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SUMMARY 

Cancer is one of the deadliest diseases in the United States. Advancements in the 

field of radiation therapy, like the development of image-guided radiation therapy, 

intensity modulation, and volumetric-modulated arc therapy, has increased the 

conformity of the dose distribution to the cancerous tumor while decreasing the dose 

administered to the surrounding normal tissue.  Even greater dose conformity has been 

achieved by incorporating non-coplanar beam geometries to the treatment. The non-

coplanar geometry can be achieved by implementing couch rotations in one or various 

directions, known as pitch, roll and yaw. Pitch and roll rotations are specially achieved 

with the use of six-degree-of-freedom couches. However, the increased complexity of the 

non-coplanar treatment enhances the possibility of couch-gantry or patient-gantry 

collision, a safety concern. To prevent collisions from occurring, this work presents a 

collision avoidance computer program. It simulates a treatment plan using a linac, couch 

and patient model using a collision detection algorithm. Accuracy tests show a software 

with an average error of 2.4 cm, with some potential “blind spots” that increase the error 

to 4.6 cm. Data analysis suggest the need of a 3.0 cm safety buffer to increase the 

collision prediction capabilities of the program. This software should provide a good 

initial step for dosimetrists, physicists and therapists to prevent injuries and equipment 

damage, while improving workflow and productivity. 
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CHAPTER 1. INTRODUCTION 

Cancer is one of the deadliest diseases in the United States and the world. The 

American Cancer Society1, estimates that more than 1.5 million new cases of cancer were 

expected to be diagnosed in the US population in 2017. Of those cases, almost 50,000 

were expected to be diagnosed in Georgia. The Society also estimated that 600,920 of the 

cancer patients were expected to die this year, or about 1650 people per day. These 

numbers make the disease the second most common cause of death in the country, with 

cardiovascular problems being the deadliest disease. Nevertheless, advances in treatment 

and early detection of cancers has improved the 5-year relative survival rate for all 

cancers combined by 20% in whites and 24% among blacks. In the US, the direct cost of 

treating this disease and caring for the patients reached 87.8 billion dollars in 2014. 

Integral part of this treatment is the use of radiation therapy, which can be the principal 

method of treatment or can be used complementarily with other treatment procedures. 

However, the use of radiation can lead to the developments of secondary cancers and 

high levels of toxicity that can be lethal. Therefore, it is imperative to seek ways to 

improve radiation dose conformity to the tumor site while decreasing dose to organs-at-

risk (OAR). The following sections will focus on the different advancements in photon 

radiation therapy modalities, using linear accelerators (linac), which have resulted in 

improvements to the radiation dose distribution to the cancer patient for the sake of better 

life outcomes. 
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1.1 Modern Radiation Therapy Modalities  

1.1.1 Three-Dimensional Conformal Radiation Therapy 

3D conformal radiation therapy (3DCRT) utilizes three-dimensional anatomic 

structural information to conform radiation doses as close as possible to the planning 

target volume (PTV) while avoiding heavy dosing of the normal tissue. The PTV must be 

accurately delineated, including the gross tumor volume (GTV), any microscopic extent 

of the tumor, also known as the clinical target volume (CTV), and additional margins to 

account for patient movement and setup uncertainties. This allows for dose escalation to 

the tumor, increasing the tumor control probability (TCP) while minimizing the normal 

tissue complication probability (NTCP). The anatomical information used to define the 

PTV and the normal tissue structures is acquired through different diagnostic imaging 

modalities. These include computed tomography (CT), magnetic resonance imaging 

(MRI), single photon emission computed tomography (SPECT), and positron emission 

tomography (PET).   

3DCRT treatment involves the use of a number of fixed gantry positions, where 

dose delivery is carried out. These gantry positions are determined using a treatment 

planning system and optimized through iteratively selecting the number, direction, weight 

and wedging of the photon beams. This process is done until the dose distribution is 

adequate while keeping the dose to normal tissues under their tolerance levels. However, 

not all beam angles are clinically feasible due to the geometry of the tumor and the 

organs around it. For tumors that wrap around a sensitive structure, especially in the head 

and neck area, according to Verhey3, “no acceptable 3DCRT plan can be found.” 
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1.1.2 Image-Guided Radiation Therapy4 

Image-guided Radiation Therapy (IGRT) has become a ubiquitous component of 

any new radiation therapy treatment modality tackling the issue of inter- and 

intrafractional variation of tumor position. Its main focus is to make sure that there is a 

consistency of the tumor position, as seen on the images of the treatment plan acquired 

during CT simulation and the in-room images acquired prior to the treatment delivery. 

Any correction made would provide greater dose delivery accuracy. This allows for 

reduction of margins, and therefore greater dose conformity, making dose escalation 

possible for better local control and a reduce possibility of toxicity. IGRT can further 

improve the benefits obtained with 3DCRT or any other treatment mode. The in-room 

IGRT imaging modalities include two-dimensional kilovolt and megavolt x-rays, kilovolt 

and megavolt Cone-beam CT (CBCT), and MRI. The position of the skeletal anatomy, 

seen in a Digitally Reconstructed Radiograph (DRR), obtained during the simulation CT 

is used as the reference. If any adjustment is necessary, a simple couch adjustment is 

done for realignment.  

1.1.3 Intensity-Modulated Radiation Therapy 

Intensity-modulated Radiation Therapy (IMRT) is based on the variation of the 

beam intensity or the beam fluence, delivering non-uniform radiation from multiple 

gantry angles. The dose distribution of this mode should produce better dose conformity 

to the shape of the tumor and more accurate radiation delivery to the tumor compared to 

3DCRT5, while avoiding high radiation doses to critical organs. The beam modulation 

allows for beam geometric shaping for tumors with concave or irregular shape closely 
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surrounded by organs at risk6. This has improved the therapeutic ratio for different tumor 

sites, including pancreas7, rectum8, and head-and-neck9,10. Also, included among the 

important tumor sites that have greatly benefited from IMRT are brain tumors5, which are 

close to the spinal cord, and the prostate, which is close to the colon5,11,12. For example, 

research has shown that for rectal cancer, 3DCRT and IMRT could achieved comparable 

coverage to the PTV, but with IMRT achieving greater sparing of the bladder and 

femoral heads8. The volume of these organs receiving 40Gy was reduced from 73.3% to 

38.1% for the bladder, and 10.4% to 2.6% to the femoral heads with 3DCRT and IMRT, 

respectively. 

This RT modality is possible thanks to the development of inverse planning 

software and computer-controlled radiation beam intensity modulation13. The non-

fluence beam delivery is achieved using multileaf collimators (MLC) in static 

configuration, where the beam is turned off between subfields, or dynamic configuration, 

where the linac beam stays on as the leaves move at different velocities as a function of 

time2. Some disadvantages of IMRT includes a more complex and time-consuming 

treatment planning process, a more thorough quality assurance procedure, and the need of 

large number of static beams and monitor units (MU), therefore a larger treatment time 

and low-dose radiation exposure14. Because of these, and due to the beam geometry 

setup, there are few cases where 3DCRT might be more advantageous7, and each patient 

should be evaluated in a case-to-case basis. 
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1.1.4 Volumetric-modulated Arc Therapy 

Maintaining the radiotherapy beam uninterruptedly on while the gantry rotates 

around the patient can further optimize IMRT. The arc therapy mode would irradiate the 

patient through a 360º arc instead of a few numbers of discrete angles, as done in IMRT. 

Volumetric-modulated arc therapy (VMAT) allows the variation of three main therapy 

components in the MLC leaves position, the gantry angle and the dose rate as a function 

of time. This results in a more efficient treatment modality with the potential of 

delivering a more conformal treatment plan while reducing the treatment time4, as it uses 

fewer number of monitor units. It has been demonstrated that for different cancer sites, 

such as head-and-neck cancers15, protaste16, and anal cancers17, VMAT can reduce 

treatment time from 55% to 80% when compared to IMRT, leading to a reduction in 

patient discomfort and intrafraction movement. The efficiency of this system, in the use 

of fewer MUs, reduces total body scatter dose, reducing the potential development of 

secondary malignancies for patients who might expect to have a long life expectancy.   

1.1.5 Stereotactic Body Radiation Therapy & Stereotactic Radiosurgery2 

Stereotactic Body Radiation Therapy (SBRT) is a radiation therapy technique 

used to treat extracranial tumors using ultrahigh doses (6-30Gy) in a hypofractionated 

regime of five or fewer fractions.  This procedure needs to be highly conformal and 

accurate, with rapid fall-off outside of the treatment volume to prevent normal tissue 

complications. This is achieved using thorough planning, quality control, patient 

immobilization, respiratory motion monitoring, and image-guidance localization. SBRT 
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is applicable to small tumors, of maximum diameter of five centimeters or less, and 

mostly for tumors in the spine, lung, liver, pancreas, kidney and prostate.  

  Stereotactic Radiosurgery (SRS) is the stereotactic procedure used for 

intracranial tumors with doses delivered in a single or a low number of fractions. As with 

SBRT, SRS is characterized by its conformity and accuracy. The isocenter uncertainty of 

the beam from the center of the treatment volume can be as low as 0.2 mm, with a 

maximum error of 1.0 mm. The two techniques of SRS delivery are the linac-based x-ray 

knife and the gamma-ray knife. The linac-based SRS, the most relevant SRS method for 

this project, uses multiple non-coplanar beam arcs converging on the machine isocenter, 

where the tumor’s isocenter is precisely localized. A stereotactic frame, which is bolted 

to the patient’s head, is used for immobilization and to provide the system the stereotactic 

coordinates for tumor localization. The gamma-ray SRS, uses multiple cobalt-60 sources 

housed in a hemispherical orientation. These beam sources are collimated to converge on 

a single point, where the patient is moved about in order to distribute the dose in the 

treatment volume. 

1.2 Non-coplanar Therapy Treatments 

The advances in the radiation therapy modalities discussed above are 

characterized by the increased addition of degrees of freedom. These degrees of freedom 

include beam fluence modulation, in IMRT and VMAT, and greater angles of irradiation 

in VMAT, among others. To further increase dose conformity and organ sparing, 

researchers have looked into additional degrees of freedom that could be incorporated 

into the radiation therapy process in the treatment rooms. This was achieved by 
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integrating couch rotation. The couch rotation creates a 4π geometry space from where to 

deliver radiation dose to the tumor. The use of a greater number of angles in the 4π non-

coplanar technique, according to Becker18, “allows the dose to be spread out 

longitudinally, reduces hot spots in the body, and often improves conformality.” The 

incorporation of non-coplanar beam angles has been shown to provide great advantage, 

especially, to VMAT19-23 and SBRT24-27. The research on non-coplanar setups has 

focused on the evaluation of different trajectory optimization techniques of the beam 

angles to deliver the dose to the tumor, while maintaining the OAR dose constraints. The 

results are then compared to other coplanar plans.  For example, Dong et al.27, developed 

an algorithm to optimize non-coplanar beam orientation and fluence to improve SBRT 

dose delivery to the liver. They determined that the 4π plans, compared to VMAT plans, 

decreased the 50% dose spillage volume by 22%, while maintaining PTV coverage. It 

also reduced the mean dose to the left and right kidney by an average of 70% and 51%, 

and the maximum doses to the stomach and spinal cord by an average of 67% and 64%, 

respectively. Results are seen in Figure 1 and Figure 2. Similar results, of similar PTV 

coverage and reduced dose to OARs using 4π non-coplanar technique, has been shown 

for tumors in the brain19,20, breast21, head-and-neck22,23,25, prostate24, and lung26. The 

product of these findings means an escalation of radiation prescribed dose to the tumors, 

increasing the possibilities of local control, and preserving normal tissue constraints.  
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Figure 1. SBRT dose distribution using VMAT and 4π technique in transverse (a 
and b) and sagittal (c and d) planes.27 

 

Figure 2. Dose-volume histograms of different organs comparing VMAT vs 4π 
fields.27 
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1.3 Six-Degree-of-Freedom (6DOF) in Radiation Therapy 

For most systems, pre-treatment couch positional corrections with values acquired 

through IGRT, have been limited to three translational (x, y and z) couch motion and one 

rotational motion about the vertical axis, or yaw. It has been demonstrated that the use of 

two additional rotational couch movements, the pitch and roll, can benefit tumor 

dosimetry and normal tissue sparing27-31.  

 

 

 

Figure 3. Pitch rotation (Left). Roll rotation (Right). 

 

 

The use of all the couch motion can be achieved with a six-degree-of-freedom 

robotic couch. The pitch and roll corrections tend to be small values, with average values 

reported28,30 between 0.09º to 0.30º for pitch and 0.11º to 0.97º for roll, with maximum 

values of 1.65º and 1.43º for pitch and roll, respectively. These values depend on the site 

of the tumors28, with the brain requiring the greatest pitch and roll correction, and the 

pancreas requiring the least. These corrections improve target positioning with respect to 
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the treatment isocenter. The use of only four-degrees-of-freedom (4DOF), when 6DOF 

corrections are needed, can result in a loss of prescribed isodose coverage of 5% 29. 

Schreibmann et al.30, while studying spinal radiosurgery, also concluded that “in the 

presence of large rotations that are ignored, significant underdosage of tumor may occur.” 

Another advantage of the use of a 6DOF robotic couch is the reduction of PTV 

margins. The margins, accounting for intrafraction errors, can be reduced by 3.8 to 5.6 

mm31. This improved accuracy permits the reduction of the dose to the tumor’s 

surrounding normal tissue. 

1.4 Collision Avoidance 

The continuous addition of degrees of freedom to radiation therapy systems 

requires development of more thorough and advance quality control and quality 

assurance programs and protocols. Despite the benefits of non-coplanar setups, the 

simultaneous couch movement, including translation and rotation, and linac gantry 

movement increases the possibility of collision between the gantry with the patient or the 

couch. This presents the challenge of ensuring patient safety and equipment damage 

prevention, while limiting the beam angles that would create an optimal treatment plan 

for the tumor geometry and placement. If the collisions cannot be avoided, re-planning 

would be necessary, delaying patient treatment. One of the ways in which the Radiation 

Oncology personnel, specifically the medical physicist and the radiation therapist, seek to 

prevent collisions is by conducting a dry run at the time of the computer tomography 

(CT) simulation. In this process, the patient is positioned on the treatment couch in the 

treatment position with the isocenter set, as determined in simulation. Then, the couch 
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yaw angle, or couch kick, is increased and the gantry angles in which collisions occur are 

measured. This is done for various combinations of couch angles. The main objective of 

the process, employed at Emory University Hospital Midtown, is to determine gantry-

couch clearance zones. 

Another method of collision avoidance was developed by Becker18,32. He created 

a series of charts of couch-gantry combination angles at different couch heights and 

lateral offsets, showing the limits of where collisions occur for Varian18, Siemens and 

Elekta linacs32. This would help dosimetrists determine the couch-gantry angle 

combination that would create treatment plans that can proceed without collisions. It can 

also help determine if there is a combination that would require further validation at the 

treatment room. These charts can easily be printed, not requiring the use of special 

software. However, the charts are not patient specific, which would reduce its accuracy. 

A third method of collision avoidance, and a more sophisticated one, is with the 

use of collision predicting software. It consists of a computer model of the radiation 

therapy linear accelerator and patient that simulates treatment plans. This method 

eliminates, to a degree, the necessity of in-room measurements. It also allows 

dosimetrists to determine safe beam paths, eliminating the need for secondary treatment 

plans and “preserves the useful beam angles that would be deemed unsafe and discarded 

otherwise.”33 Finally, the computer software allows radiation therapists to have real-time 

monitoring of couch-gantry collisions if any anatomical correction shifts are necessary. 

The use of such programs can increase the workflow efficiency of the medical 

department, as re-planning, treatment delays, treatment times to manually verify 

collisions, potential repair costs and personnel workload would be minimized. 
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Collision avoidance prediction software systems have been developed for more 

than 20 years. The programs created in 1995 by Kessler et al.34 and Humm et al.35 are 

among the first developed, both using a “room-eye view” (Figure 4). This view allowed 

the dosimetrists to visualize, along with the collision detection algorithm, if collisions 

would occur or, in the absence of a collision, the distance between the radiotherapy 

machine components. However, these programs were not able to properly simulate the 

patient, with Humm et al. modeling the patient as an elliptical prism and Kessler not 

modeling the patient at all. Some more recent collision avoidance software have also used 

a user interface that incorporates a room-eye view perspective, with a variation in the 

collision prevention algorithm and patient modeling. Some programs are not patient-

specific, modeling the patient as an average man36, while others incorporate systems to 

model the patient using the CT scans used in simulation37,38 or using visual cameras. 

Visual camera systems include static KinectTM v2 (Microsoft, Redmond, WA, USA) 

cameras39,40, and other 3D scanning systems41. Some of the programs are incorporated 

into the treatment planning software37,42, while others are to be used online38. 
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Figure 4. User interface of collision avoidance program developed by Kessler et al.34 

 

 

While these programs can provide advantages to the radiation therapy process, 

they have some disadvantages. One of them is that these solutions are devised to be used 

after the treatment fields have been designed37. Also, patient models might be incomplete 

for software that utilize CT scans acquired in simulation, as the full body is not scanned. 

The result is a system that is not accurate if collisions occur with body parts outside the 

scanning range, like the arms or legs, specially if the arms are abducted, at 90º or greater, 

like in the cases of breast and lung cancer treatment. 

The focus of this thesis is to experimentally validate and revise a collision 

avoidance program developed at Emory University that, to the best of our knowledge, is 
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the first one to include pitch and roll rotations in its algorithm. This will be of great use 

for treatments, such as SBRT and SRS, which need a high degree of accuracy and in 

which the utilization of a six-degree-of-freedom couch can provide greater management 

of anatomical positional corrections. 

1.5 Thesis Overview 

Chapter 2 describes the method used to experimentally validate the collision 

avoidance computer program, and tests the accuracy of the software. Chapter 3 presents 

the results of the experimental verification of the program, the accuracy of the 

translational and rotational motions, the percentage of collisions predicted, and safety 

margins. Chapter 4 presents the conclusions found in this work. 
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CHAPTER 2. METHODOLOGY 

2.1 Collision Avoidance Software Design 

To predict the collision, a collision avoidance software has been developed at 

Emory University Hospital in the Radiation Oncology Department. It uses a 3D 

geometrical representation of the accelerator as well as the patient’s body contour to 

predict collisions that may occur during treatment. The accelerator model was obtained as 

a high-resolution polygonal representation of the couch, couch components, and gantry, 

each one of them being shown as an independent object in a 3D display that can be 

manipulated in our software by translations and rotations in accordance with the beam or 

arc settings in a clinical plan. The patient model is actually the patient’s body contour as 

obtained from the planning CT.  This contour, in polygonal form as well, is positioned by 

the software on the couch taking into account the isocenter position. Once the accelerator 

and patient models are positioned according to the clinical plan, the software employs a 

collision detection algorithm to predict collisions. There are two levels of collision 

detection, one algorithm based on oriented bounding boxes (OBB) that is a fast test to 

determine if two polygonal meshes intersect. If no intersection is detected by the OBB 

algorithm, an in-depth distance calculation between the couch/gantry and patient models 

is performed to determine the clearance between these accelerator components. The OBB 

algorithm builds a recursive representation of the two meshes to be tested for intersection 

by dividing the datasets in regions, where each region is fitted with a minimal oriented 

bounding box that is a high-level representation of the details of the polygonal mesh 

inside the box (Figure 5). The collision check is performed between the oriented 
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bounding boxes, significantly increasing calculation speed. Clearance distances are 

computed in a standard fashion, by traversing the points in the gantry dataset and 

computing the intersection/distances to the couch-patient dataset.  

 

 

Figure 5. (a) Polygon. (b) OBB, a minimal oriented box used to represent the 
polygon inside the box. 

 

Technically speaking, the collision module is written using three software 

libraries that are interconnected to provide a software solution that is able to provide 

virtual reality based prediction of patient setup, being in the same time integrated with the 

treatment planning system to provide an easily accessible tool for the dosimetrists.  The 

software libraries are interconnected as follows: 

• Eclipse Scripting Application Interface (ESAPI) is a scripting system that interfaces 

with the Varian’s treatment planning system, allowing users to write custom code that 

installs directly in the software as an additional menu item. The scripting provides a 

practical tool to integrate the collision code with the planning system, without the 
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need to export to a third party software. Specifically, a script was created that queries 

the database for the patient currently open in the treatment planning system, saves the 

external structure and the relevant plan settings, such as isocenter and gantry-couch 

angles, to files outside the treatment planning system. These files are further used by 

a stand-alone software, launched also by the script, that visualizes the patient and 

gantry positions and computes the collisions and clearance distances. 

• Visualization Toolkit (VTK) is used as a 3D rendering engine to visualize the patient 

and gantry meshes, as well as to compute the intersection or clearance distances.  

• Borland C++ Builder is used to design the interface that allows the user to interact 

with the 3D model to simulate various couch-gantry combinations outside the current 

plan values to explore the clearances and possibilities outside the existing plan values. 

The interface allows also the user to turn on or off various visualization options, 

interact with the 3D model. 

Figure 6 and Figure 7 illustrate the software’s user interface, and all its features, as seen 

when prompted from the treatment planning system. 
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Figure 6. Collision avoidance software interface using head phantom. 

 

Figure 7. Closer look at collision avoidance software gantry, couch and phantom 
model for a breast cancer patient. 
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2.2 Experimental Verification 

The experimental verification processes were conducted at Emory University 

Hospital (EUH) Main Campus and at Emory University Hospital Midtown. To test the 

collision avoidance software capability of predicting collisions, measurements were done 

at EUH Midtwown using the Varian TrueBeamTM and the Varian PerfectPitchTM couch. 

At this clinic, values for the lateral (or longitudinal) displacements were obtained when 

contact with the linac’s gantry was achieved. For this, the vertical positions, yaw and 

gantry angles were varied, while maintaining the longitudinal (or lateral) position fixed.  

The couch heights chosen were at 10, 15, 20 and 25 cm below isocenter, covering the 

heights at which most treatments occur. The yaw angles ranged from the zero position to 

90º counterclockwise (yaw value 270º). The gantry angle varied from the values of 210º 

to 270º, values where couch-gantry collisions were occurring. About 300 measurements 

were made.  The values obtained were later compared to the values given by the 

computer program. The software numbers were read from the “Clearance” distance or by 

displacing the virtual couch until the “Collision” indicator was displayed.  

Measurements were done at EUH Main Campus, using the Novalis TxTM and the 

CIVCO ProturaTM 6DOF couch, to test the accuracy of the collision avoidance software’s 

predicted clearance values with added pitch and roll rotations. For this, clearance values 

were obtained from the computer program, as well as the endpoints that determine these 

values. The numbers were later compared to those obtained in the treatment room, trying 

to manually match, as best as possible, the virtual “Clearance” endpoints. The couch 

rotation angles were at 0º, 10º, 20º, 340º and 350º, while maintaining the vertical, lateral 

and longitudinal offset constant at the machine isocenter position. The gantry angles were 
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varied at the 230º, 250º, 270º and 300º angles with the pitch and roll angles varying at 0º 

and 2º, in different combinations. The pitch and roll values were kept at a maximum of 

2º, as these are approximately the maximum pitch and roll treatment room corrections 

reported in the literature28,30. About 60 measurements were made. 

A very small phantom was used to simulate the measurements independent of 

patient geometry, position and motion. 

2.2.1 Novalis TxTM 

The Novalis TxTM is the result of the combination of the technology of the 

Novalis from BrainLAB (Feldkirchen, Germany), a company dedicated to the developing 

software-driven medical technologies for non-surgical procedure, and the Trilogy® Tx 

linear accelerator from Varian Medical System (Palo Alto, CA), one of the biggest 

provider companies of medical devices for the treatment of cancer43. The linear 

accelerator is mainly used for non-invasive, stereotactic radiosurgery and radiotherapy, 

with a photon beam energy of 6 MV and a dose rate of 1000 monitor units (MU) per 

minute. It is equipped with the high- definition multi-leaf collimator (HD120 MLC) for 

sharper beam shaping, essential for SRS and SBRT. It is also equipped with RapidArc® 

Radiotherapy Technology, which enables the delivery of fast IMRT and VMAT 

treatments.  The imaging modalities included in the system include an On-Board Imager 

(OBI), an electronic portal imaging device (EPID), and other optional modalities like the 

BrainLAB ExactTrac® room-based imaging-guidance system that detect movement and 

support adjustment44. Figure 8 illustrates the dimensions of the Novalis TxTM. 
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Figure 8. Novalis TxTM dimensions45. 

 

 

2.2.2 Varian TrueBeamTM 

The TrueBeamTM is a linear accelerator manufactured by Varian Medical Systems 

(Palo Alto, CA) since 2010. The linac “was engineered from the ground up to deliver 

more powerful cancer treatments with pinpoint accuracy and precision.”46 One of its 

important features is the inclusion of various high dose rate flattening-filter-free (FFF) 

photon modes. The development of these modes is the result of the improvement of 

IMRT technology, which makes the photon “flatness” unnecessary as long as the beam 

profiles are consistently stable47. Other features of the TrueBeam are the inclusion of new 

electron scattering foils, and updated imaging software and hardware48. It is also 

equipped with Millenium 120 leaf MLC, the RapidArc® technology, for IMRT and 

VMAT, On-Board Imager for kV x-rays images, and an electronic portal imager device 

for MV x-rays images. The electron energies available at the TrueBeam of Emory 
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University Hospital Midtown are at 6, 9, 12, 15 and 18 MeV. The photon energies for the 

same machine are at 6, 10, 15 and 18 MV with the 6 and 10 MV photons also available in 

FFF mode. 

2.2.3 CIVCO ProturaTM Robotic Patient Positioning System 

The CIVCO Medical Solutions’ ProturaTM (IA) Robotic Patient Positioning 

System consists of a six-degree-of-freedom robotic couch, a software package to control 

the couch motion, and an alignment fixture to assure the software calculates where the 

isocenter is with respect to the Protura system correctly.49 This system, designed to 

integrate to most linac pedestals, adds pitch and roll rotational motion to the normal 

longitudinal, lateral, vertical translational motions and yaw rotational motion. The high 

level of positional motion control makes possible to have comprehensive positional 

corrections as determined by external IGRT system. The remote positioning software, 

controlled through the user interface seen in Figure 9, removes the need to re-enter the 

treatment room to re-position the patient. The couch has a translational range of motion 

of ± 5 cm in the longitudinal direction and ± 2.5 cm in the vertical and lateral direction. 

The system accepts rotational motion (pitch, roll, and yaw) of ± 5º, but in practice the 

rotational motion is capable of achieving ± 2 to 3º 50. The maximum approved weight 

limit is 440 lbs (200 kg). The system has sub-millimeter accuracy with a 0.1 mm and 0.1º 

resolution.  
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Figure 9. CIVCO's Protura remote positioning user interface49. 

 

 

2.2.4 Varian’s PerfectPitchTM 

The PerfectPitchTM is a six-degree-of-freedom couch manufactured by Varian 

Medical Systems (Palo Alto, CA). The couch and its operational controls are fully 

integrated to other Varian machines, like the TrueBeamTM, allowing the workflow to be 

smoother than with other systems. The range of motion is limited to ±2.5 cm in the 

vertical direction, ±5.0 cm in the lateral and longitudinal direction, and ±3º of pitch, roll 

and yaw rotation, with sub-millimeter accuracy51.  
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CHAPTER 3. RESULTS AND DISCUSSION 

3.1 Results 

Table 1 shows the average of the absolute values of the lateral or longitudinal 

difference between the collision avoidance software values and those obtained 

experimentally in the treatment room at the point when a collision occurs between the 

couch and the linac’s gantry. The average difference in values over all couch angle values 

is 4.6 cm with a standard deviation of 5.1 cm. However, it can be seen that the 

discrepancies substantially increase at the 280º and 290º couch angles. If these values are 

not considered, the average difference decreases to 2.4 cm with a standard deviation of 

0.5 cm. Results are shown in Appendix A for different vertical couch positions. 
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Table 1. Average software-experimental offset (absolute value) discrepancies at all 
vertical positions. 

Gantry angle (º) 270 260 250 240 230 220 

Couch angle (º) Average of the absolute value differences between software 
and experimental offsets (cm) 

270 1.5 1.8 2.0 2.6 2.6 3.23 

280 8.3 13.3 18.0 24.2 23.4 20.7 

290 4.9 6.6 9.6 12.3 8.5 9.8 

300 4.4 3.4 1.8 2.1 2.7 2.9 

310 3.5 3.0 1.8 1.9 1.5 1.6 

320 3.3 2.5 2.0 1.6 1.3 2.3 

330 3 2.2 1.6 1.5 0.8 2.8 

340 2.0 1.5 1.0 1.2 0.9 4.1 

350 0.5 0.7 1.1 2.6 3.4 4.9 

360 2.4 2.7 3.0 3.6 4.6 4.6 

 

 

Table 2 shows average differences in clearance between software and 

experimental values at different couch and gantry combinations for all the pitch and roll 

combinations (pitch:roll) 0º:2º, 2º:0º, and 2º:2º. The average difference is 0.6 cm with a 

standard deviation of 0.5 cm. 
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Table 2.  Average differences in clearance between software and experimental 
values for the different combination of pitch and roll values. 

Gantry angle (º) 230 250 270 300 

Couch angle (º) Average of the absolute value differences between software and 

experimental offsets (cm) 

0 0.5 0.2 0.4 0.8 

10 1.1 0.6 0.7 0.6 

20 0.4 0.1 0.0 0.3 

340 1.4 1.8 0.5 0.7 

350 0.2 1.3 0.1 1.2 

 

 

As mentioned before, about 300 measurements were made for the collision 

prediction portion and about 60 for the clearance prediction portion. Still, not all the data 

points could be compared to their virtual counterpart because of the way in which the 

gantry’s head, including the collimator, was modeled. The lack of some small 

components that project from the linac’s collimator plane in the virtual model might lead 

to collisions that cannot be predicted by the collision avoidance software. 

3.2 Discussion 

Dosimetrists, physicists and therapists are dealing with increasing complexity in 

treatment planning and delivery as new technologies are developed and new information 

is understood. The evolution of linear accelerators, the advancement of planning 
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algorithms, and the greater used of beam fluence modulation have improved the radiation 

dose distribution to cancer patients. Research has demonstrated even greater distribution 

improvement when non-coplanar spaces are used. The non-coplanar spaces can be 

created by using one or various treatment couch rotations, including pitch, roll and yaw, 

which can be achieved by using a six-degree-of-freedom couch. However, the possibility 

of collision arises due to the greater possibility of having couch-gantry intersecting paths. 

To prevent that, this work is presenting, to the best of our knowledge, the first collision 

avoidance software that deals with all six degrees of freedom with which patient position 

corrections can be made. The goal of this program is to, primarily, prevent injuries and 

equipment damage, prevent treatment delays and re-planning, and decrease workload to 

radiation oncology personnel.  

One of the first changes made to the program, when the software validation 

process began, was a couch position coordinate re-scaling. Experimental data showed 

that a 2% rescaling was necessary in order to match the values observed in the treatment 

room to those obtained in the software at known couch position.  

The results of our validating experiments show a computer program with an 

average collision detection error of 4.6 cm. Nonetheless, the majority of this error comes 

when the couch angle is at 280º or 290º. This might be due to the nature of the OBB 

algorithm and the minimal oriented bounding boxes created to represent the geometry of 

the linac/couch components, where the collision might be measured at a different point 

than where it occurs in reality. These points can possibly be “blind spots” in the software 

where predictions might not be accurately made. For the rest of the measurements, the 
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average discrepancy between the collisions measurement made in the treatment room and 

those simulated in the program is reduced to 2.4 cm.  

If patient safety were the top priority of the collision avoidance software, it would 

be more desirable to have a system that would overestimate the number of “unsafe 

regions”, where you would have some situations where no collisions occur, rather than to 

overestimate the number of “safe regions”, where collision might truly occur. Not 

considering the data in the program’s “blind spots”, the software, as it is, predicted 36 out 

of the 177 collision scenarios measured, or about 20% of the cases. When a “safety buffer 

zone” of 3.0 cm, to account for the collisions not predicted, the collisions predicted 

increased to 130 out of the 177 collision cases, or about 75%. This suggests that a 3.0 cm 

buffer zone would be necessary to improve the accuracy of the program, without taking 

patient motion into account. Still, clearances of anything around 3.0 cm should be further 

investigated. A setback in the improvement of the accuracy is that the additional buffer 

zone would render some safe zones, where no collisions occur in reality, as “unsafe” as 

most of the collisions predicted occur at a greater couch displacement than where they 

truly occur, safe zone which might be beneficial for certain cases.  

One of the advantages of the software is its ability to show a clearance distance, 

which was shown to have a high level of accuracy, and not just if a collision occurs or 

not. Also, the programming language used, C++, is able to be integrated into the 

treatment planning system, EclipseTM, as a script for easy access for any radiation 

oncology personnel. One of the drawbacks is the system not accounting for patient 

motion and relative position on the couch, increasing possible inaccuracies in clearance 

values or collision detection. Also, the tomographic images, used to simulate the patient, 
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might not include the extremities or any immobilization devices outside of the scanning 

range, preventing accurate simulating of spaces where extremity placement might cause a 

collision. Finally, the “Check Collision” option should always be used as, even when a 

clearance value is shown, a collision could occur. This is due to the collision detection 

and the clearance distance computation being two independent processes.  
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CHAPTER 4. CONCLUSION 

With the increased used on 4π non-coplanar geometric spaces for the delivery of 

more conformal radiation dose distribution, the possibility of collision between the 

linac’s gantry with the couch or the patient has increased. Medical physicists have been 

seeking solutions for this problem of patient safety and workflow management while 

maintaining the advantages of the non-coplanar techniques. In this work, a collision 

avoidance software, developed at Emory University, which integrates all six degrees of 

freedom of couch motion, was tested for accuracy and reliability. The analysis indicates a 

system with an average error of 2.4 cm, and suggests a 3.0 cm buffer zone to increase the 

accuracy of the software in determining if a collision occurs or not.  

The software should provide dosimetrists and therapists another tool to ensure 

patient safety. Nevertheless, as suggested by Kessler et al.34 “the collision detection and 

motion simulation algorithms presented here are not the complete solution to the safety 

issues presented by computer-controlled motion of the machine; rather they are a good 

initial step.”  
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APPENDIX A. DISCREPANCY VALUES AT DIFFERENT 

VERTICAL COUCH POSITIONS 

Table A. 1. Average software-experimental offset discrepancies at 10 cm vertical 
offset from isocenter. 

Gantry angle (º) 270 260 250 240 230 220 

Couch angle (º) Average difference between software and experimental offsets (cm) 

  270 1.9 2.2  3.1   

280 16.9 19.9  24.0 21.8 20.4 

290 8.9 11.0  11.1 0.9 18.1 

300 5.4 0.6 0.9 2.9 2.0 4.9 

310 3.9 3.6  1.6 1.0 2.9 

320 2.9 2.5  0.7 1.1 6.0 

330 2.5 2.0 0.7  0.2 6.2 

340 1.7 1.0   1.4 6.5 

350 0.4 1.3  3.4 3.8 6.2 

360 2.3 2.5  4.0 4.9  
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Table A. 2. Average software-experimental offset discrepancies at 15 cm vertical 
offset from isocenter. 

Gantry angle (º) 270 260 250 240 230 220 210 

Couch angle (º) Average difference between software and experimental offsets (cm) 

270 1.2 2.0 2.5 2.7 3.5 3.8 3.3 

280 5.4 18.6 24.0  22.4 22.6  

290 3.1 10.7 12.3  10.6 1.0  

300 5.3 4.0 2.6 1.6 2.0 3.1 1.9 

310 3.3 2.5 1.6  1.4 1.5  

320 2.9 2.1 2.2  0.5 0.5 3.0 

330 2.7 1.8 1.85 1.0  0.8 6.6 

340 2.2 1.0 0.4 0.7  1.8  

350 0.4 1.3 1.4  3.6 4.4  

360 1.9 2.8 3.0 3.8 4.3   
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Table A. 3. Average software-experimental offset discrepancies at 20 cm vertical 
offset from isocenter. 

Gantry angle (º) 270 260 250 240 230 220 210 

Couch angle (º) Average difference between software and experimental offsets 

(cm) 

270  1.2 2.3 2.3 2.6 3.7  

280 4.6 8.2 21.4 25.6  19.2 4.6 

290 7.5 4.5 12.0 13.4  10.3 3.4 

300 2.9 4.7 0.4 2.7 4.1 0.6 0.7 

310 3.1 2.4 1.4 1.9 0.3 0.4 1.5 

320 3.5 2.4 1.6 1.5  0.4 1.8 

330 3.1 1.9 1.6 1.4 0.8  1.0 

340 2.6 2.2 0.5  0.7   

350 0.8 0.2 1.1  2.7 4.1  

360 3.0 2.7 3.1   4.6  
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Table A. 4. Average software-experimental offset discrepancies at 25 cm vertical 
offset from isocenter. 

Gantry angle 270 260 250 240 230 220 210 200 

Couch angle Average difference between software and experimental offsets (cm) 

270   1.1 2.2 1.6 2.2 3.3 0.8 

280 6.5 6.5 8.7 22.9 26  18.1  

290 0.2 0.2 4.5 12.5 14.1  9.6  

300 4.2 4.5 3.5 1.3   1.8  

310 3.8 3.4 2.2 2.1 3.2  1.8  

320 3.9 3.05 2.3 2.6 2.2  1.1  

330 3.65 3.1 2.1 2.1 1.3 1.4 0.9 2.2 

340 1.7 2 2.1 1.7 0.65  2.7  

350  0.1 0.8 1.8   4.4  

360   2.8 2.9   4.9  
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APPENDIX B. COPYRIGHT PERMISSION FOR THE USE OF 

FIGURE 1, FIGURE 2, AND FIGURE 4. 
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