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SUMMARY 

Muscles move and stabilize the body. Motor deficits, regardless of their origin, 

decrease control of and/or coordination of muscles leading to reduced quality of life and 

independence. While rehabilitation interventions can improve motor control, the ability to 

improve upon these treatments is limited by an incomplete understanding of how muscle 

activity is coordinated. There is a debate over the degree that muscle coordination is 

determined by biomechanical versus neural constraints, which may have important 

implications for the type of rehabilitation an individual will receive. Musculoskeletal 

models can be used to study muscle redundancy, a key piece of the debate, but model 

complexity is inconsistent across the literature. This study aims to determine the effect of 

model complexity on redundancy and to identify which types of models should be used 

when studying muscle coordination. 

One challenge for understanding muscle coordination is muscle redundancy, the 

presence of more muscles than necessary to perform a given task. Patterns of muscle 

activity may be dictated by biomechanics, that is the structure of the body and the 

mechanical laws that govern movement, or they may be controlled by neural strategies, 

and the degree to which muscle activity is determined by neural selection or by 

biomechanics is unresolved. Muscle redundancy allows for variations in the muscle 

activation patterns, but it is unknown how much variation this redundancy allows. 

Contradictory results are found in the literature for quantifying redundancy: some 

studies suggest a large role for the nervous system in muscle coordination due to sizeable 

feasible variation, while others suggest biomechanics largely determine muscle 

coordination. Computational musculoskeletal models are useful tools for studying 

biomechanics and redundancy, but across the literature the level of detail in the models is 

inconsistent. We hypothesized that the contradictory results are due to different numbers 

of muscles and degrees-of-freedom (DoFs) in the models, and that models with more 

realistic numbers of muscle and DoFs allow for more variability in muscle coordination. 
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We tested our hypothesis by examining the role of individual muscles for a given 

task. A redundant muscle shares function with another muscle, and the more shared 

function the greater the redundancy. For the purposes of this study, we quantified a 

muscle’s redundancy for a task by measuring the robustness of static force production to 

the loss of that muscle’s function. 

To examine the effect of model complexity on muscle redundancy, we 

systematically varied both the number of muscles and kinematic DoFs of a 

musculoskeletal model and tested the significance of individual muscles in each model by 

looking at 1) the sensitivity/robustness of static force production to single muscle loss via 

the set of biomechanically feasible forces (feasible force set, FFS) and 2) the feasible 

ranges of muscle activations (feasible muscle activation ranges, FMARs) for all 

maximum force in the sagittal plane. 

We demonstrated that results from simplified models do not generalize to systems 

with more muscles and DoFs, and that the more detailed models suggest very few 

muscles are constrained by biomechanics. The effect of losing a single muscle on the FFS 

decreased as the number of independently-controlled muscles increased, indicating higher 

redundancy. FFSs in models with more DoFs were more sensitive to the loss of 

individual muscles than models with fewer and planar DoFs, but this effect was 

negligible when the complete set of muscles from the standard model were included. We 

also showed muscle activity is often unconstrained even at maximum forces; most 

muscles exhibited wide FMARs at maximum force in many or most force directions. 

Only a few muscles (the hip-knee biarticular muscles) were completely constrained for 

all maximum sagittal plane force directions. Further, we showed that the effects of 

complexity in muscles and DoFs observed in these cases are general for any 

musculoskeletal system. 

When evaluating whether a musculoskeletal model is well-suited to study muscle 

redundancy, researchers should include in their considerations how well the number of 
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muscles in the model accurately represents the redundancy of what is being modeled, as 

well as the ratio of muscles to joints. 

An understanding of the degree to which muscle activity is determined by 

biomechanics and/or by neural selection has significant implications for rehabilitation. 

Low levels of biomechanical constraints suggest many different neural strategies or 

compensations are feasible, indicating rehabilitation efforts should focus on training 

muscle coordination.
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CHAPTER 1 – INTRODUCTION 

The musculoskeletal system is anatomically redundant (Bernstein, 1967), but the 

implications of redundancy for muscle coordination in movement is unresolved. Multiple 

joints create redundant sets of joint angles to bring an end effector to a certain location, 

the redundant musculature allows for a spectrum of muscle activation patterns that can 

create the necessary joint torques for a given task, and multiple neurons exciting each 

individual muscle mean the same muscle force can be produced by different patterns of 

neural activity. How a single muscle activation pattern is selected from among the range 

of redundant feasible solutions is a central question in the field of neuromechanics, the 

study of human control of movement from both neural and biomechanical perspectives. 

1.1 Redundancy and musculoskeletal models 

Modeling is a helpful tool for addressing questions about biomechanical 

redundancy. Biomechanical and neuromechanical studies often use musculoskeletal 

models that approximate anatomy by means of rigid bodies that represent bones, defined 

relationships between the bones with one or more degrees-of-freedom (DoF) to represent 

joints, and linear actuators to represent muscles. Models allow access to all state variables 

and parameters (e.g. muscle force, muscle activity, fiber length), and because muscles 

and/or joints can be added or removed in a model in ways not experimentally feasible, 

they provide a unique opportunity to study redundancy. 

Optimization to find a single muscle activation pattern is a typical modeling 

approach to address the redundant set of muscle activation patterns that can produce the 

same whole-limb mechanical output, but there is often significant variation between 

experimental results and the optimal solution the model predicts. A solution that meets all 

biomechanical constraints and is optimal with respect to one or more optimization criteria 

may at times capture major features of experimentally observed behavior, but these 

results are highly task-specific and require a cost function that may not capture all the 
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intricacies of neural control (Crowninshield & Brand, 1981; Sohn & Ting, 2016; Thelen 

& Anderson, 2006). Experimentally observed and computationally optimized muscle 

activation patterns often differ significantly (Buchanan & Shreeve, 1996; Herzog & 

Leonard, 1991; van der Krogt, Delp, & Schwartz, 2012). 

The variations between optimal and experimentally-observed muscle activation 

patterns, two implicitly-feasible solutions for the same mechanical output, show that 

redundancy in muscle activation does exist but cannot express how much redundancy 

exists. A single optimal solution cannot determine the limits of feasible variability in 

muscle activity indicated by the observed variations, giving no indication of how 

representative the optimal solution is for all feasible solutions (Simpson, Sohn, Allen, & 

Ting, 2015; Sohn, McKay, & Ting, 2013). Two distinct models could have the same 

optimal solution and very different amounts of redundancy.  

Explicitly determining the bounds on feasible muscle activity would provide 

insight into the motor control of people with motor impairments where more variability is 

expected due to compensation strategies unlikely to be predicted by optimization. It is 

typical for individuals with motor impairments to adopt compensatory strategies to 

accommodate their deficits, and compensation depends on musculoskeletal redundancy. 

If optimization methods fail to predict muscle activity in healthy subjects, they will likely 

be worse at predicting the muscle activity in individuals with motor impairments. 

1.2 Identifying biomechanical constraints and quantifying redundancy 

Recent studies have begun to address redundancy by identifying the 

biomechanical constraints on muscle activity but results have been contradictory. Some 

findings suggest that biomechanics highly constrain redundancy (Kutch & Valero-

Cuevas, 2011; Valero-Cuevas, Zajac, & Burgar, 1998) while others indicate that there is 

sufficient musculoskeletal redundancy such that biomechanics cannot completely 

determine observed behavior (Martelli, Calvetti, Somersalo, & Viceconti, 2015; Martelli, 
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Calvetti, Somersalo, Viceconti, & Taddei, 2013; McKay, Burkholder, & Ting, 2007; 

McKay & Ting, 2008; Sohn et al., 2013). 

Redundancy can be quantified by looking at individual muscle’s contribution to 

the system’s mechanical output and how much of their capacity to produce joint torque is 

shared with other muscles. A muscle is redundant to the degree that its contribution to the 

limb’s mechanical output and/or joint torque can be created by another muscle.  

One method for expressing the biomechanical limits is calculating the set of 

forces that feasibly can be produced at a limb’s endpoint (feasible force set, FFS) 

(Valero-Cuevas, 2000; Valero-Cuevas et al., 1998). Building on the methods of using 

computational geometry to map muscle activation patterns into limb mechanical outputs 

(Kuo & Zajac, 1993),Valero-Cuevas developed a method for mapping muscle activation 

pattern to endpoint force in a model and characterizing the set of all forces that were 

feasible (Valero-Cuevas, 2000). FFSs have now been studied in a human index-finger, 

both experimentally in a cadaver finger and with a model (Valero-Cuevas, 2000), in a 

human leg (Gruben, Lopez-Ortiz, & Schmidt, 2003), and in models of a simplified 

human leg (Kutch & Valero-Cuevas, 2011) and in a detailed cat hindlimb (McKay et al., 

2007; McKay & Ting, 2008). FFS methods have not yet been applied to a human model 

with the current standard musculoskeletal model (Delp et al., 2007) with high levels of 

detail and complexity in the definitions of the DoFs and musculature.  

Muscle redundancy has been directly tested in FFSs by examining the robustness 

of a FFS to loss of individual muscles (Kutch & Valero-Cuevas, 2011), but the method of 

computational geometry that was used is limited in applicability. Computational 

geometry provides an exact analytical solution, but the method is limited because the 

time required to find a solution increases exponentially with the number of variables. No 

more than fourteen variables can be feasibly used which in turn limits the complexity of 

the systems that can be studied. This may be appropriate for systems with few muscles, 

such as a finger model (4 DoF, 7 Muscles) (Valero-Cuevas et al., 1998), but a large 
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numbers of muscles from a human leg model were either removed or grouped in order to 

accommodate computational geometry (Kutch & Valero-Cuevas, 2011). The results from 

both the cadaveric finger and leg model used by Kutch and Valero-Cuevas (2011) 

demonstrated a general lack of robustness to single muscle loss and suggesting a low 

level of redundancy, but the simplification of the leg model may have compromised the 

generalizability of this claim. 

Our lab has developed a heuristic method for calculating a FFS that is not limited 

by the number of independent variables and therefore allows for models with much 

greater level of detail (McKay et al., 2007; McKay & Ting, 2008).  

Biomechanical limits on muscle activity can also be expressed as the feasible 

muscle activation range (FMAR) for an individual muscle for a given mechanical output, 

e.g. endpoint force, walking dynamics (Kutch & Valero-Cuevas, 2011; Simpson et al., 

2015; Sohn et al., 2013). Again, results are contradictory, with finger muscle activity 

highly constrained at 50% maximum force (Kutch & Valero-Cuevas, 2011) while leg 

muscle activity is largely unconstrained in human and cat limbs, in both static and 

dynamic tasks (Simpson et al., 2015; Sohn et al., 2013). Other investigators have also 

developed methods for expressing feasible variability (Martelli et al., 2015; Martelli et 

al., 2013), but do not find the explicit bounds on muscle activity.  

1.3 Motivation and Summary 

No prior studies have directly tested the effect of model complexity on 

musculoskeletal redundancy. To fill this gap, we chose a model and calculated FFSs and 

FMARS while systematically varying the complexity of that model. We hypothesized 

that the contradictory results in the literature resulted from different levels of complexity 

in the models used, and that models with realistic numbers of muscles and joints will 

demonstrate wide variability in muscle coordination. For the purposes of this study, we 

quantified a muscle’s redundancy for a task by measuring the robustness of endpoint 
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force to the loss of that muscle’s function (single muscle loss, SML) (Kutch & Valero-

Cuevas, 2011). 

Redundancy may not be consistent across different species and appendages, so we 

chose to focus on a human leg model because of the leg’s relevance to locomotion and 

balance and because of the diversity of leg models in the literature. To examine the effect 

of the number of independently-controlled muscles on redundancy, we removed the same 

muscles as Kutch and Valero-Cuevas (2011) and compared results with the intact model. 

To examine the effect of grouping muscles on redundancy, we grouped the same muscles 

as Kutch and Valero-Cuevas (2011) and compared results with both the intact model and 

model with muscles removed. To examine the effect of the model’s kinematic structure 

on redundancy, we compared results from a sagittal plane version of the model with the 

results from the three-dimensional, 7 DoF model.  
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CHAPTER 2 – METHODS 

We applied two methods for evaluating the redundancy of a single muscle in 

force production using a detailed musculoskeletal model of the human leg. Our goal was 

to test the generality of the results from the simplified model used by Kutch and Valero-

Cuevas (2011) in models with different levels of complexity to test if model complexity 

affects muscle redundancy. Musculoskeletal redundancy is affected by the number of 

muscles or DoFs in the model. We tested the hypothesis that models with more muscles 

and DoFs will be more redundant via six human leg models with different sets of muscles 

and DoFs, ranging from a simplified, planar model similar to Kutch & Valero’s (2011) 

with 14 muscles and 3 DoFs to a state-of-the-art, 3D model with 43 muscles and 7 DoF 

that is typically used in biomechanical analysis. By systematically varying the number of 

muscles and DoFs in the model, we tested the effect of model complexity on muscle 

redundancy in static force production. 

To evaluate the effects of model complexity on muscle redundancy, we defined 

muscle redundancy as the extent to which the feasible mechanical output of the system 

remained unchanged after losing that muscle’s function. If a muscle is redundant, by 

definition it shares some function with one or more other muscles. If a redundant 

muscle’s function was lost or impaired, the output associated with its function would not 

be affected or would only be partially affected. 

We quantified the change in mechanical output by computing feasible force sets 

and feasible muscle activation ranges. First, we calculated the set of biomechanically 

feasible forces (feasible force set, FFS) and quantified the change in size of the sagittal 

plane FFS due to single muscle loss, and second, we calculated the ranges in which 

individual muscle activations can vary while still producing the same endpoint force 

(feasible muscle activation ranges, FMARs) and applied the method to the maximum 

forces in each direction from the intact FFS. 
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2.1 Musculoskeletal models 

We used one leg from a generic OpenSim model of the human torso and lower 

extremities (gait2392_simbody.osim) as the most complex model in the study. OpenSim 

is an open-source software for modeling the musculoskeletal system and for simulating 

dynamic movements (Delp et al., 2007). This leg model is a detailed, three-dimensional 

musculoskeletal model composed of rigid bodies representing bones with a total of seven 

DoFs (3 at the hip, 1 at the knee, 2 at the ankle; 1 at the metatarsophalangeal (MTP) joint) 

and 43 muscles/muscle compartments (Table 2.1) modeled by line-paths with lengths 

dependent on the DoFs. A posture was selected that approximates one used in a previous 

study that included both experimental and model-based FFSs (Gruben et al. 2003) 

(hip flexion: 0.83849, hip adduction: 0, hip rotation: 0, knee angle: -0.91717, ankle angle: 

-0.58346, subtalar angle: 0, MTP angle: 0, all angles in radians). The pelvis is fixed in 

space, and the endpoint, which is defined as the MTP joint, is pinned to the ground via a 

gimbal joint. 

The muscle models in used in OpenSim are of the structure presented by Zajac 

(1989) with a single input representing the collective excitation of the muscle and a single 

output: muscle-tendon force. The relationship between the input excitation and output 

muscle force is also a function of the state of the muscle, in particular the length and 

velocity of the muscle fibers. The kinematics of the muscle fibers are determined by 

posture (quantified by joint angles, ݍറ) and estimated muscle-tendon-unit parameters, 

including optimal fiber length, tendon slack length, and pennation angle. The maximum 

active force a muscle fiber can produce depends on its length (Gordon, Huxley, & Julian, 

1966). Optimal fiber length is the length at which the fiber can produce the greatest force. 

At fiber lengths longer or shorter than the optimal fiber length the force producing 

capacity is decreased. Each muscle-tendon unit is modeled as a line-path whose end 

points, and via points if applicable, are defined relative to two or more bones, such that 

the muscle-tendon unit length changes with changes in the DoF(s) it crosses. The current 



8 
 

fiber length is determined by the current muscle-tendon unit length, the resting length of 

the tendons, and the pennation angle, i.e. the angle between the line of action of the 

muscle fibers and the muscle-tendon unit line-path. Fiber lengths are then normalized 

with respect to the optimal fiber length to simplify the relationship and calculations. The 

force-velocity relationship of muscle fibers (Fenn & Marsh, 1935; Hill, 1938) was not 

pertinent to this study because the task studied was static. 

2.1.1 Systematically varying model complexity 

For comparison to the leg model FFSs from Kutch & Valero-Cuevas 2011, a 

simplified version of the complex OpenSim model was created with three key 

simplifications: only three sagittal plane joints were included (flexion/extension in the 

hip, knee, and ankle), a reduced set of the muscle models were used (26 of 43, Table 2.1), 

and most (two-thirds) of the muscles in the reduced set were made into groups by 

constraining their activations to be the same, leaving only 14 independent muscle 

activation control variables (Table 2.1).  



9 
 

 

Figure 2.1 – Anatomy & musculature of the OpenSim gait2392 lower limb model, Sagittal plane view 
Each leg has 43 muscle models, 7 DoFs, and 6 rigid bodies. Only one leg was considered 
for this study.  
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Table 2.1 – Muscles from the OpenSim gait2392 model and organization of muscle model complexity 
Muscles in the OpenSim gait2392 musculoskeletal model and their abbreviations. The three columns 
of abbreviations represent the low, intermediate, and high levels of muscle model complexity (i.e. 
number of independent muscles). The Lo-Muscle model has a reduced set of muscles and many 
muscles are grouped together to act as a single muscle, that is, controlled by a single activation 
variable. The Int-Muscle model has the same reduced set of muscles as the Lo-Muscle model, but all 
muscles have independent control. The Hi-Muscle model has the complete set of muscles and all 
muscles have independent control. 
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To study the effects of each of these key differences, six models were created 

with different levels of detail and completeness in musculature and DoFs. Three (low, 

intermediate, and high) levels of musculature completeness and detail were used: a 

reduced set of muscles with grouped control (Lo-Muscle), a reduced set of muscles with 

independent control (Int-Muscle), the complete set of muscles with independent control 

(Hi-Muscle) (Table 1). Two levels of DoF complexity were used: three, sagittal plane 

joints (Lo-DoF) and all seven multi-planar DoFs (Hi-DoF). 

We also created an alternative intermediate muscle model (alt-Int-Muscle) that 

included all the muscle models but still had muscle groups for completeness in testing the 

effects of muscle grouping and number of muscles. The results from alt-Int-Muscle did 

not affect the general message of the results or the general effects of muscles and DoFs, 

and therefore were included only in Appendix A. 

2.1.2 Equations of motion 

The complete set of equations of motion for the leg model come from the generalized 

equations of motion for a musculoskeletal limb with any number, n, of muscles (nMusc) 

or DoFs (nDoF). The generalized torque-space equations of motion can be expressed in 

matrix form as 

റሷݍ(റݍ)ࡹ = ௔௖௧ࡲൣ(റݍ)ࡾ
ெ ൫ݍറ, റሶݍ ൯ റܽ + റ௣௔௦ܨ

ெ ൧(റݍ) + ሬܸറ൫ݍറ, റሶݍ ൯ + (റݍ)റܩ + (റݍ)்ࡶ ሬܹሬሬറ௘௡ௗ (1) 
 

where both sides of the equation are equal to τሬറ, the vector of joint torques, and 

 .is the (nDoF x nDoF) posture dependent, symmetric mass-inertia matrix (റݍ)ࡹ -

,റݍ - റሶݍ , and ݍറሷ  are the (nDoF x 1) vectors of generalized coordinates of the model and 

its first and second time derivatives, respectively, a.k.a. the vector of joint angles, 

velocities, and accelerations. 

 is the (nDoF x nMusc) matrix of joint-angle-dependent moment arms of (റݍ)ࡾ -

each muscle relative to the joint or joints they articulate.  
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௔௖௧ࡲ -
ெ ൫ݍറ, റሶݍ ൯ is a (nMusc x nMusc) diagonal matrix of the maximum active muscle 

force each muscle can produce for the given muscle fiber length and velocity, as 

determined by the joint angles. By definition, the maximum static force a muscle 

can produce is when the fiber is at the optimal fiber length. 

- റܽ is the (nMusc x 1) muscle activation vector representing the normalized 

activation level (from 0 to 1) of each muscle, neglecting whether activation comes 

from motor unit recruitment or increased motor neuron firing rate.  

റ௣௔௦ܨ -
ெ  is the (nMusc x 1) vector of passive muscle forces that arise when a (റݍ)

muscle’s fibers are stretched beyond the optimal fiber length, and is therefore 

highly dependent on joint angles. 

- ሬܸറ(ݍറ, റሶݍ ) is the (nDoF x 1) vector of terms that include joint angular velocity, ݍሶ௜, 

e.g. Coriolis force. 

 is the (nDoF x 1) vector of joint torques created by gravity acting on each (റݍ)റܩ -

body segment. 

 is the (nDoF x 6) Jacobian matrix which maps the end-point wrench (with an ࡶ -

element for each of the 6 spatial DoFs) into the nDoF resultant joint torques. 

- ሬܹሬሬറ௘௡ௗ is an (6x1) externally applied “wrench,” a.k.a. force-moment pair, at the 

endpoint of the limb of the form ൣܨ௫ , ௬ܨ , ௭ܨ , ௫ܯ , ௬ܯ , ௭൧ܯ
்
. 

Simplified Equations of Motion 

For our specific application of static force production, key simplifications to the 

equations of motion were made resulting in a linear mapping from muscle activation to 

joint torques. We set ܩറ = 0 because we are interested in the feasible forces independent 

of gravity, and ݍറሶ = റሷݍ = 0 because the task is static. The passive muscle forces were 

neglected because the posture had no extreme joint angles where these forces play a large 

role. Finally, the endpoint moment was constrained to zero because endpoint moments 
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can only be created when the endpoint is fixed to ground, an atypical condition for most 

tasks. Limiting the endpoint moment to zero effectively turned the endpoint 

wrench, ሬܹሬሬറ௘௡ௗ, into an endpoint force, ܨറ௘௡ௗ, where ܨറ௘௡ௗ = ௫ܨൣ , ௬ܨ , ௭ܨ , 0, 0, 0൧
்

. We also 

redefined the direction of ܨറ௘௡ௗ as the force produced by the limb, rather than externally 

applied to it (ܨറ௘௡ௗ,௡௘௪ =  റ௘௡ௗ,௢௟ௗ). By making these changes, and removing theܨ− 

dependencies on ݍറ for visual clarity, we are left with 

റ௘௡ௗܨ்ࡶ = ௔௖௧ࡲ ࡾ
ெ  റܽ. (2) 

Model Parameters 

The values in the matrices in the equations of motion, or the values used to 

calculate them, were found using OpenSim (Delp et al., 2007) and Neuromechanic 

(Bunderson, Bingham, Hongchul Sohn, Ting, & Burkholder, 2012). We calculated the 

active muscle force matrix, ࡲ௔௖௧
ெ , using the maximum isometric forces, the active force-

length relationship, and the pennation angles at the given posture, which we calculated 

using a selection of muscle parameters from the OpenSim body file. We extracted from 

the model the muscle tendon unit length, maximum isometric force, optimal fiber length, 

tendon slack length, and the pennation angle at optimum fiber length for each of the 

muscles. We then calculated the fiber length for each muscle at this posture (Zajac 1989) 

and the normalized fiber length, which we fed into the active force-length relationship 

used by Thelen (2003). The elements of moment arm matrix, ࡾ, i.e. the posture-

dependent moment arms of each muscle with respect to each DoF were calculated by 

OpenSim and communicated via an application programming interface (API) to 

MATLAB. To calculate the Jacobian, ࡶ, we used a converted version of the OpenSim leg 

model for the neuromusculoskeletal modeling platform Neuromechanic which has a 

function for explicitly calculating the Jacobian for any specified endpoint with respect to 

the pelvis.  
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2.2 Single muscle loss feasible force sets 

2.2.1 Feasible force sets 

A FFS is the set of all biomechanically feasible endpoint forces that can be 

produced by varying each individual muscle’s activity for a given anatomy, posture, and 

set of muscle parameters (Valero-Cuevas et al. 1998, Valero-Cuevas 2000). We took 

methods previously developed in our lab (McKay et al., 2007; McKay & Ting, 2008) and 

adapted them to accommodate a generalized neuromechanical model with any number of 

DoFs and muscles without needing a pseudoinverse, and applied it to a model of a 

human, at all the levels of complexity described in section 2.1.1 Systematically varying 

model complexity. We calculated our FFSs using our simplified equations of motion for 

each model complexity (eq. 2), allowing independent control of all muscles, i.e. allowing 

each element of the excitation vector റ݁ to vary independently. FFSs by definition are 

three-dimensional, but this study only looked at the sagittal plane FFS for direct 

comparability with previous work. 

To calculate a FFS directly, the Jacobian would need to be inverted such that 

റ௘௡ௗܨ = ௔௖௧ࡲࡾࢀିࡶ
ெ റܽ, (3) 

which can be only be directly computed if the Jacobian is invertible. In practice, this 

means the model must have either 6 DoFs for 3D applications or 3 DoFs for planar 

applications. For other applications, when the Jacobian is not a square matrix, ܨറ௘௡ௗ can 

only be isolated by computing a pseudoinverse for the Jacobian (McKay & Ting, 2008, 

2012) but pseudoinverses are not unique and use optimization to select one matrix from 

among the solution space, potentially reducing the range of endpoint force vectors 

reachable by the muscle activation vector which would introduce a false deterministic 

relationship between those vectors. To solve the general case of any number of DoFs 

without using a pseudoinverse, we converted the equations of motion from force space 

into torque space, 
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τሬറ௔௖௧ ≡ ௔௖௧ࡲࡾ

ெ റܽ , (4) 

where τሬറ௔௖௧ is the vector of actual joint torques created by the active muscle forces, which, 

by equation (2), is equivalent to the resulting joint torques for a specified endpoint force 

τሬറ௔௖௧ =  റ௘௡ௗ. (5)ܨ்ࡶ

To find a single maximum feasible force in a desired direction, a single unit force 

vector, ܨ෠ௗ௘௦, is defined and multiplied by the transposed Jacobian to create a desired joint 

torque vector, 

 

τሬറௗ௘௦ ≡  ෠ௗ௘௦. (6)ܨ்ࡶ

In order to find the maximum feasible joint torque in that direction, we used 

numerical optimization to minimize the following cost function  

max
௔ሬറ

 |τሬറ௔௖௧ ⋅ τሬറௗ௘௦| .ݏ    τሬറ௔௖௧ || τሬറௗ௘௦, (7)  .ݐ

with റܽ (used to calculate τሬറ௔௖௧) as the optimization variable, and then repeated the method 

with 360 equally spaced ܨ෠ௗ௘௦ vectors to sample the sagittal plane. The linearity constraint 

was necessary to ensure consistent sampling of FFS. Linearity constraints can be 

implemented mathematically in several ways, but there are limitations of certain 

methods. The cross-product is commonly used to determine or constrain collinearity,  

 
τሬറௗ௘௦×τሬറ௔௖௧ = 0ሬറ, (8) 

but this is only possible when nDoF is 3 or 7 because the cross product that maintains the  

basic properties including orthogonality can only be defined for 3 and 7 dimensional 

vectors (Massey, 1983). To develop a general method for implementing collinearity of 

two vectors of any equal dimension, we expressed collinearity as 

τሬറ௔௖௧ = ݇ τሬറௗ௘௦, (9) 
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where ݇ is a scalar. Because τሬറௗ௘௦ is specified prior to the optimization, we used its 

elements to create a constraint that can be implemented using linear programming for any 

nDoF. By inverting each element of τሬറௗ௘௦ and multiplying it by τሬറ௔௖௧, the solution is a 

vector where each element is ݇. However, ݇ cannot be explicitly included in the 

constraint equation because its value depends on the direction of  τሬറௗ௘௦ and is unknown 

before the optimization. The explicit reference to the value of k can be removed from the 

constraint by pre-multiplying the vector of ݇’s by a matrix to calculate the difference 

between each of the elements and constraining it to zero. 

቎

  1  
1
⋮

 1 

ቮ

−1    0
   0 −1

⋯    0
⋯    0

   ⋮     ⋮
   0     0

⋱  ⋮
 ⋯ −1

቏

ۏ
ێ
ێ
ێ
ێ
ۍ
1 τௗ௘௦,ଵൗ 0

0 1 τௗ௘௦,ଶൗ

⋯
 

⋯

0
 
0

⋮                  ⋮ ⋱ ⋮
0            0 ⋯ 1 τௗ௘௦,௡஽௢ிൗ ے

ۑ
ۑ
ۑ
ۑ
ې

τሬറ௔௖௧ = 0ሬറ (10) 

When any element τௗ௘௦,௜ was equal to zero, the collinearity constraint only 

demands that τ௔௖௧,௜ = 0 because 0 = ݇ ∗ 0. This simplification was implemented by 

replacing the ݅௧௛ row of the linearity constraint matrix with the ݅௧௛ row of the identity 

matrix of the appropriate dimension. This allowed us to avoid the mathematical 

impossibility of dividing by zero. 

Each FFS was defined as the convex polygon that contained all directions of 

റ௘௡ௗܨ
ெ஺௑ as determined by the convhull.m function in MATLAB (McKay & Ting, 2008), 

where ܨറ௘௡ௗ
ெ஺௑ was found by multiplying the unit force direction by the ratio of the norms 

of the actual torque vector and the desired torque vector, 

റ௘௡ௗܨ
ெ஺௑ = ‖τሬറ௔௖௧‖

‖τሬറௗ௘௦‖൘  ෠ௗ௘௦, (11)ܨ

for all 360 sets of ܨ෠ௗ௘௦, τሬറௗ௘௦, and τሬറ௔௖௧. 

2.2.2 Single muscle loss 

We tested the muscular redundancy of the models by calculating FFSs and 

quantifying the change in FFS area due to removing a single muscle from the muscle set 
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(single muscle loss, SML) and repeating the process for all muscles. Kutch and Valero-

Cuevas (2011) previously tested the effects of muscle dysfunction on a FFS in a 

simplified model of the human leg but were limited by their method of computational 

geometry. Computational geometry cannot not be feasibly applied to models with more 

than 14 free variables due to the exponential increase in computation time required by 

systems, thereby excluding the standard OpenSim models. 

We implemented SML by constraining each muscle’s activation level one-at-a-

time to be zero and recalculating the FFS. The resulting FFSs from models with SML 

(SML-FFS) represent feasible variability in muscle activity by showing all forces where a 

given muscle in unnecessary. 

To determine the effect of SML on a FFS, the FFSs from an intact model and the 

SML-FFSs were compared in terms of robustness and sensitivity. Robustness of the FFS 

to SML was defined as the percent area that was unaffected by loss of that muscle, i.e. the 

overlapping areas between the intact-FFS and the SML-FFS (Figure 3.1, green areas). 

Sensitivity of the FFS to SML, a.k.a. the effect the loss of a single muscle has on the FFS, 

was defined as the percent area lost after loss of that muscle, i.e. the non-overlapping 

areas of the intact- and SML-FFSs (Figure 3.1, blue areas). The sum of the sensitivity and 

the robustness of a FFS to single muscle loss is, by definition, 100% (ݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ +

ݏݏ݁݊ݐݏݑܾ݋ݎ = 1). An increase in muscle redundancy and feasible variability for muscle 

coordination would be indicated by an increase in FFS robustness to SML and a decrease 

in FFS sensitivity to SML. 

Robustness of the FFS to general single muscle loss (gSML) was defined as the 

percent area of the FFS unaffected by the loss of any single muscle, considered one at a 

time, i.e. the intersection of all the SML-FFSs which are equal in number to the number 

of muscles in the intact model (nMusc).  
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When considering different complexity of models, it was important to consider 

the changing size of the total FFS area along with its changing sensitivity and robustness. 

The sagittal plane FFS areas were calculated, were normalized to the Lo-Muscle/Lo-DoF 

FFS area to aid with intuition, and then compared between models. 

2.3 Feasible muscle activation ranges at maximum force 

Using the maximum forces from the FFS of the intact model (no muscle loss), we 

identified the lower and upper bounds on each muscle’s activity at maximum force as a 

function of direction to test the redundancy of muscles in a maximal task. A FMAR is the 

range of activation levels a muscle can have and still maintain a certain specified 

mechanical output (e.g. force), letting all other muscle activations vary as necessary 

(Kutch & Valero-Cuevas 2011, Sohn et al. 2013, Simpson et al. 2015). FMARs can be 

determined (FMAR width = 0), undetermined (FMAR width > 0), or unconstrained 

(FMAR width = 1). This study looked at the FMARs at maximum force magnitude 

(maxF-FMARs) in all directions in the sagittal plane. 

We substituted into equation (2) the maximum endpoint forces calculated in the 

intact FFS     ܨ்ࡶറ௘௡ௗ
ெ஺௑ = ௔௖௧ࡲ ࡾ

ெ  റܽ, ( 12 ) 

leaving only റܽ as a free variable, and used linear programming to find the upper and 

lower bounds on each individual muscle’s activation (Sohn et al. 2013). The optimization 

technique found the minimum and then the maximum values of each element of റܽ, one at 

a time, letting the remaining nMusc - 1 elements of റܽ vary as necessary, that satisfied 

equation Error! Reference source not found.), 

min
௔ሬറ

ܽ௜     s. t.   ܨ்ࡶറ௘௡ௗ
ெ஺௑ = ௔௖௧ࡲ ࡾ

ெ  റܽ. ( 13 ) 

min
௔ሬറ

−ܽ௜  s. t.   ܨ்ࡶറ௘௡ௗ
ெ஺௑ = ௔௖௧ࡲ ࡾ

ெ  റܽ. 

for all ݅ from 1 to nMusc 

( 14 ) 

and repeated the method for all directions of ܨറ௘௡ௗ
ெ஺௑. 
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CHAPTER 3 – RESULTS 

3.1 The robustness of static force production to general single muscle loss increases 

as model complexity increases 

Intact FFSs were qualitatively similar to previous reports in both humans (Gruben 

et al. 2003, Kutch & Valero-Cuevas 2011) and in animals (McKay et al., 2007) in that 

they were roughly elliptical with the axis approximately in line with the axis of the limb 

and the peak forces were directed distally from the endpoint (Figure 3.1, blue areas). The 

area of the FFS in the Lo-Muscle/Lo-DoF model was 8.35×105 N2. To facilitate 

comparison, the area of the FFSs were normalized to the area of FFS in the Lo-

Muscle/Lo-DoF, the leg model most similar to the one used by Kutch and Valero-Cuevas 

(2011). In general, FFS area was greater in models with more independent muscles 

(Figure 3.1, left to right) and was smaller in models with more DoFs (Figure 3.1, top to 

bottom). 

FFS robustness to general single muscle loss (gSML) increased as the number of 

independent muscles increased (Figure 3.1, green areas). gSML is defined as the percent 

area of the FFS robust to the loss of any individual muscle and was highly dependent on 

the number and grouping of muscles in the model. The robustness of the FFS with Lo-

Muscle/Lo-DoF complexity increased significantly when muscles were ungrouped (Lo-

Muscle/Lo-DoF: 7.2%, Int-Muscle/Lo-DoF: 40.6%, Figure 3.1A&B) with very little 

increase in FFS area (1.029, normalized to the area of the Lo-Muscle/Lo-DoF FFS area). 

The percent of the area robust to gSML increased further when the remainder of the 

muscles were included (Hi-Muscle/Lo-DoF: 52.3%, Figure 3.1C) despite the 

substantially increased total FFS area (1.521 normalized). 

Models with more DoFs had less robust FFSs to gSML, but this effect is 

mitigated by the increasing complexity of the sets of muscles (Figure 3.1). For all sets of 

muscles, the robustness of the FFS to gSML was less in models with Hi-DoF than in 
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those with Lo-DoF (compare Figure 3.1ABC with Figure 3.1DEF), but decrease in FFS 

robustness to gSML was less in models with more independent muscles (percent decrease 

in robust area in Lo-DoF vs. Hi-DoF in i) Lo-Muscle: 90.3%, Figure 3.1A&D, ii) Int-

Muscle: 35.7%, Figure 3.1B&E, and iii) Hi-Muscle: 6.1%, Figure 3.1C&F). The FFSs 

were approximately 50% robust to gSML in both models with Hi-Muscle, regardless of 

the number of DoFs included in the model.  
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Figure 3.1 – Intact feasible force sets and t heir robustness to general s ingle muscle loss in leg models that vary in co mplexity and s ize of sets of muscles and degrees of freedom.  

Figure 3.1 – Intact feasible force sets and their robustness to general single muscle loss in leg models 
that vary in complexity and size of sets of muscles and degrees of freedom. Intact FFSs (blue regions) 
and robust areas of FFS to gSML (green regions) in six different leg models. The robust region to gSML 
is defined as the area where no individual muscle is necessary. The FFSs in the top row were created with 
models all of which had three planar DoFs (Lo-DoF), but different sets of muscles. The models used to 
create these FFSs were (A) Lo-Muscle/Lo-DoF, a model created to replicate Kutch and Valero-Cuevas 
(2011) with 14 independent muscles and 3 planar DoFs, (B) Int-Muscle/Lo-DoF, a model with ungrouped 
muscles from Lo-Muscle resulting in 26 independent muscles, (C) Hi-Muscle/Lo-DoF, a model with the 
complete and ungrouped set of muscles from OpenSim model gait2392. Figures (D), (E), and (F), follow 
the same pattern of muscle models as (A), (B), and (C), but use the Hi-DoF model with seven, 3D DoFs. 
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3.2 The sensitivity of static force production to single muscle loss decreases as model 

complexity increases 

FFS sensitivity to SML was greater in the most simplified model (Lo-Muscle/Lo-

DoF) than in the OpenSim model (Hi-Muscle/Hi-DoF). FFS sensitivity to SML was 

calculated for each muscle, and the muscles were ordered within each model from low 

sensitivity (min: 0.0% in Lo-, Int-, and Hi-Muscle/Lo-DoF and Int- and Hi-Muscle/Hi-

DoF, max: 0.3% in Lo-Muscle/Hi-DoF) to high sensitivity (min: 25.7% in Hi-Muscle/Lo-

DoF, max: 74.5% in Lo-Muscle/Hi-DoF) (Figure 3.2). The sensitivity values 

corresponding to each muscle (Figure 3.2, blue bars) represent the percent of the area of 

the FFS affected by the loss of that muscle (Figure 3.2, blue areas in subset figures). The 

distributions of the sensitivities to SML were quantified by dividing the distributions into 

quartiles and recording the values of sensitivity associated with each quartile. These 

values demonstrated a lower FFS sensitivity to SML in Hi-Muscle/Hi-DoF compared to 

Lo-Muscle/Lo-DoF. The value of the 75th percentile in the Hi-Muscle/Hi-DoF model was 

7.7% which means only 25% of muscles in that model influenced the FFS by 7.7% or 

more with a maximum effect of 25.8%. Conversely, 50% of the muscles in the Lo-

Muscle/Lo-DoF model had an effect than 9.0% with a maximum of 68.1%. 

As the number of independent muscle models increased, the sensitivity values 

associated with each quartile of FFS sensitivity to SML decreased (Figure 3.2, left to 

right), except when the 0th percentile was already at 0.0% sensitivity. The maximum FFS 

sensitivity to SML (100th percentile) decreased as the number of independent muscles 

increased, both by ungrouping muscles (from Lo-Muscle to Int-Muscle: 68.1% to 27.7% 

in Lo-DoF, Figure 3.2A&B, and 74.5% to 41.6% in Hi-DoF, Figure 3.2D&E) and by 

including the complete set of muscles (Hi-Muscle: 25.7% in Lo-DoF, Figure 3.2C, and 

25.8% in Hi-DoF, Figure 3.2F). The same decreasing trend was followed in the 75th, 

50th, and 25th percentiles. Of note, the 75th percentile in the Hi-Muscle/Hi-DoF model 
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was 7.7% while the 75th percentile in the Lo-Muscle/Lo-DoF model was 23.6%. The 

minimum FFS sensitivity to SML (0th percentile) was 0.0% in all models, except Lo-

Muscle/Hi-DoF: 0.3%. 

FFSs were more sensitive to SML in models with Hi-DoF than with Lo-DoF, 

(compare Figure 3.2ABC with Figure 3.2DEF), but this effect was counteracted by the 

number of independent muscles. The sensitivity values associated with each quartile was 

higher in Hi-DoF than in Lo-DoF models when the set of muscles was held constant, and 

Lo-Muscle/Hi-DoF was the model most sensitive to SML (Figure 3.2D, 0th, 25th, 50th, 

75th, and 100th percentiles: 0.3%, 6.4%, 18.7%, 49.8%, and 74.5%). However, the 

distributions of FFS sensitivity to SML in Hi-Muscle/Lo-DoF and Hi-Muscle/Hi-DoF 

were almost identical despite changing DoF complexity (the differences in the sensitivity 

values of the quartiles between the Hi-Muscle/Lo-DoF and Hi-Muscle/Hi-DoF models 

was ≤0.6%, Figure 3.2C&F). 

Some muscles had a drastically different effect on the FFSs of Lo-Muscle/Hi-DoF 

and Int-Muscle/Hi-DoFs than on other models. In all Lo-DoF models, the FFSs were 

least sensitive to the loss of PBREV (muscle #39, Table 2.1) (0.0% sensitive, Figure 

3.2ABC) and in the current standard model (Hi-Muscle/Hi-DoF) it was in the bottom five 

of 43 muscles (0.2% sensitive, Hi-Muscle/Hi-DoF, Figure 3.2F). However, in Lo-

Muscle/Hi-DoF and Int-Muscle/Hi-DoF, both the absolute and relative sensitivity of the 

FFS to PBREV were very high. In Lo-Muscle/Hi-DoF, the FFS was forth most sensitive 

to PBREV (49.8% sensitive, Figure 3.2D), and in Int-Muscle/Hi-DoF, PBREV was the 

muscle that the FFS was most sensitive to losing (41.6%, Figure 3.2E). 

The individual muscles put into groups by (Kutch and Valero-Cuevas (2011)) 

(Lo-Muscle) were among the muscles which had the greatest effect on the FFSs in the 

muscle models with more independent muscles. The 3 muscles that had the largest effect 

on the Lo-Muscle/Lo-DoF FFS, i.e. the top 21%, are all grouped muscles made from a 

total of 9 muscles in the Int- and Hi-Muscle models. These 9 muscles, when considered 
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individually, are in the top 17 muscles (top 40%) that had the largest effect on the Hi-

Muscle/Hi-DoF FFS. Four of the five and six of the eight muscles to which the Hi-

Muscle/Hi-DoF FFS is most sensitive are also from those nine individual muscles (Figure 

3.2A&F).  
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3.3 Grouping muscles increased FFS sensitivity to single muscle loss 

FFS sensitivity to loss of the grouped muscles in Lo-Muscle (selected muscles 

shown in Figure 3.3, first column, blue areas) was roughly the same as the FFS sensitivity 

to loss of the corresponding group of individual muscles in Int-Muscle (Figure 3.3, 

second column, blue areas) but much greater than the FFS sensitivity to loss of the 

corresponding muscles individually (Figure 3.3,). The Lo-Muscle/Lo-DoF FFS was 

highly sensitive to loss of Vasti (Figure 3.3A, 68.1 %), but when compared with the Int-

Muscle/Lo-DoF FSS its sensitivity visually and quantitatively matched the sensitivity to 

VM, VI, and VL as “triple muscle loss” (Figure 3.3B, 67.3%). rather than FFS sensitivity 

to SML for the three vastus muscles individually (VM: 18.9%, VI: 20.6%, VL: 27.7%, 

Figure 3.3C) which had, on average, a 67.1% reduced effect on the FFS. The same 

pattern was found in the other grouped muscles from Lo-Muscle (HAM: Figure 

3.3DE&F, all others: not pictured). The sensitivity of the Lo-Muscle/Lo-DoF FFS to 

HAM matched the sensitivity of the Int-Muscle/Lo-DoF FFS to loss of SEMIMEM, 

SEMITEN, and BFLH (46.6% and 46.6% sensitive, Figure 3.3D&E) but not sensitivity 

to SML in those three muscles (SEMIMEM: 21.3%, SEMITEN: 8.8%, BFLH: 17.3% 

sensitive, Figure 3.3F). The sensitivity of the Lo-Muscle/Lo-DoF FFS to the remaining 

three muscle groups, GMedMin, GMax, and Gastroc, was 5.7%, 26.6%, and 2.8%, and 

when these groups of muscles were independently controlled in the Int-Muscle/Lo-DoF 

FFS, their influence was even less (not pictured). 

The sensitivity of the Lo-Muscle/Lo-DoF FFS to grouped muscles was 

approximately equal to the sum of Int-Muscle/Lo-DoF FFS sensitivity to the individual 

ungrouped muscles (compare Figure 3.3A with C, and D with F). The difference was 

likely accounted for by slight differences in both total FFS area and relative function of 

individual muscles between the two models as demonstrated by comparing the slight 

changes in the FFS sensitivity to SML in a non-grouped muscle between the two models 

(e.g. Soleus, muscle #34: 14.9% vs 15.6% sensitive, Figure 3.2A&B).  
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3.4 Variability in feasible patterns of muscle coordination exists at maximum force 

magnitudes 

The maxF-FMARs for all directions were plotted on a polar plot (Figure 3.4). The 

inner black circles represent an activation value of 0 and the outer black circles represent 

an activation value of 1. The maxF-FMAR for each direction in the sagittal plane is 

shown in the corresponding radial line in the plots in Figure 3.4, e.g. the FMAR for the 

maximum force in the anterior direction is shown on the horizontal-right radius between 

the black circles. A solid green line indicates a determined maxF-FMAR, while a green 

shaded area indicates an undetermined maxF-FMAR or potentially an unconstrained 

maxF-FMAR if the green shaded area covers the entire area between the inner and outer 

black circles. 

Undetermined maxF-FMARs were found in most muscles for many force 

directions indicating feasible variation in muscle patterns at maximum force (Figure 3.4). 

maxF-FMARs were largely insensitive to which set of muscles were included in the Lo-

DoF models. The only changes in model complexity with considerable effects were when 

some of the grouped muscle models were ungrouped (comparing Lo-Muscle with Int-

Muscle) and when the full set of DoFs were included prior to the inclusion of the full set 

of muscles (Lo-Muscle/Hi-DoF and Int-Muscle/Hi-DoF). 

The directions in which maxF-FMARs where determined (FMAR width = 0) or 

undetermined (FMAR width >0), did not significantly differ in models of different 

complexity (Figure 3.4). The percentage of the FFS with undetermined maxF-FMARs in 

at least one muscle was high in all models and only slightly increased due to increased 

model complexity (Lo-Muscle/Lo-DoF: 85.8%, Hi-Muscle/Hi-DoF: 89.4%). Most 

undetermined maxF-FMARs (width >0) were also unconstrained (width=1). Most 

muscles had many force directions in which their maxF-FMARs were undetermined, and 

the average percentage of directions with undetermined maxF-FMARs across muscles 
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was not substantially affected by model complexity (Lo-Muscle/Lo-DoF: 43.9%, Int-

Muscle/Lo-DoF: 37.5%, Hi-Muscle/Lo-DoF: 45.9%, Hi-Muscle/Hi-DoF: 43.4%). Only a 

few muscles, the hip-knee biarticular muscles, were fully determined at maximum 

sagittal plane force directions (Lo-Muscle: 3 of 14 muscles, Int-Muscle: 5 of 26 muscles, 

Hi-Muscle: 7 of 43 muscles, in both Lo-DoF & Hi-DoF, Figure 3.4F&G show two 

examples). 

Ungrouping muscles had a greater effect on maxF-FMAR width in undetermined 

directions than on whether the directions in which maxF-FMARs were determined (zero) 

or undetermined (non-zero). The maxF-FMARS for the Vasti (grouped) and vastus 

(ungrouped) muscles are a representative sample. Although Vasti had undetermined 

maxF-FMARs in about half of the sagittal FFS, the widths were very narrow (Lo-

Muscle/Lo-DoF: force directions with unconstrained FMARs: 55.0%, average FMAR 

width in unconstrained directions: 0.11, Figure 3.4A, row1). Ungrouping the vastus 

muscles had almost no effect on which force directions had undetermined maxF-FMARs, 

but the widths grew to several times that of the grouped muscles (Int-Muscle/Lo-DoF: 

force directions with unconstrained FMARs: 55.6%, average FMAR width in 

unconstrained directions: VM 0.605, VI 0.573, VL 0.465, Figure 3.4A, row 2). The 

pattern continued when the full set of DoFs and muscles were both included (Hi-

Muscle/Hi-DoF: force directions with unconstrained FMARs: 50.8%, average FMAR 

width in unconstrained directions: VM 0.779, VI 0.719, VL 0.601, Figure 3.4A, row 4). 

The Hi-DoF model when paired with the Lo-Muscle and Int-Muscle models 

resulted in highly-constrained, unrealistic patterns in the maxF-FMARs (Figure 3.4, rows 

4 and 5). For example, ADDL, a hip adductor with a primary action outside the sagittal 

plane, has wide and mainly unconstrained maxFMARs for many directions particularly 

posterior directions (left on the polar plot) in most models, but in Lo-Muscle/Hi-DoF, the 

ADDL maxF-FMARs are determined for all force directions (Figure 3.4 row 4). ADDL 

in Lo-Muscle/Hi-DoF also exhibits unrealistic behavior in an inferior-anterior force 
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aligned for the maximum forces of the FFS (see Figure 3.1) by claiming ADDL is 

constrained to have 100% activation for a force directed only a few degrees away on 

either side from forces where it is constrained to have 0% activation. The average 

percentage of directions with undetermined maxF-FMARs across muscles was much less 

in Lo-Muscle/Hi-DoF and Int-Muscle/Hi-DoF than in other models (Lo-Muscle/Hi-DoF: 

29.7%, Int-Muscle/Hi-DoF: 31.5%, all others above 50%).  
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CHAPTER 4 – DISCUSSION 

4.1 Effects of modeling complexity on musculoskeletal redundancy 

Our results demonstrate that musculoskeletal redundancy is highly sensitive to 

model complexity. The standard model (Delp et al., 2007) was highly redundant and 

demonstrated substantial variability in feasible muscle activity in both maximal and 

submaximal forces, while the most simplified models’ muscle activity were highly 

constrained by biomechanics. 

4.1.1 Comparing the model specific effects of varying joint and muscle complexity 

Reducing the number of independently-controlled muscles, whether by removing 

muscles or grouping them, artificially reduces the redundancy of the system. Removing 

muscles reduces both the overall strength of the model (i.e., size of the FFS) and 

robustness to single muscle loss. Removing muscles removed 180° or more of the force 

directions from the robust regions of the FFS (in the anterior-superior direction), 

indicating that one or more muscles that contribute to force in that direction were 

removed in this simplification, artificially decreasing the robustness of those forces to 

single muscle loss. 

Grouping muscles in the model drastically reduced the robustness of the FFSs. 

Not only does this artificially reduce muscle redundancy, but it does not represent a 

biomechanical constraint but rather a neural constraint since grouping muscles is 

implemented by constraining that they all are controlled by a single activation value. 

In contrast to the redundancy-reducing simplification in the muscles, reducing the 

joints or DoFs of the model artificially increased the robustness of the leg to SML. 

Locking joints to create planar models misrepresents muscles’ function, even for planar 

tasks. One of the most impactful simplifications in the planar model was modeling the 

hip as a single DoF rather than a ball-and-socket joint with three orthogonal DoFs. Fixing 
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two of the three axes at hip over-simplified and changed the function of the hip muscles, 

all of which have some effect about all three DoFs. For example, while tensor fascia latae 

(TFL) has a significant moment arm for hip flexion and therefore plays a role in sagittal 

plane forces, clinically we observe TFL mostly participate in hip abduction, a DoF locked 

by in the planar model. 

4.1.2 Guidelines for model selection with regards to redundancy 

First, including a more complete set of muscles should be prioritized over a 

complete set of DoFs when a model cannot incorporate both. While the models with the 

3D set of joints had smaller, less robust FFSs, including the full set of independent 

muscles from the OpenSim model mitigated this effect. The results from the Hi-

Muscle/Lo-DoF model were significantly more similar to those from the standard Hi-

Muscle/Hi-DoF model than either of the other Hi-DoF models. The FMARs for models 

with high complexity in DoFs but simplified musculatures showed unrealistic, over-

constrained results (Figure 3.4, rows 4 and 5). However, based on the heuristic methods 

presented, we do not foresee a need to choose between including muscles or DoFs.  

Second, model redundancy can be estimated with the ratio of muscle to joints: a 

muscles:DoF ratio of close to 2 will likely be highly constrained by biomechanics. Since 

muscles only pull, for each joint to be fully actuated it needs two opposing muscles. 

Consider the Lo-Muscle/Hi-DoF model, which has a muscle-to-joints ratio of exactly 2: 

the model is 99.3% sensitive to gSML (Figure 3.1) and half of the muscles affect 20% or 

more of the FFS (Figure 3.2). Additionally, the index-finger model from the literature has 

a ratio of 1.75 and is also highly constrained biomechanically (Kutch & Valero-Cuevas, 

2011; Valero-Cuevas, 2000; Valero-Cuevas et al., 1998). However, this metric should 

only be used as an initial estimate, mainly to rule out models that are too simple, for it be 

confounded by planar vs 3D models, depending on the task. 3D models with lower ratios 

may be more robust to gSML for a planar task than planar models with higher ratios 
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(compare Lo-Muscle/Lo-DoF, ratio of 4.7, with Int-Muscle/Hi-DoF, ratio of 3.7, in 

Figure 3.1) and models with drastically different ratios may have essentially equal 

robustness to gSML for a planar task if one model is planar and the other is 3D (compare 

Hi-Muscle/Lo-DoF, ratio of 14.3, with Hi-Muscle/Hi-DoF, ratio of 6.1, in Figure 3.1 and 

3.2). 

4.2 Generalized effects of joints and muscles on force production 

The effect of model complexity in joints and muscles on static force production 

shown here generalizes to all musculoskeletal models in all postures: in all cases, 

removing a joint will either increase the FFS or leave it unchanged, while removing a 

muscle will decrease the FFS or leave it unchanged.  

Locking a joint will either increase the maximum force in a given direction or 

leave it unchanged. In a static system, the relative magnitude of all joint torques is 

determined by the endpoint force direction and the moment arm between each joint and 

the endpoint, and that ratio of all the joint torques will remain consistent as it is scaled by 

changes in endpoint force magnitude. Also, every joint has a maximum torque value that 

can be produced about it in both directions, determined by the strength and moment arms 

of the muscles that cross it. The maximum endpoint force in a given direction will always 

correspond to one joint (possibly more) reaching its maximum torque capacity. If the 

joint limiting that force was locked and therefore able to provide infinite torque, the 

maximum force could then increase until a different joint reached its maximum. 

However, if a joint that was not the limiting joint for the force was locked, there would be 

no change in the maximum force magnitude in that direction. Inversely, if a different 

joint was created or unlocked, depending on the joint torque capacity and the moment 

arm, the force maximum could only either decrease or remain the same. 

Removing a muscle will decrease the maximum force in a given direction or leave 

it unchanged. Muscle activity produces joint torque in this model, which omits passive 
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muscle force or ligaments. If a muscle is removed from a joint that was the limiting factor 

in determining maximum force in a given direction, the torque capacity of that joint 

would then be decreased, reducing the magnitude of the maximum force value. Adding a 

muscle to that joint could result in an increase of force magnitude depending on the 

direction of the torque that new muscle could produce. Changing the muscles about joints 

that are not limiting factors for the maximum force in a given direction would change 

redundancy, but no the magnitude of the maximum force. 

Intersecting joints and muscles that cross more than one joint create more 

complexity in these results, but the general principles related to joint torque capacity and 

endpoint force magnitude remain unchanged. 

4.3 Implications for Redundancy 

Our results show that the standard model is highly redundant, implying that 

biomechanics are insufficient to determine muscle activity in static force production. 

When the biomechanics of the task leave ample room for variability in muscle activation, 

the CNS may select muscle activation patterns from within the FMARs based on other 

criteria such as generalizability, stability, or resistance to fatigue (Bunderson, Burkholder, 

& Ting, 2008; Loeb, 2000; Sohn & Ting, 2016). 

While the current standard musculoskeletal model does not capture all of the 

complexities of the human leg muscles and joints, it captures more of the redundancy of 

an actual human leg compared to a planar model with a reduced set of muscles. This 

model approaches the complexity of the human leg and is sufficient to establish our 

claims of model generality and redundancy.  Even with modeling errors, the model 

demonstrates that biomechanics are insufficient to determine muscle activity.  If the 

model fidelity was increased, this finding would be even stronger: redundancy and the 

resultant insufficiency of biomechanics to determine muscle activation patterns would 

increase.  
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Different limbs or appendages in the body may have different amounts of 

redundancy and therefore are could be more or less susceptible to impairment or possibly 

controlled differently by the CNS. Evidence suggests that index fingers are highly 

biomechanically constrained, but the finger is not representative of the rest of the body in 

terms of numbers of muscles and joints. The muscles that actuate the fingers are all in 

either the palm or the forearm with generally long tendons. Having non-self-contained 

muscles lends itself to cadaveric studies of the finger muscles because the muscles are 

accessible from outside the finger, but this is not a common feature in the body. The ratio 

of muscles-to-joints is much higher in larger limbs, and limbs have many self-contained 

muscles. 

Musculoskeletal redundancy does not mean that some muscles are unnecessary, 

but suggests that the degree of multi-functionality of bodies requires a musculature that is 

redundant at many single-task levels. 

4.4 Limitations and future work 

4.4.1 Planar vs. three-dimensional force directions 

To be able to compare planar and three-dimensional models, the current study 

used only sagittal plane forces. The planar models could not produce forces outside the 

sagittal plane, which further detracts from their generality. The detailed models can 

produce FFSs in outside of the sagittal plane.  

Future work may create a better representation of muscle redundancy by 

investigating forces in all dimensions. In that case, we predict that muscles’ variability 

will shift, that muscles that had no feasible variability in muscle activity at maximum 

force in all sagittal force directions would begin to have feasible variability outside the 

sagittal plane, and that some unconstrained muscles in the sagittal plane will become 

constrained, indicating that no muscle is completely constrained in all force production, 



37 
 

even at maximum force. Similar trade-offs would likely happen in FFS sensitivity to 

SML.  

4.4.2 Dynamic force production and changing postures 

Dynamic tasks may apply more biomechanical constraints on muscle activity 

variation than seen with static force tasks. However, wide FMARs have been 

demonstrated in human gait (Simpson et al., 2015), but this redundancy could be further 

tested by applying SML or for more maximal tasks. 

In static force production, the relationship between joint torque and muscle 

activations was linear (see equation (2)). A dynamic task will not have the same linear 

mapping (see equation (1)) which will provide new challenges. Furthermore, many of the 

model parameters are posture specific, and any dynamic task considered in more than one 

time step will require updating these parameters. 

There are close relationships between FMARs and FFSs, particularly SML-FFSs 

that remain to be explored to determine which metrics best capture the inherent muscle 

redundancy (or lack thereof) of musculoskeletal systems. The sensitive area of a FFS to a 

single muscle is all the force directions and magnitudes where the FMAR does not 

include zero, i.e. the muscle is necessary. There is a direct comparison between FMAR 

and FFS, because FMARs also can demonstrate which force directions or magnitudes 

make specific muscles necessary. These are two different perspectives on the same force-

activation space that remains to be thoroughly investigated.  
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APPENDIX A 

 
Single Muscle Loss Feasible Force Sets (SML-FFSs) across all muscles in all models 
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APPENDIX B 

 
Maximum Force Feasible Muscle Activation Ranges (maxF-FMARs) 

across all muscles in all models 
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APPENDIX C 

 
MATLAB Function for creating Feasible Force Sets 
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APPENDIX D 

 
MATLAB Function for creating Feasible Muscle Activation Ranges 
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APPENDIX E 

 
Matrix Values 
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APPENDIX F 

Section of the Neuromechanic Body File used to Calculate the Jacobian 
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