 

different plies and can be used to compare the safety of different laminates under the same 

loading. 
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Figure 4.1 Stress and strain distributions in a symmetric laminate [1] 

The variation of stresses within the laminate has a large bearing on how a laminate 

fails when loaded. The method used to plot these distributions will be extended to calculate 

First Ply Failure (FPF) loads in Section 4.2 for any laminate of interest. The FPF load is 

the theoretical load at which the weakest ply within the laminate fails. Furthermore, the 

progression of failure for a laminate can also be investigated by extending the FPF method. 

Therefore, these stress distributions form the basis to predict the strength of laminates. 

Based on these distributions, one can visualize the contribution of each ply to the load 

carrying capacity of the laminate. These distributions can be used to analyze which designs 

are more robust and to average the stress over the laminate more effectively. The standard 

wing skin designs will be compared to the NS designs in Tables 3.3-3.5 to determine which 

theoretical designs are more robust. 

This distribution of stresses within a laminate under a mechanical load can be found 

using the constitutive relationships from CLT. The method for plotting these stress 

distributions when the laminates are subjected to in-plane loading is detailed below.  
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Initially, the mid-plane strains and curvatures for the laminate are found. As 

discussed in Section 2.1, according to CLT, Equation 38 describes the stress – strain 

relationship for laminates.  

 [
𝑁
𝑀

] = [
𝐴 𝐵
𝐵 𝐷

]. (38) 

Upon rearranging, Equation 71 results.  

 [
𝜖
𝜅
] = [

𝐴′ 𝐵′

𝐵′ 𝐷′] [
𝑁
𝑀

] (71) 

To find [
𝐴′ 𝐵′

𝐵′ 𝐷′], the intermediate matrices shown in Equations 72-75 are needed. 

 [𝐴∗] = [𝐴−1] (72) 

 [𝐵∗] = −[𝐴]−1[𝐵] (73) 

 [𝐶∗] = [𝐵][𝐴]−1 (74) 

 [𝐷∗] = [𝐷] − [𝐵][𝐴]−1[𝐵] (75) 

Based on these matrices, [𝐴′], [𝐵]′ and [𝐷′]can be determined from Equations 76-78. 

 [𝐴′] = [𝐴∗] − [𝐵∗][𝐷∗]−1[𝐶∗] (76) 

 [𝐵′] = [𝐵∗][𝐷∗]−1 (77) 

 [𝐷′] = [𝐷∗]−1 (78) 
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For the case being considered, i.e., only in-plane loading, [M] =0, so there are no 

applied moments. Further, as only symmetric designs are considered, [𝐵] = 0 and 

consequently [𝐵′] = 0. These simplifications help to reduce computational time 

significantly. 

Once the vector [
𝜖
𝜅
] , which gives the strains and curvatures at the mid plane of the 

laminate, has been calculated for the load case under consideration, one can find the 

stresses in the global co-ordinate system for individual plies, i.e., a general kth ply, using 

Equation 79 

 

[

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

]

[𝑘]

= [𝑄̅][𝑘] [

𝜖𝑥
0

𝜖𝑦
0

𝜖𝑥𝑦
0

] + 𝑧[𝑘] [

𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦

] (79) 

where [𝑄]̅̅ ̅ is the transformed [𝑄] matrix associated with the kth ply.  

Once the vectors containing the stresses in each ply are known, this information 

can be used to visualize the stress state within the laminate to better understand the effect 

of a certain type of loading on the laminate of interest. Based on the method presented 

above, the theoretical stress distributions developed within a standard wing skin design will 

be compared to the NS designs (Tables 3.3-3.5) that match the stiffness of the standard 

wing skin design. These distributions will help one understand the individual contributions 

of different plies to the load carrying capacity of a laminate. 

The load cases for which the stress distributions have been plotted were defined 

based on the loading experienced by composite specimen, using, for example tests, that 
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follow ASTM D3039 [36] and ASTM D6641 [37]. As most ultimate strength testing is 

done by applying uniaxial loading on coupons, uniaxial loading along the so called 

“balancing axis,” i.e., the global X and Y axes, has been considered. The primary load case 

of interest is when the laminate is loaded along the global X-axis, i.e., when Equation 80 

is true. 

 

[
𝑁
𝑀

] =

[
 
 
 
 
 
𝑁𝑥𝑥

0
0
0
0
0 ]

 
 
 
 
 

 (80) 

There is a large amount of data available for the failure strengths for various 

standard layups for this load case and is shown in Table 4.1 below, the significance of these 

strengths will be elaborated upon in Section 4.2. For the stress distribution calculations 

carried out below, the material properties of laminates manufactured from prepregs made 

of CYCOM 5320-1 resin with T650 fiber have been utilized [21]. In Chapter 5, the 

experimental Open Hole Compression (OHC) strengths of laminate designs shown in 

Tables 3.1 and 3.3-3.5, manufactured from CYCOM 53201-1 resin with T650 fiber are 

presented. Hence, one can utilize the stress distributions in Section 4.1 and the FPF 

predictions presented in Section 4.2 calculated according to the material properties of 

CYCOM 5320-1 resin with T650 fiber to identify correlations between the theoretical FPF 

predictions of the laminates presented in Tables 3.1, 3.3-3.5 and the experimental strengths 

presented in Chapter 5. 
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The theoretical stress distributions for when the standard wing skin laminate is 

loaded along the x axis, as shown in Table 3.1, is presented in Figure 4.2. The X axis of 

both sub-plots in Figure 4.2 represents the location of a ply within the laminate with the 

first ply being ‘1’. The angle associated with each ‘Ply Number’, i.e., the ply location, has 

been annotated at the top of the graph. Along the Y axis, the normal stress developed along 

the loading direction as a result of this load case has been normalized by different factors 

to help one better understand the stress state. In the first sub-plot, the stresses have been 

normalized by the gross stress, i.e., the average stress sustained by the entire laminate. This 

provides a sense of the fraction of the applied load carried by each ply.  

In the second sub-plot in Figure 4.2, the stresses have been normalized by the 

minimum stress within the laminate. This provides a sense of the loads carried by each ply 

relative to each other.   
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Figure 4.2 Stress distributions in a standard wing skin laminate 

In Figure 4.2, one can observe that plies with angle 0˚ carry the majority of the 

applied loads. In comparison to the 0˚ plies, loads carried by the plies with angles of 45˚,

−45˚ and 90˚ are negligible. This is a result of the 0˚ plies exhibiting maximum stiffness 

in the loading direction, i.e., the X direction, while the other plies will be significantly more 
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compliant. This stiffness gradient within the laminate results in the distribution of stress 

seen in Figure 4.2.  

Furthermore, it can be seen that when the ply orientations for two adjacent plies is 

different, there is generally a large jump in the stress. To better visualize this discontinuity, 

a different approach was adopted. The stresses of neighboring plies were considered and 

are shown in Figure 4.3. 

The larger normal stress between two adjacent plies at an interface was normalized 

by the relatively smaller stress to provide an idea of the stress discontinuity between layers. 

The normalized stress distributions were found to be independent of 𝑁𝑥𝑥; hence, any 

arbitrary load along the x axis results in the same relative stress values. The x axis in Figure 

4.3 represents the interface at which the stress discontinuity is being evaluated. For 

eighteen plies, seventeen interfaces need to be considered.  



72 

 

 

Figure 4.3 Stress discontinuity in a standard wing skin laminate when loaded along 

the X axis 

The second load case loads the laminate along the global Y axis, i.e., when Equation 

81 is true. This is of interest to determine if any gain or loss in the strength along x axis for 

the NS designs could be related to any change of strength in the y direction.   
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[
𝑁
𝑀

] =

[
 
 
 
 
 

0
𝑁𝑦𝑦

0
0
0
0 ]

 
 
 
 
 

 (81) 

For this case, when the laminate is loaded along the Y direction. The larger angles, 

i.e., 90˚, will exhibit much greater stiffness in the loading direction. The loading direction 

is aligned with the fiber direction of the 90˚ plies. This results in the 90˚ plies carrying a 

much greater proportion of load in comparison to the other plies, as shown in Figure 4.4. 

In a similar manner to Figure 4.2, the x axis of both sub plots represent the location of a 

ply within the laminate with the first ply being ‘1’.  The angle associated with each ‘Ply 

Number’, i.e., ply location, has been annotated at the top of the graph. Along the y axis is 

the normal stress developed in the loading direction as a result of this load case. This 

normal stress has been similarly normalized to provide a better picture of the contributions 

of each ply. 
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Figure 4.4 Stress distributions in a standard wing skin laminate when loaded along 

the Y direction 

 



75 

 

Now, in a similar manner to Figure 4.3, the stress discontinuity developed in the 

standard wing skin laminate when it is loaded in the y direction will be analyzed. The stress 

discontinuity is shown in Figure 4.5 and the axes follow the same scheme as Figure 4.3. 

Here, one can see the same trends observed before; there is a large stress discontinuity 

whenever there is a change in fiber orientation between adjacent plies and it is generally 

proportional to the difference in orientations between adjacent plies.  
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Figure 4.5 Stress discontinuity in a standard wing skin laminate when loaded along 

the Y direction 

Similarly, these two classes of plots were used to analyze the NS designs. These 

plots can be used to compare the characteristics of the NS designs to the standard designs 

that acts as a benchmark and are presented below. The same treatment is applied to NS 
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design #1 for loading along the x axis stress distributions and the resulting stress 

discontinuities have been plotted in Figure 4.6 and Figure 4.7, respectively.   

 

Figure 4.6 Stress distributions in NS design #1 when loaded along the X direction 
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Figure 4.7 Stress discontinuity in NS design #1 when loaded along the X direction 

In Figure 4.6 a large jump in stress can be seen when the ply angle changes from 

±𝜙 to ±𝜓. This trend is repeated when the laminate is loaded in the Y direction. This is a 

result of ±𝜙 always being closer to 0˚ while ±𝜓 is generally closer to 90˚. Hence, trends 
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of stress distribution and stress discontinuity observed in NS designs are similar to those 

seen in the standard wing skin layup.  

However, the stress discontinuity for NS designs is different. In Figure 4.7, two 

rather large peaks are seen when compared to the peaks observed in the standard design. 

This difference can be explained by the nature of standard designs. In standard designs, the 

stress changes over two “steps”; the first is the transition when the ply angle changes from 

0˚ to 45˚ and the second step is the transition 45˚ to 90˚. This reduces the mismatch of 

stresses over multiple steps. There are two major peaks in the stresses for the NS designs 

when the ply angle changes from ±𝜙 to±𝜓.  

Figure 4.8 and Figure 4.9 show the stress distributions and stress discontinuity 

when the NS design #1 is loaded in the Y direction. 
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Figure 4.8 Stress distributions in NS design #1 when loaded along the Y direction 
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Figure 4.9 Stress discontinuity in NS design #1 when loaded along the Y direction 

In general, the maximum value 
𝜎𝑥𝑥

𝜎𝑔𝑟𝑜𝑠𝑠
 for the NS designs is lower than that seen in 

the standard designs. This indicates that the stress is more uniformly distributed over the 

entire laminate when compared to standard designs. This leads to the conclusion that the 
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NS designs will be more robust because the loads are more evenly distributed over more 

plies.  

The stress distributions and stress discontinuity for the NS design #2 when loaded 

along the X axis are presented in Figure 4.10 and 4.11, respectively. The trends observed 

for NS design #1 are repeated. 
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Figure 4.10 Stress distributions in NS design #2 when loaded along the X direction 
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Figure 4.11 Stress discontinuity in NS design #2 when loaded along the X direction 

The stress distributions and stress discontinuity for the NS design #2 when loaded 

along the Y axis are presented in Figure 4.12 and Figure 4.13, respectively. The trends 

when NS design #1 is loaded along the Y axis are repeated by NS design #2. 
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Figure 4.12 Stress distributions in NS design #2 when loaded along the Y direction 
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Figure 4.13 Stress discontinuity in NS design #2 when loaded along the Y direction 

The stress distributions and stress discontinuity for the NS design #3 when loaded 

along the X axis are presented in Figure 4.14 and Figure 4.15, respectively. The trends seen 

for NS design #1 are again repeated. The lower maximum value of 
𝜎𝑥𝑥

𝜎𝑔𝑟𝑜𝑠𝑠
 when compared 

to the standard design indicates that this design is more robust when compared to the 
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standard design. This robustness results from a lower concentration of stress in the primary 

load bearing plies. 

 

Figure 4.14 Stress distributions in NS design #3 when loaded along the X direction 
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Figure 4.15 Stress discontinuity in NS design #3 when loaded along the X direction 

The stress distributions and stress discontinuity for the NS design #3 when loaded 

along the Y axis are presented in Figure 4.16 and Figure 4.17, respectively. When 



89 

 

compared to the standard wing skin design, the NS designs have more plies with higher 

angles, i.e., plies with angles closer to 90°; as a result, the stress is more evenly distributed 

when these NS laminates are loaded in the y direction as shown in Figure 4.16, which is 

representative of the stress state of all NS designs when loaded along the Y axis. 

 

Figure 4.16 Stress distributions in NS design #3 when loaded along the Y direction 
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Figure 4.17 Stress discontinuity in NS design #3 when loaded along the Y direction 

The stress distributions computed above can now be used to estimate the safe loads 

for the laminates of interest. The first ply failure (FPF) theory will be used in Section 4.2 

to compare NS designs to a standard design. The theoretical safe loads for infinite un-

notched plates will be computed. These are shown in the next section. 

 



91 

 

4.2 Methodology for Computing FPF Loads 

First ply failure theory is the first approach used to estimate the strength of any 

laminate. It will provide an estimate of any gain or loss in strength by NS designs when 

compared to standard designs. Hence, one can predict if using NS angles while maintaining 

stiffness affects the strength of the laminates.  

As a large number of operations are required, solving analytically for FPF loads 

can be quite complex. These operations are detailed below and draw upon many of the 

same operations used for computing the stress distributions presented in Section 4.1. 

The loads applied to the laminate are used to define the [N] and [M] vectors. Then, 

based on these loads, the mid-plane strains of the laminate are found using Equation 71. 

[
𝜖
𝜅
] = [

𝐴′ 𝐵′

𝐵′ 𝐷′] [
𝑁
𝑀

] (71) 

These mid-plane strains are mapped to individual plies to find the stresses 

experienced by each ply in the global co-ordinate system. This operation is performed 

using Equation 79. It must be noted that ‘k’ represents the ply number associated with the 

ply of interest within the laminate. 

 

[

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

]

[𝑘]

= [𝑄̅][𝑘] [

𝜖𝑥
0

𝜖𝑦
0

𝜖𝑥𝑦
0

] + 𝑧[𝑘] [

𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦

] (79) 

Failure theories for composites generally require the knowledge of the stress states 

of all plies in their material co-ordinate systems. Hence, the ply stresses are transformed to 
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the material co-ordinate system using the rotation matrix that was described earlier in 

Chapter 2 and is presented again here. Equations 42 and 43 are used to transform the global 

stresses in each ply to its material co-ordinate system. 

 
[

𝜎1

𝜎2

𝜎6

] = [𝑇1] [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

] (42) 

 
[𝑇1] = [

𝑚2 𝑛2 2𝑚𝑛
𝑛2 𝑚2 −2𝑚𝑛

−𝑚𝑛 𝑚𝑛 𝑚2 − 𝑛2

] (43) 

   

The maximum stress criteria discussed in Chapter 2 is used to check for violations 

of the conditions represented by Equations 39-41. 

 −𝑆𝐿𝑐 < 𝜎11 < 𝑆𝐿𝑡 (39) 

 −𝑆𝑇𝑐 < 𝜎22 < 𝑆𝑇𝑡 (40) 

 −𝑆𝐿𝑇𝑠 < 𝜏12 < 𝑆𝐿𝑇𝑠 (41) 

If and when the conditions shown by Equations 39-41 are violated, then FPF has 

occurred and the load is unsafe. To simplify the implementation of FPF, an iterative method 

has been used.  

This method iteratively increases the load applied to the laminate. The ply stresses 

are calculated and then rotated to their individual material co-ordinate systems. Then, these 
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stresses are compared to the failure criteria. Once a failure criteria is met, failure can be 

declared and an investigation of the failed plies and the failure mode can be undertaken.  

For this work, the primary load case is loading along the X axis. This load case has 

been selected as there are extensive experimental data available in the literature.  

The constitutive relationships used to define the stress-strain relationship assume 

infinite plate conditions. In general, the samples used for experimental testing are finite 

rectangular coupons. Therefore, these predictions are approximations and deviation from 

the experimental values is unavoidable. For this load case, the following equality is true.  

[
𝑁
𝑀

] =

[
 
 
 
 
 
𝑁𝑥𝑥

0
0
0
0
0 ]

 
 
 
 
 

 

𝑁𝑥𝑥 is increased over each iteration until a failure criterion is met. The step size of 

each iteration, i.e., the increments in which one increases 𝑁𝑥𝑥, determines the accuracy of 

the loads at which theoretical FPF occurs.  

This iterative method was implemented in a MATLAB code. Elastic constants for 

pre-pregs fabricated of CYCOM 5320-1 resin with T650 fiber reinforcement [21] are used 

to calculate the A, B, and D matrices for the layups being studied and are shown in Table 

4.1. 
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Table 4.1: Elastic constants for CYCOM 5320-1 resin with T650 fiber reinforcement 

[21] 

Type of Test ASTM Standard Elastic Constant 
Mean 

Value 

Tensile Longitudinal Modulus D 3039-08 E11
T 139 GPa 

Tensile Transverse Modulus D 3039-08 E22
T 9.17 GPa 

Shear Modulus D3518-07 G12 4.95 GPa 

Major Poisson’s Ratio D3518-07 ν12 0.33 

Compressive Longitudinal 

Modulus 
D6641-05 E11

C 126 GPa 

Compressive Transverse 

Modulus 
D6641-05 E22

C 8.55 GPa 

  

To define the failure criteria for maximum stress failure theory shown in Equations 

39-41, experimental values for the failure of the layup [08] in tension and compression were 

used to define 𝑆𝐿𝑐 , 𝑆𝐿𝑡. Similarly, experimental values for the failure of the layup [908] in 

tension and compression were used to define 𝑆𝑇𝑐 , 𝑆𝑇𝑡, and 𝑆𝐿𝑇𝑠 was defined using shear 

strength tests carried out according to according to ASTM D3518-07 [38]. Tensile 

strengths were gathered from tests carried out according to ASTM D3039-08 [36]. 
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Compressive strengths were gathered from tests carried out according to ASTM D6641-05 

[37] and the data were obtained from [21] and are shown in Table 4.2.  

Table 4.2: Failure criteria for Maximum Stress failure criterion [21] 

Type of Test 
ASTM 

Standard 

Failure 

Criteria 
Layup 

Average Strength 

(MPa) 

Tensile Strength D 3039-08 SLt [0]8 2061 

Tensile Strength D 3039-08 STt [90]16 70 

Shear Strength D3518-07 SLTs [45/-45]4S 56 

Compressive 

Strength 
D6641-05 SLc [0]20 1634 

Compressive 

Strength 
D6641-05 STc [90]20 274 

 

As the FPF method only predicts when failure should start and not the entire 

progression of failure, it is generally found to be conservative when compared to the 

experimental data. The strengths of various layups made from CYCOM 5320-1 resin with 

T650 fiber reinforcement are presented in Table 4.3. These data will be compared with the 

FPF predictions of the layups shown in Table 4.3 to validate their accuracy. Next, the same 

method will be applied to the standard wing skin layup and the NS designs shown in Tables 

3.3-3.5. 
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Table 4.3: Experimental strengths for various layups [21] 

Type of Test 
ASTM 

Standard 
Layup 

Average 

Strength (MPa) 

Tensile Strength D 3039-08 [0]8 2061 

Tensile Strength D 3039-08 [90]16 69.64 

Tensile Strength D 3039-08 [45 0 -45 90]2S 672 

Tensile Strength D 3039-08 
[45 -45 0 45 -45 90 45 -45 

45 -45]s 
466 

Tensile Strength D 3039-08 
[0 45 0 90 0 -45 0 45 0 -

45]s 
1055 

Compressive 

Strength 
D6641-05 [0]20 1634 

Compressive 

Strength 
D6641-05 [90]20 274 

Compressive 

Strength 
D6641-05 [90 0 90]7 633 

Compressive 

Strength 
D6641-05 [45 0 -45 90]3S 666 

Compressive 

Strength 
D6641-05 

[45 -45 0 45 -45 90 45 -45 

45 -45]s 
498 
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 The FPF loads for the standard layups under tensile loading along the X axis 

are presented in Table 4.4. On comparing them with the experimental values in 

Table 4.5, one observes that these initial predictions, with the exception of the layup 

with the laminate code [90]16, are highly conservative. 

Table 4.4: FPF Strengths for various layups under tension 

Layup 

FPF Prediction 

(MPa) 

Failure 

Criteria 

Failed Ply 

Angle 

(Degrees) 

[0]8 
2061 𝑆𝐿𝑇 0 

[90]16 
69.6 𝑆𝑇𝑡 90 

[45 0 -45 90]2S 
443 𝑆𝑇𝑡 90 

[45 -45 0 45 -45 90 45 -45 

45 -45]s 
317 𝑆𝑇𝑡 90 

[0 45 0 90 0 -45 0 45 0 -45]s 
712 𝑆𝑇𝑡 90 

  

When the predictions are compared to experimental values, one can observe that 

the FPF predictions grossly underestimate the strengths of the laminates in Table 4.5. 
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Table 4.5: FPF strengths vs experimental strengths 

Layup 
Average Strength 

(MPa) 

FPF Prediction 

(MPa) 

Error 

(%) 

[0]8 2061 2061 0 

[90]16 69.6 69.6 0 

[45 0 -45 90]2S 673 443 -34 

[45 -45 0 45 -45 90 45 -45 45 

-45]s 
466 317 -32 

[0 45 0 90 0 -45 0 45 0 -45]s 1055 712 -32 

 

It can be observed that whenever the layup has all four standard angles, then the 

predictions are highly conservative as the negative error demonstrates underestimation of 

the laminate strength. Hence, it was decided to continue loading the laminate in order to 

determine if less conservative predictions could be obtained when the next ply experiences 

stresses higher than the allowable stressed according to the maximum stress criterion. 

Much better agreement can be seen between the FPF predictions and experimental results 

as shown in Table 4.6. In Table 4.6, ‘FPF 2’ is the failure load when the failure of the 90˚ 

plies is ignored. 
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Table 4.6: FPF 2 Strengths vs experimental tensile strengths 

Layup 

Average 

Strength 

(MPa) 

FPF Prediction 2 

(MPa) 

Error 

(%) 

[45 0 -45 90]2S 673 764 14 

[45 -45 0 45 -45 90 45 -45 45 -45]s 466 417 -10 

[0 45 0 90 0 -45 0 45 0 -45]s 1055 1078 2 

 

Table 4.7 presents the results for the FPF prediction of compressive behavior. 

Reasonable agreement between the FPF predictions and experimental is seen.  

Table 4.7: Comparison of compressive FPF predictions vs experimental data   

Layup 
Average Strength 

(MPa) 

FPF Prediction 

(MPa) 
Error (%) 

[0]20 1634 1634 0 

[90]20 274 274 0 

[90 0 90]7 633 628 -0.75 

[45 0 -45 90]3S 666 639 -4.01 

[45 -45 0 45 -45 90 

45 -45 45 -45]s 
498 394 -21 

 

For standard designs, FPF has been shown to be conservative. FPF predicts the load 

at which the first ply should fail and not the progression of failure within the laminate to 

ultimate failure. 
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As the predictions from the MATLAB code have been seen to be reasonable in both 

tension and compression, the next section presents the use of FPF to predict the strengths 

of the standard wing skin design and the NS designs shown in Tables 3.3-3.5. 

Consequently, the FPF predictions are used to compare the theoretical strengths of the 

standard and NS designs. 

4.3 FPF loads for Wing Skin Layups 

The FPF predictions help one understand the possible failure mechanisms of the 

NS designs and provide an estimate of the strength of each design. Designs with higher 

strengths can be used to produce lighter structures. This analysis helps to identify the 

designs that are most likely to provide improved strength as compared to the existing 

standard design. Furthermore, testing layup strength according to ASTM standards is quite 

time consuming and expensive; hence, these methods may reduce the cost of obtaining 

optimal designs.  

When the FPF predictions for the compressive strength of a standard wing skin 

layup are compared to the NS designs, it can be seen that two of the NS designs presented 

in Table 4.8 offer significant improvements. This can be explained by conclusions drawn 

from Figures 4.2-4.17. In Figures 4.2-4.17, one can observe that there are more primary 

load bearing plies in the NS designs, that the load is distributed over a larger number of 

plies, and hence a higher load can be sustained by the NS designs. 
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Table 4.8: Compressive strength FPF predictions for wing skin layups 

Compressive Strength FPF Predictions  

Layup FPF Prediction (MPa) Failure Criteria Failed Ply Angle 

[0 0 0 0 45 -45 45 -45 90]S 899 𝑆𝐿𝐶 0˚ 

[23 -23 23 -23 23 -23 23 80 -80]S 1040 𝑆𝐿𝐶 23˚ 

[19 -19 19 -19 19 -19 65 -65 65]S 1020 𝑆𝐿𝐶 19˚ 

[14 -14 14 -14 14 60 -60 60 -60]s 882 𝑆𝐿𝐶 14˚ 

 

Similar trends are seen when the tensile strengths are estimated. However, the 

failure of the angles closer to 90° is seen and the STt failure mode is observed, as shown in 

Table 4.9. 
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Table 4.9: Tensile strength FPF predictions for wing skin layups 

Tensile Strength FPF Predictions  

Layup 
FPF Prediction 

(MPa) 

Failure 

Mode 

Failed Ply 

Angle 

[0 0 0 0 45 -45 45 -45 90]S 660 𝑆𝐿𝑇 0˚ 

[23 -23 23 -23 23 -23 23 80 -

80]S 
657 𝑆𝑇𝑡 80˚ 

[19 -19 19 -19 19 -19 65 -65 

65]S 
793 𝑆𝑇𝑡 65˚ 

[14 -14 14 -14 14 60 -60 60 -

60]s 
781 𝑆𝑇𝑡 60˚ 

If NS layups are treated the same as standard layups as in Section 4.2, then the STt 

failure mode should be ignored to give a more realistic load, because the laminate should 

fail when the primary load bearing plies fail. Hence, when the STt failure mode is ignored, 

the predictions shown in Table 4.10 result. 

Table 4.10: Tensile Strength FPF 2 predictions for wing skin layups 

Tensile Strength FPF 2 Predictions  

Layup 
FPF Prediction 

(MPa) 

Failure 

Mode 

Failed Ply 

Angle 

[0 0 0 0 45 -45 45 -45 90]S 660 𝑆𝐿𝑇 0˚ 

[23 -23 23 -23 23 -23 23 80 -80]S 1188 𝑆𝐿𝑇 23˚ 

[19 -19 19 -19 19 -19 65 -65 65]S 1168 𝑆𝐿𝑇 19˚ 

[14 -14 14 -14 14 60 -60 60 -60]s 1009 𝑆𝐿𝑇 14˚ 
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It can be seen in Tables 4.8 and 4.10 that the FPF predictions indicate that the NS 

layups will be significantly stronger compared to the standard layups in both tension and 

compression.  

Based on results that indicate improved strength for NS designs when compared to 

the standard wing skin design, it was decided that physical testing of the NS designs should 

be carried out. Most airframe structures are prone to damage from incidents such as bird 

strikes and tool drops during their service life. Due to this damage, most structures fail at 

stresses much lower than their un-notched strengths, hence open hole compression testing 

provides valuable design data for composites with defects and cut outs [34]. These data can 

be used to design reliable and safe structures.  

4.4 Chapter Summary 

In this chapter, the stress distributions for the standard wing skin and NS designs 

that match the stiffness of the standard wing skin design were calculated. The results 

indicate that NS designs will be more robust than the standard design. The first ply failure 

loads for these designs were calculated. The NS designs were observed to be theoretically 

stronger than the standard wing skin design. Hence, OHC testing of these designs 

according to ASTM D6484 [17] are performed and presented in Chapter 5. 
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CHAPTER 5  

OPEN HOLE COMPRESSION STRENGTH 

It is common aerospace industry practice to develop notched design allowable 

strengths based on gross section stress to account for various stress concentrations, such as 

fastener holes, free edges, flaws, and damage not explicitly modeled in stress analysis [17]. 

The notched strength acts as the limiting design allowable for most structures. By 

comparing the OHC strength for NS composites to the standard design, one can determine 

if there is any improvement in the strength for NS designs over standard designs. This 

information can be directly used by designers in the future. 

The compression test of a composite specimen can be considered a structural test 

having complex interactions between local failures and structural instabilities [18]. This 

amplifies the importance for the use of an easily repeatable standard test procedure. 

The most widely used standard test procedure for Open Hole Compression (OHC) 

strength is ASTM D6484 [17]. It was developed by Boeing and is commonly referred to 

as the Boeing Open Hole Compression test method. This test was developed to evaluate 

the “effects of defects” in composites [12]. The coupon used for this test has the geometry 

shown in Figure 5.1. 
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Figure 5.1 ASTM 6484 test specimen [17] 

 

The fixture required to hold the specimen for this test is designed in such a way that 

the specimen faces are supported. This prevents buckling of the specimen and forces the 

failure to occur in ultimate compression [12]. Figure 5.2 details the fixture and its 

configuration when assembled around a standard specimen. 
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Figure 5.2 ASTM 6484 fixture [17] 

 

5.1 Standard Test Procedure 

A uniaxial compression test of a laminate is performed with a centrally located hole. 

The fixture is assembled around the sample. The standard specimen geometry ensures that, 

when the loaded face of the specimen sits flush with the loaded face of the fixture, the hole 

is centrally located within the fixture. 
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The four bolts that are used to attach the support plates to the grips should be 

torqued to a minimum of 60 lb-in. The bolts can be tightened further if required. The fixture 

is then placed between the compression platens as shown in Figure 5.6. Then, the assembly 

is loaded at a rate of 1mm/min until failure.  

5.2 Deviations from Standard Test Procedure 

Due to manufacturing and machining constraints, there are several areas where 

deviations from the standard were found to be unavoidable. The standard prescribes 

coupons which are 12 in. (305 mm) long while the coupon size was limited to a length of 

11 in. (280 mm) due to the size of the available prepreg. The width of the coupon was not 

modified but the tolerance for the width of the coupons was also larger than that prescribed 

±0.01in. The tolerances were greater than specified by the standard as a result of limited 

resources available for accurate machining of the coupons. The upper deviation was found 

to be +0.0295 in. (0.75 mm) while the lower deviation was found to be -0.0165in (0.41 

mm) with the average deviation being 0.016 in (0.4 mm). 

The 12-inch length of the coupons results in a mixture of end loading directly from 

the platen and shear loading from the grips. If shorter coupons are used, then they will not 

be in contact with the platens and hence experience pure shear loading via the grips.  

An alternate testing procedure for the same standard utilizes hydraulic grips to 

clamp the fixture. For this case, the loading is transferred to coupons purely through shear. 

In a study conducted by ASTM [17], the results from the two types of loading were 

compared. The results show that both procedures produce nearly the same results. Hence, 

the shorter coupons which are loaded through shear should produce the same results as a 



108 

 

standard test. Therefore, the results presented here for 11-inch long coupons should be 

nearly the same as if 12-inch long coupons were used. 

The standard has been designed for standard angle laminates. As non-standard 

angle laminates were tested, unexpected failure modes were observed, which will be 

discussed at the conclusion of this chapter.  

As the coupons were smaller than the standard coupons, a different method for 

aligning the hole of the coupon with the center of the fixture had to be utilized. Markings 

were made on each coupon relative to the central hole and these markings were used to 

center the hole in the window of the fixture.  

Once the coupon is centered, on both grips the bolts in the fixture are tightened with 

a torque wrench. It was observed that a higher torque than the minimum recommended 60 

lb-in prevented any slippage of the coupon within the fixture. The torque used for all 

reported tests was 120 lb-in. A torque wrench was used to ensure uniform torque on all 

bolts. A minimum of four bolts can be used. To reduce the wear of bolts, eight bolts were 

used for the reported set of tests. 

Based on these procedures various layups were tested to compare the notched 

strength of the laminate designs described in this work. The testing is described in the next 

section. 

5.3 Layups Tested 

Two standard angled designs along with three NS designs were fabricated for 

testing; the layups are shown in Table 5.1. Within the standard angle layups, the first design 
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is based on the wing skin layups as presented by Butler et al. is shown in Table 5.1 and is 

denoted as layups L1 and L3. To check the validity of the tests carried out using the 

modified coupon with dimensions described in Section 5.2, a second standard angle layup 

with coupons based on the modified dimension shown in Section 5.2 was tested. This layup 

is shown in Table 5.1 and is denoted as layup L7. The OHC strength of layup L7 according 

to ASTM D6484 [17] is available in the literature and is compared with the strengths found 

is the experimental results reported in Section 5.4. The NS layups have been selected to 

evenly cover the range of possible designs so that any variation of failure strengths and 

failure modes within the range can be identified.  

Initially, samples from Solvay Cytec Cycom 5320-1 resin with IM7 Unitape Pre-

pregs were fabricated. A production run for two panels with six samples per panel was 

conducted. The first panel was the standard wing skin laminate denoted as L1 shown in 

Table 5.1. The second design was the third NS design detailed in Table 3.5. These samples 

were tested according to ATSM D6484 [17]. As this limited test run did not generate 

enough data for conclusive results, a second more comprehensive production run was 

carried out. For this set of samples, Solvay Cytec Cycom 5320-1 resin with T650 Unitape 

Pre-pregs were used. The standard wing skin layup as well as all of the discrete NS designs 

were fabricated. Table 5.1 outlines the layups tested in this work. 
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Table 5.1: Layups tested 

Layup 

ID Layup 

Fiber 

Type 

L1 [0 0 0 0 45 -45 45 -45 90]S IM7 

L2 

[23 -23 23 -23 23 -23 23 80 -

80]S IM7 

L3 [0 0 0 0 45 -45 45 -45 90]s T650 

L4 

[23 -23 23 -23 23 -23 23 80 -

80]S T650 

L5 

[19 -19 19 -19 19 -19 65 -65 

65]S T650 

L6 

[14 -14 14 -14 14 60 -60 60 -

60]S T650 

L7 [45 0 -45 90]4S T650 

 

5.3.1 Sample manufacturing process: 

Plies of length 11 inches and width 5 inches were cut from a roll of prepreg 

material made from CYCOM 5320-1 resin with T650 fibres, such that the fibers were 

oriented along the required angles and laid up on an aluminium mold by hand. A vacuum 

bag was then assembled over the uncured plates. The uncured plates were packaged 

under a layer of bleeder followed by a layer of breather and a porous membrane, over 

which a vacuum bag was placed and sealed using sealant tape. A packaged plate is shown 

in Figure 5.3. 
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Figure 5.3 Assembled Package 

A vacuum was then pulled using a WELCH DUOSEAL 1402 vacuum 

pump through a valve in the package. The plates were then cured in a HAF0 1600 

series convection oven. The curing cycle shown in Figure 5.4 was used for all 

tested layups. After the first two curing steps the vacuum bag was removed and a 

free standing curing step was carried out.  
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Figure 5.4 Curing cycle used for this study 

 

5.4 Experimental Setup 

An OHC fixture manufactured by Wyoming Test Fixtures for ASTM D6484 [17] 

was utilized for this study and is shown in Figure 5.5. The test frame utilized was a 

hydraulic static test SATEC UNIDRIVE frame rated to a maximum force of approximately 

400,000N and is shown in Figure 5.6 As specified by ASTM D6484 [17], displacement 

control loading was applied to all specimens. The standard loading rate of 1mm/min was 

maintained for all tests [17]. The frame was computer controlled. A break detector protocol 

in the test frame controller was used to detect a rapid drop in load with displacement. When 

a break was detected, i.e., a drop of load of 25% from the peak load, the loading was 

stopped and the peak load was recorded. The only data recorded from each test was the 

peak load.  



113 

 

 

Figure 5.5: OHC test fixture 
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Figure 5.6 SATEC UNIDRIVE Hydraulic Testing frame 

5.5 Results 

The dominant failure mechanism in the OHC test is local fiber micro buckling 

failure of 0˚ plies, based on the loss of stability of the fibers in the matrix phase. 

Subsequently, the final failure occurs as a result of inter-laminar delamination, kink band 

broadening, and fiber fracture [18]. 

In the standard wing skin layup samples, i.e., L1 and L3, a crack is seen to propagate 

perpendicular to the primary loading direction. Extensive delamination was observed 

surrounding the hole. These observations are consistent with [18]. The failure mechanism 

for layup L3 is shown in Figure 5.7. The cracks observed in Figure 5.7 are representative 

for the failure modes observed in all samples of layups L1 and L3 tested in this thesis. 
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Figure 5.7 Failure Mechanism for layups L1 and L3 

 

In the NS designs, the cracks primarily run along the direction of either the +𝜙 or 

–𝜙 directions, i.e., the lower angle which, in this configuration, is closest to the surface of 

the laminate. It is shown in Section 4.1 that these plies carry a majority of the load. In 

Figure 5.8, one can see the crack propagate along the +𝜙 direction in layup L5. The same 

type of failure has been seen for all NS layups, i.e., layups L2 and L4-L6. 

.  
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Figure 5.8 Failure mechanism for layup L5 

 

The cracks that occur in the –𝜙 layers sometimes propagate towards the surface 

ply, i.e., the ply with a fiber orientation of +𝜙. This propagation of cracks from sub surface 

plies to the surface plies was frequently observed in layups L2, and L4-L6 and is shown in 

Figure 5.9 for layups L2 and L4. 
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Figure 5.9 Failure mechanism for layups L2 and L4 

As these cracks propagate along the fiber directions and not perpendicular to it, the 

failures observed in the NS angles are not fiber micro buckling but rather they are matrix 

failures. The NS designs were significantly weaker than the standard wing skin design. The 

OHC strengths of the layups tested are presented in Table 5.2. The failure load for each 

reported test is presented in Appendix D. 
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Table 5.2 Average OHC strength for selected layups 

Layup 
ID 

Layup 
Fiber 
Type 

Average 
 Failure Stress 

(MPa) 

Standard 
Deviation 

(MPa) 

L1 [0 0 0 0 45 -45 45 -45 90]S IM7 425 40 

L2 [23 -23 23 -23 23 -23 23 80 -80]S IM7 302 12 

L3 [0 0 0 0 45 -45 45 -45 90]s T650 446 12 

L4 [23 -23 23 -23 23 -23 23 80 -80]S T650 310 11 

L5 [19 -19 19 -19 19 -19 65 -65 65]S T650 321 12 

L6 [14 -14 14 -14 14 60 -60 60 -60]S T650 312 21 

L7 [45 0 -45 90]4S T650 314 7 

 

The OHC strength for layup L7 is according to [21] is 349 MPa. Hence, the strength 

measured by the experiments is within 10% of the strength reported in the literature. The 

difference can be for many reasons. The plates manufactured for this study were fabricated 

by hand-layup. Hence, variations in ply angles can never be completely eliminated. The 

machining of the coupons from the plates adds another process which leads to a possible 

buildup of tolerances which affect the orientation of fibers with respect to the loading 

direction.  

5.5 Discussion 

The standard wing skin design has significantly higher OHC strength than the NS 

designs. To determine the relative strengths of designs with identical stiffness, the strengths 

of layups L3-L6 are normalized by the strength of the standard wing skin design L3. A 



119 

 

reduction of approximately thirty percent can be seen for most NS designs. These relative 

strengths are shown in Table 5.3. 

Table 5.3 Relative OHC strengths 

Layup  
Average Max 

Strength 
(MPa) 

Strength relative to 
Standard Angled 

Layup 

(04,±454,901)S 447 1.00 

(23 -23 23 -23 23 -23 23 80 -80)S 310 0.70 

(19 -19 19 -19 19 -19 65 -65 65)s 322 0.72 

(14 -14 14 -14 14 60 -60 60 -60 )S 312 0.70 

 

This reduction in OHC strength can be attributed to the fact that the failure modes 

for standard and NS designs are different. As observed Figures 5.7-5.9, the failure mode 

for standard designs is dominated by fiber micro buckling. In compression, standard layups 

always fail starting with the micro buckling of the 0° plies followed by the delamination of 

off-axis plies [22].  

The NS designs do not exhibit any noticeable fiber micro-buckling. The cracks 

observed in the NS designs run along the ply orientations indicating a matrix failure. This 

explains the relative weakness of the NS designs as the matrix is a much weaker constituent 

of the composite than the fiber reinforcement. 

The standard for testing OHC, ASTM D6484 [17], has been designed for layups 

consisting of the four standard angles. The 0° fibers run continuously between both grips 
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of the OHC fixture, as a result the primary load bearing plies have continuous fibers 

running between both grips, this has been shown in Figure 5.10. Failure occurs when local 

instability at an edge causes a micro buckle that grows into ultimate failure [22]. In this 

work, the hole at the center of the coupon is the edge at which crack nucleation takes place. 

The crack then propagates perpendicular the fiber orientation of the 0˚ plies. 

 

Figure 5.10 Primary load bearing fibers for standard layup specimen under OHC 

The cracks in the NS design are observed to initiate at the point of maximum stress 

concentration. However, contrary to standard designs, in NS designs cracks propagate 

along the ply fiber orientations to the coupon edges as shown by Figures 5.7-5.9.  

The primary load carrying plies in NS designs are off-axis plies when their 

orientation is not 0˚. Hence, unlike the 0˚ plies, all of the fibers originating from the top 
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grip do not run continuously till the bottom grip, this results in fiber discontinuity, as shown 

in Figure 5.11. The geometry of the coupons is unfavorable to test the actual performance 

of NS layups. The width of the unsupported gage section is 1.5 in (38 mm) while its length 

is approximately 4 in (102 mm). This is will not affect standard angled laminates as the 0° 

plies will run continuously from the top grip to the bottom. Only fibers around the hole 

will experience fiber discontinuity. 

 

Figure 5.11 Primary Load bearing fibers for NS layups under OHC 

However, the primary load carrying plies have off axis orientations for NS designs, 

this leads to fiber discontinuity shown in Figure 5.11. This fiber discontinuity between 

grips allows shear failure to occur before catastrophic micro-buckling failure. The 

singularity associated with the free edge of laminated test specimens causes a stress 
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concentration, especially when a laminate contains plies with fibers in varying orientations. 

The strength of full-sized components may be misrepresented by narrow test specimens 

[39]. The narrow aspect ratio of this gage section is hence vital and affects the test results 

for NS designs more significantly than standard layups.   

5.6 Summary 

The results of OHC testing on standard angle and NS designs shown in Table 5.1 

have been presented. Deviations resulting from manufacturing and machining constraints 

from the OHC testing standard ASTM D6484 [17] were reported. The modified testing 

procedure was validated against available data from the literature [21]. The NS designs 

tested exhibit a different failure mode than the standard wing skin design. A possible cause 

for premature failure of NS designs was identified to be the lack of fiber continuity in the 

NS designs. The recommendations to alter the tests carried out for representative strengths 

for NS designs are presented in Chapter 6. 
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CHAPTER 6  

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

A theoretical and experimental study of the behavior of Non-Standard angled 

laminates was conducted. A stiffness matching method based on the ‘A’ matrix in 

composite laminate theory was developed. This method helps one to compute the range of 

possible non-standard laminates that have the same in-plane stiffness as an input laminate. 

The non-standard layups computed consist of a pair of NS angles. The range of 

theoretically possible NS designs that match the in-plane stiffness for a standard wing skin 

layup was computed based on this method. The validity of this method was validated using 

the method developed by Butler et al. [7]. The validity of these solutions was verified by a 

mathematical proof for laminates with dissimilar ply counts. It was seen that the angle pairs 

and thickness fractions of each NS angle are independent of the laminate ply count. This 

helps in maintaining stiffness regardless of laminate thickness, which was not possible with 

earlier standard designs. Based on this result, these layups can be used to mitigate stiffness 

mismatch between parts in an assembly, which is a crucial concern when two parts are 

mechanically joined. It is clear that in terms of stiffness NS designs provide much greater 

flexibility over standard designs. The ability to reduce stiffness mismatch between different 

components will greatly benefit complex assemblies.  

As the range of possible solutions is a continuous domain, a number of physically 

realizable discrete designs were extracted from this range. It was observed that when 
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laminate design rules such as symmetry and balance are applied to this range, the number 

of possible designs is reduced to a finite set of solutions. This makes NS designs more 

amenable to optimization, as the number of designs is now limited and a more detailed 

analysis for a few selected designs can be carried out.  

The failure loads for a set of un-notched standard layups were estimated based on 

first ply failure theory. As good agreement was seen with available data, this method was 

applied to the standard wing skin layup. Then, the same method was applied to NS designs. 

According to this method a significant improvement in FPF strength in the NS designs over 

the standard wing skin design was seen.  

OHC testing according to ASTM D6484 [17] for standard and NS designs was 

performed. This allows one to compare the maximum safe loads for both standard and NS 

wing skin layups. Here it was seen that the failure mechanism for standard angle 

composites was dominated by micro buckling of the 0° fibers, whereas in NS designs a 

different failure mode was seen. The NS designs failed in shear, with cracks in the matrix 

along the fibers of the primary load bearing plies observed. As a result, the NS designs 

failed at lower loads than standard designs. In most cases a reduction of approximately 

thirty percent was observed when compared to the standard design. In NS designs, the 

fibers of the primary load bearing plies do not run continuously between both grips. This 

results in the fibers transferring loads to neighboring fibers via the matrix. Therefore, 

matrix failure occurs before local instability of fibers can cause fiber failure, i.e., micro-

buckling. Fiber continuity within the standard specimens leads to the micro-buckling. As 

the gage section for OHC testing according to ASTM D6484 [17] is narrow, it tends to 

favor layups with 0° plies while any off-axis plies make only a secondary contribution to 
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the strength of the laminate. Therefore, even though the results of this study indicate that 

standard designs are more resilient under compression, alternate testing methods should be 

investigated.  

6.2 Future Work 

Additional work is needed to gain a more thorough understanding of NS laminate 

design. Alternate formulations for stiffness matching with constraints to ensure balance 

and symmetry in the laminates should be developed as laminates that do not maintain 

stiffness and balance are not accurately modeled by CLT. Aircraft structures are often 

subjected to complex 3-D loads; hence, the effects on the out of plane stiffness must also 

be considered in future studies.  

Traditionally, testing of standardized coupons has been used to gather material data. 

These data are used to design components with more complex geometries. This mapping 

of data from coupons to complex structures has been convenient and accurate for standard 

angles. But this may not be the case for NS designs. Hence, the dependence of the strengths 

on the coupon geometry must be studied.  

The laminate stacking sequence has an important effect on strength. When 0º fibers 

are placed on the surface of a coupon, they buckle more easily due to reduced support and 

the laminate loses compressive strength [29]. The layups used for this study all have lower 

angles on the surface and higher angles in the center. The effect of the stacking sequence 

and homogenization of the layups should also be studied to discern any possible gain of 

strength with change in the stacking sequence. Homogenization results in stronger and 

tougher laminates [1]. This work focused on the OHC strength, which, as discussed in 
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Section 1.2, limits the allowable stress for most structural applications. However, there is 

a wide variety of tests that must be performed to obtain a more complete picture of the 

response of these laminates. Tests such as Open Hole Tension and un-notched strengths 

testing are required. Data from these tests will allow for accurate FEM modeling of 

complex structures made from NS laminates. 

The trends seen in the predicted FPF loads for un-notched laminates have not been 

repeated in notched specimen tested. Hence, further work is required to build a model that 

can accurately predict the strength of notched NS designs. Currently most strength 

predictions rely on the un-notched strength as well as the characteristic length of the defect 

[26]. As the characteristic length for the specimen tested is constant, one requires 

information on the un-notched strengths of the NS designs. Based on the un-notched 

strengths, on should be able to check the validity of commonly used criteria for NS designs.  
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APPENDIX A 

MATLAB code for implementing stiffness matching formulation when both standard and 

NS designs have the same thickness. 

clc; 
clearvars; 
% Uni Directional Tape Properties 
%E11 is Youngs Modulus in X E22 is Youngs Modulus in Y Units GPa 
%G12 is in plane Shear Modulus Units GPa 
%u12 is major Poissons Ratio 
%u21 is minor possons Ratio 
E11=138.584; 
E22=9.170; 
G12=4.950; 
u12=0.326; 
u21=(u12*E22)/E11; 
%Stiffness matrix of one ply i.e. a Lamina is Q Matrix  
Q=zeros(3); 
denom=1-(u12*u21); 
Q(1,1)=E11/denom; 
Q(1,2)=(u12*E22)/denom; 
Q(2,1)=(u12*E22)/denom; 
Q(2,2)=E22/denom; 
Q(3,3)=G12; 
%Calculation of Stiffness invariants to be used later 
U1=(1/8)*(3*Q(1,1)+3*Q(2,2)+2*Q(1,2)+4*Q(3,3)); 
U2=(1/2)*(Q(1,1)-Q(2,2)); 
U3=(1/8)*(Q(1,1)+Q(2,2)-2*Q(1,2)-4*Q(3,3)); 
U4=(1/8)*(Q(1,1)+Q(2,2)+6*Q(1,2)-4*Q(3,3)); 
U5=(1/8)*(Q(1,1)+Q(2,2)-2*Q(1,2)+4*Q(3,3)) 
% Thetadb is the array with the stacking Sequence  
%NPlies is the number of plies in stackup  
% hply is the height of one ply 

  
%h_ply units in mm 
h_ply=0.14; 
thetadb=[0 0 0 0 45 -45 45 -45 90 90 -45 45 -45 45 0 0 0 0 ]; 
Nplies=length(thetadb); 
%calculation of Qbar i.e. rotated stiffnes of a lamina  
A=zeros(3); 
for i=1:Nplies 
    Qbar=zeros(3); 
    theta =(thetadb(i)*pi)/180; 
    m=cosd(thetadb(i)); 
    n=sind(thetadb(i)); 
    

Qbar(1,1)=(m^4)*Q(1,1)+2*(m^2)*(n^2)*(Q(1,2)+2*Q(3,3))+(n^4)*Q(2,2); 
    Qbar(1,2)=(m^2)*(n^2)*(Q(1,1)+Q(2,2)-

4*Q(3,3))+((m^4)+(n^4))*Q(1,2); 
    Qbar(1,3)=(m^3)*n*(Q(1,1)-Q(1,2)-2*Q(3,3))+m*(n^3)*(Q(1,2)-

Q(2,2)+2*Q(3,3)); 
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    Qbar(2,1)=Qbar(1,2); 
    

Qbar(2,2)=(n^4)*Q(1,1)+2*(m^2)*(n^2)*(Q(1,2)+2*Q(3,3))+(m^4)*Q(2,2); 
    Qbar(2,3)=m*(n^3)*(Q(1,1)-Q(1,2)-2*Q(3,3))+(m^3)*n*(Q(1,2)-

Q(2,2)+2*Q(3,3)); 
    Qbar(3,1)=Qbar(1,3); 
    Qbar(3,2)=Qbar(2,3); 
    Qbar(3,3)=(m^2)*(n^2)*(Q(1,1)-2*Q(1,2)+Q(2,2))+(((m^2)-

(n^2))^2)*Q(3,3); 
    A=A+Qbar*h_ply; 
end 
%Exx is the Laminate Youngs modulus in X units in MPa 
%Eyy is the Laminate Youngs modulus in Y units in MPa 
%Gxy is the Laminate Shear modulus in X units in MPa 
Exx= (A(1,1)-((A(1,2)^2)/A(2,2)))/(Nplies*h_ply); 
Eyy= (A(2,2)-((A(1,2)^2)/A(1,1)))/(Nplies*h_ply); 
Gxy=A(3,3)/((Nplies*h_ply)); 
uxy=A(1,2)/A(2,2); 
% Starting to Figure out Non Standard Ply angles and Percentages 
%A matrices define the in Plane response  
%Stiffness as can be seen above depends on the A matrices and overall 
%laminate thickness  
%as We will be using different thickness of laminates  
%We need to scale the A matrix of the non standard Laminate to get the 

same 
%Exx Eyy Gxy A_ns is the A matrix for thinner non standard plate 
%Nplies_ns are the number of plies in the non standard plate 
Nplies_ns=18; 
A_ns=A 
Exx_ns= (A_ns(1,1)-((A_ns(1,2)^2)/A_ns(2,2)))/(Nplies_ns*h_ply); 
Eyy_ns= (A_ns(2,2)-((A_ns(1,2)^2)/A_ns(1,1)))/(Nplies_ns*h_ply); 
Gxy_ns=A_ns(3,3)/((Nplies_ns*h_ply)); 
uxy_ns=A_ns(1,2)/A_ns(2,2); 

  
%choose first non standard angle in degrees 
% psi is defined , we solve for gamma and phi,psi in degree 
gammadb=zeros(1,91); 
phidb=zeros(1,91); 
psidb=zeros(1,91) 
for i = 55:90 

  
psi=i 
psidb(i+1)=psi; 
%a is cos(2phi) b is cos(4phi) 
%change Nplies to non standard plate Nplies 

  
syms gamma a  

  
sol = 

solve([(Nplies_ns*U1+gamma*Nplies_ns*U2*cosd(2*psi)+gamma*Nplies_ns*U3*

cosd(4*psi)+Nplies_ns*(1-gamma)*U2*cos(2*a)+Nplies_ns*(1-

gamma)*U3*cos(4*a))*h_ply==A_ns(1,1),(Nplies_ns*U1-

gamma*Nplies_ns*U2*cosd(2*psi)+gamma*Nplies_ns*U3*cosd(4*psi)-

Nplies_ns*(1-gamma)*U2*cos(2*a) +Nplies_ns*(1-

gamma)*U3*cos(4*a))*h_ply==A_ns(2,2),a>=-

1,a<=1,gamma>=0,gamma<=1],[gamma,a]) 
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solution_existence= size(sol.gamma); 
b=radtodeg(vpa(sol.a)); 
if solution_existence>0 
gammadb(i+1)=vpa(abs((sol.gamma(1)))); 
phi_in_rad=vpa(sol.a(1)); 
phidb(i+1)=abs(radtodeg(phi_in_rad)) 
end 

  

  
end 
subplot(2,1,1); 

  
plot(psidb(56:91),phidb(56:91)) 
xlabel('\psi^\circ') 
ylabel('\phi^\circ') 
title( 'Angle pairs for matching a 18 ply NS Layup to a 18 ply standard 

wing skin layup') 
grid on 
axis([0 90 0 30]) 
subplot(2,1,2);  
plot(psidb(56:91),gammadb(56:91)) 
title('Ratio of plies with orientation of \psi') 
xlabel('\psi^\circ') 
ylabel('\gamma') 
axis([0 90 0 1]) 
grid on 
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APPENDIX B 

MATLAB code for implementing stiffness matching formulation when standard 

and NS designs have different thickness. 

clc; 
clearvars; 
% Uni Directional Tape Properties 
%E11 is Youngs Modulus in X E22 is Youngs Modulus in Y Units GPa 
%G12 is in plane Shear Modulus Units GPa 
%u12 is major Poissons Ratio 
%u21 is minor possons Ratio 
E11=121.200; 
E22=2.300; 
G12=5.515; 
u12=0.3; 
u21=(u12*E22)/E11; 
%Stiffness matrix of one ply i.e. a Lamina i.e. Q Matrix or C matix in 
%Butler&Andy Paper 
Q=zeros(3); 
denom=1-(u12*u21); 
Q(1,1)=E11/denom; 
Q(1,2)=(u12*E22)/denom; 
Q(2,1)=(u12*E22)/denom; 
Q(2,2)=E22/denom; 
Q(3,3)=G12; 
%Calculation of Stiffness invariants to be used later 
U1=(1/8)*(3*Q(1,1)+3*Q(2,2)+2*Q(1,2)+4*Q(3,3)); 
U2=(1/2)*(Q(1,1)-Q(2,2)); 
U3=(1/8)*(Q(1,1)+Q(2,2)-2*Q(1,2)-4*Q(3,3)); 
U4=(1/8)*(Q(1,1)+Q(2,2)+6*Q(1,2)-4*Q(3,3)); 
U5=(1/8)*(Q(1,1)+Q(2,2)-2*Q(1,2)+4*Q(3,3)) 
% Theta is the array with the stacking Sequence Use only Balanced ans 
% Symmetric and Balanced Stacking Sequences ONLY 
%NPlies is the number of plies in stackup  
% hply is the height of one ply 

  
%h_ply units in mm 
h_ply=0.14; 
thetadb=[0 0 0 0 45 -45 45 -45 90 90 -45 45 -45 45 0 0 0 0 ]; 
Nplies=length(thetadb); 
%calculation of Qbar i.e. rotated stiffnes of a lamina  
A=zeros(3); 
for i=1:Nplies 
    Qbar=zeros(3); 
    theta =(thetadb(i)*pi)/180; 
    m=cosd(thetadb(i)); 
    n=sind(thetadb(i)); 
    

Qbar(1,1)=(m^4)*Q(1,1)+2*(m^2)*(n^2)*(Q(1,2)+2*Q(3,3))+(n^4)*Q(2,2);%so

mething wrong 
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    Qbar(1,2)=(m^2)*(n^2)*(Q(1,1)+Q(2,2)-

4*Q(3,3))+((m^4)+(n^4))*Q(1,2); 
    Qbar(1,3)=(m^3)*n*(Q(1,1)-Q(1,2)-2*Q(3,3))+m*(n^3)*(Q(1,2)-

Q(2,2)+2*Q(3,3)); 
    Qbar(2,1)=Qbar(1,2); 
    

Qbar(2,2)=(n^4)*Q(1,1)+2*(m^2)*(n^2)*(Q(1,2)+2*Q(3,3))+(m^4)*Q(2,2); 
    Qbar(2,3)=m*(n^3)*(Q(1,1)-Q(1,2)-2*Q(3,3))+(m^3)*n*(Q(1,2)-

Q(2,2)+2*Q(3,3)); 
    Qbar(3,1)=Qbar(1,3); 
    Qbar(3,2)=Qbar(2,3); 
    Qbar(3,3)=(m^2)*(n^2)*(Q(1,1)-2*Q(1,2)+Q(2,2))+(((m^2)-

(n^2))^2)*Q(3,3); 
    A=A+Qbar*h_ply; 
end 
%Exx is the Laminate Youngs modulus in X units in MPa 
%Eyy is the Laminate Youngs modulus in Y units in MPa 
%Gxy is the Laminate Shear modulus in X units in MPa 
Exx= (A(1,1)-((A(1,2)^2)/A(2,2)))/(Nplies*h_ply); 
Eyy= (A(2,2)-((A(1,2)^2)/A(1,1)))/(Nplies*h_ply); 
Gxy=A(3,3)/((Nplies*h_ply)); 
uxy=A(1,2)/A(2,2); 
% Starting to Figure out Non Standard Plys angles and Percentages 
%A matrices define the in Plane response  
%Stiffness as can be seen above depens on the A matrices and overall 
%laminate thickness  
%as We will be using different thickness of laminates  
%We need to scale the A matrix of the non standard Laminate to get the 

same 
%Exx Eyy Gxy A_ns is the A matrix for thinner non standard plate 
%Nplies_ns are the number of plies in the non standard plate 
Nplies_ns=20; 
A_ns=(A*Nplies_ns)/Nplies; 
Exx_ns= (A_ns(1,1)-((A_ns(1,2)^2)/A_ns(2,2)))/(Nplies_ns*h_ply); 
Eyy_ns= (A_ns(2,2)-((A_ns(1,2)^2)/A_ns(1,1)))/(Nplies_ns*h_ply); 
Gxy_ns=A_ns(3,3)/((Nplies_ns*h_ply)); 
uxy_ns=A_ns(1,2)/A_ns(2,2); 

  
%choose first non strandard angle in degrees 
% psi is defined , we solve for gamma and phi,psi in degree 
gammadb=zeros(1,91); 
phidb=zeros(1,91); 
psidb=zeros(1,91) 
for i = 55:90 

  
psi=i 
psidb(i+1)=psi; 
%a is cos(2phi) b is cos(4phi) 
%change Nplies to non standard plate Nplies 

  
syms gamma a  

  
sol = 

solve([(Nplies_ns*U1+gamma*Nplies_ns*U2*cosd(2*psi)+gamma*Nplies_ns*U3*

cosd(4*psi)+Nplies_ns*(1-gamma)*U2*cos(2*a)+Nplies_ns*(1-

gamma)*U3*cos(4*a))*h_ply==A_ns(1,1),(Nplies_ns*U1-
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gamma*Nplies_ns*U2*cosd(2*psi)+gamma*Nplies_ns*U3*cosd(4*psi)-

Nplies_ns*(1-gamma)*U2*cos(2*a) +Nplies_ns*(1-

gamma)*U3*cos(4*a))*h_ply==A_ns(2,2),a>=-

1,a<=1,gamma>=0,gamma<=1],[gamma,a]) 
solution_existence= size(sol.gamma); 
b=radtodeg(vpa(sol.a)); 
if solution_existence>0 
gammadb(i+1)=vpa(abs((sol.gamma(1)))); 
phi_in_rad=vpa(sol.a(1)); 
phidb(i+1)=abs(radtodeg(phi_in_rad)) 
end 

  

  
end 
subplot(2,1,1); 

  
plot(psidb(56:91),phidb(56:91)) 
xlabel('\psi^\circ') 
ylabel('\phi^\circ') 
title( 'Angle pairs for matching a 18 ply NS Layup to a 18 ply standard 

wing skin layup') 
grid on 
axis([0 90 0 30]) 
subplot(2,1,2);  
plot(psidb(56:91),gammadb(56:91)) 
title('Ratio of plies with orientation of \psi') 
xlabel('\psi^\circ') 
ylabel('\gamma') 
axis([0 90 0 1]) 
grid on 
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APPENDIX C 

MATLAB code used to calculate the stress distribution and FPF loads. 

%Damage Criterion for Composites 
%First Need to Calculate A B D for all reqd matrices to find strains 
%After strains of LAMINATE move to ply-wise i.e. LAMINA level stresses 
%Iso-strain for all plies assumed  
%Values verified against examples 3.5-3.12 in PK Mallick book 
clc; 
clearvars; 
% Uni Directional Tape Properties 
%E11 is Youngs Modulus in X E22 is Youngs Modulus in Y Units GPa 
%G12 is in plane Shear Modulus Units GPa 
%u12 is major Poissons Ratio 
%u21 is minor possons Ratio 
E11=138.58; 
E22=9.17; 
G12=4.9504; 
u12=0.326; 
u21=(u12*E22)/E11; 
%Stiffness matrix of one ply i.e. a Lamina i.e. Q Matrix or C matix in 
%Butler&Andy Paper 
Q=zeros(3); 
denom=1-(u12*u21); 
Q(1,1)=E11/denom; 
Q(1,2)=(u12*E22)/denom; 
Q(2,1)=(u12*E22)/denom; 
Q(2,2)=E22/denom; 
Q(3,3)=G12; 
%Calculation of Stiffness invariants to be used later 
U1=(1/8)*(3*Q(1,1)+3*Q(2,2)+2*Q(1,2)+4*Q(3,3)); 
U2=(1/2)*(Q(1,1)-Q(2,2)); 
U3=(1/8)*(Q(1,1)+Q(2,2)-2*Q(1,2)-4*Q(3,3)); 
U4=(1/8)*(Q(1,1)+Q(2,2)+6*Q(1,2)-4*Q(3,3)); 
U5=(1/8)*(Q(1,1)+Q(2,2)-2*Q(1,2)+4*Q(3,3)); 
% Theta is the array with the stacking Sequence Use only Balanced ans 
% Symmetric and Balanced Stacking Sequences ONLY 
%NPlies is the number of plies in stackup  
% hply is the height of one ply 

  
%h_ply units in mm 
h_ply=0.14; 
thetadb=[23 -23 23 -23 23 -23 23 80 -80 -80 80 23 -23 23 -23 23 -23 23] 
Nplies=length(thetadb); 
Qdb=zeros(3,3,Nplies); 
h      = Nplies * h_ply; 
for i = 1:Nplies; 
  zbar(i) = - (h + h_ply)/2 + i*h_ply; 
end; 
%calculation of Qbar i.e. rotated stiffnes of a lamina  
A=zeros(3); 
B=zeros(3); 
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D=zeros(3); 
for i=1:Nplies 
    Qbar=zeros(3); 
    theta =(thetadb(i)*pi)/180; 
    m=cosd(thetadb(i)); 
    n=sind(thetadb(i)); 
    

Qbar(1,1)=(m^4)*Q(1,1)+2*(m^2)*(n^2)*(Q(1,2)+2*Q(3,3))+(n^4)*Q(2,2);%so

mething wrong 
    Qbar(1,2)=(m^2)*(n^2)*(Q(1,1)+Q(2,2)-

4*Q(3,3))+((m^4)+(n^4))*Q(1,2); 
    Qbar(1,3)=(m^3)*n*(Q(1,1)-Q(1,2)-2*Q(3,3))+m*(n^3)*(Q(1,2)-

Q(2,2)+2*Q(3,3)); 
    Qbar(2,1)=Qbar(1,2); 
    

Qbar(2,2)=(n^4)*Q(1,1)+2*(m^2)*(n^2)*(Q(1,2)+2*Q(3,3))+(m^4)*Q(2,2); 
    Qbar(2,3)=m*(n^3)*(Q(1,1)-Q(1,2)-2*Q(3,3))+(m^3)*n*(Q(1,2)-

Q(2,2)+2*Q(3,3)); 
    Qbar(3,1)=Qbar(1,3); 
    Qbar(3,2)=Qbar(2,3); 
    Qbar(3,3)=(m^2)*(n^2)*(Q(1,1)-2*Q(1,2)+Q(2,2))+(((m^2)-

(n^2))^2)*Q(3,3); 
     Qdb(:,:,i)=Qbar; 
    A=A+Qbar*h_ply; 
    B=B+Qbar*h_ply*zbar(i); 
    D = D + Qbar * (h_ply * zbar(i)^2  + h_ply^3 / 12); 
end 

  

  
%Exx is the Laminate Youngs modulus in X units in MPa 
%Eyy is the Laminate Youngs modulus in Y units in MPa 
%Gxy is the Laminate Shear modulus in X units in MPa 
Exx= (A(1,1)-((A(1,2)^2)/A(2,2)))/(Nplies*h_ply); 
Eyy= (A(2,2)-((A(1,2)^2)/A(1,1)))/(Nplies*h_ply); 
Gxy=A(3,3)/((Nplies*h_ply)); 
uxy=A(1,2)/A(2,2); 
% Finding the Reqd matrices from ABD 
%Chaning units of A ,B to N-m ,D is fine 
% Defining Failiure criteria 
%Units in MPA 
S11_max_Compression=1889.1639; 
S22_max_Compression=69.63706677643123; 
S12_max=93; 
A=A*1000000; 
B=B*1000; 

  
Ai=inv(A); 
D_star=D-(B*Ai*B); 
D1=inv(D_star); 
B1=-Ai*B*inv(D_star); 
C1=-inv(D_star)*B*Ai; 
A1=Ai+Ai*B*inv(D_star)*B*Ai; 
N=zeros(3,1); 
%Nxx is N(1) 
N(1)=00; 
%Nyy is N(2) 
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N(2)=0; 
% e is the strains 
%z_mid_plane_ply is the z co-ordinate of the midplane of each ply units 

in 
%meters 

  

  
a=0; 
z_mid_plane_ply= (-h/2 +h_ply/2)/1000; 
while (a<1)     
e=A1*N; 
k=C1*N; 
edb=zeros(3,1,Nplies); 

  
for i=1:Nplies 
    edb(:,:,i)=A1*N+z_mid_plane_ply*k; 
    %h_ply converted to meters 
    z_mid_plane_ply=z_mid_plane_ply+h_ply/1000; 
end 

  
% calculating Plywise stresses 
stressdb=zeros(3,1,Nplies); 
%stress units in GPa 
for i=1:Nplies 
    stressdb(:,:,i)= Qdb(:,:,i)*edb(:,:,i); 

     
end 
%converting stresses to MPa 
stressdb=stressdb*1000; 
%stresses in material co-ordinate systems 

  
stress_mat=zeros(3,1,Nplies); 
for i=1:Nplies 
    

stress_mat(1,1,i)=stressdb(1,1,i)*(cosd(thetadb(i))^2)+stressdb(2,1,i)*

(sind(thetadb(i))^2)+2*stressdb(3,1,i)*cosd(thetadb(i))*sind(thetadb(i)

); 
    

stress_mat(2,1,i)=stressdb(1,1,i)*(sind(thetadb(i))^2)+stressdb(2,1,i)*

(cosd(thetadb(i))^2)-

2*stressdb(3,1,i)*cosd(thetadb(i))*sind(thetadb(i)); 
    stress_mat(3,1,i)=(-

stressdb(1,1,i)+stressdb(2,1,i))*sind(thetadb(i))*cosd(thetadb(i))+stre

ssdb(3,1,i)*((cosd(thetadb(i)))^2-(sind(thetadb(i)))^2); 

    
    if  stress_mat(1,1,i)>=S11_max_Compression 

        
        fprintf('Failure Occured At Load'); 
        disp(N); 
        e='Failed Ply Angle  '; 
        disp(e) 
        disp(thetadb(i)) 
        e='Failed Ply Number  '; 
        disp(e); 
        disp(i); 
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        f='Failure Mode is S11'; 
        sigma= N/(h_ply*Nplies*1000) 
        disp(f); 
        a=a+1 

         
    elseif stress_mat(2,1,i)>=S22_max_Compression 

         
        e='Failure Ocuured At Load'; 
        disp(e); 
        disp(N) 
        fprintf('Failed Ply is ') 
        disp(thetadb(i)) 
        a=a+1 
        f='Failure Mode is S22'; 
        sigma= N/(h_ply*Nplies*1000) 
        disp(f); 

       
    elseif abs(stress_mat(3,1,i))>=S12_max 

         
        e='Failure Occured At Load'; 
        disp(e) 
        disp(N) 
        fprintf('Failed Ply Has the angle ') 
        disp(thetadb(i)) 
        a=a+1 
        sigma= N/(h_ply*Nplies*1000) 
        f='Failure Mode is S12'; 
        disp(f); 
    end 
end 
 N(1)=N(1)+100; 
end 
sigma= N/(h_ply*Nplies*1000) 
Global_stress_X=zeros(1,Nplies); 
for i=1:Nplies 
    Global_stress_X(i)=stressdb(1,1,i); 
end 
Global_stress_X=Global_stress_X/sigma(1) 

  
ply_location=linspace(1,Nplies,Nplies); 
subplot(2,1,1); 
plot(ply_location,Global_stress_X,'-o') 
xlabel('\bf Ply Number') 
ylabel('\bf\sigma_{xx}/\sigma_{Gross}') 
title('Stress Distribution') 
grid minor 
axis([0 20 0 5]) 
str ={{'\bf23^\circ'},{'\bf-23^\circ'},{'\bf23^\circ'},{'\bf-

23^\circ'},{'\bf23^\circ'},{'\bf-

23^\circ'},{'\bf23^\circ'},{'\bf80^\circ'},{'\bf-80^\circ'},{'\bf-

80^\circ'},{'\bf80^\circ'},{'\bf23^\circ'},{'\bf-

23^\circ'},{'\bf23^\circ'},{'\bf-23^\circ'},{'\bf23^\circ'},{'\bf-

23^\circ'},{'\bf23^\circ'}} ; 
%annotation('textbox',dim,'String',str); 

  
Relative_Global_stress_x=Global_stress_X/min(Global_stress_X) 
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subplot(2,1,2);  
plot(ply_location,Relative_Global_stress_x,'-o') 
title('\bf Relative Stress Distribution') 
xlabel('\bf Ply Number') 
ylabel('\bf  \sigma_{xx}/\sigma_{min} ') 
axis([0 20 -2 20 ]) 
yc=48 
text([1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ],[yc yc yc yc yc yc 

yc yc yc yc yc yc yc yc yc yc yc yc  ],str) 
grid on 
grid minor 
subplot(2,1,2) 
Stress_Mismatch=zeros(1,Nplies-1) 

  
figure 
for i=1:(Nplies/2) 
Stress_Mismatch(i)= abs(Global_stress_X(i)/Global_stress_X(i+1)); 
end 
for i=(Nplies/2):Nplies-1 
Stress_Mismatch(i)= abs(Global_stress_X(i+1)/Global_stress_X(i)); 
end 

  

  
Interface = linspace(1,17,17) 
bar(Stress_Mismatch) 
bc=18 
text([0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 

15.5 16.5 17.5 ],[bc  bc bc  bc bc  bc bc  bc bc  bc bc  bc bc  bc bc  

bc bc  bc  ],str) 
xlabel('Interface Number') 
ylabel('Relative Stress Between Plies') 
grid on 
axis([0 18 0 20 ]) 
grid minor 
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APPENDIX D 

Sample 
Number 

Layup 
Fiber 
Type 

Sample 
Width 
(mm) 

Sample 
Thickness 

(mm) 

Gross Failure 
Stress1 MPa 

Density2 
g/cm3 

1 (0 0 0 0 45 -45 45 -45 90)S T650 38.3 2.54 447.37 

1.53 

2 (0 0 0 0 45 -45 45 -45 90)S T650 38.3 2.54 445.61 

3 (0 0 0 0 45 -45 45 -45 90)S T650 38.6 2.54 422.7 

4 (0 0 0 0 45 -45 45 -45 90)S T650 38.6 2.54 440.15 

5 (0 0 0 0 45 -45 45 -45 90)S T650 38.6 2.54 458.03 

6 (0 0 0 0 45 -45 45 -45 90)S T650 38.6 2.54 465.25 

7 (0 0 0 0 45 -45 45 -45 90)S IM7 37.6 2.54 438.3 

1.54 

8 (0 0 0 0 45 -45 45 -45 90)S IM7 38.6 2.54 473.08 

9 (0 0 0 0 45 -45 45 -45 90)S IM7 38.6 2.54 455.11 

10 (0 0 0 0 45 -45 45 -45 90)S IM7 38.3 2.54 439.06 

11 (0 0 0 0 45 -45 45 -45 90)S IM7 38.6 2.54 382.76 

12 (0 0 0 0 45 -45 45 -45 90)S IM7 38.6 2.54 361.81 

13 
(19 -19 19 -19 19 -19 65 -
65 65)S 

T650 38.9 2.54 325.59 

1.53 

14 
(19 -19 19 -19 19 -19 65 -
65 65)S 

T650 38.3 2.54 346.54 

15 
(19 -19 19 -19 19 -19 65 -
65 65)S 

T650 38.6 2.54 314.48 

16 
(19 -19 19 -19 19 -19 65 -
65 65)S 

T650 38.6 2.54 312.88 

17 
(19 -19 19 -19 19 -19 65 -
65 65)S 

T650 38.6 2.54 316.71 

18 
(19 -19 19 -19 19 -19 65 -
65 65)S 

T650 38.6 2.54 315.61 

19 
(23 -23 23 -23 23 -23 23 
80 -80)S 

T650 38.9 2.54 320.17 

1.55 
20 

(23 -23 23 -23 23 -23 23 
80 -80)S 

T650 38.9 2.54 320.98 

21 
(23 -23 23 -23 23 -23 23 
80 -80)S 

T650 38.6 2.54 310.97 

22 
(23 -23 23 -23 23 -23 23 
80 -80)S 

T650 38.9 2.54 290.01 

                                                 
1 Calculated according to ASTM D6484 [17] 
2 Density tested according to ASTM 792-00 [40] using a METTLER TOLEDO AG245 analytical balance 
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23 
(23 -23 23 -23 23 -23 23 
80 -80)S 

T650 38.6 2.54 304.76 

24 
(23 -23 23 -23 23 -23 23 
80 -80)S 

T650 38.1 2.54 315.68 

25 
(14 -14 14 -14 14 60 -60 
60 -60)S 

T650 38.9 2.54 299.65 

1.54 

26 
(14 -14 14 -14 14 60 -60 
60 -60)S 

T650 37.9 2.54 318.01 

27 
(14 -14 14 -14 14 60 -60 
60 -60)S 

T650 37.9 2.54 295.2 

28 
(14 -14 14 -14 14 60 -60 
60 -60)S 

T650 38.1 2.54 297.74 

29 
(14 -14 14 -14 14 60 -60 
60 -60)S 

T650 37.9 2.54 354.76 

30 
(14 -14 14 -14 14 60 -60 
60 -60)S 

T650 38.6 2.54 305.11 

31 
(23 -23 23 -23 23 -23 23 
80 -80)S 

IM7 38.3 2.54 294.25 

1.55 

32 
(23 -23 23 -23 23 -23 23 
80 -80)S 

IM7 38.1 2.54 286.76 

33 
(23 -23 23 -23 23 -23 23 
80 -80)S 

IM7 38.3 2.54 291.34 

34 
(23 -23 23 -23 23 -23 23 
80 -80)S 

IM7 38.3 2.54 318.91 

35 
(23 -23 23 -23 23 -23 23 
80 -80)S 

IM7 38.6 2.54 314.48 

36 
(23 -23 23 -23 23 -23 23 
80 -80)S 

IM7 38.3 2.54 309.47 

37 (45,0,-45,90)4s T650 38.1 4.318 308.59 

1.54 
39 (45,0,-45,90)4s T650 38.3 4.318 315.86 

40 (45,0,-45,90)4s T650 38.6 4.318 307.95 

41 (45,0,-45,90)4s T650 37.8 4.318 325.21 
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