
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

Winter 12-2011

Use of Constraint Solving for Testing Software
Product Lines
Jiangfan Shi
University of Nebraska-Lincoln, jiangfan.shi@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Software Engineering Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Shi, Jiangfan, "Use of Constraint Solving for Testing Software Product Lines" (2011). Computer Science and Engineering: Theses,
Dissertations, and Student Research. 36.
http://digitalcommons.unl.edu/computerscidiss/36

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/36?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages

USE OF CONSTRAINT SOLVING FOR TESTING SOFTWARE PRODUCT LINES

by

Jiangfan Shi

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Doctor of Philosophy

Major: Computer Science

Under the Supervision of Professor Matthew B. Dwyer and Professor Myra B. Cohen

Lincoln, Nebraska

December, 2011

USE OF CONSTRAINT SOLVING FOR TESTING SOFTWARE PRODUCT LINES

Jiangfan Shi, Ph. D.

University of Nebraska, 2011

Advisers: Matthew B. Dwyer and Myra B. Cohen

A new software engineering methodology, software product line (SPL) engineering,

has been increasingly studied in academia and adopted in industry in the past decade.

It allows the delivery of similar, but customized, software products to customers in the

same domain within a short time period. Software product line engineering produces an

SPL by defining feature commonality and variability, and is supported by a well-managed

asset base.

Based on case studies in the literature, in practice, SPL engineering can improve

productivity from three to ten times, but in theory, it can dramatically push productivity

to an extreme. The reasons for this high productivity root from both the variability

and the ability to automatically generate configurations. Variability supplies a large

configuration space, and automatic generation makes the configuration procedure trivial.

High productivity, however, requires more efficient testing methods, so that we can

ensure the correctness of SPLs with the same resource allocation percentage as in the

traditional software engineering; traditional methods applied to SPL testing require a

longer percentage of the software lifecycle.

In this dissertation, we show how modern constraint solvers can be used to tackle the

challenge of efficiently ensuring dependability in SPLs from two perspectives: sampling

and reuse. In sampling, the key is to choose a subset of products that are representative

of the whole configuration space. We focus on one sampling technique, combinatorial

interaction testing, that samples combinations of variability in the SPL. In reuse the goal

is to leverage the inherent property of SPLs: similarity, which stems from the fact that

all configurations are generated from a core set of common and variable features. Our

primary contributions are improved sample generation techniques for SPL testing that

efficiently incorporate constraints between features, and reuse techniques that efficiently

leverage similarities during integration testing.

More specifically, we propose several enhanced sample generation techniques for

combinatorial interaction testing that leverage satisfiability solvers. Based on our empirical

studies, we conclude that our techniques are efficient, and can generate high-quality

samples in much less time from existing techniques that do not consider constraints.

We then propose a compositional symbolic execution technique to achieve reuse during

integration testing. A feasibility study shows that our technique is efficient, and can run

as much as four times faster than a traditional directed symbolic execution technique.

iv

c© COPYRIGHT by Jiangfan Shi

December, 2011

All Rights Reserved

v

ACKNOWLEDGMENTS

I would first like to sincerely thank my advisors, Dr. Matthew Dwyer and Dr. Myra

Cohen, for their guidance, patience and support. I have been very fortunate to have them

as my advisors as said in my very first email to them. They gave me much freedom

to explore interesting problems of software testing areas, while providing invaluable

insights and comments on my thoughts. My research has been benefited greatly from

their breadth and depth of knowledge. Their high standards played a key role to build

up my confidence in both the normal and research life, which is the most precious

achievement I gained during the study. I also would like to thank my PhD committee

members, Dr. Witawas Srisa-an and Dr. Jeonghan Ko, for giving me their valuable time

and suggestions on my dissertation work.

I thank numerous developers and users of both Soot and JPF open sources. In

particular, I would like to thank Richard Halpert for the technique discussions that I had

with him through emails. My sincere thanks also go to the whole CSE department. They

supplied a TA position to financially support my study, set up various interesting and

fundamental courses to rich my knowledge, and provided technique support of computer

facilities to speed up my experiments. I also thank Leping, Rahul and many other friends

and families in the ESQuaRed lab, computer science and other departments. They made

my life more colorful during the study. My sincere thanks also go to Deborah Ball Derrick

for her professional English review and grammar improvement of my dissertation.

I would like to thank my whole family. During the hardest period of my PhD life,

many my loved persons showed their support without reservations. My parents and my

sister, Zaizhong, Fuzan and Jiangliu, suggested me to follow my heart and supported

every decision I have made. My brother-in-law and parents-in-law, Qiwei, Changyi

and Baolian, also showed their support by supplying detailed suggestions to handle

vi

difficulties.

Finally, I thank my wife, Ting Wei, for everything she has done for me. She always

stands behind me with strong support. Without her support, my life will be totally

different. I also thank my lovely son, Benjamin (Zihan) Shi, who is one important source

of my courage. His smile is the sweetest thing in the world.

This work was supported in part by NSF CCF through awards 0429149, 0444167,

0454203, 0541263, 0747009 and 0915526, by NSF through awards CNS-0720654, the U.S.

Army Research Office through award DAAD190110564 and DURIP award W91NF-04-1-

0104, the Air Force Office of Scientific Research through awards FA9550-09-1-0129, FA9550-

09-1-0687 and FA9550-10-1-0406, the National Aeronautics and Space Administration

under grant number NNX08AV20A, and by an NSF EPSCoR FIRST award. Any opinions,

findings, conclusions, or recommendations expressed in this dissertation are my own,

and do not necessarily reflect the position or policy of these organizations including NSF,

ARO, AFOSR and NASA.

vii

Contents

Contents vii

List of Figures xi

List of Tables xii

1 Introduction 1

1.1 Motivating Example . 2

1.2 Methodologies . 5

1.2.1 Establishing Coverage Criteria Related to Interactions and Constraints 6

1.2.2 Generating Samples to Meet Coverage Criteria 8

1.2.3 Testing Interaction Trees by Exploiting Similarity 8

1.2.4 Constraint-Solving-Centered Problems 10

1.3 Thesis . 10

1.4 Contributions . 11

1.5 Outline of Dissertation . 12

2 Background and Related Work 13

2.1 Software Product Lines . 13

2.1.1 Feature Models . 14

viii

2.2 Covering Arrays . 17

2.2.1 Applications of Combinatorial Interaction Testing 19

2.2.2 Algebraic Methods . 20

2.2.3 Meta-Heuristic Search Methods . 21

2.2.4 Constraint Programming . 22

2.2.5 Greedy Methods . 22

2.3 Constraint Solving . 23

2.3.1 Davis-Logemann-Loveland Algorithm 24

2.3.2 Boolean Constraint Propagation . 28

2.3.3 Backtracking . 29

2.4 Symbolic Execution . 29

2.4.1 Tackling a Large Path Space . 30

2.4.2 Tackling Complicated Constraints . 31

2.4.3 Applications of Symbolic Execution 31

2.4.4 Symbolic Method Summary . 32

2.5 Testing Software Product Lines . 34

2.5.1 Testing SPLs from a Coverage Perspective 34

2.5.2 Testing SPLs from a Similarity Perspective 37

3 Coverage Criteria Related to Constraints and Interactions 41

3.1 Translating OVMs to Relation Models . 42

3.1.1 Translating Constructs . 42

3.1.2 Translating Constraints . 44

3.2 CCIT Models and SPL Test Coverage Criteria 46

4 Sampling Technique Focusing on Constraints 49

4.1 Basic AETG . 50

ix

4.2 AETG with Basic SAT Checking . 51

4.2.1 Translating Constraints as Boolean Formulae 51

4.2.2 SAT Checking . 53

4.3 AETG With SAT History . 55

4.4 Threshold Triggered SAT Assignments . 57

4.5 Combining History and Threshold Optimizations 60

4.6 Empirical Investigation . 60

4.6.1 Case Studies . 61

4.6.1.1 SPIN Model Checker . 61

4.6.1.2 GCC Optimizer . 63

4.6.1.3 Apache HTTP Server 2.2 . 64

4.6.1.4 Bugzilla 2.22.2 . 65

4.6.2 Synthesized CCIT Problems . 66

4.6.3 Performance Evaluation . 68

4.6.4 Finding a Good Threshold Point . 69

4.6.5 Comparing Algorithms . 71

4.6.6 Further Analysis of the Threshold . 73

4.6.7 Threats to Validity . 74

4.7 Summary of the Work . 75

5 Integration Testing of Software Product Lines Using Compositional Sym-

bolic Execution 80

5.1 Overview – Dependence driven Compositional Analysis 81

5.2 Relating SPL Models To Implementations . 82

5.3 Calculating Feature Interactions . 83

5.4 Composing Feature Summaries . 86

x

5.4.1 Complexity and Optimizion of Summary Composition 90

5.4.2 Composing Summaries Example . 91

5.5 Case Study . 92

5.5.1 Objects of Analysis . 93

5.5.2 Method and Metrics . 95

5.5.3 Results . 96

5.6 Summary of the Work . 99

6 Conclusions and Future Work 100

6.1 Summary . 100

6.1.1 Coverage Criteria . 101

6.1.2 Sampling Techniques . 102

6.1.3 Integration Testing SPLs . 104

6.2 Future Work . 105

6.2.1 Extension of Integration Testing Methods 105

6.2.2 Exploitation of Collected Paths . 106

6.2.3 Mixture of Sampling and Integration Testing 108

6.2.4 Bug Isolation . 108

Bibliography 110

xi

List of Figures

1.1 Motivation Example . 3

1.2 A hierarchical organization of feature interactions for the bank SPL 5

1.3 Methodology Overview . 6

1.4 A hierarchical organization among directional feature interactions for the bank

SPL . 9

2.1 The DLL Search Algorithm . 26

3.1 Example OVM Model[109] . 42

3.2 Alternative Choice Examples . 44

4.1 A propositional formula for a CIT with AETG construction 52

4.2 The Exploitation Based on SAT History and Threshold 56

4.3 SAT Threshold Performance for 5 Random Samples 69

5.1 Conceptual Overview of Compositional SPL Analysis 81

5.2 Traditional Interactions and Interaction Trees . 86

5.3 Feature Models for (a) SCARI and (b) GPL . 94

xii

List of Tables

4.1 Case Study Basic Characteristics: Factors and Values 67

4.2 Case Study Characteristics: Number and Percent of Factors/Constraints . . . 67

4.3 Time and Size of 5 Samples for Threshold Percentages 71

4.4 Average Time Over 50 Runs . 77

4.5 Average Size Over 50 Runs . 78

4.6 Average Size over 50 Runs for t = 3 . 79

4.7 Average Time over 50 Runs for t = 3 . 79

5.1 Summaries of Single Features . 92

5.2 Summaries of 2-way Directed Interactions . 93

5.3 Summaries of 3-way Directed Interactions . 93

5.4 SCARI Size by Feature . 95

5.5 GPL Size by Feature . 95

5.6 Reduction for Undirected (U) and Directed (D) Interactions (I) 97

5.7 Time comparisions for SCARI and GPL . 98

1

Chapter 1

Introduction

Ideally a software company should satisfy all requirements from all consumers in a

market segment quickly. Some requirements are common, and some are variant. Common

requirements lead to similarity among products, and variant requirements contribute to

the uniqueness of each product. To maximize the reuse among these products, Software

Product Line Engineering (SPLE) was invented to explicitly identify, manage and realize

common and variant features throughout the software life cycle during requirements

analysis, architecture design, implementation, testing and maintenance.

Many companies have adopted this methodology for developing their products. For

example, based on case studies in [20], [19] and success stories in [109], Nokia can

produce 30 mobile models which are three to six times the original number per year. HP

can deliver a series of similar printers at a rate of two to seven times faster than before.

Raytheon produces a product line of satellite ground control systems for the U.S. National

Reconnaissance Office with a seven-fold productivity improvement.

With growing popularity in industry, we need to consider the unique properties of a

Software Product Line (SPL) so that we can adapt current testing techniques or build new

testing strategies to guarantee the correctness and high quality of an SPL. Next we show

2

the challenges faced during testing an SPL with a running example.

1.1 Motivating Example

In a traditional software development life cycle, testing is an important activity to find

bugs before a product is released to the market. Testing occupies a lot of resources. For

example, in 1999 Peters et al. [108] stated that 30 to 50% of development budgets were

spent directly on software testing. In 2008, Zeller [154] found that validation (including

debugging) could easily take up to 75% of development time.

In the past decade, many companies that have adopted SPL development have expe-

rienced positive results in terms of reduced time to market, as well as higher product

quality. For example, Clements and Northrop [19] found an order of improvement

between two and ten times compared to non-SPL development. In 2006, Hetrick et al.

[62] described an incremental transition process to an SPL which removes redundant

maintenance efforts over a common code base.

Under such reduced product generation time, if we still use the traditional method to

test an SPL by testing each product one by one, then it is possible that the testing phase

will become a bottleneck to releasing products to market. Consider the following example

to illustrate this scenario.

Figure 1.1 (a) shows a synthetic small example of a bank SPL. There are six features

organized hierarchically in a feature model. We describe feature models in Section 2.1.1

in more detail. Here we point out the meaning of the graphical notation. The solid line

means a feature must appear in every product. In the bank SPL, Transfer must appear in

all products, which in turn means either “To your account” or “To one country” must be

chosen. The arc means that the features within its scope appear exclusively. Transfer is

called a variation point which has two variants, “To your account” and “To one country.”

3

Bank
VP

Transfer

VP

Bill Pay

VP

Account

VP

To your
 account

V To one
country

V
Pay

V
Payee

V
Summary
V

Report
V

0 1 2 3 4 5
Constraint 1: "To one country" requires "Report".

2-way factor
combinations

a Bank SPL 2-way value
combinations

(Transfer, BillPay) (0,2),(0,3),(1,2),(1,3)

(Transfer, Account) (0,4),(0,5),(1,4),(1,5)

(BillPay, Account) (2,4),(2,5),(3,4),(3,5)

(b)

Transfer Bill Pay

(c)

Account
0 2 4
0 3 5
1 2 5
1 3 5
0 3 4

Transfer Bill Pay

(d)

Account
0 2 4
0 2 5
0 3 4
0 3 5
1 2 4
1 2 5
1 3 4
1 3 4

(a)

Transfer Bill Pay

(e)

Account
0 2 4
0 2 5
0 3 4
0 3 5
1 2 5
1 3 5

To your account

Summary

Pay
Payee To one country

Report

(f)

Figure 1.1: Motivation Example

We can create eight products as shown in Table (d) in Figure 1.1 without considering the

constraint listed at the bottom of the figure.

If we assume it takes ten days to release a product in a traditional software engineering

methodology for one of these eight products, and we use 50% as the testing resource

allocation rate, then we deduce that five days are used for development and another five

days for testing. Based on an eight-fold magnitude productivity of SPLE, we further

assume, after we switch to an SPLE for developing products, that we can produce these

eight products in five days. If we do not change the testing strategy, then we need 40 days

for testing. The overall testing resource allocation rate now is 88.9% (40/45) compared to

the original 50% rate (5/10).

From this example, we can see that in the SPLE methodology, the testing phase can

4

become a bottleneck for releasing products to market quickly. The ability to be able to

shorten the testing time is a challenging research problem in the SPLE community. The

primary reason for such a lengthy testing time is the increased number of products. In an

SPL with 30 optional features we may have as many as 1,073,741,824 valid products. In

fact, the core challenges for testing an SPL are the exponential number of products and

current testing techniques that focus only on the product level.

Our proposed solutions tackle these challenges from two perspectives: sampling and

reuse. For example, Figures 1.1 (c) and (e) are two samples with respect to all products in

(d) of the bank SPL. Sample (c) covers all 2-way feature interactions which are shown in

(b). A k-way feature interaction refers to a combination of k features which may affect

each other with their outputs. When a sample covers a k-way feature interaction, the

k-way feature interaction embeds in at least one row of the sample. For example, there are

four 2-way feature interactions between Transfer and Bill-Pay variation points as shown in

1.1 (b). Sample (c) covers the 2-way interaction (0,2) because this pair appears in the first

row of the sample. Note there are only three 2-way feature interactions between Transfer

and Account because (1,4) conflicts with the constraint. We can see that sample (c) has

a size of five, which further reduces the testing resource allocation rate from 88.9% to

83.3% (25/30). Sample (e) covers the constraint which removes two products, (1,2,4) and

(1,3,4). We get a sample size of six, which reduces the rate from 88.9% to 85.7% (30/35).

With such a small model, it appears that we do not remove many products. However,

in one subject of our experiment in Chapter 4, the GCC 4.1 optimizer, which has 199

variation points with 40 constraints, one constraint may remove 1.2× 1061 number of

products. The product space without considering the constraints consists of 2189 × 310

products, and testing this space is infeasible. With a sampling technique, we need only

test 25 products to cover all 2-way feature interactions.

For reuse, we exploit inclusion relationships between small feature interactions and

5

(0,2,4) (0,2,5) (0,3,4) (0,3,5) (1,2,4) (1,2,5) (1,3,4) (1,3,5)

(0,2) (0,3) (0,4) (0,5) (1,2) (1,3) (1,4) (1,5) (2,4) (2,5) (3,4) (3,5)

0 1 2 3 4 5

Figure 1.2: A hierarchical organization of feature interactions for the bank SPL

larger feature interactions. Figure 1.2 shows the inclusion relationships among single,

2-way and 3-way feature interactions for the bank SPL. We can see that feature 0 (To-

your-account) is reused in four 2-way interactions, (0,2), (0,3), (0,4) and (0,5), and the

2-way interaction (0,2) is embedded into the two 3-way interactions, (0,2,4) and (0,2,5).

With these inclusion relationships, we can reuse testing results from lower interactions to

higher interactions. How to represent testing results and reuse them is a challenge. In

this dissertation we introduce symbolic execution summaries and related composition

technique to address this challenge. Next we present methods to test an SPL in this

dissertation in detail.

1.2 Methodologies

Figure 1.3 provides an overview of the dissertation. There are three solutions, shown as

Steps 1 to 3 in the figure. Coverage criteria is the first step to setup a testing scope, a subset

of products, based on limited resources and predefined interesting testing objectives like

all 2-way feature interactions. The sampling generation produces a subset of products to

satisfy the criteria, and testing techniques can be applied to probe these products with

the consideration of a reuse mechanism by exploiting similarities. Constraint solving is

the core technique for supporting these three solutions, and the interaction perspective is

our specific view for testing an SPL. We elaborate them in detail below.

6

Software Product Lines

Interactions

Coverage

Criteria

Sampling

Generation

Testing

with

Reuse

(1) (2) (3)

Constraint Solving

Code

Base

CCIT

Models

Feature Models

CodeBase

Inclusion Graph

Figure 1.3: Methodology Overview

1.2.1 Establishing Coverage Criteria Related to Interactions and

Constraints

Explicit variabilities lead to an exponential number of products and need special care from

the testing perspective. In the requirement phase, there are many modeling languages to

describe variabilities with a compact representation. For example, Orthogonal Variable

Model (OVM) [109] is a graphic notation language that captures variability relations.

With the same example, Figure 1.1 shows a feature model using the OVM notation for

a bank SPL. We can see there are a total of six features. Each variation point, Transfer,

Bill-Pay and Account, has two alternative features. All six alternative features consist of

eight products without considering the constraints.

A variability model defines a scope of valid products for this SPL, which satisfies all

implicit and explicit constraints. The above example includes only implicit constraints

such as parent-child relations, alternative and mandatory relations. There could be other

7

constraints to filter more products. For example, Constraint 1 shown in the figure states

that whenever the feature To one country appears in a product, then another feature, Report,

must also appear in the same product. Hence after a client transfers money to another

foreign country, there must be a specific report to the client. Considering this constraint,

the number of valid products is reduced to six.

Here we propose a new testing coverage to exploit the variability model to cover feature

interactions, constraints or both incrementally. We believe these feature interactions are

essential sources for complicated bugs in an SPL. Organizing interactions systematically

as a series coverage criteria is one of our contributions. We consider constraints as

independent coverage criteria, and also setup mixed criteria with interactions. For

example, we want to generate all interactions with two features, and there are 11 such

pairs shown in Table (b) in Figure 1.1. Note that one 2-way feature interaction, (1,4),

is removed due to a conflict with the constraint. Generating samples to cover feature

interactions considering constraints is a new technique we have developed and discuss in

Section 1.2.2.

We also propose directed feature interaction coverage by considering data flow di-

rections among features. A k-way directed feature interaction extends a k-way feature

interaction by considering how these k features affect each other in terms of data flow

directions among them. For example, in Figure 1.1 (f), all directed relations between

any two features for the bank SPL are explicitly shown as a feature dependence graph

(FDG). We can see that an interaction between Pay and Summary is a single direction,

so when we test this interaction we really need to trigger only a data flow from Pay to

Summary. For an interaction between Payee and Summary, there is no real data flow

between them, which means we do not need to test such an interaction at all. Note that

the Payee feature is a unique feature in Bill-Pay for setting up items so that Pay knows

the destination to pay money. Test cases do not need to be developed to probe this type

8

of interaction. We term the previous interaction as a feasible interaction, and later as an

infeasible interaction. During testing, we only consider feasible interactions. Generating

all feasible directional feature interactions and then testing them with a reuse mechanism

is a new technique we have developed and presented in Chapter 5.

1.2.2 Generating Samples to Meet Coverage Criteria

After establishing this coverage, we further extend two existing combinatorial interaction

testing (CIT) techniques, AETG-like and Simulated Annealing, to construct a sample to

satisfy the interaction coverage criteria. The core technique contribution [27, 26, 28] is

to enhance CIT as constrained CIT (CCIT) by integrating boolean SAT solvers to handle

constraints appearing in feature models. For example, Figure 1.1 (c) shows one such

sample which covers all valid 2-way interaction pairs shown in Figure 1.1 (b) with respect

to the constraint.

In summary, we propose a new interaction-strength and constraint-sensitive coverage

criteria for an SPL based on its variability model, and directional interaction coverage

that considers data flows among feature interactions. We also introduce several related

CCIT variants to generate samples to fulfill interaction coverage with optimizations. Next

we introduce a new technique to fulfill directional interaction coverage.

1.2.3 Testing Interaction Trees by Exploiting Similarity

Before we introduce our technique to test directional interactions with a reuse mechanism,

we want to mention another representation of inclusion relations other than hierarchical

representation among interactions, i.e., partial products.

With relation to the properties of an SPL, there are many similarities among products,

although each product is unique. Obviously, common features are the first source of

9

similarities. Some partial products contain variable features and can not appear in all

products, but these partial products appear in many products. These partial products are

a second source of similarities. The bank SPL in Figure 1.1 does not have any common

features, but its eight products are similar due to shared partial products. For example,

in Table (d) product (1,3,4) shares (1,3) with (1,3,5) and shares (1,4) with (1,2,4).

Both partial products and a hierarchical graph are good candidates for representing

inclusion relations among non-directional interactions. For directional interactions, we

need to expand this to add data flow relations. For example, Figure 1.4 is an extension of

Figure 1.1 based on feature dependence relations in Figure 1.1(f). Figure 1.4 shows that

there are three directional 2-way interactions, {pay→ Summary} (PS), {ToYourAccount→

Summary} (TS) and {ToOneCcountry→ Report} (TR). There is also one 3-way interaction,

{Pay → Summary, ToYourAccount → Summary} (PS-TS). In this example, obviously

there are two inclusion relations between two 2-way directional interactions, (PS,TS), to

one 3-way directional interaction, (PS-TS), and we want to use testing results of both PS

and TS to test PS-TS.

Pay To your account

Summary

Pay To your account

Summary Summary

To one country

Report

directional 3-way

interactions

directional 2-way

interactions

Figure 1.4: A hierarchical organization among directional feature interactions for the bank
SPL

In Chapter 5 we discuss the detailed technical solutions.

10

1.2.4 Constraint-Solving-Centered Problems

All of these three solutions, interactions and constraints-oriented coverage definitions,

CCIT sampling for constraints and inclusion-guided integration testing, are related to the

constraint solving.

For the first solution, there are constraints in OVMs which are direct evidence of the

existence of constraint solvers. In general, there are prevalent constraints in variability

models. Tools such as FAMA [8] are needed to handle constraints so that consistency

checking, specialization process and other reasoning tasks can be supported. In the

dissertation, we need to consider constraint syntax transformation from requires and

excludes in OVMs to the conjunctive normal form (CNF) for two Boolean SAT solvers,

zChaff [95] and MiniSat [40], respectively. For the second solution, we integrate these two

constraint solvers into an AETG-like algorithm for different optimizations. There may

be millions of satisfiability checks during sample constructions. For the last solution, we

employ symbolic execution to compute summaries for single features, and during the

path exploration there are full of constraints collection and solving. We further compose

summaries together for 2-, 3-, . . . , n-way directed interactions, which uses constraints

concatenations, normalizations and solving often. Constraint solvers, Satisfiability Mod-

ulo Theories (SMT) solvers more precisely, could be Choco [15], CVC3 [33], Z3 [152] and

other theory-oriented solvers.

Next we show our thesis, list four contributions and present the organization of

chapters in this dissertation.

1.3 Thesis

The dissertation makes three theses shown below:

11

1. Our interaction-strength and constraint-sensitive coverage criteria provide a set

of feasible targets to drive testing efforts to the core property of SPLs: variability.

Our directional interaction coverage criteria further quantify interactions of SPLs

explicitly, which can assist testers to focus on specific interaction patterns directly.

2. Our sampling techniques can test SPLs from the perspective of CCIT models more

effectively than traditional techniques. The reason is because the techniques are

integrated with SAT solvers tightly from three standpoints: 1) using returned

true/false values from SAT solvers to construct valid configurations; 2) exploiting

Must and May information from SAT solvers to ignore the satisfiability checking and

to speed the construction; and finally 3) exploiting a whole model of SAT solvers to

replace the construction after a certain threshold point.

3. Our integration testing technique can test directed interactions in SPLs more effec-

tively than traditional techniques. The reason is because the technique exploits the

similarity among directed interactions by reusing symbolic summaries of smaller-

size directed interactions for composing summaries of larger-size directed interac-

tions from the bottom up.

1.4 Contributions

The contributions of this research are four-fold:

1. Designing Coverage Criteria

We refine a series of coverage criteria formally related to interactions and constraints,

and develop a coverage computation technique to automatically capture coverage

criteria explicitly. Chapter 3 introduces the technique in detail.

12

2. Generating Samples to Meet Coverage Criteria with a Focus on Constraints

We design variant sampling techniques to generate a subset of products to meet

the interactions and constraints coverage criteria. Several algorithms and empirical

studies are introduced in Chapter 4.

3. Refining Coverage Criteria

We define a coverage criteria formally to target directed interactions, and develop a

coverage computation technique to automatically compute coverage criteria explic-

itly. Chapter 5 introduces the details.

4. Integration Testing SPLs Through Exploitation of Similarity

We design a compositional technique to test directed interactions with a bottom-up

reuse mechanism. Chapter 5 presents algorithms and evaluations.

1.5 Outline of Dissertation

We organize the remainder of this disseration into several chapters. Chapter 2 gives

the background of our techniques from the above four perspectives with a focus on

constraint-related issues. Chapter 2 also presents and discusses the state-of-the-art for

testing an SPL. Chapters 3 and 4 introduce the coverage and sampling work, and then

the integration testing work is described in Chapter 5. Finally, Chapter 6 concludes the

dissertation by summarizing our contributions to both researchers and practitioners and

by proposing future work.

13

Chapter 2

Background and Related Work

In this chapter, we first present a general introduciton of software product lines with a

focus on feature models. Then we introduce the background used in our proposed tech-

niques such as coverage criteria, sampling and integration testing techniques. Finally, we

discuss most related work of testing SPLs in detail, and summarize the major differences

between their and our techniques.

2.1 Software Product Lines

The objective of Software Product Line Engineering (SPLE) is to maximize reuse among a

predictable set of similar products on the market, and the key is to manage and realize

variability. Research in SPLE started more than decade ago, and related conferences have

an increasingly impact on industry. For example, based on the history of the Software

Product Line Conference (SPLC) website [125], SPLE started in 2000 in the U.S. and in

1996 in Europe under another name: software product family engineering. They were

merged in 2005 to promote more communication among researchers leading to greater

world-wide impact.

14

Based on the 2010 SPLC, many companies have adopted SPLE, including vehicle

manufacturers such as Scania and Volvo [56], which focus on maintaining an evolved SPL

architecture; NASA GSFC [47], which focuses on the testing part of an SPL architecture;

a power and automation company, ABB [129], which focuses on realizing usability in

SPL architectures; and a global positioning system (GPS) company, TomTom [123], which

focuses on managed interfaces.

Many researchers have adapted different software-engineering procedures and tech-

niques to manage and realize variability. For example, Jansen et al. [70] map features

from the requirements level to the design and implementation levels. Pohl et al. [109]

also illustrate realization of variability in different phases. Hendrickson et al. [61] provide

semantic definitions in the architecture phase from the perspective of change sets and

relationships. In addition to these traceability techniques, feature models – an important

variability management tool, have been studied extensively. Next we give a detailed

explanation of such languages.

2.1.1 Feature Models

Feature modeling is a key activity in an SPLE to manage variability, to define the scope

in terms of the number of valid products for an SPL, to manage the complexity of

a potentially huge number of features and relations among them, and to aid other

activities such as requirements [72, 109, 89], design and architecture [110, 114, 130], and

implementation [5, 76] to explicitly realize commonalities and variabilities.

Different notations and extensions have been proposed to capture various conceptual

understandings, to enrich their expressiveness, and to meet application requirements

among SPLs. The first feature model originated from feature-oriented domain analysis

(FODA), and was first initiated in 1990 by Kang et al. [75]. Since then, there have been

15

many variants [34, 55, 142, 116, 36]. Kang et al. [75] introduce a tree structure, a feature

diagram, to organize features with parent-children relations and three core expressiveness

elements which still hold true in these extensions shown below:

1. the mandatory and optional relation for a single feature,

2. alternative and or relations among a group of features, and

3. other complicated constraints among features, including require and excludes rela-

tions.

Figure 1.1 (a) is an example for illustrating the above elements. For example, Transfer

is a mandatory feature represented as a solid line. To your account and To one country

consist of a group of features with the alternative relation, which is represented as an arc.

Finally, the Constraint 1 in the example shows an requires relation between To one country

and Report.

Other researchers refine one of these three elements more formal or more detailed.

For example, Czarnecki et al. [36] integrates a concrete constraint language, Object

Constraint Language, from an UML language into feature models. This instantiates

the third element specifically for expressing constraints. Czarnecki et al. [34] introduce

cardinality-based expressions and split the alternative relations, the second element, to

several more specific relations including exclusive-or, inclusive-or and exclusive-or group

with optional sub-features. They also introduce other notations to make the feature model

notation scalable, like referencing with recursions, cloning and labeling with attributes.

Besides efforts to build a richer set of feature modeling notations, researchers also focus

on other related problems including reasoning mechanisms [36, 135, 8, 131, 81, 6, 144],

formal semantic definitions [35, 6], a specialization process [34] and reverse engineering

a feature model from the feature dependencies extracted from the code base [121].

16

For example, an impact analysis of changes of feature models, which may lead to

a smaller or larger size of valid products, should feed results back to the engineers.

Consistency checking is a basic analysis for validating a feature model, and has at least

one configuration which satisfies all constraints.

All of these mechanisms use constraint solvers to tackle complicated relations in

feature models; therefore, corresponding tools are integrated with different constraint

solvers. For example, the feature modeling plugin for Eclipse in [36] uses a solver

based on Binary Decision Diagram (BDD) [57] called Congit Software [31]. FAMA in [8]

integrates three solvers, JavaBDD [73], JaCoP [69] and Sat4J [117]. The tool in [6] uses

a logic truth maintenance system (LTMS) [45] for predicting which features should be

chosen for a given set of chosen features based on the reasoning algorithm, Boolean

constraint propagation (BCP). It also uses an SAT solver, Sat4J, for debugging a feature

model by checking if it has at least one valid product. BCP is a core reasoning basis

for Boolean proposition logic and a core algorithm for making modern SAT solvers fast.

We give more detailed discussion in Section 2.3. The tool in [112] uses a prolog-based

constraint solver.

We also present another model, the orthogonal variability model (OVM) [109], which

expresses and describes the variability of an SPL using a different language. OVM

supplies variation points to organize variants hierarchically, variants to represent a

partitioned category, and constraints among them. A modeling tool, VarMod [143], is

also available as an Eclipse plugin. Note that in our paper [25], we supply a formal

explanation of OVM notations via a relational model, and more details are explained in

Chapter 3. Although OVM does not originate from FODA and is different than feature

models, there are mapping relationships with feature models among its core notations.

For example, a variation point corresponds to non-leaf nodes which can have a group

of sub-features; a variant may correspond to a non-leaf feature and leaf feature; and

17

constraints include requires and excludes which are the same as those in feature models. If

a variant is a non-leaf feature, then it uses requires constraints to relate to another group

of features. A more thorough comparison of feature models can be found in a survey

paper by Schobbens et al. [118] in 2006.

For implementing a feature model at the code level, Thaker et al. [134] in 2007

tackled the safe composition problem related to a specific SPL development environment,

Algebraic Hierarchical Equations for Application Design (AHEAD) [4]. AHEAD supplies

an extended Java language, Jak, for supporting composition-based software development.

In AHEAD each feature is implemented in a separate package and may depend on other

features. When we compose different features together, there may be some compilation

problems. For example, when we compose a feature A with another feature B to be

a product, but this product does not include other parent features, which leads to the

problem of references to undefined elements. They supplied a static analysis for collecting

all dependent constraints related to feature implementation using Jak, and for proving

with a SAT solver that a feature model can not generate a product which violates any of

these rules.

2.2 Covering Arrays

In this section, we present definitions of covering arrays, applications of these covering

arrays in the testing domain, and variant methods to generate covering arrays.

Informally, a covering array (CA) is an array with a size as N × k, where N is the

number of rows and k is the number of columns, which is called a factor in the CA

literature. Each factor has the same set of values or choices. CAs can be used to cover

all t-way value combinations (t-sets) of all t-way factor combinations, where t is called

the strength. When t is 2, the CA is called a 2-way CA, which is most commonly used in

18

other applications and constructed. We give a formal definition below:

Definition 2.2.1 A covering array, CA(N; t, k, |v|), is an N× k array from a set, v, of symbols

with the property that every N × t sub-array contains all ordered subsets of size t from the |v|

symbols at least once.

For example, Figure 1.1 (c) shows a 2-way covering array where we have an input

model as (N=5,t=2,k=3,v=2). There are eight combinations in total. Figure 1.1 (b) shows

all 2-way factor combinations and then all corresponding all 2-way value combinations.

Then (c) shows a covering array, which covers (b). For example, we can see that for

(Transfer,BillPay), all four 2-way pairs (0,2), (0,3),(1,2) and (1,3) appear in the array.

The presence of constraints demands a new definition for a proper covering array.

Integral to this definition is the concept of whether a t-set is consistent with a set of

constraints.

Definition 2.2.2 Given a set of constraints C, a given t-set, s, is C-consistent if s is not forbidden

by any combination of constraints in C.

This definition permits flexibility in defining the nature of constraints and how they

combine to forbid combinations. We provide a definition of constrained covering arrays

(CCIT), that is parameterized by C and its associated definition of consistency.

Definition 2.2.3 A constrained-covering array, denoted

CCA(N; t, k, v, C), is an N × k array on v symbols with constraints C, such that every N × t

sub-array contains all ordered C-consistent subsets of size t from the v symbols at least once.

Besides these basic- and constrained-covering arrays, in some models, the strength t

is higher for a set of factors and lower for other factors for different applications. These

are not our focus in this dissertation, and more detailed definitions and examples can be

seen in [27].

19

2.2.1 Applications of Combinatorial Interaction Testing

There are many applications for Combinatorial Interaction Testing (CIT). For example, in

1985, Mandl [88] applied the orthogonal Latin square, one stricter type of covering array,

to design test cases for the Ada compiler. In 1992, Brownlie et al. [10] developed the

orthogonal array testing system(OATS) to test PMX/StarMAIL at AT&T. In 1997, Cohen

et al. [22] also applied the AETG algorithm to both a telephone switch software system

and an Asynchronous Transfer Mode (ATM) network monitoring system.

Recently in 2004, Kuhn et al. [83] discussed pseudoexhaustive testing. They discussed

previously published related work, which also analyzed a set of software systems. These

systems include software systems on medical devices, remote agent experiment software

on NASA’ Deep Space 1 mission, and a set of POSIX operating system functions used

by 15 commercial software systems. They then analyzed 329 error documents of a large

distributed software system developed by NASA Goddard Space Flight Center. From

these two analyses, they recommended that a covering array with a small t-strength like

(4 ≤ t ≤ 6) is enough to exhaustively test software systems in practice. Of course, authors

also mentioned that more experiments over other classes of software systems are needed.

In 2006, Yilmaz et al. [150] applied CIT to generate a sample with low strength, ran

a configuration in this sample to collect bugs, associated bugs with a small portion of

options, and finally supplied such options to developers so that they can use such fault

characterization to find the bug location quickly. Originally they used all configurations

to run, which is time-consuming and not scalable; with the sampling technique, they

achieved almost as good results as all-configurations in terms of fault characterization.

Another important finding is that CIT performed more consistently than random sampling

for characterizing faults.

For sampling in the SPL domain, McGregor [91] applied a covering array to test

20

variability in an SPL in 2008. The variability is propagated from requirements through

architecture to implementation. For architecture, there maybe variation points which

have several components to implement the same function with other requirements. For

example, there are different communication protocols like GPRS, EGPRS and UMTS in

the wireless device domain. Sampling techniques can be used to generate a subset of

products with a t-strength coverage from a practical standpoint.

In 2008, Xiao et al. [113] applied CIT to test configurable software systems by con-

sidering different prioritization techniques of regression testing. In 2010, Si et al. [67]

applied CIT for GUI testing, and then devised a genetic algorithm for repairing generated

covering arrays. In 2011, Yuan et al. [151] developed a new coverage criteria considering

specific properties of GUI testing such as event combinations and event sequence length,

and then applied CIT to generate these covering arrays.

Next we focus on the introduction of different methodologies for generating a covering

array from four perspectives: algebraic methods, meta-heuristic search, constraint solving

and greedy methods.

2.2.2 Algebraic Methods

In 1999, Stevens et al. [128] discussed constructive methods to build covering arrays.

Usually constructions find a smaller size of covering array, but this can not be generalized.

Practioners need to understand when a Combinatorial Interaction Testing (CIT) problem

can use a constructive method or not, which requires deep understanding of the method.

In 2004 and 2005, Hartman et al. [60, 59] also discussed constructive methods. Because

these methods are not the focus of our algorithms, here we do not discuss more related

papers in the literature.

21

2.2.3 Meta-Heuristic Search Methods

In 2003, Nurmela [102] introduced a Tabu search method to find an new upper bounds

for some previously constructed CIT problems. Tabu search [50] is a meta-heuristic search

to target an optimization problem as an improved version for a local search. One unique

property is that a tabu list, including recently visited solutions, can be used so that local

optima can be avoided and a global optimal solution can be found.

In 2003, Cohen et al. [23, 24] introduced simulated annealing (SA) [98] and genetic

algorithms (GA) [43] to construct covering arrays. SA avoids the local optimum problem

with a probability which depends on a global temperature variable, T. At the beginning

T is big and leads to a large freedom to move from a good solution to a bad solution. As

T decreases, the possibility is smaller which gradually prevents such a bad move. After a

fixed number of iterations, an optimal or good solution is found from an initial solution.

GA is another meta-heuristic algorithm to mimic a natural evolution process. GA has

several unique operations to find a final optimal solution, including inheritance, mutation,

crossover and selection. The basic principle is that the next generation is better than

previous predecessors. The inherit operation keeps good merits from predecessors; the

mutation operation changes some parts of a gene in the hope of finding better solutions.

The crossover operation exchanges parts between two genes to put both good parts

together for a better gene, and the selection operation selects good candidates from a

gene pool. Based on results, they suggested that heuristic search techniques can produce

a smaller size covering array than greedy techniques. We also confirmed this claim in our

experiments [28, 27, 26]. In 2011, Garvin et al. [48] improved the efficience of SA, which

was observed to produce smaller covering arrays with much worse speed in our paper

[26].

22

2.2.4 Constraint Programming

In 2006, Hnich et al. [63] represented a covering array problem with a constraint program-

ming problem, and used several constraint models to solve the construction problem more

efficiently. This work is close to our extended greedy algorithms to handle constraints,

and we give more detailed discussions in related work section for this work. In 2010,

Oster et al. [103] used constraint programming to construct pair-wise covering arrays

incrementally.

2.2.5 Greedy Methods

There are two primary classes of greedy algorithms that have been used to construct

covering arrays. The majority of algorithms are the one-row-at-a-time variation of the

automatic efficient test case generator (AETG)[22]. A different type of greedy algorithm

is the In Parameter Order (IPO) algorithm [132] and In Parameter Order General (IPOG)

[86]. Rather than focusing on a row-at-a-time, the IPO algorithm generates all t-sets for

the first t factors and then incrementally expands the solution, both horizontally and

vertically using heuristics until the sample is complete.

The deterministic density algorithm (DDA) [29] introduced another requirement,

repeatability, for covering array techniques. As discussed by Tang et al [136] in 2000,

this deterministic property can be used to help fix bugs by repeating problems. DDA

extends AETG based on the observation that when we bind a value for a factor in AETG,

the criteria is related to the number of uncovered t-tuples between this factor with each

previous factor-value binding, and we do not consider the number of uncovered t-tuples

for all other remaining factors that have not yet been bound with values. Not exploiting

the global view among all uncovered t-tuples is one limitation of AETG, which is an

inherent property of a greedy algorithm. Then Colbourn et al. [29] continued to propose

23

two concrete properties, local density and global density, to measure such global view.

Furthermore they supplied an implementation for constructing covering arrays with

an approximation of these two properties. From experiments, DDA seems to be not a

strong winner among other techniques including AETG, TCG [136], IPO [132], TConfig

[146]. This is reasonable because the problem of choosing a row that can maximally cover

un-covered t-tuples is NP-Complete by itself, as proved in [29].

Fore more techniques about combinatorial testing, interested readers may read a

survey [54] by Grindal et al. in 2005 or a more recent survey [101] by Nie and Leung in

2011.

In summary, much of this literature ignores practical aspects of applying CIT to real

systems, which limits the effectiveness and applicability of this work. In this dissertation,

we focus on one difficult, yet prevalent, issue which may confound existing algorithms –

the handling of constraints. More detailed discussions are in Chapter 4.

2.3 Constraint Solving

The satisfiability (SAT) problem determines whether a Boolean formula can possibly

be true, that is, if there is at least one assignment that satisfies all of the conditions. It

was introduced in computation theory by Cook and Levin around 1973. In computation

theory SAT is interesting because it was one of the first NP-Complete problems. Many

other problems, such as the clique and subset-sum problems, are proven NP-Complete by

reducing from SAT.

SAT can be applied to many problem domains, especially Artificial Intelligence and

Electronic Design Automation(EDA). In fact those domains drive the evolution of SAT

techniques. For example, in EDA combinatorial equivalence checking, microprocessor

verification and field-programmable gate array routing problems [99] are typical SAT

24

applications. Recently SAT has also been applied to software test generation and software

verification. For example, in [127, 84, 3] a test suite can be generated by a SAT solver

directly. Clark et al. in [16] model checkers used a SAT solver for bounded model

checking.

The basic algorithm for solving SAT problems is due to Davis and Putnam (DP)

[39]. In order to overcome the memory limitation of the DP method, Davis, Logemann

and Loveland (DLL) [38] proposed a tree-like searching algorithm, called DLL. DLL

systematically searches for a truth assignment that makes the formula true. Most modern

SAT solvers [155, 95, 40, 90, 41, 117, 74] inherit the propagation mechanism, Boolean

Constraints Propagation(BCP), from the DLL algorithm. They also extend the DLL

algorithm for better performance with other features, such as the 2-literal watching

scheme, non-chronological backtrack, clause learning and restart. We call these algorithms

DLL-like algorithms. With modern SAT solvers, problems with thousands of variables

can be solved in seconds.

2.3.1 Davis-Logemann-Loveland Algorithm

The original DLL algorithm [38] forms the framework for almost all modern SAT solvers.

DLL divides the search process into several steps, such as preprocessing, variable binding,

BCP and backtrack. Preprocessing is a step to simplify the input formula before a SAT

solver tries to search for a model. Variable binding is a step that chooses a truth-value

for a free variable. BCP applies the unit rule to the clause database to get more variable

bindings. The unit rule is the core reasoning basis. The unit rule involves two conditions:

1) all other literals are bound with false in a clause; and 2) the clause must be true. Under

such a situation, the last remaining literal must be bound to true. Backtrack is a step

to resolve a conflict encountered in the BCP step. Most modern SAT solvers extend the

25

feature in different steps, usually in the BCP and backtrack steps which are the two most

computationally-expensive steps in DLL. Before we introduce these steps in detail by

following the pseudo code in Algorithm 1 with the running example shown in Figure 2.1,

we explain several important notations in Figure 2.1.

Figure 2.1 shows a search tree for the formula φ with a CNF format. Each path

represents a variable binding assignment, which may end with SAT or UNSAT (Conflict).

There are two important notations: levels and dashed/solid lines. A level consists of a

group of variables, and levels are numbered starting from 0. When the first variable in

a level is bound to true/false, then all following variables in the same level are bound

to true/false automatically by BCP. For example, Level 1 includes two variables, v5 and

v6. When v5 is bound to false, based on the last clause in φ, (v6 ∨ v5), BCP deduces that

v6 must be bound to true. For the simplicity of the search tree, we only annotate levels

for the left-most path. A dashed line from a bound variable to another bound variable

refers to the implication relation between these two variable assignments. With the same

example, there is a dashed line from ¬v5 to v6. A solid line from a bound variable to

another bound variable represents an independent assignment for the latter variable

during the tree exploration. All initial variables of levels accept solid lines. There are

also two special nodes, C and sat. C represents a conflict for a given partial assignment,

and we discuss the concept in this section soon. The sat simply indicates a satisfiable

complete assignment for a formula.

For Algorithm 1, it first simplifies an input formula at statement 2. For example,

it scans the formula to find two complementary clauses, c and ¬c. If there exist such

clauses, the formula is trivially unsatisfiable because we cannot make both true under the

same variable bindings in both clauses. If DLL finds v and ¬v in the same clause, it just

removes the clause from the clause database. The reason is that with any assignment of

variable v, the clause is always true.

26

root

Level 3

Level 1

Level 0

Level 2

C sat

v1

¬v5

v 6

v 4

v 2
¬v2

¬v3v 3

¬v4

v 5

¬v1

v 4

v 2

v 6

v 3

v 5

365241

324651

321321323241

|||

|||

)()()()()(

vvvvvvvbs

vvvvvvvbs

vvvvvvvvvvvv

r

l

¬=
¬=

¬∨¬∨¬∨¬∨¬¬∨∨∨=φ 65)(vv ∨

Figure 2.1: The DLL Search Algorithm

DLL Algorithm(φ)
Require: Input: a CNF formula φ, Output: Satisfiable or Unsatisfiable
1: preProcessing(φ)
2: initialize(φ,vbss,vlist,g)
3: while True do
4: if freeVariable(v) then
5: BCP(vlist,v,conflict,v’)
6: else
7: return Satisfiable
8: if conflict then
9: Backtrack(v’,backlevel)

10: if backlevel<0 then
11: return Unsatisfiable

Algorithm 1: DLL Algorithm

Then it initializes three global variables: a VBS variable vbss, a variable list vlist and a

basic implication graph g. We use Variable Binding Snapshot(VBS) to express the progress

27

of a current search procedure for total binding. For example, in Figure 2.1 there are two

VBSs in the graph, vbsl and vbsr. vbsl represents a variable binding snapshot when the

SAT solver reaches the end of the left-most path, and vbsr the right-most path. vbsl also

indicates a total binding order. For example, v1 is on the left of v5 which means v1 has

been assigned a truth-value before v5.

Initially there is no assignment inside the vbss. For the vlist it includes all variables in

φ. For each variable v there are two associated lists, the positive list and the negative list.

The positive list includes all clauses with the literal v, and the negative list includes all

clauses with the literal ¬v. For example, given a CNF formula φ in Figure 2.1, for the

variable v1, the positive list includes the clause (v1 ∨ v2) and the negative list includes

two clauses (¬v1∨ ¬v2∨ v3) and (¬v1∨ ¬v2∨ ¬v3).

Third, it enters into the main part of the algorithm. It will stay in the while loop until it

finds a model or it will search the whole assignment combination space without finding

a model. When there is no free variable left, the SAT solver finds a model. In statement 4,

the freeVariable() returns false under such situation. Then the flow goes into statement 7,

which returns SAT. When it does not find a model, it will continue to bind a true/false

value to a chosen free variable, v, in freeVariable(). There are different techniques to

choose a variable in a formula, such as the Variable State Independent Decaying Sum

(VSIDS) invented in zChaff [153], which employs the dynamic information of the search

process.

After freeVariable() produces a new decision variable binding, the BCP() begins to

propagate the binding information v according to the unit rule so that more variable

bindings are implied. The BCP() function has three parameters: the new variable binding

v, the conflict indicator conflict and the conflict variable v′. v is the input parameter. The

conflict and v′ are the output values returned from the BCP() function. Conflict indicates

whether the BCP encounters a conflict during the propagation process. A conflict is a

28

situation where the same variable is implied to have both true and false values based on

the unit rule. If so, the conflict has a true value; otherwise the conflict has a false value.

If the conflict has a true value, then the v′ records the conflict variable during this BCP

propagation process. BCP is an iterative procedure, and it continues to propagate the

generated implied variable binding until there is no variable bindings that can be implied

or it reaches a conflict.

When there is a conflict, the algorithm tries to backtrack. This is done in statement

9 with the backtrack() function. Most backtrack algorithms in modern SAT solvers are

similar. There are two backtrack methods: chronological backtrack and non-chronological

backtrack. The latter method resolves the conflict much more effectively because it will

drive the search to skip parts of the assignment, which lead to the same conflict again. For

the chronological method, backtrack returns the parent level; for the non-chronological

method, it may return several levels higher to correct a conflict with a binding for a

variable.

If backtrack returns a level k, which is equal to or greater than 0, then backtrack

undoes all the bindings greater than and equal to k and starts the search from level k. This

can be seen from the statement flow from 10 to 4 where the backtrack level is greater than

or equal to 0. If backtrack returns a level smaller than 0, then the formula is unsatisfiable

because it fails to bind a truth-value to the decision variable in level 0. This can be seen in

statement 11, when SAT solver stops. Next we explain BCP and Backtrack in more detail.

2.3.2 Boolean Constraint Propagation

BCP is a procedure that propagates the current variable bindings to acheive more forced

variables bindings. Without the BCP procedure, some variable bindings that lead to

unsatisfiable assignments will be taken. Obviously this will waste time. As discussed in

29

the DLL framework, BCP starts from a decision variable binding, and applies the unit

rule to get the implied variable bindings. Decision binding and BCP are two sources

driving the search. Another source is the backtrack mechanism, when there is a conflict

during BCP procedures.

According to experiments in [156], much time is spent in the BCP procedure during

the search. Sometimes even 80% of the execution time is spent in the BCP. Therefore,

researchers use different engineering strategies to improve the efficiency of the BCP. More

specifically, we need to facilitate BCP to quickly find the unit clauses.

2.3.3 Backtracking

Backtracking is a procedure that decides where the SAT solver should restart the search

when the SAT solver encounters a conflict. There are two kinds of backtrack: chronological

and non-chronological. Chronological backtrack is used in the DLL algorithm [38]. Non-

chronological backtrack is an improvement of chronological backtrack. It was first

mentioned in RelSat SAT solver [74], and is used in almost all modern SAT solvers.

Clause learning is a procedure to analyze a conflict. It returns a set of variable bindings

as a reason for the conflict. Clause learning is the core of the non-chronological backtrack

algorithm. Clause learning not only helps SAT solvers skip some variable bindings which

lead to unsatisfiable, but also stops the same conflict from happening in future searches.

2.4 Symbolic Execution

Symbolic execution (SE) is a technique to explore all behaviors of a program in terms of a

path tree. Because SE aims to execute all feasible paths at once, it sets up an ideal and

exact upper bound for path coverage. The method that SE takes is to use symbolic values

to represent all possible choices for parameters, to collect all path conditions whenever

30

there is an explicit or implicit branch point, and then to check if such path conditions

are satisfiable via a constraint solver (a decision procedure). Because of the difficulties

of such underlying constraint solving and the exponential number of paths, SE does

not usually scale well to large size programs as mentioned in [14] by Cadar et al. in

2011. SE was first proposed by King [80] in 1976 for automatic program testing; there

has not been much progress in academia until recently, which has been motivated by

advanced constraint solving and better understanding of programs. Also, because of SE’s

interesting machinery and its inherent ultimate goal, many researchers are now focusing

on these two challenges: an exponential number of paths and complicated constraints.

2.4.1 Tackling a Large Path Space

In 2007, Godefroid [52] tackled the problem of a large path space by using summaries of

functions during the path exploration procedure to avoid recomputing the same functions

when SE encounters them again. The summary for a function represents all paths in a

function. As mentioned by Person et al. [106], it is probable that an incomplete summary

for a function is computed due to loops, iterative calls, un-bound complex data structures

like linked-list or simply run-out-of-time. One inherent property of this method is to push

the exploration of an exponential number of paths from SE to an underlying decision

procedure.

In 2008, Cadar et al. [13] tackled the problem by skipping paths, which had the same

side-effects as one of the explored paths before. The key decision is to check if one

incomplete path, p1, has the same side-effects as one of the completed paths, p2. If so, we

can stop to continue the exploration of p1 which may involve many paths. The method

they use is to partition a method into several sections following the original sequential

order, where each section corresponds to a partition of symbolic parameters. In order

31

to split a method into two sections, there should be no interactions between these two

sections. More specifically, there should be no live variables in Section 1 with respect to

Section 2. If such situation occurs, then we can separately transform one method to two

smaller methods and symbolically execute them separately. With such technique, we can

explore more distinguished paths than the original blind-search SE, which may lead to

more branch coverage and expose more bugs as shown in their experiments.

In 2011, Person et al. [107] took advantage of the evolution of programs in terms of

versions, which encompass a small set of changes between each versions. The impacted

code area of these changes can be used to guide the symbolic execution over only these

areas, and skip previously explored areas for which the impact analysis (static analysis)

can guarantee no further errors introduced by these changes.

2.4.2 Tackling Complicated Constraints

In 2007, Shannon [120] proposed a String theory with a finite-automata representation

to capture and reason operations over strings. The operations include methods equal,

charAt, contains and concat of java.lang.String interface. In 2008, Kroening and Strichman

[82] illustrated many different decision procedures including linear arithmetic, array,

bit-vector, pointer and other mixed theories like string with linear arithmetic theory. In

2009, Belt et al. [7] provided a light decision procedure to check the satisfiability of a path

condition faster. Their theory is a linear arithmetic theory.

2.4.3 Applications of Symbolic Execution

In 2006, Yang et al. [148] applied SE over the disk mounting code of three widely-used

Linux file systems, ext2, ext3 and JFS, and found bugs in all of them. In 2008, Person et al.

[106] applied SE over a pair of methods, such as a method with its refactored counterpart,

32

to check if they are semantically equal and if not, compute the difference in terms of

paths. This technique is more precise than simple text differential tools like diff because

it provides a path-by-path comparison between two methods. In 2008, Csallner et al.

[32] applied SE to collect invariants of programs for a set of runs of a given test suite.

SE has already explored many paths for a program, and each path is general in term

of representing a lot of inputs. These inputs trigger the same path; we say that these

inputs are in the same partition. When compared with Daikon [42], they can construct

more relative invariants in terms of paths, or more specifically a set of pairs (precondition,

post-condition).

There are many tools in both academia and industry, which include Symbolic

PathFinder [100] from NASA, Cute and JCute from UIUC [139], Crest [138] and BitBlaze[137]

from UC Berkeley, Klee [126] from Stanford, Pex [92] and Yogi [93] from Microsoft, and

Appolo [2] from IBM.

In summary, there are many new techniques to address two basic challenges: a huge

number of paths and complicated constraints. We just give a very small discussion in this

domain, and there are many other applications and techniques of SE. You can find them

in a comprehensive survey on SE by Pasareanu et al. [111] in 2009 and by Schwartz et al.

[119] in 2010. Next we introduce definitions of symbolic method summary, which is used

in Chapter 5.

2.4.4 Symbolic Method Summary

Several researchers [53, 106] have explored the use of method summarization in symbolic

execution. In [53] summarization is used as a mechanism for optimizing the performance

of symbolic execution whereas [106] explores the use of summarization as a means of

abstracting program behavior to avoid symbolic execution. We adopt the definition of

33

method summary in [106], but we forgo their use of over-approximation.

The building block for a method summary is the representation of a single execution

path through method, m, encoded as the pair (pc, w). This pair provides information

about the externally visible state of the program that is relevant to an execution of m

at the point where m returns to its caller. As described above, the pc encodes the path

condition and w is the projection of s onto the set of memory locations that are written

along the executed path. We can view w as a conjunction of equality constraints between

names of memory locations and symbolic expressions or, equivalently, as a map from

locations to expressions.

Definition 2.4.1 (Symbolic Summary [106]) A symbolic summary, for a method m, is a set

pairs msum : P(PC× S) where

∀(pc, w) ∈ msum : ∀(pc′, w′) ∈ msum − {(pc, w)} : pc ∧ pc′is unsatisfiable.

Unfortunately, it is not always possible to calculate a summary that completely

accounts for the behavior of all methods. For example, methods that iterate over input

data structures that are unconstrained cannot be analyzed effectively – since the length of

paths are not known. We address this in this dissertation using the standard technique of

bounding the length of paths that are analyzed.

After presenting the background including feature models, covering array, constraint

solving and symbolic execution for this dissertation, we discuss related work on testing

an SPL next.

34

2.5 Testing Software Product Lines

Coverage criteria guide the testing effort of a software system to a specific quatified

property with the hope of detecting more bugs in less time. These coverage criteria

can be represented in different granularities, including statements, branches, paths for

traditional software systems. In this section, we discuss proposed coverage criteria special

for SPLs. All testing techniques attempt to reduce redundant testing efforts by reusing

testing results. For SPLs, there are also techniques focusing on common features for

saving testing efforts. We also discuss such related techniques in this section.

2.5.1 Testing SPLs from a Coverage Perspective

In 2010, Cabral et al. [12] presented a technique to reorganize a feature model as a feature

inclusion graph (FIG) for explicitly showing the testability of an SPL. The testability is

related to determining the minimum number of basis paths [147] for covering all features.

If the number is small, then the testability of an SPL is good; otherwise, the testability is

bad. This indicates that their algorithms construct the longest paths first to cover as many

features as possible. Based on FIG, they proposed three new coverage criteria: FIG basis

paths, FIG grouped basis paths and all-features. Based on their experiments, the FIG basis

paths coverage is a good indicator to find all faults with a smaller number of products.

Compared with the work in Chapter 5, this coverage does not consider choosing products

for targeting interactions and constraints, which are semantic behaviors related to an

SPL. Instead their coverages consider a static structure among features. From a practical

perspective, they are complementary with ours. Such lighter coverage can be used in the

early stage for several initial versions of an SPL. After the SPL seems to be stable in terms

of the number of found bugs, we can then apply our more thorough coverage criteria.

Kauppinen et al. [77] proposed two coverage criteria: hook coverage and template

35

coverage. Template coverage is at the SPL level, and hook coverage is for a single product.

The template refers to a method in a common code which invokes hook methods, which

have different implementations for different products. Usually a hook method is inside

an abstract class, which is then implemented with different concrete classes for different

products. There are method and class coverage for both template and hook coverage. For

the method coverage of a template, it is defined as the covered number of hook invocations

in the template method divided by the total number of hook invocations. For the method

coverage of hook, it is defined as a traditional structure coverage, like statement coverage.

Compared with the dissertation work in Chapter 3, these coverage criteria are relative

to a restricted implementation of an SPL, a framework-based development, whereas

ours are not limited to such special, albeit widely used, development methodology. In

fact, ours focuses on the requirements level, feature models, and theirs focuses on the

implementation level. From the interaction perspective, ours covers all-way interactions

systematically, and theirs does not have such an objective. However, if we associate their

coverage criteria with interactions, then theirs targets only 2-way interactions between

common features and variable features. They developed a tool, RITA [133], for supporting

different engineering phases in SPLE. In the testing phases, RITA applies their testing

coverage criteria.

Muccini and van der Hoek [97] provided a brief overview of many of the issues from an

SPL architecture perspective. They provided suggestions for adapting traditional testing

methods for handling SPL properties, variability and commonality, which correspond to

common and optional components. For unit testing, there is no difference for common

and variant components, but they suggested a higher priority for common components.

For integration testing, they proposed to combine common components first and then

integrate them with other optional components with a big bang strategy. They also

mentioned a sampling method suggested by McGregor [91] with a small adaption

36

for integrating common components first. In conformance testing, they mentioned

conformance between an implementation and at least one architecture, and conformance

between an architecture and an overall product line architecture in terms of constraints. In

regression testing, they classified three situations: 1) between two product architectures;

2) between two implementations for two architectures; and 3) between two programs for

the same product architecture. Finally they proposed the challenge of testing a product

line architecture in term of exponential number of architectures, and proposed a direction

by exploring similarity among them.

Compared with the dissertation work in Chapter 3, they mentioned the large space of

variability combinations as a key challenge, but did not propose test coverage approaches

that allow for cost-effective trade-offs as we do. They described how testing might be

targeted at portions of new product line instances that have yet to be considered, but

they did not propose a framework for cumulative test coverage that will enable targeted

testing.

The technical report of McGregor [91] proposed a systematic way to test an SPL. It is

the most closely related to ours in that it considers the connection between combinatorial

interaction methods, in his case orthogonal arrays, to cover the space of SPL variability

points [91]. He did not, however, provide details on how SPL models such as OVM can

be mapped onto appropriate representations to allow interaction methods to be applied,

nor did he address the significant challenges arising from the use of constraints in those

models. Finally, he did not develop the connection between interaction methods and test

coverage criteria.

37

2.5.2 Testing SPLs from a Similarity Perspective

In the V-model there is a testing phase corresponding to use cases. Test cases are

represented as a sequence of steps which correspond to normal English sentences. For

similar use cases, these test cases are also similar in terms of steps. In 2004, given a set

of similar test cases, Geppert et al. [49] extracted variabilities as a pair of parameters

and values, decomposed these steps as common and variable steps where parameters

are used, and then managed these parameters with a decision tree where each node

corresponds to a parameter and each out-edge corresponds to a concrete chosen value

for the parameter. Finally, they automated the test case generation by exploring this

decision tree and collected concrete steps in which parameters are bound with values.

This is a technique to improve a typical manual black-box testing to address variability

and similarity. One limitation is that users have already written a set of usual test cases,

and it is possible that the technique can generate the template and decision trees directly

from use cases.

In 2004, Bertolino et al. [9] captured commonality and variability in the use case

representation at a software requirement phase. They extended Cockborn’s use case [21]

template with tags such as alternative tags, parametric tags and optional tags, which

capture variability of an SPL in the requirement level. Then they used category partition

methods to develop a test specification, which setup an upper bound of all possible

scenarios for a use case within a set of different products. From their methodology, we

can see that common description of a use case is shared with a set of related products

without rewriting. Compared with the work in Chapter 5, we also exploit commonality,

but we focus on the integration testing over a code representation, where commonality

and variability features are represented as a set of methods in classes. We reuse testing

results of lower level interactions to compose testing results of higher level interactions.

38

In the code phase, Uzuncaova et al. [140] used extra specifications associated with

features to generate a reduced test case set through a composition process to include more

features. The extra specifications are represented with formulae in Alloy [68], embedded

inside code and associated with features in an SPL. The argument is that large composed

formulas are hard to solve. In addition, it is also difficult to generate test cases which

correspond to models of these formulas; a small formula, plus a number of assumptions,

is easier to use to construct a set of test cases. Uzuncaova et al. [140] reused a k-way

partial product’s test suite to generate a smaller size test suite for a (k+1)-way partial

product. This is similar to our constraints-sensitive coverage in Chapter 3 because they

considered constraints incrementally. Compared with our integration testing method

in Chapter 5, they do consider integration testing for partial products, but they only

consider one product at a time. That means that intermediate results of a k-way partial

product are not saved and shared for another similar product, including the same k-way

partial product. We explicitly capture such inclusion relations systematically with the

interaction tree hierarchy/inclusion-graph, and then share results for all products. The

reuse over a complete SPL is an advantage of our technique.

Reis et al. [114] applied integration testing over an SPL with a testing model, which is

a UML 2.0 activity diagram. The objective was to develop an optimal set of paths to cover

all 2-way interactions (edges) in an activity diagram. Their contribution is to abstract away

a variation point with a set of variants in an activity diagram with an abstract node. With

such a simplicification, they can apply Wang et al.’s [145] method to generate an optimal

set of paths to cover all 2-way directed interactions in a normal activity diagram without

variability nodes. Compared with our work in Chapter 5, there are several differences:

1) we use a code level representation, and they use an activity diagram; 2) we target

all-way interactions including 2-way, and they only target 2-way interactions; and 3) our

composed summaries (more specifcially the path conditions part) can directly be used

39

to generate test cases to trigger these interactions, and they only generate a set of paths

which includes all features, but these paths can not be used directly to generate test cases.

In 2010, Kim et al.[79] introduced a similar reduction for a given monitoring property.

In 2011, Kim et al [78] also found that for a given test case there are only a subset of

products related to such test case. They developed a static analysis technique to define the

meaning of related features as those which are reachable and which potentially change the

data flow or control flow of one of the related features. The base case is that immediatly

reachable features are related features. Compared with our method in Chapter 5, we

have different testing targets. We target all interactions efficiently by reusing testing

results among them, and they target running a test case/monitor for a reduced number

of products.

In the architecture phase, Fischbein et al. [44] extended existing behavioral models,

Labelled Transition Systems [85] and Modal Transition System, to support the confor-

mance checking over SPLs. That is, such testing can check if a product is a child of an SPL

based on the fact that all behaviors of such product are included in all possible behaviors

of all products of such SPL. In 2010 Classen et al. [18] applied model checking over a

feature-extended transition systems (FTS), a behavior model for SPLs. In 2011 they [17]

continued to propose a symbolic model checking method to tackle the state explosion for

all products of an SPL. Compared with our method in Chapter 5, there are two differences:

1) they are targeting the models and we are targeting the code representation of an SPL;

and 2) they verified a property over an SPL, and we target all directed interactions in an

SPL.

In summary, we introduced software product lines with a focus on feature models,

then illustrated covering arrays and constraint solving as the background for our sampling

techniques, and finally we presented the symbolic execution as the background for our

compositional symbolic execution technique. We also discussed recent work on testing

40

SPLs that addresses coverage criteria and exploiting of similarities. Next we introduce

the coverage criteria focusing on the most important property of SPLs, variability.

41

Chapter 3

Coverage Criteria Related to Constraints

and Interactions1

In this chapter, we introduce our work, Coverage and Adequacy in Software Product Line

Testing [25], to setup a series of coverage criteria related to constraints and interactions.

Recall that this is the first step to resolve the challenge of testing an SPL.

The input is a feature model of an SPL, which defines a scope of valid products. There

are three steps involved in generating a sample based on a feature model with constraints:

1) automatically translate a feature model to a relation model, 2) map the relation model

to a CCIT model, and 3) automatically generate a sample to fulfill coverage criteria. The

first two steps are the focus, and the final step is discussed in Chapter 4, where we discuss

the development of four variant techniques to handle the sample generation problem

focusing on constraints.

Although our coverage is general for any feature model, we propose a concrete

translation from one of the feature models, OVM, to illustrate the feasibility of our

method. Next we will discuss the first two steps over OVMs.
1Part of this work has been published in [25]

42

V

 VP

Intrusion

Detection

 VP

Door

Locks

Camera

Surveillance

Motion

Sensors

Cullet

Detection Basic Advanced Keypad
Fingerprint

Scanner

Security

Package

 VP

V V V V V V

requires_v_v

requires_v_v

Figure 3.1: Example OVM Model[109]

3.1 Translating OVMs to Relation Models

We describe a relational model with two elements, a set of domains (D) with a finite set of

values and a Cartesian product ∏k
i=1 Di, where k = |D|. A Feature Model (FM) defines a

set of valid products with respect to implicit and explicit constraints. We use a relational

model equal to a feature model in terms of describing the same set of valid products.

We construct such a relational model by re-describing atomic constructs of OVMs with

these two elements. There are several key constructs in OVMs, including variation points,

variants, and several dependencies including parent-children, mandatory, optional and

alternative dependencies. We provide the translation next.

3.1.1 Translating Constructs

Variation points are mapped to domains, and variants are mapped to values. For the

parent-children relations, we map values to corresponding domains. For example, for a

feature model in Figure 3.1, we map a variation point, door locks, to a domain and two

variants, keypad and fingerprint scanner, to two values. By defining the domain to contain

these two values, we build a map of the parent-children relations.

43

A mandatory dependence states that a variant must be bound to a variant point in

every product of an SPL. We can add such dependency relation after we construct a

relation model for the remaining dependencies.

An optional dependence requires a variation point with a set of variants, and each of

the variants may be bound to the variant point in a product of an SPL. We introduce a

domain for each variant with two values, the variant itself and an empty value, denoted

�. We define f (vp) to connect this set of domains to the domain of the variation point,

vp. If we assume there are only optional relations between door-lock with keypad and

fingerprint-scanner without the curve, then we have two domains for door-lock. One

is Ddoor−lock1 = {keypad,�}, and another is Ddoor−lock2 = { f ingerprint − scanner,�}.

With a Cartesian product from these two domains, we can construct four possible

partial products for door-lock: {keypad,fingerprint-scanner}, {keypad,�}, {�,fingerprint-

scanner} and {� ,�}. These four bindings satisfy the semantic of optional dependence

relation as we described at the beginning of this paragraph.

An alternative dependence requires that a set of variants is bound to a variation point

and associated with a bound [i, j], where i ≤ j. The bound means that the variation point

must be bound to at least i number and at most j number of distinct variants. There

is a special bound [1, 1], which means there is exactly one feature chosen from a set of

variants of a variation point in any product of an SPL. We map an alternative dependence

relation to j number of domains. The first i number of domains has a set of values, all

variants of the variation point. The remaining j− i number of domains has another set of

values, all variants with an extra value �. Furthermore, we express the distinct semantic

meaning with the inequality among the bound values.

For example, Figure 3.2 shows two alternative dependencies. The first has a bound

[1, 2]. It is transferred to two domains, DOneOrTwo1 = {A, B, C} and DOneOrTwo2 =

{A, B, C,�}. We need an inequality constraint between these two domains, and we

44

 VP

AtMost
One

A B
V V

 VP

OneOr
Two

A B
V V

C
V

[1,2] [0,1]

Figure 3.2: Alternative Choice Examples

delay the discussion with other explicit constraints together in Section 3.1.2. The second

is special because of the lower bound expression i = 0. Such zero lower bound infers that

we can define domains with �. In this example, we define DAtMostOne = {A, B,�}. With

only one domain, there is no need for introducing equality constraints.

Heretofore, we introduce both semantic meanings and relations of different depen-

dencies. Next we translate constraints to relations.

3.1.2 Translating Constraints

We define a set of products without constraints as a relation shown below:

U = Πvp∈OVMΠ f∈ f (vp)D f

Below we introduce several types of constraints to reduce the size of U incrementally.

An inequality constraint between factors i and j is defined as:

I(i, j) = {t | t ∈ U ∧ (π(t, i) 6= � ⇒ π(t, i) 6= π(t, j))}

45

The π is an extract function with two inputs, a tuple and an index, and one output, the

corresponding value of that tuple for that index. For example, for a product, t = (A, B, C),

the π(t, 0) = A and π(t, 2) = C.

The cumulative inequality constraint for a variation point, vp, is

I(vp) =
⋂

i∈ f (vp),j∈ f (vp)−{i}
I(i, j)

and for an OVM model:

I =
⋂

vp∈OVM
I(vp)

Other than the inequality constraint we introduce during the translation process,

explicit constraints in OVM have several types: variant to variant (v v), variation point to

variation point (vp vp) and variation point to variant (vp v).

For v v, there are two types of constrains as requires and excludes between two values v

and w for two corresponding variation points, i and j. A translation for requires is shown

below:

R(i, v, j, w) = {t | t ∈ U ∧ (∃ f∈ f (i) : π(t, f) = v) ∧

(∃ f∈ f (j) : π(t, f) = w)} ∪

{t | t ∈ U ∧ (∀ f∈ f (i) : π(t, f) 6= v)}

46

The excludes is shown below:

E(i, v, j, w) = {t | t ∈ U ∧ (∃ f∈ f (i) : π(t, f) = v) ∧

(∀ f∈ f (j) : π(t, f) 6= w)} ∪

{t | t ∈ U ∧ (∀ f∈ f (i) : π(t, f) 6= v)}

For vp vp, we only list the transformation of requires constraints below:

R(i, j) = {t | t ∈ U ∧ (∃ f∈ f (i) : π(t, f) 6= �) ∧

(∃ f∈ f (j) : π(t, f) 6= �)} ∪

{t | t ∈ U ∧ (∀ f∈ f (i) : π(t, f) = �)}

Because of similarity among the constraint translations, we omit other types of

constraints. Based on the above translations, we present a complete relation model for a

feature model. The final model, FU, is a conjunction of all constraints for an OVM model:

FU = U ∩ I ∩
⋂

R(. . .) ∩
⋂

E(. . .)

FU defines the same set of valid products compared with a feature model, and it is

easier to be translated to a CCIT model for the next task, defining coverage criteria in

terms of interactions and constraints.

3.2 CCIT Models and SPL Test Coverage Criteria

The mapping from a relation model to a CCIT model is straightforward. A domain

of a relation model is mapped to a factor. The cardinality of a domain corresponds to

47

the choices of the factor, and then the constraints are rewritten with factor and value

bindings. With a mapped CCIT model, we define two families of coverage criteria: an

interaction-strength related criteria and a constraint-sensitive related criteria.

For the interaction-strength coverage criteria, we can manipulate the strength t to

construct a series of coverage criteria. A covering array with a strength t is a subset

of products of FU, expressed as N ⊆ FU. We further encode the strength on the top

of FU. Let F =
⋃

vp∈OVM f (vp) be the set of all factors in a relational model. For all

S ⊆ F ∧ |S| = t let RTS = Π f∈SD f be the indexed set of all pairs of values over the t-size

subset of factors, S. For N to be a t-way covering array, it must be the case that

∀S⊆F∧|S|=t : ∀ts∈RTS : ∃t∈Nπ(t, S) = ts

Informally, this means that all possible t-sized tuples must be embedded in some full-

tuple in N. When we increase t from 2 to n, where n is the maximum length among valid

products, we increase the size of RTS, which in turn increases the size of a covering array.

For the constraint-sensitive coverage criteria, we exploit the number of constraints

incrementally. The base case is to apply no constraints, and the set of products corresponds

to U. We incrementally add constraints to reduce the set size from U to a real valid

product set. The reason for proposing this series of coverage criteria is that there are few

covering array generators to handle constraints efficiently. Although we developed several

cost-effective generators, the constraints problem inherently is a NP-Hard problem, so

we still recognize these coverages as effective means for controlling the cost of test case

generation activity. There is also a cumulative test coverage and corresponding targeted

testing strategy.

In summary, we introduced an OVM translation with a simple relational language, and

then transformed the relation model to a covering array model. Then we utilized a CCIT

48

model to explicitly express a series of interaction-strength related and constraint-sensitive

coverage criteria. Next we introduce extensions of AETG to generate a covering array to

fulfill these coverage criteria.

49

Chapter 4

Sampling Technique Focusing on

Constraints1

We developed four variants of AETG to handle constraints with an incrementally deeper

integration between AETG and SAT solvers. These variants are AETG-SAT [27], AETG-

History [26], AETG-Threshold [28] and AETG-Hist-Threshold [28]. Due to the similarity

of these algorithms, we focus on AETG-SAT, AETG-History and AETG-Threshold in detail

in this chapter. For AETG-SAT, we introduce how to integrate a row construction process

with a SAT checking process. For AETG-History, we introduce a deeper integration,

which exploits a model in a SAT solver to infer must and may information and then to

speed up an AETG row construction process. For AETG-Threshold, we use a model in

a SAT solver directly to replace the row constructions of AETG at a threadhold point.

Finally, we compare these four variants with AETG to show the effectiveness with our

empirical study, which includes four 4 subjects and 30 synthesized CCIT models. Next

we begin with an introduction of the base algorithm, AETG.
1Part of this work has been published in [27, 26, 28]

50

4.1 Basic AETG

Many algorithms and tools exist that construct covering arrays, but we focus in this

dissertation on one-row-at-a-time greedy-algorithms in the style of the automatic efficient

test case generator (AETG) [22]. Multiple variants of AETG have appeared in the literature,

e.g., [11, 37, 29, 136]. We refer to these as AETG-like.

Algorithm 2 sketches the basic structure of this algorithm. Prior to execution an

initialization step is used to calculate the number of t-sets for the given problem; covering

all such sets drives continued execution of the algorithm. The algorithm constructs an

array with numTests rows. A single row for the array is constructed in each iteration of the

loop at line 4 until all t-sets have been covered. The algorithm constructs numCandidates

different rows, line 5, and selects the best one to add to the array, lines 15-17. The

choice of the size of candidate set is one of the differentiators of AETG-like algorithms.

Our algorithm uses the value 50 for numCandidates to be consistent with the original

description of AETG [22].

To build a single row, heuristics are applied to select the first factor and its value,

lines 7-9. In AETG a factor-value pair is chosen that currently has the largest number of

t-sets left to cover. The order in which the remaining factors are processed is randomly

shuffled, line 10, and then the best value for each factor is selected, line 12-13, where the

best value produces the most previously uncovered t-sets. In each step where a “best”

decision is made, as well as where the first factor and value is selected in lines 7-9, ties

are broken randomly, causing non-determinism in differing runs of the algorithm. Other

greedy algorithms [29, 136] use slightly different heuristics to select the factor ordering.

51

mAETG(CAModel)
Require: uncovered-t-set-count: calculated by initialization
1: numCandidates = 50
2: numTests = 0
3: testCasePool = ∅
4: while uncovered-t-set-count > 0 do
5: for count = 1 to numCandidates do
6: testCasecount=generateEmptyTestCase()
7: l=selectFirstFactorValue(unCovSet)
8: f =selectFirstFactor(l)
9: insertValueForFactor(l, f ,testCasecount)

10: p=permuteRemainingFactors()
11: for f ∈ p do
12: l=selectBestValue(f)
13: insertValueForFactor(l, f ,testCasecount)
14: saveCandidate(testCasePool,testCasecount)
15: selectBestCandidate(testCasePool)
16: update(uncovered-t-set-count)
17: increment numTests

Algorithm 2: AETG Algorithm

4.2 AETG with Basic SAT Checking

In this section, we first introduce how to express constraints of CCIT models with a

boolean formula, and then discuss the AETG-SAT algorithm in detail.

4.2.1 Translating Constraints as Boolean Formulae

We use a boolean propositional formula as the logic language to express constraints in a

CCIT model, which in turn comes from a feature model of an SPL. Boolean propositional

logic is the basis for almost all other higher level logic languages, such as variant decision

procedures [82], Alloy [68] and other logic languages with targeted application domains.

We choose the basic logic for two reasons: 1) it is straightforward to represent both

the excludes constraints and the partial bindings during a row construction in AETG

compactly; and 2) there are an abundance of tools implemented with the C language, and

our tool is developed with C.

We give an example shown in Figure 4.1 to show exactly how to express constraints

52

Figure 4.1: A propositional formula for a CIT with AETG construction

with boolean logic. We can see there are three factors, each of which has two values.

There are two excludes constraints. The first constraint states that if Factor f0 is bound

to the value 0, then Factor f1 can not be bound to value 2. During a covering array

construction, we have a partial row shown in this example, which states that the factor

f1 and f4 are bound to 2 and 4 correspondingly. Under this scenario, a basic question

is to ask if such binding is satisfiable. That is, if there exists a binding for the factor f0

such that the binding together with the partial binding does not conflict with the excludes

constraints. We translate the whole question to a formula shown in the figure. There are

three parts. The first part is called at least, which guarantees that for each factor, there

must be a binding. The second part corresponds to the excludes constraints. The format

can be transformed from a conjunctive form to a disjunctive form, which is just a concrete

format for underlying SAT solvers. Finally, the third part is the partial bindings. From

53

top to bottom, all clauses are connected with conjunctive boolean operations, and the

whole formula follows the conjunctive normal form (CNF) format.

After we feed this formula to a SAT solver, there should be an UNSAT answer. We

can see under such partial row that there is no value for f0 such that a complete row

does not violate the constraints. For example, if we bind 0 to f0, then (0,2) can not be

together; if we bind 1 to f0, then (1,4) can not be together. So we say such partial row

is not satisfiable, and we need to change a bounded value for f1 or f2. Fortunately, all

such reasoning automatically happens in a SAT solver. Next we introduce how the AETG

algorithm exactly integrates a SAT solver.

4.2.2 SAT Checking

Algorithm 3 describes the AETG algorithm with constraint checking. Recall that

AETG is to construct a covering array row by row. For each row we fill in the row factor

by factor, and for each factor we try every value one by one. The core of an integration

between AETG and SAT solver is to check if a partial row is satisfiable by avoiding a

conflict with constraints. More precisely, whenever a factor is bound with a value, at

that moment, we check if such binding is possible. We examine decomposed steps in the

algorithm to describe the integration in more detail.

Algorithm 3 can be roughly partitioned into three parts. The first part is the Requires

statement; the second part corresponds to 4-14, and the third part corresponds to the

statement 15. All other statements are supporting operations for making transitions

smoothly among these three parts.

The requires statement sets up the number of value combinations to be covered. With

the example shown in Figure 4.1, if we setup the strength as 2, then the requires statement

lists all covered pairs as {(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)}.

54

mAETG-SAT(CAModel)
Require: uncovered-t-set-count: calculated by initialization
1: numCandidates = 50
2: numTests = 0
3: testCasePool = ∅
4: while uncovered-t-set-count > 0 do
5: for count = 1 to numCandidates do
6: testCasecount=generateEmptyTestCase()
6a: sat=false
6b: while !sat
7: l=selectFirstFactorValue(unCovSet)
8: f =selectFirstFactor(l)
8a: sat=¬factorInvolved(f) ∨ checkSAT(testCasecount)
9: insertValueForFactor(l, f ,testCase1)

10: p=permuteRemainingFactors()
11: for f ∈ p do
11a: sat=false
11b: tries = 1, maxTries = v
11c: while !sat and tries ≤ maxTries
12: l=selectBestValue(f)
12a: sat=¬ factorInvolved(f) ∨ checkSAT(testCasecount)
12b: increment tries
13: insertValueForFactor(l, f ,testCasecount)
14: saveCandidate(TestCasePool,testCasecount)
15: selectBestCandidate(testCasePool)
16: update(uncovered-t-set-count)
17: increment numTests

Algorithm 3: AETG-SAT Algorithm

Furthermore, for constraints listed in the figure, we need to check if each pair is satisfiable.

So the requires statement involves two steps: an encoding for pair bindings and a satisfiable

checking, which are not shown in the algorithm.

The second part is to construct rows one by one. It can be further partitioned to 6b-9,

10-13 and other supporting statements. For 6b-9, they are used to choose the first factor

and to bind a value for this factor. Such operations are from a traditional AETG procedure.

The most interesting statement is 8a, which is integrated with a SAT solving operation to

check if a partial binding is satisfiable with the function called checkSAT(testCasecount).

The testCasecount looks like the partial row shown in Figure 4.1. After we bind a value for

the first factor, 10-13 are used to bind values for other factors one by one in a random

55

order. We can see that Statement 12a has the same constraint checking call as Statement

8a.

After the second part is finished, we constructed 50 rows. In statement 15, we choose

the best row, which covers most uncovered value combinations, as a row in the final

covering array. These three steps guarantee that a covering array is consistent with

constraints. We observed that there is a potential opportunity to exploit the information

in SAT solvers to save row-construction efforts in AETG.

4.3 AETG With SAT History

The information we can get from a SAT solver is a complete row based on a partial input

row from AETG. The row satisfies all constraints. We partition this returned complete row

ino two parts, the Must/May and others. Figure 4.2 shows a complete row corresponding

to the SAT path in the search tree. We can see that such a search begins when we feed a

partial row which has only the first factor f bound with v1. Based on the BCP stage of a

SAT search procedure, from top down we may infer other bindings. All inferred bindings

must happen based on constraints of a CCIT model and the initial binding. From these

bindings in Figure 4.2, there are negative and positive values. For positive values, we

call these as Must information, because these bindings will be used in AETG for filling

in the corresponding factor without any choice. With the same example, x10 is a must

information for the factor i. For negative values, we call these as MustNot information,

because these bindings will be used in AETG so that AETG will not use these values for

corresponding factors. If we apply the original value set of a factor to subtract MustNot,

then the remaining values are called May set. For simplicity, we call these negative values

as May values. For example, we have !x6 in the figure, and this MustNot leads to an

May including {v7,v8} for Factor h. We call these Must/May bindings as the history

56

20% threshold

x1

!x2

!x3

!x6

!x9

x10

x4

!x7

!x8
NOTSAT

x5

!x4

SAT

x12

!x11

!x7

x8

level 1

v10
must

v7,v8
may

v1

f g h i j

v5
must

v1 v8v5 v10 v12

f g h i j

with conflict−clause {!x4,x6}

Figure 4.2: The Exploitation Based on SAT History and Threshold

information. Next we use an algorithmic representation to describe the Must and May

exploitation in more detail.

Algorithm 4 integrates such an exploitation into Algorithm 3. For statements 6b-9 in

Algorithm 3, there is no change between these two versions. This is reasonable because

for the first factor binding, we do not have any history information. For statements 10-13

in Algorithm 3, there is a dramatic change for exploiting the history. Statement 12 is

changed to selelctBestValueFromMaySet(f,maySet) from the original selectBestValue(f).

This statement is to choose a best value for a factor, f . With the history, we choose values

only in the May set, which can save some choosing efforts of AETG. The May set is

calculated from the added statement 11d, which uses the returned MustNot information

from SAT solvers to compute May. For Statement 13, there are four more added sub-

statements. The core one is Statement 13a, which computes the Must information by

copying the Must information from SAT solvers. The remaining three statements from

13b-13d apply these Musts to factor bindings and help Statement 11 to skip these factors

during the operation to choose the next factor.

57

mAETG-History(CAModel)
Require: uncovered-t-set-count: calculated by initialization
1: numCandidates = 50
2: numTests = 0
3: testCasePool = ∅
4: while uncovered-t-set-count > 0 do
5: for count = 1 to numCandidates do
6: testCasecount=generateEmptyTestCase()
6a: sat=false
6b: while !sat
7: l=selectFirstFactorValue(unCovSet)
8: f =selectFirstFactor(l)
8a: sat=¬ factorInvolved(f) ∨ checkSAT(testCasecount)
9: insertValueForFactor(l, f ,testCasecount)

10: p=permuteRemainingFactors()
11: for f ∈ p do
11a: sat=false
11b: tries = 1, maxTries = v
11c: while !sat and tries ≤ maxTries
11d: maySet=mineMayAssignments()
12: l=selectBestValueFromMaySet(f ,maySet)
12a: sat=¬ factorInvolved(f)∨ checkSAT(testCasecount)
12b: increment tries
13: insertValueForFactor(l, f ,testCasecount)
13a: mustSet=mineMustAssignments()
13b: for(l, f) ∈ mustSet do
13c: insertValueForFactor(l, f ,testCasecount)
13d: p = p− f
14: saveCandidate(TestCasePool,testCasecount)
15: selectBestCandidate(testCasePool)
16: update(uncovered-t-set-count)
17: increment numTests

Algorithm 4: AETG-History Algorithm

Based on the above discussion, it is possible to be more ambitious by using full bindings

instead of only the Must/May history information in order to accelerate row-constructions

of AETG faster. We discuss such an optimization next.

4.4 Threshold Triggered SAT Assignments

The presence of constraints tends to reduce the size of the valid solution space. As a

row is built, this may lead to an increasingly limited set of valid choices of factor-values,

58

especially late in the row. An expensive portion of an AETG-like algorithm is the method

selectBestValue, line 12, which requires a linear scan of each possible value for the current

factor. For each value it requires (j
t) evaluations to compute how many new t-sets will

be covered by that choice, where j is the current loop iteration starting at line 11. This

requires a total of v× (j
t) computations for each call of this method. In the constrained

portion of the search space, which lies near the end of a row, the cost of this scan may

yield little benefit since few consistent values may remain for a factor.

When the SAT solver finds a satisfying assignment it calculates a complete configura-

tion. That configuration may not, however, be one that drives the overall CCIT solution to

a small CMCA – this is the intent of the AETG heuristics. The time needed to generate a

CMCA can be reduced by short-circuiting the AETG calculations in lines 11-13 using the

assignment calculated by the most recent successful SAT call. Figure 4.2 illustrates this

process when only one out of five, or 20%, of the factors is assigned. The remaining four

factor-value bindings are extracted from the satisfying assignment – illustrated by dotted

arrows – and used to complete the row.

Short-circuiting AETG calculations early in a row can speedup solution times, but

this may lead to larger CMCAs. Waiting until 100% of the factors are assigned yields

no performance improvement, but also no increase in CMCA size. For algorithmic

frameworks like this it is necessary to identify the parameter value that provides a

desirable cost-benefit tradeoff. We refer to this parameter as the row threshold and discuss

finding a good value for the threshold in Section 5.5.

Algorithm 5 presents the AETG-Threshold algorithm. It differs from Algorithm 3

(AETG-SAT) only after the threshold has been reached. In the initialization step the

threshold value is input as a percentage of the row size, and translated into the threshold

index; the switching point in this algorithm. Then in step 11, at 11aa, a check is made

to determine if this threshold has been reached. If it has not, the algorithm continues as

59

mAETG-Threshold(CAModel)
Require: uncovered-t-set-count, thresholdIndex: calculated by initialization
1: numCandidates = 50
2: numTests = 0
3: testCasePool = ∅
4: while uncovered-t-set-count > 0 do
5: for count = 1 to numCandidates do
6: testCasecount=generateEmptyTestCase()
6a: sat=false
6b: while !sat
7: l=selectFirstFactorValue(unCovSet)
8: f =selectFirstFactor(l)
8a: sat=¬ factorInvolved(f) ∨ checkSAT(testCasecount)
9: insertValueForFactor(l, f ,testCasecount)

10: p=permuteRemainingFactors()
10a: index=1

11: for f ∈ p do
11aa: if index < thresholdIndex
11a: sat=false
11b: tries = 1, maxTries = v
11c: while !sat and tries ≤ maxTries
12: l=selectBestValue(f)
12a: sat=¬ factorInvolved(f)∨ checkSAT(testCasecount)
12b: increment tries
13: insertValueForFactor(l, f ,testCasecount)
13a: increment index
13b: else
13c: satAssignedSet=mineRemainingAssignments()
13d: for(l, f) ∈ satAssignedSet do
13e: insertValueForFactor(l, f ,testCasecount)
14: saveCandidate(TestCasePool,testCasecount)
15: selectBestCandidate(testCasePool)
16: update(uncovered-t-set-count)
17: increment numTests

Algorithm 5: AETG-Threshold Algorithm

normal, allowing AETG to select the best symbol, followed by consistency checks using

the SAT solver. Once the threshold value has been reached, execution switches, and we

mine the SAT assignment from the most recent SAT call (mineRemainingAssingments)

and save this as the satAssignedSet. The entire assignment is then used to fill in the

remaining factor-values without the use of the AETG strategy in lines 13b-13e. We note

that the SAT solver makes random decisions at points in its search that are independent

from that of the AETG-like algorithm.

60

4.5 Combining History and Threshold Optimizations

The history and threshold optimizations both seek to fill in multiple factor-value bindings

in a single step. The advantage of AETG-History is that is guaranteed to not interfere

with AETG heuristics and, consequently, will not increase CMCA size as is possible with

AETG-Threshold. On the other hand, since AETG-History generally only fills in a portion

of the row, it will not reduce solution time as much as AETG-Threshold.

We consider a simple combination of these two algorithms which we call AETG-Hist-

Threshold. The algorithm is not shown since it is straightforward variation of Algorithm 4,

which is used as the base algorithm up until a threshold has been reached for each row.

After the threshold is reached the algorithm switches strategy and mines the current SAT

assignment to fill in the remaining factor-values as in Algorithm 5.

Next we introduce our experimental data to illustrate the effectiveness of these 4

variants, AETG-SAT, AETG-History, AETG-Threshold and AETG-Hist-Threshold.

4.6 Empirical Investigation

We begin our empirical investigation by summarizing five case studies based on four

software subjects. Note for evaluting the effectivness and efficiency of CCIT aglorithms,

we can use broader range of subjects than SPLs, which have a CIT model with a rich set

of constraints. In this study, we use highly-configurable software systems as our subjects.

These show the abundance and types of constraints found in real software systems.

We then present an analysis designed to evaluate the performance of four algorithms

presented above with respect to generation time and sample size. We utilize the five case

studies and generate an additional set of synthesized CCIT problems for this analysis.

61

4.6.1 Case Studies

We have chosen four non-trivial highly-configurable software systems – SPIN [65], GCC

[46], Apache [1] and Bugzilla [96] to study with respect to constraints. We analyzed the

configuration options for these tools based on available documentation and constructed

models of the options and any constraints among those options. All of our models should

be considered an approximation of the true configuration space of the programs. One

way we do this is by ignoring options we regard as overlapping, i.e., an option whose only

purpose is to configure another set of options is ignored, as well as options that serve only

to define program inputs. Another is by underestimating the number of possible values

for each option. If an option takes an integer value in a certain range we apply a kind of

category partitioning and select a default value, a non-default legal value, and an illegal

value; clearly one could use more values to explore boundary values, but we choose not

to do that. Similarly for string options we choose values modeling no string given, an

empty string, and a legal string. Ultimately, the specific values chosen are determined

during test input generation for a configuration, a topic we do not consider here. We

report data on the size of these models, the number and variety of constraints, and the

existence of implied forbidden t-sets.

4.6.1.1 SPIN Model Checker

SPIN is a widely-used publicly available model checking tool [65]. SPIN serves both

as a stable tool that people use to analyze the design of a system they are developing,

expressed in SPIN’s Promela language, and as a vehicle for research on advanced model

checking techniques; as such it has a large number and wide variety of options. We

examined the manual pages for SPIN, available at [66], and used it as the primary means

of determining options and constraints; in certain cases we looked at the source code

62

itself to confirm our understanding of constraints.

SPIN can be used in two different modes: as a simulator that animates a single run

of the system description or as a verifier that exhaustively analyzes all possible runs of

the described system. The “-a”options select verifier mode. The choice of mode also

toggles between partitions of the remaining SPIN options, i.e., when simulator mode

is selected the verifier options are inactive and vice-versa. While SPIN’s simulator and

verifier modes do share common code, we believe that the kind of bi-modal behavior of

SPIN warrants the development of two configuration models – one for each mode.

The simulator configuration model is the simpler of the two. It consists of 18 factors

and ignoring constraints it could be modeled as a MCA(N; 2, 21345), i.e., 13 binary options

and 5 options each with 4 different values; this describes a space of 8.3 ∗ 106 different

system configurations. It has a total of 13 pairwise constraints that relate 9 of the 18

factors. The nature of the interactions among the constraints for this problem, however,

give rise to no implied forbidden pairs. As for most problems, constraints for this problem

can have a dramatic impact – enforcing just 1 of the 13 constraint eliminates over 2 million

configurations.

The verifier configuration model is richer. It is worth noting that running a verifi-

cation involves three steps. (1) A verifier implementation is generated by invoking the

spin tool on a Promela input with selected command line parameters. (2) The verifier

implementation is compiled by invoking a C compiler, for example gcc, with a number of

compilation flags, e.g., “-DSAFETY”, to control the capabilities that are included in the

verifier executable. (3) Finally, the verifier is executed with the option of passing several

parameters. We view the separation of these phases as an implementation artifact and

our verifier configuration model coalesces all of the options for these phases. This has

the important consequence of allowing our model to properly account for constraints

between configuration options in different phases. The model consists of 55 factors and

63

ignoring constraints it could be modeled as a MCA(N; 2, 24232411); this describes a space

of 1.7 ∗ 1020 different configurations. This model includes a total of 49 constraints – 47

constraints that either require or forbid pairs of combinations of option values and 2

constraints over triples of such combinations. An example of a constraint is the illegality

of compiling a verifier with the “-DSAFETY” flag and then executing the resultant verifier

with the “-a” option to search for acceptance cycles; we note that these kinds of constraints

are spread throughout software documentation and source code.

The set of SPIN verifier constraints span the majority of the factors in the model –

33 of the 55 factors are involved in constraints. Furthermore, the interaction of these

constraints through the model gives rise to 9 implied forbidden pairs.

4.6.1.2 GCC Optimizer

GCC is a widely used compiler infra-structure that supports multiple input languages,

e.g., C, C++, Fortran, Java, and Ada, and over 30 different target machine architectures. We

analyzed version 4.1, the most recent release series of this large compiler infra-structure

that has been under development for nearly twenty years. GCC is a very large system

with over 100 developers contributing over the years and a steering committee consisting

of 13 experts who strive to maintain its architectural integrity.

As was done for SPIN, we analyzed the documentation of GCC 4.1 [46] to determine

the set of options and constraints among those options; in some cases we ran the tool with

different option settings to determine their compatibility. We selected a core component

of GCC, the machine-independent optimizer, and modeled it with 199 factors and 40

constraints.

The optimizer model, without constraints, can be modeled as a MCA(N; 2, 2189310);

this describes a space of 4.6 ∗ 1061 different configurations. Of the 40 constraints, 3 are

three-way and the remaining 37 are pairwise. These constraints are related to 35 of the

64

199 factors and their interaction gives rise to 2 implied forbidden pairs.

Examples of constraints on optimizer settings include: “-finline-functions-called-once

... Enabled if -funit-at-a-time is enabled.” and “-fsched2-use-superblocks ... This only

makes sense when scheduling after register allocation, i.e. with -fschedule-insns2”. We

took the following approach to defining constraints. The commonly used “-O” options

are interpreted as option packages that specify an initial set of option settings, but which

can be over-ridden by an explicit “-fno” command. Interpreting these more strictly gives

rise to hundreds of constraints many of which are higher-order, i.e. they constrain three

or more factor-values.

4.6.1.3 Apache HTTP Server 2.2

The Apache HTTP Server 2.2, is an open source, widely used, web server that works on

both UNIX and Windows platforms. It can be customized by the system administrator

through a set of directives. The directives for Apache fall into nine categories, which

include the core program, extensions, server configuration, etc. In total there are 379

configurable options that contribute to these categories. For the purposes of our case

study we initially limited our examination to the 166 options related to h directives from

the user manual. Upon further examination, we found that several of the constraints on

this set of options involved an additional 6 factors that were not part of the h directives.

We added those options to our model for a total of 172 options. The final model has

mostly binary options (92%) with a small number of factors that have between 3 and 6

options. The unconstrained Apache can be modeled as an MCA(N; 2, 215838445161), i.e.

there are 158 binary, 8 ternary, 4 four-valued, and one factor each that have five and six

values. This leads to an unconstrained configuration size of 1.8*1055.

During our analysis, we uncovered 7 constraints in the Apache documentation that

relate between 2 and 5 different options. An example of a constraint for Apache is that

65

the “Require” directive that selects which authenticated users can access a resource, must

be accompanied by the “AuthName” and “AuthType” directives, as well as directives for

“AuthUserFile” and “AuthGroupFile” (to define users and groups). Without these other

directives being defined, “Requires” will not function properly. In total, only 18 options

are involved in the 7 constraints. Of these constraints all but one are binary, and one is a

ternary. There are no implicit 2-way constraints in this system.

4.6.1.4 Bugzilla 2.22.2

Bugzilla [96] is an open source defect tracking system from Mozilla. It provides develop-

ers with a mechanism to track outstanding bugs in their systems. The software includes

advanced search capabilities, email notifications, multiple bug reporting formats, sched-

uled reports, time tracking, etc. It supports multiple database engines and is customizable

by the user. After examining the documentation we selected three sections of the user

manual to which we have restricted our analysis. These are the sections that contain the

core functionality: Chapter 3. – Administering Bugzilla, Chapter 5. – Using Bugzilla and

Chapter 6. – Customizing Bugzilla. Our analysis uncovered 44 options.

When conducting our analysis we found 10 additional options that were not included

in one of the listed Chapters, but that were somehow related through constraints to

options within the scope of our analysis; we added these into our model to be complete.

Our final model has 52 factors of which 94.2% are binary. The final model for Bugzilla is

a MCA(N; 2, 2493142). There are 49 binary, one ternary and 2 four-valued factors. This

leads to an unconstrained configuration space of 2.7*1016. Bugzilla’s documentation

describes 5 constraints; 4 relating 2 options and 1 relating 3 options. An example of

a Bugzilla constraint is when the “Mail Transfer Agent” is set to “Postfix”, it requires

that the “sendmailnow” option is turned on. In total, 11 options were involved in the 5

constraints. We did not uncover any 2-way implicit constraints for this system.

66

4.6.2 Synthesized CCIT Problems

The five case studies are essential elements of our evaluation, but they do not provide

a large population of problems on which to compare algorithm performance. The

time required to develop the case study models was significant and we felt that it was

impractical to produce a significantly larger number of case studies in a timely fashion.

Instead, we used the five case studies to develop a characterization of the abundance, type

and complexity of constraints found in real systems and then used that characterization

to synthesize a large number of CCIT problems to include in our evaluation.

In Table 4.1 and Table 4.2 we provide a summary of the CCIT models for the 5 case

studies, highlighting their main characteristics. The table shows counts of the number

of factors (Num Factor) and explicit constraints (Num Cons) for each problem. It also

provides the number and percentage (in parentheses) of factors with 2, 3, 4, or more

values. Similarly for constraints it provides the number and percentage (in parentheses)

of constraints of arity 2, 3, or more. As discussed in Section 4.2.2 at Line 8a, it is possible

to skip constraint processing during CMCA construction for factors that are not involved

in constraints – the second column (Factor Invol.) under the Constraints sub-heading

provides the number and percentage (in parentheses) of factors involved in constraints.

The last two columns in the table show the dual of this information – they provide the

number of constraints in which a factor participates. This provides an indication of the

extent to which constraints are “coupled” and may give rise to implied constraints. For

example, if a factor is involved in only a single constraint it will fall into the first (1 Cons.

Per Factor) category. We do not show data for factors involved in more than 2 constraints

due to space limitations.

We use the summarization of case study characteristics to synthesize random covering

array models with constraints that share the characteristics of the case study systems.

67

Factors and Values
Num 2 3 4 5 or 6

Factor Values Values Values Values
Spins 18 13 0 5 0

(72.2) (0.0) (27.8) (0.0)
Spinv 55 42 2 11 0

(76.4) (3.6) (20.0) (0.0)
GCC 199 189 10 0 0

(95.0) (5.0) (0.0) (0.0)
Apa 172 158 7 4 2

(91.9) (4.1) (2.3) (1.2)
Bugz 52 49 1 2 0

(94.2) (1.9) (3.8) (0.0)

Table 4.1: Case Study Basic Characteristics: Factors and Values

Constraints Factor Involv.
Num Factor 2-way 3-way 4/5-way 1 Con. Per 2 Con. Per
Cons Invol. Cons Cons Cons Factor Factor

Spins 13 9 13 0 0 5 0

(50.0) (100.0) (0.0) (0.0) (55.6) (0.0)
Spinv 49 33 47 2 0 12 7

(60.0) (95.9) (4.1) (0.0) (36.4) (21.2)
GCC 40 36 37 3 0 14 13

(18.1) (92.5) (7.5) (0.0) (38.9) (36.1)
Apa 7 18 3 1 3 14 1

(10.5) (37.5) (12.5) (37.5) (77.8) (5.6)
Bugz 5 11 4 1 0 11 0

(21.2) (80.0) (20.0) (0.0) (100.0) (0.0)

Table 4.2: Case Study Characteristics: Number and Percent of Factors/Constraints

Our synthesis algorithm starts by randomly generating a number of factors between 18

and 199 – the range of factors found in our case studies. The case studies had between

72% and 95% of their factors with only two values; 90% of the factors across all of the

studies were binary. We skewed the number of binary factors towards the average across

all case studies by selecting between 85-95% of the number of factors to be binary and

the rest to involve between 3 and 6 factors. We weighted the latter decision with a 40%

probability that 3 will be chosen, and a 20% probability for the rest.

The ratio of constraints to factors in the case studies varied from 0.04 to 0.89, but this

degree of variation leads to large numbers of models that bear no resemblance to the

68

case studies. We chose to generate constraints by using the range of actual constraints,

between 5 and 49, found in the case studies. Between 37% and 100% of the constraints

are binary in our case studies; 90% of the constraints across all of the studies were binary.

As with binary factors, we skewed the number of binary constraints towards the average

across case studies by selecting 80-100% of constraints per problem to be binary. The

remaining constraints chosen as 3, 4 or 5-way with equal probability. We used a greedy

synthesis approach, so at each decision point if all constraints are assigned to a category

synthesis stops.

Another consideration that we tried to enforce is to make sure that between 40-100%

of the factors involved in constraints are involved in only a single constraint while 10-20%

of the factors are involved in two constraints; the latter range represents the skewing of

factor involvement toward the average across all five case studies. Any constraints that

are not bound to factors are configured to be involved with between 3 and 9 constraints

with equal probability.

We automated this approach to generate CCIT problems. The CMCA models, numbers

and arity of constraints for all 30 synthesized CCIT problems are shown in Table 4.4. For

each of the case studies, and synthesized CCIT problems, it enumerates the factors for

the CAModel and the constraints. This information is given in an abbreviated form that

shows the numbers of factors with a given number of values in the form #values# f actors

and the number of constraints with a given arity in the form arity#constraints (column No.

Cons.).

4.6.3 Performance Evaluation

In this section, we compare the performance of AETG-History, AETG-Threshold and

AETG-Hist-Threshold using an incremental SAT version of AETG-SAT as the baseline.

69

Figure 4.3: SAT Threshold Performance for 5 Random Samples

Our goal is to empirically evaluate the algorithms with respect to both the computa-

tional time required (efficiency) and the size (quality) of the resulting solutions. Before

comparing AETG-History and AETG-Threshold, however, it is first necessary to select a

threshold value. Our first study evaluates various threshold values to find the best balance

of efficiency and quality in our data samples.

4.6.4 Finding a Good Threshold Point

The AETG-Threshold algorithm triggers a switch in the algorithmic behavior at a given

threshold point. Once this threshold has been reached the algorithm stops any further

AETG evaluations, and instead fills in all of the remaining factor-values using the last

satisfying assignment found by the SAT solver. We expect a range of behavior for this

algorithm. When the threshold is set very low we expect solutions that are effectively

random in achieving interaction coverage, while thresholds closer to the end will likely

save little computation. Since the selection of the threshold will affect our results, we

compare both time and size over a range of threshold values. To determine a threshold

we randomly selected 5 samples from our synthesized data. These are sample numbers

70

14, 15, 21, 28 and 29 from Table 4.4. We evaluate threshold in 10% increments from 10%

through to 90%. For each threshold, we run AETG-Threshold 50 times and collect both

the time in seconds as well as the size of the resulting CMCA. Initialization is performed

once and this time is divided evenly among samples. Figure 4.3 shows box plots for

time and size for each of the 50 runs summed across these 5 samples. The graph on the

left plots size while the graph on the right plots execution time. These plots capture the

variability in the 50 runs of the algorithm, while showing the median total times and

sizes based on different threshold values.

As is expected the CMCA sizes for low thresholds are large compared with the sizes

calculated for a threshold of 50% or greater. The run times are dramatically lower for

thresholds below 50% and run time increases rapidly with increasing threshold.

Visual inspection of the plots, suggests that a threshold in the 50-70% range provides

a good balance between speed and CMCA size. We are interested in confirming this

intuition by calculating the threshold that provides the best cost-benefit tradeoff. We

use a normalization technique to equalize the values for time and size to contribute

equally in our decision. It is possible to associate more weight to one or the other of these

metrics, depending on the final objective, but for our initial investigation we chose an

equal contribution. Given the different scales, we reduce the impact of each to a relative

importance. We first calculate the timeRatio and sizeRatio by subtracting the minimum

time (or size) from the time (or size) of each threshold point. For instance in the timeRatio

all times will subtract 103.0 as is seen in Table 4.3. We then divide this number by the

range of times (or range of sizes). This gives us a number between zero and one for each

ratio. Zero means that the time (or size) matches the minimum value for all thresholds

and one means it matches the maximum time (or size). We use a weighted sum of these,

combinedTimeSize, and select the minimum value to set our best threshold. Since the

ranges of data for time and size vary by a factor of sizeRange/timeRange (10.7 in our

71

Threshold Percentage
10% 20% 30% 40% 50% 60% 70% 80% 90%

Time 109.33 103.04 120.20 155.59 207.94 276.61 415.37 512.97 765.69

timeRatio 0.01 0.00 0.03 0.08 0.16 0.26 0.47 0.62 1.00

Size 312.64 278.64 264.56 255.60 251.22 250.42 253.62 256.94 259.96

sizeRatio 1.00 0.45 0.23 0.08 0.01 0.00 0.05 0.10 0.15

combinedTimeSize 10.66 4.83 2.45 0.97 0.30 0.26 1.02 1.73 2.63

Table 4.3: Time and Size of 5 Samples for Threshold Percentages

data set given a time range of 662.7 and a size range of 62.2), we multiply the size ratio

by this value giving us the following formula

combinedTimeSize =

timeRatio + (sizeRange/timeRange)× sizeRatio.

The data for these calculations for the 5 samples is given in Table 4.3. We use the average

of the sum of the 50 data repeats as a basis for this calculation. The results of this analysis

show that the threshold value of 60% provides the best balance of both time and size. In

Table 4.4 and Table 4.5 we present only the data for this threshold value.

4.6.5 Comparing Algorithms

We compare the four variations AETG-SAT, AETG-Hist, with a threshold of 60% for

AETG-Threshold and AETG-Hist-Threshold, and the unconstrained AETG algorithm. All

of our implementations are written in C++ and use miniSAT v1.14.1 written in C [94].

All program run-time data is gathered by executing implementations on an Opteron 250

processor with 4 Gigabytes of RAM running the Fedora Core 3 installation of linux.

For each technique and CCIT problem, we ran 50 trials; this helps account to the

random variation that is inherent in AETG-like algorithms. We collect both CMCA size

and execution times for each of the 50 trials. Once again, we divide the initialization

72

times evenly among all runs. Table 4.4 and Table 4.5 correspondingly show the results

of time and size of generating samples for t = 2 for the five case studies as well as

the 30 synthesized CCIT problems. The first three columns of both tables identify the

CCIT problem and characterize the CAModel and problem constraints. In Table 4.4, the

remaining columns are split into a group of five, reporting for each of the five techniques

in terms of execution time in seconds; in Table 4.5, the remaining columns are split into a

group of five, reporting for each of the five techniques in terms of CMCA size. Each cell

in both tables gives the average over the 50 trials for either size or time. The last row of

both tables is the sum of averages across all data sets.

The variation in covering array size across techniques is relatively modest. It is

noteworthy, that less than 3% of the MCA rows produced by the unconstrained AETG

technique satisfy constraints. AETG-SAT and AETG-History produce nearly identical

sizes as do AETG-Threshold and AETG-Hist-Threshold. A difference of 3 rows between

AETG-Threshold and AETG-Hist-Threshold across the more than 1500 is within the

expected variation attributable to randomization in AETG; as can be observed by the

range in the box plots of the CMCA size data in Figure 4.3. The 60% Threshold algorithms

appear to provide a modest reduction, approximately 3%, in CMCA size. We conjecture

that the effectively random selection made after the threshold point provides a relaxation

in the aggressive one-row-at-a-time greedy technique allowing better decisions to be

made in later rows. We know that meta-heuristic search techniques that construct the

entire array at a time (rather than fix one-row-at-time), and relax intermediate solutions

by allowing occasional “bad choices”, in general produce smaller covering arrays for

both unconstrained and constrained CIT problems [23, 27]. Further analysis is needed to

confirm this conjecture.

The variation in execution time data across techniques is more significant. AETG-

History yields a 9% reduction in solution time over AETG-SAT and a 5% reduction in

73

solution time over unconstrained AETG. AETG-Threshold, as expected, significantly

speeds up solution time by skipping AETG processing on 40% of each row; it yields a

67% reduction in solution time relative to AETG-SAT.

The AETG-Hist-Threshold shows that the History and Threshold optimizations tar-

get different aspects of AETG-SAT algorithm since the data reveal that their benefits

accumulate when the optimizations are composed. The AETG-Hist-Threshold technique

yields a 71% reduction in solution time relative to AETG-SAT. We believe that additional

improvements are possible by more tightly integrating History and Threshold. The

current combination attempts to clearly separate the portions of the row in which each

technique is active, however, it is possible to accelerate progress toward the threshold by

counting the must assignments produced by History as making progress through the row.

This integration would further reduce solution time without impacting solution quality –

since Threshold will not overwrite must assignments from History.

These data demonstrate unequivocally that integrating constraints into CCIT solution

algorithms can not only be efficient, but can actually make solution times significantly

faster. This result may seem counter-intuitive at first, but it can be attributed to the fact

that the techniques leverage SAT to aggressively prune the AETG search space. The cost

benefits of this pruning more than compensate for the additional overhead of mining

SAT solver data structures, maintaining threshold counters, and identifying implicit

constraints during initialization.

4.6.6 Further Analysis of the Threshold

We performed additional analyses to examine the impact of increasing the covering array

strength and of changing the characterization of the covering array on the threshold. First

we examine the threshold when our algorithms are run for higher strength, i.e. different

74

values of t. When we run all of the same samples for t = 3 we see the threshold move to

80% (this threshold analysis is not shown). We also see a steady decrease in the resulting

covering array size. This differs from the t = 2 data where our size was minimal at the

60% threshold. Our conjecture is that the random choices made by the SAT solver affect

a much larger set when t = 3 which means we are less likely to make good choices by

chance. Table 4.6 and Table 4.7 show size and time data correspondingly for our case

study subjects when t = 3. Although our threshold is now 80% we still see a large time

savings when we use AETG-Threshold. This is because the run times are much longer

overall. For instance in gcc, the time saved by using an 80% threshold is approximately 8

hours. Our smallest arrays are found with AETG-History for t = 3. Which algorithmic

technique provides the greatest cost savings will now depend on the cost of running tests

for a single configuration versus the cost of constructing the covering array.

We also examined synthesized data sets for t = 2 that do not follow the characteristics

of our case study subjects. Specifically, we decreased the number of factors, but increased

the average number of values for each factor to be between 3-30 values. In this situation

we also saw an increase in the threshold to 80%, leading us to conclude that the threshold

will be sensitive to the parameters of the constrained covering array. Consequently, we

believe that selection of specific threshold values is best determined by balancing the

value of CMCA size versus generation time in a particular testing context.

4.6.7 Threats to Validity

The most significant threats to our findings is their generalization to other subjects. We

cannot be sure that the subjects chosen and the respective simulated data are represen-

tative of all configurable software. We have, however, tried to control for this by using

four different subjects from differing domains that have large user population bases. All

75

of these are open source programs, however, which may not be reflective of proprietary

systems. We have also seen that the size data of our resulting samples, and the resulting

threshold is sensitive to the parameters of the covering array. This means that both the

software being modeled and the strength of the array may affect the threshold value.

The time data, however, appears to be more stable across all experiments and should

generalize better.

We have taken special measures to assure the internal validity of our findings. We

have independently checked the constrained covering arrays through random sampling

with different programs to confirm that they generate the correct constrained covering

arrays. We have also validated the programs that are used to perform that checking.

While it is clear that one could develop many measures for judging the value of a

CCIT method, we believe that CMCA size and generation time are the core elements of

such an evaluation. Their relative weights in drawing value judgments may be varied

depending on usage context, but we leave such exploration to future work.

4.7 Summary of the Work

The conventional wisdom in the CIT community is that constraints significantly com-

plicate the problem of computing a CIT sample. In this chapter, we present a set of

algorithms that synergistically integrate boolean satisfiability algorithms with greedy CIT

generation algorithms. The most-efficient of these algorithms allows high-quality CIT

samples to be computed in less than one-third the time of widely-used unconstrained

CIT algorithms. Moreover, this performance benefit was observed on a collection of

constrained CIT problems that reflect the richness of constraints found in real-world

systems. We believe this represents a promising step in advancing CIT methods towards

even broader applicability for the testing of highly-configurable software systems.

76

The key insight in this work is to leverage the fact that both CIT generation and SAT

solver algorithms perform a search of the same space. By formulating constrained CIT

sample generation as alternating phases of CIT and SAT search we leverage information

from one search to inform the other. This leads to significant pruning of the CIT search,

and reductions in execution time, while retaining the portions of the search space that

contain high-quality solutions.

We believe that the techniques in this dissertation open the way for more aggressive

scaling of the application of constrained CIT methods. In addition to scaling the size

of subjects, an additional, and orthogonal, dimension of scaling is to consider higher

CIT strength. While our evaluation considered mostly pair-wise CCIT it is likely that

for mission-critical systems, engineers will target higher-order coverage which will

dramatically increase the cost of CIT. The analyses we performed on some instances of

CCIT for t=3 indicate that run times are dramatically larger than for t=2. We also observed

that the threshold point for retaining high quality solutions increases. We have not yet

explored the impact on strengths of t > 3. More study is needed to better understand

the scalability of our CCIT methods to extremely large-scale highly-configurable mission-

critical systems.

77

Covering Array, t=2 Time in Secs
camodel no. maetg aetg aetg aetg aetg

cons . sat hist thres h-t
60% 60%

spins 21345 213 0.3 0.4 0.3 0.2 0.2
spinv 24232411 24732 8.2 11.3 8.5 4.5 3.5
gcc 2189310 23733 221.7 286.9 204 70.2 68.0
apache 215838445161 23314251 258.3 249.2 244.1 76.4 76.5
bugz. 2493142 2431 4.5 6.2 4.4 1.9 1.5
1. 28633415562 2203341 79.1 71.3 66.1 24.4 22.2
2. 28633435161 21933 39.9 47 40.7 16.2 14.7
3. 22742 2931 0.9 0.9 0.8 0.4 0.3
4. 251344251 21532 8.8 8.8 8.1 3.4 3.1
5. 215537435564 2323641 404.3 404.8 372.9 134.8 120.3
6. 2734361 22634 21.0 25.1 22.1 8.2 7.2
7. 22931 21332 0.6 0.6 0.6 0.3 0.3
8. 210932425363 2323441 117 131.8 148.3 45.1 40.6
9. 25731415161 23037 10.6 9.4 8.2 3.5 3.0
10. 213036455264 24037 257 261.5 230.5 82.8 74.3
11. 28434425264 22834 67.7 80.2 68.9 26.8 23.8
12. 213634435163 22334 235.0 228.3 212.8 75.6 68.0
13. 212434415262 22234 145.2 153.2 146.8 60.1 45.5
14. 281354363 21332 54.3 61.4 57.7 20.6 20.2
15. 25034415261 22032 12.3 13.0 11.7 4.9 4.7
16. 281334261 23034 26.9 35.1 27.7 11.1 9.7
17. 212833425163 22534 169.6 173.1 156.3 52.0 46.9
18. 212732445662 2233441 198.3 199.2 193.1 67.3 60.1
19. 217239495364 23835 610.7 586 534.4 206.6 168.4
20. 213834455467 24236 347.9 362.9 325.7 121.1 109.9
21. 27633425163 24036 42.1 49.6 41.6 18.5 14.3
22. 2733343 23134 17.3 19.9 17.6 6.7 5.9
23. 2253161 21332 0.8 0.7 0.6 0.3 0.3
24. 2110325364 22534 124.2 134.7 128.9 46.4 40.6
25. 211836425266 2233341 193.6 196.7 180.5 63.4 61.7
26. 287314354 22834 45.5 50.6 47.5 20.7 15.5
27. 25532425162 21733 15.7 20.0 15.1 5.4 4.6
28. 2167316425366 23136 584.5 588.5 546.3 180.9 170.4
29. 21343753 21933 148.1 142.7 135.9 51.7 38.9
30. 272344162 22032 29.8 35.8 31.1 11.8 10.3
sum 4501.3 4646.6 4249.2 1524.3 1356.3

Table 4.4: Average Time Over 50 Runs

78

Covering Array, t=2 Size
camodel no. maetg aetg aetg aetg aetg

cons . size sat hist thres h-t
sat 60% 60%

spins 21345 213 26.3/8 27.1 27.1 27.0 27.1
spinv 24232411 24732 36.0/0 42.5 42.7 45.0 44.9
gcc 2189310 23733 25.2/1 24.8 24.7 26.3 26.3
apache 215838445161 23314251 42.4/14 42.8 42.5 42.6 42.9
bugz. 2493142 2431 25.0/7 24.9 25.2 21.8 22.2

1. 28633415562 2203341 56.5/0 54.7 55.4 53.3 53.7
2. 28633435161 21933 40.0/0 40.1 39.7 40.4 40.5
3. 22742 2931 23.1/0 21.0 21.2 20.7 20.8
4. 251344251 21532 29.8/1 28.7 28.7 28.9 28.6
5. 215537435564 2323641 65.8/0 64.1 64.5 63.8 64.3
6. 2734361 22634 34.3/0 34.0 33.9 34.0 34.0
7. 22931 21332 12.4/0 12.0 12.1 12.5 12.5
8. 210932425363 2323441 59.4/0 57.3 57.1 55.6 56.1
9. 25731415161 23037 36.3/0 27.2 27.3 26.1 26.0
10. 213036455264 24037 64.0/0 64.1 63.9 60.3 60.4
11. 28434425264 22834 61.5/0 61.1 60.6 59.0 58.3
12. 213634435163 22334 58.8/0 57.1 56.8 54.3 54.5
13. 212434415262 22234 51.5/0 51.0 51.8 49.3 48.6
14. 281354363 21332 56.6/3 56.2 56.0 51.7 51.8
15. 25034415261 22032 41.1/1 40.7 40.7 40.4 40.7
16. 281334261 23034 33.4/0 33.0 33.1 33.1 33.4
17. 212833425163 22534 57.1/0 57.0 56.6 53.6 53.4
18. 212732445662 2233441 59.5/0 57.7 58.3 57.2 57.3
19. 217239495364 23835 68.0/0 66.3 65.7 64.4 64.7
20. 213834455467 24236 72.6/0 71.6 71.8 71.5 71.8
21. 27633425163 24036 56.0/0 55.0 54.7 51.3 51.7
22. 2733343 23134 28.8/0 28.7 28.8 26.2 26.4
23. 2253161 21332 20.7/1 15.7 15.7 16.3 16.0
24. 2110325364 22534 61.0/0 59.9 60.0 58.1 58.3
25. 211836425266 2233341 67.6/0 66.2 66.4 65.7 65.7
26. 287314354 22834 44.2/0 43.3 43.5 42.0 42.0
27. 25532425162 21733 49.8/0 49.8 50.5 46.6 45.8
28. 2167316425366 23136 70.1/0 68.4 68.7 68.4 68.5
29. 21343753 21933 42.2/0 41.2 41.4 38.6 38.4
30. 272344162 22032 49.2/0 50.2 50.4 45.6 45.8
sum 1626.4/36 1595.4 1597.7 1551.6 1553.3

Table 4.5: Average Size Over 50 Runs

79

Covering Array, t=3 Size
camodel no. maetg aetg aetg aetg aetg

cons. sat hist thres h-t
80% 80%

spins 21345 213 105.9 117.5 117.1 118.1 118.4
spinv 24232411 24732 168.3 243.0 242.2 254.1 253.7
gcc 2189310 23733 88.5 106.5 106.9 111.8 112.3
apache 215838445161 23314251 207.4 206.9 206.8 212.3 211.7
bugz. 2493142 2431 71.1 71.7 72.2 74.8 75.3
sum 641.3 745.7 745.2 771.2 771.4

Table 4.6: Average Size over 50 Runs for t = 3

Covering Array, t=3 Time in Secs
camodel no. maetg aetg aetg aetg aetg

cons. sat hist thres h-t
80% 80%

spins 21345 213 5.9 7.7 6.2 4.9 4.1
spinv 24232411 24732 611.2 879.4 636.9 490.4 394.8
gcc 2189310 23733 44498.2 54307.2 53226.8 28082.1 27102.1
apache 215838445161 23314251 60126.4 60216.3 60785.2 31210.1 30066.0
bugz. 2493142 2431 199.4 209.6 190.1 123.9 103.8
sum 105441.1 115620.2 114845.2 59911.3 57670.7

Table 4.7: Average Time over 50 Runs for t = 3

80

Chapter 5

Integration Testing of Software Product

Lines Using Compositional Symbolic

Execution1

So far we have tackled the large product space of an SPL from the sampling perspective.

More specifically, we developed an interaction coverage and a method to generate a

sample to fulfill such coverage. Next we will tackle the same challenge from the reuse

perspective. More specifically, we want to integration test all interactions of an SPL by

reusing testing results of smaller-size interactions for testing larger-size interactions.

As discussed in 1.2.3, we exploit inclusion relations among interactions to reuse

lower-level interaction test results for testing higher-level interactions, so that our testing

method is more efficient. There are several steps to reach this reuse goal, and we show an

overview next.
1Portions of the material presented in this chapter have appeared previously in [122]. The material

presented in this chapter provides a running example for the compositional symbolic execution algorithm.

81

!"#

s() {!
 …!
 v();!
 if (c) {!
 …!
 }!
 w();!
 …!
}!

f1(){!
 …!
}!

f2(){!
 …!
}!

f3() !
f4() !

$#

%&

!"# !'# !(# !)#

"*"# "*'#

!(#

!'# !)#

V()!

 C!

W()!

 …!

+,-./0+$#

!(#

!"# !)# !'# !)#!"# !(#

!"# !'#!)#

!"#

!'# !)#

12# 345#

635#78/9-+#680+# :;<+9=->8;#?9++$#

!"

#"

$"

%"

&"
'"

$/@A!"B!'B!)C#D#EA!"F,GHB!)F9+<D!"F,I"CB#JC#

("

)"
• K+L89<#!=/.<$#
• 5+;+9=<+#<+$<$#

Figure 5.1: Conceptual Overview of Compositional SPL Analysis

5.1 Overview – Dependence driven Compositional

Analysis

Our technique exploits an SPL’s variability model and the inter-dependence of feature

implementations to reduce the cost of applying symbolic execution to reason about

feature interactions. Figure 5.1 provides a conceptual overview.

An SPL is comprised of a source code base and an OVM. The OVM and its constraints

(e.g., the excludes between f2 and f3) defines the set of features that may be present in an

instance of the SPL.

Our technique begins (step are denoted by large bold italic numerals in the figure) by

applying standard control flow and dependence analyses on the code base. The former

results in a control flow graph (CFG) and the latter results in a program dependence

graph (PDG). In step 2, the PDG is analyzed to calculate a feature dependence graph

(FDG) which reflects inter-feature dependences. The edges of the FDG are pruned to be

82

consistent with the OVM, e.g., the edge from f2 to f3 is not present.

Step 3 involves the calculation, from the FDG, of the hierarchy of all k-way feature

interaction trees. The structure of this hierarchy reflects how lower-order interactions can

be composed to create higher-order interactions. For instance, how the interaction among

f1, f2, and f4 can be constructed by combining f1 with an existing interaction for f2 and

f4.

The interaction tree hierarchy is used to guide the calculation of symbolic summaries

for all interaction trees in a compositional fashion. This begins, in Step 4, by applying

symbolic execution to the source code of the individual features in isolation. When

composing two existing summaries, for example f1 and f3, to create a 2-way interaction

tree, a summary of the behavior of the common SPL code which leads between those

summaries must be calculated. Step 5 achieves this by locating the calls to the features

in the CFG and calculating a chop [115] – shown as the shaded figure in the CFG – the

edges of the chop are used to guide a customized symbolic execution to produce an

edge summary. In step 6, a pair of existing lower-order interaction summaries and the

edge summary are composed to produce a higher-order summary – such a summary is

illustrated at point 7 in the figure.

In step 8, summaries can be exploited to detect faults, via comparison to fault oracles,

or to generate tests by solving the constraints generated by symbolic execution and

composition. We describe the major elements next.

5.2 Relating SPL Models To Implementations

An SPL implementation can be partitioned into regions of code that implement each

feature; the remaining code implements the common functionality shared by all SPL

instances. There are many implementation mechanisms for realizing variability in a code

83

base [71]. Our methodology can target these by adapting the summary computation for

Step 4 and feature dependence graph construction for Step 2, but for simplicity it suffices

to view features as methods where common code makes calls on those methods.

In the remainder of this section, we assume the existence of a mapping from in the

OVM to methods in a code base; we use the name of a feature to denote the method

when no confusion will arise. Features can be called from multiple points in the common

code, but to simplify the presentation of our technique, we assume each feature is called

from a single call site.

Given a pair of features, f1 and f2, where the call to f2 is reachable in the CFG from

the call to f1, their common region is the source code chop [115] arising when the calls

are used as the chop criterion. This chop is a single-entry single-exit sub-graph of the

program control flow graph (CFG) where the entry node is the call to f1 and the exit

node is the call to f2. The CFG paths within the chop overapproximate the set of feasible

program executions that can lead from the return of f1 to the call to f2. These chops play

an important role in accounting for the composite behavior of features as mediated by

common code.

5.3 Calculating Feature Interactions

We leverage the concept of program dependences, and the PDG [105], to determine

inter-feature dependences. A PDG is a directed graph, (S, EPDG), whose vertices are

program statements, S, and (si, sj) ∈ EPDG if si defines the value of a location that is

subsequently read at sj. A feature dependence graph (FDG) is an abstraction of the PDG

for an SPL implementation.

Definition 5.3.1 (Feature Dependence Graph) Given a PDG for an SPL, (S, EPDG), the

FDG, (F, EFDG), is a directed graph whose vertices are features, F, and (fi, f j) ∈ EFDG iff

84

∃si, sj ∈ S : si ∈ S(fi) ∧ sj ∈ S(f j) ∧ (si, sj) ∈ EPDG where S(f) is the set of statements in

feature f .

We capture the interaction among features by defining a tree that is embedded in the

FDG. The intuition is that the root is the sink of a set of feature dependence edges. The

output values of that root feature reflect the final interaction effects, and are defined in

terms of the input values of the features that form the leaves of the tree.

Definition 5.3.2 (Interaction Tree) Given an FDG, (F, EFDG), a k-way interaction tree is an

acyclic, connected, simple subgraph, (F′, E′), where F′ ⊆ F, E′ ⊆ EFDG, |F′| = k, and where

∃r ∈ F′ : ∀v ∈ F′ : r ∈ v.(E′)∗. We call the common reachable vertex the root of the interaction

tree.

The set of all k-way interaction trees for an SPL can be constructed as shown in

Algorithm 6. The algorithm uses a constructor tree() which, optionally, takes an existing

tree and adds edges to it expanding the set of vertices as appropriate. For a tree, t, the set

of vertices is v(t) and the root is root(t). Before adding a tree, the set of features in the

tree must be checked to ensure they are consistent with the OVM; this is done using the

predicate consistent().

The algorithm accepts k and an FDG and returns the set of k-way interactions. It builds

the set of interactions incrementally. For an i-way interaction, it extends an i− 1-way

interaction by adding a single additional vertex and an edge. While other strategies for

building interaction trees are possible, this approach has the advantage of efficiency and

simplicity. Based on our case studies, reported in Section 5.5, this approach is sufficient

to enable significant improvement over more standard analyses of an SPL code base.

Interaction trees can be organized hierarchically based on their structure.

Definition 5.3.3 (Interaction Hierarchy) Given a k-way interaction tree, tk = (F, E), where

85

1: interactionTrees(k, (F, E))
2: T := ∅
3: for (fi, f j) ∈ E
4: T ∪ = tree(fi, f j)
5: for i = 3 to k + 1
6: for ti−1 ∈ T ∧ |ti−1| = i− 1
7: for v ∈ F− v(ti−1)
8: if (root(ti−1), v) ∈ E ∧ consistent(v(ti−1 ∪ v)) then
9: T ∪ = tree(ti−1, (root(ti−1), v))

10: else
11: for (v, v′) ∈ E ∧ v′ ∈ v(ti−1)
12: if consistent(v(ti−1 ∪ v) then T ∪ = tree(ti−1, (v, v′))
13: endif
14: return T
15: end interactionTrees()

Algorithm 6: Computing k-way Interaction Trees

k > 1, we can define a pair of interaction trees ti = (Fi, Ei) and tj = (Fj, Ej), such that

Fi ∩ Fj = ∅, |Fi|+ |Fj| = k, and ∃(fi, f j) ∈ E. We say that tk is the parent of ti and tj and,

conversely, that ti and tj are the children of tk.

The base case of the hierarchy, where k = 1, is simply each feature in isolation. There

are many ways to construct such an interaction hierarchy, since for any given k-way

interaction tree cutting a single edge partitions the tree into two children. As discussed

below, the hierarchy resulting from Algorithm 6 enjoys a structure that can be exploited

in generating summaries of interaction pattern behavior. The parent (child) relationships

among interaction trees can be recorded at the point where the tree() constructor calls

are made in Algorithm 6.

Figure 5.2 shows a simple FDG with 4 features and 3 directed interactions. Here one

edge represents a def-use relation underlying two features. There are three tables to

show all interactions from 2- to 4-way. Each table includes both normal interactions and

directed interactions. For example, for a 3-way interaction (f2, f3, f4), we have a rooted

tree which includes exactly 2 edges (f 2 → f 3 and f 3 → f 4) connecting 3 nodes (f2, f3

and f4) with one sink (f4).

86

Figure 5.2: Traditional Interactions and Interaction Trees

5.4 Composing Feature Summaries

Our goal is to analyze program paths that span sets of features in an SPL to support

fault detection and test generation. Our approach to feature summarization involves two

distinct phases: (1) the application of bounded symbolic execution to feature implementa-

tions in isolation to produce feature summaries, and (2) the matching and combination of

feature summaries to produce summaries of the behavior of interaction patterns.

Phase (1) is performed by applying traditional symbolic execution where the length of

the longest branch sequence is bounded to d – the depth. For each feature, f , this results

in a summary, fsum, as defined in Section 2.4.4.

When performing symbolic execution of f there are three possible outcomes: (a) a

complete execution of f which returns normally as analyzed within d branches, (b) an

exception, including assertion violations, is detected before d branches are explored, and

(c) the depth bound is reached. In our work, we only accumulate the outcomes falling

87

into (a) into fsum.

Case (b) is interesting, because it may indicate a fault in feature f . The isolated

symbolic execution of f allows for any possible state on entry to the feature, however,

it is possible that a detected exception is infeasible in the context of a system execution.

In future work, we will preserving results from case (b) and attempt to determine their

feasibility when composed in interaction patterns with other features – this would reduce

and, when interaction patterns are sufficiently large, eliminate false reports of exceptions.

For phase (2) we exploit the structure of the interaction hierarchy resulting from the

application of Algorithm 6 to generate a summary for a k-way interaction. As discussed

above, such an interaction has (potentially several) pairs of children. It suffices to select

any of those pairs.

Within each pair there is a k− 1-way interaction, i, which we assume has a summary

isum = (pci, wi), and single feature, f , summarized as fsum = (pc f , w f), which is connected

by a single edge connected to either root(i) or one of i’s leaves, l. To compose isum and

fsum we must characterize the behavior of the FDG edge.

The existence of an edge (f , f ′) means that there is a common region beginning at the

return from f and ending at the call to f ′. Calculating the chop that circumscribes the

CFG for this region allows us to label branch outcomes that lie within the chop and to

direct the symbolic execution along paths from f that reach f ′.

Algorithm 7 defines this approach to calculating edge summaries. It consists of a

customized depth-bounded symbolic execution that only explores a branch if that branch

lies within the chop for the common region. The algorithm makes use of several helper

functions. Functions determine whether an instruction is a branch, branch(), the target

of a branch, target(), and the symbolic expression for a branch given a symbolic state,

cond(). Functions to calculate the successor of an instruction, succ(), the set of locations

written by an instruction, write(), and updating the symbolic state based on an instruction,

88

1: eSum(E, l, e, pc, s, w, d)
2: if |pc| > 0
3: if branch(l)
4: lt := target(l, true)
5: if SAT(cond(l, s)) ∧ (l, lt) ∈ E
6: eSum(E, lt, e, pc ∧ cond(l, s), s, w, d− 1)
7: l f := target(l, f alse)
8: if SAT(¬cond(l, s)) ∧ (l, l f) ∈ E
9: eSum(E, l f , e, pc ∧ ¬cond(l, s), s, w, d− 1)

10: else
11: if l = e
12: sum ∪ = (pc, π(s, w))
13: else
14: s := update(s, l)
15: w ∪ = write(l)
16: eSum(E, succ(l), e, pc, s, w, d)
17: endif
18: endif
19: if pc = true return sum
20: end eSum()

Algorithm 7: Edge Summary

update(), are also used. The SAT() predicate determines whether a logical formula is

satisfiable. Finally, the π() function projects a symbolic state onto a set of locations.

eSum(Echop, succ(f), f ′, true, ∅, ∅, d) returns the symbolic summary for edge (f , f ′)

where the parameters are as follows. Echop is the set of edges in the CFG chop bounded

by the return of f and the call to f ′, succ(f) is the location at which initiate symbolic

execution and f ′ is the call that terminates symbolic execution. true is the initial path

condition. The next two parameters are the initial symbolic state and the set of locations

written on the path – both are initially empty. d is the bound on the length of the path

condition that will be explored in producing the summary.

To produce a symbolic summary for the k-way interaction, we now compose isum,

fsum, and the edge summary computed by eSum(). There are two cases to consider. If the

feature, f ′, is connected to root(i) with an edge, (root(i), f ′) we compose summaries in the

89

1: cSum(s, s′)
2: sc := ∅
3: for (pc, w) ∈ s
4: for (pc′, w′) ∈ s′

5: eq := true
6: for l ∈ read(pc′)
7: if ∃l ∈ dom(w)
8: eq := eq ∧ input(s′, l) = w(l)
9: if SAT(pc ∧ eq ∧ pc′)

10: for l ∈ dom(w′)
11: if ∃l ∈ dom(w)
12: w := w− (l,)
13: endfor
14: sc ∪ = (pc ∧ eq ∧ pc′, w ∧ w′)
15: endif
16: endfor
17: end cSum()

Algorithm 8: Composing Summaries

following order: isum, (root(i), f ′)sum, f ′sum. If the feature, f ′, is connected to a leaf of i, li,

with an edge, (f ′, li) we compose summaries in the following order: f ′sum, (f ′, li)sum, isum.

Order matters in composing summaries because the set of written locations of two

summaries may overlap and simply conjoining the equality constraints on the values at

such locations will likely result in constraints that are unsatisfiable. We keep only last

write of locations in a composed summary to honor the sequencing of writes and reads

of locations that arise due to the order of composition.

Consider the composition of summary s with summary s′, in that order. Let (pc, w) ∈ s

and (pc′, w′) ∈ s′ be two elements of those summaries. The concern is that dom(w) ∩

dom(w′) 6= ∅, where dom() extracts the set of locations used to index into a map. Our

goal is to eliminate the constraints in w on locations in dom(w) ∩ dom(w′). In general, pc′

will read the value of at least one location, l, and that location may have been written

by the preceding summary. In such a case, the input value referenced in pc′ should be

equated to w(l). Algorithm 8 composes two summaries taking care of these two issues.

90

In our approach, the generation of a symbolic summary produces “fresh” symbolic

variables to name the values of inputs. A map, input(), records the relationship between

input locations and those variables. We write input(s, l) to denote a summary s and

a location l to access the symbolic variable. For a given path condition, pc, a call to

read(pc) returns the set of locations referenced in the constraint – it does this by mapping

back from symbolic variables to the associated input locations. We rely on these utility

functions in Algorithm 8.

Algorithm 8 considers all pairs of summary elements and generates, through the

analysis of the locations that are written by the first summary and read by the second

summary, a set of equality constraints that encode the path condition of the second

summary element in terms of the inputs of the first. The pair of path conditions along

with these equality constraints are checked for satisfiability. If they are satisfiable, then

the cumulative write effects of the summary composition are constructed. All of the

writes of the later summary are enforced and the writes in the first that are shadowed by

the second are eliminated – which eliminates the possibility of false inconsistency.

5.4.1 Complexity and Optimizion of Summary Composition

From studying the Algorithm 8 it is apparent that the worst-case cost of constructing all

summaries up to k-way summaries is exponential in k. This is due to the quadratic nature

of the composition algorithm.

In practice we see quite a different story, in large part because we have optimized

summary composition significantly. First, when we can determine that a pair of elements

from a summary that might potentially match we ensure that for any shared features

the summaries agree on the values for the elements of those summaries; this can be

achieved through a string comparison of the summary constraints which is much less

91

expensive than calling the SAT solver. Second, we can efficiently scan for constraints in

one summary that are not involved in another summary and those can be eliminated

since they were already found to be satisfiable in previous summary analyses.

5.4.2 Composing Summaries Example

We illustrate the above steps with the bank SPL in Figure 1.1 which has its interaction

tree hierarchy in Figure 1.4. We further assume that Table 5.1 shows summaries of single

features in the bank SPL.

Recall that a summary of a single feature is a set of pair of partition and effects.

For example, Report in Table 5.1 has two pairs which are (B>0, return2=B) and (B≤0,

return2=B-2). Then the first step for composing summary is to find the connection

information between A and B. The connection information is a series of equal clauses

which connects escaped variables of A with inputs variables of B.

After we get summaries of A and B and connection information from A to B, we then

chain each summary of A with each summary of B with a boolean conjunctive operator

considering the connection information, and finally we check if such a chained formula is

satisfiable based on a decision procedure. For example, Table 5.2 shows all composed

summaries for all three 2-way directed interactions in Figure 1.4. For Tya→ Smy, there are

4 possible summary combinations, but only 3 are satisfiable. For the first one composed

summary, we can see there are 3 parts separated with 3 pairs of parentheses. The first

part is the second summary from Tya. The second part is the connection information

which connects a return variable, return3, with an input variable, A. Finally, the third part

is the second summary from Smy. We can see an assignment model (C = 0) will satisfy

the whole new chained formula, (C = 0 ∧ return3 = C− 3) ∧ (return3 = A) ∧ (¬(A >

0∧ F > 0) ∧ return1 = A + 1).

92

So far we have discussed steps to compose summaries from two single summaries,

next we discuss how to compose summaries from two composed summaries. The key is to

use conjunctive operators to chain each summary of one interaction with each summary

of another. Table 5.3 includes four summaries of a 3-way directed interaction based on

three summaries of two 2-way directed interactions. For the first summary, it consists of

two parts, 1.1 and 1.2. They are chained together with an ∧ operator. We separate them

as two parts just for easy explanation. The first part is from the first summary of the

2-way directed interaction, Tya→ Smy. The second part is from the second summary of

another 2-way directed interaction, Pay→Smy. There are a total of 9 possible summary

combinations, but only these 4 are satisfiable.

Now we can see in the interaction tree hierarchy that both Tya→Smy and Pay→Smy

are used to compose the directed interaction { Tya→Smy,Pay→Smy}. Correspondingly

in the summary composition, we do not compute the summary of this 3-way directed

interaction from the scratch; instead we reuse summaries of these 2-way interactions to

compute the summary of the 3-way. This reflects our reuse mechanism during integration

testing interactions by exploiting the similarity of an SPL.

Features Summaries
Summary(Smy) 1. (A>0 ∧ F>0, return1=A) 2.(¬(A>0 ∧F>0), return1=A+1)
Report(Rep) 1. (B>0 , return2=B) 2. (B≤0 , return2=B-2)
To your account (Tya) 1. (C 6=0 , return3=C) 2. (C=0 , return3=C-3)
Pay 1. (D>-5, return4=D) 2. (D≤-5 , return4=D-5)
To one country(Toc) 1. (E 6=10 , return5=E) 2. (E=10 , return5=E-11)

Table 5.1: Summaries of Single Features

5.5 Case Study

We have designed a case study for evaluating the feasibility of our approach that ask the

following two research questions. (RQ1): What is the reduction from our dependency

93

2-way Trees Summaries

Tya→ Smy
1. (C = 0∧ return3 = C− 3) ∧ (return3 = A) ∧ (¬(A > 0∧ F > 0) ∧ return1 = A + 1)
2. (C 6= 0∧ return3 = C) ∧ (return3 = A) ∧ (A > 0∧ F > 0∧ return1 = A)
3. (C 6= 0∧ return3 = C) ∧ (return3 = A) ∧ (¬(A > 0∧ F > 0) ∧ return1 = A + 1)

Pay→ Smy
1. (D > −5∧ return4 = D) ∧ (return4 = F) ∧ (A > 0∧ F > 0∧ return1 = A)
2. (D > −5∧ return4 = D) ∧ (return4 = F) ∧ (¬(A > 0∧ F > 0) ∧ return1 = A + 1)
3. (D <= −5∧ return4 = D− 5) ∧ (return4 = F) ∧ (¬(A > 0∧ F > 0) ∧ return1 = A + 1)

Toc→ Rep
1. (E 6= 10∧ return5 = E) ∧ (return5 = B) ∧ (B > 0∧ return2 = B)
2. (E 6= 10∧ return5 = E) ∧ (return5 = B) ∧ (B ≤ 0∧ return2 = B− 2)
3. (E = 10∧ return5 = E− 11) ∧ (return5 = B) ∧ (B ≤ 0∧ return2 = B− 2)

Table 5.2: Summaries of 2-way Directed Interactions

3-way Trees Summaries

Tya→ Smy 1.1 ((C = 0∧ return3 = C− 3) ∧ (return3 = A) ∧ (¬(A > 0∧ F > 0) ∧ return1 = A + 1))∧
1.2 ((D > −5∧ return4 = D) ∧ (return4 = F) ∧ (¬(A > 0∧ F > 0) ∧ return1 = A + 1))
2.1 ((C 6= 0∧ return3 = C) ∧ (return3 = A) ∧ (A > 0∧ F > 0∧ return1 = A))∧
2.2 ((D > −5∧ return4 = D) ∧ (return4 = F) ∧ (A > 0∧ F > 0∧ return1 = A))

Pay→ Smy 3.1 ((C 6= 0∧ return3 = C) ∧ (return3 = A) ∧ (¬(A > 0∧ F > 0) ∧ return1 = A + 1))∧
3.2 ((D > −5∧ return4 = D) ∧ (return4 = F) ∧ (¬(A > 0∧ F > 0) ∧ return1 = A + 1))
4.1 ((C 6= 0∧ return3 = C) ∧ (return3 = A) ∧ (¬(A > 0∧ F > 0) ∧ return1 = A + 1))∧
4.2 ((D ≤ −5∧ return4 = D− 5) ∧ (return4 = F) ∧ (¬(A > 0∧ F > 0) ∧ return1 = A + 1))

Table 5.3: Summaries of 3-way Directed Interactions

analysis on the number of interactions that should be tested in an SPL? (RQ2): What

is the difference in time between using our compositional symbolic technique versus a

traditional directed technique?

5.5.1 Objects of Analysis

We selected two software product lines. The first SPL is based on the implementation of

the Software Communication Architecture-Reference Implementation (SCARI-Open v2.2)

[30] and the second is a graph product line, GPL[87, 78] used in several other papers on

SPL testing.

The first product line, SCARI, was constructed by us as follows. First we began with

the Java implementation of the framework. We removed the non-essential part of the

product line (e.g. logging, product installation and launching) and features that required

94

CORBA Libraries to execute. For instance, the CORBA framework builds a distributed

computing environment for a generated product. In such an enviroment, modulation can

be on one machine, and demodulation may be on another machine. For simplicity, we

keep only data flow relations between modulation and demodulation, but we remove

the code related to CORBA that distributes these to different machines. We kept the core

mandatory feature, Audio Device, and transformed four features that were written in

C (ModFM, DemodFM, Chorus and Echo), into Java. We then added 9 other features

which we translated from C to Java from the GNU Open Source Radio [51] and the Sound

Exchange (SoX), site [124]. Table 5.4 shows the origin of each feature and the number of

summaries for each. We used the example function for assembling features, to write a

configuration program that composes the features together into products. The feature

model is shown in Figure 5.3(a).

!"#$%&&&
'()*+,&

!"#$

-.%/",& -%0+/1,+& 2%3"4)& 5)6)1+&

7/$4& '*.%& 5)8)/,)& 91#)& :;16&

!"#$%&<)8$*)& =%#9=& &=%#<>?:@&

:-!5A&
-%/)&

&
=%#"31B%0&

&
<)4%#"31B%0&

<)=%#9=&

&
<)=%#<>?:@&

%"%$ %"%$

C?D&
-%/)&

&
E)$F.+&

&
'G63%/1B%0&

&
!3F%/$+.4&

>1,)& E)$F.+)#& :)1/*.&<9:& -%00)*+)#& 7/10,6%,)& :+/%0F&-%0&

H"4I)/& -J*3)& =:7?/$4& =:7@/",K& :.%/+),+&

>9:&

(a) SCARI

(b) GPL

L)G*3"#),M&
L)G*3"#),M&

Figure 5.3: Feature Models for (a) SCARI and (b) GPL

The graph product line (GPL) [87] has been used for various studies on SPLs. We start

with the version found in the implementation site for [78]. To fit our prototype tool, we

refactored some code so that every feature is contained in a method. We removed several

features because either we could not find a method in the source code or because JPF

95

Features Origin LOC No. Summaries
Chorus [30] 30 6

Contrast [124] 14 5

Volume [124] 47 5

Repeat [124] 12 3

Trim [124] 11 6

Echo [30] 31 5

Reverse [124] 14 4

Fade [124] 9 4

Swap [124] 27 4

AudioDevice [30] 13 3

ModFM [30] 19 4

ModDBPSK [51] 6 2

DemodFM [30] 18 4

DemodDBPSK [51] 6 3

Total 257 58

Table 5.4: SCARI Size by Feature

Features LOC No. Summaries
Base 85 56

Weighted 32 148

Search 35 19

DFS 23 41

BFS 23 6

Connected 4 8

Transpose 27 3

StronglyConnected 19 9

Number 2 2

Cycle 40 19

MSTPrim 92 4

MSTKruskal 106 3

Shortest 102 3

Total 590 321

Table 5.5: GPL Size by Feature

would not run. For example, Base is a feature in their variability model represented

as a context free grammar and in the corresponding configuration file, but there are no

corresponding statements/methods in the source code. The feature, Benchmark, involves

file read and write operations, which are not supported well in JPF. Though we believe

that the remaining features of GPL still illustrate the feasibility of the compositional

symbolic execution, we consider the use of industry strength symbolic executors and

more subjects for validating our method as a part of future work. We made the method

Prog our main entry point for the program. We did not include any constraints for

simplicity. Figure 5.3(b) shows the resulting feature model and Table 5.5 shows the

number of lines of code and the number of summaries by feature.

5.5.2 Method and Metrics

Experiments are run on an AMD Linux computing cluster running CentOS 5.3 with

128GB memory per node. We use Java Pathfinder (JPF) [100] to perform SE with the

Choco solver for SCARI and CVC3BitVector for GPL. We adapt the information flow

96

analysis (IFA) package [58] in Soot [141] for our FDG. In SCARI we use the configuration

program for a starting point of analysis. In GPL we use the Prog program, which is an

under-approximation of the FDG.

For RQ1 we compute the number of possible interactions (directed and undirected) at

increasing values for k, obtained directly from the feature model. We compare this with

the number that we get from the interaction trees. For RQ2, we compare the time that is

required to execute the two symbolic techniques on all of the trees for increasing values

of k. We compare incremental SE (IncComp) and a full direct SE (DirectSE). We set the

depth for SE at 20 for IncComp and allow DirectSE k-times that depth since it works on

the full partial-product each time, while IncComp composes k summaries each computed

at depth 20. DirectSE does not use summaries, but in the SPLs we studied there is no

opportunity for summary reuse within the analysis of a partial product – our technique

reuses summaries across partial products.

5.5.3 Results

RQ1. Table 5.6 compares the number of interactions obtained from just the OVM with the

number of interaction trees obtained through our dependency analysis. We present k from

2 to 5. The column labelled UI is the number of interactions calculated from all k-way

combinations of features. In SCARI there are only three true points of variation given the

model and constraints, therefore we see the same number of interactions for k = 3 and 4.

For k = 5, we have fewer interactions since there are 5 unique 4-way feature combinations

in a single product with 5 features, but only a single 5-way combination. The DI column

represents the number of directed interactions or all permutations (k!×UI). The next

two columns are feasible interactions obtained from the interaction trees. Feasible UI,

removes direction, counting all trees with the same features as equivalent. Feasible DI is

97

Subject k UI DI Feasible UI Feasible DI UI Reduction DI Reduction

SCARI

2 188 376 85 85 54.8% 77.4%
3 532 3192 92 92 82.7% 97.1%
4 532 12768 162 162 69.5% 98.7%
5 164 19680 144 144 12.2% 99.3%

GPL

2 288 576 21 27 92.7% 95.3%
3 2024 12144 29 84 98.6% 99.3%
4 9680 232320 31 260 99.7% 99.9%
5 33264 3991680 20 525 99.9% 100.0%

Table 5.6: Reduction for Undirected (U) and Directed (D) Interactions (I)

the full tree count. The last two columns give the percent reduction. For the undirected

interactions we see a reduction of between 12.2% and 99.9% across subjects and values of

k, and the reduction is more dramatic in GPL (92.7%-99.9%). If we consider the directed

interactions, which would be needed for test generation, there is a reduction ranging

from 77.4% to 100%. In terms of absolute values we see a reduction in GPL from over 3

million directed interactions at k = 5, down to 525, an order 4 magnitude of difference.

DIs are useful to detect more behaviors. For example, given a one-second-sound file,

trim→repeat removes 1-second-sound and generates an empty file; repeat→trim repeats

the sound once and outputs a 1-second-sound file. For SCARI, we also see a bigger

difference between UI Reduction and DI Reduction than GPL. The root reason is because

GPL has no constraints in the OVM model, which generates a larger interaction space

than SCARI. At the same time, we use Prog as the main entry point to calculate FDG

and trees, which may under-approximate the number of trees. Both facts lead to a big

reduction for both UI Reduction and DI Reduction in GPL, which are close to 100%. As a

result, this leads to a small difference between both reductions for GPL.

RQ2. Table 5.7 compares the performance of DirectSE and IncComp in terms of time (in

seconds). It lists the number of directed (D) and undirected (U) interactions (I) for each k,

that are feasible based on the interaction trees. Some features in the feature models may

have more than one method. In RQ1 based on the OVM we reported interactions only at

98

Subject k Feasbile UI Feasible DI DirectSE IncComp

SCARI

Time (sec) Time (sec) SAT/SMT, Avoided Calls
1 14 14 6.75 6.75 58

2 85 85 14.48 9.63 430/1780, 0

3 92 92 17.67 10.06 844/2226, 1587

4 162 162 36.09 10.93 1505/2909, 3442

5 144 144 35.87 11.70 2075/3523, 5696

GPL

1 49 49 41.77 41.77 321

2 60 76 67.25 56.28 663/985, 0

3 81 310 184.76 82.00 1441/1901, 1809

4 82 1725 727.34 216.63 5814/7342, 5396

5 52 8135 3887.23 965.92 27444/34147, 19743

Table 5.7: Time comparisions for SCARI and GPL

the feature level. However in this table, we consider all methods within a feature and

give a more precise count of the interactions; we list all of the interactions (both directed

and undirected) between features. The next two columns present time. For Direct SE

we re-start the process for each k, but for the IncComp technique we use cumulative

times because we must first complete k− 1 to compute k. Although both techniques use

the same time for single feature summaries, they begin to diverge quickly. DirectSE is 3

times slower for k = 5 on SCARI, and 4 times slower on GPL. Within SCARI we see no

more than a 3 second increase to compute k + 1 from k (compared to 14-35 seconds for

DirectSE) and in GPL we see at most 750 (12 mins). For DirectSE it requires as long as

3160 (1̃ hour).

The last column of this table shows how many feasible paths were sent to the SAT

solver (SAT). We saw (but don’t report) a similar number for DirectSE which we attribute

to our depth bounding heuristic. The number for SMT represents the total number of

possible calls that were made to the SAT solver. However, we did not send all possible

calls, because our matching heuristic culled out a number which we show as Avoided

Calls.

99

5.6 Summary of the Work

In this chapter we have presented a compositional symbolic execution technique for

integration testing of software product lines. Using interaction trees to guide incremental

summary composition we can efficiently account for all possible interactions between

features. We consider interactions as directed which gives us a more precise notion of

interaction than previous research. In a feasibility study we have shown that we can (1)

reduce the number of interactions to be tested by a factor of between 12.2 and 99.9% over

an uninformed model, and (2) reduce the time taken to perform symbolic execution by as

much as factor of 4 over a directed symbolic execution technique. Another advantage of

this technique is that since our results and costs are cumulative, we can keep increasing k

as time allows, making our testing stronger, without any extraneous work along the way.

As future work we plan to exploit the information gained from our analysis to perform

directed test generation. By using the complete paths we can generate test cases from the

constraints that can be used with more refined oracles. For paths which reach the depth

bound, we plan to explore ways to characterize these partial paths to guide other forms

of testing, such as random testing, to explore the behavior which is otherwise unknown.

100

Chapter 6

Conclusions and Future Work

In this chapter, we summarize challenges and solutions discussed in this dissertation, and

then give three directions for future work.

6.1 Summary

SPLE is an increasingly important software engineering methodology for developing a

set of similar products. In software testing, the biggest challenge is how we can guarantee

the correctness for a huge number of products. Obviously we can not test every product

to guarantee an error-free SPL. Although there have been many techniques presented

in the literature, as discussed in Chapter 2, there is still much room for improvement in

testing an SPL as a whole.

We proposed our methods from two perspectives: sampling and reuse. For sampling,

there are two steps: special coverage criteria and sampling generation methods. For

coverage criteria, we introduced criteria related to the constraints and interactions. For

sampling generation methods, we extended current CIT techniques to generate a sample

to fulfill the coverage with the consideration of constraints. More specifically, we proposed

101

one basic method with three optimizations. With our optimizations and the empirical

study, we have solid evidence that we can generate a high-quality covering array in much

less time for CCIT problems.

There are many different views to exploit the reuse concept for saving testing efforts.

We took an integration testing perspective, which involves testing all directed interactions

from 2- to k-way in an SPL. We organized these directed interactions from the bottom up

as an interaction tree hierarchy, and then composed summaries of higher-level interaction

trees by reusing summaries of lower-level interaction trees. From the preliminary experi-

ment, we have two conclusions: 1) compositional symbolic execution is faster than direct

symbolic execution; and 2) incremental compositional symbolic execution is a dramatic

booster for targeting all k-way interaction trees with the reuse mechanism compared with

the non-incremental compositional symbolic execution only.

Next we present a more detailed discussion for each of these three techniques: the

coverage criteria, sampling techniques and integration testing techniques.

6.1.1 Coverage Criteria

Coverage criteria can guide testing efforts to special properties of a software systems with

a quantified numbers so that defects can be detected in less time. For SPLs, variability is

a core property and a source of an exponential number of products. With the variability

models of SPLs, variability can be represented as optional features or grouped features

with lower and higher bounds. Usually different features may involve constraints like

requires and excludes. Although our work in Chapter 3 can be generalized to all variability

models, we focused on OVM models to show the feasibility. We quantified the interactions

and constraints among features. More specifically, we translated an OVM model to a

relational model, which was then transformed to a CCIT model. With a CCIT model, we

102

can sample interactions incrementally from 2-, 3-, . . . until t-way, and enforce constraints

incrementally. With these interactions- and constraints-sensitive coverage criteria, we can

drive testing efforts to these areas with a quantitative guideline.

6.1.2 Sampling Techniques

After we developed the coverage criteria, including interaction- and constraints-sensitive

criteria, we focused on one difficulty in Chapter 4, i.e. how to handle constraints during a

CA construction. Prior to our work, there were few efficient and effective CA generators

with clearly described algorithms to target constraints. Traditionally, researchers believed

that CA generators will be slower due to added constraints. In this dissertation, we

proposed several related algorithms with a detailed explanation and evaluation, and we

found that CA generators could be much faster with no loss in quality for covering arrays.

First, we handled constraints by integrating two constraint solvers, zChaff and MiniSat,

with two CA generators, a Simulated Annealing generator and an AETG-like generator.

We called the AETG-like algorithm AETG-SAT, which is a base line for the following vari-

ant algorithms. More specifically, we checked if a partial row is consistent with constraints

in several steps. First, we encoded partial row and the user-specified constraints as a

CNF formula, and then passed the formula to a solver. Based on the returned true/false

results, we decided to extend the partial row for the true result or to replace it with

another partial row for the false result correspondingly. As conjectured by researchers,

the performance for handling constraints was worse than the one without considering

constraints. But AETG-SAT’s performance was close to the algorithm without considering

constraints, which held promise for the further investigation.

Second, we observed that after we fed a partial row to a SAT solver, it returned a

complete model if the partial row was satisfiable. For such a complete model, some

103

bindings are decided by a BCP procedure based on the partial row. All these bindings

must be kept in the remaining partial row constructions by the CA generator. Some are

positive bindings called a Must set and some are negative bindings called a May set. Both

sets can speed the construction effort of AETG-SAT. When a factor corresponds to the

factor from the Must set, then we can bind the factor with the value from the Must without

any further best-value and satisfiability checking. When a factor is from the May set, we

can then reduce the choices of that factor for best value checking. We call the variant

algorithm, AETG-Hist. From experiments with four real large software systems and 30

synthesized models, we observed that AETG-Hist can produce high-quality samples with

the same cost as unconstrainted samples. This result is a dramatic improvement over

AETG-SAT.

Third, we observed another basic fact – that both an SAT solver and a CA generator

search a model and a row correspondingly in a same combinatorial space for a CCIT

problem. This fact suggests that we can save efforts for a row construction of a CA

generator by exploiting more aggresively the returned model from an SAT solver. We

developed an algorithm, AETG-Threshold, for exploiting a model from an SAT solver

to extend a partial row to be a complete row in one step. This saves the construction

efforts of AETG-SAT dramatically. Based on our empirical study, we observed that the

performance of AETG-Threshold is fastest in terms of construction time. We designed

another variant algorithm, AETG-Hist-Threshold, to combine AETG-Hist and AETG-

Threshold. The purpose is to utilize AETG-Hist for obtaining a high quality covering

array and to utilize AETG-Threshold for accelerating the construction speed of a covering

array. From the study, AETG-Hist-Threshold presented the best quality of covering arrays

with the second-fastest speed.

104

6.1.3 Integration Testing SPLs

After designing a series of incrementally improved algorithms for sampling the space of

an SPL, we developed a hierarchical reuse mechanism for integration testing an SPL in

Chapter 5. In this method, we observed that an interaction may appear in many larger

interactions of an SPL. By digging into the inner structure of an interaction, we model it

as a directed graph. Each node represents a feature, and each edge represents a directed

data dependence relation between two features. For generating test cases to trigger an

interaction, we need to know the directions among features in the interaction. In the

method, we decomposed a directed graph with multiple trees, where each tree represents

an atomic directed interaction pattern for an interaction. We organize all interaction trees

as an interaction hierarchy including 1-, 2-, 3-, . . . , and k-way interaction trees. Higher

level interaction trees can be composed with lower interaction trees, which illustrates

the bottom-up reuse mechanism. For each tree, we proposed a compositional symbolic

execution to compute the summaries by composing summaries of lower level interaction

trees. In the feasibility study of two subjects, the static method was as much as four times

faster compared with the directed symbolic execution method,

We also compared the number of interactions with/without directions. In the experi-

ment, we reduced a number of interactions from a range between 12.2 and 99.9% for the

interactions without directions. Although more extensive subjects are needed to verify the

reduction, our results definitely showed that a large number of undirected interactions

are infeasible, and thus we do not need to test them in the traditional testing methods.

Next we propose three areas for our future work along the line of sampling and

integration testing an SPL.

105

6.2 Future Work

There are two extensions for both directed symbolic execution and our proposed com-

positional integration testing to reduce the number of summaries. There are also three

future directions for applications of both the sampling and integration testing techniques:

exploring collected paths, integration testing a sample and the bug isolation. We discuss

extensions first.

6.2.1 Extension of Integration Testing Methods

For complete paths of 2-, 3-, . . . and k-way interaction trees in Chapter 5, they are supposed

to trigger def-use pairs across features, but not all complete paths for these interaction

trees consist of defs and corresponding uses. By removing this type of complete path, we

can reduce the summary size without losing the effectiveness of triggering def-use pairs.

More specifically, we can perform the optimization below.

Rather than combining all of the summaries into a summary of the explored behavior

of a feature. We can distinguish three sets:

1. Summaryde f : the paths which traversed a def involved in a feature interaction,

2. Summaryuse : the paths which traversed a use involved in a feature interaction,

3. Summaryot : other paths that are traversed, and

4. unknown = ¬(Summaryde f ∪ Summaryuse ∪ Summaryot).

Note here that Summaryde f ∪ Summaryuse = ∅ need not be true. We can have paths

which involve both defs and uses. The interesting bit here is that when composing

summaries in an interaction tree one can compose the def summaries of one feature with

the use summaries of another to expose interactions. In particular, there is no need to

106

consider the use-use, ot-*, use-def, or *-ot summary compositions (where * means any of

the summaries). This will also lead to improved performance with no loss in accuracy.

Note further that we must allow for the fact that ”unknown” may involve def/uses of

interest so when generating tests we have to consider def-unknown, unknown-use, and

unknown-unknown as potentially interesting regions of behavior.

Similarly, we can perform an optimization for the directed symbolic execution. The

directed symbolic execution can explore only those paths that contain def/use statements

that are involved in chains of a feature interaction. Since we have the dependence analysis

results it is easy to mark the statements in the program and propagate that information

up to branches. We then annotate these branches so that symbolic execution can skip

branches that cannot lead to def/uses of interest. This will also improve performance

with no loss in accuracy.

Finally, a case study is needed to observe the effectiveness of these two optimizations

for both techniques correspondingly.

6.2.2 Exploitation of Collected Paths

Chapter 5 defines three possible paths: complete, exception and incomplete paths. Our

compositional symbolic execution utilizes only complete paths, which finish the execution

without exceptions under the depth limitation over the symbolic execution engine. It is

useful to exploit complete paths further and to use the remaining two types of paths for

other testing tasks.

For complete paths of 1-, 2-, . . . and k-way interaction trees, it is natural to feed

them into an SMT solver for generating test cases. For each tree, all generated test

cases are distinguished with each other for covering different paths. There are three

applications of these test cases. First, these test cases can be run to collect real def-use pairs

107

accross feature boundaries, which can further validate the effectiveness of our proposed

integration testing technique besides the feasibility in the dissertation. Second, they

can be used to enhance an existing test suite for single methods as unit-level test cases,

multiple methods as integration-level test cases and complete products as system-level

test cases. Third, in Chapter 5, complete paths are not classified into exception paths only

because they return normally, which is a basic correctness criterion. With more refined

domain-related oracles, these complete paths and corresponding test cases may detect

more interaction faults.

For exception paths of a feature, as mentioned in 5.4, they may indicate faults in the

feature. Because we compute paths of a feature for any possible state on entry to the

feature, it is possible some exception paths are infeasible when composed with other

features. With the confirmation of infeasibility for some exception paths, testing resources

can be allocated to analyze other feasible bugs. Currently the compositional symbolic

execution tool only computes complete paths for 1-way interaction tree, but we can easily

extend the tool to compute exception paths. For 2- and higher-way interaction trees, we

can compute their exception paths by composing complete summaries of all features other

than the root feature, for which exception paths should be used. Besides the extension

of the hierarchical composition tool, an empirical study over more subjects is useful to

quantify the incremental reduced number of exception paths for a feature during the

composition procedure.

For incomplete paths of a given feature, we recoganize them as part of the unknown-

space of that feature. The whole unknown space of a tree may include other paths

which have not been fully explored due to the time limitation for a big depth setup of

an symbolic execution engine. The unknown space should be the focus for detecting

extra bugs. Because of the accessibility of these collected incomplete paths, we can drive

other cheaper testing methods to the partial unknown space first. Random testing and

108

search-based testing techniques are perfect candidates for constructing effective test cases

to probe the partial unknown space. These test cases must satisfy conditions represented

in the partial unknown space. In this dissertation, we focus on incomplete paths for single

features, and we can also compute incomplete paths for 2- and higher-way interaction

trees by composing incomplete and complete summaries of involved features.

6.2.3 Mixture of Sampling and Integration Testing

For integration testing an SPL, one limitation is the scalability problem related to a huge

number of interaction trees. Based on the conducted feasibility experiment, after reaching

a small k-way level, it will take much longer time to compose all (k+1)-way interaction

trees. To tackle the scalability problem, we can mix the sampling and integration testing

together. Both techniques have orthogonal properties, and by integration testing a sample,

we compose summaries only for involved interaction trees to fulfill specific coverage

criteria.

With a sampling technique, we can get a subset of all products with a predefined

interaction coverage. With the integration testing technique, we can do integration testing

of all interaction trees in the sample incrementally. More specifically, we construct a

smaller size of FDG for the sample. Driven by the customized interaction tree hierarchy,

we do the integration testing over interaction trees bottom-up with the reuse mechanism.

A sample is much smaller than the whole space of an SPL, so this mixed technique may

have wider applications than the original method.

6.2.4 Bug Isolation

During the development of SPLs, methods related to bug isolation are useful for helping

tester engineers to locate bugs quickly for a runtime error. Usually these bugs reflect

109

complicated interactions among multiple features, and unit testing methods are not

helpful for detecting these type of bugs. Chapter 5 discussed an integration testing

method over SPLs from the feature interaction perspective. Our integration testing

method can target this type of feature-interaction bugs.

More specifically, given a runtime error occuring in a feature, f , we can customize

the FDG to be FDG’ by keeping only features reaching to f . Note we do not consider a

loop scenario starting and ending at f because we compute summaries of features with

the consideration of any possible state on entry to these features. After constructing a

potential smaller FDG, we then collect all 2-, 3-, . . . , and k-way interaction trees sinking

at f . Incrementally, we can detect if one or more of 2-, 3-, . . . until k-way trees can expose

the same observed bad behavior.

There are two benefits for our method. First, because we use an incremental strategy,

we can expose the bad behavior with the smallest scope. Second, because we can collect

more than one tree (if applicable), then we can locate bugs with more confidence.

110

Bibliography

[1] Apache Software Foundation. Apache HTTP sever.

http://httpd.apache.org/docs/2.2/mod/quickreference.html, 2007. 4.6.1

[2] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D. Ernst. Finding

bugs in dynamic web applications. In Proceedings of the 2008 international symposium

on Software testing and analysis, ISSTA ’08, pages 261–272, New York, NY, USA, 2008.

ACM. 2.4.3

[3] E. S. B. Hnich, S. Prestwich. Constraint-based approaches to the covering test

problem. In CSCLP04 Special Volume of Lecture Notes in Artificial Intelligence, 2005. 2.3

[4] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise refinement. In

Proceedings of the 25th International Conference on Software Engineering, ICSE ’03, pages

187–197, Washington, DC, USA, 2003. IEEE Computer Society. 2.1.1

[5] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise refinement. IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING, 30(6):2004, 2004. 2.1.1

[6] D. S. Batory. Feature models, grammars, and propositional formulas. In SPLC,

pages 7–20, 2005. 2.1.1

[7] J. Belt, Robby, and X. Deng. Sireum/Topi LDP: a lightweight semi-decision proce-

dure for optimizing symbolic execution-based analyses. In Proceedings of the the 7th

111

joint meeting of the European software engineering conference and the ACM SIGSOFT

symposium on The foundations of software engineering, ESEC/FSE ’09, pages 355–364,

New York, NY, USA, 2009. ACM. 2.4.2

[8] D. Benavides, S. Segura, P. Trinidad, and A. R. Cortés. FAMA: tooling a framework

for the automated analysis of feature models. In In Proceeding of the First International

Workshop on Variability Modelling of Softwareintensive Systems (VAMOS, pages 129–134,

2007. 1.2.4, 2.1.1

[9] A. Bertolino and S. Gnesi. PLUTO: a test methodology for product families. In

Software Product-Family Engineering (PFE), pages 181–197, 2003. 2.5.2

[10] R. Brownlie, J. Prowse, and M. S. Phadke. Robust testing of AT&T PMX/StarMAIL

using OATS. AT& T Technical Journal, 71(3):41–47, 1992. 2.2.1

[11] R. C. Bryce, C. J. Colbourn, and M. B. Cohen. A framework of greedy methods for

constructing interaction test suites. In Proceedings of the International Conference on

Software Engineering, pages 146–155, May 2005. 4.1

[12] I. Cabral, M. B. Cohen, and G. Rothermel. Improving the testing and testability

of software product lines. In Proceedings of the 14th international conference on

Software product lines: going beyond, SPLC’10, pages 241–255, Berlin, Heidelberg,

2010. Springer-Verlag. 2.5.1

[13] C. Cadar, D. Engler, and P. Boonstoppel. Attacking path explosion in constraint-

based test generation. In ETAPS Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS 2008) Budapest, Hungary, March-April 2008, 2008.

2.4.1

112

[14] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu, K. Sen, N. Tillmann, and

W. Visser. Symbolic execution for software testing in practice: preliminary assess-

ment. In Proceeding of the 33rd international conference on Software engineering, ICSE

’11, pages 1066–1071, New York, NY, USA, 2011. ACM. 2.4

[15] Choco. http://www.emn.fr/z-info/choco-solver/, 2011. 1.2.4

[16] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using satis-

fiability solving. volume 19, pages 7–34, Hingham, MA, USA, July 2001. Kluwer

Academic Publishers. 2.3

[17] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay. Symbolic model checking

of software product lines. In Proceeding of the 33rd international conference on Software

engineering, ICSE ’11, pages 321–330, New York, NY, USA, 2011. ACM. 2.5.2

[18] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin. Model checking

lots of systems: efficient verification of temporal properties in software product lines.

In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering -

Volume 1, ICSE ’10, pages 335–344, New York, NY, USA, 2010. ACM. 2.5.2

[19] P. Clements and L. M. Northrop. Software product lines: practices and patterns.

Addison Wesley, 2001. 1, 1.1

[20] CMU. http://www.sei.cmu.edu/productlines/. 1

[21] A. Cockburn. Writing effective use cases. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 1st edition, 2000. 2.5.2

[22] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG system: an

approach to testing based on combinatorial design. IEEE Transactions on Software

Engineering, 23(7):437–444, 1997. 2.2.1, 2.2.5, 4.1

113

[23] M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and W. B. Mugridge. Constructing test

suites for interaction testing. In Proceedings of the International Conference on Software

Engineering, pages 38–48, May 2003. 2.2.3, 4.6.5

[24] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling. Augmenting simulated annealing

to build interaction test suites. In 14th IEEE International Symposium on Software

Reliability Engineering, pages 394–405, November 2003. 2.2.3

[25] M. B. Cohen, M. B. Dwyer, and J. Shi. Coverage and adequacy in software product

line testing. In Proceedings of the ISSTA 2006 workshop on Role of software architecture

for testing and analysis, ROSATEA ’06, pages 53–63, New York, NY, USA, 2006. ACM.

2.1.1, 3, 1

[26] M. B. Cohen, M. B. Dwyer, and J. Shi. Exploiting constraint solving history to

construct interaction test suites. In Proceedings of the Testing: Academic and Industrial

Conference Practice and Research Techniques - MUTATION, pages 121–132, Washington,

DC, USA, 2007. IEEE Computer Society. 1.2.2, 2.2.3, 4, 1

[27] M. B. Cohen, M. B. Dwyer, and J. Shi. Interaction testing of highly-configurable

systems in the presence of constraints. In ISSTA, pages 129–139, 2007. 1.2.2, 2.2,

2.2.3, 4, 1, 4.6.5

[28] M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing interaction test suites for

highly-configurable systems in the presence of constraints: a greedy approach.

IEEE Trans. Softw. Eng., 34(5):633–650, 2008. 1.2.2, 2.2.3, 4, 1

[29] C. J. Colbourn, M. B. Cohen, and R. C. Turban. A deterministic density algorithm for

pairwise interaction coverage. In IASTED Proceedings of the International Conference

on Software Engineering, pages 345–352, February 2004. 2.2.5, 4.1

114

[30] Communication Research Center Canada. http://www.crc.gc.ca/en/html/crc/home

/research/satcom/rars/sdr/products/scari open/scari open. 5.5.1, 5.5.1

[31] Congit Software. Congitproduct conguration engine. http://www.configit-

software.com/, 2005. 2.1.1

[32] C. Csallner, N. Tillmann, and Y. Smaragdakis. DySy: Dynamic symbolic execution

for invariant inference. In Proc. 30th ACM/IEEE International Conference on Software

Engineering (ICSE), pages 281–290. ACM, May 2008. 2.4.3

[33] CVC3. http://www.cs.nyu.edu/acsys/cvc3/, 2011. 1.2.4

[34] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration using feature

models. In Software Product Lines: Third International Conference, SPLC 2004, pages

266–283. Springer-Verlag, 2004. 2.1.1, 2.1.1

[35] K. Czarnecki, S. Helson, and U. Eisenecker. Formalizing cardinality-based feature

models and their specialization. Software Process : Improvement and Practice, 10(1):7–

29, 2005. 2.1.1

[36] K. Czarnecki and C. H. P. Kim. Cardinality-based feature modeling and constraints:

a progress report. In International Workshop on Software Factories at OOPSLA’05, San

Diego, California, USA, 2005. ACM, ACM. 2.1.1, 2.1.1

[37] J. Czerwonka. Pairwise testing in real world. In Pacific Northwest Software Quality

Conference, pages 419–430, October 2006. 4.1

[38] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.

volume 5, pages 394–397, New York, NY, USA, July 1962. ACM. 2.3, 2.3.1, 2.3.3

[39] M. Davis and H. Putnam. A computing procedure for quantification theory. In

Journal of the ACM , pages 7(3):201–215, July 1960. 2.3

115

[40] N. Eén and N. Sörensson. An extensible sat-solver. In SAT, pages 502–518, 2003.

1.2.4, 2.3

[41] N. Eén and N. Sörensson. Translating pseudo-boolean constraints into sat. Journal

on Satisfiability, Boolean Modeling and Computation (JSAT), 2(1-4):1–26, 2006. 2.3

[42] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering

likely program invariants to support program evolution. In Proceedings of the 21st

international conference on Software engineering, ICSE ’99, pages 213–224, New York,

NY, USA, 1999. ACM. 2.4.3

[43] E. Falkenauer. Genetic algorithms and grouping problems. John Wiley & Sons, Inc.,

New York, NY, USA, 1998. 2.2.3

[44] D. Fischbein, S. Uchitel, and V. Braberman. A foundation for behavioural con-

formance in software product line architectures. In Proceedings of the ISSTA 2006

workshop on Role of software architecture for testing and analysis, ROSATEA ’06, pages

39–48, New York, NY, USA, 2006. ACM. 2.5.2

[45] K. D. Forbus and J. de Kleer. Building Problem Solvers. MIT Press, 1993. 2.1.1

[46] Free Software Foundation. GNU 4.1.1 manpages.

http://gcc.gnu.org/onlinedocs/gcc-4.1.1/gcc/, 2005. 4.6.1, 4.6.1.2

[47] D. Ganesan, M. Lindvall, D. McComas, M. Bartholomew, S. Slegel, and B. Medina.

Architecture-based unit testing of the flight software product line. In J. Bosch and

J. Lee, editors, Software Product Lines: Going Beyond, volume 6287 of Lecture Notes in

Computer Science, pages 256–270. Springer Berlin / Heidelberg, 2010. 10.1007/978-3-

642-15579-6 18. 2.1

116

[48] B. J. Garvin, M. B. Cohen, and M. B. Dwyer. Evaluating improvements to a meta-

heuristic search for constrained interaction testing. Empirical Software Engineering,

16(1):61–102, 2011. 2.2.3

[49] B. Geppert, J. Li, F. Rößler, and D. M. Weiss. Towards generating acceptance tests

for product lines. In Software Reuse: Methods, Techniques and Tools (ICSR), pages

35–48, 2004. 2.5.2

[50] F. Glover and M. Laguna. Tabu search. Kluwer Academic Publishers, Norwell, MA,

USA, 1997. 2.2.3

[51] GNU Radio. http://gnuradio.org/redmine/wiki/gnuradio. 5.5.1, 5.5.1

[52] P. Godefroid. Compositional dynamic test generation. In POPL ’07: Proceedings

of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, pages 47–54, New York, NY, USA, 2007. ACM. 2.4.1

[53] P. Godefroid. Compositional dynamic test generation. In Proceedings of the 34th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages

47–54, 2007. 2.4.4

[54] M. Grindal, J. Offutt, and S. F. Andler. Combination testing strategies: a survey.

Software Testing, Verification and Reliability, 15(3):167–199, 2005. 2.2.5

[55] M. L. Griss, J. Favaro, and M. d. Alessandro. Integrating Feature Modeling with the

RSEB. In Proceedings of the 5th International Conference on Software Reuse, ICSR ’98,

pages 76–, Washington, DC, USA, 1998. IEEE Computer Society. 2.1.1

[56] H. Gustavsson and U. Eklund. Architecting automotive product lines: Industrial

practice. In J. Bosch and J. Lee, editors, Software Product Lines: Going Beyond, volume

117

6287 of Lecture Notes in Computer Science, pages 92–105. Springer Berlin / Heidelberg,

2010. 10.1007/978-3-642-15579-6 7. 2.1

[57] H. R. Andersen. An introduction of binary decision diagrams. Department of Infor-

mation Technology, Technical University of Denmark, Lyngby, Denmark. Lecture

notes for 49285 Advanced Algorithms E97, 1997. 2.1.1

[58] R. L. Halpert. Static lock allocation. Master’s thesis, McGill University, April 2008.

5.5.2

[59] A. Hartman. Software and hardware testing using combinatorial covering suites.

In Graph Theory, Combinatorics and Algorithms: Interdisciplinary Applications, pages

327–266, 2005. 2.2.2

[60] A. Hartman and L. Raskin. Problems and algorithms for covering arrays. Discrete

Math, 284:149 – 156, 2004. 2.2.2

[61] S. A. Hendrickson and A. van der Hoek. Modeling product line architectures

through change sets and relationships. In Proceedings of the 29th international

conference on Software Engineering, ICSE ’07, pages 189–198, Washington, DC, USA,

2007. IEEE Computer Society. 2.1

[62] W. A. Hetrick, C. W. Krueger, and J. G. Moore. Incremental return on incremental

investment: Engenio’s transition to software product line practice. In Companion to

the 21st ACM SIGPLAN symposium on Object-oriented programming systems, languages,

and applications, OOPSLA ’06, pages 798–804, New York, NY, USA, 2006. ACM. 1.1

[63] B. Hnich, S. Prestwich, E. Selensky, and B. Smith. Constraint models for the covering

test problem. Constraints, 11:199–219, 2006. 2.2.4

118

[64] B. Hnich, S. D. Prestwich, and E. Selensky. Constraint-based approaches to the

covering test problem., 2004.

[65] G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,

23(5):279–295, 1997. 4.6.1, 4.6.1.1

[66] G. J. Holzmann. On-the-fly, LTL model checking with SPIN: Man pages.

http://spinroot.com/spin/Man/index.html, 2006. 4.6.1.1

[67] S. Huang, M. B. Cohen, and A. M. Memon. Repairing GUI test suites using a

genetic algorithm. In Proceedings of the 2010 Third International Conference on Software

Testing, Verification and Validation, ICST ’10, pages 245–254, Washington, DC, USA,

2010. IEEE Computer Society. 2.2.1

[68] D. Jackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng.

Methodol., 11:256–290, April 2002. 2.5.2, 4.2.1

[69] JaCoP. http://jacop.osolpro.com/, 2011. 2.1.1

[70] A. Jansen, R. Smedinga, J. van Gurp, and J. Bosch. Feature-based product derivation:

Composing features. In IEE Proceedings Software - special issue on Software Engineering,

August 2004. 2.1

[71] M. Jaring and J. Bosch. Expressing product diversification – categorizing and

classifying variability in software product family engineering. International Journal

of Software Engineering and Knowledge Engineering, 14(5):449–470, 2004. 5.2

[72] S. Jarzabek, W. C. Ong, and H. Zhang. Handling variant requirements in domain

modeling. J. Syst. Softw., 68:171–182, December 2003. 2.1.1

[73] JavaBDD. http://javabdd.sourceforge.net/, 2011. 2.1.1

119

[74] R. J. B. Jr. and R. C. Schrag. Using CSP look-back techniques to solve real world sat

instances. 1997. 2.3, 2.3.3

[75] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-Oriented Domain

Analysis (FODA) Feasibility Study. 1990. 2.1.1

[76] C. Kastner, T. Thum, G. Saake, J. Feigenspan, T. Leich, F. Wielgorz, and S. Apel.

FeatureIDE: A tool framework for feature-oriented software development. In

Proceedings of the 31st International Conference on Software Engineering, ICSE ’09, pages

611–614, Washington, DC, USA, 2009. IEEE Computer Society. 2.1.1

[77] R. Kauppinen, J. Taina, and A. Tevanlinna. Hook and template coverage criteria for

testing framework-based software product families. In Proceedings of the International

Workshop on Software Product Line Testing, pages 7–12, August 2004. 2.5.1

[78] C. H. P. Kim, D. S. Batory, and S. Khurshid. Reducing combinatorics in testing

product lines. In Proceedings of the tenth international conference on Aspect-oriented

software development, AOSD ’11, pages 57–68, New York, NY, USA, 2011. ACM. 2.5.2,

5.5.1, 5.5.1

[79] C. H. P. Kim, E. Bodden, D. S. Batory, and S. Khurshid. Reducing configurations to

monitor in a software product line. In Proceedings of the First international conference

on Runtime verification, RV’10, pages 285–299, Berlin, Heidelberg, 2010. Springer-

Verlag. 2.5.2

[80] J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394,

1976. 2.4

120

[81] J. Kiniry. Reasoning about feature models in higher-order logic. In Proceedings of the

11th International Software Product Line Conference, SPLC 07. IEEE Computer Society,

2007. 2.1.1

[82] D. Kroening and O. Strichman. Decision procedures: an algorithmic point of view.

Springer Publishing Company, Incorporated, 1st edition, 2008. 2.4.2, 4.2.1

[83] D. Kuhn, D. R. Wallace, and A. M. Gallo. Software fault interactions and implica-

tions for software testing. IEEE Transactions on Software Engineering, 30(6):418–421,

2004. 2.2.1

[84] T. Larrabee. Test pattern generation using boolean satisfiability. Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on, 11(1):4 –15, jan 1992.

2.3

[85] K. Larsen and B. Thomsen. A modal process logic. In Logic in Computer Science,

1988. LICS ’88., Proceedings of the Third Annual Symposium on, pages 203 –210, jul

1988. 2.5.2

[86] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence. Ipog: A general strategy

for t-way software testing. In Proceedings of the 14th Annual IEEE International

Conference and Workshops on the Engineering of Computer-Based Systems, pages 549–

556, Washington, DC, USA, 2007. IEEE Computer Society. 2.2.5

[87] R. E. Lopez-Herrejon and D. Batory. A standard problem for evaluating product-line

methodologies. In Proc. Conf. on Generative and Component-Based Soft. Eng, pages

10–24. Springer, 2001. 5.5.1, 5.5.1

[88] R. Mandl. Orthogonal latin squares: An application of experiment design to

compiler testing. Communications of the ACM, 28(10):1054–1058, October 1985. 2.2.1

121

[89] M. Mannion. Using first-order logic for product line model validation. In Proceedings

of the Second International Conference on Software Product Lines, SPLC 2, pages 176–187,

London, UK, UK, 2002. Springer-Verlag. 2.1.1

[90] J. P. Marques-Silva and K. A. Sakallah. GRASP: a search algorithm for propositional

satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999. 2.3

[91] J. D. McGregor. Testing a software product line. Technical report, Carnegie Mellon,

Software Engineering Institute, December 2001. 2.2.1, 2.5.1

[92] Microsoft. Pex. http://research.microsoft.com/en-us/projects/pex/, 2011. 2.4.3

[93] Microsoft. Yogi. http://research.microsoft.com/en-us/projects/yogi/, 2011. 2.4.3

[94] MiniSat. http://minisat.se/MiniSat.html, 2011. 4.6.5

[95] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: engi-

neering an efficient sat solver. In Proceedings of the 38th annual Design Automation

Conference, DAC ’01, pages 530–535, New York, NY, USA, 2001. ACM. 1.2.4, 2.3

[96] Mozilla Organization. Bugzilla. http://www.bugzilla.org/docs/tip/html/, 2007.

4.6.1, 4.6.1.4

[97] H. Muccini and A. van der Hoek. Towards testing product line architectures. Electr.

Notes Theor. Comput. Sci., 82(6):99–109, 2003. 2.5.1

[98] K. J. N. and P. R. J. O. Constructing covering designs by simulated annealing. Tech-

nical Report B10, Helsinki University of Technology, Digital Systems Laboratory,

Otaniemi, Finland, 1993. 2.2.3

122

[99] G.-J. Nam, K. Sakallah, and R. Rutenbar. A new FPGA detailed routing approach

via search-based Boolean satisfiability. Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on, 21(6):674 –684, jun 2002. 2.3

[100] NASA. SPF. http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc, 2011.

2.4.3, 5.5.2

[101] C. Nie and H. Leung. A survey of combinatorial testing. ACM Comput. Surv.,

43:11:1–11:29, February 2011. 2.2.5

[102] K. Nurmela. Upper bounds for covering arrays by tabu search. Discrete Applied

Mathematics, 138(1-2):143–152, 2004. 2.2.3

[103] S. Oster, F. Markert, and P. Ritter. Automated incremental pairwise testing of

software product lines. In Proceedings of the 14th international conference on Soft-

ware product lines: going beyond, SPLC’10, pages 196–210, Berlin, Heidelberg, 2010.

Springer-Verlag. 2.2.4

[104] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying and

generating functional tests. Communications of the ACM, 31(6):676–686, 1988.

[105] K. J. Ottenstein and L. M. Ottenstein. The program dependence graph in a software

development environment. In Proceedings of the first ACM SIGSOFT/SIGPLAN

software engineering symposium on Practical software development environments, pages

177–184, 1984. 5.3

[106] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu. Differential symbolic

execution. In SIGSOFT ’08/FSE-16: Proceedings of the 16th ACM SIGSOFT International

Symposium on Foundations of software engineering, pages 226–237, New York, NY,

USA, 2008. ACM. 2.4.1, 2.4.3, 2.4.4, 2.4.1

123

[107] S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed incremental symbolic

execution. In Proceedings of the 32nd ACM SIGPLAN conference on Programming

language design and implementation, PLDI ’11, pages 504–515, New York, NY, USA,

2011. ACM. 2.4.1

[108] J. F. Peters and W. Pedrycz. Software engineering: an engineering approach. 1999. 1.1

[109] K. Pohl, G. Böckle, and F. J. v. d. Linden. Software product line engineering: foundations,

principles and techniques. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

(document), 1, 1.2.1, 2.1, 2.1.1, 2.1.1, 3.1

[110] K. Pohl and A. Metzger. Software product line testing. Commun. ACM, 49:78–81,

December 2006. 2.1.1

[111] C. S. Păsăreanu and W. Visser. A survey of new trends in symbolic execution for

software testing and analysis. Int. J. Softw. Tools Technol. Transf., 11:339–353, October

2009. 2.4.3

[112] Pure::Viriants. http://www.pure-systems.com/, 2011. 2.1.1

[113] X. Qu, M. B. Cohen, and G. Rothermel. Configuration-aware regression testing: an

empirical study of sampling and prioritization. In Proceedings of the 2008 international

symposium on Software testing and analysis, ISSTA ’08, pages 75–86, New York, NY,

USA, 2008. ACM. 2.2.1

[114] S. Reis, A. Metzger, and K. Pohl. Integration testing in software product line

engineering: a model-based technique. In Proceedings of the 10th international

conference on Fundamental approaches to software engineering, FASE’07, pages 321–335,

Berlin, Heidelberg, 2007. Springer-Verlag. 2.1.1, 2.5.2

124

[115] T. Reps and G. Rosay. Precise interprocedural chopping. In Proceedings of the 3rd

ACM SIGSOFT symposium on Foundations of software engineering, pages 41–52, 1995.

5.1, 5.2

[116] M. Riebisch, K. Bllert, D. Streitferdt, and I. Philippow. Extending feature diagrams

with uml multiplicities, 2002. 2.1.1

[117] Sat4J. http://www.sat4j.org/, 2011. 2.1.1, 2.3

[118] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux. Feature diagrams: a survey and a

formal semantics. In Proceedings of the 14th IEEE International Requirements Engineer-

ing Conference, pages 136–145, Washington, DC, USA, 2006. IEEE Computer Society.

2.1.1

[119] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to know about

dynamic taint analysis and forward symbolic execution (but might have been afraid

to ask). In In Proceedings of the IEEE Symposium on Security and Privacy, 2010. 2.4.3

[120] D. Shannon, S. Hajra, A. Lee, D. Zhan, and S. Khurshid. Abstracting symbolic

execution with string analysis. In Proceedings of the Testing: Academic and Industrial

Conference Practice and Research Techniques - MUTATION, pages 13–22, Washington,

DC, USA, 2007. IEEE Computer Society. 2.4.2

[121] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki. Reverse engineering

feature models. In Proceeding of the 33rd international conference on Software engineering,

ICSE ’11, pages 461–470, New York, NY, USA, 2011. ACM. 2.1.1

[122] J. Shi, M. B. Cohen, and M. B. Dwyer. Integration testing of software product

lines using compositional symbolic execution. In Proceedings of the 10th international

conference on Fundamental approaches to software engineering, 2012. 1

125

[123] W. J. Slegers. Building automotive product lines around managed interfaces. In

Proceedings of the 13th International Software Product Line Conference, SPLC ’09, pages

257–264, Pittsburgh, PA, USA, 2009. Carnegie Mellon University. 2.1

[124] Sox . http://sox.sourceforge.net/. 5.5.1, 5.5.1

[125] SPLC History. http://splc.net/history.html, 2011. 2.1

[126] Stanford. Klee. http://klee.llvm.org/, 2011. 2.4.3

[127] P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Combinational test

generation using satisfiability. Number UCB/ERL M92/112, 1992. 2.3

[128] B. Stevens and E. Mendelsohn. New recursive methods for transversal covers.

Journal of Combinatorial Designs, (7):185203, 1999. 2.2.2

[129] P. Stoll, L. Bass, E. Golden, and B. E. John. Supporting usability in product line

architectures. In Proceedings of the 13th International Software Product Line Conference,

SPLC ’09, pages 241–248, Pittsburgh, PA, USA, 2009. Carnegie Mellon University.

2.1

[130] V. Stricker, A. Metzger, and K. Pohl. Avoiding redundant testing in application

engineering. In Proceedings of the 14th international conference on Software product lines:

going beyond, SPLC’10, pages 226–240, Berlin, Heidelberg, 2010. Springer-Verlag.

2.1.1

[131] J. Sun, H. Zhang, and H. Wang. Formal semantics and verification for feature

modeling. Technical report, Washington, DC, USA, 2005. 2.1.1

[132] K. C. Tai and Y. Lei. A test generation strategy for pairwise testing. IEEE Transactions

on Software Engineering, 28(1):109–111, 2002. 2.2.5

126

[133] A. Tevanlinna. Product family testing with RITA. In Proceedings of the Eleventh

Nordic Workshop on Programming and Software Development Tools and Techniques (NW-

PER’2004), pages 251–265, August 2004. 2.5.1

[134] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe composition of product lines.

In GPCE ’07: Proceedings of the 6th international conference on Generative programming

and component engineering, pages 95–104, New York, NY, USA, 2007. ACM. 2.1.1

[135] T. Thüm, D. S. Batory, and C. Kästner. Reasoning about edits to feature models. In

ICSE, pages 254–264, 2009. 2.1.1

[136] Y.-W. Tung and W. Aldiwan. Automating test case generation for the new generation

mission software system. In Aerospace Conference Proceedings, 2000 IEEE, volume 1,

pages 431 –437 vol.1, 2000. 2.2.5, 4.1

[137] UC Berkeley. Bitblaze. http://bitblaze.cs.berkeley.edu/, 2011. 2.4.3

[138] UC Berkeley. Crest. http://code.google.com/p/crest/, 2011. 2.4.3

[139] UIUC. Cute and jcute. http://osl.cs.uiuc.edu/ ksen/cute/, 2011. 2.4.3

[140] E. Uzuncaova, D. Garcia, S. Khurshid, and D. Batory. Testing software product

lines using incremental test generation. In Proceedings of the 2008 19th International

Symposium on Software Reliability Engineering, pages 249–258, Washington, DC, USA,

2008. IEEE Computer Society. 2.5.2

[141] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and V. Sundaresan.

Optimizing Java bytecode using the Soot framework: Is it feasible? In Intl. Conf. on

Compiler Construction (2000), Springer-Verlag (LNCS), 2000. 5.5.2

127

[142] J. van Gurp, J. Bosch, and M. Svahnberg. On the notion of variability in software

product lines. In In Proceedings of the Working IEEE/IFIP Conference on Software

Architecture (WICSA01, pages 45–54. IEEE Computer Society, 2001. 2.1.1

[143] Variability Model Editor. http://www.sse.uni-due.de/wms/en/index.php?go=256,

2011. 2.1.1

[144] M. Vierhauser, P. Grünbacher, A. Egyed, R. Rabiser, and W. Heider. Flexible and

scalable consistency checking on product line variability models. In Proceedings

of the IEEE/ACM international conference on Automated software engineering, ASE ’10,

pages 63–72, New York, NY, USA, 2010. ACM. 2.1.1

[145] H. S. Wang, S. R. Hsu, and J. C. Lin. A generalized optimal path-selection model

for structural program testing. Journal of Systems and Software, pages 55–63, 1989.

2.5.2

[146] A. W. Williams. Determination of test configurations for pair-wise interaction

coverage. In Proceedings of the IFIP TC6/WG6.1 13th International Conference on Testing

Communicating Systems: Tools and Techniques, TestCom ’00, pages 59–74, Deventer,

The Netherlands, The Netherlands, 2000. Kluwer, B.V. 2.2.5

[147] J. Yan and J. Zhang. An efficient method to generate feasible paths for basis path

testing. Inf. Process. Lett., 107:87–92, July 2008. 2.5.1

[148] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. Engler. Automatically generating mali-

cious disks using symbolic execution. In In Proceedings of the 2006 IEEE Symposium

on Security and Privacy, pages 243–257, 2006. 2.4.3

128

[149] C. Yilmaz, M. B. Cohen, and A. Porter. Covering arrays for efficient fault charac-

terization in complex configuration spaces. In International Symposium on Software

Testing and Analysis, pages 45–54, July 2004.

[150] C. Yilmaz, M. B. Cohen, and A. Porter. Covering arrays for efficient fault characteri-

zation in complex configuration spaces. IEEE Transactions on Software Engineering,

31(1):20–34, 2006. 2.2.1

[151] X. Yuan, M. B. Cohen, and A. M. Memon. GUI interaction testing: Incorporating

event context. IEEE Transactions on Software Engineering, 37:559–574, 2011. 2.2.1

[152] Z3. http://research.microsoft.com/en-us/um/redmond/projects/z3/, 2011. 1.2.4

[153] zChaff. http://www.princeton.edu/ chaff/zchaff.html, 2004. 2.3.1

[154] A. Zeller. Why programs fail, second edition: a guide to systematic debugging. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2nd edition, 2009. 1.1

[155] H. Zhang. SATO: an efficient propositional prover. In Proceedings of the 14th

International Conference on Automated Deduction, CADE-14, pages 272–275, London,

UK, 1997. Springer-Verlag. 2.3

[156] L. Zhang. Search for truth: techniques for satisfiability of boolean formulas. In PhD

Thesis 2003, 2003. 2.3.2

h

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Winter 12-2011

	Use of Constraint Solving for Testing Software Product Lines
	Jiangfan Shi

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivating Example
	Methodologies
	Establishing Coverage Criteria Related to Interactions and Constraints
	Generating Samples to Meet Coverage Criteria
	Testing Interaction Trees by Exploiting Similarity
	Constraint-Solving-Centered Problems

	Thesis
	Contributions
	Outline of Dissertation

	Background and Related Work
	Software Product Lines
	Feature Models

	Covering Arrays
	Applications of Combinatorial Interaction Testing
	Algebraic Methods
	Meta-Heuristic Search Methods
	Constraint Programming
	Greedy Methods

	Constraint Solving
	Davis-Logemann-Loveland Algorithm
	Boolean Constraint Propagation
	Backtracking

	Symbolic Execution
	Tackling a Large Path Space
	Tackling Complicated Constraints
	Applications of Symbolic Execution
	Symbolic Method Summary

	Testing Software Product Lines
	Testing SPLs from a Coverage Perspective
	Testing SPLs from a Similarity Perspective

	Coverage Criteria Related to Constraints and Interactions
	Translating OVMs to Relation Models
	Translating Constructs
	Translating Constraints

	CCIT Models and SPL Test Coverage Criteria

	Sampling Technique Focusing on Constraints
	Basic AETG
	AETG with Basic SAT Checking
	Translating Constraints as Boolean Formulae
	SAT Checking

	AETG With SAT History
	Threshold Triggered SAT Assignments
	Combining History and Threshold Optimizations
	Empirical Investigation
	Case Studies
	SPIN Model Checker
	GCC Optimizer
	Apache HTTP Server 2.2
	Bugzilla 2.22.2

	Synthesized CCIT Problems
	Performance Evaluation
	Finding a Good Threshold Point
	Comparing Algorithms
	Further Analysis of the Threshold
	Threats to Validity

	Summary of the Work

	Integration Testing of Software Product Lines Using Compositional Symbolic Execution
	Overview – Dependence driven Compositional Analysis
	Relating SPL Models To Implementations
	Calculating Feature Interactions
	Composing Feature Summaries
	Complexity and Optimizion of Summary Composition
	Composing Summaries Example

	Case Study
	Objects of Analysis
	Method and Metrics
	Results

	Summary of the Work

	Conclusions and Future Work
	Summary
	Coverage Criteria
	Sampling Techniques
	Integration Testing SPLs

	Future Work
	Extension of Integration Testing Methods
	Exploitation of Collected Paths
	Mixture of Sampling and Integration Testing
	Bug Isolation

	Bibliography

