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SUMMARY 

The neutron transport equation often is homogenized in order to 

simplify its solution procedure in some manner or another.  There exist many 

methods for homogenizing the neutron transport equation with different 

benefits and detriments.  One promising method is the Consistent Spatial 

Homogenization (CSH) method developed and implemented in 1-D by Yasseri 

and Rahnema.  The method, along with its successor, the Diffusion-Transport 

Homogenization (DTH) method are promising for their ability to reconstruct 

accurate fine-mesh angular flux profiles as well as reactor eigenvalue after a 

re-homogenization procedure.  This work will explore the extension of both the 

CSH and DTH methods to higher spatial dimensionality in order to solve large-

scale reactor eigenvalue problems. 

The CSH and DTH methods are based around iterated re-

homogenization of the neutron transport equation with an auxiliary source 

term which is used to correct for heterogeneity effects of a given problem. The 

net effect of this is that the effects of heterogeneity are relegated to a source 

term, and the homogenized neutron transport equation is solved instead of the 

heterogeneous equation. This allows for implementation of simpler 

acceleration techniques to improve the speed and accuracy of the homogenized 

problem and in multiple dimensions helps to avoid the effects of complicated 

reactor geometries.  The re-homogenization procedure brings the flux solution 



 xvii 

back to the heterogeneous discretization in order to generate better 

approximations for the homogenized cross sections, a better approximation of 

the auxiliary source term, and most importantly to reconstruct the full 

heterogeneous angular flux profile.   

In this work, the CSH and DTH methods are modified for increased 

spatial dimensionality and implemented using a 2-D SN discrete ordinates 

transport solver.  This implementation is tested using Cartesian-mesh 

variants of the 2D-C5G7 benchmark problem and a 2-D full-scale boiling water 

reactor (BWR) benchmark problem. 
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CHAPTER 1. INTRODUCTION 

The ability to obtain efficient full-core solutions to the neutron transport 

equation has been a long sought-after goal in the field of reactor physics. As 

computers and computing power continues to improve, full-core deterministic 

calculations, which have long been unfeasible due to the sheer number of 

unknowns involved in neutron transport calculations, are becoming more and 

more commonplace. However, even with modern computing power, there is 

always a need for more advanced computational techniques which can improve 

the efficiency of solution methods for the neutron transport equation, as full-

core 3-D deterministic calculations can tax even the largest computing 

clusters. 

 One method which has historically been used for reactor physics 

calculations is cross section homogenization. Through homogenization, 

complicated problems can be drastically simplified by reducing the need to 

model complex reactor geometry and to track large numbers of unique 

materials within a core. Historically, homogenization methods were among the 

only reasonable tools for whole-core deterministic transport calculations, and 

with the use of nodal diffusion methods, they are still used heavily today. These 

historical homogenization methods are not always appropriate computational 
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tools, however, as nodal methods are not good tools for constructing highly 

accurate neutron flux profiles within a core.  

1.1 Consistent Spatial Homogenization 

Consistent Spatial Homogenization (CSH) [1] is a theory which uses cross 

section homogenization together with an advanced correction term known as 

the auxiliary source term to leverage the computational benefits of 

homogenization while still solving the neutron transport equation for a highly 

accurate flux profile within a whole core. The CSH method works by iteratively 

homogenizing with the use of an auxiliary source term. The use of an auxiliary 

source term allows the CSH method to fold the heterogeneous information of a 

given problem into the source term of a homogeneous problem. Through the 

use of on-the-fly re-homogenizing of the cross sections and the auxiliary source 

term, the CSH method can reconstruct heterogeneous angular flux profile of 

any reactor core with modest computational speedup and minimal loss of 

accuracy. 

A sister method to the CSH method is known as the Diffusion-Transport 

Homogenization (DTH) method [2]. The DTH method replaces the 

homogeneous transport solution of the CSH method with a diffusion 

calculation, but keeps the fully transport-based re-homogenization stage. 

Through this process, the DTH method can reconstruct angular flux profiles of 
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a given reactor core with only slightly less accuracy than the CSH method, but 

with significant computational benefit.  

One benefit of CSH theory is that the calculations require only small 

modifications to the homogeneous transport equation, in the form of the 

auxiliary source term. This effect means that another acceleration technique 

can also be applied alongside either method, and the speedup afforded by the 

CSH and DTH methods will not be wasted. Unfortunately, until now the CSH 

and DTH methods have been limited in their implementations to one spatial 

dimension, so the potential speedup gains they can afford have merely been 

proof of concept. Additionally, while all implementations of the CSH and DTH 

methods have employed an iterative re-homogenization procedure, the 

implementations of the re-homogenization procedure have been disparate, [1] 

[2] [3] [4] with no clear consensus of the best procedure moving forward.  

1.2 Motivation and Goal 

This thesis is motivated by the success of the CSH and DTH methods in 

solving for the heterogeneous flux profile and eigenvalue with significant 

computational speed improvements, and also by the lack any implementation 

for the methods in higher spatial dimensionality. Higher dimensionality 

implementations are crucial for a homogenization method, as one dimensional 
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problems can never fully encapsulate the complex reactor geometries that exist 

in higher dimensions.  

The goal of this thesis is to provide a basis for implementation of the CSH 

and DTH methods in 2-D, and to test these methods for difficult full-core 

reactor benchmark problems. In order to achieve this goal, the CSH and DTH 

methods will need to be improved and the re-homogenization procedures will 

need to be clarified and consistent. Successful implementation of the methods 

in 2-D will see even further improved computational efficiency over the 1-D 

methods, without further loss of accuracy. 

In order to properly investigate the computational performance of the 

methods, it is important to have a fair basis for comparison for reference 

calculations. As such, an incidental goal of this thesis is to develop a code base 

in which future homogenization development work can be performed. This 

should open new paths for future development both of CSH theory and also of 

other future methods. 
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CHAPTER 2. BACKGROUND 

In this chapter, the neutron transport equation (or Boltzmann equation), 

the basics of homogenization, and some of the current technologies used to 

perform homogenization of the neutron transport equation will be discussed. 

The purpose of this chapter is to frame the later discussion of the Consistent 

Spatial Homogenization (CSH) method and its sister method the Diffusion-

Transport Homogenization (DTH) method so that neutron transport and 

homogenization methods in general can be contextualized. This chapter will 

contain broad-strokes definitions and descriptions of the neutron transport 

equation itself, the notation used in neutron transport theory, the purpose of 

homogenization methods themselves, and some current technologies in 

homogenization of the neutron transport equation. 

2.1 Neutron Transport for Eigenvalue Problems 

The eigenvalue neutron transport equation is 

Ω̂ ⋅ ∇𝜓(𝑟, 𝐸, Ω̂) +  𝜎(𝑟, 𝐸)𝜓(𝑟, 𝐸, Ω̂)

=  ∫ dΩ̂′ 

4𝜋

∫ d𝐸′𝜎𝑠(𝑟, 𝐸′ → 𝐸, Ω′̂ → Ω̂)𝜓(𝑟, 𝐸′, Ω̂′)

+
𝜒(𝐸)

4𝜋𝑘
∫ dΩ̂′ 

4𝜋

∫ d𝐸′𝜈𝜎𝑓(𝑟, 𝐸′)𝜓(𝑟, 𝐸′, Ω̂′) . 

(1) 
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In this equation, the principle unknown is the angular flux 𝜓(𝑟, 𝐸, Ω̂), which is 

a function of three phase space variables, location 𝑟, energy 𝐸, and angle Ω̂. 

Angular flux is a differential quantity which has units of neutrons per area per 

unit time; 𝜓(𝑟, 𝐸, Ω̂) is the number of neutrons per second passing through a 

unit area within some differential volume d𝑟 centered around 𝑟  with an energy 

in some differential energy bin 𝑑𝐸 centered around 𝐸, traveling in a direction 

which is in some differential solid angle dΩ̂ centered around angle Ω̂, which is 

a vector on the unit sphere. The other unknown of Equation (1) is 𝑘, the reactor 

eigenvalue, the largest such value which leads to a nontrivial solution for 

angular flux. Physically, 𝑘 represents the neutron multiplication in such a 

reactor for each generation of neutrons. In other words, if a reactor has an 

eigenvalue of 𝑘 = 1.1, one could expect each ‘generation’ of neutrons to be 1.1 

times larger than the previous ‘generation’. Operational nuclear reactors 

generally have an eigenvalue of 1, meaning that the neutron population in the 

reactor is stable over time.  

 In Equation (1), 𝜎(𝑟, 𝐸) is the total cross section, and the term 

𝜎(𝑟, 𝐸)𝜓(𝑟, 𝐸, Ω̂) represents the total rate at which any sort of neutron reaction 

occurs as a function of space, angle, and energy. The term 𝜎𝑠(𝑟, 𝐸′ → 𝐸, Ω̂′ → Ω̂) 

is the scattering kernel, and it represents the probability of a neutron 

scattering from some energy 𝐸′ to some other energy 𝐸 and from some direction 

Ω̂′ to some other direction Ω̂. The term 𝜎𝑓(𝑟, 𝐸′) is the fission scattering, which 
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represents the probability of a fission reaction happening involving a neutron 

of energy 𝐸′, and 𝜈 is the average number of neutrons emitted per fission 

reaction. Finally 𝜒(𝐸) represents the fission spectrum, which is the energy 

distribution of neutrons that are born from a fission reaction.  

For a reactor, the neutron transport equation is generally solved using 

a set of boundary conditions stating that no neutrons enter the reactor from 

outside it,  

𝜓(𝑟𝜕𝑉, 𝐸, Ω̂) = 0,       �̂� ⋅ Ω̂ < 0, (2) 

where 𝑟𝜕𝑉 is the reactor boundary, and �̂� is the outward unit normal on the 

reactor boundary. In some cases, in order to exploit reactor symmetry, 

calculations may employ specular reflective boundary conditions, which state 

that any neutrons which leave the reactor boundary are immediately reflected 

back in, 

𝜓(𝑟𝜕𝑉, 𝐸, Ω̂) = 𝜓(𝑟𝜕𝑉, 𝐸, − Ω̂)       �̂� ⋅ Ω̂ < 0. (3) 

Except for extremely simplified cases, there are no known analytic 

solutions to the neutron transport equation. It must always be solved 

numerically. The neutron transport equation is a very difficult problem to solve 

computationally, as the angular flux has six independent variables (when the 
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vectors 𝑟 and Ω̂ are unpacked) and the energy variable may easily span many 

orders of magnitude, with wildly varying behavior for each energy value.  

2.2 Homogenization Methods 

Spatial homogenization of the neutron transport equation means 

constructing an approximate version of Equation (1) where the spatial 

dependence of the three cross section terms has been removed in some manner, 

as in 

Ω̂ ⋅ ∇𝜓(𝑟, 𝐸, Ω̂) +  𝜎ℎ(𝐸)𝜓(𝑟, 𝐸, Ω̂)

=  ∫ dΩ̂′ 

4𝜋

∫ d𝐸′𝜎𝑠
ℎ(𝐸′ → 𝐸, Ω′̂ → Ω̂)𝜓(𝑟, 𝐸′, Ω̂′)

+
𝜒(𝐸)

4𝜋𝑘
∫ dΩ̂′ 

4𝜋

∫ d𝐸′𝜈𝜎𝑓
ℎ(𝐸′)𝜓(𝑟, 𝐸′, Ω̂′) . 

(4) 

In Equation (4), the superscript ℎ indicates that homogenized values have been 

used. In most cases, the entire reactor core is not homogenized as one process, 

instead only some spatial variation is removed. Some examples of this are pin-

cell homogenization, where each pin of a reactor core is treated as a single 

material, or assembly homogenization, where each assembly of a reactor core 

is treated as its own material. Some advantages of homogenization is that it 

can eliminate the need for complicated geometry specification, effectively 

enabling more efficient transport solution methods to be employed in a reactor 
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calculation. A simplistic homogenization example is to volume-weight the cross 

sections in an area, or more commonly, the homogenized cross sections may be 

constructed using a flux-weighted approach with an estimate for the flux in 

each homogenized area. In practice, some form of flux-weighted 

homogenization is commonly used, intending to preserve as many core 

parameters as possible, such as reaction rates, leakages or reactor eigenvalue. 

Generally, when a flux-weighted homogenization is performed, it is with an 

estimate for the flux, as whole-core flux profiles are unavailable at the 

beginning of a calculation. 

 More advanced homogenization methods combine the homogenization 

process with some other modification to the transport equation or to the 

solution procedure in order to improve accuracy. Some examples of this 

practice are modifications to the boundary conditions of certain homogenized 

regions [5] [6] or an implementation with some form of a correction term added 

to the equation [1] [7] [8]. More information about the theory of homogenization 

can be found in references [9] [10]. 

2.3 Current Technologies 

In this section, current technologies in homogenization will be briefly 

reviewed and discussed, ending with the CSH and DTH methods, as they were 
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implemented in 1-D. This review should contextualize the base upon which the 

2-D implementations of the CSH and DTH methods have been built. 

2.3.1 Other homogenization methods 

The CSH and DTH methods are both assembly homogenization 

techniques, meaning that both methods seek to homogenize cross sections on 

an assembly level. In transport theory, one such technique is black-box 

homogenization using discontinuity factors as developed by Sanchez [9]. The 

overall idea of black-box homogenization with discontinuity factors is that a 

single assembly is homogenized so that the when the modified incoming 

current and modified source term to a single assembly is applied to the 

assembly, then that assembly will reproduce the reaction rates and the 

outgoing current of the heterogeneous reference. This homogenization with 

discontinuity factors is generalized in the sense that is can be applied in either 

transport theory or diffusion theory, through the appropriate use of high and 

low order operators, so long as leakage is calculable. Ultimately, flux- or 

current-discontinuity factors are applied in order to calculate the best 

approximation for the homogeneous incoming current to each assembly. Black-

box homogenization with flux discontinuity factors are useful for very quickly 

reproducing some heterogeneous reactor parameters, but they do not lend 

themselves necessary to iterated approaches with increased accuracy at each 

iteration. 
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One method which does allow for arbitrary accuracy of the homogenized 

problem is the high-order cross-section homogenization method of Rahnema 

and McKinley [6]. This method mixes the concept of flux discontinuity factors 

with on-the-fly updates in order to correct an estimate for reactor core 

environment effects. The method of Rahnema and McKinley was implemented 

for nodal diffusion, but it can be seen as a simple precursor to the CSH method. 

The use of on-the-fly updating of homogenized parameters through some re-

homogenization in order to account for core environment effects is a key 

element of the CSH and DTH methods, and the CSH method is in some sense 

a natural extension of this method to higher accuracy.  

Many other advanced homogenization methods exist, such as 

Anistratov’s Quasi-Diffusion formulation [8], the leakage corrected assembly 

homogenization technique of Rahnema and Nichita [5] or the cell 

homogenization techniques of Kozlowski et al. [11], each with their own set of 

advantages and disadvantages. For a general review of some other advanced 

homogenization techniques, see References [9] [10].  

2.3.2 CSH method 

The CSH method operates entirely within transport theory, involving no 

low-order approximations of the homogeneous transport equation, and instead 

uses a full transport solve for both the heterogeneous and homogeneous mesh.  
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All implementations of the CSH method involve employing standard flux-

weighted homogenized cross sections with an additional correction term added 

to the homogeneous neutron transport equation known as the auxiliary source 

term1. The CSH method involves calculating successive estimates of both the 

homogeneous cross sections and of the auxiliary source term through on-the-

fly re-homogenization during the transport calculation. The goal of the CSH 

calculation is a complete reconstruction of the heterogeneous fine-mesh 

angular flux solution, along with reactor eigenvalue. 

Advances in CSH theory have taken place recently. These advances 

have improved the re-homogenization method from a series of assembly fixed-

source calculations with boundary conditions approximated from the whole-

core solution to a system which is based on whole-core transport sweeps on the 

heterogeneous mesh at each iteration. Additional efficiency improvements that 

have been documented are a switch from Fourier series spatial basis functions 

for the auxiliary source term to piecewise-defined B-spline basis functions, as 

well as an expansion of the auxiliary source term in the angular domain. These 

enhancements to the method have been dubbed the Efficient Consistent 

                                                 

 

1 Previous implementations of the CSH and DTH methods have referred to this term as an auxiliary cross 

section term. The auxiliary cross section term and the auxiliary source term are identical, except that the 

auxiliary source term has been scaled using the average scalar flux in each homogenized region. The term 

“auxiliary source term” is used in order to reduce confusion about its purpose in the homogeneous equation. 
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Spatial Homogenization (ECSH) method [4], although all future references to 

the method in this thesis will simply use CSH to refer to a conglomerate of all 

implementations of the CSH theory. 

The CSH method was initially developed by Yasseri and Rahnema [1], 

and has been tested in 1-D implementations for 1-D problems based off of a 

boiling water reactor (BWR) core [1], gas-cooled thermal core [12], and to a 

pressurized water reactor (PWR) core with mixed-oxide (MOX) fuel [4].  The 

results of these tests have shown that the CSH method affords modest speedup 

to transport calculations, with speedup factors between 1.2 and 2.5, but at very 

little cost of accuracy. The CSH method in 1-D has been shown to consistently 

calculate the reactor eigenvalue to within 10 pcm of the reference, with less 

than 0.5% mean relative flux error2. However, implementations in 1-D neglect 

some important aspects of spatial homogenization, namely the need to 

homogenize complicated multidimensional geometry aspects, such as circular 

pin cells with cladding, and the effect of space-angle coupling on the solution 

of the neutron transport equation.  

 

                                                 

 

2 The mean relative flux error (MRE) metric will be defined in detail in Section 4.4. 
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2.3.3 DTH method 

One advancement of the CSH method is the DTH method [2] [3], in which 

the inner homogeneous problem is replaced by a calculation using fine-mesh 

diffusion. The diffusion equations are significantly simpler than the neutron 

transport equation due to the elimination of the angular phase space variable, 

making the homogeneous solution much more efficient. By employing a full 

transport re-homogenization after each homogeneous solution in order to 

recalculate the full phase space treatment of the auxiliary source term, the 

DTH method is able to leverage the computational efficiency of diffusion theory 

while still maintaining the accuracy of full transport theory.  One significant 

advantage of the DTH method over other diffusion-based homogenization 

methods is that the natural use of a transport theory re-homogenization stage 

allows for accurate reconstruction of the full fine-mesh heterogeneous angular 

flux profile for a given core.  

Like the CSH method, the DTH method had only ever been implemented in 

1-D, and has been tested against 1-D benchmark problems based off of a BWR 

core [2] [3], a gas-cooled thermal reactor core [13], and a PWR core with MOX 

fuel [14]. As expected of the difference between diffusion-based and transport-

based methods, the DTH method is computationally faster than the CSH 

method, at some cost to its accuracy. For the 1-D reactor cores which have been 

studied, the DTH method has speedup factors between 3 and 13 times, with 
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eigenvalue errors under 50 pcm, and mean relative flux error of less than 1.8%. 

This is significantly more error than the CSH method, but the errors are still 

small, indicating that both methods are able to accurately reconstruct the 

heterogeneous angular flux profile with some significant speedup. As with the 

CSH method, no previous study has considered the impact of more difficult 

geometry in 2-D and 3-D, nor the effect of space-angle coupling which is not 

present in 1-D.  

  



 

 

16 

CHAPTER 3. CONSISTENT SPATIAL HOMOGENIZATION 

 In this chapter, the consistent spatial homogenization (CSH) method 

and the diffusion-transport homogenization (DTH) method will be derived, 

improvements to the derivation and to the method will be discussed, and 

details of the implementation of CSH and DTH in 2-D will be discussed. 

Particular attention will be paid to the issues that arise when extending the 

CSH and DTH methods to two dimensions and to the solutions. 

3.1 The CSH Method 

3.1.1 Theory 

In this section, the updated version of the CSH equations will be derived. 

The heterogeneous angular flux within some region 𝑉ℎ is with isotropic fission 

and a scattering kernel dependent only on the scattering angle cosine 𝜇0 =  Ω̂ ⋅

Ω̂′ is governed by the neutron transport equation, 

Ω̂ ⋅ ∇𝜓(𝑟, 𝐸, Ω̂) +  𝜎(𝑟, 𝐸)𝜓(𝑟, 𝐸, Ω̂)

=  ∫ dΩ̂′ 

4𝜋

∫ d𝐸′𝜎𝑠(𝑟, 𝐸′ → 𝐸, 𝜇0)𝜓(𝑟, 𝐸′, Ω̂′)

+
𝜒(𝐸)

4𝜋𝑘
∫ dΩ̂′ 

4𝜋

∫ d𝐸′𝜈𝜎𝑓(𝑟, 𝐸′)𝜓(𝑟, 𝐸′, Ω̂′)  ∀𝑟 ∈ 𝑉ℎ. 

(5) 
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The fundamental assumption of the CSH method is that Equation (5) can 

be consistently homogenized through the addition of an auxiliary source term. 

This equation is given by 

Ω̂ ⋅ ∇𝜓ℎ(𝑟, 𝐸, Ω̂) +  𝜎ℎ(𝐸)𝜓ℎ(𝑟, 𝐸, Ω̂)

=  ∫ dΩ̂′ 

4𝜋

∫ d𝐸′𝜎𝑠
ℎ(𝐸′ → 𝐸, 𝜇0)𝜓ℎ(𝑟, 𝐸′, Ω̂′)

+
𝜒(𝐸)

4𝜋𝑘ℎ
∫ dΩ̂′ 

4𝜋

∫ d𝐸′𝜈𝜎𝑓
ℎ(𝐸′)𝜓ℎ(𝑟, 𝐸′, Ω̂′)

+  𝑆𝑎𝑢𝑥(𝑟, 𝐸, Ω̂)                ∀𝑟 ∈ 𝑉ℎ, 

(6) 

Where the superscript h indicates homogenized values. All spatial 

dependencies in cross section values have been removed in the homogenized 

equation, and the effects of the heterogeneous cross sections are folded into the 

auxiliary source term, 𝑆𝑎𝑢𝑥. At this point, no assumption has been made about 

how the cross sections have been homogenized only that they have had their 

dependence on 𝑟 removed in some manner. An expression for the auxiliary 

cross section is found by assuming that the angular flux and eigenvalue 

solutions of Equation (5) are identical to the solutions to Equation (6).  The 

equations can then be subtracted, and the auxiliary source term can be defined 



 

 

18 

𝑆𝑎𝑢𝑥(𝑟, 𝐸, Ω̂) =  ∫ dΩ̂′ 

4𝜋

∫ d𝐸′  Δ𝜎𝑠(𝑟, 𝐸′ → 𝐸, 𝜇0)𝜓(𝑟, 𝐸′, Ω̂′)

+
1

4𝜋𝑘
∫ dΩ̂′ 

4𝜋

∫ d𝐸′  𝜒(𝐸)Δνσf(𝑟, 𝐸′)𝜓(𝑟, 𝐸′, Ω̂′)

−  Δ𝜎(𝑟, 𝐸)𝜓(𝑟, 𝐸, Ω̂), 

(7) 

Where Δ𝜎𝑖 ≡ 𝜎𝑖(𝑟) − 𝜎𝑖
ℎ for 𝑖 = 𝑡, 𝑠, 𝑓. In the traditional derivation of CSH, the 

auxiliary source term is then expanded into a set of continuous orthogonal 

basis functions in both space and angle [1], however more recent derivations of 

the CSH method have taken to using piecewise-defined basis functions [3] [4] 

in the spatial domain in order to avoid the need of having extreme high order 

spatial basis functions and also to better capture the detailed spatial 

distribution of the auxiliary source.  Until now, every derivation of CSH has 

included a spherical harmonics expansion in angle, however the effect of 

different angular basis functions has never been studied, and in practice the 

CSH method has only ever been implemented using discrete ordinates codes, 

where the angular expansion can be entirely ignored in favor of a quadrature-

based approach. In light of this fact and of the eventual implementation of the 

CSH method in a discrete ordinates context, the auxiliary source term will be 

left unexpanded in angle. However, for the sake of the derivation and for 

completeness, the auxiliary source will still be decomposed into arbitrary 
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spatial basis functions, which can be defined in a piecewise manner and which 

may or may not be complete. From this step on, due to the potential 

incompleteness of the spatial basis functions, the auxiliary source term can 

only be approximated.  The auxiliary source term is separated into its 

components and approximated via expansion into spatial basis functions as  

𝑆𝑎𝑢𝑥(𝑟, 𝐸, Ω̂) ≈  ∑ 𝐸𝑎(𝑟)𝛼𝑎(𝐸, Ω̂) 

𝐴

𝑎=0

+  ∑ 𝐹𝑏(𝑟)𝛽𝑏(𝐸, Ω̂)

𝐵

𝑏=0

+  ∑ 𝐺𝑐(𝑟)𝛾𝑐(𝐸, Ω̂)

𝐶

𝑐=0

. (8) 

where 𝐸𝑎, 𝐹𝑏 , and 𝐺𝑐 are some arbitrary, normalized spatial basis functions, and 

where 𝛼𝑎, 𝛽𝑏 , and 𝛾𝑐 are defined as the components of each spatial expansion 

order for the scattering, fission, and total cross section components of the 

auxiliary source term. If 𝐸𝑎, 𝐹𝑏 , and 𝐺𝑐 are orthogonal, they can be defined as, 

𝛼𝑎(𝐸, Ω̂) =  ∫ dΩ̂′ 

4𝜋

∫ d𝐸′  ∫ d𝑟

𝑉ℎ

 𝐸𝑎(𝑟)Δ𝜎𝑠(𝑟, 𝐸′ → 𝐸, 𝜇0)𝜓(𝑟, 𝐸′, Ω̂′), (9) 

𝛽𝑏(𝐸, Ω̂) =
1

4𝜋𝑘
∫ dΩ̂′ 

4𝜋

∫ d𝐸′  ∫ d𝑟

𝑉ℎ

 𝐹𝑏(𝑟) 𝜒(𝐸)Δνσf(𝑟, 𝐸′)𝜓(𝑟, 𝐸′, Ω̂′), (10) 

and 
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𝛾𝑐(𝐸, Ω̂) =  ∫ d𝑟 𝐺𝑐(𝑟)Δ𝜎(𝑟, 𝐸)𝜓(𝑟, 𝐸, Ω̂)

𝑉ℎ

. (11) 

Equations (9) through (11) have been left in their fully generalized form. 

Within the framework of CSH there is no reason to necessarily expect that the 

same basis functions will be used for each component of the auxiliary source. 

Indeed, there may be good reasons to use differing basis functions for each 

component, if – for example – one component of the auxiliary source can be 

expected to vary in some predictable manner. In practice, it is not expected 

that any accuracy will be gained by using different spatial expansions for each 

component of the auxiliary cross section, and all three spatial basis function 

sets can be reliably replaced with 𝐺𝑐 without compromising the method. In fact, 

all previous implementations of CSH and all of its variants have used a single 

set of spatial basis functions for each component of the auxiliary source term, 

including the implementations found here.  

Since the manner in which the cross sections were homogenized was 

originally left unspecified, the CSH equations have not yet been fully 

constrained. The additional constraint that is added to the system is the 

requirement that each component (total, scattering, and fission) of the 

auxiliary source integrates to zero. Equivalently, the system is constrained 

such that the reaction rates determined by taking the 0th angular moment of 

the auxiliary source term are conserved between the heterogeneous and 
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homogeneous solutions. This constraint results in definitions for 

𝜎ℎ(𝐸),  𝜎𝑠
ℎ(𝐸′ → 𝐸, 𝜇0), and 𝜒(𝐸)𝜈𝜎𝑓

ℎ(𝐸′) as the traditional flux-weighted 

homogenizations, 

𝜎ℎ(𝐸) =
∫ d𝑟

𝑉ℎ 𝜎(𝑟, 𝐸)𝜙(𝑟, 𝐸)

∫ d𝑟
𝑉ℎ 𝜙(𝑟, 𝐸)

 ,  (12) 

𝜎𝑠
ℎ(𝐸′ → 𝐸) =

∫ d𝑟
𝑉ℎ ∫ d𝜇0 

1

−1
𝜎𝑠(𝑟, 𝐸′ → 𝐸, 𝜇0)𝜙(𝑟, 𝐸)

∫ d𝑟
𝑉ℎ 𝜙(𝑟, 𝐸)

, (13) 

and 

where 𝜙(𝑟, 𝐸) is the scalar flux profile. Equation (13) is written for isotropic 

scattering. 

3.1.2 Solution procedure 

In the previous section, the fundamental equations of the CSH method were 

derived. However, the definitions found in Equations (9) through (14) require 

a priori knowledge of the heterogeneous angular and scalar flux profiles. To 

address this, the heterogeneous flux in each homogenized region is 

approximated through the use of single-assembly calculations with specular 

reflective boundary conditions, the same process done in standard 

𝜒(𝐸)𝜈𝜎𝑓
ℎ(𝐸′) =  

∫ d𝑟
𝑉ℎ 𝜒(𝐸)𝜈𝜎𝑓

ℎ(𝑟, 𝐸′)𝜙(𝑟, 𝐸′)

∫ d𝑟
𝑉ℎ 𝜙(𝑟, 𝐸′)

 , (14) 
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homogenization methods and cross section calculations. The advantage of the 

CSH method is that since the entire calculation is performed in transport 

theory, the problem can be iterated upon and re-homogenized on-the-fly at 

each step, resulting in new homogenized cross sections as well as an updated 

approximation for the auxiliary source term.  Following this logic, the overall 

solution procedure for the CSH method is described in the steps below 

1. Perform heterogeneous assembly-level eigenvalue calculations with 

approximate (specular reflective) boundary conditions to generate initial 

homogenized cross sections and the initial auxiliary source term for each 

assembly. 

2. Solve the homogeneous full-core transport equation (Equation (6)) using 

the auxiliary source term in order to generate solutions for the angular 

flux and eigenvalue of the core. 

3. Re-homogenize the problem using the solution from step 2. This can be 

done in one of two ways.  

a. Evaluate the angular flux at assembly interfaces using some 

spatial and angular basis functions at the interfaces, then solve 

the heterogeneous single-assembly problems using these 

interface fluxes as incoming boundary conditions. These problems 

are solved with a fixed eigenvalue equal to the core eigenvalue 

calculated in step 2. The scattering and fission sources are 
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updated as usual, but the incoming boundary conditions are held 

fixed. In practice, it is usually appropriate to use the same spatial 

and angular basis functions as were used to express the auxiliary 

source term in the homogenized equation. This method is referred 

to as “assembly-fixed-source” re-homogenization. 

b. Expand the whole core angular flux in some set of spatial basis 

functions, usually the same set as was used to expand the 

auxiliary source term, and then perform a small number of fixed-

eigenvalue ‘sweeps’ on the heterogeneous problem using the 

eigenvalue from step 2. This method is referred to as “core-sweep” 

re-homogenization. In each sweep, the eigenvalue and fission 

source terms are updated, and a normalization is applied at the 

end in order to correct for not updating the eigenvalue. 

4. Repeat steps 2 and 3 until the flux and eigenvalue meet the convergence 

criteria,  

and 

max
𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑖𝑒𝑠

max
𝐸

|𝜙𝑎𝑣𝑔
ℎ,𝑛 (𝐸) −  𝜙𝑎𝑣𝑔

ℎ,𝑛−1(𝐸)|

𝜙𝑎𝑣𝑔
ℎ,𝑛 (𝐸)

< 𝜖𝜙, (15) 

|𝑘ℎ,𝑛 −  𝑘ℎ,𝑛−1|

𝑘ℎ,𝑛
< 𝜖𝑘, (16) 
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for some user-defined values of 𝜖𝜙 and 𝜖𝑘. In Equation (15), 𝜙𝑎𝑣𝑔
ℎ,𝑛

 is the 

average flux in a given assembly, and in both Equation (15) and 

Equation (16), 𝑛 represents the current outer iteration number. 

3.2 The DTH Method 

The CSH method can be extended to diffusion theory in what is called the 

diffusion-transport hybrid (DTH) method.  While the DTH method no longer 

has the consistency afforded by being fully implementable in transport theory, 

it gains significant computational speed at very little cost of accuracy.  One key 

unrealized advantage of the DTH method over the CSH method is that theories 

for solving homogenized systems in diffusion theory are significantly more 

developed than for transport theory, including the potential for modified nodal 

methods.  All current implementations of the DTH method employ fine-mesh 

diffusion, but a discussion of these potential acceleration techniques takes 

place in CHAPTER 7.  The fundamental difference between the DTH and CSH 

methods is that in DTH, the inner homogenized equation is solved via diffusion 

theory rather than in transport theory.  This difference causes several 

significant implications for the solution method, as well.  In this section, the 

DTH method will be derived, following the procedure found in [2], and the 

differences in solution method between the DTH and CSH methods will be 

discussed. 
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3.2.1 DTH Theory 

Starting from Equation (6), the homogeneous transport equation with an 

auxiliary source term, assume linearly anisotropic scattering to obtain 

Ω̂ ⋅ ∇𝜓ℎ(𝑟, 𝐸, Ω̂) +  𝜎ℎ(𝐸)𝜓ℎ(𝑟, 𝐸, Ω̂)

=
1

4𝜋
∫ dΩ̂′ 

4𝜋

∫ d𝐸′[𝜎𝑠0
ℎ (𝐸′ → 𝐸)

+ 3𝜇0𝜎𝑠1
ℎ (𝐸′ → 𝐸)]𝜓ℎ(𝑟, 𝐸′, Ω̂′)

+
𝜒(𝐸)

4𝜋𝑘ℎ
∫ dΩ̂′ 

4𝜋

∫ d𝐸′𝜈𝜎𝑓
ℎ(𝐸′)𝜓ℎ(𝑟, 𝐸′, Ω̂′)

+  𝑆𝑎𝑢𝑥(𝑟, 𝐸, Ω̂)                ∀𝑟 ∈ 𝑉ℎ, 

(17) 

where 𝜎𝑠0
ℎ  and 𝜎𝑠1

ℎ  are the homogenized zeroth and first order Legendre 

polynomial expansions of the scattering kernel in the scattering angle 𝜇0 =  Ω̂ ⋅

Ω̂′. The diffusion equations are derived by taking the 0th and 1st angular 

moments of Equation (17) resulting in the equations 

∇ ⋅ 𝐽ℎ(𝑟, 𝐸) +  𝜎ℎ(𝐸)𝜙ℎ(𝑟, 𝐸)

= ∫ d𝐸′  𝜎𝑠0
ℎ (𝐸′ → 𝐸)𝜙ℎ(𝑟, 𝐸′) +

𝜒(𝐸)

𝑘ℎ
∫ d𝐸′ 𝜈𝜎𝑓

ℎ(𝐸′)𝜙ℎ(𝑟, 𝐸′)

+  𝑆𝑎𝑢𝑥
0 (𝑟, 𝐸) 

(18) 
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and 

∇ ⋅ Πℎ(𝑟, 𝐸) +  𝜎𝑡𝑟
ℎ 𝐽ℎ(𝑟, 𝐸) = 𝑆𝑎𝑢𝑥

1 (𝑟, 𝐸). (19) 

In these equations, 𝑆𝑎𝑢𝑥
0  and 𝑆𝑎𝑢𝑥

1  are defined as the 0th and 1st angular 

moments of 𝑆𝑎𝑢𝑥(Ω̂); the tensor term, Πℎ is defined as the 2nd angular moment 

of 𝜓ℎ(Ω̂), and 𝜎𝑡𝑟
ℎ (𝐸) is defined as the homogenized transport cross section.  

These definitions are 

𝑆𝑎𝑢𝑥
0 (𝑟, 𝐸) =  ∫ dΩ̂ 𝑆𝑎𝑢𝑥(𝑟, 𝐸, Ω̂)

4𝜋

, (20) 

𝑆𝑎𝑢𝑥
1 (𝑟, 𝐸) =  ∫ dΩ̂ Ω̂𝑆𝑎𝑢𝑥(𝑟, 𝐸, Ω̂)

4𝜋

, 
(21) 

Πℎ(𝑟, 𝐸) =  ∫ dΩ̂ (Ω̂Ω̂)𝜓ℎ(𝑟, 𝐸, Ω̂)

4𝜋

, 
(22) 

and 

𝜎𝑡𝑟
ℎ (𝐸) =  𝜎ℎ(𝐸) − 𝜎𝑠1

ℎ (𝐸). (23) 

The definition of the transport cross section in Equation (23) implicitly 

assumes the principle of detailed balance,∫ 𝑑𝐸′𝜎𝑠1(𝐸′ → 𝐸)𝐽(𝑟, 𝐸′) =

∫ 𝑑𝐸′𝜎𝑠1(𝐸 → 𝐸′)𝐽(𝑟, 𝐸), which is common for multi-group or continuous-energy 

diffusion derivations.  It should be noted explicitly that 𝑆𝑎𝑢𝑥
1  is a vector.  The 
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second order term Πℎ is handled using the 𝑃1 approximation, ∇ ⋅ Πℎ(𝑟, 𝐸) =

1

3
∇𝜙ℎ(𝑟, 𝐸). Making all of the substitutions implied above and substituting 

Equation (19) into Equation (18) yields the DTH equation, 

−∇ ⋅ 𝐷ℎ(𝐸)𝛻𝜙ℎ(𝑟, 𝐸) +  𝜎ℎ(𝐸)𝜙ℎ(𝑟, 𝐸)

= ∫ d𝐸′  𝜎𝑠0
ℎ (𝐸′ → 𝐸)𝜙ℎ(𝑟, 𝐸′)

+
𝜒(𝐸)

𝑘ℎ
∫ d𝐸′ 𝜈𝜎𝑓

ℎ(𝐸′)𝜙ℎ(𝑟, 𝐸′) +  𝑆𝑎𝑢𝑥
0 (𝑟, 𝐸)

−
∇ ⋅ 𝑆𝑎𝑢𝑥

1 (𝑟, 𝐸)

𝜎𝑡𝑟
ℎ (𝐸)

            ∀𝑟 ∈ 𝑉ℎ, 

(24) 

 

 

where the homogenized diffusion coefficient 𝐷ℎ(𝐸) is defined in the usual 

manner as 
1

3𝜎𝑡𝑟
ℎ (𝐸)

. While 𝐷ℎ is spatially constant within each homogenized 

region, in implementation a single core may be composed of several 

homogenized regions, and so the term 𝐷ℎ must be treated as being only 

piecewise continuous across each homogenized region.  This is why the first 

term is kept as ∇ ⋅ 𝐷ℎ(𝐸)∇𝜙ℎ(𝑟, 𝐸) instead of being simplified to 

𝐷ℎ(𝐸)∇2𝜙ℎ(𝑟, 𝐸).  

3.2.2 Solution method 

The solution method for DTH is similar to the solution method for CSH but 

different enough to warrant discussion. As with the CSH method, DTH 



 

 

28 

employs an outer iteration with on-the-fly re-homogenization at each step in 

order to update the auxiliary source term and homogenized cross sections. 

Unlike the CSH method, the DTH method has additional possible methods for 

re-homogenization, especially for reconstructing the angular flux from the 

solution to the homogenized equations. The DTH method is employed using 

the following steps, starting with the same initial step as the CSH method, 

1. Perform heterogeneous assembly-level calculations with approximate 

(specular reflective) boundary conditions to generate initial 

homogenized cross sections and the initial auxiliary source term for each 

assembly. 

2. Solve the homogeneous full-core diffusion equation (Equation (24)) using 

the auxiliary first and second angular moments of the auxiliary source 

term as defined in Equations (20) and (21) in order to generate solutions 

for the scalar flux and eigenvalue of the core. 

3. Reconstruct the angular flux from the scalar flux using the 𝑃1 relation, 

𝜓ℎ(𝑟, 𝐸, Ω̂) ≈
1

4𝜋
(𝜙ℎ(𝑟, 𝐸) + 3Ω̂ ⋅ 𝐽(𝑟, 𝐸)), (25) 

and then either perform core sweep or assembly fixed-source re-

homogenization calculations, as described in step 3 of the CSH solution 

procedure. Previous work in the DTH method has shown that the 𝑃1 
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approximation for angular flux reconstruction is sufficient for getting 

reasonable flux profile accuracy, compared to other reconstruction 

methods [2] [4]. In particular, it the 𝑃1 approximation has the advantage 

of being easily integrated into either the assembly fixed-source or core-

sweep schemes.  Previous iterations of the DTH method employed 

several other methods of reconstructing the angular flux including 

interpolations that used weighted values of the previous iteration’s 

guess at the angular flux.  

4. Repeat steps 2 and 3 until the flux and eigenvalue meet the convergence 

criteria defined in Equations (15) and (16) for some user-defined values 

of 𝜖𝜙 and 𝜖𝑘.  

Steps 1 and 4 are identical to the solution procedure for the CSH method.  

3.3 Implementation in 2-D 

Multidimensional implementations of the CSH and DTH methods have 

never before been attempted. The details of the 2-D implementation of the CSH 

and DTH methods will be discussed here along with the problems that arise in 

that implementation. In all cases, the heterogeneous component of the CSH 

and DTH methods, Equation (5), has been treated with discrete ordinates in 

angle and the multigroup approximation in energy. This eliminates the need 

to consider basis functions in angle, as the auxiliary source can simply be 
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evaluated for each ordinate. The only set of spatial basis functions which 

warrants further study is the set used to expand the auxiliary source and the 

angular flux in the spatial variable.  

3.3.1 Selection of spatial basis functions for auxiliary source 

Ultimately, the purpose of the spatial expansion function for the 

auxiliary source as well as for the angular flux is to perform an interpolation 

from the spatial mesh used to solve the heterogeneous problem to the spatial 

mesh used to solve the homogeneous problem and back for the re-

homogenization step. Therefore, discussion of choices for basis functions must 

first be informed by an understanding of assumptions made by the spatial 

discretization used to numerically solve the transport and diffusion equations 

in the CSH and DTH methods. The method used in this thesis for the transport 

solver for the heterogeneous transport equations is the diamond difference 𝑆𝑁 

method as derived in reference [15]. This spatial discretization is derived by 

integrating the transport equation over some rectangular cell (𝑖, 𝑗) that extends 

from 𝑥𝑖−1/2 =  𝑥𝑖 −
Δx𝑖

2
 to 𝑥𝑖+1/2 = 𝑥𝑖 +

Δx𝑖

2
 in the x-direction and from 𝑦𝑗−1/2 =

 𝑦𝑗 −
Δy𝑗

2
 to 𝑦𝑗+1/2 = 𝑦𝑗 +

Δy𝑗

2
 in the y-direction. The resultant spatially 

discretized equation is the balance relation, 
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In this equation 𝜇 represents the 𝑥-component of Ω̂, and 𝜂 represents the 𝑦-

component of Ω̂. The index 𝑛 is the discrete ordinates quadrature index, the 

index 𝑔 represents the group index, and the right-hand side term 𝑞𝑖,𝑗
𝑛,𝑔

 

encapsulates all source terms, including scattering, fission, and auxiliary. In 

Equation (26), 𝜓𝑖,𝑗
𝑛,𝑔

 is defined as the average value of 𝜓𝑛,𝑔(𝑟) over the cell (𝑖, 𝑗). 

Likewise, the cell-edge flux 𝜓𝑖+1/2,𝑗
𝑛,𝑔

 is defined to be the average value of 𝜓𝑛,𝑔(𝑟) 

over the right edge of cell (𝑖, 𝑗). This definition of the discretized angular flux 

is used to inform the process of numerical integration on the mesh. For some 

mesh-defined quantity 𝑓𝑖,𝑗, its integral over some volume 𝑉 is numerically 

expressed as  

The definition of cell-centered quantities as being the average value over a 

cell, along with the numerical integration given in Equation (27) together 

define an interpolation scheme for quantities in CSH and DTH theory. 

Assuming one wants to use 𝑓𝑖,𝑗 ∀𝑖, 𝑗 ∈ 𝑉  defined on one mesh to calculate 𝑓𝑎,𝑏 

on some other mesh, the process for calculating 𝑓𝑎,𝑏 is 

𝜇𝑛

Δ𝑥𝑖
(𝜓𝑖+1/2,𝑗

𝑛,𝑔
−  𝜓𝑖−1/2,𝑗

𝑛,𝑔
) +

𝜂𝑛

Δ𝑦𝑗
(𝜓𝑖,𝑗+1/2

𝑛,𝑔
−  𝜓𝑖,𝑗−1/2

𝑛,𝑔
) +  𝜎𝑖,𝑗

𝑔
𝜓𝑖,𝑗

𝑛,𝑔
= 𝑞𝑖,𝑗

𝑛,𝑔
  . (26) 

 ∫ d𝑟 𝑓(𝑟) =  ∑ 𝑓𝑖,𝑗Δ𝑥𝑖Δ𝑦𝑗

(𝑖,𝑗)∈𝑉𝑉

 . (27) 
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1. Use the spatial basis functions to generate a piecewise continuous 

representation of 𝑓(𝑟) using the discrete values 𝑓𝑖,𝑗, 𝑓(𝑟) ≈  ∑ 𝑓𝑝𝐺𝑝(𝑟)𝑝 , 

for some spatial basis functions 𝐺𝑝(𝑟). 

2. Integrate the resultant continuous function to find its average value 

over each of the cells of the new mesh (𝑎, 𝑏),  

In previous implementations of the CSH and DTH methods, the auxiliary 

source term has been expressed either as a Fourier series or a B-spline 

expansion. Fourier series expansion of the auxiliary source term was not 

considered at all for use in 2-D due to its very high order requirements.  For 

relatively simple reactor benchmarks in one dimension, Fourier expansion 

orders of 30 or higher were necessary to achieve full accuracy of the CSH 

method [1]. In 2-D, and with the complicated geometries that the extension to 

2-D affords the method, these expansion orders would need to be significantly 

higher, well beyond the realm of what is reasonable. Instead, three sets of 

spatial basis are presented in this section for expanding the auxiliary source, 

the linear B-spline bases that were used in previous implementations and two 

new ‘integral-conserving’ spatial basis functions. As will be explained in the 

next section and as will become evident in CHAPTER 5, the linear B-spline 

based expansion functions have poor performance when used with the CSH 

𝑓𝑎,𝑏 =
1

𝑉𝑎,𝑏 
∑ ∫ d𝑟 

𝑉𝑎,𝑏

𝑓𝑝𝐺𝑝(𝑟)

𝑝

 . (28) 
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and DTH methods in 2-D, while both the 0th and 1st order ‘integral-conserving’ 

basis functions have significantly better performance. 

3.3.1.1 B-spline basis functions 

The use of linear B-spline basis functions is effectively the same as 

linear interpolation for generating a continuous representation of a mesh-

defined quantity. In one dimensional implementations of CSH and DTH, this 

representation had great performance, accurately representing both flux and 

auxiliary source. However even in 1-D, the B-spline representation has some 

problems when using the mesh transfer routine given by Equation (28). 

Namely, the B-spline expansion does not locally conserve integrals. A simple 

graphical depiction of this effect can be seen in Figure 1.  In this graphic, the 

black circles indicate function values on some mesh marked by the dotted red 

lines.  The solid black line depicts the B-spline representation of the continuous 

function, and the shaded triangles show areas which cause inconsistency. In 

more than one spatial dimension, it is predicted that this effect will have a 

much more significant impact on the accuracy of both the flux and eigenvalue. 
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Figure 1. A 1-D depiction of how B-spline basis functions do not conserve 

integrals.  Shaded triangles indicate areas where the integral estimate would 

be either too high or too low. 

 

3.3.1.2 Integral-conserving basis functions  

There are two advantages to the integral-conserving basis functions over 

linear B-spline expansion.  The first advantage is obvious in the name: the 

integral-conserving spatial basis functions conserve integrals, at least when 

spatial integrals are computed in the manner given by Equation (27). The 

second advantage is that the integral-conserving spatial basis functions enable 

the expanded function to have discontinuities across cell interfaces. At first 

glance, this effect seems like it may be detrimental to the CSH and DTH 
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methods; however, the auxiliary source in the CSH and DTH methods is not 

necessarily continuous across cell boundaries because it can change 

proportionally to cross section changes, which are necessarily defined as 

piecewise constant on each cell.  

The 0th order integral-conserving basis function is defined simply to be a 

constant value on each cell, with no other modifications needed.  The 1st-order 

integral-conserving basis function is a slope-limited plane. It is defined on each 

cell as the plane which passes through the point (𝑥𝑖, 𝑦𝑖 , 𝑓𝑖,𝑗) that has a slope in 

the x direction equal either to the forward difference or the backward 

difference, whichever has smaller magnitude and the same for the y direction. 

A graphical depiction of the 0th and 1st order integral-conserving basis 

functions can be found in Figure 2. A benefit of the integral-conserving basis 

functions is they are less susceptible to affecting reaction rates when used to 

transfer angular flux between different spatial meshes. 
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Figure 2. 1-D graphical depictions of 0th order (left) and 1st order (right) 

integral-conserving basis functions 

3.3.2 2-D discretization details 

The discretization used for the transport solution component of the CSH and 

DTH methods is 2-D SN. The chosen 2-D SN implementation has been modified 

to accommodate the auxiliary source term 𝑆𝑎𝑢𝑥. The heterogeneous and 

homogeneous transport equation discretization is identical to that of Equation 

(26) with 𝑞𝑖,𝑗
𝑛,𝑔

 defined as the average value of 𝑞𝑛,𝑔(𝑟) over the cell (𝑖, 𝑗). When 

the scattering is isotropic, as is the case for both benchmark problems 

described in CHAPTER 4, the spatially dependent source term 𝑞𝑖,𝑗
𝑛,𝑔

 is defined 

as   

𝑞𝑖,𝑗
𝑛,𝑔

=   ∑ 𝑤𝑛′ ∑ 𝜎𝑠0,𝑖,𝑗
𝑔′→𝑔

𝜓𝑖,𝑗
𝑛′,𝑔′

𝑔′𝑛′

+
𝜒𝑖,𝑗

𝑔

𝑘
∑ 𝑤𝑛′ ∑ 𝜈𝜎𝑓,𝑖,𝑗

𝑔′

𝜓𝑖,𝑗
𝑛′,𝑔′

+ 𝑆𝑎𝑢𝑥,𝑖,𝑗
𝑛,𝑔

𝑔′𝑛′

 . (29) 
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where the quadrature weights 𝑤𝑛 are assumed to sum to 1, and where  𝑆𝑎𝑢𝑥,𝑖,𝑗
𝑛,𝑔

 

is defined as the average value of the auxiliary source in cell (𝑖, 𝑗) corresponding 

to ordinate 𝑛 and group 𝑔. For the heterogeneous discretization, the same 

definition for 𝑞𝑖,𝑗
𝑛,𝑔

 is used but without the auxiliary source term. The SN 

iteration is performed in the traditional manner, as described in reference [15], 

by marching from each corner in the direction of each ordinate and updating 

the cell-wise angular flux estimates.  

The reactor eigenvalue is calculated through a power iteration, applied 

after each single source sweep by applying the power iteration formula 

where Fiss𝑖,𝑗
𝑔,new

 is the fission source calculated after the previous iteration has 

completed, and Fiss𝑖,𝑗
𝑔,old

 is the fission source that was used in the previous 

iteration. The fission source Fiss𝑖,𝑗
𝑔

 is defined 

3.3.3 Progressively tightened homogeneous mesh and homogeneous 

convergence 

𝑘new =  𝑘old
∑ Δ𝑥𝑖𝑔,𝑖,𝑗 Δ𝑦𝑗(Fiss𝑖,𝑗

𝑔,new
)

2

∑ Δ𝑥𝑖𝑔,𝑖,𝑗 Δ𝑦𝑗Fiss𝑖,𝑗
𝑔,new

Fiss𝑖,𝑗
𝑔,old

, (30) 

Fiss𝑖,𝑗
𝑔

=  
𝜒𝑖,𝑗

𝑔

𝑘
∑ 𝑤𝑛′ ∑ 𝜈𝜎𝑓,𝑖,𝑗

𝑔′

𝜓𝑖,𝑗
𝑛′,𝑔′

𝑔′𝑛′

. (31) 
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In previous implementations of the CSH and DTH methods in 1-D, 

significantly improved convergence rates were obtained through the use of 

progressively tightened convergence criteria for the homogeneous equations. 

This behavior can be discussed in the context of a simplified 1-D fixed-source 

version of the CSH equations. In 1-D, the simplified heterogeneous transport 

equation can be written 

Its corresponding homogenized CSH equation is 

where 𝑆𝑎𝑢𝑥
∗ (𝑥, 𝜇) is the auxiliary cross section calculated using the exact 

angular flux solution as 

and where 𝜓∗(𝑥, 𝜇) is the exact solution. By the definition of the auxiliary 

source, the solutions to Equations (32) and (33) are identical. In practice, due 

to the fact that the exact solution cannot be known a priori, the auxiliary source 

can only be approximated using some estimated angular flux profile as 

𝜇
𝜕𝜓∗(𝑥, 𝜇)

𝜕𝑥
+ 𝜎(𝑥)𝜓∗(𝑥, 𝜇) = 𝑄(𝑥, 𝜇). (32) 

𝜇
𝜕𝜓∗(𝑥, 𝜇)

𝜕𝑥
+ 𝜎ℎ𝜓∗(𝑥, 𝜇) = 𝑄(𝑥, 𝜇) + 𝑆𝑎𝑢𝑥

∗ (𝑥, 𝜇), (33) 

𝑆𝑎𝑢𝑥
∗ (𝑥, 𝜇) =  −Δ𝜎(𝑥)𝜓∗(𝑥, 𝜇), (34) 

𝑆𝑎𝑢𝑥(𝑥, 𝜇) ≈  −Δ𝜎(𝑥)𝜓est(𝑥, 𝜇) =  Δ𝜎(𝑥)(𝜓est(𝑥, 𝜇) + 𝜓∗(𝑥, 𝜇) −

 𝜓∗(𝑥, 𝜇) ) = 𝑆𝑎𝑢𝑥
∗ (𝑥, 𝜇) + 𝑒𝑎𝑢𝑥, 

(35) 
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where 𝑒𝑎𝑢𝑥 is the error of the auxiliary term, defined 

In order to numerically solve Equations (32) and (33), they must be 

discretized in space. In practical implementations of the CSH and DTH 

methods, the heterogeneous and homogeneous equations are likely to have 

different spatial meshes. Assume that the operators 𝐷ℎ𝑒𝑡 and 𝐷ℎ𝑜𝑚 are 

numerical derivative operators on the heterogeneous problem grid and the 

homogeneous problem grid, with associated discretization errors 𝑒ℎ𝑒𝑡 and 𝑒ℎ𝑜𝑚 

respectively. Restricting Equations (32) and (33) to their respective meshes 

and applying the operators 𝐷ℎ𝑒𝑡 and 𝐷ℎ𝑜𝑚 results in 

and 

where 𝑖 indicates a cell index on the heterogeneous grid, and  𝑎 indicates a cell 

index on the homogeneous grid. Assuming that 𝑄(𝑥, 𝜇) can be represented on 

these grids with no loss of accuracy, and with proper definitions of 𝑒𝑎𝑢𝑥, 𝑒ℎ𝑒𝑡, 

and 𝑒ℎ𝑜𝑚 , the solutions to each of these equations are both mesh restricted 

version of the exact solution 𝜓∗. In Equation (38), the auxiliary source term is 

not yet written in a manner which can be easily evaluated on the new grid 

(a,b). In order to correct for this, The mesh transfer procedure given in 

𝑒𝑎𝑢𝑥 =  Δ𝜎(𝑥) (𝜓est(𝑥, 𝜇) −  𝜓∗(𝑥, 𝜇)). (36) 

𝜇𝐷ℎ𝑒𝑡𝜓𝑖(𝜇) + 𝜎𝑖𝜓𝑖(𝑥, 𝜇) = 𝑄𝑖(𝜇) + 𝑒ℎ𝑒𝑡, (37) 

𝜇𝐷ℎ𝑜𝑚𝜓𝑎(𝜇) + 𝜎ℎ𝜓𝑎(𝜇) = 𝑄𝑎(𝜇) + 𝑆𝑎𝑢𝑥(𝑥𝑎, 𝜇) + 𝑒ℎ𝑜𝑚 + 𝑒𝑎𝑢𝑥 , (38) 
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Equation (28) is applied to Equation (38) resulting in the fully discretized 

version of the simplified CSH equation,  

where 𝑒𝑏𝑎𝑠𝑖𝑠 is the error introduced through the mesh transfer process using 

some set of spatial basis functions. In practice, the three error terms of 

Equation (39) cannot be evaluated and a solution is obtained by neglecting 

them. If Equation (39) is solved via an iterative method, then the error of the 

solution to the discretized CSH equation, 𝑒CSH will be 

where 𝑒𝑐𝑜𝑛𝑣 is error introduced by eventually cutting off the iterative method 

to solve for the angular flux. It can be expected that for any reasonable 

discretization and choice of basis functions that the magnitude of both 𝑒ℎ𝑜𝑚 

and 𝑒𝑏𝑎𝑠𝑖𝑠 will decrease as the homogeneous problem mesh size decreases, 

however 𝑒𝑎𝑢𝑥 has no dependence on the homogeneous problem mesh size. It is 

entirely dependent on the accuracy of 𝜓est. In CSH, 𝜓est is taken to be either 

the initial estimate angular flux taken from the single-assembly problems or 

the output from the previous iteration. The CSH method in general converges 

to the heterogeneous solution, so the magnitude of 𝑒𝑎𝑢𝑥 can be assumed to 

decrease with each re-homogenization iteration. Since the homogeneous mesh 

and the homogeneous solution method convergence criteria are user-defined, 

𝜇𝐷ℎ𝑜𝑚𝜓𝑎(𝜇) + 𝜎ℎ𝜓𝑎(𝜇) = 𝑄𝑎(𝜇) + 𝑆𝑎𝑢𝑥,𝑎(𝜇) + 𝑒ℎ𝑜𝑚 + 𝑒𝑎𝑢𝑥 + 𝑒𝑏𝑎𝑠𝑖𝑠, (39) 

𝑒CSH = 𝑂(𝑒ℎ𝑜𝑚 + 𝑒𝑎𝑢𝑥 + 𝑒𝑏𝑎𝑠𝑖𝑠 + 𝑒𝑐𝑜𝑛𝑣), (40) 
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only 𝑒𝑎𝑢𝑥 is rigidly specified in Equation (40). If a user wishes to balance 

accuracy with computational speed, it would be prudent to choose the loosest 

convergence criteria and largest homogeneous mesh size such that the 

magnitude of (𝑒ℎ𝑜𝑚 + 𝑒𝑏𝑎𝑠𝑖𝑠 + 𝑒𝑐𝑜𝑛𝑣) is less than the magnitude of 𝑒𝑎𝑢𝑥 at each 

re-homogenization iteration. Previous implementations of the CSH and DTH 

methods capitalized on this tradeoff by tightening the convergence criteria of 

the homogeneous problem solve at each re-homogenization step, however this 

analysis implies that further gains to the performance of the CSH method can 

be obtained through some corresponding tightening of the homogeneous 

problem mesh at each re-homogenization iteration. Specific schemes for 

progressive mesh tightening will be discussed in CHAPTER 5. 
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CHAPTER 4. BENCHMARK PROBLEMS 

 This chapter will describe the benchmark problems used to test the CSH 

and DTH methods as well as explain the figures of merits that will be used to 

judge the efficacy of the methods. The methods were tested on 2-D discrete 

ordinates models with Cartesian mesh spatial discretization. Reference 

solutions for each model were calculated using S8 with diamond differencing 

and level-symmetric quadrature using a home-grown standalone 2-D SN 

transport package, written in compiled FORTRAN as a robust cross-platform 

Python library. 

4.1 2-D C5G7 

 The 2-D C5G7 benchmark is a small neutron transport eigenvalue 

problem developed in 2003 primarily to be used to test deterministic neutron 

transport methods [16]. The 2-D C5G7 benchmark is representative of a small 

sixteen assembly pressurized water reactor (PWR) with mixed-oxide (MOX) 

fuel. Each assembly is constructed of a lattice of 17x17 pin cells, and each pin 

cell is heterogeneously modeled with two materials as a circular fuel region 

surrounded by moderator. For a full description of the C5G7 benchmark 

geometry, see [16] in the references. The heterogeneity of the C5G7 benchmark 

as well as the ubiquity of this problem in neutron transport methods 

development makes it a useful test case for the CSH and DTH methods.  For 

this reason, the 2-D C5G7 benchmark will serve as the primary test case for 
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the CSH and DTH methods. That is, the CSH and DTH methods will be tested 

for accuracy against flux profiles generated using the reference transport 

solution method, which cannot perfectly represent circular fuel elements. This 

fact motivates a study into the spatial discretization used for the benchmark 

case before any CSH and DTH cases are attempted.   

In this section, the 2-D C5G7 benchmark will be broken down into several 

increasingly accurate Cartesian mesh discretizations in order to settle on a 

reference benchmark problem and corresponding solution that effectively 

captures the physics of the 2-D C5G7 benchmark problem without overly 

simplifying the problem or adding artificial difficulty to the problem. 

4.1.1 Benchmark geometry and solution 

4.1.1.1 Verification of underlying SN solution code and choice of C5G7 spatial 

mesh 

Three different spatial meshes for a C5G7 pin cell are presented and 

analyzed using the reference 2-D SN solution method.  Since the underlying 2-

D SN code is custom-built, these tests will also serve to verify the accuracy of 

the underlying reference solver.  The reference solutions should show similar 

results to other discrete ordinates solutions of the 2-D C5G7 benchmark 

problem when similar meshes are used.  The three proposed spatial meshes 
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are based around 4x4, 9x9, and 18x18 mesh pin cell descriptions depicted below 

in Figure 3.   

   

Figure 3. Proposed volume-conserving C5G7 pin cell discretizations.  From left 

to right, 4x4, 9x9, and 18x18 meshes.  Exact geometry is depicted as a red 

circle. 

These three depictions were created by first placing mesh boundaries on 

the fuel periphery with equal-angle spacing, and then by scaling the resulting 

mesh to achieve exact volume conservation of fuel and moderator.  In order to 

make it possible to reproduce these meshes, the locations of the mesh 

boundaries relative to the point (0,0) at the center of the pin cell can be found 

in Table 1, not including the boundary at 0.63 cm. Each cell is rotationally 

symmetric and has a material identifier as indicated in Figure 3. 
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Table 1. Proposed volume-conserving C5G7 pin cell discretization mesh 

boundaries in centimeters 

4x4 9x9 18x18 

0.0000 0.1207 0.0000 

0.4786 0.3381 0.1025 

 0.4886 0.2011 

 0.5423 0.2919 

  0.3715 

  0.4369 

  0.4854 

  0.5153 

    0.5254 

 

In order to first verify the accuracy of the 2-D SN transport solver, these 

three discretizations were tested along with three increasing level-symmetric 

quadrature orders against the canonical Monte Carlo reference solution to the 

C5G7 benchmark problem [16].  Not only does this test verify the efficacy of 

the 2-D SN solver, it also provides valuable information about whether or not 

the proposed pin cell discretizations capture the relevant physics of the C5G7 

benchmark problem.  The results of this study are presented in Table 2, for 

eigenvalue error and for the error in pin fission density when calculated for the 

pin with maximum fission density and for the pin with minimum fission 

density.  This error metric provides a reasonable quantification of overall flux 

error when compared to the canonical Monte Carlo benchmark results. 
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Table 2. Verification of 2-D SN code and study into reasonable meshing for 

Cartesian mesh C5G7. 

Pin 

mesh 
Quadrature 

Δk 

(pcm) 

Pin fission density error (%) 

Max. pin Min. pin 

4x4 S2 62 2.1 3.2 

9x9 S4 45 1.1 3.7 

18x18 S8 111 1.3 0.7 

 

While the eigenvalue convergence in Table 2 is contrary to what one 

would expect, the pin fission density shows a clear trend, indicating that the 

eigenvalue results are likely an anomaly due to error cancellation. As expected, 

the more accurate spatial meshes and more accurate angular quadrature order 

yield more accurate flux results. Further verification of the underlying SN 

solver is done by comparing these results to those generated using other 

Cartesian mesh discrete ordinates methods in the C5G7 benchmark paper.  

The results of the four Cartesian mesh discrete ordinates calculations from the 

C5G7 benchmark specification [16] are included in Table 3.  The quadrature 

orders and specific spatial meshes used by these other codes can be found in 

[16].  Observation of Table 3 indicates that the magnitude of the errors is 

similar between the 2-D SN transport solver used by this thesis and other 

Cartesian mesh discrete ordinates codes.   
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With an eye to balancing computational complexity with the ability to 

capture physics, the 9x9 pin cell representation with S8 quadrature was chosen 

for all reference solutions.  

Table 3. Other Cartesian mesh C5G7 solution errors, from [16] 

Code name Discretization 
Δk 

(pcm) 

Pin fission density error (%) 

Max. pin Min. pin 

DORT-GRS 𝑆16, 17𝑥17 146 0.50 0.02 

DORT-ORNL 𝑆8, 4𝑥4 134 0.60 0.22 

TWODANT 𝑆16, 27𝑥27 11 1.40 0.03 

PARTISN 𝑆26, 15𝑥15 15 0.18 0.18 

4.1.1.2 Reference solutions for the benchmark 

The CSH and DTH methods will be evaluated on their ability to 

accurately calculate reactor eigenvalue and fine-mesh flux profiles.  In this 

subsection, the S8 reference solution to the 9x9 pin cell problem with half mean 

free path spacing in the reflector region will be presented.  All future references 

to the “reference solution” of the C5G7 benchmark refer to the solution of the 

S8 9x9 volume-conserving pin cell discretization benchmark problem with 

diamond differencing, power iteration for solution on eigenvalue and converged 

to 6 × 10-6 in flux and 7 × 10-8 in eigenvalue. The precise meaning of these 

convergence criteria and the justification for the values chosen is expounded 

upon in APPENDIX B.  These convergence criteria mean that the reference 

solutions are converged to a maximum error compared to the discretization 

error of 0.5% in flux and 0.5 pcm in eigenvalue. 
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The reference flux solution is presented in Figure 4. For the sake of 

succinct plots, the flux solution has been condensed to two groups whenever it 

is plotted.  The first group (fast) is a sum of groups 1 through 4, and the second 

group (thermal) is a sum of groups 5, 6, and 7.  The reference eigenvalue is 

1.185419.  

  

 

Figure 4. Reference scalar flux solution to C5G7 problem.  Left: Fast groups, 

right: thermal groups. Flux presented in arbitrary units with maximum 1. 

4.2 Full scale 2-D BWR benchmark problem 

In addition to a Cartesian mesh version of the C5G7 problem, another 

quarter-core benchmark problem indicative of a full-scale BWR reactor was 

used to test the efficacy of the CSH and DTH methods.  The 2-D model is based 

off of the model of [17] with minor modifications to work with Cartesian 

geometry. The benchmark itself is based off of a controlled BWR core with a 
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HAFAS core layout but with assemblies taken from a GE9-based lattice [18]. 

The core itself is a checkerboard layout of fresh and depleted assemblies with 

geometry from the RACER assembly. For added complexity, assemblies near 

the center of the core are assumed to have 70% or 40% void fraction. Each 

assembly has a complicated fuel pin layout of ten fuel types, including two 

gadded pins, resulting in a benchmark problem with a total of 120 unique 

materials and fully resolved cladding around each pin. For brevity, the 

following section will only discuss the Cartesian-mesh version of the 

benchmark problem as tested with the CSH and DTH methods.  A full 

description of the benchmark geometry, materials, and 2-group cross sections 

can be found in [17].  

4.2.1 Cartesian mesh 2-D BWR benchmark description 

Very few assumptions were taken in constructing the Cartesian mesh 

version of the 2-D BWR benchmark problem. The assumptions that were made 

are documented in this section, along with the information required to 

reconstruct the Cartesian mesh benchmark from the 2-D benchmark 

information given in [17].  

The major assumption of the benchmark discretization is Cartesian 

mesh pin cells.  The pin cell mesh chosen for this problem is 10x10 and is 

depicted in Figure 5. This pin cell mesh was calculated by meshing through 
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points chosen on the fuel and clad surface which are spaced apart with equal 

angles.  These fuel and clad regions were then scaled in size until the pin cell 

perfectly conserved volume compared to the non-discretized pin cell. The 

procedure for meshing the cladded pin cell is not straightforward, and the 

algorithm used to guarantee a representative volume-conserving pin mesh was 

generated specifically for the purpose of this thesis. For more information 

about the method used to calculate the appropriate pin cell mesh for the 2-D 

BWR benchmark, see APPENDIX A.  Table 4 includes a list of mesh 

boundaries for the 2-D Cartesian mesh BWR pin cell. As the pin is symmetric 

with right-angle rotation, this list of mesh boundaries, along with the 

information from Figure 5 can be used to accurately reconstruct the pin cell 

discretization.  

The benchmark specification has steel cruciform control structures 

between assemblies with control rods inserted in the steel. The geometry of the 

control rods has been neglected in this presentation of the benchmark problem. 

Instead, the control rods are smeared over the entire section of the cruciform 

control blades. Figure 6 includes a depiction of a controlled assembly as 

meshed by this problem, and the rectangular control region can be seen. For a 

details of the unsimplified assembly geometry, please see the figures of 

reference [17]. 
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Figure 5. 10x10 volume-conserving Cartesian mesh of cladded 2-D BWR pin 

cell. Red lines indicate exact geometry. The colors blue, gray, and yellow 

indicate moderator, cladding, and fuel, respectively. 

Table 4. Cartesian mesh boundaries for 2-D BWR pin cell in centimeters, as 

distance from the center of the pin. 

0.0000 

0.2508 

0.4344 

0.5016 

0.5982 

0.8128 

 The last simplification made in order to represent the benchmark 

problem with a Cartesian mesh is to neglect the cladding around the center 

water channel of each assembly.  Instead, the central coolant channel is treated 
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as if it occupies the entire square section in the center of the assembly with no 

cladding.  Aside from the stated assumptions, the benchmark problem is 

implemented as described in [17]. The geometry layout of the full core as it is 

solved for the reference solution and CSH and DTH methods is depicted in 

Figure 7, with each material in a separate color.  

 

Figure 6. 2-D BWR Cartesian discretized assembly geometry.  Each color is a 

different material.  Note the smeared control material (in brown) and the 

absent central water channel cladding. 
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Figure 7. Quarter-core core layout of 2-D BWR core with Cartesian mesh.  Each 

color represents a different material. Control blades are inserted between 

assemblies with green and black moderator 

4.2.2 Reference solution for 2-D BWR benchmark 

The accuracy of the 2-D SN solver itself was verified for the C5G7 

benchmark, and so those verifications are not repeated here. Any further 

references to the 2-D BWR benchmark or to its solution refer to the solution of 

the Cartesian mesh version of the benchmark problem. This benchmark has 

only 2-group cross sections, and so no group collapse is necessary in order to 
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plot the reference fluxes.  As before, fine mesh flux is plotted (not pin fission). 

The reference eigenvalue of the 2-D BWR benchmark is 1.017495. This 

reference solution was calculated using level-symmetric S8 quadrature. The 

reflector region is modelled with half mean free path spacing where 

appropriate, and thin regions in each assembly, such as the bundle cladding 

and the control blade cladding are modelled as one cell thick. 

  

 

Figure 8. Reference scalar flux solution to 2-D BWR problem.  Left: Fast group, 

right: thermal group. Flux presented in arbitrary units with maximum 1. 

4.3 2-D SN Transport Package 

In order to develop proper testing grounds for the 2-D CSH and DTH 

methods, a neutron transport framework in which to implement the methods 

was first necessary. The 2-D transport tools used in order to implement the 

CSH and DTH methods needed to be highly adaptable and easy to access and 

modify in order to allow for implementation of the specifics of the CSH and 
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DTH methods and also in order to guarantee that any comparisons of 

computation time were fair. No transport packages were readily available 

which had the adaptability required of the CSH and DTH methods. Instead, a 

custom-built 2-D SN code system was used. 

  This 2-D SN code system is based up on a ‘front-end’ which is 

implemented in Python 2.7 and a ‘back-end’ written in compiled FORTRAN 90. 

The FORTRAN code has been compiled into a neutron transport Python 

library, which can easily be implemented into python code in order to run with 

any set of front-end code.  This setup allows for an easy implementation of the 

CSH and DTH methods as all of the manipulations required by the methods 

can be implemented by making modifications to the Python front-end. The 

back-end transport routines are entirely serial in order to allow for fair 

comparisons of computation time, but they are otherwise robust and efficient 

transport solvers that can be applied to any discrete ordinates problems in two 

spatial dimensions. 

It is the hope of the author that the highly robust code package developed 

in order to implement and test the CSH and DTH methods will outlive this 

thesis and form the backbone for future work. All of the code used in this 

transport package is well-documented and readily available for other 

researchers.  
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4.4 Figures of Merit 

The CSH and DTH methods are evaluated for their flux accuracy, 

eigenvalue accuracy, and their computational efficiency.  In this section, the 

quantities that will be used to summarize these accuracies will be described 

and justified. The most straightforward figure of merit will be the eigenvalue 

error.  Eigenvalue errors will be reported as absolute differences between the 

calculated eigenvalue and the reference eigenvalue, in units of per cent mille 

(pcm) as  

Three integrated quantities will be used to discuss flux errors. All three are 

based off of the spatially dependent relative error term, 𝑒𝑔(𝑟) which is defined 

where 𝜙𝑔
ref(𝑟) is the reference scalar flux solution and 𝜙𝑔

𝑐𝑎𝑙𝑐(𝑟) is the core scalar 

flux solution from the CSH or DTH method. For the C5G7 benchmark, the 

group dependence of 𝑒𝑔(𝑟) is condensed into a 2-group relative error term as 

Where 𝑐 can be either the fast (f) groups or the thermal (th) groups, which are 

respectively groups 1-4 and groups 5-7 for the C5G7 benchmark. This group 

Δ𝑘 = |𝑘calc − 𝑘reference| × 105 pcm. (41) 

𝑒𝑔(r⃗) =
|𝜙𝑔

calc(𝑟) − 𝜙𝑔
ref(𝑟)|

𝜙𝑔
ref(𝑟)

× 100%, (42) 

𝑒𝑐(𝑟) =
∑ |𝜙𝑔

calc(𝑟) − 𝜙𝑔
ref(𝑟)|𝑔∈𝑐

∑ 𝜙𝑔∈𝑐 𝑔,𝑖,𝑗

ref (𝑟)
× 100%, (43) 
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collapse is foremost performed in order to allow for easier comparisons to 

previous CSH and DTH results in 1-D and also performed in order to condense 

the results for more concise presentation. In general, the group collapse does 

not largely affect the error profiles; the error profiles of the subgroups within 

a single collapsed group are similar in both shape and magnitude. In 1-D, a 

similar procedure was performed in order to collapse the error profiles from 47 

groups to 2 groups without compromising the integrity of the results [1]. For 

the BWR benchmark case, the benchmark only specifies two groups, so the fast 

and thermal condensation is not necessary. The integrated flux errors, which 

will be used to evaluate the CSH and DTH methods, are defined as 

and 

These three metrics will be referred to as the average error, the mean relative 

error, and the maximum error, respectively. The index 𝑔 refers to either the 

collapsed fast or thermal groups. The integrals in Equations (44), (45), and (46) 

are evaluated using the formula found in Equation (27).  In every case, the 

AVG𝑔 =
∫ d𝑟 

𝑉core
|𝑒𝑔(𝑟)|

∫ d𝑟  
𝑉core

, (44) 

MRE𝑔 =
∫ d𝑟 

𝑉core
𝜙𝑔

ref(𝑟)|𝑒𝑔(𝑟)|

∫ d𝑟  
𝑉core

, (45) 

MAX𝑔 = max
𝑟∈𝑉core

|𝑒𝑔(𝑟)|. (46) 
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domains have been restricted to the core itself, neglecting the reflector regions.  

This is because recent work on the DTH method has shown that the spatially 

dependent relative flux error term 𝑒𝑔(𝑟) behaves poorly in the reflector regions, 

since if the reference solution becomes very small, the error can become 

arbitrarily large without necessarily being meaningful, making values of AVG 

and MAX useless. With the error domain restricted to core regions, AVG and 

MAX are useful tools for evaluating the accuracy of the method.  

 The CSH and DTH methods are fundamentally methods for improving 

computational performance of solution to the eigenvalue problem, and so the 

last figure of merit is the speedup factor, which is defined  

where 𝑇ref and 𝑇calc are the wall clock computational time of the reference 

solution and the calculation of interest.  By definition, the reference solution 

itself will always have a speedup of exactly 1.0. Because the underlying 

transport code for the CSH and reference solutions are identical and written 

for this purpose, this metric is a fair evaluation of the calculation speedup 

provided by the method. Speedup is always calculated with 𝑇ref and 𝑇calc 

calculated using the same computer system, and all results from the following 

section are calculated on either a desktop Intel i7-3770 with a clock speed of 

speedup =
𝑇ref

𝑇calc
, (47) 
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3.7 GHz or an Amazon EC2 system with an Intel Xeon E7-8880 v3 with a clock 

speed of 2.5 GHz.   
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CHAPTER 5. CSH RESULTS 

The CSH method as defined in CHAPTER 3 has user-defined quantities for 

both homogeneous problem and re-homogenization stage convergence criteria, 

as well as user-defined quantities for homogeneous problem meshing, re-

homogenization method, spatial basis function, and whether or not to apply 

progressively tightened convergence criteria and homogeneous mesh size. This 

chapter will study the effect of each of these user-defined quantities on the 

CSH solution to the 2-D C5G7 benchmark and the 2-D BWR benchmark. Each 

application of the CSH method will be evaluated for both its accuracy when 

compared to the reference solution and its speedup factor.  

In order to more fairly compare against the reference calculation, all cases 

end with homogeneous problem convergence criteria equal to the criteria used 

to solve the reference solution, and whenever assembly fixed-source re-

homogenization is used, the flux convergence criteria are chosen to be identical 

to the homogeneous problem flux convergence criteria that were used for that 

outer iteration. In previous implementations of the CSH method, spatial 

meshes were chosen based on ‘reasonable’ values, usually equal to roughly the 

same mesh size in mean free paths (mfp) as the largest mesh size in the 

heterogeneous problem. When mesh size for the homogeneous problem is 

chosen to be equal to the largest mesh of the heterogeneous problem in units 
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of mean free paths, this is considered the ‘classic’ meshing option. For the C5G7 

benchmark, the ‘classic’ mesh is 0.64 mfp per homogeneous mesh. For the BWR 

benchmark problem, the ‘classic’ mesh is 0.99 mfp per homogeneous mesh. 

5.1 Choice of Re-homogenization Convergence Criteria 

In previous implementations of the CSH method, the re-homogenization 

convergence criteria as presented in Equations (15) and (16) were originally 

set as 𝜖𝑘 = 10−4 and 𝜖𝜙 = 10−3 somewhat arbitrarily, although in practice these 

criteria successfully led to a required number of re-homogenization iterations 

of about 4 or 5, and flux and eigenvalue errors tend to level out after 4 

iterations, making those criteria a reasonable choice for 1-D problems. There 

is no reason to immediately suspect that these criteria will be reasonable in 

two spatial dimensions, nor if they will be reasonable for significantly more 

difficult problems, such as the 2-D BWR problem, which has a much higher 

variation of both mesh sizes and material properties than any of the 1-D 

benchmarks which have been tested in the past. The choice of re-

homogenization iteration convergence criteria are re-investigated in this 

section. 

As an initial investigation of the proper choice of re-homogenization 

convergence criteria, both benchmarks were solved with an S2 angular order 

to a high number of iterations. For these two calculations, all other CSH 
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parameters were left as close as possible to the parameters of older 1-D 

implementations, meaning that homogeneous mesh sizes were chosen as the 

classic mesh size, and that progressive convergence criteria were used for the 

first four re-homogenization iterations, reducing both 휀𝑘 and 휀𝜙 by a factor of 

10 each re-homogenization iteration down to values of 6 × 10-6 in flux and 7 × 

10-8 in eigenvalue for the fourth iteration, where they stayed for all remaining 

re-homogenization iterations. These calculations employed 4 core sweeps for 

each re-homogenization calculation, a number which was considered sufficient 

when this parameter was evaluated for the DTH method [3], which will also be 

demonstrated in Section 5.2.2. Additionally, these two calculations were 

performed using 1st order integral-conserving spatial basis functions both for 

angular flux and auxiliary source. 



 

 

63 

 

Figure 9. Re-homogenization convergence for the C5G7 core with S2. Red lines 

indicate error compared to the reference at each step, and black lines indicate 

the current value of the within-calculation criteria. 

The results of this calculation for the C5G7 core can be found in Figure 

9. This plot presents the actual errors of each re-homogenization iteration as 

compared to the within-calculation convergence metrics. As can be seen in the 

graphic, the actual errors level out after four re-homogenizations, meaning 

that despite the fact that both 𝜖𝑘 and 𝜖𝜙 continue to decline, there is no further 

accuracy to be gained by continuing the calculation past this point. The values 

of 𝜖𝑘 and 𝜖𝜙 at the fourth iteration are shown to be 6 × 10−6 and 7 × 10−3 

respectively, indicating that previous CSH implementations have likely been 

entirely controlled by the criterion for 𝜖𝜙 and that the previously used value 
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for 𝜖𝜙 of 1 × 10−3 is too tight for the 2-D implementation of the CSH method. 

The AVG metric is not presented in this plot, as it is overlapping with the MRE 

line in this calculation. In general, MAX and MRE are group-dependent values, 

however in these plots only the maximum group contribution is depicted. For 

both Figure 9 and Figure 10, these refer to the fast-group MAX and MRE 

metrics in all but the first several iterations. 

 

Figure 10. Re-homogenization convergence for the BWR core with S2. Red lines 

indicate error compared to the reference at each step, and black lines indicate 

the current value of the within-calculation criteria. 

When the calculation is repeated for the BWR benchmark, it is 

immediately clear that the previously observed effect that the CSH method 

generally is finished after 4-5 re-homogenizations does not hold for the BWR 
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benchmark. Clearly, for this core the auxiliary source is slower to converge. 

While the number of outer iterations required of the BWR benchmark is 

significantly higher, it is relieving to see that the values of 𝜖𝑘 and 𝜖𝜙 are similar 

to the C5G7 case when the problem is converged. As indicated in Figure 10, 

the flux and eigenvalue errors of the CSH method visibly level off after 11 re-

homogenization iterations, with values of 𝜖𝑘 and 𝜖𝜙 equal to 1 × 10−6 and 8 ×

10−3 respectively. Using the information of these two calculations, re-

homogenization criteria of 𝜖𝜙 = 5 × 10−3 and 𝜖𝑘 = 1 × 10−5 were chosen for all 

subsequent calculations. In practice, every calculation was controlled by the 

criterion for 𝜖𝜙.  

5.2 Parameter Variations 

In this section, the various user-defined parameters of the CSH method 

are evaluated for their effect on the speed and accuracy of the CSH method. In 

each of the following subsections, results for the C5G7 core and the BWR core 

will be presented in tables where a single CSH parameter varies while the rest 

remain fixed. Comparison will be drawn between the behavior of the CSH 

method for each of the two benchmark problems, and optimal user-defined 

parameters will be suggested.  
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5.2.1 Spatial basis functions 

In Section 3.3.1, three spatial basis functions for use with the CSH 

method were suggested.  In this section, CSH results with each of the three 

spatial basis functions will be presented for both benchmark problems. Results 

for the C5G7 benchmark can be found in Table 5. These calculations were 

performed using four core sweeps for each re-homogenization step, with a 

classic (0.64 mfp per homogeneous mesh) homogeneous mesh, and progressive 

homogeneous convergence criteria for the first four iterations. 

Table 5. Effect of spatial basis function choice on CSH solution to C5G7 

benchmark. Calculation performed with four core sweeps per re-

homogenization and classic homogeneous mesh. 

Basis 

function 
Iters Speedup 

Δk 

(pcm) 

MRE (%) AVG (%) MAX (%) 

F Th. F Th. F Th. 

Linear 5 2.4 1851.6 0.7 0.6 0.7 0.6 3.5 7.1 

0th order 5 2.5 25.7 0.4 0.4 0.4 0.5 1.5 3.5 

1st order 5 2.5 24.8 0.4 0.4 0.4 0.4 1.5 3.5 

From Table 5, the poor performance of the linear B-spline basis 

functions in these 2-D problems with integral-conserving mesh transfers is 

evident. Without conserving integrals between each solution, the linear B-

spline basis functions do not maintain the reaction rate of the auxiliary source, 

which can upset the neutron balance in the core and lead to significant errors 

in the eigenvalue calculation. In other observations, as expected from the brief 

analysis of the re-homogenization convergence behavior of the CSH method, 
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each calculation required five re-homogenizations to converge.  For the two 

integral-conserving spatial basis functions, eigenvalue error is about 25 pcm, 

which is about a factor of ten higher than when the CSH method has been used 

for 1-D problems.  For each of the integral-conserving basis functions, average 

and mean-relative flux errors are about 0.4% for both the fast and thermal 

energy ranges.  

 

Table 6. Effect of spatial basis function choice on CSH solution to BWR 

benchmark. Calculation performed with four core sweeps per re-

homogenization and classic homogeneous mesh. 

Basis 

function 
Iters Speedup 

Δk 

(pcm) 

MRE (%) AVG (%) MAX (%) 

F Th. F Th. F Th. 

Linear 15 5.3 1705.0 4.1 4.9 7.2 8.7 42.2 47.6 

0th order 11 5.7 266.2 0.3 0.9 0.5 0.9 1.9 2.3 

1st order 11 7.3 275.7 0.3 0.8 0.5 0.8 1.9 2.3 

Table 6 contains the same results as the previous table, except applied 

to the BWR benchmark. The difference between the integral-conserving basis 

functions and the linear B-splines in accuracy is clear. In the case of the BWR 

benchmark, the difference in flux accuracy is stark.  The linear B-spline basis 

functions do not result in a solution to the benchmark that can be called 

accurate at all, with an average flux error of over 7%. Another observation to 

be made from Table 6 is that the linear B-spline solutions took more re-
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homogenization iterations to converge, largely due to the very high flux errors 

leading to trouble with the re-homogenization convergence criteria.  

It should be noted that the overall eigenvalue errors for the BWR 

benchmark are about one order of magnitude higher than when the C5G7 

benchmark is solved with CSH for nearly all cases.  This is largely due to the 

significantly increased complexity of the 2-D BWR benchmark problem 

compared to the 2-D C5G7 problem, specifically the resolved cladding around 

each fuel pin. The extremely small mesh sizes of the cladding, on the order of 

0.02 mfp are difficult or impossible to resolve in any set of spatial basis 

functions used for the CSH method, meaning that the effect of pin cladding is 

not well accounted for in the eigenvalue solution.  

5.2.2 Re-homogenization process 

In 1-D, the CSH method has been implemented with several different 

methods for re-homogenization.  Initial CSH implementations [1] took the 

simple approach of re-using the methods employed for the single-assembly 

calculations but with updated boundary conditions. The solution process 

begins by assuming that single-assembly calculations with approximated 

specular reflective boundary conditions have already been performed.  At each 

re-homogenization step, the results from the homogeneous core calculation are 

expanded and the calculations are repeated with updated fixed boundary 
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conditions and eigenvalue. Later implementations of the CSH and DTH 

methods in one spatial dimension gained efficiency by replacing the assembly 

fixed-source re-homogenization calculations with full-core transport sweeps, 

which have the advantage of being exceptionally quick, as long as the total 

number of sweeps is kept low. In the 2-D implementation of CSH, assuming an 

accurate spatial expansion function for angular flux, the primary function of 

these core sweeps is to correct for local errors introduced by the mesh transfer 

process, meaning that the number of core sweeps can be kept low without 

significantly impacting accuracy. 

Table 7. Effect of different re-homogenization methods for the C5G7 core.  AFS 

refers to assembly fixed-source re-homogenization. 

# Core 

sweeps 
Iters. Speedup 

Δk 

(pcm) 

 MRE (%) AVG (%) MAX (%) 

F. Th. F. Th. F. Th. 

1 5 2.6 21.5 0.7 0.2 0.6 0.3 2.0 3.9 

2 5 2.7 23.6 0.5 0.2 0.5 0.3 1.8 3.7 

4 5 2.5 24.8 0.4 0.4 0.4 0.4 1.5 3.5 

7 5 2.3 23.6 0.4 0.4 0.3 0.4 1.3 3.2 

10 4 2.7 22.4 0.3 0.3 0.3 0.3 1.1 2.9 

20 4 2.2 22.4 0.3 0.3 0.2 0.3 0.9 2.4 

AFS 4 1.6 24.1 0.2 0.2 0.3 0.3 2.7 4.3 

 Table 7 tabulates the effect that different numbers of core sweeps per 

re-homogenization can have on the accuracy of the solution for the C5G7 

benchmark. All of these calculations were performed using 1st order integral-

conserving spatial basis functions and a ‘classic’ homogeneous problem mesh. 

For this benchmark, it can be seen that when core sweep re-homogenization is 
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used, the number of core sweeps per re-homogenization does not have an 

extremely large effect on the accuracy of the solution.  When the number of 

core sweeps is low, one extra re-homogenization iteration is needed in order to 

meet the re-homogenization convergence criteria, which balances out the 

speedup effect, which would otherwise be expected to monotonically decrease 

as the number of core sweeps increases. Overall MRE and AVG flux errors as 

well as eigenvalue error do not change significantly with the number of core 

sweeps after about four sweeps per iteration, although the MAX flux error 

decreases as the iteration order increases.  This suggests that for this 

benchmark, the maximum error likely occurs in a fairly isolated portion of the 

core, since MRE and AVG are similar.  

  

Figure 11.Within-core fast and thermal relative error profiles for the C5G7 

core with AFS re-homogenization. 
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Figure 12. Within-core fast and thermal relative error profiles for the C5G7 

core with one core sweep re-homogenization 

 

  

Figure 13. Within-core fast and thermal relative error profiles for the C5G7 

core with 20 core sweep re-homogenization 
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Figures 11, 12, and 13 depict relative error profiles for the three 

extremes contained in Table 7. Note that because each plot has its own color 

scale, they should not be compared against each other in this context.  Instead, 

these plots are provided in order to examine the behavior of the CSH method 

with different re-homogenization methods. In the thermal spectrum of Figure 

11, error can be seen to peak near assembly boundaries, which is a behavior 

that was seen frequently in 1-D implementations of the CSH method. Figure 

12 indicates that the use of only one core sweep for re-homogenization is 

insufficient. Figure 12 shows a slight checkerboard pattern within each 

assembly, especially visible in the thermal error profile. This indicates that the 

local errors have not been sufficiently reduced when only a single core sweep 

is employed for re-homogenization. When 20 core sweeps are used for each re-

homogenization step, it becomes clear that the error profile is dominated by 

core-level effects, since no local effects are visible, nor is there any peaking near 

assembly boundaries.  

Table 8. Effect of different re-homogenization methods for the BWR core.  AFS 

refers to assembly fixed-source re-homogenization. 

# Core 

sweeps 
Iters. Speedup 

Δk 

(pcm) 

 MRE (%) AVG (%) MAX (%) 

F. Th. F. Th. F. Th. 

1 11 6.5 243.6 0.4 1.3 0.5 1.3 1.9 5.0 

2 11 6.4 263.0 0.4 1.1 0.5 1.1 1.9 3.6 

4 11 7.3 275.7 0.3 0.8 0.5 0.8 1.9 2.3 

7 11 5.2 274.8 0.3 0.5 0.4 0.5 1.9 1.6 

10 11 5.0 271.1 0.2 0.4 0.4 0.4 1.9 1.6 

20 11 4.4 265.8 0.2 0.3 0.3 0.3 1.7 1.5 
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AFS 11 4.5 271.0 0.3 0.7 0.4 0.5 1.6 2.5 

These calculations were repeated for the BWR benchmark, again using 

a ‘classic’ homogeneous mesh and 1st order integral-conserving spatial basis 

functions, and the results are presented in Table 8. These results show a 

similar trend to that of the C5G7 benchmark.  For the BWR benchmark, no 

number of core sweeps required any extra re-homogenization iterations, and 

the trend of decreasing speedup with increasing core sweeps is clearly 

demonstrated after four sweeps per iteration. For 1 and 2 core sweeps per re-

homogenization, the speedup is lower; this is due to an increased number of 

inner iterations to solve the homogeneous problem for each re-homogenization 

iteration when the re-homogenization is not performed sufficiently. This 

indicates slower convergence of the auxiliary source term when the re-

homogenization is not as accurate.  
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Figure 14. Within-core thermal relative thermal error profile for the BWR core 

with assembly fixed-source re-homogenization 
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Figure 15. Within-core thermal relative thermal error profile for the BWR core 

with one core sweep re-homogenization 
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Figure 16. Within-core thermal relative thermal error profile for the BWR core 

with 20 core sweep re-homogenization 

Figures 14, 15, and 16 depict just the relative thermal error profile for 

the BWR benchmark. The fast flux profiles have been omitted for succinctness. 

As before, each plot has its own color scale, so comparisons should not be drawn 

between each of the three.  Like with the C5G7 case, the error profile in Figure 

14 generated using assembly fixed-source re-homogenization displays the error 

peaking near assembly interfaces, which is common of previous CSH 

implementations.  When only one core sweep is used per re-homogenization, 

the error profile is dominated by local effects, which have not been properly 
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reduced by an insufficient re-homogenization, and when 20 core sweeps are 

used per re-homogenization iteration, as seen in Figure 16, the error profile is 

dominated by core effects, indicating that the re-homogenization procedure is 

sufficiently reducing local error effects.  

5.2.3 Homogeneous problem meshing 

This 2-D implementation of the CSH method is the first to include 

homogeneous mesh size as a user-defined parameter of the method, making it 

prudent to investigate the effect of homogeneous mesh size on calculations.  

Table 9. Effect of homogeneous problem mesh size for CSH on the C5G7 

benchmark solution. 

Mesh size 

(mfp) 
Iters. Speedup 

Δk 

(pcm) 

 MRE (%) AVG (%) MAX (%) 

F. Th. F. Th. F. Th. 

0.5 5 1.7 19.2 0.4 0.4 0.4 0.4 1.5 3.5 

1 5 4.2 40.5 0.4 0.4 0.4 0.5 1.4 3.3 

2 5 7.2 162.8 0.4 0.4 0.5 0.6 0.9 2.7 

4 4 11.2 56.0 0.5 1.2 0.5 1.2 1.6 4.3 

8 4 12.0 86.4 0.9 1.4 0.9 1.3 3.1 5.0 

16 5 9.4 92.8 1.0 1.9 1.2 2.1 5.0 8.7 

Exact 5 0.8 0.1 0.01 0.02 0.01 0.02 0.07 0.12 

Table 9 summarizes the effect of homogeneous mesh size on the C5G7 

benchmark solution for the CSH method. These calculations were performed 

using 4 core sweeps per re-homogenization and with the 1st order integral-

conserving spatial basis functions. In previous tables, the C5G7 benchmark 

was solved using the ‘classic’ homogeneous mesh, which is roughly 0.6 mfp per 
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cell. Additionally, for comparison’s sake, the calculation has also been 

performed using an exact heterogeneous mesh overlaid on top of the 

homogeneous problem.  In this case, the spatial expansion functions become 

redundant, as the auxiliary source and angular flux can transfer between 

meshes without any approximation, effectively eliminating all of the error 

terms from Equation (40) except for 𝑒𝑎𝑢𝑥. Recall from CHAPTER 4 and from 

APPENDIX B that the reference solutions are converged to roughly 0.5% 

maximum flux error and 0.5 pcm against the discretization error itself. As 

expected, when using an exact mesh overlay, the accuracy of the CSH method 

is effectively exact, as the calculated errors are within range of the error of the 

reference solution compared to discretization accuracy. However, as expected, 

there is no advantage in speed to calculating the solution using an exact mesh 

overlay.  

 Table 9 indicates that, to no surprise, speedup can be drastically 

increased by increasing the homogeneous problem mesh size, and while this 

results in a loss of accuracy, the loss of accuracy is not catastrophic for the 

C5G7 problem for fairly significant overall mesh sizes. These results indicate 

that previous implementations of the CSH method may have been using 

homogeneous mesh sizes that were significantly tighter than necessary, which 

may have impacted previous speedup calculations.  
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Table 10. Effect of homogeneous problem mesh size for CSH on the BWR 

benchmark solution. 

Mesh size 

(mfp) 
Iters. Speedup 

Δk 

(pcm) 

 MRE (%) AVG (%) MAX (%) 

F. Th. F. Th. F. Th. 

0.5 11 1.2 322.5 0.3 0.4 0.4 0.5 2.1 2.1 

1 9 6.2 355.7 0.3 0.9 0.5 0.9 2.3 3.0 

2 8 19.9 336.6 0.6 1.8 0.7 1.8 2.2 5.4 

4 8 33.9 731.3 1.5 5.4 1.6 5.2 7.5 17.5 

8 6 58.3 649.5 3.1 9.4 3.5 8.6 13.3 28.2 

16 6 61.7 1253.9 5.6 13.0 6.2 13.2 21.1 49.3 

Exact 14 0.6 0.2 0.5 0.6 0.6 0.6 1.7 1.9 

The calculations were repeated for the BWR benchmark problem, and the 

results are reported in Table 10. As before, these calculations were performed 

using 4 core sweeps per re-homogenization with 1st order integral-conserving 

spatial basis functions. Like for the C5G7 case, when an exact mesh overlay is 

used, the accuracy is effectively perfect, although speedup indicates that this 

is not a beneficial practice. Somewhat paradoxically, the number of re-

homogenizations required appears to decrease as the homogeneous mesh size 

increases, however this is reasonable in the context that much of the detail of 

the auxiliary source term is being lost by restricting it to a very coarse mesh, 

making the convergence faster, since local details are washing out before every 

re-homogenization. Further, the results past about 8 mfp per homogeneous 

mesh are not well-behaved, as the accuracy of the CSH method begins to fall 

off catastrophically for the BWR benchmark when the mesh size is increased 

too high. For the BWR benchmark, both the speedup and the accuracy follow 
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the trends that should be expected of changing the homogeneous mesh, with 

accuracy falling off precipitously for very high mesh sizes.   

Additionally, by applying the heterogeneous mesh overlay to the problem, 

the issue of the spatial basis functions being unable to properly account for the 

extremely small cladding meshes disappears, and the eigenvalue convergence 

is significantly better-behaved.  

5.3 CSH with Progressively Tightened Convergence and Meshing 

As discussed in the theory section, by employing a progressively tightened 

mesh size in addition to progressively tightened homogeneous problem 

convergence criteria, the CSH method can reach its optimal convergence. The 

optimal progression of mesh size is not a given, however, and must first be 

decided upon.  In this section, three possible progressive mesh sizing schemes 

will be implemented, and the results of the CSH calculation when those 

progressive mesh schemes are applied will be discussed. Based on the results 

in Table 9 and Table 10, all three potential progressive mesh sizing schemes 

begin with a mesh size of four times the ‘classic’ mesh size.  For the C5G7 

benchmark, this mesh size is about 2.6 mfp per mesh, and for the BWR 

benchmark, this results in about 4 mfp per mesh. From there, the mesh size is 

decreased linearly over five re-homogenization iterations to its final value. For 

these calculations, building upon the parameter searches of the previous three 
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sections, the following user-defined parameters were employed.  The spatial 

basis function was chosen to be 1st order integral-conserving spatial basis 

functions, and the re-homogenization method was chosen to be 4 core sweeps 

per re-homogenization step.  

Table 11. Results of three separate progressive meshing schemes applied to 

the CSH method for the C5G7 benchmark. 

Final 

mesh 
Iters Speedup 

Δk 

(pcm) 

MRE (%) AVG (%) MAX (%) 

F Th. F Th. F Th. 

Small 

 (het. avg.) 
6 2.4 12.0 0.4 0.5 0.4 0.4 1.6 3.7 

Classic  

(het. max) 
6 2.5 24.7 0.4 0.4 0.4 0.5 1.5 3.5 

Exact 6 1.6 0.34 0.04 0.05 0.04 0.04 0.2 0.4 

In Table 11 the three progressive mesh schemes were tested.  In the first, 

the final mesh size was chosen to be the average mesh size (in mean free paths) 

of the heterogeneous problem. The average mesh size of the heterogeneous 

C5G7 problem is 0.40 mfp per mesh, which is roughly 37% smaller than the 

‘classic’ mesh size. This was chosen in order to attempt to achieve similar 

speedup factors as compared to calculations that were performed using a 

constant `classic’ mesh for the homogeneous problem. The second method 

employed the `classic’ mesh as the final mesh of the progressive scheme, with 

the idea being to achieve similar accuracy when compared to calculations 

performed using a constant ‘classic’ mesh, and the final scheme employs an 

exact homogeneous mesh at the last step.  
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The last scheme follows the same progressive meshing as the first scheme, 

except that after 4 re-homogenization steps, all future homogeneous meshes 

are instead overlaid by the heterogeneous mesh. The idea of this scheme is to 

cause the CSH method to act as an acceleration method rather than an 

approximation method, by arriving at the exact solution, but using the less 

accurate form of the CSH method to quickly calculate the auxiliary source on 

the way to that solution.  

The first scheme was successful in its goal for the C5G7 benchmark. The 

speedup when using a smaller mesh size is very similar to calculations 

performed with a constant mesh size equal to the ‘classic’ homogeneous 

meshing, but the eigenvalue error is noticeably lower. However, the flux errors 

are not much different, when compared against a similar calculation, such as 

the third row of Table 7, which is identical in all but the homogeneous meshing. 

The second scheme, progression to the ‘classic’ mesh was intended to 

increase speedup with no loss of accuracy over the calculations performed with 

classic meshing. The second scheme, while offering no drawback compared to 

non-progressive CSH schemes, did not succeed in its goal.  The use of a 

progressively tightened homogeneous mesh increased the required number of 

re-homogenizations compared to a fixed homogeneous mesh size, eliminating 

any additional speedup that might have been gained over more traditional 

CSH calculations. 
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Perhaps most interesting is the third progressive scheme, where the CSH 

method has been employed as an acceleration method for an exact-mesh CSH 

final step.  In this scheme, the CSH method obtained accuracy which is 

functionally identical to the reference solution, in that the eigenvalue error is 

less than 0.5 pcm, and the maximum flux error is less than 0.5%. Additionally, 

by using the CSH method to calculate the auxiliary source term, only two 

additional iterations were required after using the exact mesh overlay in order 

to fully converge the auxiliary source term, which effected significant speedup 

over the reference calculation.  This speedup value is as high as any of the 

speedup values calculated by the most advanced implementations of the CSH 

method in 1-D with even higher accuracy, indicating that this is a promising 

application of the CSH method. 
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Figure 17. Fast spectrum relative flux error profile for C5G7 when solved with 

a progressive mesh ending with an exact heterogeneous mesh overlay. 

 

 

Figure 18. Thermal spectrum relative flux error profile for C5G7 when solved 

with a progressive mesh ending with an exact heterogeneous mesh overlay. 
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Figure 17 and Figure 18 depict the relative flux error profile when the CSH 

method is applied with a progressive mesh ending with a direct overlay of the 

heterogeneous mesh. In both profiles, the flux error is entirely dominated by 

core effects in the form of a slight diagonal tilt.  Both cases have very small 

errors, even at their peak, with flux profiles nearly perfectly matching the 

reference flux solution. 

Table 12. Results of three separate progressive meshing schemes applied to 

the CSH method for the BWR benchmark. 

Final 

mesh 
Iters Speedup 

Δk 

(pcm) 

MRE (%) AVG (%) MAX (%) 

F Th. F Th. F Th. 

Small 

 (het. avg.) 
9 2.3 304.7 0.3 0.4 0.4 0.5 2.0 2.3 

Classic  

(het. max) 
9 9.7 275.7 0.3 0.8 0.5 0.8 1.9 2.3 

Exact 11 1.9 0.2 0.4 0.4 0.4 0.5 1.3 1.4 
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Figure 19. Fast spectrum relative flux error profile for BWR benchmark when 

solved with a progressive mesh ending with an exact heterogeneous mesh 

overlay. 
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Figure 20. Thermal spectrum relative flux error profile for BWR benchmark 

when solved with a progressive mesh ending with an exact heterogeneous 

mesh overlay. 

Table 12, Figure 19, and Figure 20 repeat the tests of the three progressive 

meshing schemes on the BWR benchmark problem. As before, these tests show 

that applying an exact heterogeneous mesh overlay on the homogeneous 

problem at the end of the progressive meshing can lead to nearly perfect 

solutions of the flux profile and eigenvalue.  In the case of the BWR problem, 

the maximum flux error is not within the allowance for the reference solution, 

but they are of the same order, and examination of Figure 19, and Figure 20 

indicates that the maximum only occurs in spatially small locations. Like the 

calculations that were applied to the C5G7 benchmark problem, progressing to 

an exact heterogeneous mesh led to speedups which are consistent with 
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previous 1-D implementations of the CSH method, just a little under two times. 

In this case, the use of a progressive homogeneous mesh for the case which 

ended with a ‘classic’ mesh did not require extra re-homogenizations, and so 

that calculation has about 50% more speedup than the calculation performed 

with a constant ‘classic’ meshing at each re-homogenization step.  

These results indicate that progressive mesh tightening is a very effective 

tool with the CSH method, and that the CSH method can be reasonably tuned 

for either speed or accuracy by making adjustments to the mesh and 

progressive meshing.  
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CHAPTER 6. DTH RESULTS 

In this chapter, results of diffusion-transport hybrid (DTH) method 

calculations performed on the two benchmark problems described in 

CHAPTER 4 will be presented. Like the CSH method, the DTH method has a 

number of user-defined parameters. A suite of results will be presented in this 

chapter in order to build a case for certain choices of user-defined parameters 

for the DTH method, as well as to discuss the advantages and disadvantages 

of various combinations of parameters.  

Previous work in 1-D showed that the same 1-D convergence criteria used 

in CSH were appropriate for DTH [2] [3], so all DTH calculations have been 

performed using the same re-homogenization convergence criteria as described 

in CHAPTER 5. Inner calculations are performed with the same convergence 

criteria as used by the transport inner calculations of the CSH calculations, 

which is a progressive tightening of the convergence criteria over the first four 

re-homogenization iterations by factors of 10 until reaching the values of 

convergence criteria of 6 × 10−6 for flux and 7 × 10−8 for eigenvalue.  Please see 

APPENDIX B for a further description of these values.  The scalar flux 

convergence is said to be converged when  
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Please see APPENDIX B for a more complete review of the choice of 

convergence criteria for the homogeneous problem. 

6.1 DTH with Progressively Tightened Convergence and Meshing 

The DTH method was tested for a suite of three different progressive 

mesh tightening schemes, the same three schemes used with the CSH method. 

This section is presented before the other parameter variations in order to test 

what happens when all of the chosen CSH parameters are applied directly to 

DTH calculations with no other modifications. These calculations were 

performed using 4 core sweeps per re-homogenization, with 1st order integral-

conserving spatial basis functions for both flux and auxiliary source term. As 

before, the three schemes are all progressions over the first five re-

homogenizations to starting from four times the ‘classic’ mesh size and ending 

with either a `small’ mesh, which has a mesh size equal to the average mesh 

size of the heterogeneous problem in mean free paths, the ‘classic’ mesh size, 

or an exact overlay of the heterogeneous mesh on to the homogeneous problem. 

All homogeneous calculations which take place after the fifth re-

homogenization occur on the final mesh. This section is placed immediately 

||𝜙𝑖,𝑗,𝑔
ℓ−1 − 𝜙𝑖,𝑗,𝑔

ℓ ||
∞

||𝜙𝑖,𝑗,𝑔
ℓ ||

∞

≤ 𝜖𝜓 = 6 × 10−6

. (48) 
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following the chapter on CSH results in order to draw contrast between the 

DTH and CSH methods, specifically their speedup and accuracy. 

Table 13. Results of three separate progressive meshing schemes applied to 

the DTH method for the C5G7 benchmark. 

Final 

mesh 
Iters Speedup 

Δk 

(pcm) 

MRE (%) AVG (%) MAX (%) 

F Th. F Th. F Th. 

Small 

 (het. avg.) 
5 9.4 249.4 0.4 0.4 0.4 0.5 1.7 2.5 

Classic  

(het. max) 
5 8.7 254.5 0.4 0.4 0.5 0.5 2.2 3.0 

Exact 6 5.3 249.01 0.4 0.4 0.4 0.5 1.8 2.5 

 

Table 14. Results of three separate progressive meshing schemes applied to 

the DTH method for the BWR benchmark. 

Final 

mesh 
Iters Speedup 

Δk 

(pcm) 

MRE (%) AVG (%) MAX (%) 

F Th. F Th. F Th. 

Small 

 (het. avg.) 
9 20.9 248.6 2.7 2.9 3.4 3.8 19.1 26.3 

Classic  

(het. max) 
10 33.5 258.6 1.0 1.9 1.2 2.1 6.3 12.5 

Exact 10 13.1 254.5 2.5 2.8 3.1 3.6 17.6 24.8 

Table 13 and Table 14 contain the results of the DTH calculations 

performed with progressively tightened meshing schemes. It is immediately 

clear from these calculations that the DTH method does not benefit largely 

from the use of an exact mesh heterogeneous mesh overlay on to the 

homogeneous problem. For both benchmarks, the results when an exact 

overlay are no more accurate than the classic or small mesh, and require 
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considerably more computation time. Also apparent is that employing diffusion 

as the homogeneous problem solution method has resulted in a loss of 

eigenvalue accuracy for the C5G7 problem. In 1-D, it was shown that only the 

first two angular moments of the auxiliary source term are required for full 

accuracy of the CSH method, but the increased coupling between space and 

angle that 2-D adds to the calculation can cause this truncation to have a larger 

impact.  

An interesting observation of Table 14 is that the progressive mesh 

tightening to a classic mesh actually has significantly more accurate results 

overall than for the small mesh or even the exact mesh, when applied to the 2-

D BWR problem, indicating that the accuracy of the DTH method may have 

less to do with the overall mesh size used by the homogeneous calculation and 

more to do with the actual placement of mesh boundaries in each individual 

problem. 
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Figure 21. Fast spectrum relative error profile for the C5G7 core solved via 

DTH with progressive mesh to the 'classic' mesh size. 
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Figure 22.  Thermal spectrum relative error profile for the C5G7 core solved 

via DTH with progressive mesh to the 'classic' mesh size. 

Figures 21 and 22 contain the flux error profiles for the C5G7 core when 

solved via DTH with progressively tightened mesh ending with the ‘classic’ 

mesh size. The thermal flux error profile has some indication of local errors 

which were not properly reduced by the re-homogenization calculation, but 

other than that, both are dominated by core-level error effects, indicating that 

the calculation was successful. The error peaks are obviously fairly localized, 

leading to mean relative and average errors of around 0.5% in both spectra, a 

close match with very significant speedup. 
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Figure 23. Fast spectrum relative error profile for the BWR core solved via 

DTH with progressive mesh to the 'classic' mesh size. 
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Figure 24. Fast spectrum relative error profile for the BWR core solved via 

DTH with progressive mesh to the 'classic' mesh size. 

Figures 23 and 24 depict the relative flux error profiles for the BWR core 

when the DTH calculation is performed with progressively tightened meshing 

to the ‘classic’ mesh. From these plots, it is clear that the flux convergence of 

the DTH method for the BWR core is not very strong, and both spectra are 

largely influenced by local effects, indicating that higher accuracy re-

homogenization may be necessary to obtain accurate DTH results. 

6.2 Other Parameter Variations 

In this section, as was done with the CSH method, each user-defined 

parameter in the DTH method will be investigated for its effect on both the 
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accuracy and speed of DTH calculations. Unless otherwise stated, all of these 

calculations have been performed using 4 core sweep re-homogenization, 1st 

order integral-conserving basis functions, and a ‘classic’ homogeneous mesh 

size. 

6.2.1 Spatial basis functions 

DTH calculations were performed using linear B-spline basis functions, 

as well as 0th and 1st order integral-conserving basis functions.  

Table 15. The effect of different spatial basis functions on DTH calculations of 

the C5G7 benchmark. 

Basis 

function 
Iters Speedup 

Δk 

(pcm) 

MRE (%) AVG (%) MAX (%) 

F Th. F Th. F Th. 

Linear 8 4.8 1593.4 0.6 0.5 0.8 0.6 3.3 5.7 

0th order 5 7.0 253.5 0.6 0.7 0.7 0.8 1.6 2.9 

1st order 5 5.9 252.1 0.6 0.7 0.7 0.8 1.6 2.9 

 

Table 16. The effect of different spatial basis functions on DTH calculations of 

the BWR benchmark. 

Basis 

function 
Iters Speedup 

Δk 

(pcm) 

MRE (%) AVG (%) MAX (%) 

F Th. F Th. F Th. 

Linear DID NOT CONVERGE 

0th order 10 34.3 258.8 1.0 1.9 1.2 2.1 6.9 12.9 

1st order 10 33.2 258.4 1.0 1.9 1.2 2.1 6.8 13.2 

Table 15 and Table 16 summarize the effect of the different spatial basis 

functions on DTH method calculations. Like with the CSH method, the 
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integral-conserving basis functions lead to significantly better performance 

than the linear B-splines when mesh transfers are used in 2-D. Especially 

surprising is that the BWR benchmark calculation failed to converge within 20 

re-homogenization iterations when linear B-splines were used for the spatial 

basis function, indicating complete failure of the method due to a lack of 

neutron balance at each re-homogenization.  

 A surprising result that can be found in Table 15 and Table 16 is the 

fact that for both benchmarks, the 0th order integral-conserving basis functions 

resulted in higher speedup and lower error for both benchmarks. While the 

reason for this effect is not fully understood, it is possible that this is an effect 

of the fact that the 1st order integral-conserving basis functions are less robust 

than the 0th order functions. That is, if flux errors are high, or if the flux is 

rapidly changing, the 1st order integral-conserving basis functions may result 

in additional error due to negative flux introduced in the mesh transfer. Any 

negative fluxes would be removed by the negative-flux fix-up procedure, but 

that process would impact the normalization, which could slow the 

convergence of the homogeneous problem.  

6.2.2 Re-homogenization method 

Results in Section 6.1 indicate that the DTH method may require more 

accurate re-homogenization than the CSH method. This is reasonable, since 
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the DTH method requires a mesh transfer of the homogeneous solution in both 

its angular and spatial domains, which is likely to introduce considerably more 

local error, and core SN sweeps are generally Jacobi-like in their convergence 

of the angular and energy domains. This section contains a study and 

discussion on the effect of different re-homogenization methods on the DTH 

method’s accuracy and speedup.  

Table 17. Effect of different re-homogenization methods on the DTH method 

for the C5G7 core. 

# Core 

sweeps 
Iters. Speedup 

Δk 

(pcm) 

 MRE (%) AVG (%) MAX (%) 

F. Th. F. Th. F. Th. 

1 6 7.0 217.3 0.7 1.3 0.9 1.0 2.4 3.3 

2 5 6.8 240.5 0.7 0.9 0.8 0.6 2.0 2.9 

4 5 5.9 252.1 0.6 0.7 0.7 0.8 1.6 2.9 

7 5 4.6 253.8 0.6 0.7 0.6 0.7 1.4 2.6 

10 5 3.8 253.1 0.6 0.6 0.6 0.7 0.6 0.7 

20 5 2.3 254.7 0.5 0.5 0.5 0.6 1.1 1.8 

AFS 5 1.1 259.2 0.7 1.0 0.9 0.9 2.8 4.3 

 

Table 18. Effect of different re-homogenization methods on the DTH method 

for the BWR core. 

# Core 

sweeps 
Iters. Speedup 

Δk 

(pcm) 

 MRE (%) AVG (%) MAX (%) 

F. Th. F. Th. F. Th. 

1 DID NOT CONVERGE 

2 12 29.7 225.1 0.7 2.2 0.9 2.5 7.9 14.9 

4 10 33.2 258.4 1.0 1.9 1.2 2.1 6.8 13.2 

7 10 21.9 294.9 1.1 1.6 1.3 1.7 4.9 9.7 

10 10 21.6 319.6 1.0 1.4 1.2 1.5 4.6 7.6 

20 9 16.1 364.0 1.0 1.1 1.2 1.3 4.4 5.3 

AFS 9 11.7 391.9 0.8 0.9 1.0 1.1 6.6 8.1 
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 As shown by Table 17 and Table 18, the increased speed of the 

homogeneous calculation in the DTH method compared to the CSH method 

implies that the overall speedup of the calculation is more strongly dominated 

by choice of re-homogenization method than the CSH method is. This is 

apparent with the precipitous change in speedup as the number of core sweeps 

per iteration is increased. For assembly fixed-source re-homogenization of the 

C5G7 core, the DTH method actually performed worse than the CSH method 

in this regard. This is because the assembly fixed-source calculations are 

performed to convergence, and the initial estimates at each re-homogenization 

step provided by the DTH method are weaker than those from the CSH method 

due to upscaling in the angle domain.   

 The effect of this poorer initial estimate for the re-homogenization step 

is especially apparent for the DTH calculation of the solution to the BWR 

benchmark with just one core sweep per iteration. This calculation took over 

twenty re-homogenization steps and did not converge. Overall, in all cases, the 

accuracy of the DTH method is demonstrated to be highly sensitive to the 

accuracy of the re-homogenization step, confirming the conclusions of [3].  
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6.2.3 Homogeneous problem meshing 

An investigation of the effect of homogeneous problem mesh size on the 

DTH method calculation and results is included in this section. As with the 

CSH method, a wide range of mesh sizes from 1 mfp to 16 mfp have been tested. 

Table 19. Effect of homogeneous problem mesh size on DTH method calculation 

of the C5G7 benchmark. 

Mesh 

size 

(mfp) 

Iters. Speedup 
Δk 

(pcm) 

 MRE (%) AVG (%) MAX (%) 

F. Th. F. Th. F. Th. 

1 5 9.5 250.4 0.4 0.4 0.5 0.5 1.6 2.5 

2 5 11.1 259.9 0.4 0.4 0.5 0.6 2.5 3.3 

4 5 11.4 259.9 0.7 1.5 0.8 1.6 4.4 8.8 

8 5 11.2 298.4 1.4 2.0 1.6 2.4 5.5 17.6 

16 5 11.1 215.4 2.0 2.5 2.2 3.0 8.5 20.9 

 

Table 20. Effect of homogeneous problem mesh size on DTH method calculation 

of the BWR benchmark. 

Mesh 

size 

(mfp) 

Iters. Speedup 
Δk 

(pcm) 

 MRE (%) AVG (%) MAX (%) 

F. Th. F. Th. F. Th. 

1 10 34.5 251.8 1.0 2.0 1.2 2.1 6.7 13.0 

2 10 48.4 281.8 0.6 2.1 0.7 2.2 3.3 12.4 

4 9 51.4 748.3 1.0 4.2 1.0 4.5 5.4 14.4 

8 8 55.3 479.9 2.8 8.2 3.0 7.7 13.3 25.7 

16 6 72.5 1160.7 7.7 13.6 9.8 14.4 42.8 48.1 

In Table 19 and Table 20, the calculations using an exact heterogeneous 

mesh overlay have not been performed, as the results of Table 13 and Table 14 

indicate that the DTH method does not lead to perfect accuracy when the exact 
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heterogeneous mesh overlay is used. Results for the C5G7 have similar values 

of speedup for nearly all mesh sizes after about 2 mfp per homogeneous mesh. 

This indicates that the DTH calculation speedup is entirely dominated by the 

time it takes to perform the re-homogenization calculation (4 core sweeps in 

this case). As expected, the accuracy of the method declines for very large 

homogeneous mesh sizes, though this decline doesn’t have a strong influence 

until the homogeneous mesh size is increased past 2 mfp. For the BWR 

benchmark, this leads to colossally large speedup values of nearly 50 times 

faster than the reference calculation. 
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CHAPTER 7. DISCUSSION AND CONCLUSIONS 

7.1 Conclusions 

The Consistent Spatial Homogenization (CSH) and Diffusion-Transport 

Homogenization (DTH) methods have been extended in implementation to 2-

D, and have been shown to be able to successfully solve reactor eigenvalue 

calculations with speedup that is consistently improved over 1-D 

implementations of each method.  In extending the implementation to 2-D, 

some significant improvements have been made to the method. The re-

homogenization procedure has been simplified by the use of a spatial basis 

function expansion of the angular flux, and the spatial basis functions used in 

the CSH and DTH solution procedures has been updated to integral-conserving 

spatial basis functions. Finally, the use of a progressively tightened 

homogeneous problem spatial mesh has been implemented and has been 

shown to significantly improve the computational cost of the CSH and DTH 

methods without a commensurate decrease in accuracy.  For the CSH method, 

this can even be used with an exact heterogeneous mesh overlay of the 

homogeneous problem to reach near perfect accuracy with modest speedup 

over the reference calculation, between 1.6 and 1.9, depending on the 
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benchmark problem. This is comparable to the speedups seen in 1-D 

implementations of the CSH method [1] [4].  

Along the way, a robust system has been developed for 2-D transport 

calculations to be solved with the SN method, implemented as an extremely 

portable and easy-to-use Python library, written in compiled FORTRAN 90 

code. This code package is standalone, and it can be easily modified for other 

research projects, as well as for future extensions of the CSH and DTH 

methods.  

7.2 Discussion 

The results of the CSH and DTH parameter studies can help to determine 

the best set of parameters to use, depending on the needs of the user, and the 

success of the 2-D implementations of the CSH and DTH methods can be 

judged compared to the results of proof-of-concept studies in 1-D. For the CSH 

method, the set of parameters which yield results that can be most comfortably 

compared to previous implementations of the CSH method are the calculations 

that were performed using 4 core sweeps per re-homogenization, with a 

linearly progressively tightened homogeneous mesh size starting from four 

times the ‘classic’ mesh size and ending with an exact overlay of the 

heterogeneous mesh.  When these parameters were used, the 2-D CSH method 

obtained 1.6 to 1.9 times speedup over the reference calculation, with less than 
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0.5 pcm eigenvalue and less than 1.4% maximum fine-mesh relative flux error. 

These errors are effectively zero, given the convergence used in the reference 

cases, and they are on par with both the speedup and the accuracy of 1-D CSH 

implementations [4]. In fact, the use of integral-conserving spatial basis 

functions results in a significantly closer match of reactor eigenvalue when 

these parameters are used, compared to 1-D implementations of the CSH 

method. This indicates a successful extension of the CSH, and promises 

excellent results for the method to be extended to further use for full-core 

calculations. 

The results of extending the DTH method to 2-D were also successful in 

terms of being a clear improvement over results for the DTH method in 1-D, 

and DTH is promising as a method which can calculate relatively accurate fine-

mesh angular flux solutions with significant speed advantages over pure 

heterogeneous transport calculations.  By employing a progressively tightened 

homogeneous mesh from four times the ‘classic’ mesh size down to the ‘classic’ 

mesh size for DTH, calculations achieved between 8 and 33 times speedup, 

with less than 260 pcm eigenvalue error and between 0.5% and 2% mean 

relative flux error. These speedups are significantly improved over 1-D 

implementations of the DTH method [4], and both the eigenvalue and flux 

accuracy are very near to the same metrics in 1-D.   

 



 

 

106 

7.3 Future Work 

There are several ‘scales’ of future work that can be undertaken for 

further improvements to CSH theory and implementation. In an immediate 

sense, there are investigations already being undertaken into alternative 

methods of re-homogenization that do not require full heterogeneous transport 

calculations.  In particular, the use of High Order Diffusion [19] has shown 

promise as a method for re-homogenization that can still provide transport-

level accuracy in calculating the auxiliary source term. This theory has been 

used in 1-D for a similar method undertaken on the energy domain, and the 

use of high order diffusion has resulted in significantly improved speedups 

with very little loss of accuracy. An extension of this theory to full-scale 

implementations of the CSH method is obvious, and it will likely have excellent 

results.  

The results of CHAPTER 5 and CHAPTER 6 indicate that the CSH and 

DTH methods are viable as reactor eigenvalue solution methods. These results 

were performed without any sort of acceleration techniques for either the 

homogeneous solves or the heterogeneous core re-homogenization core sweeps.  

This was done in order to more fairly examine the computational benefits of 

the CSH and DTH methods; however, in further full-scale reactor calculations, 

it will be highly beneficial to implement acceleration techniques with the CSH 

and DTH methods for even more computational benefit.  
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Finally, a future investigation of the CSH and DTH theories can be done 

in order to focus on extending the treatment of the auxiliary source term to a 

full expansion in space, angle, and energy. This would involve a combination 

of the CSH theory with the theory of Energy Condensation [20] [21], as well as 

some new theory that would allow the auxiliary source term to incorporate 

information from a finer angular discretization as well.  In such a theory, the 

auxiliary source term could be used to fold all of the high-order, fine-group, 

heterogeneous information from a given transport equation into some other 

low-order coarse-group homogeneous equation, which could be solved using a 

similar solution method to the solution method described in this thesis. 
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APPENDIX A. DETAILS OF 2-D BWR DISCRETIZATION 

GENERATION 

A.1 Pin Cell Meshing Utility 

 The 10x10 pin cell mesh depicted in Figure 5 is a volume-conserving 

mesh that was generated using a custom pin cell meshing utility, which will 

be described in this appendix. The pin cell mesh was constrained as volume 

conserving in order to minimize impact on reaction rates, although restriction 

to an approximate mesh will always have fairly large impacts on reaction rates.  

Overall, the mesh was chosen in order to best approximate the physics of the 

reactor, without an overly large concern for maintaining the exact geometry 

solution.  

 The process by which the pin cell meshing utility works is as follows: 

First some user-defined number of 𝑥-direction and 𝑦-direction mesh lines are 

drawn that pass through points on both the fuel surface and clad outer surface. 

While the number of lines drawn that pass through each surface is user-

defined, the points that the lines pass through are chosen to have equiangular 

spacing on the fuel and clad surface. At this stage, if any cell has a width that 

is less than 1/15 of the average cell width, then the process is repeated with a 

new number of mesh lines. This helps to prevent degenerate cell widths. Then, 

each cell of the mesh is ‘colored’ based on the location of its center point.  If the 
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center point is inside the clad annulus, that cell is considered clad.  If the center 

point is inside the fuel disc, it is considered fuel, and otherwise it is considered 

moderator. 

 The mesh defined by the previous paragraph becomes the initial 

estimate pin cell mesh. An error vector is calculated for the initial mesh that 

is the relative difference of each material’s area as defined by the mesh and as 

defined in the exact geometry. The overall error of a mesh is taken to be the 

infinity norm of this error vector.  

 The above paragraphs describe an automatic way of generating a mesh 

and testing its accuracy. If the clad and fuel radii are perturbed such that 

𝑟clad
′ = 𝑟clad(1 + 𝛿clad) and 𝑟fuel

′ = 𝑟fuel(1 + 𝛿fuel), and if these perturbed radii are 

used to place the mesh boundaries and ‘color’ cell interiors, then the process 

can be repeated to generate another approximate mesh of the pin cell with its 

own corresponding overall error value. This process can be written 

where ||𝑒||
∞

 is the norm of the error of a given mesh, and the function MESH 

performs the process described in the previous paragraphs in order to generate 

a pin cell mesh and its corresponding error. In Equation (49), 𝑁1 and 𝑁2 are the 

user-defined number of mesh boundaries to be placed through the fuel surface 

and clad surface, respectively. Only the variables 𝛿clad and 𝛿fuel are not fixed, 

||𝑒||
∞

=  MESH(N1, N2, 𝛿clad, 𝛿fuel, 𝑟clad, 𝑟fuel), (49) 
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and so MESH is effectively a function of two variables. Once this process is 

defined, the nonlinear function MESH can be numerically approximated by 

simulating many model pin cell meshes, and it can be solved using any non-

linear solution method. In generating the 10x10 BWR pin cell mesh, the 

solution method was chosen to be Newton’s method, which converged to 

||𝑒||
∞

= 0 within double precision. It should be noted that because MESH is 

nonlinear, not all choices of parameters will lead to convergent solutions with 

||𝑒||
∞

= 0, however in practice it was found that most sets of parameters did 

lead to reasonable pin cell meshes. 

A.2 Other Simplifications 

Additional simplifications to construct the Cartesian mesh BWR model 

were minimal. The coolant channel within each assembly was assumed to be 

square and of the same size as a 2x2 grid of fuel pins, and the clad around this 

coolant channel was not included in any models.  Additionally, the row of 

control rods within each cruciform control blade was assumed to be a solid 

blade of control material with the same diameter as the control rods 

themselves.  This approximation increased the overall volume of control 

material in the core, but the overall heterogeneous problem still has an 

eigenvalue that is 2500 pcm higher than the exact geometry models described 
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in [17], suggesting that the impact of this approximation is significantly less 

than the impact of the Cartesian mesh discretized pin cells.  

No other approximations were made for the BWR benchmark 

discretization. 
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APPENDIX B. CHOICE OF REFERENCE CONVERGENCE 

CRITERIA 

Reference flux solutions for the C5G7 problem were calculated using 

convergence criteria of 6 × 10-6 in flux and 7 × 10-8 in eigenvalue, chosen so that 

the maximum reference flux error is 0.5% and the eigenvalue error is less than 

0.5 pcm, when compared against an exact solution to the discretized equations. 

In this appendix, the convergence criteria will be defined, and their values will 

be justified.  

B.1 Definition of Convergence Criteria 

Within any iterative calculation, some metric must be chosen in order to 

measure the convergence of the calculation in order to determine when the 

calculation will be stopped. In general, this metric cannot be the true error of 

a given estimate, since generally the true solution of a calculation cannot be 

known while the calculation is being performed. Instead, convergence criteria 

usually take the form of some norm of the difference between consecutive 

iterations, such as  

This definition is not perfect, as it can sometimes misidentify non-

convergent sequences as convergent, such as the sequence represented by the 

||𝑓𝑛+1 − 𝑓𝑛|| ≤ 𝜖. (50) 
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partial sums of the harmonic series, but it is commonly used and it is suitable 

in practice.  Ultimately, the choice of norm is arbitrary. Sometimes it is more 

appropriate to use a relative difference norm, such as  

Any norm will work, so long as it can be expected to monotonically 

decrease as the solution estimates converge. The convergence criteria used by 

the reference solutions in CHAPTER 4 are that a calculation is considered 

converged when following conditions hold true 

In these convergence criteria, ℓ represents the iteration number. The use 

of infinity norms in Equation (52) effectively means that the flux convergence 

criteria are measured as maximum absolute error, normalized to the flux peak 

in the core.  

 

 

||𝑓𝑛+1 − 𝑓𝑛||

||𝑓𝑛||
≤ 𝜖. (51) 

||𝜓𝑖,𝑗,𝑛,𝑔
ℓ−1 − 𝜓𝑖,𝑗,𝑛,𝑔

ℓ ||
∞

||𝜓𝑖,𝑗,𝑛,𝑔
ℓ ||

∞

≤ 𝜖𝜓 = 6 × 10−6

, (52) 

|𝑘ℓ−1 − 𝑘ℓ|

𝑘ℓ
≤ 𝜖𝑘 = 7 × 10−8. (53) 
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B.2 Choice of Convergence Values 

The values of 𝜖𝜓 and 𝜖𝑘 have meaning only insofar as they can accurately 

be related to the true error of the flux and eigenvalue. As such, the following 

calculation was performed in order to guarantee that the reference solutions 

were solved to within 0.5% maximum relative flux error and 0.5 pcm 

eigenvalue error when compared against the exact solution of the 

discretization. The exact solution to the discretization was approximated by 

running the calculation with 𝜖𝜓 and 𝜖𝑘 set to 1 × 10−12. 

 

Figure 25. Result of calculation of required eigenvalue convergence criterion 

value 
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Figure 26. Result of calculation of required flux convergence criterion value 

The results of these calculations are presented in Figure 25 and Figure 

26. This calculation was performed on the 2-D C5G7 benchmark problem, but 

with S4 angular approximation rather than S8 due to computational 

limitations. There is no reason to expect dramatically different behavior for 

different quadrature, however. These calculations indicate that there is a well-

behaved relationship between the within-calculation convergence estimates 

and the actual error compared against the discretization error, which can be 
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used to result in excellent convergence criteria.  Additionally, this calculation 

indicates that when the chosen convergence criteria values are used, it can be 

expected that both the eigenvalue convergence and flux convergence will be 

met near the same iteration number 
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