
MOTION TOMOGRAPHY PERFORMED BY
AUTONOMOUS UNDERWATER VEHICLES

A Thesis
Presented to

The Academic Faculty

by

Meriam Ouerghi

In Partial Fulfillment
of the Requirements for the Degree

of Master of Mechanical Engineering in the
School of Mechanical Engineering

Georgia Institute of Technology
August 2017

Copyright c© 2017 by Meriam Ouerghi



MOTION TOMOGRAPHY PERFORMED BY
AUTONOMOUS UNDERWATER VEHICLES

Approved by:

Professor Fumin Zhang, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

DR. Jonathan Rogers
School of Mechanical Engineering
Georgia Institute of Technology

Professor Oliver Sawodny
The Institute for System Dynamics
Stuttgart University

Professor Cristina Tarin
The Institute for System Dynamics
Stuttgart University

Date Approved: 27 July 2016



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II PRELIMINARY RESEARCH . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Formulation of MT . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Vehicle Motion Under Flow . . . . . . . . . . . . . . . . . . . 4

2.1.2 MT Problem Formulation . . . . . . . . . . . . . . . . . . . 5

2.1.3 Trajectory Tracing and Its Error Bound . . . . . . . . . . . . 7

2.2 A Kaczmarz-Type Method for Flow Field Estimation by MT . . . . 8

III CONVERGENCE ANALYSIS OF MOTION INTEGRATION ER-
ROR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Formulation of MT . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Trajectory Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Simulations and Results . . . . . . . . . . . . . . . . . . . . . . . . . 40

IV INCORPORATION OF VEHICLE TRAVELING TIME . . . . . 44

4.1 Extension of MT by Travel Time . . . . . . . . . . . . . . . . . . . . 44

4.2 Convergence Analysis of Time Integration Error . . . . . . . . . . . 47

4.3 Simulations and Results . . . . . . . . . . . . . . . . . . . . . . . . . 51

V MUTLI VEHICLE MOTION TOMOGRAPHY . . . . . . . . . . 53

5.1 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Multiple Vehicle MT . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Convergence Analysis of one Dimension MTCC and Simulation Results 56

5.3.1 Convergence Analysis of one Dimension MTCC . . . . . . . . 57

5.3.2 Simulations and Results of one Dimension MTCC . . . . . . 68

5.4 Convergence Analysis of MTCC and Simulation Results . . . . . . . 69

iii



5.4.1 Convergence Analysis of MTCC . . . . . . . . . . . . . . . . 69

5.4.2 Simulations and Results of MTCC . . . . . . . . . . . . . . . 76

5.5 Comparison between MTCP and MTCC . . . . . . . . . . . . . . . 78

VI CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

iv



LIST OF FIGURES

1 Illustration of MT mapping formulation. Actual (the blue dashed line)
and predicted (the blue solid line) vehicle trajectories are displayed in
a discretized domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Case one:Vertical crossing. . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Case one:Vertical crossing. . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Second Case of cell crossing . . . . . . . . . . . . . . . . . . . . . . . 17

5 Third Case of cell crossing. . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Illustration of different traced trajectories. . . . . . . . . . . . . . . . 18

7 Illustration of trajectory tracing at different iterations. Initial trajec-
tory (the red solid line) and traced trajectories (the purple and blue
solid line) after first and second iteration are displayed in a discretized
domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8 Illustration of trajectory tracing as described in Lemma 3.3.3. . . . . 27

9 Illustration of trajectory tracing for n = m+ 1. . . . . . . . . . . . . 35

10 Illustration of trajectory tracing in new set of cells . . . . . . . . . . 37

11 Evolution of predicted trajectories between starting positions (blue
rectangles) and target positions ( black circles). . . . . . . . . . . . . 41

12 Real and predicted trajectories between starting positions (blue rect-
angles) and target positions ( black circles). . . . . . . . . . . . . . . 42

13 Evolution of predicted flow field (blue dashed line). . . . . . . . . . . 42

14 A simulated true flow (red solid lines) and predicted flow field (blue
dashed line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

15 Real and predicted trajectories between starting positions (blue rect-
angles) and target positions ( black circles). . . . . . . . . . . . . . . 52

16 A simulated true flow (red solid lines) and predicted flow field (blue
dashed line) with travel time incorporation. . . . . . . . . . . . . . . 52

17 One axis MTCC without travel time incorporation. . . . . . . . . . . 69

18 One axis MTCC with travel time incorporation. . . . . . . . . . . . . 70

19 Illustration of trajectory tracing at iteration h and h− 1. . . . . . . . 73

20 MTCC without travel time incorporation after 1 Iteration. . . . . . . 78

v



21 MTCC without travel time incorporation after 2 Iterations. . . . . . . 79

22 MTCC without travel time incorporation after 5 Iterations. . . . . . . 79

23 MTCC with travel time incorporation. . . . . . . . . . . . . . . . . . 80

24 MTCP with travel time incorporation. . . . . . . . . . . . . . . . . . 81

vi



SUMMARY

Motion Tomography (MT) is a novel method to estimate an ambient flow field.

Based on collective data obtained from the autonomous underwater vehicles (AUV),

MT formulates a specific nonlinear system of equations as an inverse problem.

In this thesis, we redesign the MT algorithm by using a local approximation of the

gradient of AUV position. We establish a theoretical study of motion tomography

(MT) problem, where we focus on the evolution of the AUV predicted trajectory,

computed by the MT algorithm, to derive the MT error dynamics.

A main result of this thesis illustrates a fundamental connection between the trajec-

tory tracing mechanism and the flow update. This insight is not only relevant for

proving the convergence of the MT algorithm, but provides a new perspective on

inverse problems in general. To overcome the complexity of the underlying problem,

we follow a systematic scheme: We start by analyzing one vehicle MT and then we

enlarge the scope to multiple vehicle MT.

Therein, we looked for an appropriate way to incorporate the collected data from

AUVs and accounting for several reasons, discussed in this work, we focused on Mo-

tion Tomography Correction per Cycle (MTCC). We proved the convergence of the

redesigned algorithm MTCC without imposing the Lipschitz continuity property.

Furthermore, we improved the accuracy of ambient flow field estimation by extending

the MT algorithm with second part. We modified the AUV predicted velocity so that

the simulated final time converges to the measured travel time. Finally, the simu-

lations are in good agreement with the theoretical study and underpin the derived

conclusions.

vii



CHAPTER I

INTRODUCTION

Autonomous Underwater Vehicles (AUV) have reached a considerable maturity in

reliability and agility. They have been developed and constantly improved to serve

the changing needs of oceanography in different applications, ranging from short term

applications for rapid assesment and sampling, to persistent networks for continuous

long-term monitoring and mapping of the ocean [21], [30].

One of the major challenges in AUV deployment is to follow the planned trajectory

in an unfamiliar dynamic underwater. As a matter of fact, water current instabilities

can deflect the vehicle to an undesired direction and perturb AUVs safety. Fur-

thermore, Global Positioning System (GPS) becomes totally ineffectual underwater

because their transmitted signals cannot propagate through seawater. Therefore the

vehicles robustness to strong environmental variations is extremely crucial for mission

accomplishment. One solution is to estimate and predict the underwater positions

based on a priori knowledge of the flow field. However, modeling the ocean field is a

sophisticated task that involves many factors. Continuously changing currents and an

inaccurate or delayed flow estimate prevents the vehicles from reaching their targets

to acquire data [15].

Inspired by the Computerized Tomography (CT), [27] a novel method, called Motion

Tomography (MT), is proposed in [2, 4] to improve the underwater navigation by

estimating the ambient flow. The MT fuses the data collected by AUVs along their

paths, in particular, the effect of the flow on the trajectory to create a spatial map of

a flow field through multiple AUVs scanning a region of interest. Compared to other

types of algorithms [1,8] MT defines the Motion Integration Error (MT error) as the
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difference between GPS surfacing position of the AUV and predicted position. The

obtained MT error is formulated into an inverse problem to infer the underlying flow

which is computationally faster and in higher resolution than existing flow models.

Accounting for the nonlinear feature of the resulting problem, MT algorithm is an it-

erative process that consists of trajectory tracing and flow field estimation. However,

relying only on the measured end position is not enough to estimate the strength of

the flow.

In this regard, the GPS provides in addition to the surfacing position highly accurate

estimate of travel time. This thesis exploits this fact and extends MT algorithm with

a new phase that incorporates time of travel to improve the accuracy of the flow

estimate.

Nonetheless, it turns out that the MT problem is inherently ill-posed. The lack of

uniqueness and continuous dependence of the solution on data, impedes the conver-

gence study [37]. Challenges arise not only because the derivative of the MT error

function is not continuous and not defined on the whole data space, but also be-

cause it is not a locally Lipschitz function, a fundamental prerequisite to prove the

convergence of inverse problem. The most conventional choices of nonlinear iterative

algorithms are the family of variants on Newton’s method e.g. Damped Gauss-Newton

and Levenburg-Marquardt [25].

Accounting for its wide application, there exists a substantial literature devoted to

study the convergence of nonlinear Newton’s method in its various forms. The in-

terested readers are referred to the excellent survey paper [40] for detailed accounts.

The convergence theory of Newton’s method assumes at least continuous differentia-

bility of the nonlinear function and nonsingularity of the Jacobian [24]. However,

some relaxations have been made to extend the application of the classical Newton

method, just to name a few: Newton-like methods for solving nonlinear equations

with non differentiable terms in [7] or the calm solution mappings in [10–12]. The
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existing theoretical justifications of the inverse problem convergence revolve mainly

around the Lipschitz property in different forms and these do not hold for the MT

algorithm. Therefore, we approach the MT problem with a different perspective and

we redesign the MT algorithm.

For data incorporation, we construct a set of non linear constraints and we apply

the Kaczmarz method which is an iterative approach to solve a non linear system

of equations. Concerning the convergence analysis, we limit the scope first on one

vehicle in order to elucidate the trajectory tracing mechanism and the associated fea-

tures. We provide a compact form for the error dynamics by computing the necessary

derivatives for the algorithm. Based on one vehicle analysis we raise the challenge

by considering the one axis analysis and finally the general MT problem. We prove

the convergence of the proposed algorithm without requiring the Lipschitz continuity

condition. In an analogous way to CT, see [8], we propose two versions of the MT

algorithm that account multiple vehicle incorporation: Motion Tomography Correc-

tion per Cycle (MTCC) and Motion Tomography Correction Per Projection (MTCP).

Adding to that, this thesis incorporates the time information into the MT problem,

to provide more accurate results than previous work [2].

The rest of the document is organized as follows. Chapter 2 introduces some back-

ground material that is relevant for the main results of this thesis and provides a

short review of MT algorithm introduced in [2]. In Chapter 3, we redesign the MT

algorithm and derive the MT error dynamics. The convergence of the redesigned MT

algorithm is proved without imposing the Lipschitz continuity property. Chapter 4

extends the MT algorithm with a new phase by incorporating time of travel. Conver-

gence analysis is established as well. Chapter 5 addresses the multiple vehicle problem.

We propose two versions of MT algorithm and we establish the convergence of the

MT error. Finally, we prove the theoretical conclusions by simulations in Chapter 6

and we conclude the thesis in Chapter 7.
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CHAPTER II

PRELIMINARY RESEARCH

Autonomous Underwater Vehicles (AUVs) are characterized by relatively slow speed.

Hence, the motion of (AUVs) is strongly affected by ocean currents, and consequently

the surfacing position deviates from the planned position. Motion Tomography (MT)

takes into account this fact to estimate the depth-averaged flow velocity using GPS

surfacing positions r∗ ∈ R2.

This chapter aims to provide detailed literature review of the research domains

relevant to motion tomography. The research challenges and difficulties associated

with each of the domains will be discussed.

2.1 Formulation of MT

In this section, we define the MT framework by making the following assumptions:

Assumption 2.1.1. The flow field is time-invariant over one observation interval T .

As a result, the flow is now represented by F (r,t) = F (r).

Assumption 2.1.2. The horizontal through-water speeds (as opposed to ground speeds)

of all vehicles are identically sh, which is a constant.

2.1.1 Vehicle Motion Under Flow

We consider the depth averaged horizontal motion of AUVs subject to ambient time

invariant flow F (r(t)) ∈ R2
+. Assuming that the AUV motion is a first order particle

model with constant speed sh and heading angle θ ∈ R+, then the velocity of the AUV

V (t) ∈ R2
+ varies according to the flow F (r(t)) such that the final position rf ∈ R2

+
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follows:

rf = r0 +

∫ tf

t0

V (t)dt = r0 +

∫ tf

t0

(S + F (r(t))) dt, (1)

where S = sh[cos θ, sin θ]>, r0 ∈ R2
+ refers to the initial position, t0 the start time of

observation and tf to the time of travel.

MT estimates a flow field map from the motion-integration error and trajectory in-

formation of the AUV. Suppose the AUV position is available only at time t0 and

tf and the flow F (r(t)) is unknown, then an offset between the estimated and real

trajectories is observed. So the motion-integration error along the vehicle trajectory

γ(t), t ∈ T is defined in as:

d(γ,T ) =

∫ tf

t0

(
ṙ(τ,F )− ˙̃r(τ,F̃ )

)
dτ =

∫ tf

t0

(F (r)) dτ, (2)

where F (r(t)) is the real flow, T = tf − t0 is the observation interval and F̃ is prior

flow information which is assumed to be zero.

2.1.2 MT Problem Formulation

In order to estimate the spatial distribution of a flow field, the previous work [2]

incorporates the motion-integration errors of multiple AUVs. N vehicles are deployed

in a domainD (see Figure 1). We denote their surfacing positions by ir, i = {1, · · · ,V }

and the trajectories of each vehicle by curve vγ. Let id be the motion-integration error

of vehicle v which is determined after one observation interval T .

Chang et al.all introduce the arc-length parameter i` for curve iγ to describe the MT

error along the AUV trajectory as follows:

di` = ‖iV (F (r(t)))‖dt. (3)

Combining Eq.(3) with Eq.(2) yields:

id =

∫
iγ

1

‖V (F (ir))‖
F (ir)di`. (4)
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Now discretize domain D into P=n×n grid cells, as illustrated in Fig.1. For the kth

cell, let us denote flow velocity by F k. Since the vehicle heading θ is constant, the

traced trajectory is piecewise linear over the domain D. For the vth vehicle in Ck,

we assume that vehicle heading iθk is constant within Ck. Then, the speed of the ith

vehicle along the trajectory is given by

∥∥iV k(F )
∥∥ =

∥∥∥∥∥∥∥sh

 cos iθk

sin iθk

+ F k

∥∥∥∥∥∥∥ . (5)

We assume that vehicle heading iθk is available to us or can be estimated with small

bounded error. For the vth vehicle passing through the kth cell, Ck, the length of

the vehicle trajectory, iLk, can be obtained by

iLk =

∫
iγ[Ck]

di`, (6)

in which iγ[Ck] represents curve iγ within the spatial interval for Ck in a planar space.

Based on the discretization setting designed above, Eq (4) can be discretized into the

following form:

id =
P∑
k=1

iLk(F )

‖iV k(F )‖
F k, i = {1, · · · ,N}. (7)

Considering the flow velocity along the x and y directions separately, we have

idx =
P∑
k=1

iLk(F )

‖iV k(F )‖
F k
x ,

idy =
P∑
k=1

iLk(F )

‖iV k(F )‖
F k
y

(8)

By constructing vectors dx = [1dx,
2dx, · · · ,Ndx]T and dy = [1dy,

2dy, · · · ,Ndy]T , we

can rewrite Eq (8) as

dx = L(F )Fx

dy = L(F )Fy,

(9)

6



where F = [F T
x , F

T
y ]T , and

L(F ) =


1L1(F )
‖1V 1(F )‖ · · ·

1LP(F )
‖1V P(F )‖

...
. . .

...

NL1(F )
‖NV 1(F )‖ · · ·

NLP(F )
‖NV P(F )‖

 . (10)

Hence, the obtained equation (9) is an inverse problem that uses the measured motion

integration error d to estimate the flow F . Inspecting Eq (9) reveals that the MT

problem is nonlinear, non differentiable and even inherently ill-posed. The lack of

uniqueness and continuous dependence of the solution on data brings challenges to

MT [37]. The work [2] proposes the Trajectory Tracing mechanism to circumvent the

non linearity, a key step to solve the MT problem.

2.1.3 Trajectory Tracing and Its Error Bound

Since real vehicle trajectories are nonlinear, computing L(F ) under the assumption

that the trajectories are linear jeopardizes the accuracy of flow mapping. Trajectory

Tracing constructs new AUV trajectory based on the predicted flow. The vehicle

trajectory is traced at iteration i through simulation that embeds the current estimate

of the flow field Fi. For the ith vehicle, the vehicle velocity is obtained as follows:

iVj(t) = sh

 cos iθ

sin iθ

+ Fi(
irj(t)), (11)

Hence the traced vehicle trajectory γj is obtained as follows:

iγj =

∫ tf

t0

sh

 cos iθ

sin iθ

+ Fi(
irj(t))

 dt, (12)

Plugging Eq (12) in (7) provides the motion integration error dj to update the pre-

dictive flow at iteration j + 1. Accordingly, MT comprises two key steps: iteratively

alternates between flow estimation and trajectory tracing.
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Figure 1: Illustration of MT mapping formulation. Actual (the blue dashed line)
and predicted (the blue solid line) vehicle trajectories are displayed in a discretized
domain.

2.2 A Kaczmarz-Type Method for Flow Field Estimation
by MT

Adding to the non-linearity and the non-differentiability of (4), the number of ob-

tained trajectories is significantly smaller than the number of cells crossed by one

AUV. Therefore, the MT problem is a highly underdetermined nonlinear system. To

deal with these challenges, an iterative flow field estimation algorithm is derived in [2].

The method is based on the Kaczmarz method [17, 18], an iterative method for solv-

ing a linear system of equations. The Kaczmarz method, also known as the algebraic

reconstruction technique [13] in the medical imaging community, has been used for

computerized tomography [26].

The proposed Kaczmarz method iterates the following optimization process:

Fj+1 = argmin
F

1

2
‖F − Fj‖2

subject to id =i L(F )

(13)

where iLj is the ith row of matrix L, id the ith element of vector d. Solving (13)

8



Algorithm 1: MT flow field estimation

Data: Motion-integration errors id = {1d, · · · ,Nd}
1 Set i = 0. Make an initial guess of the solutions, Fx,0 and Fy,0.
2 repeat
3 for v = 1 to N do
4 Update the solutions by

Fx,j+1 = Fx,j + λj
idx,j − iL(Fj)Fx,j
‖iL(Fj)‖2

(pL(Fj))
T ,

Fy,j+1 = Fy,j + λj
idy,j − jL(Fj)Fy,j
‖iL(Fj)‖2

(
iL(Fj)

)T
,

Let i = i+ 1.

5 end
6

iex,j =i L(Fj)Fx,j −i dx,j.
7

iey,i =i L(Fj)Fy,j −i dy,j.

8 until a stopping condition is met (e.g., ‖iex,i‖, ‖iey,i‖ ≤ εF)

yields the following formula to update F :

F k+1 = F k + λk
dj − LjF

k

‖Lj‖2
LTj , (14)

where λk is a relaxation parameter for the convergence rate of the method. Further-

more, the convergence of Motion Integration Error d has been analyzed in previous

work [2]. However, the proposed proof requires the following assumptions:

Assumption 2.2.1. Given any real numbers 0 < ε,β < 1 and a true solution F ? to

Equation (7), there exists a ball B(F ?,δ) around F ? with radius δ > 0 such that the

following hold for all f ∈ B(F ?,δ):

1)
γL‖F ?‖
‖iL(F )‖

<
√
ε for all i = {1, · · · ,N}.

2) For a sequence Fj generated by Equation (14), let ej = Fj − F ? and Mj =

I −i L+(Fj)
iL(Fj) where j = mod(j,N) + 1. For every N iterations, there

exists at least one i ∈ {nN,nN + 1, · · · ,(n + 1)N − 1}, n = {0,1,2, · · · } such

that ej satisfies 〈Mjej, ej〉 ≤ (1− β) 〈ej, ej〉 where β > 1 + ε− 1

(1 + ε)N−1
.

9



Assumption 2.2.2. iL(F ) in Equation (7) is Lipschitz continuous for all i = {1, · · · ,N}

with the largest Lipschitz constant γL = maxi
iγL, where iγL is the Lipschitz constant

for iL(F ).

Based on the proposed Assumptions, the convergence of MT algorithm is presented

in the following Theorem:

Theorem 2.2.1. Suppose Assumptions 2.2.2 and 2.2.1 hold for Equation (9) and its

solution F?. Starting from any initial point F0 within a ball B(F?,δ), e.g., ‖F?−F0‖ <

δ, the sequence Fj generated by Algorithm 2 converges to F? as j →∞.

A thorough review of the proof of Theorem 2.2.1, see [2] reveals its invalidity

because it assumes that the optimal solution is isolated, and this assumption does not

hold for the tomography application. As a matter of fact the problem has uncountably

infinite solutions. Thus, in any ball of radius δ around F? there are uncountable many

other solutions.

Moreover, Assumption 2.2.2 does not hold in general case. Due to the non-continuity

of the estimated flow, the MT pronblem is not Lipschitz. As it is well known that if

the optimal problem is non differentiable or not Lipschitz continuous, analyzing the

underlying algorithm turns out to be a challenging task.

For the reasons given above, we approach the MT problem with different perspective

using different techniques that we will suggest in the following chapter. We reconsider

the formulation of MT problem and accordingly we redesign the algorithm to establish

the convergence of MT algorithm.
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CHAPTER III

CONVERGENCE ANALYSIS OF MOTION

INTEGRATION ERROR

This chapter extends previous work on Motion Tomography (MT). We redesign the

MT algorithm using a local approximation of the gradient of the AUV position. Fur-

thermore, we establish the trajectory tracing mechanism and derive the MT error

dynamics. The convergence of the redesigned MT algorithm is proved without impos-

ing the Lipschitz continuity property.

3.1 Formulation of MT

We consider the horizontal trajectory of AUVs subject to ambient time invariant flow

F (r(t)) ∈ R2
+. Assuming that the AUV motion is a first order particle model with

constant speed and heading angle sh, θ ∈ R+, the velocity of the AUV V (r(t)) ∈ R2
+

varies according to the flow F (r(t)) such that the final position rf ∈ R2
+ follows:

rf = r0 +

∫ tf

t0

V (r(t))dt = r0 +

∫ tf

t0

S + F (r(t))dt, (15)

where S = sh[cos θ, sin θ]>, r0 ∈ R2
+ refers to the initial position and tf to the time of

travel.

For the sake of self-containment, let us briefly recall the principles of MT. Suppose

the AUV position is available only at time t0 and tf and the flow F (r(t)) is unknown,

then an offset between the estimated and actual trajectories is observed. So the

motion-integration error d(γ,T ) along the vehicle trajectory γ(t), t ∈ T is defined in

as:

d(γ,T ) =

∫ tf

t0

ṙ(τ,F )− ˙̃r(τ,F̃ )dτ =

∫ tf

t0

F (r)dτ, (16)

11



where F (r,t) is real flow, and prior flow information F̃ is assumed to be zero. The MT

method creates a map of the underlying flow field F by solving the motion-integration

error equation (16) through an iterative process that consists of trajectory tracing and

flow field estimation. The traced trajectory γ̃ is obtained by iteratively simulating

the vehicle trajectory using the current estimate of the flow as follows:

γ̃ =

∫ tf

t0

(
S + F̃ (r)

)
dt. (17)

We keep the original formulation of the MT problem but we solve it in a different way

that enables us to later analyze the trajectory tracing and to study the convergence

of MT error d. We simplify (15) by making the following assumption:

Assumption 3.1.1. We assume that input velocity S is constant, the heading angle

varies between 0 ≤ θ ≤ π
2

and the AUV velocity V (t) is componentwise positive.

We discretize domain D into P =n×n grid cells with C(h,s) referring to the (h,s)th

cell and define index k = (h − 1)n + s such that Ck ≡ C(h,s), k = {1, · · · ,P}, as

illustrated in Fig.1. For the kth cell, let us denote flow velocity by F k. Since the

vehicle heading θ is constant, the traced trajectory is piecewise linear over the domain

D. Furthermore, Ci denotes the ordered set of cells that the AUV crosses at iteration

i : Ci = {C0, · · · , Cf}. Since only the flow in cells crossed by the AUV intervenes in

the corresponding MT error, the flow F k
i (ri(t)) at iteration i in cell k can be defined

along the traced trajectory γ̃i as:

F k
i (ri(t)) =


[F k
x,i, F

k
y,i]
>, ri(t) ∈ Ck

[0, 0]> otherwise

(18)

where ri(t) is the positon of the AUV along the traced trajectory γ̃i. Next we use the

step function U to formulate F k
i (ri(t)):

Fi(ri(t)) =
n∑
h=1

n∑
s=1

F
(h,s)
i M (h,s)(t), (19)
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where ri(t) = [xi(t),yi(t)]
>, ∆ is length of the edge of one cell and M (h,s)(t) is equal to

((1− U(xi(t)− h∆))(1− U(yi(t)− s∆))U(xi(t)− (h− 1)∆)U(yi(t)− (s− 1)∆))). Plug-

ging this expression in (15) yields:

rfi = r0 +

∫ tfi

t0

S + Fi(ri(t))dt

= r0 +
n∑
h=1

n∑
s=1

∫ tfi

t0

(S + F
(h,s)
i M (h,s)(t))dt. (20)

Let Fi denote F>i = [F
(1,1)
i , · · · ,F (n,n)

i ]> and r∗ the final measured position, we define

the MT inverse problem solving the following equation for Fi for each iteration i:

di = r∗ − rfi (Fi). (21)

Since F k
i depends on the position of AUV rki , according to (18), the obtained MT

inverse problem (21) is nonlinear. Thus, we use the Newton-type method to compute

F∗ such that di → 0 as i → ∞. However, this apprach requires gradient computa-

tion [24].

Noting that (21) is not differentiable and its corresponding solution is nonisolated, we

define F∗ as the set of solutions that fulfill r∗− rfi (Fi) = 0 and we propose a suitable

substitute for the gradient:

Let us define ∇r(F k
i ) as a local gradient of r with respect to the flow F k

i
>

=

[F k
x,i, F

k
y,i]
>, and we define tki the duration of travel in cell Ck such that when the

AUV reaches one side of cell Ck (xki − h∆).(yki − s∆) = 0 holds. Hence, we integrate

the AUV velocity in cell Ck and compute xki in recursive way as follows:

xki = xk−1
i +

∫ tki

0

(Sx + F k
x,i)M

(h,s)(t)dt. (22)

We remark from Equations (22) and (18) that there is a nonlinear relationship between

the AUV position and the predicted flow. In order to estimate the flow, we need the

corresponding set of cells that the AUV crossed. Hence, we can compute the gradient

of the AUV position to predict the flow. Assuming the underlying trajectory includes

13



cell Ck, we get
∂xki
∂Fkx,i

∂xki
∂F k

x,i

=

∫ tki

0

M (h,s)(t) + (Sx,i + F k
x,i)

∂M (h,s)(t)

∂F k
x,i

dt. (23)

We insert the definition of Dirac delta function δ into (23) to get:∫ tki

0

∂U(x(t)− h∆)

∂F k
x,i

dt =

∫ tki

0

δ(x(t)− h∆)
∂x(t)

∂F k
x,i

dt. (24)

Since the gradient approximation is locally defined inside the cell Ck, δ(x(t)−h∆) = 0

inside Ck. Hence we get:∫ tki

0

∂U(x(t)− h∆)

∂F k
x,i

dt =

∫ tki

0

δ(x(t)− h∆)
∂x(t)

∂F k
x,i

dt = 0. (25)

Hence, (23) is reduced to
∫ tki

0
M(t)(h,s)dt where M(r(t)) = 1 for r(t) ∈ Ck. This

means that
∫ tki

0
M(t)dt = tki .

Similarly we finish computing the local gradient:

∂x(tki )

∂F k
x,i

= tki ,
∂x(tki )

∂F k
y,i

= 0

∂y(tki )

∂F k
y,i

= tki ,
∂y(tki )

∂F k
x,i

= 0. (26)

Let us stack all the flow vectors F k
i for the grid cells in Fi. We solve the MT inverse

problem using first order Taylor expansion around Fi:

rfi (F∗) = rfi (Fi) +∇rfi (Fi)
>(F∗ − Fi) (27)

Let Fi+1 = F∗ and ‖Ti‖2 =
∑f

k=1 t
k
i

2
applying the technique proposed in [24] we

update the predicted flow at step i+ 1:

F k
i+1 = F k

i +
tki
‖Ti‖2

di. (28)
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Algorithm 2: MT flow field estimation

Data: Measured final position r∗

1 Set i = 0. Initialize the flow F k
0 = 0 ∈ <2; repeat

2 Trajectory tracing to get Ti, t
k
i and di

3 Update the flow in all cells k:

F k
i+1 = F k

i +
tki
‖Ti‖2

di. (29)

4 until ‖ di‖ ≤ εf

3.2 Trajectory Tracing

As we discussed above, the flow update requires the underlying trajectory, which

can be obtained by the Trajectory Tracing Mechanism. This is an approach that

constructs new AUV trajectory based on the predicted flow and provides the set

of crossed cells and the gradient of AUV position. The vehicle trajectory is traced

at iteration i through simulation that embeds the current estimate of the flow field

Fi. We suggest in this section an explicit formulation for trajectory tracing, that we

can use not only to update the inputs for the MT algorithm but to establish the

convergence analysis. As a matter of fact, computing the AUV end position rki in the

cell Ck
i allows to determine the corresponding travel time tki as follows:

tki =
yki − yk−1

i

V k
y,i

, V k
y,i > 0 (30)

Adding to that, we can compute the resulted MT error di = r∗−Rf
i and ‖Ti‖2, since

‖Ti‖2 =
∑f

k=1 t
k
i

2
and tki is known.

The trajectory tracing formulation holds in the intersection cells Ci−1 ∩ Ci, which

means the part of traced trajectory that crosses the same cells in iteration i and

i− 1. Furthermore, we need to have an explicit form for the final position in order to

establish a motion estimation recursion. Accounting for the discontiunity of the flow,

we consider the cells Ci−1 ∩Ci = {C1, · · · , Cm} where the AUV navigates at iteration

15



i and i− 1. Hence, the AUV will cross the same side of the kth cell, k < m:

(xki − xki−1).(yki − yki−1) = 0 (31)

For convenience, we define εkx,i =
tki
‖Ti‖2dx,i, ε

k
y,i =

tki
‖Ti‖2dy,i, and εki = [εkx,i, ε

k
y,i]
>, the

AUV velocity as V k
i = [V k

x,i,V
k
y,i]
> and we use × for the 2 dimension cross product.

Theorem 3.2.1. Let the flow be updated according to (28), Assumption 3.1.1 holds

and suppose Ci−1 ∩ Ci = {C1, · · · , Cp}. Let Cm ∈ {C1, · · · , Cp}. Then, there exists

three different ways of cell crossing:

• The first case is when the AUV crosses opposite sides: On the one hand, if

ymi − ym−1
i = ∆ holds, then:

ymi = ymi−1

xmi = xmi−1 −
tmi−1

V m
y,i

V m
i−1 × εmi−1 + xm−1

i − xm−1
i−1 . (32)

On the one hand, if xmi − xm−1
i = ∆ is valid, the AUV position is:

Figure 2: Case one:Vertical crossing.

xmi = xmi−1

ymi = ymi−1 −
tmi−1

V m
x,i

V m
i−1 × εmi−1 + ym−1

i − ym−1
i−1 (33)
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Figure 3: Case one:Vertical crossing.

• The second case is when the AUV crosses two consecutive sides in the following

order: ym−1
i = h∆ ∩ xmi = (s+ 1)∆.

xmi = xmi−1

ymi = ymi−1 −
tmi−1

V m
x,i

V m
i−1 × εmi−1 +

V m
y,i

V m
x,i

(xm−1
i−1 − xm−1

i ). (34)

Figure 4: Second Case of cell crossing

• The third case follows when ymi = (h+ 1)∆ ∩ xm−1
i = s∆

ymi = ymi−1

xmi = xmi−1 −
tmi−1

V m
y,i

V m
i−1 × εmi−1 +

V m
x,i

V m
y,i

(ym−1
i−1 − ym−1

i ). (35)
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Figure 5: Third Case of cell crossing.

Based on the discussed cases, the AUV predicted position rmi can be traced in iterative

way up to cell Cm. If ymi = ymi−1 holds, we have:

ymi = ymi−1

xmi = xmi−1 −
m∑
k=1

m∏
j=k

αji
tki−1

V k
y,i

V k
i × εki−1, (36)

Elsewhere,

xmi = xmi−1

ymi = ymi−1 −
m∑
k=1

tki−1

V k
x,i

m∏
j=k

αjiV
k
i × εki−1, (37)

where

alphaji =



1 if yji − y
j−1
i = ∆ ∪ xji − x

j−1
i = ∆

V jy,i

V jx,i
if yji = h∆ ∩ xj−1

i = s∆

V jx,i

V jy,i
otherwise

(38)

x

y

cki

ck+2
i

ck+1
i∆

(s + 1)∆

(h + 1)∆

rk−1
i−1 rk−1

i

rki−1

rki

rk+1
i−1 r

k+1
i

rkirki−1
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Figure 6: Illustration of different traced trajectories.

Proof. Concerning trajectory tracing, we notice from figure 6, that there exist 6 dif-

ferent cases to cross one cell. However, the symmetry of the grid reduces them to 3

cases:

First scenario, depicted by the dashed line in Figure 6, is when the AUV traverses

the cell through vertical opposite sides; in other terms yki − yk−1
i = ∆. The ordinate

yk−1
i remains equal to yk−1

i−1 and the change of the estimated flow will be reflected in

xki as follows:

xki = tki V
k
x,i + xk−1

i

= ∆
V k
x,i

V k
y,i

+ xk−1
i . (39)

We formulate xki−1 = ∆
V kx,i−1

V ky,i−1
+ xk−1

i−1 and we add xki−1 and subtract ∆
V kx,i−1

V ky,i−1
+ xk−1

i−1 in

the above equation:

xki = ∆(
V k
x,i

V k
y,i

−
V k
x,i−1

V k
y,i−1

) + xk−1
i − xk−1

i−1 + xki−1

= xki−1 + tki−1(
V k
x,iV

k
y,i−1 − V k

x,i−1V
k
y,i

V k
y,i

) + xk−1
i − xk−1

i−1

= xki−1 + tki−1(
εkx,i−1V

k
y,i−1 − V k

x,i−1ε
k
y,i−1

V k
y,i

) + xk−1
i − xk−1

i−1

= xki−1 −
tki−1

V k
y,i

V k
i−1 × εki−1 + xk−1

i − xk−1
i−1 . (40)

Hence first case of cell crossing satisfies the following dynamic:

yki = yki−1

xki = xki−1 −
tki−1

V k
y,i

V k
i−1 × εki−1 + xk−1

i − xk−1
i−1 . (41)

The same reasoning provides the vehicle position if the AUV traverses the cell through

horizontal opposite sides, in other terms xki − xk−1
i = ∆

xki = xki−1
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yki = yki−1 −
tki−1

V k
x,i

V k
i−1 × εki−1 + yk−1

i − yk−1
i−1 (42)

Concerning the second case, depicted by the solid line in cell Ck = C(h,s) in Figure 6,

where the AUV crosses 2 consecutive sides such that yk−1
i = h∆ ∩ xki = (s+ 1)∆. In

this case tki =
∆−xk−1

i

V kx,i
:

yki = tki V
k
y,i + yk−1

i

=
∆− xk−1

i

V k
x,i

V k
y,i + yk−1

i

=
∆− xk−1

i−1

V k
x,i

V k
y,i −

∆− xk−1
i−1

V k
x,i−1

V k
y,i−1 + yk−1

i − yk−1
i−1 + yki−1 +

V k
y,i

V k
x,i

(xk−1
i−1 − xk−1

i )

= yki−1 + tki−1(
V k
x,i−1V

k
y,i − V k

x,iV
k
y,i−1

V k
x,i

) + yk−1
i − yk−1

i−1 +
V k
y,i

V k
x,i

(xk−1
i−1 − xk−1

i ). (43)

Hence, yk−1
i = yk−1

i−1 = h∆. Plugging yk−1
i = yk−1

i−1 yields:

yki = yki−1 + tki−1(
εky,i−1V

k
x,i−1 − V k

y,i−1ε
k
x,i−1

V k
x,i

) +
V k
y,i

V k
x,i

(xk−1
i−1 − xk−1

i )

= yki−1 −
tki−1

V k
x,i

V k
i−1 × εki−1 +

V k
y,i

V k
x,i

(xk−1
i−1 − xk−1

i ). (44)

Consecutively, case two can be described in the following dynamics:

xki = xki−1

yki = yki−1 −
tki−1

V k
x,i

V k
i−1 × εki−1 +

V k
y,i

V k
x,i

(xk−1
i−1 − xk−1

i ). (45)

Finally, case three happens when the transition can be formulated as follows yk+1
i =

(h+1)∆∩xki = (s+1)∆, see cell Ck+1 in Figure 6. The deviation along x axis follows:

xk+1
i = tk+1

i V k+1
x,i + xki

=
∆− yki
V k+1
y,i

V k+1
x,i + xki . (46)

We formulate xk+1
i−1 =

∆−yki−1

V k+1
y,i−1

V k+1
x,i−1 +xki−1 and we add xk+1

i−1 and subtract
∆−yki−1

V k+1
y,i−1

V k+1
x,i−1 +

xki−1 from the above equation to get the following expression:

xk+1
i =

∆− yki
V k+1
y,i

V k+1
x,i −

∆− yki−1

V k+1
y,i−1

V k+1
x,i−1 + xki − xki−1 + xk+1

i−1 . (47)
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We substitute
∆−yki
V k+1
y,i

V k+1
x,i with

∆−yki−1

V k+1
y,i

V k+1
x,i +

V k+1
x,i

V k+1
y,i

(yki−1 − yki ) to obtain:

xk+1
i =

∆− yki−1

V k+1
y,i

V k+1
x,i −

∆− yki−1

V k+1
y,i−1

V k+1
x,i−1 + xki − xki−1 + xk+1

i−1 +
V k+1
x,i

V k+1
y,i

(yki−1 − yki )

= xk+1
i−1 + tk+1

i−1 (
V k+1
y,i−1ε

k+1
x,i−1 − εk+1

y,i−1V
k+1
x,i−1

V k+1
y,i

) +
V k+1
x,i

V k+1
y,i

(yki−1 − yki )

= xk+1
i−1 −

tk+1
i−1

V k+1
y,i

V k+1
i−1 × εk+1

i−1 +
V k+1
x,i

V k+1
y,i

(yki−1 − yki ). (48)

Case three implies the following dynamics:

yk+1
i = yk+1

i−1

xk+1
i = xk+1

i−1 −
tk+1
i−1

V k+1
y,i

V k+1
i−1 × εk+1

i−1 +
V k+1
x,i

V k+1
y,i

(yki−1 − yki ). (49)

Thus, inserting (44) into (46) results in:

xk+1
i = xk+1

i−1 −
tk+1
i−1

V k+1
y,i

V k+1
i−1 × εk+1

i−1 +
V k+1
x,i

V k+1
y,i

(yki−1 − yki )

= xk+1
i−1 −

tk+1
i−1

V k+1
y,i

V k+1
i−1 × εk+1

i−1 −
V k+1
xi

V k+1
y,i

tki−1

V k
x,i

V k
i−1 × εki−1 (50)

+
V k+1
x,i

V k+1
y,i

V k
y,i

V k
x,i

(xk−1
i − xk−1

i−1 ).

Let us define Ci−1 ∩ Ci = {C1, · · · , Cm} and by combining the described cases and

exploiting the above formulations, we compute rmi in iterative way starting from r0.

After some algebraic manipulations, we get the predicted position rmi in Cm:

ymi = ymi−1

xmi = xmi−1 −
m∑
k=1

m∏
j=k

αji
tki−1

V k
y,i

V k
i × εki−1. (51)

xmi = xmi−1

ymi = ymi−1 −
m∑
k=1

tki−1

V k
x,i

m∏
j=k

αjiV
k
i × εki−1. (52)
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αji =



1 if yji − y
j−1
i = ∆ ∪ xji − x

j−1
i = ∆

V jy,i

V jx,i
if yji = h∆ ∩ xj−1

i = s∆

V jx,i

V jy,i
otherwise

(53)

3.3 Convergence Analysis

Based on the explicit formulation of trajectory tracing, we can deduce the MT error

dynamics in the following Lemma:

Lemma 3.3.1. Let the flow be updated according to (28), Assumption 3.1.1 holds

and suppose the set of explored cells remains constant Ci−1 = Ci. Then, the MT error

dx,i evolves according to the following dynamic: If yfi = yfi−1

dy,i = dy,i−1

dx,i = dx,i−1 +

f∑
k=1

f∏
j=k

αji
tki−1

V k
y,i

V k
i × εki−1, (54)

Elsewhere,

dx,i = dx,i−1

dy,i = dy,i−1 +

f∑
k=1

tki−1

V k
x,i

f∏
j=k

αjiV
k
i × εki−1, (55)

where

αji =



1 if yji − y
j−1
i = ∆ ∪ xji − x

j−1
i = ∆

V jy,i

V jx,i
if yji = h∆ ∩ xj−1

i = s∆

V jx,i

V jy,i
otherwise

(56)

Proof. Let Ci−1 = Ci holds, hence Cm in (52) is the final crossed cell Cf . By means

of dx,i = x∗ − xfi and dy,i = y∗ − yfi , we get the MT error dynamics as follows:
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If yfi = yfi−1

dy,i = dy,i−1

dx,i = dx,i−1 +

f∑
k=1

f∏
j=k

αji
tki−1

V k
y,i

V k
i × εki−1, (57)

If xfi = xfi−1

dx,i = dx,i−1

dy,i = dy,i−1 +

f∑
k=1

tki−1

V k
x,i

f∏
j=k

αjiV
k
i × εki−1, (58)

where

αji =



1 if yji − y
j−1
i = ∆ ∪ xji − x

j−1
i = ∆

V jy,i

V jx,i
if yji = h∆ ∩ xj−1

i = s∆

V jx,i

V jy,i
otherwise

(59)

The explicit form for the motion integration error dx,i allows us to analyze the

dynamic of MT error under the assumption of Ci = Ci−1. Consider the prediction

error dynamic:

dy,i = dy,i−1

dx,i = dx,i−1 +
m∑
k=1

m∏
j=k

αji
tki−1

V k
y,i

V k
i × εki−1. (60)

Accounting for Assumption 3.1.1 and the symmetry of the grid, we consider only one

case in the following assumption as it includes all necessary techniques to study the

other initial conditions:

Assumption 3.3.1. We assume that AUV velocity Sx = 0, Sy > F k
x ≥ 0,

r∗ = [x∗, L]>, r0 = [x0, 0]> and x∗ > x0
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Since Assumption 3.3.1 implies dy,i = dy,i−1 = 0, we focus on dx,i and we simplify

the analysis of convergence. We get rid of the cross product in trajectory tracing as

follows:

xfi = xfi−1 +

f∑
k=1

f∏
j=k

αji
tki−1

2

‖Ti−1‖2
dx,i−1. (61)

Plugging dx,i = x∗ − xfi leads:

dx,i =

f∑
k=1

(1−
f∏
j=k

αji )
tki−1

2

‖Ti−1‖2
dx,i−1, (62)

where

αji =



1 if yji − y
j−1
i = ∆ ∪ xji − x

j−1
i = ∆

V jy,i

V jx,i
if yji = h∆ ∩ xj−1

i = s∆

V jx,i

V jy,i
otherwise

(63)

An immediate result from the trajectory tracing analysis is that the MT error con-

verges trivially by the first iteration if the crossed cells includes only one column. In

other terms, if l∆ ≤ x0 ≤ (l + 1)∆ and l∆ ≤ x∗ ≤ (l + 1)∆ holds, then only the first

case of cell crossing occurs.

Lemma 3.3.2. Let the flow be updated according to (28), Assumption 3.1.1 and 3.3.1

hold and suppose l∆ ≤ x0 ≤ (l+1)∆ and l∆ ≤ x∗ ≤ (l+1)∆. Then dx,1 = x∗−xf1 = 0.

Proof. Since l∆ ≤ x0, x∗ ≤ (l + 1)∆ and F k
x = 0∀k then C0 = C1 holds. The AUV

crosses the cells from the opposite sides. Thus, case one implies
∏f

j=k α
j
i = 1

dx,1 =

f∑
k=1

(1−
f∏
j=k

αj1)
tk0

2

‖T0‖2
dx,0

dx,1 = 0. (64)
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We notice that error dynamic di depends on βki = 1 −
∏f

j=k α
j
i described in (62).

In fact, this factor reflects the effect of the three different ways of cell crossing on the

convergence of MT algorithm. For better understanding we can formulate βki using

the notation that Ck corresponds to C(h,s), which describes the cell position in terms

of column and row number. If the cell Ck corresponds to C(h,s) and Cf corresponds

to C(p,q) and recalling that case one of trajectory tracing implies
V j+1
x,i

V kx,j
= 1, then there

exists p− h column crossings that are included in βki as follows:

βki = 1−
f∏
j=k

αji = 1−
p∏

j=h

V j+1
x,i

V j
x,i

, (65)

where the cells Cj satisfies Cj+1 = C(h,s) and Cj = C(h+1,s). Consequently, if we show

that 0 ≤ V j+1
x,i

V jx,i
≤ 1 holds ∀1 ≤ j ≤ f , then 0 ≤ βki ≤ 1 is true. As the AUV trajectory

comprises consecutive column crossings we can divide the path into unit parts and

consider one part to study the convergence of MT algorithm. Therefore, we consider

one part of the trajectory where the AUV crosses one column. We apply the error

dynamics on the traced trajectory where we account that cells {Cm+2, · · · , Cf} are

in the same column:

dx,i =

f∑
j=1

βji
tji

2

‖Ti‖2
dx,i−1

=
m+1∑
j=1

(1−
V k+1
x,i

V k
x,i

)
tji

2

‖Ti‖2
dx,i−1 +

f∑
j=m+2

(1− 1

1
)
tji

2

‖Ti‖2
dx,i−1

=
m+1∑
j=1

(1−
V k+1
x,i

V k
x,i

)
tji

2

‖Ti‖2
dx,i−1. (66)

As V k
x,i > 0 ∀k,i, three cases can happen according to the ratio

V k+1
x,i

V kx,i
:

• If V k+1
x,i = V k

x,i: then dx,i = 0, MT error converges at iteration i .

• If V k+1
x,i < V k

x,i: then dx,i < dx,i−1 and the MT error decreases at iteration i .

• If V k+1
x,i > V k

x,i: then dx,i < 0 and there will be an overshoot in error.
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The previous example illustrates the crucial effect of the variation of AUV velocity

along the horizontal axis, presented in
V k+1
x,i

V kx,i
. A potential overshoot raises the difficulty

in the study of MT algorithm. Therefore we relate the convergence of MT error to

the value βki and we focus on the ratio
V k+1
x,i

V kx,i
.

In this regard, we want to show in the following Lemma that if the AUV crosses two

Figure 7: Illustration of trajectory tracing at different iterations. Initial trajectory
(the red solid line) and traced trajectories (the purple and blue solid line) after first
and second iteration are displayed in a discretized domain.

cells in the same row, Ck = C(h,m) and Ck+1 = C(h+1,m), then V k+1
x,i ≤ V k

x,i ∀i.

For better understanding, we provide the two following Lemmas, that we will use

later in the analysis and we present Figure 8 as concrete illustration of trajectory

tracing. For clarity, let us recall the flow update:

F k
i+1 = F k

i +
tki
‖Ti‖2

di, (67)

where tki is the travel time to cross the cell k, ‖Ti‖2 =
∑f

k=1 t
k
i

2
and di the MT error

di = r∗−rfi . Let µi denote the distance µi = (h+1)∆−xk−1
i , δx,0 = x∗−(h+1)∆ and

n the total number of cells in one column, see Figure 8. Furthermore, we notice that

the second form of βki implies if 0 ≤ V j+1
x,i

V kx,j
≤ 1 holds ∀1 ≤ j ≤ f , then 0 ≤ βki ≤ 1 is
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true. Since the ratio
V j+1
x,i

V jx,i
involves two columns and we do not impose an upper bound

on δx,0, we can consider in the following analysis w.l.o.g. one transition between two

columns for simpler calculation.

Lemma 3.3.3. Let the predicted flow be updated according to (28). Suppose Assump-

tions 3.1.1, and 3.3.1 hold. Let cells Ck and Ck+1 correspond to C(h,m) and C(h+1,m)

respectively and the following conditions hold

• V k
x,1 ≤ V k+1

x,i .

• V k+1
x,j < V k

x,j ∀j < i.

• n > m+ 1

• tk+1
i ≥ tki

then ∆
m

(n−m) < δx,0 is valid.

Figure 8: Illustration of trajectory tracing as described in Lemma 3.3.3.

Proof. The Lemma requires that the traveling time in cell k, tki is less than the

traveling time in cell k + 1, tk+1
i . Since tk+1

i + tki = ∆
Vy

and tk+1
i ≥ tki , then, ∆

Vy
=
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tk+1
i + tki ≥ 2tki . Moreover, we can write tki = µi

V kx,i
=

(h+1)∆−xk−1
i

V kx,i
. Hence we get:

∆/2

Vy
≥ µi
V k
x,i

. (68)

Since the AUV velocity V k
x,i = F k

x,i, we get a recursive form as follows:

V k
x,i = F k

x,i−1 +
tki−1

‖Ti−1‖2
dx,i−1

=
i−1∑
j=0

tkj
dx,j
‖Tj‖2

. (69)

We know that the flow is updated in the cell only if it is crossed by the AUV. At

iteration i = 1, only column h is updated. Then at iteration i = 2, columns h + 1

and h are updated. let λx,i = xfi − (h+ 1)∆, as depicted in Figure 8. Since the cells

starting from Ck+2 till cell Cf are crossed by the AUV in vertical direction, then the

travel time is constant tk+p
i = ∆

Vy
, ∀2 ≤ k ≤ f − k ∀2 ≥ i.

V k+p
x,i =

i−1∑
j=2

∆

Vy

dx,j
‖Tj‖2

∀2 ≤ p ≤ f − k. (70)

Concerning cell Ck+1 = C(h+1,m), the velocity is updated starting from iteration j = 2

and the AUV crosses according to the third case of trajectory tracing. We see from

Figure 8 that yk+1
j = (m+ 1)∆ the travel time in cell Ck+1,

tk+1
j =

yk+1
j − ykj
Vy

=
(m+ 1)∆− ykj

Vy
. (71)

Plugging (71) in (69) yields:

V k+1
x,i =

i−1∑
j=2

(m+ 1)∆− ykj
Vy

dx,j
‖Tj‖2

. (72)

Recalling that Ck+1 = C(h+1,m) and x∗ < (h + 2)∆, the number of cells in column

h + 1 that are crossed by the AUV are n −m and there exists n −m − 1 cells that

are crossed in vertical way starting from cell ck+2 until cf . In other terms, f = n+ 1,

because there exists only one transition that combines case 2 and 3. Based on the
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aforementioned reasons λi, as depicted in Figure 8, follows:

λi =

f∑
j=k+1

V j
x,it

k+1
i

= (f − k + 1)(V k+2
x,i )(tk+2

i ) + (V k+1
x,i )(tk+1

i )

= (f −m)(V k+2
x,i )(tk+2

i ) + (V k+1
x,i )(tk+1

i )

= (n−m− 1)(V k+2
x,i )(tk+2

i ) + (V k+1
x,i )(tk+1

i ). (73)

Let us now compare V k+p
x,i and V k+1

x,i :

V k+p
x,i =

i−1∑
j=2

∆

Vy

dx,j
‖Tj‖2

∀2 ≤ p ≤ f − k

V k+1
x,i =

i∑
j=2

(m+ 1)∆− ykj
Vy

dx,j
‖Tj‖2

. (74)

We know that the AUV crosses the cell Ck = C(m,h) according to the second case of

trajectory tracing then

tkj =
(ykj − yk−1

j )

Vy
=

(ykj −m∆)

Vy
=

µj
V k
x,j

(75)

Hence, ykj −m∆ =
µjVy
V kx,j

holds. The first condition in Lemma is V k+1
x,j < V k

x,j ∀j < i,

then αqj ≤ 1 for all cells Cq. Applying the error dynamics (62), then 0 ≤ dj and

xfj ≤ x∗ ∀j < i. Since the Mt error remains positive,
dx,j
‖Tj‖2 ≥ 0 implies that the

flow is increasing along x-axis resulting in non decrease of xqj and non increase of

yqj in every cell Cq ∈ Cj after every iteration. As µj = (h + 1)∆ − xk−1
j , then µi is

decreasing and accordingly ∆
(m+1)∆−ykj

is also decreasing for all j < i, which implies

that (m+ 1)∆− yki the maximum of (m+ 1)∆− ykj . Let us consider V k+1
x,i

V k+1
x,i =

i−1∑
j=2

(m+ 1)∆− ykj
Vy

dx,j
‖Tj‖2

≤
(m+ 1)∆− yki−1

Vy

i−1∑
j=2

dx,j
‖Tj‖2

. (76)
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Consequently, a lower bound for V k+p
x,i ∀2 ≤ p ≤ f − k follows:

V k+p
x,i =

∆

Vy

i−1∑
j=2

dx,j
‖Tj‖2

≥ ∆

Vy

Vy
(m+ 1)∆− yki−1

V k+1
x,i

≥ ∆

(m+ 1)∆− yki−1

V k+1
x,i ∀2 ≤ p ≤ f − k. (77)

Plugging (77) in (73) yields:

λx,i = (n−m− 1)V k+2
x,i tk+2

i + V k+1
x,i tk+1

i

≥ (n−m− 1)
∆

(m+ 1)∆− yki−1

V k+1
x,i

∆

Vy
+ V k+1

x,i

(m+ 1)∆− yki−1

Vy

≥ V k+1
x,i

∆

Vy
((n−m− 1)

∆

(m+ 1)∆− yki−1

+
(m+ 1)∆− yki−1

∆
). (78)

Since the MT error dx,i > 0, then the velocity Vx,i is increasing and V k
x,i ≥ V k

x,2 ∀i ≥ 2

is valid.

V k
x,1 =

∆ + δx,0
‖T0‖2

tk0 =
∆ + δx,0

n

Vy
∆

V k
x,2 =

dx,1
‖T1‖2

tk1 + V k
x,1

V k
x,i ≥ V k

x,1 +
δx,0
‖T1‖2

tk1 >
∆ + δx,0

n

Vy
∆
, (79)

where ‖T0‖2 =
∑f

k=1 t
k
0

2
= n( ∆

Vy
)2. Since the first condition in the Lemma implies

that V k
x,1 ≤ V k+1

x,i , we substitute V k+1
x,i with V 1

x,i in (78) to get:

λx,i ≥ V k+1
x,i

∆

Vy
((n−m− 1)

∆

(m+ 1)∆− yki−1

+
(m+ 1)∆− yki−1

∆
)

≥ V k
x,1

∆

Vy
((n−m− 1)

∆

(m+ 1)∆− yki−1

+
(m+ 1)∆− yki−1

∆
)

≥ ∆ + δx,0
n

((n−m− 1)
∆

(m+ 1)∆− yki−1

+
(m+ 1)∆− yki−1

∆
). (80)

Moreover, αqi ≤ 1 is true ∀Cq. Applying the error dynamics (62), then 0 ≤ dx,j and

xfj ≤ x∗ ∀j ≤ i. Hence λx,i < δx,0 holds. It follows:

∆ + δx,0
n

[(n−m− 1)
∆

(m+ 1)∆− yki−1

+
(m+ 1)∆− yki−1

∆
] < δx,0. (81)
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Now we look for a lower bound for (81). It is given that n −m − 1 ≥ 1 and m∆ ≤

yki−1 ≤ (m + 1)∆. Thus ∆
(m+1)∆−yki−1

> 0. Let κ be κ =
(m+1)∆−yki−1

∆
and the function

g(κ) : (0,1]→ <+ defined as follows:

g(κ) = (n−m− 1)
1

κ
+ κ. (82)

Concerning the roots of the derivative of ġ(κ) = 0, are

ġ(κ) = −(n−m− 1)

κ2
+ 1 = 0. (83)

Since κ > 0 then the root of ġ is κ∗ =
√

(n−m− 1). Recalling that n−m− 1 > 0

and n,m ∈ N , then n−m− 1 ≥ 1, ġ(κ) ≤ 0 and κ∗ =
√

(n−m− 1) ≥ 1. However,

we know that 0 ≤ κ ≤ 1, then g(κ) ≥ g(1) = (n−m− 1) + 1.

∆ + δx,0
n

g(1) =
∆ + δx,0

n
[(n−m− 1) + 1] ≤ ∆ + δx,0

n
(n−m) < δx,0. (84)

Consequently, a lower bound for δx,0 is:

∆

m
(n−m) < δx,0. (85)

The second inequality is stated in the following lemma:

Lemma 3.3.4. Let the predicted flow be updated according to (28). Suppose Assump-

tions 3.1.1, and 3.3.1 hold. Let cells Ck and Ck+1 correspond to C(h,m) and C(h+1,m)

respectively and tk+1
i ≥ tki holds, then δx,0 ≤ ∆(n−m)

2m
is valid.

Proof. Since the crossed set of cells is constant starting from iteration i = 1, Ci = C1

and µ0 = ∆, µi is decreasing, see the proof of Lemma (3.3.3) but still positive µi > 0:

µi = ∆−
j=i∑
j=0

m
dx,j
‖Tj‖2

∆

Vy

2

(86)

µ2 = ∆−m∆ + δx,0
‖T0‖2

∆

Vy

2

−m δx,0
‖T1‖2

∆

Vy

2

. (87)
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Hence,

µi ≤ ∆−m∆ + δx,0
‖T0‖2

∆

Vy

2

−m δx,0
‖T1‖2

∆

Vy

2

. (88)

Furthermore, we can simplify ‖Ti‖2 =
∑f

k=1 t
k
i

2
as follows:

‖T0‖2 = n
∆

Vy

2

‖Ti‖2 = (n− 1)
∆

Vy

2

+ tki
2

+ tk+1
i

2

= (n− 1)
∆

Vy

2

+
µi
V k
x,i

2

+ (
∆

Vy
− µi
V k
x,i

)2

= n
∆

Vy

2

+ 2
µi
V k
x,i

(
µi
V k
x,i

− ∆

Vy
). (89)

Since tk+1
i ≥ tki , then we apply ∆/2

Vy
≥ µi

V kx,i
, see (68) in the above equation:

‖Ti‖2 < n
∆

Vy

2

. (90)

Hence, we simplify as follows (88):

µi ≤ ∆−m∆ + δx,0
n

−mδx,0
n
−mδx,1

m
. (91)

Adding to that µi > 0 implies

m
∆ + δx,0

n
+m

δx,0
n
≤ ∆. (92)

Hence,

δx,0 ≤
∆(n−m)

2m
. (93)

Lemma 3.3.5. Let the predicted flow be updated according to (28). Suppose Assump-

tions 3.1.1, 3.3.1 hold. Let cells Ck and Ck+1 correspond to C(h,m) and C(h+1,m), then

V k+1
x,i ≤ V k

x,i, ∀i.
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Proof. We prove the Lemma by Induction:

Since V k
x,0 = 0, the AUV crosses cell Ck according to first case of trajectory tracing,

in vertical direction. Hence, V k
x,1 = dx,0

‖T0‖2 t
k
1 = dx,0

‖T0‖2
∆
Vy

and the flow in cell Ck+1 is not

updated V k+1
x,1 = 0. dx,0 ≥ 0 results in V k+1

x,0 ≤ V k
x,0 and the statement is initially valid.

Suppose that V k+1
x,i−1 ≤ V k

x,i−1 and let us prove V k+1
x,i ≤ V k

x,i.

We notice from Figure 8 that two scenarios can happen: The first case occurs when

the traveling time in cell k, tki , exceeds the traveling time in cell k + 1, tk+1
i . Since

tk+1
i + tki = ∆

Vy
, then we have:

tki =
yki −m∆

Vy

tk+1
i =

∆

Vy
− yki −m∆

Vy
. (94)

The flow update implies:

V k+1
x,i − V k

x,i = V k+1
x,i−1 − V k

x,i−1 +
dx,i−1

‖Ti−1‖2
(tk+1
i−1 − tki−1)

= V k+1
x,i−1 − V k

x,i−1 +
dx,i−1

‖Ti−1‖2
(

∆

Vy
− 2

yki−1 −m∆

Vy
). (95)

Since the first scenario implies (yki−1 − m∆) ≥ ∆
2

and given V k+1
x,i−1 ≤ V k

x,i−1 then

V k+1
x,i ≤ V k

x,i.

The second scenario is more challenging: The traveling time in cell k tki is less than

the traveling time in cell k + 1, tk+1
i tk+1

i ≥ tki . We use the principle of contradiction

to prove the second position. Assume, for the sake of contradiction that V k
x,1 ≤ V k+1

x,i .

For clarity, let us first assume that n −m − 1 ≥ 1. On the one hand, Lemma 3.3.3

implies:

∆

m
(n−m) < δx,0. (96)

On the other hand, Lemma 3.3.4 provides:

δx,0 ≤
∆(n−m)

2m
. (97)
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Combining the two inequalities results in:

∆

m
(n−m) < δx,0 ≤

∆(n−m)

2m
(98)

Obviously 2m < m is not true because m > 0 and this contradiction shows that

V k
x,1 ≤ V k+1

x,i must be false. Accounting for V 1
x,j < V k

x,i, then V k+1
x,i < V k

x,i holds. For

completeness, let us consider the case n = m + 1. Since tk+1
i + tki = ∆

Vy
, V k+1

x,i is

maximum increased when the corresponding travel time tk+1 in cell Ck+1 tends to δ
Vy

,

tk+1
i → δ

Vy
and tki → 0. It is to notice that we require tki > 0 so that the AUV crosses

the same cell Ck+1. Elsewhere, it does not enter cell Ck+1. Concerning the MT error

dx,i we apply in (78 ) tki → 0 and tk+1
i → δ

Vy
to get:

dx,i = δx,0− λx,i = δx,0− V k+1
x,i tk+1

i . (99)

Plugging tk+1
i = ∆

Vy
in (69) leads to:

V k+1
x,i =

i−1∑
j=2

(m+ 1)∆− ykj
Vy

dx,j
‖Tj‖2

≤ ∆

Vy

i∑
j=2

dx,j
‖Tj‖2

≤ ∆

Vy

i∑
j=2

δx,0− V k+1
x,j

∆
Vy

n( ∆
Vy

)2
. (100)

Let us define λ̄x,i ∀2 ≤ i with λ̄x,0 = λ̄x,1 = λx,0 = 0:

λ̄x,i =
∆

Vy
V k+1
x,i

=
i−1∑
j=2

δx,0− V k+1
x,j

∆
Vy

n

=
i−2∑
j=2

δx,0− V k+1
x,j

∆
Vy

n
+
δx,0− V k+1

x,i−1
∆
Vy

n

= λ̄x,i−1 +
δx,0− λ̄x,i−1

n

= (1− 1

n
)λ̄x,i−1 +

δx,0

n
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=
i−2∑
j=0

(1− 1

n
)j
δx,0

n
+ (1− 1

n
)iλ̄x,0

=
i−2∑
j=0

(1− 1

n
)j
δx,0

n

= (1− [1− 1

n
]i−1)δx,0. (101)

Adding to that, (91) provides:

µi = ∆−
j=i∑
j=0

m
dx,j
‖Tj‖2

∆

Vy

2

≤ ∆− (n− 1)
∆ + 2δx,0

n
− (n− 1)

i−1∑
j=2

δx,0− V k+1
x,j

∆
Vy

n

≤ ∆− (n− 1)
∆ + 2δx,0

n
− (n− 1)(1− [1− 1

n
]i−1)δx,0. (102)

Finally, we recall that zk1 = yk1 − (n − 1)∆ < ∆
2

, hence, applying Triangle Intercept

Theorem on the green dashed triangle in Figure 9 yields:

Figure 9: Illustration of trajectory tracing for n = m+ 1.

zk1
zk1 + (n− 1)∆

=
µ1

∆

zk1
zk1 + (n− 1)∆

=
∆− n−1

n
(∆ + δx,0)

∆

∆

zk1 + (n− 1)∆
=

(∆ + δx,0)

n∆
. (103)

Applying zk1 <
∆
2

yields:

n∆

n− 1
2

−∆ < δx,0
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∆

2n− 1
< δx,0. (104)

Plugging (103) in (102):

µi ≤ ∆− (n− 1)
∆

n
− n− 1

n
((1− [1− 1

n
]i−1) + 2)δx,0

≤ ∆− (n− 1)
∆

n
− n− 1

n
(3− [1− 1

n
]i−1)

∆

2n− 1
(105)

Let us choose i = n+ 1. On the one hand, we get:

λx,i < λ̄x,i ≤ lim
i→∞

((1− [1− 1

n
]i−1)δx,0 < δx,0. (106)

On the other hand, we get:

lim
i→∞

µi ≤ lim
i→∞

∆− (n− 1)
∆

n
− n− 1

n
(3− [1− 1

n
]i−1)

∆

2n− 1

≤ ∆

n
[1− 3

n− 1

2n− 1
] (107)

Since n ≥ 2, then limi→∞ µi ≥ 0 , hence µi ≤ 0, which means that the cell C(h+1,m)

is no more included in the set of traced trajectory. However, λx,i < δx,0. If the travel

time in cell Ck is less than the travel time in cell Ck+1, the AUV traced trajectory

changed the set of cells before the MT error changes the sign. Hence, m is decreased

so that m < n− 1 and the required condition to prove V k
x,i ≥ V k+1

x,i becomes valid.

Theorem 3.3.1. Let the traced trajectory be formulated according to (28). Suppose

Assumptions 3.1.1 and 3.3.1 hold, then the MT error dx,i converges to 0, as i→∞.

Proof. The key idea of the proof is to analyze the norm of the MT error when the

AUV enters new cells or when the traced trajectory evolves in the same set of cells.

We use the Induction method to prove the convergence and we assume w.l.o.g. that

l∆ ≤ x0 < (l+1)∆ and p∆ ≤ x∗ ≤ (p+1)∆; p ≥ l. As initially the flow F k
x,0 = 0, then

the AUV velocity is constant along the trajectory with V k
x,0 = 0, ∀k. Furthermore, we
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Figure 10: Illustration of trajectory tracing in new set of cells

know the error dynamic dx,1 (62) is valid for C1 ∩ C0 = C0. So if l = p, Lemma 3.3.2

implies dx,1 = 0 and the MT error converges from the first iteration. However if p > l

and as V k
x,0 = 0, then xf0 = x0 < (l + 1)∆. Adding to that, V k

x,1 > 0 and C1 ∩ C0 6= C0,

then xf1 = (l + 1)∆

dx,1 = x∗ − xf1

= x∗ − (l + 1)∆ < dx,0. (108)

Hence the initial value satisfies the statement: dx,1 < dx,0. Suppose that 0 ≤ dx,i <

dx,i−1 and let us prove 0 ≤ dx,i+1 < dx,i.

Two scenarios can happen: The first one is if Ci+1∩Ci = Ci. Recalling the dependency

of error dynamics on βki = 1−
∏f

j=k α
j
i and the escalation of αji for horizontal crossing:

αji =
V j
x,i

V j−1
x,i

αj−1
i . (109)

Since Lemma 3.3.5 guarantees that V k+1
x,i ≤ V k

x,i is valid, ∀i and ∀ cells that are in the

same row, then αji < 1 ∀j ≤ f and 0 ≤ βki = 1 −
∏f

j=k α
j
i < 1 hold. Consequently

the error dynamics imply 0 ≤ dx,i+1 < dx,i.

The second scenario is when Ci+1 ∩ Ci 6= Ci which means the AUV enters new cells.
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Again two cases may occur:

Let us split the set Ci+1 into three parts, where the cells are successively crossed by

the AUV as follows: A1
i+1 = Ci+1 ∩ Ci = {C1, · · · , Cm}, A2

i+1 = Ci+1 \ Ci ∩ Ci+1 =

{Cm+1, · · · , C l} and A3
i+1 = Ci+1 ∩ Ci = {C l+1, · · · , Cf}. Notice that m ≥ 1, the

initial position is constant, and if Ci+1 ∩ Ci 6= Ci then both A1
i+1 6= ∅ and A2

i+1 6= ∅

hold. Hence, the first case is when A3
i+1 = ∅, then C l = Cf . Let cell Cm = C(h,p).

As Cm+1 /∈ Ci then xfi < (h + 1)∆ ≤ x∗ ∀i > 0 and accordingly dx,i > 0. Therefore,

the flow is increasing in cells Ck ∈ Ci. In other terms, the AUV velocity remains

null in cells Ck ∈ A2
i+1 and increases in Ck ∈ A1

i+1. Cm+1 = C(h+1,s) implies xfi+1 =

(h+ 1)∆ > xfi and xfi+1 ≤ x∗. This case satisfies the induction claim.

The second case is when A3
i+1 6= ∅. For better understanding, we provide Figure 10

to illustrate the case. Concerning the velocity V k
x,i+1, it varies in different parts as

follows:

V k
x,i+1 =


F k
x,i +

(tki )2

‖Ti‖2dx,i if Ck ∈ A1
i+1

0 if Ck ∈ A2
i+1

F k
x,i +

(tki )2

‖Ti‖2dx,i otherwise

(110)

Let x̂li+1 = (h+1)∆ = xmi+1 and ŷlx,i+1 = (s+1)∆. Applying that
∑l

k=m+1 t
k
i+1F

k
x,i+1 =∑l

k=m+1 t
k
i+10 = 0, the AUV final position xfx,i+1 can be expressed as follows:

xfi+1 = x0 +
m∑
k=1

tki+1F
k
x,i+1 +

l∑
k=m+1

tki+1F
k
x,i+1 +

f∑
k=l+1

tki+1F
k
x,i+1

= xmi+1 +

f∑
k=l+1

tki+1F
k
x,i+1 = x̂li+1 +

f∑
k=l+1

tki+1F
k
x,i+1. (111)

Let us define Ĉi as Ĉi = A1
i+1 ∪A2

i ∪A3
i+1 and A2

i = {Cm+1, · · · , C l} ∈ Ci and let d̂x,i

be the MT error and F̂x,i+1 computed as follows:

F̂ k
x,i+1 =


F k
x,i +

(tki )2

‖Ti‖2 d̂x,i if Ck ∈ A1
i+1 ∪ A2

i

F k
x,i +

(tki )2

‖Ti‖2dx,i if Ck ∈ A3
i+1

(112)
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d̂x,i is chosen such that γ̂i+1 evolves according to F̂ k
x,i+1. The key features of this

constructed trajectory that γ̂i = γi, γ̂i+1 includes the point (x̂li+1,ŷ
l
i+1) and γ̂i+1 = γi+1

in A3
i+1, see the blue dashed line in Figure 10. In other terms, γ̂i+1 evolves in set of

cells Ĉi+1 = Ci, where it crosses the cell C(s+1,h) in only one point (x̂li+1,ŷ
l
i+1). Figure

10 illustrates that γ̂i+1 crosses the cell C(s+1,h) ∈ Ci in r̂li+1. Furthermore, we know if

the AUV starts from the same position and reaches different final positions, we can

deduce the flow variation and accordingly the MT error. While y = ŷ and x ≥ x̂

implies dx ≥ d̂x, x = x̂ and y ≥ ŷ implies dx ≤ d̂x. We notice that xmi+1 = x̂li+1

and ymi+1 ≤ ŷli+1. Hence, d̂x,i ≤ dx,i holds. Let α̂ki+1, defined in (59) be the coefficient

embedded in error dynamics (62) for trajectory γ̂i+1. As Ĉi+1 = Ĉi, γ̂i+1 evolves in

the same set of cells, we can apply the trajectory tracing dynamics (61) and Lemma

3.3.5 ensures if Cp and Cp+1 follow the notation p = (h,m) and p + 1 = (h + 1,m),

then V k+1
x,i ≤ V k

x,i, ∀i. Hence, both 0 ≤ αki+1 ≤ 1 and 0 ≤ α̂ki+1 ≤ 1. Thus we deduce:

xfi+1 = xmi+1 +

f∑
k=l+1

tki+1F
k
x,i+1

= x0 +
l∑

k=1

t̂ki+1F̂
k
x,i+1 +

f∑
k=l+1

tki+1F
k
x,i+1

= xfi +
l∑

k=1

t̂k2
i

‖T̂i‖2
α̂ki+1d̂x,i +

f∑
k=l+1

tk2
i

‖Ti‖2
αki+1dx,i. (113)

Since d̂x,i ≤ dx,i, we get:

xfi+1 ≤ xfi +

f∑
k=1

tki
2

‖Ti‖2
dx,i

≤ xfi + dx,i ≤ x∗ (114)

Furthermore, since the MT error dx,i > 0, it follows that xli+1 > xli, the flow and the

explored distance along x-axis ψx,i in A3
i+1 increases.

ψx,i+1 =

f∑
k=l+1

tki+1F
k
x,i+1 ≥ ψx,i =

f∑
k=l+1

tkiF
k
x,i. (115)
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Hence,

xfi+1 = xli+1 +

f∑
k=l+1

tki+1F
k
x,i+1 > xfi . (116)

Finally, we obtain by combining (114) and (116) xfi < xfi+1 ≤ x∗ which implies

0 ≤ dx,i+1 < dx,i.

3.4 Simulations and Results

In this section, we present a simulation example applying MT to a discontinuous flow

field. We empirically choose small threshold εF as a stopping criteria for the flow

field estimation Algorithm 2, for example ε = 10−14. F ∗ denotes the true flow field

and F the estimated flow. We simulate a flow field such that the strength of the flow

is varying from one column to another. In the first part of the grid, it decreases from

2.5m/s to 1m/s and increases in the second part from 1m/s to 2.5m/s. Considering

the control velocity S, we choose it to be equal to 2.5m/s, the maximum true flow.

Figure 11 illustrates the evolution of traced trajectory. As expected, only the cells

that are crossed by the AUV are updated, which explains why the predicted trajec-

tory includes a vertical part by iteration one. Figure 11b shows another feature of

tracing mechanism. As the flow keeps increasing in X-direction, the slope of the

AUV velocity decreases leading the AUV to enter new cells. We can remark that the

dashed line in Figure 11b goes through the third and fourth cells in column 2 instead

of 1. Furthermore, Figure 12 depicts the final computed trajectory, where the final

position converges to the real position.

Concerning the estimated flow, it is not a surprise that the flow in Y -direction re-

mains constant since the algorithm involves only one MT error in X-direction; we see

blue dashed arrows only in the cells that the AUV crossed. Furthermore, Figure 13a

reflects the discontinuity of estimated flow, only the first column is equally updated

by iteration 1 because of the constant traveling time t = ∆
Vy

. Another interesting
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Figure 11: Evolution of predicted trajectories between starting positions (blue rect-
angles) and target positions ( black circles).

property that we have explained in Chapter 3 is the discrepancy in flow strength

between cells. We can confirm Lemma 3.3.5 through Figure 14 ; the dashed arrow,

representing the estimated flow in X-direction decreases along the traced trajectory,

crossing successive columns of the grid.
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Figure 12: Real and predicted trajectories between starting positions (blue rectangles)
and target positions ( black circles).
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Figure 13: Evolution of predicted flow field (blue dashed line).
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Figure 14: A simulated true flow (red solid lines) and predicted flow field (blue dashed
line).
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CHAPTER IV

INCORPORATION OF VEHICLE TRAVELING TIME

In this chapter, we extend the MT algorithm with a new phase by incorporating time

of travel to improve the accuracy of the strength of the predicted flow F̄ obtained

from the proposed MT algorithm in Chapter 3.

4.1 Extension of MT by Travel Time

Additionally to the final position, the GPS provides highly accurate time of travel t∗.

This extension improves the accuracy of the flow estimate. Let F̄ k be the predicted

flow obtained from MT algorithm and V̄ k = S + F̄ k the corresponding AUV velocity.

Based on the underlying flow F̄ k, the traced trajectory provides the final travel time

tf . Similar to MT error, we define the estimated MT time error ei as follows:

eti = t∗ − tfi , (117)

where t∗ is the measured time of travel and tfi the simulated time of travel at iteration

i. Accounting for the piecewise linearity of the traced trajectory, we can formulate

the final travel time tfi as the sum of travel duration in set of crossed cells C =

{C1, · · · ,Cf} as follows:

tfi =

f∑
k=1

tki . (118)

The first goal from this part is to keep using the predicted traced trajectory, obtained

from MT algorithm γ̄. The direction of AUV velocity remains constant so that the

MT error does not increase. The second goal is to estimate the AUV speed V along γ̄

such that the simulated travel time converges to the measured travel time. Therefore,

We suggest to tune the norm of the velocity V̄ k with adaptive parameter λk ∈ R:
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V k = λkV̄ k and we keep updating λk until the time error converges.

Concerning the predicted flow from previous step not using timing information, we

use the equation V k∗ = S+F k∗. We obtain the solution F k∗ by subtracting the AUV

control velocity S from the final velocity V k∗. Since we define tki as the duration of

travel in cell Ck such that when the AUV reaches one side of cell Ck (xki −h∆).(yki −

s∆) = 0 holds. However, accounting for the symmetry we simplify w.l.g. the equality

to x(tki )−h∆ = 0. Similarly to the MT analysis, presented in Chapter 3, we compute

an approximation of the gradient of travel time, defined locally in the crossed cells.

Let us consider
∂x(tki )

∂Fkx,i

∂x(tki )

∂F k
x,i

=
∂tkiF

k
x,i

∂F k
x,i

= tki + F k
x,i

∂tki
∂F k

x,i

. (119)

Applying the chain rule on x(tki )− h∆ = 0 results in

∂(x(tki )− h∆)

∂F k
x,i

=
∂x(tki )

∂tki

∂tki
∂F k

x,i

= 0. (120)

Since x(tki )−h∆ = 0 means that the AUV reaches the vertical side before the horizon-

tal one from cell Ck, then the travel time is locally a function of F k
x,i. Thus,

∂tki
∂Fkx,i

6= 0,

then
∂x(tki )

∂tki
= 0. Finally, we obtain

∂tki
∂F k

x,i

= − tki
F k
x,i

. (121)

Since the vehicle trajectory is fix, the set of visited cells C∗ is constant. Hence, we

can define λi for all i as λi = [λ1
i , · · · ,λ

f
i ] where λki ∈ < is the corresponding tuning

parameter for cell Ck. Concerning the computation of λk, we approximate the final

time tfi =
∑f

k=1 t
k
i using first order Taylor expansion expanded around λki .

tf ((λk)V̄ k) = tf ((λki )V̄
k) +

∂(λkV̄ k)

∂λk
∂tf

∂((λki )V̄
k)

(λk − λki )

= tf ((λki )V̄
k) + V̄ k> ∂tf

∂(λki V̄
k)

(λk − λki ). (122)

Then we plug λk = λki+1 and tf = t∗:

t∗ = tfi + V̄ k> ∂tf

∂(λki V̄
k)

(λki+1 − λki ), (123)
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Since ∂tf

∂(λki V̄
k)

is not invertible, we use the technique proposed in [24]. We define the

required terms as follows:

‖Hi‖2 = ‖V̄ > ∂tfi
∂((λki )V̄

k)
‖2 =

f∑
j=1

(
tji
λji

)2 (124)

hki = V̄ k> ∂tki
∂(λki V̄

k)
=
tki
λki
. (125)

So the adaptive factor λki follows:

λki+1 = λki +
hki
‖Hi‖2

eti , (126)

When λki converges to λk∗, equation (126) implies the convergence of error time et.

The final solution V k∗ guarantees that both MT error d and et converge to zero.

Recalling that V = F + S, then we obtain F ∗ as follows:

F k∗ = V k∗ − S = λk∗V̄ k − S (127)

To ensure the convergence of MT time error, we modify the underlying algorithm with

a factor ω > 0 such that the adaptive parameter evolves according to the following

recursion:

λki+1 = λki + ω
hki
‖Hi‖2

eti

= λki − ω
tki
λki

t∗ −
∑f

j=1 t
j
i∑f

j=1(
tji
λji

)2
. (128)

One merit from splitting the problem into two parts, convergence of MT error first

and then time error problem, is that the length of the trajectory within one cell

is constant as we do not change the direction of the velocity. Thus, the following

relationship holds, ∀i and λki 6= 0:

λki V̄
ktki = λki+1V̄

ktki+1

tki+1 = tki
λki
λki+1

(129)
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Combining the MT algorithm, introduced in Chapter 3, with the time extension, the

new MT algorithm comprises two phases: While we use the motion integration error

in the first part to trace the AUV trajectory and accordingly to estimate the flow

field, we increase the accuracy of flow estimation in the second part by employing the

travel time.

Algorithm 3: MT flow field estimation

Data: Measured final position r∗i
1 Time of travel t∗i
2 Set i = 0. Initialize the flow F k

0 = 0 ∈ <2; repeat
3 Trajectory tracing to get Ti, t

k
i and di

4 Update the flow in all cells k according to (28)

F k
i+1 = F k

i +
tki
‖Ti‖2

di. (130)

5 until ‖ di‖ ≤ εf , V k → V̄ k

6 Set i = 0. Initialize λk0 = 1; repeat

7 until ‖ eti‖ ≤ εf , F ∗ → V ∗ − S
8 for i = 1 to N do
9 Compute Hi, hi and eti according to (129) and (124)

10 Update the flow in all cells k

λki+1 = λki + ω
hki
‖Hi‖2

eti

V k∗
i+1 = λki+1V̄

k (131)

11 end

4.2 Convergence Analysis of Time Integration Error

As outlined above, the proposed algorithm incorporates measured time data to esti-

mate the norm of the flow. We compute the adaptive parameter λk that ensures the

convergence of the predicted time of the flight tfi =
∑f

k=1 t
k
i to the measured time t∗

using the traced trajectory (12). For convenience, we rewrite (126) as follows:

λki+1 = λki + ω
hki
‖Hi‖2

eti
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= λki − ω
tki
λki

t∗ −
∑f

j=1 t
j
i∑f

j=1(
tji
λji

)2
. (132)

Furthermore, tki evolves according to the following

λki V̄
ktki = λki+1V̄

ktki+1

tki = tki+1

λki+1

λki
. (133)

Substituting tki in (132) provides a formulation of the problem as nonlinear discrete

mapping G(λki ) = λki+1.

G(λki ) = λki − ω
tk0

(λki )
2

t∗ −
∑f

j=1
tj0
λji∑f

j=1
(tj0)2

(λji )
4

, λki 6= 0. (134)

We pick λk0 = 1 as initial condition. Our goal is to compute the fix points λ∗ of G

such that: G(λ∗) = λ∗ for tki > 0. Note λ = [0, · · · ,0] is a singular point to be treated

separately as shown below:

lim
λki→0

λki+1 = lim
λki→0

λki − ω
tki
λki

t∗ −
∑f

j=1 t
j
i∑f

j=1(
tji
λji

)2

= lim
λki→0

λki − ω
tki
λki

Ai − tk0
(λki )2

Bi +
(tk0)2

(λki )4

= lim
λki→0

λki − ωtki λki
Ai(λ

k
i )

2 − tk0
(λki )

3Bi + (tk0)2
= 0, (135)

where Bi =
∑f

j=1,j 6=k(
tji
λji

)2 and Ai = t∗ −
∑f

j=1,j 6=k t
j
i . This case implies that the

velocity of the vehicle is zero. Adding to λ = [0, · · · ,0], G(λ∗) = λ∗ implies et∗ = 0

for λ∗ 6= 0. Ultimately, the fix points set λ∗ is:

λ∗ = {01×f ∪ λ ∈ <1×f | et∗ = 0}. (136)

The questions about a possible definition for the stability region of G and the conver-

gence of time integration error eti are yet to be answered. So, we establish an explicit

formula for eti in the following Lemma
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Lemma 4.2.1. Let λki be defined in equation (126), then the time error eti evolves

according to

eti+1
=

f∑
k=1

(1− γki )(
tki
λki

)2 eti
Hi

, (137)

with γki = ω
2−ωβki

(1−ωβki )
2 , βki =

tki
(λki )2

eti
Hi

and Hi =
∑f

j=1(
tji
λji

)2.

Proof.

eti+1
= t∗ − tfi+1

= t∗ −
f∑
k=1

tki+1

= t∗ −
f∑
k=1

tki
λki
λki+1

= t∗ −
f∑
k=1

tki
λki

λki − ω
tki
λki

t∗−
∑f
j=1 t

j
i∑f

j=1(
t
j
i

λ
j
i

)2

= t∗ −
f∑
k=1

1(
1− ω tki

λk2
i

eti
Hi

)2 t
k
i

= t∗ −
f∑
k=1

1(
1− ωβki

)2 t
k
i , (138)

where βki =
tki

(λki )2

eti
Hi

. Now we add and subtract tfi in order to extract eti :

eti+1
= t∗ − tfi + tfi −

f∑
k=1

1(
1− ωβki

)2 t
k
i

= eti +

f∑
k=1

(1− 1(
1− ωβki

)2 )tki

= eti −
f∑
k=1

2− ωβki(
1− ωβki

)2ω(
tki
λki

)2 eti
Hi

=

f∑
k=1

(1− γki )(
tki
λki

)2 eti
Hi

, (139)

with γki = ω
2−ωβki

(1−ωβki )
2 and Hi =

∑f
j=1(

tji
λji

)2.

49



Based on the deduced error dynamics, we can state the main result of this chapter

in the following theorem:

Theorem 4.2.1. Consider the discrete, nonlinear mapping G(λi) = λi+1 and its

subset of fix points λ∗ = {λ ∈ R1×f | et∗ = 0}. Let ω = 1
2
, λk0 > 0, ∀k such that

et0 ≤ 0 then, eti ≤ 0, ∀i and the time integration error converges to zero.

Proof. We prove by induction the Lemma. First we choose λ so that et0 ≤ 0. Now,

assuming that etn ≤ 0. Let us consider the error dynamics etn+1 :

etn+1 =

f∑
k=1

(1− γki )(
tki
λki

)2 eti
Hi

. (140)

Obviously the term 1−γkn, determines the sign of etn+1 . We suppose that 0 ≤ 1−γkn < 1

holds in order to define the conditions for the validity of the claim.

0 ≤ 1− γkn < 1

0 ≤ ω
2− ωβki(
1− ωβki

)2 < 1 (141)

We substitute ω with ω = 1
2

and since βkn =
2tki

(λkn)2

etn
Hn
≤ 0, the left side of (141) is valid.

Considering the right side of (141):

2− 1

2
βki < 2− 2βki +

1

2
(βki )2

0 < βki (
1

2
βki −

3

2
)

(142)

etn < 0 implies (142) is valid. Therefore, if etn < 0 is true, 0 ≤ 1− γkn < 1 holds.

Since etn+1 =
∑f

k=1(1−γkn)( t
k
n

λkn
)2 etn
Hn

and etn ≤ 0 implies 0 < 1−γkn < 1 then etn+1 ≤ 0.

Hence, etn+1 ≤ 0 is valid. Furthermore, using 0 ≤ 1− γkn < 1 yields:

‖etn+1‖ ≤
f∑
k=1

‖(1− γkn)‖( t
k
n

λkn
)2‖etn‖

Hn

<

f∑
k=1

(
tkn
λkn

)2‖etn‖
Hn
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< ‖etn‖. (143)

This completes the proof of the claim.

4.3 Simulations and Results

In this section, we modify the simulation example, introduced in Chapter 3. We

improve the accuracy of flow estimation by applying Algorithm 3 instead of Algorithm

2 to incorporate the measured traveling time. In Algorithm 3, we keep the direction

of the previous AUV velocity V̄ . Hence, Figures 16a and 15 are identical. However,

we correct the norm of AUV velocity so that the measured and estimated traveling

time are equal. Hence, the flow F is updated as follows:

F k = V k∗ − S = λk∗V̄ k − S

Therefore, the estimated flow in Figure 16b exhibits change in both norm and direction

along the traced trajectory which leads to better accuracy comparing to Figure 14.

However there exists noticeable difference between the predicted and the true flow,

the red and the blue arrows. This fact urges the deployment of multiple vehicles as

we will show in the following chapter.
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Figure 15: Real and predicted trajectories between starting positions (blue rectangles)
and target positions ( black circles).
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Figure 16: A simulated true flow (red solid lines) and predicted flow field (blue dashed
line) with travel time incorporation.
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CHAPTER V

MUTLI VEHICLE MOTION TOMOGRAPHY

The MT method can be formulated as an optimization problem, where multiple vehi-

cles are involved to cover the studied area. In this chapter we utilize multiple AUVs to

estimate the underlying flow. We propose two versions of MT algorithm, we discuss

the underlying features and we establish the convergence of the MT error.

5.1 Previous Works

In recent years, different reconstruction algorithms have been developed. Accounting

for its promising results, Algebraic Reconstruction Technique (ART) has been widely

used in computerized tomography see [19, 27]. As a matter of fact, ART owes much

of its success to the use of Kaczmarz algorithm as one of the most efficient iterative

method for image reconstruction in computerized tomography. There is a consider-

able volume of research on this method: A modified ART for THz tomography has

been developed in [38]. Strohmer and Vershynin [35] proposed randomized version of

the Kaczmarz method for consistent, overdetermined linear systems and Kamath et

al. suggested a parallel algorithm for a randomized Kaczmarz algorithm [20]. The

convergence of both algorithms is proved. Nonetheless, the challenge in MT arises by

the inherent nonlinear characteristics of the MT problem. Chang et al. proposes a

Kaczmarz-Type Method to solve the MT problem for multiple vehicles and explains

the approach with regard to MT error, see [20].

Concerning the solution structure, ART has been considered in various forms, where

the correction is applied in different stages of the algorithm. Reference [8] proposes

and compares four reconstruction methods based on simulated data.

In this chapter, we compare these approaches. Based on the followed evaluation, we
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implement the appropriate version to solve MT problem. For self containment, we

recall some technical words used in ART and we redefine it with respect to MT. A

cycle is defined in [8] as a stage of reconstruction in which all projection data are

considered once. As V AUVs are deployed, a cycle comprises V projections, where

one projection denotes one traced ray. It is worth to underline that in contrast to

Acoustic tomography, where the projection diffuses different rays, the MT projection

is represented by one traced ray. This fact reduces the four modifications, discussed

in [8] into two: While the Correction per Cycle updates the estimated flow F after

one cycle, the Averaged Correction per Projection corrects the latter after every pro-

jection. Note that the Averaged Correction per Projection collapses into a simple

Correction per Projection since we have only one ray for one vehicle.

Chang et al. uses the Correction per Cycle in distributed fashion. The MT problem

is considered as a joint optimization problem where vehicle v solves the vth opti-

mization problem and then computes a common estimate of the flow field F. The

decentralized MT allows vehicle v to share its estimate vF with only a subset of other

vehicles, referring it as Neighbors and eventually reaches the consensus F. Nonethe-

less, this approach suffers from scalability, when the solution vector that needs to be

communicated among neighbors is large. We focus in this thesis on the the correction

per cycle or per projection, which can be seen as centralized methods and we leave

the distributed formulation for further work.

5.2 Multiple Vehicle MT

As discussed in Chapter 1, Chang et al. derived an iterative flow field estimation

algorithm referred to as a Kaczmarz-type method based on the Kaczmarz method,

an iterative method for solving a linear system of equations. We follow the same

principle, though we apply the centralized approach, Correction per Cycle (CC) and

Correction per Projection (CP).
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In this chapter, we suppose V vehicles are involved in MT, where we assign to every

vehicle v the MT error vd. Hence, vtki denotes the time that the AUV v spends to

cross the cell k by iteration i, ‖vTi‖2 =
∑f

k=1
vtki

2
and ηk the number of vehicles that

enters the cell k. Consequently, the estimated flow Fi+1 is updated at step i + 1 in

different ways as follows:

• Motion Tomography Correction per Cycle (MTCC): All AUV trajectories are

constructed through simulation that involves the current estimated flow Fi and

hence the resulted MT error vdI is computed for each AUV. Then, the flow is

updated again using the average of flow modifications as follows:

F k
i+1 = F k

i +

ηk∑
v=1

vtki
ηk‖vTi‖2

vdi, (144)

Based on the Kaczmarz-type method for MT in Equation (144), we obtain a

flow field estimation algorithm (Algorithm 4). In the algorithm, we check the

norm of MT error as a criteria for the convergence. We continue updating the

solutions until the Euclidean norms of MT errors vdi,∀v ≤ V are sufficiently

small (i.e., below a threshold εF ).

• Motion Tomography Correction per Projection (MTCP): The traced trajectory

vγ̃ for the AUV v is obtained by simulating the vehicle trajectory using current

estimate of the flow Fi+1, updated by AUV v − 1 as follows:

vγ̃ =

∫ tf

t0

(
vS +v−1 Fi(

vr)
)

dt, (145)

Hence the resulted MT error vdi is computed for AUV v. Then, the flow is

updated again using the newest MT error as follows:

vF k
i =v−1 F k

i +
vtki (

v−1Fi)

‖vTi(v−1Fi)‖2
vdi, (146)

Based on the Kaczmarz-type method for MT in Equation (146), we obtain a

flow field estimation algorithm (5). In the algorithm, the same operation recurs
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untill v = V , then the iteration number increases i + 1 we check the norm of

MT error as a criteria for the convergence. We continue updating the solutions

until the Euclidean norms of MT errors vdi,∀v ≤ V are sufficiently small (i.e.,

below a threshold εF ).

In the next section, we analyze the convergence of the MTCC and we omit the proof

for the MTCP because the two methods have similar analysis. It is worth to underline

that [8] addressed ray-tracing and compared results on four reconstruction methods

based on simulated data. However, only experimental results are shown, which are in

good agreement with the theoretical study. The work does not prove the convergence

of the proposed approach.

Algorithm 4: MTCC flow field estimation

Data: Measured final positions vr∗ where v {1, · · · ,V }
1 Set i = 0. Initialize the flow F k

0 = 0 ∈ <2; repeat
2 Trajectory tracing to get vTi,

vtki and vdi
3 Update the flow in all cells k:

F k
i+1 = F k

i +

ηk∑
v=1

vtki
ηk‖vTi‖2

vdi,

4 until ‖ vdi‖ ≤ εF , ∀v ≤ V

5.3 Convergence Analysis of one Dimension MTCC and
Simulation Results

Recognizing the difficulty associated with ray tracing as discussed in Chapter 3, we

divide the analysis into two parts. In the first part, we limit the scope on one axis

flow estimation. In other terms, we place the AUVs along one axis and we prove the

convergence for the proposed case.

In the second part, we consider the general case, where the AUVS are launched from

the horizontal and vertical axis, and we prove the convergence of MTCC using the

first part.

56



Algorithm 5: MTCP flow field estimation

Data: Measured final positions vr∗ where v {1, · · · ,V }
1 Set i = 0. Initialize the flow F k

0 = 0 ∈ <2; repeat

2 until ‖ vdi‖ ≤ εf , ∀v ≤ V
3 for v = 1 to V do
4 Trajectory tracing to get vTi,

vtki and vdi Update the MT error by

vdi =v r∗ −v r(v−1Fi),

Update the flow in all cells k crossed by vehicle v

vF k
i+1 =v−1 F k

i +
vtki (

v−1Fi)

‖vTi(v−1Fi)‖2
vdi,

Let v = v + 1.

5 end

5.3.1 Convergence Analysis of one Dimension MTCC

We keep the same problem setup described in Chapter 3 and we place V AUVs along

the horizontal axis. Note that the symmetry of the grid implies the same analysis for

the ordinate Axis as well. Accounting for the multiple vehicle navigation, we extend

Assumption 3.3.1 as follows:

Assumption 5.3.1. Let the AUV v be one of the launched V AUVs. The AUV

velocity vSx = 0, vSy > max(F k
x ) ≥ 0, vr0 = [vx0, 0]> and vx∗ >v x0

In order to establish the analysis of multi vehicle MT algorithm, we need to

extend the MT error dynamics. Let us define εkx,i =
∑ηk

v=1

vtki
ηk‖vTi‖2

v

dx,i, ε
k
y,i = 0, and

εki = [εkx,i, ε
k
y,i]
>. Applying the flow update on the error dynamics (60) results in:

vdx,i =v dx,i−1 +

f∑
k=1

vtki−1

f∏
j=k

vαji ×v εki−1,

=v dx,i−1 −
f∑
k=1

vtki−1

f∏
j=k

vαji (

ηk∑
p=1

ptki−1

ηk‖pTi−1‖2
pdx,i−1), (147)

57



where

αji =



1 if yji − y
j−1
i = ∆ ∪ xji − x

j−1
i = ∆

V jy,i

V jx,i
if yji = h∆ ∩ xj−1

i = s∆

V jx,i

V jy,i
otherwise

(148)

Before stating the convergence theorem, it is worth to notice that if the cell Ck is

crossed only by one AUV v, we showed in Chapter 4 that the flow F k
x will be updated

such that the MT error vd decreases. However, if multiple vehicles cross the same

cell, at least the MT error of one vehicle can increase.

Example: For clarity, let us consider the following example, where two vehicles

share the same crossed cells. The flow update follows:

F k
x,i+1 = F k

x,i +
2∑
v=1

vtki
2‖vTi‖2

vdx,i. (149)

Let us choose w.l.o.g.
1tki
‖1Ti‖2

1dx,i 6=
2tki
‖2Ti‖2

2dx,i and
1tki
‖1Ti‖2

1dx,i <
2tki
‖2Ti‖2

2dx,i, then it

follows
1tki
‖1Ti‖2

1dx,i <
∑2

v=1

vtki
2‖vTi‖2

vdx,i <
2tki
‖2Ti‖2

2dx,i. This increase of flow results in

overshoot of MT error 2dx,i+1. Motivated by the example, we discuss the impact of

time weight included in flow prediction in the following Lemma.

Lemma 5.3.1. Let the traced trajectory be formulated according to (144). Suppose

Assumptions 3.1.1, 5.3.1, V is the number of AUVS, V Ci ∩v Ci =v Ci and vr0 <v+1 r0

∀v < V and
∑V

v=1
vdxi ≥ 0 hold, then

(p+1tk+1
i )(V tk+1

i ) + (p+1tki )(
V tki ) ≥ (ptk+1

i )(V tk+1
i ) + (ptki )(

V tki ) (150)

and

f∑
k=1

(ptk)(V tk)

‖pT‖2
≤

f∑
k=1

(p+1tk)(V tk)

‖p+1T‖2
(151)

f∑
k=1

f∏
j=k

αj
(ptk)(V tk)

‖pT‖2
≤

f∑
k=1

f∏
j=k

αj
(p+1tk)(V tk)

‖p+1T‖2
(152)

are valid ∀k ≤ f and 1 ≤ p ≤ V .
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Proof. Recalling that vCi =V Ci ∀1 ≤ v ≤ V , then all the traced trajectories cross

the same side of involved cells. Since the AUV trajectories are parallel inside the

explored cells and there exist three different ways of cell crossing, we can infer the

following comparison:

• If the AUVs cross the cell in vertical direction, case 1 of trajectory tracing, then

vti = ∆
Vy
∀1 ≤ v ≤ V

• As Vy ≥ Vx case two and case 3 occur successively such that vtki +v tk+1
i = ∆

Vy
.

Since the traced trajectories are parallel and cross the same side of the cell, the

travel time can be formulated as follows:

vtki =
(h+ 1)∆−v xk−1

i

V k
x

vtk+1
i =

∆

Vy
−v tki , (153)

where Ck = C(h,s) and Ck+1 = C(h+1,s). Adding to that, vr0 <v+1 r0 ∀v < V

implies vxk−1
i ≤v+1 xk−1

i resulting in v+1tki ≤v tki and vtk+1
i ≤v+1 tk+1

i

Therefore, V tki is the minimum then V tk+1
i the maximum and V tk+1

i ≥V tki = ∆
Vy
− V tki .

Suppose that (V tki )(
ptki )+(N tk+1

i )(ptk+1
i ) ≤ (N tki )(

p+1tki )+(N tk+1
i )(p+1tk+1

i ) ∀V − N +

1 ≤ p ≤ V − 1, and let us prove the claim ∀V − N ≤ p ≤ V − 1. Based on the

previous reasoning, V−N tki is the maximum and V−N tk+1
i the minimum.

V tk+1
i ≥V tki

V tk+1
i (V−N−1tk+1

i − V−N tk+1
i ) ≥ V tki (

V−N−1tk+1
i − V−N tk+1

i )

V tk+1
i (V−N−1tk+1

i − V−N tk+1
i ) ≥ V tki (

V−N−1tk+1
i − ∆

Vy
+

∆

Vy
− V−N tk+1

i )

V tk+1
i (V−N−1tk+1

i − V tk+1
i

V−N tk+1
i ) ≥ V tki (

V−N tki − V−N−1tki )

(V−N−1tk+1
i )(V tk+1

i ) + (V−N−1tki )(
V tki ) ≥ (V tki )(

V−N tki ) + (V−N tk+1
i

V
tk+1
i ). (154)

Furthermore, we are interested to compare the time weight, included in flow update

vtk
ptk

‖pT‖2
pdx,i. Let us consider two AUVs V and p and case 2 and 3 of trajectory
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tracing, as case one is constant for both of them. We assume V tki is maximal in cell

Ck and ∆
Vy

= 1 to simplify the calculation:

π =
ptkV tk + ptk+1V tk+1

‖pT‖2

=
ptkV tk + (1− ptk)(1− V tk)

‖pT‖2
. (155)

We compute the derivative of π with respect to ptk:

π̇ =
(−4V tk + 2)ptk

2
+ 1

‖pT‖4
= 0. (156)

The root of π̇ is ptk∗
2

= 1
(4(V tk)−2)

and we obtain:
π̇ ≥ 0 if 0 ≤ ptk∗ ≤

√
1

(4(V tk)−2)

π̇ ≤ 0 if
√

1
(4(V tk)−2)

≤ ptk∗ ≤ 1

(157)

Adding to that, the travel time satisfies the following inequality:

0 < ptk
2

=
1

(4(V tk)− 2)
≤ 1. (158)

Thus, if V tk ≥ 3
4

then 1
(4(V tk)−2)

≤ 1 and π is increasing for 0 ≤ ptk ≤
√

1
(4(V tk)−2)

and

decreasing for
√

1
(4(V tk)−2)

≤ ptk∗ ≤ 1. Elsewhere, π is increasing. Recalling that V tk

is the maximum travel time among all the AUVs, then when ptk increases π increases

as well, which means if the AUV is closer to AUV V π is bigger. Since all the AUVs

cross the same set of cells Ci, computing the gradient of π with respect of tk and

the corresponding roots tk∗ implies the aforementioned conclusion for every cell Ck.

Hence, we extend the analysis for the AUV trajectory to get:

f∑
k=1

(ptk)(V tk)

‖pT‖2
≤

f∑
k=1

(p+1tk)(V tk)

‖p+1T‖2
. (159)

If the cell Ck = C(h,s) and Cf = C(p,q) and recalling that case one of trajectory

tracing implies
V j+1
x,i

V kx,j
= 1, then there exists p − h column crossings that are included

in
∏f

j=k α
j
i as follows:

f∏
j=k

αji =

p∏
j=h

V j+1
x,i

V k
x,j

, (160)
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where the cells Cj satisfies Cj = C(h,s) and Cj+1 = C(h+1,s). Consequently, if Ck and

Ck+1 are in the same column then
∏f

j=k α
j
i =

∏f
j=k+1 α

j
i . Elsewhere, we have:

f∏
j=k+1

αji =

p∏
j=h+1

V j+1
x,i

V k
x,j

=

p∏
j=h

V j+1
x,i

V k
x,j

V h
x,i

V k
x,h+1

. (161)

Let us recall that the MT algorithm ensures that V h+1
x

V hx
≤ 1, if the MT error is positive.

Applying
∑V

v=1
vdxi ≥ 0 and that all the vehicles are evolving in the same set of cells,

then
∏f

j=k α
j ≤

∏f
j=k+1 α

j holds. Finally, using (154) leads:

f∑
k=1

f∏
j=k

αj
(ptk)(V tk)

‖pT‖2
≤

f∑
k=1

f∏
j=k

αj
(p+1tk)(V tk)

‖p+1T‖2
. (162)

As we are considering multiple vehicles, we define Ex,i+1 =
∑V

v=1
vdxi+1

and we

study the dynamic of the sum of MT errors in the following lemma.

Lemma 5.3.2. Let the traced trajectory be formulated according to (144). Suppose

Assumptions 3.1.1, 5.3.1, V is the number of AUVS, V dx,0 > 0, vdx,0 = 0 and V Ci ∩v

Ci =v Ci ∀1 ≤ v ≤ V − 1 hold, then Ex,i is monotone decreasing such that: Ex,i → 0,

when i→∞. and mEx,i ≤ Ex,i+1 ≤ m̄Ex,i, where −1 < m < 1 and 0 < m̄ < 1.

Proof. Given that all traced trajectories evolve in the same set of cells V Ci∩v Ci =v Ci

∀1 ≤ v ≤ n, the MT error dynamics (147) is formulated as follows:

Ex,i+1 =
V∑
v=1

vdxi+1

=
V∑
v=1

vdx,i −
f∑
k=1

vtki

f∏
j=k

vαji (
V∑
p=1

ptki
V ‖pTi‖2

pdi)

=
V∑
v=1

vdx,i −
f∑
k=1

vtki

f∏
j=k

vαji (
V∑
p=1

ptki
V ‖pTi‖2

pdi). (163)

Since all the AUVs explore the same set of cells, then vαji = αji and vtki > 0. We

denote with βk the coefficient embedded in MT error dynamics βk =
∏f

j=k α
j
i l
k
i .

Ex,i+1 =
V∑
v=1

vdx,i −
f∑
k=1

vtki

f∏
j=k

vαji (
V∑
p=1

ptki
V ‖pTi‖2

pdi)

61



=
V∑
v=1

vdx,i −
f∑
k=1

∏f
j=k α

j
i

V
vtki

V∑
p=1

ptki
‖pTi‖2

pdx,i

=
V∑
v=1

vdx,i −
f∑
k=1

βk

V

V∑
p=1

vtki

ptki
‖pTi‖2

pdx,i

=
V∑
v=1

vdx,i −
V∑
p=1

1

V ‖pTi‖2

f∑
k=1

βk(vtki )(
ptki )

pdx,i. (164)

We denote ‖Ti‖ = minp ‖pTi‖, ‖T̄i‖ = maxp ‖pTi‖, 0 < β = mink β
k , β̄ = maxk β

k ≤ 1,

0 <v ti = mink
vtki ,

v t̄i = maxk
vtki ≤ ∆

Vy
and n the total number of cells in one column.

As yf =
∑f

k=1 t
k
i Vy = n∆,

∑f
k=1 t

k
i = n∆

Vy
holds.

V∑
v=1

vdx,i −
V∑
p=1

β̄t̄ki
V ‖Ti‖2

f∑
k=1

ptki
pdx,i ≤ Ex,i+1 ≤

V∑
v=1

vdx,i −
V∑
p=1

βtki

V ‖T̄i‖2

f∑
k=1

ptki
pdx,i

V∑
v=1

vdx,i −
V∑
p=1

β̄t̄ki
V ‖Ti‖2

n∆

Vy
pdx,i ≤ Ex,i+1 ≤

V∑
v=1

vdx,i −
V∑
p=1

βtki

V ‖T̄i‖2

n∆

Vy
pdx,i

V∑
v=1

(1− β̄t̄i
V ‖T i‖2

n∆

Vy
)vdx,i ≤ Ex,i+1 ≤

V∑
v=1

(1−
βti

V ‖T̄i‖2

n∆

Vy
)vdx,i. (165)

Furthermore, we know the traced trajectory AUV includes either vertical cell crossing,

case 1 of trajectory tracing, such that tk = ∆
Vy

or two successive crossings that combine

case 2 and 3, such that tk + tk+1 = ∆
Vy

. While the first case is distinguished by a

constant travel time ∆
Vy

, the sum of the square of travel time in the second and third

case is varying.

Let us consider the minimum of (tk)2 + (tk+1)2 = ( u
Vy

)2 + (∆−u
Vy

)2. As u = ∆
2Vy

is the

root of
∂( u
Vy

)2+( ∆−u
Vy

)2

∂u
= 2 2u

Vy
− 2 ∆

Vy
, then u = ∆

2Vy
is the minimum.

Thus 1
2
( ∆
Vy

)2 ≤ (tk)2 + (tk+1)2 ≤ ( ∆
Vy

)2 is true ∀i. Accounting for Vy ≥ Vx, then the

traced trajectory includes at least z ≥ n
2

vertical crossings and the rest comprises case

2 ad case 3. Let ‖Ti‖2 =
∑f

k=1 t
k
i

2
and applying the discussed properties leads to:

n

2
(1 +

1

2
)

∆

Vy

2

≤ ‖Ti‖2 ≤ n
∆

Vy

2

3n

4

∆

Vy

2

≤ ‖Ti‖2 ≤ n
∆

Vy

2

. (166)
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Thus,

(1− β̄t̄i
V ‖T i‖2

nVy
∆

)Ex,i ≤ Ex,i+1 ≤ (1−
βti

V ‖T̄i‖2

nVy
∆

)Ex,i

(1− 4β̄t̄i
V 3

Vy
∆

)Ex,i ≤ Ex,i+1 ≤ (1−
βti
V

Vy
∆

)Ex,i. (167)

Plugging β̄ = 1, t̄i = ∆
Vy

and 0 < κ = βti
Vy
∆
≤ 1 yields:

(1− 4

3V
)Ex,i ≤ Ex,i+1 ≤ (1−

βti
V

)Ex,i

(1− 4

3V
)Ex,i ≤ Ex,i+1 ≤ (1− κ

V
)Ex,i

mEx,i ≤ Ex,i+1 ≤ m̄Ex,i

‖Ex,i‖ ≤ m̄iEx,0, (168)

where 0 < m = (1 − 4
3V

) < 1 and m ≤ m̄ = 1 − κ
V
< 1. Hence, mEx,i ≤ Ex,i+1 ≤

m̄Ex,i implies that ‖Ex,i‖ is monotone decreasing such that: Ex,i → 0, when i →∞.

Furthermore, mEx,i ≤ Ex,i+1 ≤ m̄Ex,i and 0 < m ≤ m̄ results in Ex,i and Ex,i+1 have

the same sign. Hence, 0 ≤ Ex,0 implies 0 ≤ Ex,i+1.

Adding to Ex,i =
∑V

v=1
vdxi we denote Ẽx,i = Ex,i − V dx,i and derive new lemma,

which we will use for the analysis later.

Lemma 5.3.3. Let the traced trajectory be formulated according to (144). Suppose

Assumptions 3.1.1, 5.3.1, V is the number of AUVS, V dx,0 > 0 and vdx,0 = 0 ∀1 ≤

v < V − 1 hold, then the following results hold

• V dx,i ≥ 0 and V dx,i ≥V dx,i+1

•
∑V−1

v=1
vdx,i ≤ 0 and

∑V−1
v=1

vdx,i ≤
∑V−1

v=1
vdx,i+1 ∀i > 0

Proof. In this proof we extend the claim and use the Induction method for the fol-

lowing recursions:

• V dx,i ≥V dx,i+1 ≥ 0
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•
∑V−1

v=1
vdx,i ≤ 0 ∀i ≥ 0

• V dx,i ≤ (1 + V )‖Ẽx,i‖ ∀i > 1

Let us consider the flow update and apply V dx,0 > 0 and vdx,0 = 0 ∀1 ≤ v < V − 1,

Since the flow along x-axis is initially null we have:

F k
x,1 = F k

x,0 +
V−1∑
v=1

vtki
V ‖vTi‖2

vdx,0 +
V tki

V ‖V Ti‖2
V dx,0 =

V tki
V ‖V Ti‖2

V dx,0. (169)

As the column that the AUV V crosses for the first time at iteration i = 1 is initially

zero, the flow is null in V C\V C0∩V−1C0. Adding to that 0 <
V tki

V ‖V Ti‖2
V dx,0 <

V tki
‖V Ti‖2

V dx,0,

then V xf1 <
V x∗ which means V dx,0 >

V dx,1 ≥ 0.

Concerning the other AUVs, as F k
x,0 guarantees vxf1 =v x∗ ∀1 ≤ v < V and F k

x,0 ≤ F k
x,1,

then vxf1 ≥v x∗ ∀1 ≤ v < V , vdx,1 ≤ 0 ∀1 ≤ v < V . Suppose that for i = n, the claim

holds and there exists V1 > v ≥ 0 AUVs such that vdx,i ≥ 0 and V1 ≤ v ≤ V − 1

AUVs such that vdx,i ≤ 0, and let us prove the validity of the claim for i = n+ 1. We

reformulate the error dynamics:

V dx,n+1 =V dx,n −
f∑
k=1

f∏
j=k

αjn+1(
V∑
p=1

V tkn
ptkn

V ‖pTn‖2
pdx,n)

=V dx,n −
1

V
(

V1∑
p=1

V pκn
pdx,n +

V−1∑
p=V1

V pκ̄n
pdx,n + V κn

V dx,n), (170)

where V κn =
∑f

k=1

∏f
j=k α

j
n+1(

V tkn
2

V ‖V Tn‖2 ), κn =
∑f

k=1

∏f
j=k α

j
n+1(

V tkn
ptkn

V ‖pTn‖2 ) ∀1 ≤ p ≤ V1

and κ̄n =
∑f

k=1

∏f
j=k α

j
n+1(lkn+1

V tkn
ptkn

V ‖pTn‖2 ) ∀V1 − 1 ≤ p ≤ V − 1.

Since all AUVs cross the same set of cells and Ex,n =
∑V

p=1
pdx,n ≥ 0, Lemma 5.3.1

implies:

f∑
k=1

f∏
j=k

αjn+1(
V tkn

ptkn
V ‖pTn‖2

p+1dx,n) ≥
f∑
k=1

f∏
j=k

αjn+1(
V tkn

ptkn
V ‖pTn‖2

pdx,n). (171)

Hence we deduce κn ≤ κ̄n ≤ V κn ≤ 1. Adding to that, the induction recursion

ensures that Ẽx,i ≤ 0, which means
∑V1−1

p=1 ‖pdx,n‖ ≤
∑V−1

p=V1
‖pdx,n‖. Based on the
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above reasons, we insert Ẽx,n =
∑V−1

p=1
pdx,n ≤ 0 to get a lower bound for V dx,n+1:

V dx,n+1 =V dx,n −
1

V
(

V1∑
p=1

V pκn
pdx,n +

V−1∑
p=V1

V pκ̄n
pdx,n + V κn

V
dx,n)

≥V dx,n −
1

V
(
V−1∑
p=1

V pκn
pdx,n + V κn

V
dx,n)

≥V dx,n −
V κn
V

V dx,n ≥ (1− 1

V
)V dx,n. (172)

And we plug Ex,n ≥ 0 to get an upper bound for V dx,n+1:

V dx,n+1 =V dx,n −
1

V
(

V1∑
p=1

V pκn
pdx,n +

V−1∑
p=V1

V pκ̄n
pdx,n + V κn

V
dx,n)

≤V dx,n −
1

V
(
V−1∑
p=1

V pκ̄n
pdx,n + V κn

V
dx,n)

≤V dx,n −
1

V
(V pκ̄nẼx,n + V κn

V
dx,n)

≤V dx,n −
1

V
(V κnẼx,n + V κn

V
dx,n)

≤V dx,n −
1

V
V κnEx,n ≤V dx,n. (173)

Hence, V dx,n ≥V dx,n+1 ≥ 0, first part of the Lemma is valid. Furthermore, combining

both inequalities (168) and (172), then it follows that:

Ex,n+1 ≤ (1− κ

V
)Ex,n

V dx,n+1 + Ẽx,n+1 ≤ (1− κ

V
)(V dx,n + Ẽx,n)

Ẽx,n+1 ≤ (
1

V
− κ

V
)(V dx,n) + (1− κ

V
)Ẽx,n − V dx,n+1

≤ (1− κ

V
)(V dx,n + Ẽx,n)

≤ 1

V
V κnEx,n + (1− κ

V
)(V dx,n + Ẽx,n)

≤
V κn − κ

V
V dx,n + (1 +

V κn − κ
V

)(Ẽx,n)

≤ 1

V
V dx,n + (1 +

1

V
)(Ẽx,n). (174)

We use V dx,n ≤ (1 + V )‖Ẽx,n‖, the third induction statement:

Ẽx,n+1 ≤
1

V
V dx,n + (1 +

1

V
)(Ẽx,n) ≤ 0. (175)
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Hence, Ẽx,n ≤ 0 is satisfied as well. Finally we confirm the last part of claim V dx,n ≤

(1 + V )‖Ẽx,n‖ by using Lemma (5.3.2) and V > 1:

Ex,n+1 ≤ Ex,n

V dx,n+1 ≤ −Ẽx,n+1 + Ex,n

V dx,n+1 ≤ −Ẽx,n+1 + (Ẽx,n + V dx,n)

V dx,n+1 ≤ −Ẽx,n+1 +
V

1 + V
V dx,n

V dx,n+1 ≤ −Ẽx,n+1 +
V

1 + V
V dx,n. (176)

Applying (1− 1
V

)V dx,n ≤ V dx,n+1 results in:

V − 1

V (1 + V )
V dx,n ≤ ‖Ẽx,n+1‖

V dx,n+1 ≤ (1 + V )‖Ẽx,n+1‖. (177)

Based on Lemma 5.3.3, we show the convergence of one axis MTCC algorithm in

the following theorem.

Theorem 5.3.1. Let the traced trajectory be formulated according to (144). Suppose

Assumptions 3.1.1, 5.3.1 and V is the number of AUVS, then the MT error vdx,i

converges to 0, as i→∞.

Proof. We prove the theorem by Induction:

Let the number of AUV be one, V = 1 then Theorem 3.3.1 implies that 1dx,i converges

to 0, as i→∞. Hence the statement is initially valid.

Suppose that for V = n ∀v, 1 ≤ v ≤ n vdx,i converges to 0, as i→∞ and let us prove

for V = n+ 1 ∀v, 1 ≤ v ≤ n+ 1 vdx,i converges to 0, as i→∞.

Let n+1C0 be the set of crossed cells by AUV n+ 1 and n+1r0 its initial position such

that n+1r0 > nr0. Since the traced trajectories are parallel inside the cells and the
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velocity along x-axis is positive, the end position of AUV n+1 satisfies the inequality

n+1rki ≥v rki ∀1 ≤ v ≤ n. Hence, n+1Ci ∩v Ci =n+1 Ci ∩n Ci ∀1 ≤ v ≤ n.

Suppose n+1C0 ∩ nC0 = ∅ and as the velocity along x-axis is positive, then the AUV

n+1 does not cross the cells Ck ∈ vCi ∀1 ≤ v ≤ n. Consequently, the flow in Ck ∈v Ci

remains constant such that Fx,i = Fx,0 and vdx,i = 0 ∀1 ≤ v ≤ n. Concerning the

AUV n + 1, Theorem 3.3.1 implies that 1dx,i converges to 0, as i → ∞. Hence the

statement is valid.

If the cell Ck is crossed only by one AUV v, we showed in Chapter 4 that the flow F k
x

will be updated such that the MT error vd decreases. However, if multiple vehicles

cross the same cell, at least the MT error of one vehicle can increase, see the afore-

mentioned Example 5.3.1. Therefore, the worst case is when vCi =n+1 Ci ∀1 ≤ v ≤ n.

We will show that the MT error converges also when all the cells are crossed between

the AUVs.

Based on Lemma 5.3.3, V dx,i ≥ 0 and V dx,i+1 ≤V dx,i. Hence the MT error is decreas-

ing or constant. Let us suppose that V dx,i =V dx,j, j ≤ i, and since Ex,i converges to

zero, then Ẽx,i → −V dx,j and the resulted flow is constant along the crossed cells V Ci.

However, if the flow keeps increasing (or decreasing) at least in one cell the associated

AUV will leave the cell from new direction. As V dx,i > 0 the flow will increase at

least in one cell such that after couple of iterations K, V Ci 6=V Ci+K .

Since AUV position V r0 >v r0 ∀v, the cells V Ci+K \V Ci ∩V Ci+K are only updated by

AUV V resulting in decrease of V dx,i. The reciprocal effect is that the norm of Ẽx,i

will decrease as well because ‖Ex,i‖ = ‖V dx,i + Ẽx,i‖ is decreasing. Hence, the MT

error of all AUVs will converge to zero.

Concerning the case that the flow remains constant in all cells Ck in V Ci requires:
1∑

v=V

vtki
V ‖vTi‖2

vdi = 0. (178)

However Lemma 5.3.1 implies V tki is the maximum and then the minimum in two

consecutive cells. Let V tji be the maximum travel time in cell Cj, then vtji <
V−1 tji <
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V tji ∀1 ≤ v < V and
∑V

v=1

vtki
V ‖vTi‖2

vdi = 0 leads to:

‖V di‖ ≤
V−1tji
V tji
‖
V−1∑
v=1

vdx,i‖ < ‖Ẽx,i‖ (179a)

‖V di‖ ≥
V−1tj+1

i

V tj+1
i

‖
V−1∑
v=1

vdx,i‖ > ‖Ẽx,i‖. (179b)

Since (179a) does not contradict (179b), if V di = 0 Ẽx,i = 0 or if ‖V di‖ − ‖Ẽx,i‖ = 0

and the travel time of all AUVs is overall equal. Hence V Ci is one column such

that V tji = vtji = ∆
Vy
∀1 ≤ v < V However, the MT errors have different signs which

contradicts again the parallelism principle. Based on the above analysis, we deduce

that V dx,i is decreasing and V dx,i ≥ 0. Hence V dx,i converges to zero. Adding to that

Ẽx,i = Ex,i −V dx,i → 0 for i→∞.

Since Ẽx,i involves only V − 1 AUVs and the induction claim holds for V − 1 AUVs,

then the MT error vdx,i converges ∀1 ≤ v < V . Hence the MT error is overall

decreasing. This completes the proof.

5.3.2 Simulations and Results of one Dimension MTCC

We simulate multiple vehicles that navigate under flow in a domain of interest and

implement the proposed MTCC method to construct a trajectory that fulfills the final

time and position constraint and accordingly estimate the underlying flow field. We

raise the challenge by subjecting the mapping to strongly discontinuous flow and a

limited number of vehicles. We randomly generate flow field with different directions

and speeds that varies between 0.35m/s and 2.5m/s. The maximum flow strength is

located in the center and equal to the AUV control velocity which is 3m/s.

For better understanding, we simulate the one dimension flow field mapping, which

requires the AUV departure from one desired axis e.g. the X-axis. This enables us

to understand the theoretical analysis discussed in previous section. We use 9 AUVS

so that we increase the intersections between the traced trajectories and we apply

MTCC algorithm, without incorporating traveling time. While the distribution of
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blue dashed arrows in Figure 17a shows the evolution of the simulated flow field that

covers all the cells, Figure 17b depicts the final trajectories which converge to the

measured positions. Following the traced trajectories, we can identify the estimated

flow that leads to the convergence of MT error. Obviously, the Y -component Fy is

zero, see Figure 17a because the underlying algorithm MT algorithm in this scenario

is only subject to MT error along the X-axis. Incorporating traveling time in the

second case provides a considerable improvement as illustrated in Figure 18a. The

second constraint raises the blue arrows to present the estimated flow in Y direction,

such that the AUV velocity is updated in two dimensions. Although this fact is not

reflected on traced trajectory, Figures 18b and 17b are identical, there is a noticeable

difference in the estimated flow between Figures 18a and 17a.
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(a) Estimated and true Flow field mapping
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(b) Estimated and true traced trajectories

Figure 17: One axis MTCC without travel time incorporation.

5.4 Convergence Analysis of MTCC and Simulation Re-
sults

5.4.1 Convergence Analysis of MTCC

After studying the one axis case, we analyze the convergence of MTCC algorithm,

where we place vehicles on both Axis to provide two dimensions flow field mapping.
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(b) Estimated and true traced trajectories

Figure 18: One axis MTCC with travel time incorporation.

Hence, the algorithm updates both Fy and Fx, which requires an extension of As-

sumption (3.3.1).

Assumption 5.4.1. We assume that for AUVs that their initial position r0 = [x0, 0]>

the velocity Sx = 0, Sy > F k
x ≥ 0, r∗ = [x∗, L]>, and x∗ ≥ x0

and for AUVs that their initial position r0 = [0,y0]> the velocity Sy = 0, Sx > F k
y ≥ 0,

r∗ = [L,y∗]>, and y∗ ≥ y0

One major problem in convergence analysis, as shown in Chapter 3 is coefficient

βki = 1−
∏f

j=k α
j
i involved in MT error dynamics. The possible increase of αji , when

the AUV crosses the cell in horizontal way, can cause an overshoot of MT error. For

better understanding, let us state the definition of αji as follows:

αji =



1 if yji − y
j−1
i = ∆ ∪ xji − x

j−1
i = ∆

V jy,i

V jx,i
if yji = h∆ ∩ xj−1

i = s∆

V jx,i

V jy,i
otherwise

(180)

For clarity, we refer to crossing consecutive sides from one cell, see Figure 6 case 2,

as horizontal transition. Since we restricted the scope on one axis flow field mapping,
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the velocity in y− direction was equal to the control velocity Vy = Sy, which allows to

simplify
V jx,i

V jy,i

V j−1
y,i

V j−1
x,i

=
V jx,i

V j−1
x,i

. Considering the two dimension flow field mapping, the sim-

plification does not hold because V j
y,i varies from one cell to another. This fact urges

to reconsider the MT convergence without assuming a constant flow Fy. However,

Assumption 5.4.1 implies:

V j−1
y,i

V j
y,i

=
Sy + F j−1

y,i

Sy + F j−1
y,i

, (181)

≤ Sy + Fmax
Sy

≤ 2.

Since
V
y,ij−1

V jy,i
≤ 2 holds, we need to study the variation of αki under the influence of

V
y,ij−1

V jy,i
and accordingly to ensure that the MT error dx,i decreases. We showed in

Chapter 3 that when the AUV crosses new column, the flow along X-axis increases in

previous columns, making the AUV change the crossed set of cells. Hence, the AUV

enters new cells before it reaches the final position under the influence of flow update.

Recalling the expression of αki , we can reformulate it as follows:

αki =
L∏
j=k

V j
x,i

V j
y,i

V j−1
y,i

V j−1
x,i

, (182)

where L is the last column crossed by the AUV and j denotes the first crossed cell

in every column starting from column k. Thus, crossing successive columns, where

the flow along X-axis is initially zero, Vx = 0, implies a sink of the traced trajectory

and accordingly αki =
∏L

j=k

V jx,i

V jy,i

V j−1
y,i

V j−1
x,i

= 0. Hence, we can consider entering new cell in

horizontal way as a decrease or reset to αki as cell CL is updated after the previous

ones, see Chapter 3 for further explanation. Now when the AUV reaches the final

column, the MT error shrinks and the frequency to explore new cell decreases. Hence,

if the traced trajectory keeps evolving in the same consecutive cells that have the same

ordinate, it is still to confirm that αki remains less than 2. However this condition

is conservative: The error dynamics is the sum of update parts along the traced
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trajectory:

dx,i =

f∑
k=1

(1−
f∏
j=k

αji )
tk2
i−1

‖Ti−1‖2
dx,i−1. (183)

If only one cell has α1
i > 2, but αki ≤ 1 in the other cells, the MT error still decreases.

Therefore, we will focus on the convergence of MT error and not on the condition

αki < 2. Before considering the general case, we want to introduce a key feature of the

predicted flow map that we will exploit it later for the convergence analysis. Based

on the flow distribution property, we study the convergence of MT error without

assuming constant flow Fy in the following Lemma:

Lemma 5.4.1. Let the traced trajectory be formulated according to Algorithm 2. Sup-

pose Assumptions 3.1.1 and 5.4.1 hold, then the MT error dx,i converges to 0 as

i→∞.

Proof. It is to notice that the following error dynamic is valid for Ci = Ci−1 :

dx,i =

f∑
k=1

(1−
f∏
j=k

αji )
tk2
i−1

‖Ti−1‖2
dx,i−1. (184)

and nonlinear. Hence, we need to deal with two possible cases.

For the first scenario is when dx,i ≥ 0 ∀i > 0, we use the derived analysis from Chapter

3. The first part of Proof 3.3 of Theorem 3.3.1 shows as long as dx,i ≥ 0, the MT error

is decreasing for any embedded α. And since the flow is initially zero, whenever the

AUV enters new cell dx,i ≥ 0. Therefore, if dx,i ≥ 0 ∀i > 0 the MT error decreases

when it enters new cells or when Ci is constant.

Since the MT error is initially positive, the second scenario is when dx,t ≥ 0 ∀t > 0

and then dx,t+1 < 0. Recalling if dx,t ≥ 0 ∀t > 0, then the AUV traced trajectory

deviates in the clockwise rotation, due to the flow increase. This means, the new

embedded cells are not updated by the MT algorithm. In this case The second part

of Proof 3.3 allows us to consider the new crossed cells as equivalent for the previous
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crossed set of cells. Since the new embedded ones have null value, we can apply the

error dynamics piece wise and simplify the calculation when the flow is zero. Hence,

this case is considered as a special case of the final scenario that we will consider now:

Ci = Ct, ∀i ≤ t ≤ h and ‖dx,t‖ is decreasing till ‖dx,h‖ ≥ ‖dx,h−1‖. This result stems

from the increase of αki in some cells. Suppose w.l.o.g. that dx,h−1 > 0 and dx,h < 0

and ‖Th−1‖2 ≈ ‖Th‖2, as Ch = Ch−1. Let us consider the cells where
V j−1
y

V jy
> 1 and we

can write dx,h = −(dx,h−1 + λh), λh > 0.

αkh+1 =
L∏
j=k

V j
x,h+1

V j−1
x,h+1

V j−1
y

V j
y

=
L∏
j=k

V j−1
y

V j
y

V j
x,h−1 +

tjh−1

‖Th−1‖2
dx,h−1 +

tjh
‖Th‖2

dxh

V j−1
x,h−1 +

tj−1
h−1

‖Th−1‖2
dx,h−1 +

tj−1
h

‖Th‖2
dxh

=
L∏
j=k

V j−1
y

V j
y

V j
x,h−1 +

tjh−1−t
j
h

‖Th−1‖2
dx,h−1 −

tjhλh
‖Th−1‖2

V j−1
x,h−1 +

tj−1
h−1−t

j−1
h

‖Th−1‖2
dx,h−1 −

tj−1
h λh
‖Th−1‖2

. (185)

Let Cj−1 = C(h,s). Based on the previous analysis, we know if αj−1
h−1 > 2, then tj−1

h < tjh.

Furthermore, dx,h−1 > 0 and dx,h < 0 implies that yj−1
h−1 > yj−1

h and xj−2
h−1 < xj−2

h , see

Figure 19. Therefore, while the travel time in cell Cj−1 increases, it decreases in cell

Cj such that tj−1
h−1− t

j−1
h > 0 and tjh−1− t

j
h < 0 holds. Plugging the two results yields:

Figure 19: Illustration of trajectory tracing at iteration h and h− 1.

tj−1
h−1 − t

j−1
h

‖Th−1‖2
dx,h−1 −

tj−1
h λh
‖Th−1‖2

>
tjh−1 − t

j
h

‖Th−1‖2
dx,h−1 −

tjhλh
‖Th−1‖2

, (186)
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and consequently,

αkh+1 < αkh−1 < αkh. (187)

Since αkh−1 leads to ‖dx,h−2‖ > ‖dx,h−1‖, then ‖dx,h‖ > ‖dx,h+1‖ holds. And whenever

the MT error increases , αk decreases until dx converges.

Based on the aforementioned reasoning, we conclude that both cases lead to MT error

convergence.

While analyzing the mutual effect of multi vehicle trajectory tracing, we encoun-

tered a difficulty to determine the crossed cells if Fy and Fx are changing simultane-

ously. We redesigned MTCC Algorithm 4 to overcome the problem by updating the

flow sequentially e.g. estimating Fx and then Fy. We repeat the same step until the

MT error converges for all AUVs and we increment the iteration j after completing

part 1 and 2. Let us denote Fx,j the final solution after running part 1 and Fy,j the

final solution after running part 2. Moreover, we will define an average flow F̄ such

that F̄x =
∑f
k=1 F

k
x

f
, F̄y =

∑f
k=1 F

k
y

f
and S the maximal control velocity. Finally, we

state the main Theorem for this chapter:

Theorem 5.4.1. Let the traced trajectory be formulated according to Algorithm 6.

Suppose Assumptions 3.1.1, 5.4.1 hold and the average flow fulfills S/2 < F̄x,F̄y < S,

then the MT error vdi converges to 0, ∀v as i→∞.

Proof. Since Lemma 5.4.1 guarantees the convergence of one vehicle MT error, we can

consider part 1 or 2 in Algorithm 6 separately and apply Theorem 5.3.1 to prove the

convergence of the underlying part. Hence, we need to look in the overall algorithm

typically the transition between the two parts. We focus on slope variation due to

transition from part 1 to part 2. As initially Fy = 0 and the real flow F ∗y ≥ 0, part 2

will lead to increase in Fy,j which implies a retreat of final estimated position vxf for

AUVs placed on X-axis. In other terms, we have vxf ≤v x∗ and MT error vdx ≥ 0
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∀1 ≤ v ≤ Vx. Therefore, running part 1 results in increase of Fx,j. Following the

same reasoning and because of symmetry, Fx,j and Fy,j are increasing between part

1 and 2, which results in drift ∆k
y,j and ∆k

x,j from the solution trajectory in crossed

cells.

Let us consider the slope after part 1
Sy+Fky,j−1

Fkx,j
and after part 2

Sy+Fky,j
Fkx,j

at iteration j

and the slope
Sy+Fky,j−1

Fkx,j−1
at iteration j − 1, then the drift ∆k

x,j is defined as follows:

∆k
x,j = ∆

F k
x,j

Sy + F k
y,j−1

−∆
F k
x,j−1

Sy + F k
y,j−1

= ∆
F k
x,j − F k

x,j−1

Sy + F k
y,j−1

. (188)

We can substitute
Fky,j−1

Sx+Fkx,j−1
=

Fky,j
Sx+Fkx,j

to describe the drift ∆k
y,j as follows:

∆k
y,j = ∆

F k
y,j

Sx + F k
x,j

−∆
F k
y,j−1

Sx + F k
x,j

= ∆
F k
y,j−1

Sx + F k
x,j−1

−∆
F k
y,j−1

Sx + F k
x,j

= ∆
F k
y,j−1(F k

x,j − F k
x,j−1)

(Sx + F k
x,j)(Sx + F k

x,j−1)
. (189)

Applying (188) yields:

∆k
y,j = ∆k

x,j

F k
y,j−1(Sy + F k

y,j)

(Sx + F k
x,j)(Sx + F k

x,j−1)

= ∆k
x,j

F k
y,j−1(Sy + F k

y,j)

(Sx + F k
x,j)(Sx + F k

x,j−1)
. (190)

We can consider the MT error as the sum of the drift along the traced trajectory:

vdy,j =

f∑
k=1

∆k
y,j. (191)

Since the flow is varying from one cell to another we can use the average flow F̄ and

according an average of MT error d̄ as approximation of MT error d. As we assumed

that Sy,x > F̄x,y > (1/2)Sy,x hence:

vd̄y,j =

f∑
k=1

∆̄k
y,j
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=

f∑
k=1

∆̄k
x,j

F̄ k
y,j−1(Sy + F̄ k

y,j)

(Sx + F̄ k
x,j)(Sx + F̄ k

x,j−1)

≤
f∑
k=1

∆̄k
x,j

F̄y(Sy + F̄y)

(Sx + F̄x)2

<

f∑
k=1

∆̄k
x,j

Sy(Sy + Sy)

(Sx + (1/2)Sx)2

<

f∑
k=1

∆̄k
x,j

8

9
. (192)

This decrease in vd̄y,j occurs during the transition from part 1 to part 2. The same

principle results in the decrease of vd̄x,j as well.

vd̄y,j <
8

9

v

d̄x,j

< (
8

9
)2
v

d̄y,j−1. (193)

Hence, the average MT error vd̄y,j is decreasing. Since vd̄y,j ≥ 0∀j then vd̄y,j will

converge to zero as j →∞. The same result applies on vd̄x,j.

Furthermore, F k
x,j ≥ F k

x,j−1 ∀1 ≤ k ≤ f implies F̄x,j ≥ F̄x,j−1. Hence, ∆̄k
x,j =

∆
F̄ x,j−F̄x,j−1

Sy+Fky,j−1
≥ 0. Therefore, the convergence of vd̄x,j means ∆̄k

x,j → 0 and F̄x,j −

F̄x,j−1 → 0 as j →∞. Recalling that F̄x,j =
∑f
k=1 F

k
x,j

f
then it follows:

F̄x,j − F̄x,j−1 =

∑f
k=1 F

k
x,j − F k

x,j−1

f
. (194)

Combining that F k
x,j − F k

x,j−1 ≥ 0 ∀1 ≤ k ≤ f and
∑f

k=1 F
k
x,j − F k

x,j−1 → 0 as

j → ∞ implies that F k
x,j − F k

x,j−1 → 0. Finally, applying the same analysis leads to

F k
y,j − F k

y,j−1 → 0. Hence, MT error vdj converges to zero as j →∞. This completes

the proof.

5.4.2 Simulations and Results of MTCC

Now we navigate 15 vehicles, where the first 6 travel from the left of the domain to

the right and the other 9 from the bottom to the top. We assign horizontal or vertical
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Algorithm 6: Modified MTCC Algorithm

Data: Measured final positions vr∗ = {1, · · · ,Vx}
Measured final positions vr∗ = {1, · · · ,Vy}

1 Set j = 0. Initialize the flow F k
0 = 0 ∈ <2; repeat

2 repeat
3 Trajectory tracing to get vTi,

vtki and vdi
4 Update the flow in all cells k:

F k
x,i+1 = F k

x,i +

ηk∑
v=1

vtki
ηk‖vTi‖2

vdx,i,

5 until ‖ vdi‖ ≤ εF , ∀vx ≤ V

6 repeat
7 Trajectory tracing to get vTi,

vtki and vdi
8 Update the flow in all cells k:

F k
y,i+1 = F k

y,i +

ηk∑
v=1

vtki
ηk‖vTi‖2

vdy,i,

9 until ‖ vdy,i‖ ≤ εF , ∀v ≤ Vy
10 until ‖ vdx,j‖ ≤ εF , ∀v ≤ Vx and ‖ vdy,j‖ ≤ εF , ∀v ≤ Vy

velocity with constant control speed 3m/s and we keep the same simulated flow field.

While the first scenario includes the MT errors in both axis, we incorporate traveling

time in the second case. Recalling that MTCC algorithm alternates between two

steps: First X-axis MTCC then Y -axis MTCC until the MT error converges for all

the AUVS, we will plot different stages to show the evolution of traced trajectories of

part 1 under the influence of part 2. Figures 20b and 20a are obtained after running

MTCC for MT error along X-axis and then for Y -axis. Changing the velocity along

the Y -direction leads to a noticeable MT error in Figure 20b, although the first part

is successfully completed. Running the loop for second time reduces the incurred MT

error which confirms the claim that the MT error decreases, see Figure 21b. Finally,

we run MTCC for five iterations and as expected the MT error converges for all AUVS.

A comparison between Figures 21a, 22a does not reveal considerable difference in flow
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Figure 20: MTCC without travel time incorporation after 1 Iteration.

estimation and accordingly the corresponding traced trajectories which shows the fast

convergence of MTCC. As planned before, we include the measured travel time as new

constraint in MTCC. We will focus on Figure 23a since the traced trajectories remain

intact by time constraint. It is worth to underline that this scenario is subject to MT

error along both axis, which damps the impact of including measured time that we

have noticed in one axis MTCC, see Figure 18a. However, a thorough observation

shows that the estimated flow field in the second case is more accurate than in case

one. Furthermore let us define δF as follows:

δF = max
k
‖F k∗ − F k‖ ∀k (195)

We choose δF as a criteria to evaluate the performance of the applied algorithms. As

a matter of fact, δF decreases from 1.7m/s to 0.72m/s when we incorporate the travel

time, proving the contribution of time travel constraint.

5.5 Comparison between MTCP and MTCC

Finally, we conclude the chapter by a comparison between MTCC and MTCP. It is

worth to mention that while the MTCC algorithm performs one iteration by cycle, the

MTCP updates the flow after every MT error projection, such that the information
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Figure 21: MTCC without travel time incorporation after 2 Iterations.
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Figure 22: MTCC without travel time incorporation after 5 Iterations.

used for trajectory tracing is always the most recent one. It seems that MTCC is

not optimal; indeed, a complete calculation of all new AUVs MT errors is completed

before the correction step. The traced trajectories resulted from MTCP are similar

to the ones obtained from MTCC. However, we can not draw definitive conclusion

on the efficiency of the algorithm due to the inherent discontinuity of the underlying

problem, which urges the running of different simulations to evaluate both approaches.

We propose the same scenario described above and we get the following results: The
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Figure 23: MTCC with travel time incorporation.

estimated flow field shows some differences in several cells, see Figures 23a, 24a.

For example MTCC outperforms MTCP in the first row, however it exhibits lower

accuracy in the first column though. It seems difficult to asses the performance from

the flow field mapping solely. Hence, we utilize the average estimation error δF and

the maximum estimation error δ̄F to judge the performance of the proposed algorithm.

Concerning MTCP, δF is equal to 0.38m/s and δ̄F = 1.01. However, for MTCC δF is

equal to 0.36m/s and δ̄F = 0.72, which implies that MTCC has better performance

than MTCP.
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Figure 24: MTCP with travel time incorporation.
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CHAPTER VI

CONCLUSION

In this thesis we redesigned the motion tomography (MT) algorithm and improved

its accuracy in estimating the flow field by incorporating temporal data. In the first

part of this thesis, we provided a short review of the MT concept with an emphasis

on the shortcomings from the convergence study perspective. Based on the review,

we further investigated the proposed proof and found issues with its validity when

the Lipschitz assumption does not hold. As a matter of fact, we could not use the

available literature which relies on the Lipschitz property in different forms as a fun-

damental prerequisite to prove the convergence of the inverse problem.

Motivated by the above challenge, we adjusted the MT algorithm to better support

further analysis and adopted a new procedure to understand the MT mechanism in

order to overcome the difficulty. At first, we focused on one vehicle MT, where we split

the algorithm into different steps. After that, we studied the mutual impact between

flow update and trajectory tracing. This allowed us to derive local MT nonlinear

error dynamics, a standard rule to judge the stability of MT algorithm. Furthermore,

we gradually raised the difficulty and enlarged the scope to multiple vehicle MT. In

multiple vehicle MT, we looked into the effect of the neighbors on the predicted tra-

jectory of the corresponding vehicle. Based on that, we proved the convergence of

MT error. Then, we considered the general case.

Inspired by the Computerized Tomography (CT), we suggested two versions of the

MT algorithm in order to fuse the two-dimensional data collected by the AUV: MT

Correction per Cycle (MTCC) and MT Correction per Projection (MTCP). We dis-

cussed the two methods in regard to the obtained performance and the incurred
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computational load. Furthermore, we built on the previous results to establish the

convergence of the MTCC algorithm.

A novel part of this thesis is the incorporation of travel times for multiple vehicles

in the MT algorithm. As we divided the whole structure into the final position error

part and the travel time error part, we were able to study the two problems separately,

a good merit from redesigning the MT algorithm. We used Kaczmarz-type methods

to solve nonlinear systems of equations constructed for the time error problem and

we showed that the simulated travel time converges to the measured one.

The simulations are in good agreement with the theoretical study and show the bene-

fit of taking into account the travel time in the form of a second optimization problem

accommodated in the MT algorithm.

In the light of the good performance of the proposed MT algorithm, future work will

address some open issues, such as multi-path tracing or the difficulty of choosing an

initial value for the reconstruction. Hence, it would be of interest to incorporate some

physical insight into the optimization problem to define one unique solution that can

be characterized according to oceanography. We also suggest to study the parametric

flow model and apply the derived techniques derived in this thesis.

Recalling the primary motivation for flow estimation, we can consider the MT algo-

rithm with respect to the path planning algorithm as a general frame or structure

that combines both methods in a harmonized way. Therefore, a map of a flow field

estimated by the MT algorithm can be used to guide AUVs in real time. Finally, an

issue of practical and of theoretical concern to the control community is the practi-

cal applicability of the method to realistic oceanographic features. Therefore, it is

interesting to look for the appropriate speed, number, and placement of AUVs and to

inquire whether the obtained results are still valid for strong environmental variations.
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semble kalman filtering with underwater mobile sensor networks,” in ASME
2014 33rd International Conference on Ocean, Offshore and Arctic Engineering,
pp. V002T08A063–V002T08A063, American Society of Mechanical Engineers,
2014.
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