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SUMMARY 

A third-generation of in-line, liner-style hydraulic suppressors was developed that 

takes advantage of advancements of syntactic foam technology. The chemistry of the 

developed liner was varied so that the acoustic properties of the foam could be retained 

when repetitively exposed to the extremes of the hydraulic environment. The developed 

liner uses microspheres that can be charged to an elevated initial microsphere 

pressurization which results in an increased acoustic performance at elevated system 

pressures. The developed liner also addresses the limitations of the first and second-

generation liner-style suppressors in terms of initial volume fraction of microspheres, 

allowing for enhanced acoustic performance over broad pressure ranges.  

Acoustic diffusers, necessary for bladder-style in-line hydraulic suppressors, were 

considered for use with liner-style hydraulic suppressors. It was found that acoustic 

suppressors are not appropriate for use in liner-style suppressors due to the possible 

dimensional changes of the liner under hydrostatic loading.  

Testing indicates that increasing the initial microsphere pressurization and the 

initial volume fraction of microspheres significantly increases the acoustic performance 

of the suppressors. Additional testing indicates that the host matrix composition can be 

refined so that the acoustic performance is stable over multiple exposures to elevated 

temperature and pressure. Using the results of the testing, a suggestion for an improved 

formulation of syntactic foam is made.  
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CHAPTER 1. INTRODUCTION 

Fluid-borne noise, often referred to as pressure ripple in the hydraulics industry, is 

a ubiquitous problem in the hydraulics industry, decreasing equipment life and increasing 

the ambient noise level. Fluid-borne noise will couple with the structural components of a 

hydraulic system, which can introduce significant fatigue cycles to the system 

components about the static stress induced by the system pressure. These fatigue cycles 

are particularly critical at the least durable components in the system such as seals and 

valves, where O-ring wear can lead to leaks.  

Fluid-borne noise in hydraulic systems is generated by system components such 

as pumps and valves. Most hydraulic pumps produce intense tonal noise at the 

fundamental frequency of the pump and its harmonics. Valves in hydraulic systems tend 

to introduce broadband noise by restricting and directing the flow of oil, inducing 

turbulence. The spectral content of the fluid-borne noise in a representative hydraulic 

system at 10.3 MPa is shown in Figure 1. The strong tonal components of the noise were 

generated at the pump’s passing frequency and its harmonics while the broadband noise 

was generated by turbulence induced in valves. It can be seen from Figure 1 that the 

amplitude of the fluid-borne noise can be on the order of 10% of the system pressure. 

This indicates that hydraulic systems may cause significant fatigue cycles in the system 

components. The performance requirements of these components generally prevent any 

redesigns that could mitigate noise production. 
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Figure 1 – Spectral content of the fluid-borne noise in a representative system with 

10.3 MPa static pressure, exhibiting strong tonal characteristics corresponding to 

the harmonics of a 9-piston pump operating at 1500 rpm and with high levels of 

broadband noise induced by turbulence at a needle valve [1]. 

The structural-borne noise will couple with the surrounding air, increasing the 

ambient noise, potentially interfering with work site communications and/or leading to 

hearing loss. This breakout noise has been shown to be a significant factor when 

considering the purchase of new mobile equipment, following only adequate power and 

good fuel economy [2].  

Many hydraulic systems are used in size limited applications, such as mobile, off-

road equipment, an example of which can be seen in Figure 2. Because of the many size 

limited applications of hydraulics, a robust yet small device is needed to treat the fluid-

borne noise. Conventional noise treatment solutions such as Helmholtz resonators and 
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expansion chambers require prohibitively large form factors in hydraulic applications due 

to the high speed of sound [1].  

 

Figure 2 – Construction equipment is a typical mobile hydraulics application with 

size and weight restrictions. 

1.1 Current State of the Art 

Inline suppressors were developed to address the fluid-borne noise in hydraulic 

systems without significantly increasing the form factor of the system. Both bladder-style 

and liner-style suppressors treat noise by creating a mismatch in the specific acoustic 

impedance between the suppressor and the hydraulic system.  

1.1.1   Bladder-Style Suppressor 

Bladder-style suppressors contain a rubber bladder backed by pressurized gas, 

usually nitrogen, and restrained by a diffuser, as shown in Figure 3. The charge of the 

suppressor is determined by the system pressure for which the suppressor is being used. 
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Despite the high transmission losses (TL) achievable with this style of suppressor, the 

utility of bladder-style suppressors is limited by the required maintenance and potential 

for catastrophic failure. The diffuser serves a dual purpose in bladder style suppressors, 

both supporting the bladder and introducing acoustic damping to the suppressor. 

 

Figure 3 – Typical design of a bladder-style suppressor. The item marked as 80 is 

the rubber bladder; the item marked as 82 is the diffuser [3]. 

1.1.2 Liner-Style Suppressors 

Liner-style suppressors use a syntactic foam composed of microspheres contained 

by a polymer bound within a host polymer. The liner-style suppressor is intended to be a 

maintenance free design; no charging is necessary, and the form of catastrophic failure 

experienced in the bladder-style suppressor is impossible. Table 1 describes the three 

generations of liner-style suppressors and the various defining characteristics of those 

generations. Figure 4 shows an example of a first-generation liner-style suppressor; the 

liner is an annular cylinder which allows the oil to flow unimpeded through the 

suppressor. Figure 5 shows an example of a second-generation liner-style suppressor; the 

shell of the suppressor and the use of a diffuser differs from that of the first-generation 



 5 

suppressor. The third-generation of liner-style suppressors uses the same original 

equipment manufacturing (OEM) shell and lacks a diffuser. 

Table 1 – Syntactic foam, liner-style hydraulic suppressor generations. 

Generation Material 
Internal 

Components 

Volume 

Fraction 

Initial 

Microsphere 

Pressurization 

Shell 

Form 

Factor 

1 GR9-625 None Fixed Not Possible OEM  

2 GR9-625 Diffuser Fixed Not Possible OEM  

3 Various None Variable Possible OEM  

 

 

Figure 4 – First generation of liner-style suppressor [4]. 
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Figure 5 - Second-generation of liner-style suppressor [4]. 

1.2 Scope of the Project 

A third generation of liner-style suppressors was developed that allowed for 

flexibility in the initial volume fraction (VF) of microspheres, the initial microsphere 

pressurization (IMP) of the microspheres, and the properties of the host matrix. Each 

component of the suppressor was considered both individually and as it would function 

within the system.  

1.2.1 Suppressor Development 

A third generation of liner-style suppressor was developed that had comparable 

performance to the previous iterations of foam, but allowed for more flexibility in foam 

material properties. The initial microsphere pressurization (IMP), the initial volume 

fraction (VF) of the microspheres within the foam, and the volume of foam within the 

suppressor were explored to determine their impact on the suppressor transmission loss 

(TL). The use of additives to alter the hardness and compression set of the foam were 
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explored to determine their impacts on the utility of the foam in terms of TL and material 

compatibility, which will manifest as performance changes due to repeated exposure to 

the hydraulic environment. 

The use of a diffuser in liner-style suppressors was considered based on a review 

of available literature and the implications of the solid mechanics of the liner. An 

examination of the solid mechanics of the liner implies that it is generally not preferable 

to use a diffuser with syntactic liners. For this reason, diffusers were not used in the third-

generation suppressors, and will not be used in future generations. 

1.2.2 Testing 

Third-generation suppressors were transmission loss tested according to ISO 

15086. The form factor of the diffuser shell and the geometry of the liners were kept 

constant so that only the composition of the liner was varied. The frequency range 

considered was 0 to 4000 Hz, as the majority of the energy contained by the fluid-borne 

noise in hydraulic systems is below 1000 Hz. Each liner-style suppressor was tested over 

a range of system pressures from 1.38 to 13.8 MPa to characterize its effectiveness as a 

noise treatment device. Each liner was then tested an additional two times to determine 

whether or not the foam was damaged by the hydraulic environment. 

1.3 Overview of Thesis 

The following chapters will outline the background of the work, the design 

considerations of acoustic diffusers in in-line suppressors, and the design of the syntactic 

foam in terms of composition. Chapter 2 provides background information about acoustic 
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noise control in general, compliant-style suppressors, and syntactic foam. Chapter 3 

reviews the use of a diffuser in bladder-style and liner-style suppressors. Chapter 4 

discusses the composition of the liner in greater detail and the test articles used to 

demonstrate the influence the foam components in the acoustic performance of the 

suppressor. Chapter 5 provides experimental method and data that demonstrates the 

contributions of alterations that were made to the composition of the foam. Conclusions 

are drawn from the experimental results and design considerations in Chapter 6. 

Supplemental material related to various topics discussed in this paper can be found in 

the appendices.   



 9 

CHAPTER 2. BACKGROUND 

Noise sources in the hydraulic environment will be discussed first, then the 

physical principles by which noise is controlled in hydraulic environments will be 

discussed. Several resonance-style devices will be described that use resonance to control 

fluid-borne noise. Compliance-style, inline suppressors are discussed along with an 

introduction to bulk modulus a material property. The relationship between the acoustic 

impedance and bulk modulus will be introduced as it relates to the acoustic performance 

of suppressors. Syntactic foams and the composition of the liners are introduced along 

with component properties that will be important to the functioning of liner-style 

suppressors.  

2.1 Hydraulic Noise Sources 

Most of the acoustic energy in hydraulic systems is generated by the pumps, 

which produce strong tones at the pump’s passing frequency and its harmonics. Due to 

the typical designs of hydraulic pumps, the pump passing frequency and the first several 

harmonics are below 1000 Hz. Orifices and other flow path geometries will introduce 

broadband noise which will generally have a lower magnitude – but not insignificant – 

than the pump tones. Consequently, most of the acoustic energy in a hydraulic system 

will have a frequency less than 1000 Hz.  

Reduction of noise generation is not usually emphasized when designing 

hydraulic pumps and system components as other functionalities are more highly 

prioritized by the hydraulics industry. Therefore, the most common method by which the 
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fluid-borne noise of hydraulic systems can be mitigated is through the addition of noise 

control devices. 

2.2 Hydraulic Noise Control 

In general, two varieties of hydraulic noise control devices exist; resonant-style 

and compliant style devices. Both varieties of hydraulic noise control devices create a 

specific acoustic impedance mismatch within the hydraulic circuit which reduces the 

acoustic energy that is transmitted past the mismatch. 

2.2.1 Resonant-Style Noise Control Devices 

Resonant-style devices usually incorporate a side branch to the hydraulic circuit 

in which resonances are excited. Typical resonator devices include ¼ and ½ wave 

resonators and Helmholtz resonators. The basic functioning of ¼ and ½ wavelength 

resonator is the same, the side branches have one end rigidly capped and one open end 

which allows resonant waves to be created at multiples of the branch’s fundamental 

frequency; odd integer multiple in the case of ¼ wave resonators and integer multiples in 

the case of ½ wave resonators.  

The wavelength of an acoustic wave is inversely proportional to the frequency of 

the sound such that 

 
c

f
   (2.1) 

where c is the speed of sound in the fluid through which the sound is propagating and f is 

the frequency of the sound. As the speed of sound in hydraulic oil is approximately 1500 
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meters per second, and most frequencies of interest in hydraulic system are low – less 

than 1000 Hz – the corresponding wavelengths are large. For example, given SAE-40 

hydraulic oil, and a frequency of 225 Hz – the pump passing frequency of a 9-piston 

pump operating at 1500 rpm – the wavelength is roughly 6.5 meters, thus requiring 3.25 

meter or 1.63 meter side branches. Because the wavelengths of the acoustic waves being 

treated are large, the devices used to treat sound in hydraulic systems are often 

prohibitively large to be used in many hydraulic systems. 

Helmholtz resonators are common noise control devices, but only effectively treat 

noise at or near the resonant frequency of the device. Helmholtz resonators are comprised 

of a cavity with a specific volume of fluid that is connected to the flow path via a neck of 

specific length and cross-sectional area. Altering the length of the neck, cross-sectional 

are of the neck, and the cavity volume will change the effectiveness of the device and the 

resonant frequency.  For hydraulic applications, the required dimensions of Helmholtz 

resonators are too large to be used in mobile systems [5]. 

2.2.2 Compliant-Style Noise Control Devices 

Changes in the cross-sectional area of the flow path or the propagation medium is 

used to produce the specific acoustic impedance mismatch in compliant-style devices. 

The simplest compliant-style noise control of device – those that rely on a change in the 

cross-sectional area of the flow path to create the mismatch in specific acoustic 

impedance – are called expansion chambers. For the hydraulics application, in which 

through flow of the oil is necessary, all other compliant-style devices are modifications of 

the expansion chamber design. Currently, the only commercially available design that 
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uses a change in the propagation medium to create the specific acoustic impedance 

mismatch are bladder-style suppressors. Liner-style suppressors have been in 

development, in which a foam is used to introduce compliance to the suppressor [1,4]. 

2.2.2.1 Bulk Modulus and Acoustic Impedance 

By definition, the bulk modulus of an acoustic medium is given by 

 

0

0

0

P
K






 
  

 
 (2.2) 

where P is the pressure in the medium and ρ is the density of the medium. An 

examination of Equation (2.2) implies that the bulk modulus is constant across all 

frequencies. Additionally, increasing the bulk modulus of the medium is an equivalent 

statement to decreasing the compliance of the medium. 

The specific acoustic impedance in a waveguide, such as a pipe, is related to the 

bulk modulus by 

 
K

Z
A


  (2.3) 

where A is the cross-sectional area of the waveguide and ρ is the density of the medium. 

An examination of Equation (2.3) implies that decreasing the bulk modulus of the 

medium will decrease the acoustic impedance.  

In most hydraulic applications, the specific acoustic impedance of the system is 

prescribed by the volumetric flow rate and system pressure. Inline suppressors create a 

disparity in the specific acoustic impedance by increasing the cross-sectional area or by 

reducing the bulk modulus in the suppressor or both. While decreasing the cross-sectional 
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area or increasing the bulk modulus may be possible, the performance restrictions in 

hydraulic systems make these routes impractical. 

2.2.2.2 Expansion Chamber 

The transmission loss of an expansion chamber is only dependent on the geometry 

of the chamber and the geometry of the inlet and outlet ports of the chamber. As the ratio 

of the cross-sectional area of the chamber to the cross-sectional area of the inlet and 

outlet ports is increased, the peak transmission loss will increase. Expansion chambers 

are frequency dependent devices, with the transmission loss increasing to a peak and 

reducing to a null in a periodic manner in frequency that is related to the length of the 

expansion chamber. 

2.2.2.3 Bladder-Style Suppressors 

Bladder-style suppressors are a modification on the expansion chamber design, in 

which sound is allowed to propagate into a gaseous medium, usually nitrogen, which is 

restrained in the suppressor by use of a flexible rubber bladder. The gas is substantially 

less stiff than the hydraulic oil, creating a large mismatch in the specific acoustic 

impedance. Using the perfect gas law and examining Equation (2.2), it can be shown that 

the Bulk modulus of a gas is the pressure of the gas. In the case of bladder-style 

suppressors, and above the charge pressure, the pressure of the gas is the system pressure. 

Thus, the effectiveness of these devices is sensitive to the pressure of the gas in the 

suppressor, with peak effectiveness at approximately 90% of the system operating 

pressure [1]. 
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Of the commercially available noise control devices for hydraulic systems 

bladder-style suppressors are the most effective devices for treating broadband noise. As 

bladder-style suppressors rely on many of the same physical phenomena as liner-style 

suppressors, the bladder-style suppressors will be discussed in greater detail in Chapter 3.  

2.2.2.4 Liner-Style Suppressors 

Liner-style suppressors use a solid medium – in this case, syntactic foam – by 

which compliance is introduced to the suppressor. The syntactic foams used for this 

application are comprised of a polymer host matrix and a polymer microsphere. The main 

function of the host matrix is to contain the microspheres and to withstand the hydraulic 

environment. The microspheres are filled with gas, usually nitrogen, and are the main 

source of compliance in liner-style devices. 

2.3 Syntactic Foam 

Compliance is introduced in liner-style suppressors by means of a syntactic foam 

liner. The mechanical and acoustic properties of the liner will be controlled by the 

properties of the liner’s two constituent components; i.e. the microspheres and the host 

matrix. The bulk modulus of the syntactic foams will be the means through which 

compliance is discussed in this thesis as it is useful to have a single value to characterize 

a foam and most solid mechanics material modelling is done in terms of bulk modulus. 

2.3.1 Microspheres 

The liner will have two regimes of behavior that will be determined by the solid 

mechanics of the microspheres, which are essentially thin-walled pressure vessels [6]. At 
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atmospheric pressure, and relatively low external pressures, the microspheres behave 

similarly to rigid spheres. At elevated external pressures, the walls of the microsphere 

will collapse, a condition referred to as buckling. After the microspheres have buckled, 

they will behave like bubbles within the liner. The critical pressure at which the 

microsphere will buckle can be found as 

 

 

2

int
2 2

2

3 1

w
cr ext

w

Et
P P P

r 
  


 (2.1) 

where Pext is the exterior pressure, Pint is the interior pressure, E is the Young’s modulus 

of the microsphere, tw is the wall thickness of the microsphere, rw is the radius of the 

microsphere, and ν is the Poisson’s ratio of the microsphere. The critical pressure is a 

differential pressure across the wall of the microsphere, above which the microsphere 

will buckle. From the critical pressure, the system pressure at which the microspheres 

will collapse can be found as 

 collapse crP IMP P   (2.2) 

where IMP is the initial microsphere pressurization. Below the collapse pressure of the 

microspheres, the foam will be inefficient at treating noise when compared to foam in the 

post collapse regime. Gruber [1] showed that it is theoretically beneficial for the 

treatment of noise in hydraulic systems to drive the collapse pressure toward the system 

operating pressure. Micrographs of pre-collapsed and post-collapsed microspheres can be 

seen in Figure 6.  
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Figure 6 – Micrograph of microspheres in the a) pre-collapsed and b) post-collapsed 

state [7]. 

The limit of the IMP is the burst pressure, which can be found as 

 int

2 w yield

burst ext

w

t
P P P

r


    (2.3) 

where σyield is the yield stress of the microsphere. The burst pressure is a differential 

pressure above which the microsphere will rupture and release the internal pressure. After 

a microsphere has burst, it will not act as an effective noise treatment, hence the burst 

pressure is the upper limit of the IMP that the microspheres can sustain if handled at 

atmospheric pressure. 

2.3.2 Host Matrix 

The host matrix selection is critical to the functioning of the liner, as it will affect 

the acoustic properties over all pressure ranges. Because the microspheres must be mixed 

into the host matrix prior to the host matrix solidifying, two part polymers are used.  
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The host matrix of the syntactic foams used for first- and second-generation 

hydraulic suppressors used a polyester polyurethane fabricated by UTC Aerospace 

Systems. The chemical composition of the polyurethane in previous generations of 

suppressors was fixed, with only the geometric form of the liner being available for 

design by researchers. This lack of compositional flexibility limited the development of 

the liner-style devices.  
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CHAPTER 3. DIFFUSER DESIGN CONSIDERATIONS 

  The diffuser in a hydraulic suppressor serves both an acoustic and a structural 

purpose in the suppressor. The acoustic purpose of the diffuser is to introduce acoustic 

resistance, and thus reduce the transmitted fluid-borne noise. Structurally, the diffuser is 

used to restrain and locate the bladder or liner in the suppressor. To effectively meet both 

the acoustic and structural demands, the diffuser is usually composed of two parts, as is 

shown in Figure 7. The main body bears most of the structural loading applied by the 

bladder or liner, while the perforate sheet provides most of the acoustic resistance 

through viscous effects. The perforate sheet generally sheathes the main body, both 

limiting the potential of bladder or liner extrusion through the holes in the main body and 

providing the majority of the acoustic resistance. 

 

Figure 7 – Exploded view of a typical design for a diffuser [4]. 

3.1 Basic Theory of Diffusers 

 Diffusers add damping to the suppressor via viscous drag in which the energy loss 

is proportional to the acoustic particle velocity. This damping will tend to decrease the 

maximum achievable transmission loss, but increase the minimum transmission loss 

which can broaden the frequency range over which the suppressor is useful as a noise 
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treatment device. The effectiveness of a diffuser as a noise control device will increase 

with increased acoustic particle velocity. The acoustic particle velocity can be calculated 

as 

 
0

p
u

Z
  (3.1) 

where p is the acoustic pressure, and Z0 is the specific acoustic impedance. As in-line 

hydraulic suppressors reduce the specific acoustic impedance within the suppressor this 

will result in an increased acoustic particle velocity and an increased effectiveness of the 

diffuser. 

3.1.1 Acoustic Impedance Modelling 

Salmon [4] discussed the development and implementation of an impedance 

model of the main body and perforate sheet that can be used to predict the acoustic 

performance of the diffuser. The model discussed is based on the assumption that the 

medium on either side of the diffuser has identical impedance. The acoustic impedance is 

dependent on diffuser, system, and acoustic parameters. 

3.1.2 Structural Requirements 

Diffusers can be treated similarly to thin shelled pressure vessels, with forces 

acting upon them due to fluid flow through the diffuser and contact with the bladder or 

liner [4]. At steady state, the static fluid pressure differential between the sides of the 

diffuser will be zero; however, due to viscous effects, the acoustic pressure differential 

will not be zero. Diffusers that are not designed to bear these loads may fail which can 

lead to contamination of the hydraulic system. 
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3.2 Applicability to Bladder-Style Suppressors 

For the case of a bladder-style suppressor, the use of a diffuser is necessary 

structurally and can be beneficial acoustically. The diffuser serves a critical structural 

role when used in a bladder-style suppressor, as the diffuser prevents the bladder from 

becoming disconnected from the shell of the suppressor and traveling freely through the 

hydraulic system. A failure of the diffuser could create many additional problems in a 

hydraulic system such as increased risk of cavitation by introducing nitrogen to the oil 

and valve failure or dead heading from the bladder becoming lodged in the system. Dead 

heading is a term of art that refers to a condition in which there is now flow path through 

the hydraulic system, thus causing a large spike in pressure in constant flow pumps. 

The thickness of the viscous boundary layer is given by 

 
2

vt



  (3.1) 

where µ is the fluid viscosity, ρ is the density of the fluid, and ω is the angular frequency 

of the dynamic pressure [8]. If the radius of the holes in the perforate sheet are less than 

or equal to the thickness of the viscous boundary layer, then acoustic communication may 

not exist across them [8]. For SAE 40 oil at 20° C holes with diameters less than 1.6 mm 

may not allow acoustic communication of frequencies lower than 250 Hz., if the 

perforate sheet is thick. As most acoustic energy in hydraulic systems is contained below 

1000 Hz, this may be significant to the overall performance of the diffuser.  
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3.3 Applicability to Liner-Style Suppressors 

In a liner-style suppressor a liner will experience a hydrostatic loading when used, 

which may result in a degradation of the diffuser’s acoustic performance. Additionally, 

the material composition of the liner can lead to compression setting (permanent 

dimensional changes resulting from a compressive load), which will also impact the 

suitability of diffusers in liner-style suppressors. 

3.3.1 Solid Mechanics of Liners 

Liners are annular cylinders, as shown in Figure 8. Because the liner is not 

adhered to the walls of the suppressor, the liner will undergo hydrostatic loading at the 

system pressure. This geometry of foam allows for the liner to sheath the diffuser, and 

allows the oil to have an unimpeded flow path through the suppressor. The critical 

dimension of the liner for use with a diffuser is the inner radius; under hydrostatic 

loading, the change in the inner radius can be calculated as 
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where ro,1, and ri,1, are the initial inner and outer radii of the liner, as defined in Figure 8, 

E
*
 is the effective Young’s modulus of the foam, ν

*
 is the effective Poisson’s ratio of the 

foam, and Psys is the system pressure [9]. It should be noted that the effective Young’s 

modulus and the effective Poisson’s ratio will change with the system pressure, as 

discussed in Section 4.1. An examination of Equation (3.2) indicates that increasing the 

hydrostatic pressure will result in a decrease in the inner radius of the liner if 
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Figure 8 – Annular cylinder of syntactic foam. Reference dimensions for equations 

(3.2) and (3.3). 

 The decrease in the inner radius of the liner can cause the liner to come into 

contact with the outer radius of the diffuser at elevated system pressures. Liners are 

typically designed to have the maximum volume and are therefore installed with the inner 

radius in contact with the diffuser, narrowing the pressure range over which the liner may 

not be in contact with the diffuser. Additionally, this will increase the loading 

experienced by the diffuser and violate the assumptions used to model the acoustic 

behavior of the diffuser. The loading on the diffuser will cause significant stresses in both 

the perforate sheet and the liner, potentially resulting in a failure of one or both 

components. 

 Contact between the diffuser and the liner will also impact the acoustic 

characteristics of the diffuser. The assumption of a continuous medium on either side of 
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the diffuser is violated, so the analysis of performed by Salmon will not be valid. While 

the exact modeling of the acoustic characteristics of the diffuser has not been undertaken, 

it is known that the diffuser can decrease the acoustic performance of a liner style 

suppressor [4]. The data presented in Figure 9 was gathered using identical liners at the 

same system pressure, with the only difference being the addition of the diffuser. The 

liner with diffuser has a significantly lower transmission loss in the range of 100 to 1250 

Hz, which is the range in which most acoustic energy in hydraulic systems exists. 

 

Figure 9 – Impact of the use of a diffuser in a liner-style suppressor [4]. 

While it may be possible to design the liner to not come into contact with the 

diffuser by altering either the initial dimensions or the material properties of the foam, 

this may negatively impact the effectiveness of the suppressor. The required dimensional 

changes would decrease the initial volume of foam and result in decreased compliance in 

the suppressor, decreasing the transmission loss.  
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3.3.2 Compression Sets 

Most polymer based syntactic foams will have a permanent shape change when 

exposed to elevated temperatures and pressures for extended periods of times. The extent 

of these permanent shape changes, often called compression sets, will depend on both the 

composition of the polymer, and the curing processes of the polymer. The permanent set 

can be large enough to cause the liner to violate the diffuser assumptions even at low 

system pressures and to apply a static load to the diffuser. 

3.3.3 Use of Diffusers in Liner-Style Suppressors 

As stated in Section 3.3.1, the solid mechanics of annular cylinders indicates that 

the acoustic effectiveness and the structural integrity of the both the diffuser and the liner 

can become compromised when the liner is exposed to hydrostatic loading. Any 

compression set taken by the liner will only tend to increase the likelihood that the liner 

will come into contact with diffuser and compromise the acoustic effectiveness of the 

device and the structural integrity of the diffuser and liner. These considerations make it 

ill-advisable to use a diffuser in a liner-style suppressor. 
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CHAPTER 4. INFLUENCE OF CONSITUENT 

PROPERTIES ON THE SYNTACTIC LINER 

 This chapter discusses the bulk modulus modelling of a syntactic foam and then 

discusses the influence of the initial volume fraction on the bulk modulus and the test 

articles used to explore alterations in the initial volume fraction independently of other 

factors. The influence of the initial microsphere pressurization on the syntactic foam is 

then discussed along with the test articles used to experimentally explore the influence of 

the initial microsphere pressurization independently of other factors. Material properties 

that influence the material compatibility of both the microspheres and host matrices are 

then discussed. Polymer additives that can influence the material compatibility of the host 

matrix are discussed along with the test articles used to explore the influence of those 

additives independently of other factors. Modelling of the volume of the foam within the 

suppressor is then discussed. 

4.1 Composite Properties 

The foam is used to create a mismatch in the specific acoustic impedance between 

the suppressor and the rest of the hydraulic system, which will cause a portion of the 

incident acoustic energy to be reflected towards its source. It is well known that the 

greater the disparity between the specific acoustic impedances, the more effective the 

noise treatment. As previously stated, the specific acoustic impedance is directly related 

to the square root of the bulk modulus of the acoustic medium. 

 Hashin [10] showed that the bulk modulus of a composite such as a syntactic 

foam can be calculated as 
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where K is the bulk modulus, G is the shear modulus, Fv is the volume fraction of the 

voids, and the subscripts u and v refer to the urethane and void, respectively.  

 The bulk modulus of a syntactic foam is a function of the effective Young’s 

modulus and the effective Poisson’s ratio such that 
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where E
*
 and ν

*
 are the effective Young’s modulus and the effective Poisson’s ratio, 

respectively [9]. Thus, in the pre-collapse regime where the composite bulk modulus is 

constant, the effective Young’s modulus and the Poisson’s ratio will remain constant. 

Similarly, in the post collapse regime, where the composite bulk modulus varies, the 

effective Young’s modulus and Poisson’s ratio will vary.  

4.1.1 Influence of Initial Volume Fraction 

 At any given pressure the volume fraction of the of microspheres in a syntactic 

foam, Fv is given by 
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 (4.3) 

where VµS and Vu are the volumes of the microspheres and urethane, respectively. The 

microspheres in the foam can be treated as thin-walled pressure vessels and will buckle, 

or collapse, when the differential pressure across the wall of the microsphere exceeds the 

collapse pressure. At this point, the voids will become significantly less rigid and can be 

treated as gas pockets embedded in the syntactic foam [6]. Equations (4.1) and (4.3) 
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imply that the volume fraction of the microspheres in the syntactic foam should be 

maximized at any given pressure to decrease the bulk modulus of the syntactic foam. 

 Prior to buckling, Fv and Kv are roughly constant; consequently, the bulk modulus 

of the syntactic foam will remain constant. Further, the syntactic foam is at its most rigid 

state in the pre-collapse regime, and will therefore be at its least effective state for noise 

treatment. In the post-collapse regime, the buckled microspheres will act as bubbles, or 

voids, within the syntactic foam. In the post-collapse regime, the volume occupied by the 

microspheres is given by 

  S sys

sys
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V P VF

P
    (4.4) 

where VF is the initial volume fraction, IMP is the initial microsphere pressurization, and 

Psys is the system pressure. The bulk modulus of the voids in the post-collapse regime can 

be calculated as 
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where ρv and Pv are the density and pressure of the gas in the voids, respectively. 

4.1.2 Initial Volume Fraction Test Articles 

 The impacts of increasing initial volume fraction on the acoustic performance of 

third-generation liner-style suppressors were explored experimentally through 

transmission loss testing, using the test articles listed in Table 3. To eliminate any 

confounding variables, the liners listed in Table 3 were fabricated with the same 

composition of host matrix, and the same dimensions. An explanation of the naming 
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convention used for the test articles can be found in APPENDIX A. Polymer 

Composition. 

Table 2 – Initial Volume Fraction Test Articles 

Test Article 
IMP VF IMP 

[MPa] [%] [psig] 

VT-0-0-1-50-0-N-L 0 50 0 

VT-0-0-1-40-0-N-L 0 40 0 

4.1.3 Influence of Initial Microsphere Pressurization 

 In addition to the implications on initial volume fraction, Equation (4.4) implies 

that maximizing the IMP will result in the maximum volume fraction of the voids at any 

given pressure, thus decreasing the bulk modulus of the syntactic foam at any pressure. 

4.1.4 Initial Microsphere Pressurization Test Articles 

 The impacts of increasing IMP on the acoustic performance of third-generation 

liner-style suppressors were explored experimentally through transmission loss testing, 

using the test articles listed in Table 3. To eliminate any confounding variables, the liners 

listed in Table 3 were fabricated with the same composition of host matrix and same the 

same dimensions. 

Table 3 – Initial Microsphere Pressurization Test Articles 

Test Article 
IMP VF IMP 

[MPa] [%] [psig] 

VT-0-0-1-50-0-N-L 0 50 0 

VT-0-0-1-50-20-N-L 0.138 50 20 

VT-0-0-1-50-50-N-L 0.345 50 50 

 There is reason to suspect that the 0.138 MPa (20 psig) IMP liner was not charged 

to 0.138 MPa, but rather to 0.034 MPa (5 psig) due to an uncalibrated differential 

pressure gage that was used in the charging apparatus. The miscalibration was noticed on 
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the following use, where the gage atmospheric pressure was measured as 0.103 MPa (15 

psig) rather than 0 MPa as should have been measured. 

4.1.5 Influence of Liner Bulk Modulus on the Bulk Modulus in the Suppressor  

 The bulk modulus in the suppressor can be determined by adding the bulk moduli 

of the liner and oil like springs in parallel, with corrections made for the volume of each 

component. The bulk modulus in the suppressor can be calculated as 
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where Voil is the volume of oil within the suppressor, Vcav is the volume of the suppressor, 

Vfoam is the volume of the syntactic foam liner in the suppressor, and Koil is the bulk 

modulus of the hydraulic oil. An examination of Equation (4.6) implies that increasing 

the volume of the liner  will decrease the bulk modulus of the suppressor, thus increasing 

the effectiveness of the suppressor, if the bulk modulus of the liner is less than that of the 

oil.  

4.2 Microsphere Material Properties 

The volume and pressure of the gas in the liner are critical features of the liner, as 

these quantities govern the bulk modulus of the liner at elevated pressures. The 

microspheres are the means by which gas is introduced to the liner, so the physical 

properties of these spheres are of great importance to the functioning of the liner. 

The Young’s modulus, Poisson’s ratio, yield stress, and the glass transition 

temperature (Tg) are the critical properties of the microsphere materials. The Young’s 
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modulus, Poisson’s ratio, and yield stress of the microspheres along with the 

microsphere’s dimension govern the collapse and burst pressure of the microspheres. 

Above Tg, the material properties of the microspheres will change drastically, becoming 

brittle and incapable of holding gas. As it is critical that the microspheres hold gas, Tg 

acts as an upper limit to the local temperature in the liner during processing and curing. 

4.3 Host Matrix Material Properties 

The host matrix selection is critical to the functioning of the liner both above and 

below the buckling pressure of the microspheres. In the region below the buckling 

pressure the bulk modulus of the liner is dominated by the bulk modulus of the host 

matrix. In the region above the buckling pressure, the bulk modulus of the host matrix 

will be the upper bound limit of the bulk modulus of the liner. It has been shown that 

minimizing the Young’s modulus and maximizing the Poisson’s ratio of the host material 

will result in an acoustically superior liner [1]. 

4.3.1 Material Compatibility 

Two-part polymers were considered for the host matrix of the liner to allow the 

microspheres to be added, thus creating a syntactic foam. Most two-part polymers fall 

into two classes: silicone rubbers and polyurethane rubbers. Silicone rubbers typically do 

not have good resistance to petroleum and hydraulic oils, making them ill-suited as a 

candidate for the host matrix. Additionally, it is known that polyester-based 

polyurethanes are better suited to the hydraulic environment than polyether-based 

polyurethanes. 
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The host matrix of the liner must be compatible with both the microspheres that 

will be embedded within it and the hydraulic environment. Damage to the microspheres 

will result in the release of gas, which will increase the bulk modulus of the liner and, 

correspondingly, decrease the effectiveness of the liner as a noise treatment device. The 

hydraulic environment is severe, with temperatures ranging from -40° C to 200° C, 

pressure ranges from 1.4 to 42 MPa, and potentially reactive chemicals.  

The microsphere glass transition temperature, Tg, acts as an upper limit to local 

temperature in the liner during processing and curing. It is known that the polyurethane 

reaction is exothermic, which will increase the temperature within the liner above the 

curing temperature. For the microspheres used in the third-generation liner-style 

suppressors, the transition temperature is approximately 80° C; to stay below this limit, a 

host matrix was selected to be processed and cured at 60° C. 

4.3.2 Component Properties 

Polyurethanes are generally two-part polymers, in which an isocyanate is reacted 

with a polyol. The isocyanate and polyol sides of the host matrix must not be too viscous 

for the microspheres to be mixed into them. There are two general alternatives to 

lowering the viscosity of the isocyanate or polyol side of the polyurethane: increasing the 

mixing temperature, or using additives. Increasing the temperature of a side of the 

polymer generally allows the prepolymer molecules to slide past one another more easily; 

however, the handling temperature of the prepolymers is limited by the Tg of the 

microspheres.  
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4.3.3 Influence of Material Additives 

The methylene diphenyl diisocyanate (MDI) polyether polyurethane used in the 

third-generation liner-style suppressors is a two-part polymer, in which a mixture of 

chemicals containing isocyanate bonded to some polymer chain is reacted with a mixture 

of chemicals containing polyols that are bonded to some polymer chain. These two 

mixtures of chemicals are generally referred to as sides of the polyurethane reaction.  

A variety of additives can be used to change the viscosity of the sides of the 

polymer and/or to alter the final material properties of the foam. Those additives that 

participate in the polyurethane reaction are called reactive additives, and those additives 

that do not participate in the polyurethane reaction are referred non-reactive additives. 

Reactive additives will change the properties of the liner and must be considered when 

calculating the mass ratio of the isocyanate side to the polyol side, see Appendix B. Small 

quantities of additives that will not alter the polyurethane reaction, such as a surfactant, 

can be used to decrease both the viscosity and the surface tension of a side. Decreasing 

the viscosity of a side of the polyurethane will increase the volume fraction of 

microspheres that can be mixed into that side, increasing the achievable initial volume 

fraction of microspheres. Decreasing the surface tension of the side will increase the ease 

of pouring and degassing the side, increasing the fidelity of the liner and the consistency 

of the material properties. 

One reactive additive increased bulk modulus of the host matrix but decreased the 

viscosity of the isocyanate side of the polyurethane. Another reactive additive was used 

in the polyol side of the polyurethane to increase the shear modulus of the host matrix 
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which is thought to be critical for the material compatibility of the liner. A non-reactive 

additive was used that significantly decreased the viscosity of the isocyanate side without 

impacting the final properties of the foam.  

The specific chemicals used to create the host matrix and the microspheres used 

to create the foams are listed in Appendix A, while the processing methods used to 

fabricate the foams are described in Appendix B. 

4.3.4 Material Additive Test Articles 

The impacts of the additives on the noise treatment properties of the foam were 

explored experimentally, using the test articles listed in Table 4. To eliminate any 

confounding variables, all of the foams listed in Table 4 were fabricated with 50% VF 

and no IMP. Test articles VT-5-0-1-50-0-N-L and VT-10-0-1-50-0-N-L have varied 

levels of the reactive additive in the isocyanate side of the host matrix. Test articles VT-

0-1-1-50-0-N-L and VT-0-2-1-50-0-N-L have varied levels of the reactive additive in the 

polyol side of the host matrix. 

Table 4 – Host Material Composition Test Articles 

Test Article 
Weight Percent of 

Additive in A 

Weight Percent of 

Additive in B 

VT-0-0-1-50-0-N-L 0 0 

VT-5-0-1-50-0-N-L 5 0 

VT-10-0-1-50-0-N-L 10 0 

VT-0-1-1-50-0-N-L 0 1 

VT-0-2-1-50-0-N-L 0 2 
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4.4 Volume of Foam 

If the bulk modulus of the liner is lower than the bulk modulus of the oil, then 

Equation (4.6) implies that the increasing the volume of foam decreases the suppressor 

bulk modulus, thereby increasing the acoustic performance of the suppressor. For the 

liner-style of suppressor, the volume of the liner at a given pressure can be calculated as 
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where L, ro, and ri are defined in Figure 8, and are functions of Psys. The length of the 

liner under a given hydrostatic load can be calculated as 
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where E
*
 is the effective Young’s modulus of the liner, ν

*
 is the Poisson’s ratio of the 

liner, L1 is the initial length of the liner, ro,1 is the initial outer radius of the liner, and ri,1 

is the initial inner radius of the liner [9]. The outer radius of the of the liner under 

hydrostatic load can be calculated as 
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where all variables have been previously defined [9]. The inner radius of the of the liner 

under hydrostatic load can be calculated as 
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where all variables have been previously defined [9]. 

 Recall that the Young’s modulus and Poisson’s ratio vary with system pressure 

which will result in changes in the volumetric behavior of the foam as the system 

pressure is varied.  
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CHAPTER 5. TRANSMISSION LOSS TESTS: METHODS 

AND RESULTS 

 This chapter will describe the type of data gathered to evaluate the acoustic 

performance of the third-generation liner-style suppressors that used the test articles. The 

conditions under which the data was gathered, and testing methodology are then 

discussed. Data is then presented for the third-generation liner-style suppressors that used 

the test articles that demonstrate the influence of initial microsphere pressurization, the 

influence of initial volume fraction, and the effects of additives on the material 

compatibility. The acoustic performance of the suppressor with the best material 

compatibility and acoustic performance is then compared with the acoustic performance 

of the first-generation liner-style suppressors. 

5.1 Definition of Transmission Loss 

 The acoustic performance of inline suppressors is best described by the 

transmission loss of the suppressor. The transmission loss is generally reported in 

decibels, and can be calculated as 
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where Wi is the incident acoustic energy and Wt is the transmitted acoustic energy. The 

insertion loss of the device was not considered to be an appropriate metric of the acoustic 

performance of the inline suppressors as the insertion loss is a system property rather than 

a property of the suppressor alone. To determine the transmission loss of the suppressor it 

was tested with a specialized apparatus and the data was processed in such a way that the 

properties of the suppressor are isolated from that of the system. The transmission loss 
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was evaluated for frequencies between 0 and 4000 Hz as the vast majority of acoustic 

energy in hydraulic systems is contained in the low frequency range, 0 to 1000 Hz. 

5.2 Hydraulic Test Rig and Data Collection 

 The experimental apparatus and data analysis techniques used to evaluate the 

transmission loss of the liner-style suppressors conform to ISO-15086.  A hydraulic 

circuit schematic of the rig is shown in Figure 10. As can be seen from Figure 10, a 

variable speed pump is used drive the oil through a variable orifice valve, the test section, 

the termination suppressor, and a loading valve. A 9-piston pump was used during testing 

that provided 10 gallons per minute of oil to the circuit and was driven by an alternating 

current motor operating at 1500 rpm. The upstream needle valve is used to induce 

turbulence to the hydraulic flow, thereby creating a broadband noise spectrum. The 

downstream loading valve was used to adjust the system pressure, and the termination 

suppressor was used to isolate the test section from any noise that may be produced by 

the loading valve. 

 

Figure 10 – Hydraulic and measurement diagram of the transmission loss 

measurement apparatus [4]. 
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The test section contains two system pressure sensors, the component being 

tested, and the six dynamic pressure sensors necessary for accurate testing. Three 

dynamic pressure sensors are needed in each of the upstream and downstream portions of 

the test section, with unequal spacing to eliminate half-wavelength indeterminacy. Half-

wavelength indeterminacy occurs when using two sensors that are located at integer 

multiples of half of a wavelength apart from one another [11]. The unequal spacing used 

is shown in Figure 11, as is prescribed by ISO-15086-2 [12]. 

 

Figure 11 – Placement of dynamic pressure sensors in the test section [4]. 

5.2.1 Collected Data 

For a given pressure, time histories are collected from all of the dynamic pressure 

sensors simultaneously, and the transfer functions between the signals are determined. 30 

such time histories were gathered, and the transfer functions were vector averaged to 

form a set of composite transfer functions that are used to evaluate the transmission loss 

at a given pressure. Appendix C contains the code by which the collected transfer 

functions were processed into transmission losses. Additionally, the last set of time 

histories is saved to aid with communicating the results to industry sponsors; see 

Appendix C.2. Appendix D contains a derivation of the mathematics that drives the 

transmission loss processing code.  The industry standard for evaluating the effectiveness 
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of a noise treatment device is to compare two time traces, one from the upstream section 

and one from the downstream section. Each time history was taken at a sampling 

frequency of 10800 Hz and contained a total of 5120 samples. 

The noise floor, noise measured when no fluid-borne noise is present, of each of 

the sensors was checked every time the test rig was turned off. The noise floor is deemed 

acceptable if the measured signal is on the order of 40 dB lower than the signal measured 

when the system is turned on; this ensures that the signal to noise ratio is much greater 

than one. If the noise floor is deemed unacceptable, the installation of the sensor is 

verified, and the noise floor measurement is retaken. In addition to the noise floor, the 

transfer functions between the sensors are checked to ensure that the relative calibrations 

of the sensors have not drifted. If the relative calibration of the sensors have drifted the 

sensors are recalibrated before measurements are taken. 

5.2.2 Sensor calibration 

Imperfections in sensor manufacturing will result in variations in the dynamic 

responses of the sensors, which is best compensated for by regular calibration. The 

sensors were calibrated using the apparatus shown in Figure 12, which conforms to ISO-

15086-2 [12]. This sensor calibration block is connected to the hydraulic circuit via a side 

branch which is installed into the test rig as the test article. Up to four transducers can be 

installed into the calibration block, constrained to the same axial position. As the wave 

field is planar in the frequency range of interest, the sensors are exposed to identical wave 

fields. Because the wave field each senor is exposed to is identical, the transfer functions 

between the sensors should be equal to 1 with a 0° phase angle between the sensors. 
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Using the observed transfer functions between the sensors, the transfer functions under 

test conditions can be adjusted to compensate for calibration discrepancies. 

 

Figure 12 – Sensor calibration block without sensors. 

5.2.3 Coherence 

 Coherence is a measure of the linear correlation between two sensors, and ranges 

in value from 0 to 1, with 0 indicating a non-linear correlation and 1 indicating a linear 

correlation. The coherence between sensors can be calculated as 

 

2

hi

hi

hh ii

G
C

G G
  (5.1) 

in post processing. Ghj is the cross spectral density between sensors h and i, and Gxx is the 

autospectral density of sensor x. Per ISO-15086-3 [13], if any of the seven transfer 

functions have a coherence less than 0.95 at a particular frequency, the data recorded at 
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that frequency is considered invalid and omitted from reported results. The data dropout 

in the transmission loss results shown in Section 5.3 is due to this coherence threshold.  

5.3 Tests Performed 

 Each exposure to oil was comprised of a set of seven tests at different system 

pressures ranging from 1.37 to 13.7 MPa (200 to 2000 psig). Between 1.38 and 6.89 MPa 

(200 and 1000 psig, respectively) the test interval was 1.38 MPa (200 psi), as it was 

previously observed that the largest changes in transmission loss of liner-style 

suppressors occur in this range of system pressures. Between 6.89 and 13.8 MPa (1000 

and 2000 psig, respectively) the test interval was broadened to 3.45 MPa (500 psi) as 

relatively small changes in liner-style suppressor performance occur in this range of 

system pressures. Tests were not run above 13.7 MPa (2000 psig) as it was observed that 

the performance of the liner-style suppressor were essentially constant above this system 

pressure.  

 The first set of tests performed on the liner-style suppressor was considered to be 

the first exposure test, and in general should have the best possible results for a foam as 

the effects of material compatibility should not be evident. The liner-style suppressors 

were installed in the test rig and data taken at consecutively higher system pressures until 

the maximum test pressure was reached. 

The tests were repeated twice at the same system pressures to allow for statements 

to be made about changes in the liner-style suppressor’s acoustic properties resulting 

from damage incurred during the testing process. Repeated tests were only performed for 

materials with varying amounts of additives, to determine the impacts that the additives 

had on the material compatibility of the liners used in the third-generation liner-style 

suppressors. 
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5.3.1 Initial Microsphere Pressurization 

Figures 13 to 15 demonstrate the influence of initial microsphere pressurization 

on the acoustic performance of the foam. It can be seen from the figures that elevating the 

IMP significantly increases the transmission loss of the liner-style suppressor, thus 

resulting in a more effective noise control device. It can further be seen that as the system 

pressure increases, the advantage of the IMP diminishes, which is consistent with theory 

as the bulk modulus of the foam will asymptotically approach the bulk modulus of the 

host matrix. It can be seen from Figure 13 that at 1.37 MPa system pressure, there are 

clear advantages from using the 0.345 MPa IMP liner and the 0.345 MPa IMP liner in the 

third-generation liner-style suppressor when compared to the third-generation liner-style 

suppressor that used a 0 MPa IMP liner. Note that the test articles contained in these 

suppressors were not made with a material that was compatible with the hydraulic 

environment, so few conclusions can be made above 1.38 MPa. 
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Figure 13 – Transmission loss measurements at 1.37 MPa for third-generation liner-

style suppressors with liners made with varying IMP. 

 

Figure 14 – Transmission loss measurements at 4.14 MPa for third-generation liner-

style suppressors with liners made with varying IMP. 
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Figure 15 – Transmission loss measurements at 6.89 MPa for third-generation liner-

style suppressors with liners made with varying IMP. 

5.3.2 Initial Volume Fraction of Microspheres 

Figures 16 to 18 demonstrate the influence of initial volume fraction of 

microspheres in the foam on the acoustic performance of the foam. It can be seen from 

the figures that increasing the VF significantly increases the effectiveness of the 

suppressor as a noise control device. It can further be seen that as the system pressure 

increases, the advantage of the increased VF persists over the system pressures of 

interest. 
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Figure 16 – Transmission loss measurements at 5.52 MPa for third-generation liner-

style suppressors with liners made with varying initial volume fraction of 

microspheres in the liner. 

 

Figure 17 – Transmission loss measurements at 6.89 MPa for third-generation liner-

style suppressors with liners made with varying initial volume fraction of 

microspheres in the liner. 
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Figure 18 – Transmission loss measurements at 10.3 MPa for third-generation liner-

style suppressors with liners made with varying initial volume fraction of 

microspheres in the liner. 

5.3.3 Material Additives 

The change in transmission losses were considered in each foam for successive 

exposures to the hydraulic environment to evaluate the ageing characteristics of each 

foam. The first exposure for the suppressors that used a host matrix that is compatible 

with the hydraulic environment, to verify that the experimental results are logical given 

the material modelling in Chapter 4. 

5.3.3.1 Material Compatibility 

Figures 19 to 23 show the results of repeated transmission loss testing at 4.14 

MPA (600 psig) for third-generation liner-style suppressors that used liners with varying 

host matrix composition. The changes in the transmission losses depicted in Figures 19 
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through 23 are typical for each third-generation liner-style suppressors that used its 

respective host matrix composition over all pressure ranges. Any changes in the 

transmission losses of the suppressors over repeated tests is indicative of material 

property changes due to exposure to the hydraulic environment. If the material exhibits 

an increase in the bulk modulus then it will become less effective at treating the noise in 

the hydraulic system. However, if the material exhibits a decrease in the bulk modulus, 

seen as a broadband increase in transmission loss, the material may deform and deadhead 

the pump or extrude out of the suppressor, contaminating the system. From the figures, it 

can be seen that the best liner composition, in terms of material compatibility is VT-10-0-

1-50-0-N-L, Figure 21 – Repeated transmission loss measurements at 4.14 MPa for a 

third-generation liner-style suppressor with the liner VT-10-0-1-50-0-N-L., as the 

suppressor containing that liner did not have any significant changes in transmission loss 

over repeated tests. 
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Figure 19 – Repeated transmission loss measurements at 4.14 MPa for a third-

generation liner-style suppressor with the liner VT-0-0-1-50-0-N-L. 

 

Figure 20 – Repeated transmission loss measurements at 4.14 MPa for a third-

generation liner-style suppressor with the liner VT-5-0-1-50-0-N-L. 
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Figure 21 – Repeated transmission loss measurements at 4.14 MPa for a third-

generation liner-style suppressor with the liner VT-10-0-1-50-0-N-L. 

 

Figure 22 – Repeated transmission loss measurements at 4.14 MPa for a third-

generation liner-style suppressor with the liner VT-0-1-1-50-0-N-L. 



 50 

 

Figure 23 – Repeated transmission loss measurements at 4.14 MPa for a third-

generation liner-style suppressor with the liner VT-0-2-1-50-0-N-L. 

 Suppressors containing VT-5-0-1-50-0-N-L, VT-0-1-1-50-0-N-L, and VT-0-2-1-

50-0-N-L composition liners experienced a reduction in transmission loss indicating that 

they are inappropriate chemistries for the hydraulic environment. The suppressor with the 

VT-0-0-1-50-0-N-L composition exhibited an increase in transmission loss indicating 

that this foam composition is not appropriate for the hydraulic environment. The 

suppressor with the VT-10-0-1-50-0-N-L composition exhibited no change in 

transmission loss indicating that this foam composition may be appropriate for the 

hydraulic environment. Table 5 summarizes the material compatibility  

Table 5 - Material compatibility based on observed changes in transmission loss 

measurements over repeated tests. 

Material Compatibility in hydraulic environment 

VT-0-0-1-50-0-N-L No 

VT-5-0-1-50-0-N-L No 



 51 

VT-10-0-1-50-0-N-L Yes 

VT-0-1-1-50-0-N-L No 

VT-0-2-1-50-0-N-L No 

5.3.3.2 First Exposure 

Figure 24 – First exposure transmission loss measurements of the liner-style 

suppressor containing VT-10-0-1-50-0-N-L at various system pressures. shows the results 

of the first exposure tests for the third-generation liner-style suppressor with the liner VT-

10-0-1-50-0-N-L. It can be seen that acoustic performance falls off as the system pressure 

increases, which is consistent with theory as the bulk modulus in the suppressor should 

approach a constant asymptotically as the pressure increases. 

 

Figure 24 – First exposure transmission loss measurements of the liner-style 

suppressor containing VT-10-0-1-50-0-N-L at various system pressures. 

5.3.4 Generational Suppressor Comparisons 
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Comparisons of the transmission losses of suppressors containing a GR9-625 liner 

(first-generation liner-style suppressor) and a VT-10-0-1-50-0-N-L liner (best performing 

third-generation liner-style suppressor, in terms of material compatibility) can be seen in 

Figures 25 through 29. From Figure 25 It can be seen that the performance of the two 

generations of liner-style suppressors is performance below 1250 Hz. Above 1250 Hz, 

the relative performance of the suppressors containing the VT-10-0-1-50-0-N-L liner and 

the GR9-625 liner varies greatly. It can be seen from Figures 26 to 28 that the third-

generation liner-style suppressor performed better than the first-generation liner-style 

suppressor in the pressure range of 4.14 to 6.89 MPa for most frequencies below 4000 

Hz. From Figure 29 it can be seen that above 6.89 MPa the performance of the two 

generations of liner-style suppressors is essentially the same.  

 

Figure 25 – Transmission loss measurements at 2.76 MPa for suppressors 

containing GR9-625 and VT-10-0-1-50-0-N-L liners. 
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Figure 26 – Transmission loss measurements at 4.14 MPa for suppressors 

containing GR9-625 and VT-10-0-1-50-0-N-L liners. 

 

Figure 27 – Transmission loss measurements at 5.52 MPa for suppressors 

containing GR9-625 and VT-10-0-1-50-0-N-L liners. 
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Figure 28 – Transmission loss measurements at 6.89 MPa for suppressors 

containing GR9-625 and VT-10-0-1-50-0-N-L liners. 

 

Figure 29 – Transmission loss measurements at 13.8 MPa for suppressors 

containing GR9-625 and VT-10-0-1-50-0-N-L liners. 
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CHAPTER 6. CONCLUSIONS 

 Syntactic foam liners for use in third-generation of liner-style hydraulic 

suppressors were developed that took advantage of improvements in syntactic foam 

technology. The use of a diffuser was considered for liner-style suppressors and found to 

be inadvisable. The effects of the initial volume fraction, initial microsphere 

pressurization, and material composition were considered for their impact on the acoustic 

performance of the suppressor and material compatibility.  

 Diffusers are not generally recommended for use with liner-style foams, as it is 

possible for the liner to seize on to the diffuser. The liner seizing onto the diffuser will 

dramatically reduce the ability of the suppressor to act as a noise reduction device and the 

fluid-born noise will only be exposed to small portions of the liner which will cause the 

suppressor to behave similarly to a stiff walled pipe. The pressures and geometries for 

which this seizing will occur are governed by the effective Young’s modulus and 

Poisson’s ratio of the syntactic foam, which will change with the pressure in the 

suppressor.  

6.1 Influence of Constituent Properties on the Syntactic Foam Liner 

 Using commercially available microspheres, it was proven that increasing the 

initial volume fraction of microspheres in the liner increased the acoustic performance of 

the suppressor, consistent with research performed by Gruber [1]. Likewise, testing 

showed that increasing the initial microsphere pressurization of the microspheres in the 

foam significantly increased the acoustic performance of the suppressor. 

 The third-generation liner-style suppressor with the best acoustic performance and 

material compatibility used the VT-10-0-1-50-0-N-L liner. The third-generation liner-
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style suppressor using the VT-10-0-1-50-0-N-L liner had comparable performance with 

the first-generation liner-style suppressor.  

 Based on the data presented in this paper it is suggested that a liner be created 

with 55% VF, 50 psi IMP, and 10 weight percent of additive in A. Such a liner is feasible 

with the current manufacturing process, with the VF and IMP being the maximum that 

can be achieved with current manufacturing processes. A third-generation liner-style 

suppressor using a liner of that composition should have acoustic performance that 

exceeds that of the third-generation liner-style suppressor using the VT-10-0-1-50-0-N-L 

liner. 

6.2 Future Work 

 Additional work should be done to increase the material compatibility of the host 

matrix to the hydraulic environment, such as exploring higher weight percentages of the 

additive in A and transitioning to a polyester foam. Different designs of the microspheres, 

in terms of both chemistry and structure, should be explored that allow for an increased 

Tg and increased IMP. Foam geometries should be explored that allow for a greater 

volume of the suppressor to be occupied by foam while still allowing through flow of oil.  
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APPENDIX A. POLYMER COMPOSITION OF LINERS USED IN 

THIRD-GENERATION LINER-STYLE SUPRESSORS 

 The host matrix of the third generation of syntactic foam liners is a two-part 

polyurethane, with Side A being composed of an isocyanate and Side B being composed 

of a polyol. Side A is composed primarily of Vibrathane B625, which is a polyether 

MDI-terminated polyurethane. Isonate can be added to the Vibrathane B625 which will 

decrease the Side A viscosity, making it easier to mix in the microspheres, but increasing 

the foam hardness. Side B is composed primarily of polytetramethylene ether glycol 

(PTMEG) 1000, which is a polyol. Trimethylpropane can be added to the PTMEG 1000, 

which will result in a harder foam that has a greater resilience to pressure setting. A 

surfactant, AF-9000, is used to lower the viscosity of both sides of the polyurethane, 

thereby allowing microspheres to be mixed in more easily. A couple of drops – less than 

1 mL – of dye can be added to Side B, to allow for a visual inspection of the quality of 

the mix. Both the surfactant and the dye are nonreactive and if added in small quantities 

will not alter the properties of the host matrix. The microspheres used are Expancel 461 

DE 20 d70, which were selected for their high burst and critical pressures. 

A.1  Test Article Naming Convention 
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APPENDIX B. POLYMER PROCESSING PROCEDURE 

The syntactic foam for the liners used in the third-generation liner-style 

suppressors were created using the equations and method detailed in this appendix. The 

specific chemical components used in the host polymer are discussed in APPENDIX A. 

Polymer Composition. 

B.1  Polyurethane Equations 

The effective weight of each component in Side A can be found as 

 
4200

%
component

component

EW
NCO

  (B.1)  

where %NCO is the A measurement of the isocyanate content of the component which is 

reported by the manufacturer. The number 4200 used in Equation (B.1) is an industry 

standard number derived from polyurethane chemistry. NCO refers to a function group in 

which an atom of Nitrogen and an atom of oxygen are double bonded to an atom of 

carbon. The effective weight of each component in Side B can be found as 

 
56100

#
component

component

EW
OH

  (B.2) 

where OH# is the hydroxyl group number of the polyol which is reported by the 

manufacturer. The number 56100 used in Equation (B.2) is an industry standard number 

derived from polyurethane chemistry. The effective weights of sides A and B can be 

found as 
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
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where X denotes the side and WT%additive_in_X is the weight percent of the additive in Side 

X. From this the mass ratio of A to B can be calculated as 
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m EW
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m EW
   (B.4) 

where mA is the mass of Side A, mB is the mass of Side B, and Isoadj is an adjustment -

always a value greater than 1- to the ratio to ensure that no polyol is left unreacted. 

Having an Isoadj greater than one will result in an isocyanate rich formulation, any 

isocyanate that does not react with the polyol will react with atmospheric water vapor. 

The weight % of each side can then be found as 

 %

1

X

B
X

A

B

m

m
WT

m

m





 (B.5) 

where X denotes the side. The mass of each side can be found as 

 %X Batch X Xm m WT Adj    (B.6) 

where mBatch is the mass of the batch, WT%X is the weight percent of side X in the 

polyurethane and AdjX is the mass adjustment of side X. The batch mass can be 

determined from the volume of the foam being cast, and is usually inflated to a certain 

extent so that not all of the foam needs to be scraped out of the mixing cup. The mass of 

Side A is not usually adjusted, but the mass of Side B is inflated by an arbitrary value – 
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usually between 1.1 and 1.2 – so that not all of Side B needs to be scraped out of the 

mixing cup. Surfactant is used to reduce the viscosity of component sides, and is 

generally added to the sides equally by mass. The mass of the surfactant that should be 

added to each side can be found as 

 , %S X X Sm m WT   (B.7) 

where WT%S is the weight percent of surfactant in the polyurethane. The mass of the 

microspheres can be found as 
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 where WT%µS is the weight percent of microspheres in the foam, and FµS_in_X is the 

fraction of the microspheres that will be mixed into side X. The weight percent of 

microspheres in the foam can be found as  
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 (B.9) 

where VF is the desired volume fraction of microspheres, ρµS is the density of the 

microspheres, and ρA and ρB are the densities of sides A and B, respectively. 

B.2 Polyurethane Equations 

 The third generation of liners was created using the following methodology: 

1. Calculate necessary masses of each component 



 61 

a. Be sure to make 1.15 to 1.20 times the mass of the calculated Side B so 

that some may be left in the container 

2. Prepare Mold 

a. If necessary, clean and spray with mold release 

b. Assemble mold and preheat in 150° F oven 

3. Prepare sides A and B 

a. Prepare A side 

i. Mix appropriate masses of BaseA and AdditiveA, scraping sides 

and bottom of the container frequently 

ii. Stir in appropriate mass of surfactant 

iii. Place in 140° F oven until the temperature reaches 140° F 

b. Prepare B side 

i. Mix appropriate masses of BaseB and AdditiveB, scraping sides and 

bottom of the container frequently 

ii. Add a few drops of dye 

iii. If using AdditiveB, heat mixture to at least 190° F  

iv. Stir in appropriate mass of surfactant 

v. If temperature has dropped below 140° F, place in 140° F oven 

until the temperature reaches 140° F 

4. First Degassing 

a. Place both sides into the vacuum chamber at the same time; mixing sticks 

must not be left standing in the mixtures 

b. Close vacuum chamber and clamp lid on 



 62 

c. Turn on vacuum pump 

d. Expose to sub-1 torr vacuum for at least 2 minutes 

e. Remove both sides from vacuum chamber and place back into oven until 

the temperature reaches 140° F 

5. Microspheres 

a. Add appropriate mass of microspheres to the A and B sides 

b. Slowly mix in microspheres, scraping edges of container frequently 

6. Second Degassing 

a. Place both sides into the vacuum chamber at the same time; mixing sticks 

must not be left standing in the mixtures 

b. Close vacuum chamber and clamp lid on 

c. Turn on vacuum pump 

d. Expose to vacuum for 15 minutes 

e. Remove both sides from vacuum chamber and place back into oven until 

the temperature reaches 140° F 

7. Mix Sides 

a. Measure out correct mass of Side B into Side A container 

b. Star timer 

c. Using the Side A mixing stick, gently fold Side B into Side A, scraping 

sides and bottom of the container frequently until the mixture is 

homogenous 

8. Pouring 

a. Remove the center rod of the mold, if applicable 
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b. Pour the mixed foam into the mold, scraping as much of mixture as 

possible out of the mixing container and off the mixing stick 

9. Final Degassing 

a. Sprinkle the top of the mod with a few drops of the  

b. Place mold into vacuum chamber 

c. Close vacuum chamber and clamp lid on 

d. Turn on vacuum pump 

e. Expose to vacuum for 30 minutes, or until the top of the foam ceases to 

move 

f. Remove from vacuum chamber 

10. Center Rod  

a. Slowly insert center rod using a twisting motion to prevent pulling air into 

the foam 

b. Attach locating device to the top of the mold 

11. Curing 

a. Reduce oven temperature to 140° F ad cure in oven for at least 16 hours 

b. Remove from oven and allow to cure at room temperature for at least 14 

days before using foam 
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APPENDIX C. MATLAB CODES 

The codes contained in this appendix are used for processing the data collected in 

testing and for the creation of plots to communicate the results to technical and non-

technical audiences. 

C.1  Transmission Loss Data Processing Codes 

Two codes were used to determine the transmission loss and give an indication of 

the validity of the results. The transmission loss was evaluated using the Transmission 

Loss Code, and the Speed of Sound Function was used to indicate if the observed speed 

of sound matches the theoretical speed of sound in the oil. If the observed speed of sound 

does not match the theoretical speed of sound, the transmission loss calculations should 

be considered suspect. 

C.1.1  Transmission Loss Code 

This code evaluates and plots the transmission loss as a function of frequency in 

Hz, using the composite transfer functions gathered in testing [Elliott’s Dissertation]. 

Results in this format are the most useful method for evaluating the effectiveness of the 

suppressor as a noise control device. 

%% Title Section 
% Program to Determine: 
% - The speed of sound in hydraulic fluid 
% - The reflection coefficient and apparent transmission loss (3-mic) 
% - The transmission loss through transfer matrix parameters 
%  
% By: Nathaniel Pedigo 
%  
% Last Revision: 11/20/2017 
%---------------------------------------------------------------------- 
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% function [output5 header] = TL_func(runname) 

  
% load(run01) 

  

  
clear 
% close all 
clc 
%  
%newpath = '\2012-06-08 Data WM-5081 25C Varied'; 
%path(path,[pwd,newpath]) 
%  
load Check1500 
showplots = 0; % 1=Yes 0=No 
coher = 0.95;%0.95; 
calset = 4; 

  
% Pipe properties 
I01 = 0.47; % [m] distance between sensors 0 and 1 
I12 = 0.33; % [m] distance between sensors 1 and 2 
I34 = 0.33; % [m] distance between sensors 3 and 4 
I45 = 0.47; % [m] distance between sensors 4 and 5 
%d = 0.0381; % [m] pipe inner diameter high flow system 
d = 0.0206; % [m] pipe inner diameter 
r0 = d / 2; % [m] pipe inner radius 
%t = 0.0206; % [m] Wall thickness of the pipe 
t = 0.0087376; % [m] Wall thickness of the pipe 
Ew = 210e9; % [Pa] Young's modulus of the steel pipe wall 

  
pipepropsup=struct('I01',I01,'I12',I12,'d',d,'r0',d/2,'t',t,'Ew',Ew); 
pipepropsdown=struct('I01',I34,'I12',I45,'d',d,'r0',d/2,'t',t,'Ew',Ew); 

  
% Fluid properties 

  
% Conoco Megaflow AW ISO 46 Hydraulic Oil  
% cSt @ 40degC = 46.0     (1 cSt = 10^-6 m^2/sec) 
% cSt @ 100degC = 6.8 
% Specific gravity @ 60degF 0.868 
% Density @ 60degF = 7.23 lbs/gal 

  
Oil_Temp = 70; %mean(TempArray0F(1:30)); 
Liner_Temp = 70; %mean(TempArray0C(1:30)); 

  
% kinematic viscosity 
visc = 164.52e-6*exp(-0.032*Oil_Temp); 
c0 = 1400; % [m/s] initial speed of sound guess 
Df = 1724e6; % [Pa] Bulk modulus of the hydraulic oil 
Rho = 868; % [kg/m^3] Density of hydraulic oil 

  
fluidprops = struct('visc',visc,'Df',Df,'Ew',Ew,'Rho',Rho); 
lastrow = length(TF(:,1)); 

  
Freq = transpose(Freq); 
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omega = Freq(:,1)*2*pi; % [rad/sec] radial frequency interval vector 

  
% Calibrate Data 
% Calibrate the transfer functions 
[h01,h21,h31,h41,h51,h34,h54,ccup,ccacross,ccdown,cc] = ... 
    CAL_func(TF,Power,coher); 

  
% Compute Speed of Sound 
fprintf('Upstream SOS\n') 
cu = SOS_func(omega,h01,h21,pipepropsup,fluidprops,c0); 

  
fprintf('Downstream SOS\n') 
cd = SOS_func(omega,h34,h54,pipepropsdown,fluidprops,c0); 

  

  
% Calculate, R, ATL, TL 

  
% ********************************************************************* 
%                            ___________ 
%___________________________|           |______________________________ 
%___________________________             ______________________________ 
%  |       |        |       |___________|       |         |          | 
% 
%  0       1        2                           3         4          5 
%  x0      x1       x2                          y0        y1         y2 
%               x --------->|         |--------> y 
%                          x=0       y=0 
%********************************************************************** 

  
% 0.139 is the distance from the test section to the resonator neck 

  
x2 = -0.275; 
x1 = x2 - I12; 
x0  = x1 - I01; 

  
y0 = 0.275; 
y1 = y0 + I34; 
y2 = y1 + I45; 
Lp = 1.339 + 0.139 + .07; % Pipe length + resonator pipe + fitting to 
                          % internals of termination silencer 

                           
H01(1,1,:) = h01(:,1); 
H11(1,1,1:lastrow) = 1; 
H21(1,1,:) = h21(:,1); 

  
H31(1,1,:) = h31(:,1); 
H41(1,1,:) = h41(:,1); 
H51(1,1,:) = h51(:,1); 

  
zeta = 1 + sqrt(visc./(r0^2*1i*omega)) + visc./(r0^2*1i*omega); 

  
ku(1,1,:) = (omega / cu) .* zeta;   kd(1,1,:) = (omega / cd) .* zeta; 

  
Z0u = (Rho * cu * zeta) / (pi * r0^2); 
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Z0d = (Rho * cd * zeta) / (pi * r0^2); 

  
A = [exp(-1i*ku*x2) exp(1i*ku*x2); 
     exp(-1i*ku*x1) exp(1i*ku*x1); 
     exp(-1i*ku*x0) exp(1i*ku*x0)]; 
e = [H21; H11; H01]; 

  
G = [exp(-1i*kd*y0) exp(1i*kd*y0); 
     exp(-1i*kd*y1) exp(1i*kd*y1); 
     exp(-1i*kd*y2) exp(1i*kd*y2)]; 
h = [H31; H41; H51]; 

  
x = zeros(lastrow,2); 
y = zeros(lastrow,2); 
condx = zeros(lastrow,1); 
condy = zeros(lastrow,1); 

  
for p = 1:lastrow 
    x(p,:) = transpose(pinv(A(:,:,p)) * e(:,:,p)); 
    condx(p,:) = cond(A(:,:,p)); 
    y(p,:) = transpose(pinv(G(:,:,p)) * h(:,:,p)); 
    condy(p,:) = cond(G(:,:,p)); 
end 

  
% Preallocate matrices 
Freq2 = zeros(sum(ccup),1); R = Freq2; 
output2 = zeros(sum(ccup),4); 

  
count = 1; 
for ii = 1:lastrow 
    if (ccup(ii) == 0); 
    else 
        Freq2(count,1) = Freq(ii); 
        % Silencer entrance reflection coefficient 
        R(count) = x(ii,2) / x(ii,1); 
        output2(count,1:4) = [real(x(ii,1)),imag(x(ii,1)),... 
            real(x(ii,2)),imag(x(ii,2))]; 
        count = count + 1; 
    end 
end 

  
% Preallocate matrices 
Freq4 = zeros(sum(ccdown),1); 
output3 = zeros(sum(ccdown),4); 

  
count3 = 1; 
for ii = 1:lastrow 
    if (ccdown(ii) == 0); 
    else 
        Freq4(count3,1) = Freq(ii); 
        output3(count3,1:4) = [real(y(ii,1)),imag(y(ii,1)),... 
            real(y(ii,2)),imag(y(ii,2))]; 
        count3 = count3 + 1; 
    end 
end 
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realR(:,1) = real(R); 
imagR(:,1) = imag(R); 
R2(:,1) = abs(R).^2; % Power reflection coefficient 

  
Z = Rho*cu*((1 + R) ./ (1 - R)); % Silencer entrance impedance 

  

  
% Generate the Transfer Matrix 
p0 = x(:,1) + x(:,2); % Pressure at silencer entrance 
q0 = (x(:,1) - x(:,2)) ./ Z0u; % Velocity at silencer entrance 

  
pd = y(:,1) + y(:,2); % Pressure at silencer exit 
qd = (y(:,1) - y(:,2)) ./ Z0d; % Velocity at silencer exit 
% Velocity at silencer exit, different convention 
% qd2 = (-y(:,1) + y(:,2)) ./ Z0d;  

  
% pd = y(:,1); 
% qd = y(:,1) ./ Z0d; 

  
% Transfer matrix parameters 
T11 = (pd .* qd + p0 .* q0) ./ (p0 .* qd + pd .* q0); 
T12 = (p0.^2 - pd.^2) ./ (p0 .* qd + pd .* q0); 
T21 = (q0.^2 - qd.^2) ./ (p0 .* qd + pd .* q0); 
T22 = T11; 

  
% T11 = (p0 .* qd + pd .* q0) ./ (pd .* qd + p0 .* q0); 
% T12 = (p0 .* qd + pd .* q0) ./ (p0.^2 - pd.^2); 
% T21 = (p0 .* qd + pd .* q0) ./ (q0.^2 - qd.^2); 
% T22 = T11; 

  
z11 = (pd.*qd - p0.*q0)./(qd.^2 - q0.^2); % = z22 
z12 = (p0.*qd - pd.*q0)./(qd.^2 - q0.^2); % = z21 

  
z11amp = abs(z11); 
z11pha = angle(z11)*180/pi; 
z12amp = abs(z12); 
z12pha = angle(z12)*180/pi; 

  
% Reflection coefficient at entrance of downstream pipe 
Rd = y(:,2) ./ y(:,1);  
% kd2 = (omega / cd) .* zeta; 
% Termination silencer reflection coefficient 
% Rt(:,1) = (y(:,2).*exp(-1i*kd2*Lp)) ./ (y(:,1).*exp(1i*kd2*Lp));  
% Zt = Rho*cd*((1 + Rt) ./ (1 - Rt)); % Silencer entrance impedance 
% Relationship btw C and D at downstream face of silencer under test 
% Y(:,1) = abs(Rt .* exp(-2*1i*kd2*Lp)); 
% Y(:,1) = y(:,2) ./ y(:,1); 

  
% Relative to amplitude of wave A 
waveA = log10(abs(x(:,1))./abs(x(:,1))); 
waveB = log10(abs(x(:,2))./abs(x(:,1))); 
waveD = log10(abs(y(:,1))./abs(x(:,1))); 
waveE = log10(abs(y(:,2))./abs(x(:,1))); 
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phaBA = angle(x(:,2)./x(:,1)); 
phaDC = angle(y(:,2)./y(:,1)); 
% diff = phaDC + phaBA; 
waveratio = (x(:,2).*y(:,2))./(x(:,1).*y(:,1)); 
phadiff = angle(waveratio); 

  
ccpha = ones(1,2560);%(phadiff < -.6) | (phadiff > .6); 

  
Traveling_up = abs(x(:,1) - x(:,2).*exp(1i*phaBA)); 
Standing_up = abs(2*x(:,2).*exp(1i*phaBA)); 

  
Traveling_down = abs(y(:,1) - y(:,2).*exp(1i*phaDC)); 
Standing_down = abs(2*y(:,2).*exp(1i*phaDC)); 

  
% Preallocate matrices 
Freq3 = zeros(sum(cc),1); TL = Freq3; TL1 = Freq3; TL2 = Freq3; 
TL3 = Freq3; TL4 = Freq3; TL22 = Freq3; 

  
count2 = 1; 
for ii = 1:lastrow 
    if (cc(ii) == 0) || (ccpha(ii) == 0) 
    else 
        Freq3(count2,1) = Freq(ii); 

         
        T11(ii) = T11(ii) .* cc(ii); 
        T12(ii) = T12(ii) .* cc(ii); 
        T21(ii) = T21(ii) .* cc(ii); 
        T22(ii) = T22(ii) .* cc(ii); 

         
        t1 = sqrt(Z0d(ii)/Z0u(ii))*T11(ii); 
        t2 = T12(ii)/sqrt(Z0u(ii)*Z0d(ii)); 
        t3 = sqrt(Z0u(ii)*Z0d(ii))*T21(ii); 
        t4 = sqrt(Z0u(ii)/Z0d(ii))*T22(ii); 

         
        % System-independent TL 
        TL(count2,1) = 20*(log10((1/2)*abs(t1 + t2 + t3 + t4))); 

         
        TL1(count2,1) = 20*log10((1/2)*abs(t1)); 
        TL2(count2,1) = 20*log10((1/2)*abs(t2)); 
        TL3(count2,1) = 20*log10((1/2)*abs(t3)); 
        TL4(count2,1) = 20*log10((1/2)*abs(t4)); 

         
        % System-dependent TL 
        TL22(count2,1) = 20*log10((1/2)*abs(t1 + t2 + t3 + t4 + ... 
            Rd(ii).*(t1 - t2 + t3 - t4))); 

         
        count2 = count2 + 1; 
    end 
end 

  
% figure(6);subplot(3,1,1);plot(Freq3,TL1,Freq3,TL);subplot(3,1,2);... 
%     plot(Freq3,TL2,Freq3,TL);subplot(3,1,3);plot(Freq3,TL3,Freq3,TL) 
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% Transmission loss using impedance parameters 
% TL_imped = 20*log10(0.5*abs(z11./z21 + z22./z21 + ... 
%     (z11.*z22)./(z21.*Z0) + Z0./z21 - z12./Z0));%.* cc'; 

  
figure 
plot(Freq3,TL,'.') 
xlabel('Frequency (Hz)') 
ylabel('Transmission Loss (dB)') 
axis([0,4000,0,40]) 

C.1.2 Speed of Sound Function 

This code evaluates the speed of sound in the upstream and downstream portions of the 

test section which is useful for determining the validity of the measured transmission 

loss. 

% Title Section 
% User-Defined Function to Determine 
%  - The speed of sound for a given section of pipe 
%  
% By: Nicholas E. Earnhart 
%  
% Last Revision: 10/08/2010 
%----------------------------------------------------------------------

---- 

  
function [c] = SOS_func(omega,h01,h21,pipeprops,fluidprops,c0) 

  
% Pipe properties 
I01 = pipeprops.I01; % [m] distance between sensors 0 and 1 
I12 = pipeprops.I12; % [m] distance between sensors 1 and 2 
d = pipeprops.d; % [m] pipe inner diameter 
r0 = pipeprops.r0; % [m] pipe inner radius 
t = pipeprops.t; % [m] Wall thickness of the pipe 
Ew = pipeprops.Ew; % [Pa] Young's modulus of the steel pipe wall 

  
% Fluid properties 
visc = fluidprops.visc; % [m^2/sec] kinematic viscosity 
Df = fluidprops.Df; % [Pa] Bulk modulus of the hydraulic oil 
Rho = fluidprops.Rho; % [kg/m^3] Density of hydraulic oil 

  
% Script settings 
m = 1; % [ND] For loop index 
coher = 0.90; % [ND] value for coherence to be valid 
g = 0; % [ND] 1 = display graphics for SOS, 0 = no graphics 

  
% Determination of the velocity of the wave propagation pulsations 

(speed 
% of sound) in a fluid enclosed by a homogeneous and straight pipe 

using 
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% the three pressure transducer - method 1 - transducer 2 between 1 and 

3 
%  c       final value speed of sound                           [m/s] 
%  I01     distance between pressure transducers 1 and 2        [m]  
%  I12     distance between pressure transducers 2 and 3        [m] 
%  d       inside diameter of the rigid pipe                    [m] 
%  visc    kinematic viscosity of the fluid at test conditions  [m^2/s] 
%  c0      initial chosen value of the speed of sound           [m/2] 
%  omega   (2*pi*f) vector of individual freq. used in msmts [rad/sec] 
% 
%  h01,h21 
%          2 dimensional matrices containing respectively, the transfer 
%          functions P1/P2 and associated coherence; and P2/P1 and 
%          associated coherence. that is h01(:,1) and h21(:,1) contain 

the 
%          transfer function in complex number format and h01(:,2) and  
%          h21(:,2) contain corresponding real number choerences. These 
%          matrices are of the same length as the omega vector.  
% 
%  coher   min value for coherence for msmts to be valid (typ. 

coher=.95) 
%  g       printing option (text and graphics on screen is g==1) 

  
% Now must input the transfer function data in magnitude and phase form 
% and convert it to complex notation to be passed to the function. Must 

do 
% this for both workspaces imported into the m-file. 

  

  
% -------- LOOKING FOR AVALIABLE FREQUENCIES  (coherence > min value) 
nrc = 0; % Initialize the number of available frequencies 

  
for nc = 1:length(omega) 
    if (h01(nc,2) * h21(nc,2) >= coher*coher) 
        nrc = nrc + 1; 
        nv(nc) = 1;  % Index the available frequencies 
    else 
        nv(nc) = 0;  % Index the unavailable frequencies 
    end 
end 

  
nv(1) = 0;  % Null frequencies not taken into account 

  

  
%------BEGINING OF THE LOOP ALGORTIHM------ 
a = omega + sqrt(2 * omega * visc) / d; 
b = (4 * visc) / (d * d) + sqrt(2 * omega * visc) / d; 

  
amjb = a - 1i*b; 

  
I01xamjb = I01 * amjb; 
I12xamjb = I12 * amjb; 

  
ik = 1; % Initialize number of iterations of the algorithm 
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c = c0; 
dc = 10; 

  
while (abs(dc / c) > 0.0001) 
memc(ik) = c;   % Memorize num of successive values for opt 

observations 
I01_ = I01xamjb / c; 
I12_ = I12xamjb / c; 

  
E = nv(:).*(sin(I12_).*h01(:,1)+sin(I01_).*h21(:,1)-sin(I01_+I12_)); 
dEsurdc = nv(:).*amjb/(c*c).*(-I12*cos(I12_).*h01(:,1)-

I01*cos(I01_).*... 
    h21(:,1)+(I01+I12)*cos(I01_+I12_)); 

  
dc = -sum(E .* conj(dEsurdc)) / sum(dEsurdc .* conj(dEsurdc)); 
dc = real(dc); % real: force c to be real value 
c = abs(c + dc); % abs: force c to be positive value 

  

  
%--------TEXTS ON SCREEN-------- 
if (g == 1) && (ik == 1) 
    fprintf('\nDetermination of Speed of Sound with '); 
    fprintf('Coherence Imposed. %g\n', coher); 
    fprintf('Number of Available Frequencies: '); 
    fprintf('%g on %g maximum\n', nrc, length(omega)); 
    fprintf('c%g=%6.2f dc=%6.4f\n',ik, c0, dc); 
else 
    fprintf('c%g=%6.2f dc=%6.4f\n', ik, memc(ik), dc); 
end 

  

  
%--------WARNING MESSAGE-------- 
if (ik > 50) 
   fprintf('Number of Iteration Values > 50\n'); 
   fprintf('Something is Wrong! Verify the Initial Values\n'); 
   return 
end 

  
ik = ik + 1;   % Increment the Number of Iterations 
end 

  
%----------------------------------------------------------------------

---- 
%----------------------------- CORRECTION TEST ------------------------

---- 
%----------------------------------------------------------------------

---- 

  
% Need to see if the stiffness of the steel wall relative to the bulk 
% modulus of the fluid is a small enough ratio to warrant correction of 

the 
% bulk modulus of the fluid 

  
Dc = Df / (1 + (d/2) / t * Df / Ew); 
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% Theoretical SOS: 
ctheo = sqrt(Dc / Rho); 

  

  
%--------GRAPHICS-------- 
fprintf('\nFinal Value of Speed of Sound = %6.0f m/s',real(c)); 
fprintf('\nTheoretical Value Speed of Sound = %6.0f 

m/s\n\n',real(ctheo)); 

  
if (g == 1), 
    np = 1:ik-1; 
    plot(np, memc(np),'*w', np, memc(np)); 
    grid on; 
    xlabel('Number of Iterations'); 
    ylabel('Speed of Sound [m/s]'); 
    title('Progression of the Algorithm'); 
    text(0.5, 0.5, ['Final Value = ', num2str(c)], 'sc'); 
end 

 

C.2  Pressure Ripple Plotting Code 

This code is used to plot the fluid-borne noise at each sensor, which is useful when 

attempting to communicate the results of the research to people that are not used to 

interpreting results in terms of decibels or in the frequency domain. 

% Time_Trace_Plotting 
% Created by: Nathaniel Pedigo 
% Created on: 5/11/17 
% Last Editted: 5/11/17 

  
clear;  clc; 

  
load run7 

  
figure 

  
subplot(2,3,1) 
plot(Time(1:200),Voltage_0(1:200)) 
title('Voltage 1 - Upstream') 
yl1=ylim; 

  
subplot(2,3,2) 
plot(Time(1:200),Voltage_1(1:200)) 
title('Voltage 2 - Upstream') 
ylim(yl1) 

  
subplot(2,3,3) 
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plot(Time(1:200),Voltage_2(1:200)) 
title('Voltage 3 - Upstream') 
ylim(yl1) 

  
subplot(2,3,4) 
plot(Time(1:200),Voltage_3(1:200)) 
title('Voltage 4 - Downstream') 
ylim(yl1) 

  
subplot(2,3,5) 
plot(Time(1:200),Voltage_4(1:200)) 
title('Voltage 5 - Downstream') 
ylim(yl1) 

  
subplot(2,3,6) 
plot(Time(1:200),Voltage_5(1:200)) 
title('Voltage 6 - Downstream') 
ylim(yl1) 

  
suptitle('Time Trace of Pressure Ripple - System Pressure: 2000 psi') 
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APPENDIX D. MATHEMATICAL PROCESSING 

The acoustic pressure in the up- and down- stream sections can be expressed as 

plane waves in traveling in the positive and negative x-directions.  The dynamic pressure 

at the upstream and downstream ports of the suppressor can be calculated as 

  x x j t

upstreamp Ae Be e     (D.1) 

and 

  x x j t

downstreamp Ee Fe e     (D.2) 

respectively, where ω is the angular frequency of the noise, γ is the complex 

wavenumber, j is the imaginary number, and A, B, E, and F are the complex wave 

amplitudes in the upstream and downstream sections of the pipe, as shown in Figure 30. 

 

Figure 30 – Acoustic diagram of a suppressor. 

Using the dynamic pressure sensors as depicted in Figure 11, the transfer function 

between sensors h and i, denoted by Hhi relates the signals measured by the two sensors. 

Seven transfer functions are used to fully analyse the data; the data from all of the sensors 
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is related to the data collected at sensor 1, and the data at sensors 3 and 5 are related to 

the data collected at sensor 4. The relative wave amplitudes can be determined by solving 

the Moor-Penrose pseudoinverses 

 X Mb  (D.3) 

and 

 Y Nc  (D.4) 

where X and Y are defined as 
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 (D.5) 

and  
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 
 

 (D.6) 

respectively, where p1 is the pressure at sensor 1. The matrices b and c are defined as  

 

01

21

1

H

b

H

 
 

  
 
 

 (D.7) 

and 
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 (D.8) 

respectively. The measured pressures at each sensor can be placed in over-determined 

matrices such that 
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 (D.9) 

and 
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 (D.10) 

The Moore-Penrose pseudoinverse equations, (D.3) and (D.4), can be used to 

calculate the complex wave amplitudes with respect to the pressure at sensor x1. The 

upstream and downstream volume velocities can be calculated as 
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and 
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where Z0 is the specific acoustic impedance of the hydraulic fluid. A transfer matrix 

relates the pressure and volume velocities in the upstream and downstream sections such 

that 

 11 12

21 22

upstream downstream

upstream downstream

P Pt t

Q Qt t

    
    
    

 (D.13) 

Assuming the geometric symmetry of the test component and that the system is 

acoustically reciprocal [14], it can be shown that 

 11 22t t  (D.14) 

and 
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
  (D.15) 

 From equations (D.13), (D.14), and (D.15) the transfer matrix can be rewritten as 

2 2 2 2

0 2 2 2 2

2 2 2 2

2 2 2 2

0

2 2
1

1 2 2
1

A AB B F EF E
Z

A E B F
T

A AB B F EF E

Z A E B F
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 

  
 
      
    

 (D.16) 

The transmission loss of the device can be calculated as 
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 (D.17) 

Substituting Equation (D.16) into (D.17), the transmission loss can be shown to be 
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2 2

1020log
A F

TL
AE BF





 (D.18) 

The system cannot be assumed to be anechoic, thus no more simplification can be made. 

D.1  Plane Wave Assumption 

The mathematical process described in this aapendix is only valid for plane waves 

so that the wave field in the test section is not angularly dependent, and the angle of the 

transducer mounting is irrelevant. Only plane wave will propagate in a waveguide for 

frequencies less than 

 lm phase lmc k   (D.19) 

where cphase is the phase speed of sound and klm is the acoustic wavenumber of the mode 

(l,m) defined by 

 
'lm

lm

j
k

a
  (D.20) 

where j’lm are the extrema of Jm(z). Jm(z) is the m
th

 order Bessel function and a is the inner 

radius of the pipe [15]. The lower bound limit of Equation (D.19) is the cutoff angular 

frequency, above which nonplanar waves will be produced that decay exponentially with 

the distance from the source. For the test rig used in this research, the cutoff frequency 

for the first non-plane mode (l=0, m=1) is 43,000 Hz. As the maximum frequency of 

interest in this research is 4,000 Hz, the plane wave assumption is valid. 
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