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SUMMARY 

Microelectronic packages are continuing to become smaller and more complex. 

Interfacial delamination is a common failure mechanism present in microelectronic 

packages due to the mismatch in the coefficient of thermal expansion (CTE) between 

different materials. Epoxy Molding Compound/Copper is a common interface found in 

microelectronic packages that is susceptible to delamination issues due to CTE mismatch 

between the two layers. This work analyzes interfacial delamination at an EMC/Copper 

interface and how the interfacial fracture energy is affected by temperature and humidity 

conditioning. In particular, this work employs delamination experiments to determine 

how the temperature and humidity conditioning will influence cohesive zone models 

(CZM). Previous work has investigated delamination in on-chip and off-chip interfaces 

using traditional fracture mechanics techniques where the starter crack location and 

propagation path are known. Cohesive zone theory is a new technique that can model 

multiple cracks without the presence of a starter crack. A cohesive zone model represents 

the traction forces between two materials as a function of separation in displacement 

between the two layers. Traction separation parameters for mixed mode loading for an 

interface can be determined by experimental fracture studies of its delamination and 

crack propagation. Using these results cohesive zone parameters can be used to predict 

crack propagation and delamination for interfaces in microelectronic packages. The goal 

of this study is look at delamination in an EMC/Copper interface and how delamination is 

affected by temperature and humidity using a double cantilever beam test. Cohesive zone 

parameters are obtained for as-received, thermally aged and humidity conditioned 



 

samples. These cohesive zone models can be used to predict delamination in an 

EMC/Copper interface and how these models are affected by factors such as time, 

temperature and humidity conditioning.  
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 INTRODUCTION AND MOTIVATION CHAPTER 1.

Microelectronic packaging is a material-intensive application that utilizes 

semiconductors, ceramics, glasses, polymers, and metals [1]. Multilayered dissimilar 

material structures are commonly used in microelectronic packages nowadays to improve 

mechanical integrity, enhance fatigue life, reduce cross talk and capacitance and increase 

electrical performance. These interfaces are usually prone to debonding or delamination 

under high temperature load operations during fabrication such as solder reflow process 

or under the influence of harsh environment exposure during reliability qualification 

tests. For example, die attach delamination at the die attach/epoxy molding compound 

interface in system on integrated chip (SOIC) packages is a reliability problem. 

Delamination at this interface may cause thermal management and electrical issues and 

increase the chance of contamination related/failure as well as stitch bond failures. One 

major reason for die attach delamination is due to the mismatch in the coefficient of 

thermal expansion of the die attach and the epoxy molding compound. This is especially 

noticeable at the interface edge of the die attach, die and mold compound which is an 

area of high stress and possibly an initiation spot of die attach delamination [2]. Epoxy 

Molding Compound and copper leadframe is another common interface susceptible to 

delamination once again due to stress concentrations and CTE material mismatch [3]. For 

flip chip package reliability, interfaces such as underfill and die passivation or underfill 

and substrate solder mask have dominant failure modes due to CTE mismatch between 

the two materials and are areas of high concern [4]. Delamination is also prevalent in 

metallization and dielectric layers built on top of a base substrate in System on Package 
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solutions due to thermal gradients and CTE mismatch between the different materials [5]. 

Thermal interface material (TIM), a material with high conductivity that is applied 

between a heat-generating chip and a heat spreader is also prone to delamination. Due to 

CTE mismatch between the chip and TIM at reflow temperatures, the center of the TIM 

is under tension and therefore tends to delaminate from the interface [6].  

All of these interfaces are further weakened in the presence of moisture and high 

temperature conditioning. Moisture ingress can influence interfacial adhesion in 

microelectronic packages by moisture absorption of polymeric materials, hygroscopic 

swelling of polymeric materials and changes in the mechanical properties of polymeric 

materials [2, 7, 8]. Thermal aging can generate compressive residual stresses and high 

warpage at various interfaces due to CTE mismatch between different materials. The 

growth of oxides on copper leadframe surfaces in copper/underfill interfaces can also 

play a part in the reducing its adhesion strength. The growth of oxide on the copper 

substrate exposed to high temperature conditioning potentially could be displacing the 

underfill at the adhesive bond hence reducing the interfacial strength of the 

copper/underfill bond. [9]. It is important to understand how temperature and moisture 

affect interfacial adhesion in microelectronic packages.  

 Although experiments are available for interfacial characterization of various 

interfaces after moisture and thermal conditioning, most of the current studies have 

focused on using a traditional fracture mechanics approach.   

 Cohesive zone theory is an alternative approach to interfacial delamination that 

considers both crack initiation and crack propagation without the presence of a starter 
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crack. This technique has experienced renewed interest since it has become more  

computationally affordable [3]. In addition, cohesive zone theory can model multiple 

cracks in a model and is a better alternative to fracture mechanics techniques in analyzing 

interfacial delamination in microelectronic packages. 
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 BACKGROUND AND LITERATURE REVIEW CHAPTER 2.

 The rapid miniaturization of microelectronic packages has put more emphasize on 

factors such as thermo-mechanical reliability and electrical performance. For this reason, 

delamination and debonding issues in dissimilar materials are more prevalent due to CTE 

mismatch and stress concentrations at material interfaces. Moisture absorption from the 

environment and the effect of high temperature from processes such as solder reflow can 

further weaken material interfaces. Important consideration should be given to 

mechanical reliability in microelectronic packages at high temperatures and humidity 

conditions to lower costs and improve design and process guidelines [10, 11]. 

2.1 Fracture Mechanics  

 Fracture Mechanics has been widely used in analyzing delamination and 

debonding issues in multilayered structures found in microelectronic packages. 

Numerous experimental and analytical studies have been conducted to investigate the 

delamination issues in bi-material interfaces such as copper/epoxy molding compound, 

copper/resin, die/die attach and glass/epoxy systems [12, 13]. Studies have been 

conducted to evaluate how residual stresses and mode mixity affect interfacial strength 

[12-15]. Fracture mechanics approaches assume some initial defect/crack in the material 

or the interface under consideration. Experiments are used to quantify a failure criteria. If 

the loading conditions exceed the failure criteria the package geometry under 

consideration will delaminate [3]. The two most common ways to characterize interfacial 

adhesion for a specimen with a crack is using a stress-intensity factor (SIF) or strain 

energy release rate (SERR) approach. It is hard to use a stress based approach to analyze 
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the interfacial strength of a bi-material specimen, due to how complex the closed form 

stress solution can get at an interfacial crack for certain geometries.  SERR uses an 

energy based fracture mechanics approach to model cracks in package geometries and is 

nowadays more commonly used in modeling delamination in microelectronic packages.  

2.1.1 Strain Energy Release Rate (SERR) 

 An energy approach to model fracture was proposed by Irwin in 1956. He 

proposed a term known as the strain energy release rate (SERR) or G. The SERR is the 

energy available for an increment of crack growth in a given geometry. Irwin’s approach 

is an extension of the Griffith criterion which states that for fracture to occur the energy 

in the structure must be enough to overcome the surface energy of the material.  Irwin 

defined SERR as the rate of change in potential energy, Π with respect to a given crack 

area, A as shown in Equation 2.1 [16] 

 
    

  

  
 2.1 

 The crack in a given geometry will propagate when G reaches a critical strain 

energy release rate Gc. Gc is a function of mode mixity, ψ and the crack will propagate in 

any geometry if G ˃ Gc for that particular geometry. 

2.1.2 Virtual Crack Closure Technique 

 For simple geometries it is easier to obtain the closed form equation of SERR 

[16]. If the geometry is not homogeneous, complex or non-linear in behavior analytical 

expressions to calculate the critical SERR are more difficult to obtain. Finite element 
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modeling (FEM) is a useful technique that can be implemented to calculate SERR using 

different fracture mechanics techniques [17-20]. There are a variety of ways to 

characterize the SERR of a specimen including Virtual Crack Closure Technique 

(VCCT), J- integral method and Virtual Crack Extension (VCE) method [17-22]. For the 

purposes of this work a VCCT approach will be used to obtain the SERR by conducting 

interfacial fracture mechanics experiments. 

 Irwin states that if the crack extends by a small amount, Δa the energy absorbed in 

the process is equal to the work that is needed to close the crack to its original length, a. 

The crack closure technique, developed by Rybicki and Kanninen, is based on the 

assumption that the change in energy, ΔE that occurs when a crack propagates by Δa 

from a to a+ Δa is equal to the energy required to close the crack a distance of Δa [23, 

24]. For a four noded two-dimensional plane stress or plane strain finite element model, 

the top and bottom nodes before the crack tip, a have identical coordinates but are left 

uncoupled. Figure 2.1shows a schematic of the geometry with a crack. 

 

Figure 2.1 – Crack geometry used for VCCT [23] 
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After calculating the Mode I and Mode II components of the strain energy release 

rate, the total SERR is given by Equation 2.2 [23], 

 
   

 

   
   (            )  

 

   
   (            ) 

2.2 

In the above equations, FYi and Fxi are the horizontal and vertical forces at the 

crack tip. The horizontal displacement between the top and bottom surface Δa ahead of 

the crack tip is calculated by computing the difference between the horizontal nodal 

displacement at the top node, xtop and the horizontal nodal displacement at the bottom 

node, xbottom. Similarly, the vertical displacement between the top and bottom surface Δa 

ahead of the crack tip is calculated by computing the difference between the vertical 

nodal displacement at the top node, ytop and the horizontal nodal displacement at the 

bottom node, ybottom. The relative change in displacement between the top and bottom 

nodes ahead of the crack tip, in the x and y is given by  Δx and Δy respectively. The total 

SERR is computed by adding its mode I and mode II components. It is important to note 

that VCCT is only valid while assuming that the material behavior is elastic and not 

plastic. 

2.1.3 Fracture Mechanics for dissimilar material geometries  

 The above fracture mechanics techniques are usually meant to be applied to 

cracks in homogenous materials. It is more difficult to evaluate the interfacial strength of 

a crack geometry with different materials. Figure 2.2 shows a schematic of a bi-material 

crack geometry.  
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Figure 2.2 – Bi-material specimen with crack geometry  

The stress field around a bi-material crack tip was first studied by Williams in 

1959 [25]. Williams found out that the stress field around the crack is coupled and the 

singularity is is of the order r
ξ 

where ξ = -1/2 + iε. In this equation, ε is the bi-material 

constant, given by, 

 
  

 

  
  [

   

   
] 

2.3 

where β is one of “Dundur’s parameters” given by Equation 2.4 as follows. 

 
  

  (    )    (    )

  (    )    (    )
 

2.4 

The greater the value of the bi-material constant, ε the more dissimilar the two 

materials used in the crack geometry. The stress intensity factors, KI and KII for a bi-

material specimen are not similar to the stress intensity factors for a homogeneous 

material. Rice and Sih formulated a complex stress intensity factor, K for a bi-material 

specimen, given by [26], 
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2.5 

where K = K1 + iK2. 

2.1.4 Mode Mixity for dissimilar material geometries 

A variety of studies have been conducted to study mode mixity of a bi-material 

specimen. Matos et al. developed the crack-face displacement method that is widely used 

in most problems involving a crack geometry [27]with different materials [28]. Yau et al. 

proposed the M-integral method and VCCT has also been used to extract SIF factor based 

or SERR based mode mixity for bi-material geometries [29]. For the purpose of this work 

the crack-face displacement method, first developed by Matos et al. [28] will be used to 

determine the mode mixity of the bi-material crack geometry. 

Hutchinson and Suo [27], formulated a relationship between the crack 

displacements ahead of the crack tip and the complex stress intensity factors for a bi-

material crack geometry, given by, 
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2.6 

As shown in Figure 2.2 the relative displacements δy and δx a distance r ahead of 

the crack tip can be calculated using an FEM software.  The parameter, l is the 

characteristic specimen dimension used to normalize the crack tip distance and is usually 

chosen to be the width/height of the specimen. Once crack tip displacements are obtained 

the mode mixity of the bi-material specimen can be calculated using the equation below. 
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2.7 

The distance r ahead of the crack tip used to calculate the mode mixity, ψ can be 

determined using Equation 2.8 
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2.8 

where the value G* is the SERR. G* is obtained by using VCCT in a FEM 

software.  E
* 
 is calculated using Equation 2.9. 
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2.9 

As mentioned earlier, the relative displacements δy and δx, a distance r ahead of 

the crack tip are also obtained from then FEM software. The value of r for which the 

above relationships in Equation 2.8  intersect or are equivalent is then used in Equation 

2.7 to obtain the mode mixity, ψ of the bi-material interface. 

Gc can also be obtained as a function of ψ. Hutchinson and Suo [27] formulated a 

model to obtain this relationship as shown below.   

       {      ( (   ))}   2.10 

In the above relationship, GIC is the mode I critical strain energy release rate of the 

bi-material interface and λ is a non- dimensional parameter that relates to the brittleness 
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of the structure. At λ = 0, delamination is dominated by Mode I behavior.  At λ = 1, the 

bi-material geometry is “ideally brittle” and the crack initiates at G = GIC  

Figure 2.3 shows a typical Gc vs mode mixity ψ graph  obtained for a material 

where  λ = 0.1  and GIC 10 =J/m
2
. 

 

Figure 2.3 – Gc vs. mode mixity, ψ for a material with λ = 0.9  and GIC =10 J/m
2 

2.2 Cohesive Zone Models  

Cohesive Zone Modeling (CZM) is an innovative way of simulating crack initiation 

and propagation at an interface. CZM doesn’t require a starter crack and has been applied 

in a number of applications to simulate interfacial crack propagation including thin-film 

structures, adhesively bonded polymers, glass/elastomers, and on-chip interfaces [30-33]. 
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CZM can be used in FEM software to model complexities such as inelasticity, large 

deformation and delamination and debonding in complex geometries. 

2.2.1 CZM theory  

 The basic premise of the CZM technique is that it assumes that there is a certain 

macro-scale fracture process zone that exists ahead of the crack tip in the geometry that is 

another consideration.  This zone can be described by CZM laws that model traction 

forces and physical separations at the crack tip region [34]. 

 Interfacial separation in a CZ model occurs in a cohesive damage zone when the 

damage exceeds a certain pre-set value. There are a number of traction-separation laws 

available to characterize interfacial separation. These include, for example, bi-linear, 

trapezoidal, exponential and others as shown in Figure 2.4. For the purposes of this paper, 

a bilinear traction-separation law that was proposed by Alfano and Crisfield will be used 

[35]. 
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Figure 2.4 – Traction separation laws for cohesive zone elements 

2.2.2 CZ Bi-linear Traction Separation Law  

 The bilinear law represents the interfacial traction, σ vs. the interfacial separation, 

δ. As the CZ elements undergo interfacial delamination, they show elastic loading for, δ 

< δ*. For this elastic loading region, the interface is assumed not to experience any 

damage, and unloading will return the elements to their original configuration. The 

damage accumulated at the interface can be represented by a damage parameter, D. 

When, δ > δ *, D starts to increase, and when δ ≥ δc, D reaches a maximum value of 1. D 

can be represented by Equation 2.11. 
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 The path of the load-unload curve for the different damage criteria mentioned up 

is shown in Figure 2.5 as follows: 

 

Figure 2.5 – Damage criteria for bi-linear traction separation law  

 If δ < δ
* 

then no damage will accumulate at the elements in the crack tip region 

and load unload path will be the same. If δ
* 

< δ < δc  then some elements will be partially 

damaged and  the unload path will have a higher compliance than the load path.  The 

value of D will never decrease, regardless of the current state of loading. When D = 1, the 

interfacial stiffness of CZ elements is zero, and the interface is assumed to be fully 

separated. 
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The interfacial traction can be represented as a function of δ and D as follows. 

   
    

  
(   )  2.12 

The area under the traction-separation curve is Gc, and for a bi-linear curve, it can 

be computed as:  

              2.13 

2.2.3 Implementing CZ laws using FEM software  

 A few data reduction techniques are available to implement CZ laws, including 

the property method, the direct method and the inverse method [34]. The inverse method 

will be implemented in this study to obtain CZ laws for the bi-material geometry. The 

inverse method involves changing certain CZ parameters in FEM software to obtain 

simulated load vs. displacement curves for a various loading conditions and a given 

geometry.   These results will then be compared and matched with experimental load vs. 

displacement data obtained by conducting interfacial fracture mechanics experiments. 

The bilinear laws for CZM consist of Mode I and Mode II parameters. These parameters 

include the maximum traction, σmax, the maximum interfacial separation, δc, and the ratio 

α = δ
* 

/ δc  for both Mode I and Mode II, resulting in  a total of six parameters. It is 

important to note that the mesh used around the crack tip region in the FEM software has 

an impact on the model. Alfano and Crisfield [35] mention that increasing the σmax to a 

higher values might require the mesh around the crack tip region to be refined as well. 
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Not doing so will lead to discretization errors in the simulated load vs. displacement data 

and oscillatory behavior during delamination as shown in Figure 2.6.  

 

Figure 2.6 – Discretization error and oscillatory behavior in DCB CZ simulation 

due to coarse mesh around crack tip.  

 For σmax values which are too high for a given mesh density and result in 

discretization errors and oscillatory behavior, sufficiently increasing the mesh density 

around the crack tip will reduce the discretization errors and smooth out the curve. In this 

study, as different values of σmax are fitted, the mesh density is altered as required for 

higher maximum traction values to avoid these discretization errors. 
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2.3 Moisture Absorption Studies on Dissimilar Material Layers in Microelectronic 

Packages  

 Several studies have been done to understand how polymer interfaces, specifically 

underfill respond to moisture absorption. In general, moisture exposure on 

underfill/epoxy molding compound has shown to reduce the interfacial adhesion of the 

interface being investigated.  Ferguson and Qu [9]investigated the effect of interfacial 

adhesion on an epoxy underfill with a copper substrate while keeping the temperature 

exposure constant at 85 °C. Interfacial fracture tests were conducted on samples exposed 

to temperature/humidity conditions including dry, 85 °C only, 85 °C/50% R.H., 85 

°C/65% R.H. and 85 °C/85% R.H. There is no change in the mass of the specimen from 

moisture uptake after 168hrs of exposure hence verifying that the underfill was fully 

saturated and steady state conditions existed. The samples were tested at these conditions 

for 168hrs. 

 Interface cracks were created between the substrate and the underfill. The 

interfacial fracture strength was computed using the SERR, the energy at which the bi-

material specimen will begin to delaminate. Using the underfill elastic modulus obtained 

at various humidity conditioning levels, the interfacial fracture toughness of the 

underfill/copper sample was evaluated. Table 2.1 shows the Gc values obtained at various 

humidity conditioning levels. 

Table 2.1 – Effect of moisture exposure on the critical energy release rate of the 

copper/underfill sample [9] 
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Humdiity 

Conditioning  

Level 

Gc 

(J/m
2
) 

Control  8.97 

85°C only  8.18 

85°C / 50 R.H.  5.26 

85°C / 65 R.H.  4.57 

85°C / 85 R.H.  3.76 

 As can be seen from Table 2.1, temperature exposure itself didn’t have much 

affect on the SERR value of the copper/underfill sample. Once moisture conditioning was 

introduced, there was a significant reduction in Gc and this value kept dropping as the 

humidity conditioning level was increased. Using a flexural three point bend test, 

Ferguson and Qu [9] also evaluated the change in elastic modulus of the underfill due to 

moisture presence. The elastic modulus of the underfill was only tested because copper is 

a metal and hence unaffected by moisture uptake. The elastic modulus of the underfill 

didn’t change much after moisture preconditioning at 85 °C/50% R.H and 85 °C/65% 

R.H. However at 85 °C/85% R.H there was a 8.76% in the elastic modulus value of the 

underfull. Furthermore, exposure at 85 °C/95% R.H led to a 17.6 % drop in the elastic 

modulus of the underfill. Ferguson and Qu [9] showed that this change in elastic modulus 

didn’t affect the ψ of the underfill/copper substrate significantly and therefore was 

assumed to be held constant for their study. 

 Another study by Shirangi et al. [36] investigated the effect of moisture 

absorption and desorption on an epoxy molding compound/copper interface. An end-

notched flexure (ENF) test was used to characterize the interfacial fracture toughness of a 

EMC/copper sample. A VCCT approach was implemented using FEA software to 

measure the interfacial fracture toughness of the EMC/Copper sample.  
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 Shirangi et al. [36] calculated the interfacial fracture toughness after putting the 

EMC/Copper sample through humidity conditioning at 85 °C and 85% R.H for a period 

of 2 weeks. This was numerically determined as the time it took for the EMC to reach 

virtual saturation.  The samples were then removed from the humidity chamber and the 

ENF test was conducted at room temperature.  The effect of desorption was also 

investigated. The samples were dried for 24hrs at 125 °C and the ENF test was conducted 

at room temperature. In addition, EMC/Copper samples were conditioned at 85 °C and 

85% R.H for longer durations (up to 4 weeks) and dried for 24hrs at 125 °C before the 

ENF test was done at room temperature. 

 The results showed that after exposure at 85 °C and 85% R.H for 2 weeks there is 

an appreciable drop in the Gc value of the EMC/Copper sample from 58.7 J/m
2
 in the dry 

state to 26.3 J/m
2 

after moisture conditioning. Upon subsequent drying at 125 °C for 

24hrs, the Gc value of the EMC/Copper sample obtained was 44.9 J/m
2 

suggesting that 

some of the EMC/Copper adhesion loss was recovered. However on baking the sample at 

125 °C for 24hrs after placing it in the humidity chamber for up to 4 weeks the interfacial 

adhesion obtained was 28.8 J/m
2
 . 

 In another study, Shirangi et al. [36] also investigated how humidity conditioning 

as a function of time affected the fracture toughness of the EMC/Copper sample. An ENF 

test was used to determine the fracture toughness of the EMC/Copper geometry after 

conditioning the sample at 85 °C and 85% R.H for up to 8 weeks.  EMC/Copper samples 

were removed at 1 week (168hrs) intervals and the interfacial fracture toughness was 

calculated at room temperature. The results showed that a major reduction in the Gc value 

of the EMC/Copper sample was seen right after 168 hrs. There was no appreciable 
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change in the Gc value after humidity conditioning the EMC/Copper sample for longer 

durations [36-39]. 

It is clear that the reduction in the interfacial strength of the underfill/copper 

substrate occurs primarily because of the presence of moisture. Moisture exposure might 

be causing a reduction in adhesion strength through the displacement of the underfill, 

hence reducing Van der Waals forces at the interface. In addition, moisture exposure 

might also be resulting in chemical degradation of the adhesive bonds at the 

underfill/copper interface. Since the elastic modulus of the underfill wasn’t significantly 

affected after moisture exposure, any plasticization of the underfill didn’t impact the 

interfacial fracture toughness of the bi-material specimen [9]. 

The second study revealed that the duration of moisture exposure has an effect on 

the interfacial strength of the EMC/Copper sample. Moisture absorption after two weeks 

of exposure at 85 °C and 85% R.H was primarily caused by the presence of water 

molecules at the interface. On exposing the EMC/Copper sample to longer durations of 

humidity conditioning, there seems to be permanent damage in the adhesion bonds of the 

EMC/Copper that cannot be reversed. In addition, in an EMC/Copper sample most of the 

adhesion loss due to moisture absorption occurs within the 1
st
 week of exposure and 

levels out from that point on. This suggests that the EMC has a high moisture diffusion 

rate and most of the absorption occurs within 1 week of exposure [36].  

2.4 Thermal Aging Studies on Dissimilar Material Layers in Microelectronic 

Packages 
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 Many studies have been done to study the effect of isothermal aging in an 

EMC/Copper specimen, especially at temperatures of 85 °C and 175 °C. These two 

temperatures are really important because they represent the temperatures applied during 

packaging processes such as solder reflow. Isothermal conditioning at 85 °C is relevant in 

order to be able to isolate the effect of moisture conditioning conducted at 85 °C and 85 

% R.H. 175 °C is usually the temperature of the transfer mold process during fabrication 

of the EMC/Copper specimen. Several studies have shown that isothermal aging at 

temperatures as low as 85 °C shows no significant change in the interfacial strength of an 

EMC/Copper specimen. As shown in Table 2.1, Ferguson and Qu [9] showed that 

exposing an underfill/copper sample to 85 °C for 168hrs didn’t significantly affect the  Gc 

value. This was also confirmed by Shirangi et al. [38] who didn’t seen a change in the 

interfacial adhesion of the EMC/Copper sample after thermally aging it at 85 °C for 2 

weeks (336 hours). However, if the aging temperature is raised to 175 °C, a significant 

drop in Gc value was observed. The Gc value of the EMC/Copper sample drops by 45.4 % 

after exposing the EMC/Copper sample to 175 °C for a period of 2 weeks.  

The adhesion loss at 175 °C could be due to the degradation of the EMC polymer 

at high temperatures which lead to a reduction in the Van Der Waals forces at the 

interface. In addition, oxide deposition on the copper leadframe could be a reason for the 

drop in Gc value for the interface in question [39]. Ferguson and Qu [9] conduct X-ray 

Photoelectron Spectroscopy studies to investigate the surface of the Cu leadframe after 

fracture testing. 

The shake up satellite observed in the Cu scan indicates the presence of cupric oxide, 

CuO on the Cu Leadframe. The oxide formation could potentially be displacing the 
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underfill at the adhesive bond hence contributing to the loss in adhesion [9]. The effective 

stress relaxation and creep strain generated at the interface due to thermal aging could 

also be a cause for the interfacial drop in Gc. 
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 OBJECTIVES AND SCOPE OF THIS RESEARCH CHAPTER 3.

As outlined in the previous chapters, the effect of humidity conditioning and 

thermal aging on interfacial delamination have been studied in existing literature using 

fracture mechanics-based approaches.   However, to the best of the author’s knowledge, 

there are no studies in open literature that investigate the effect of humidity conditioning 

and thermal aging on cohesive zone modeling and cohesive zone parameters, particularly 

for epoxy mold compound (EMC)/copper interface.  

The objectives of this thesis are to determine modified cohesive zone parameters 

through experiments and simulations for EMC/copper interface that is subjected to 

moisture conditioning or thermal aging, and to study how these modified cohesive zone 

parameters compare against the cohesive zone parameters for pristine CMC/copper 

interface.  The following sections outline the approach taken in this research to address 

the objectives: 

1. The critical SERR (Gc) of EMC/Copper pristine interface is first determined by 

conducting interfacial fracture experiments.  These experiments include double 

cantilever beam test and four-point bend test.  

2. From the load versus displacement experimental data of the interfacial fracture 

experiments, Gc can be calculated through FEM and analytical calculations.  The 

variation of Gc as a function of mode mixity is then determined. 

3. Using load vs. displacement experimental data as well as Gc variation as a 

function of mode mixity, the cohesive zone parameters are then determined for 

as-received or pristine EMC/copper interface.     
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4. EMC/Copper specimens will then be subjected to different humidity conditioning 

and thermal aging profiles, and the interfacial fracture mechanics experiments are 

then repeated at room temperature. 

5. As discussed in Step #2 and #3, modified CZ parameters are then determined for 

humidity- and temperature-conditioned EMC/Copper samples.  

6. The modified CZ parameters for conditioned samples are compared against the 

CZ parameters for as-received pristine samples, and a discussion is provided as to 

effect of humidity and temperature conditioning on CZ parameters. 
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 EXPERIMENTAL PROCEDURE AND RESULTS CHAPTER 4.

FOR AS-RECEIVED EMC/COPPER SAMPLE 

The strength of the EMC/Copper interface is calculated using the critical strain 

energy release rate (Gc). A double cantilever beam (DCB) and a four point bend (FPB) 

test are used to determine the strength of the EMC/Copper interface for different loading 

conditions. It is important to calculate Gc for different combination of peel and shear 

stresses, as Gc is a function of mode mixity (ψ). Using the DCB and FPB test results, a 

relationship between Gc and Mode Mixity (ψ) is determined for the EMC/Copper 

interface. These results and the experimental load vs. displacement data are used to 

determine the CZ parameters for as-received EMC/Copper sample 

4.1 EMC/Copper Specimen  

NXP Semiconductor provided us with the EMC/Copper sample to conduct 

experimental tests. The EMC/Copper sample is fabricated by cooling molten EMC on 

copper from the cure temperature of 175 °C to room temperature (25 °C) in 4 hours. The 

EMC is poured into a transfer mold that is clamped onto the copper leadframe. As the 

EMC cures and solidifies from the cure temperature of 175 ºC it experiences cure 

shrinkage. Cure shrinkage is shrinkage experienced in the EMC that is unrelated to CTE. 

A study showed that the cure shrinkage of the EMC was around 1 % [40]. The 1 % 

volumetric shrinkage can be accounted by increasing the reference temperature as show 

in Equation 4.1. 
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4.1 

where   is the CTE of the EMC at Tref  = 175 ºC  From Equation 4.1 the new reference 

temperature obtained for the EMC is 185.42 ºC, which is used in this analysis. 

Figure 4.1shows the bi-material strip that consists of a Sumitomo Sumikon® EME-

G630AY mold compound on top and a CDA194 copper alloy as the leadframe on the 

bottom.  The material properties for the EMC and the copper are shown in Table 4.1and 

Table 4.2 respectively. 

Table 4.1 - Material properties of EMC compound 

Property Value 

E (GPa) 25 at 25 °C; 0.7 at 260 °C 

ν 0.30 

α (ppm/°C) 9 at 25°C; 32 at 260 °C 

Tref (°C) 185.42 

 

Table 4.2- Material Properties of Cu leadframe 

Property Value 

E (GPa) 121 

ν 0.33 

α (ppm/°C) 17.6 
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Tref (°C) 175 

 

 

Figure 4.1 – EMC/Cu leadframe bi-material sample 

4.2 DCB Experimental Testing  

In order to conduct DCB testing, a pre-crack is first created in the EMC/Copper 

sample. A schematic of the test set up is shown in Figure 4.2. 

 

Figure 4.2 – Schematic of DCB set up of EMC/Copper sample  



 28 

The pre-crack is created by clamping down the end of the specimen and pushing 

down on the copper from the EMC at the other end [3]. After the pre-crack is created, 

aluminum loading fixtures are affixed on the specimen using epoxy resin. The sample is 

then placed in a Delamination Testing System
TM

 (DTS) to determine the load vs. 

displacement, the critical load for crack propagation, and the unloading curve. For this 

test, a displacement-controlled loading is applied at 5 µm/sec. Figure 4.3 shows pictures 

of the DCB test in progress on the DTS machine and the crack growth of the 

EMC/Copper sample. 
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Figure 4.3 –Pictures of the DCB test in progress  

Figure 4.4 shows a typical load vs. displacement curve where the sample is loaded 

until delamination propagates, then unloaded and re-loaded to further propagate the 

crack, and these loading and unloading steps are repeated several times.  
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Figure 4.4 - Typical load vs. displacement curve for a DCB experiment 

 As shown in Figure 4.4, at first the load increases linearly until some critical 

point, Pcritical..Once the delamination starts to propagate, the load drops. The sample is 

then unloaded and a linear unloading path is observed. As can be seen in the graph for the 

next loading path, the compliance of the sample, C has increased from before. This 

increase in the compliance C is due to the increase in the crack length of the sample. 

4.3 DCB Numerical Simulations  

 To obtain the interfacial crack length from a DCB experiment, a Finite-Element 

Model (FEM) of the EMC/Copper is generated. The model is constructed in ANSYS
TM

 

Version 14.0. For the purposes of this geometry a 2-D plain strain assumption is used to 
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construct the model. Figure 4.5 shows a schematic of the mesh and loading conditions 

applied to the EMC/Copper geometry. A force is applied on the top left corner node. The 

force applied is divided by the width of the sample, b since this model assumes plain 

strain. A denser mesh is used around the crack region compared to the rest of the 

geometry. The bottom left pin in the model is fixed in the x and y directions. EMC and 

copper element nodes are not merged in the regions to the left of the crack tip to mimic 

the crack in the specimen. The solid green line represents the region where the EMC and 

copper elements are not merged and is equal to the crack length of the sample. Regions 

ahead of the crack tip are merged together. The material properties used for the EMC and 

Copper are obtained from Table 4.1 and Table 4.2.  

 

Figure 4.5 – 2-D plane strain model of DCB test  

4.3.1 Compliance vs. Crack Length Relationship  

 The 2-D plane strain DCB model is used to generate a compliance vs. crack 

length relationship for the EMC/Copper specimen. To construct this compliance vs. crack 
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length relationship, it is assumed that the EMC/Copper specimen behaves like a classic 

beam and so the materials under consideration are elastic and isotropic. 

 To generate the compliance vs. crack length relationship, FEM simulations are 

performed at crack lengths ranging from 8 to 27 mm. These crack lengths are 

representative crack lengths in most experiments.  At each crack length, the increase in 

vertical displacement of the top left node in the 2-D plan strain DCB model is computed 

as the load is increased from 0 to 10 N. Using the load vs. displacement curve, the 

compliance, the inverse of the slope of load vs. displacement data, can be computed for 

that crack length. Thus, by running such simulations over a wide range of crack lengths 

and keeping the crack length constant for a given simulation, compliance values for 

various crack lengths can be obtained. Figure 4.6 shows the compliance vs. crack length 

relationship generated through such simulations.  The data from the simulations can be 

fitted with a polynomial curve, and as seen, a cubic polynomial fits the compliance vs. 

crack length curve. A cubic polynomial fit is in agreement with the order of deflection for 

classic Euler beams. The additional terms ahead of the cubic term in the fitted equation 

take into consideration non ideal aspects of the geometry, such as large deflections and 

use of different materials.   
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Figure 4.6 - Compliance vs. crack length relationship for DCB test 

 Using the compliance obtained from load/unload curves after conducting DCB 

experiments, the fitted cubic equation from Figure 4.6 can be used to determine the crack 

length of the EMC/Copper sample for a given compliance value.  

4.3.2 Calculating Gc for the DCB experiment   

 Using the relationship in Figure 4.6, the crack length is computed from the 

experimental compliance, C obtained through the DCB experiment. The experimental 

compliance may be obtained as the inverse of the slope of the unloading curve [3] and 

thus, the crack length can be obtained. When the sample is then loaded, Pcritical value can 

be obtained for that crack length. The 2-D plane strain model is re-run with the crack 

length obtained, and a force, Pcritical /b is applied to the upper loading pin. For this loading 
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condition, the SERR obtained will be equal to Gc. Here, VCCT [23] is used to determine 

Gc. 

4.3.3 As-Received EMC/Copper DCB Test Results \ 

 DCB experiments are conducted for 10 as-received, unconditioned EMC/Copper 

samples. Table 4.3 shows the average Gc values obtained for each sample. The average 

Gc value obtained for as-received EMC/Copper samples from DCB testing is 45.1 J/m
2
. 

Table 4.3 - Gc values for as-received EMC/copper DCB samples  

As Received 

EMC/Copper 

Specimen  

Average Gc (J/m
2
) 

(VCCT)  

Sample 1  47.8 

Sample 2 44.5 

Sample 3 47.3 

Sample 4  41.4 

Sample 5  45.6 

Sample 6  43.3 

Sample 7  46.2 

Sample 8  42.7 

Sample 9  46.9 

Sample 10  43.7 

Average  45.1±3.73 

4.4 DCB Mode Mixity Calculation  
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 The mode mixity, ψ
 

of the DCB geometry is calculated using the crack 

displacement method as described in Section 2.1.4. For this specific geometry, an as-

received sample with a crack length of 10.8 mm and Pcritical value of 2.29 N is used to 

obtain the mode mixity, ψ
 
of the EMC/Copper specimen. Nodal displacements, δy and δx 

are calculated for varying values of r ahead of the crack tip for this given geometry. G* in 

this case is equal to Gc of the EMC/Copper DCB geometry, which is obtained through 

VCCT. Both sides of Equation 2.8 are plotted together on Figure 4.7 for two different 

values of r. 

 

Figure 4.7 - Finding r to calculate ψ for an as-received DCB EMC/copper sample 

 A linear interpolation equation can be formulated between the two r values and 

used to calculate the intersection point of the two graphs as shown in Figure 4.7. The 

intersection point occurs at r = 0.0194 mm. Putting this value of r in Equation 2.7 gives a 

mode mixity, ψ of 29.2° for the DCB geometry. Mode mixity is also calculated for longer 
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crack length DCB experiments. Figure 4.8 shows the graph used to find r for a DCB 

EMC/Copper specimen with a crack length of 19.4 mm and a Pcritical value of 1.21 N.  

 

Figure 4.8 - Finding r to calculate ψ  for an as received DCB EMC/copper sample 

with a longer crack length 

 The intersection of the two graphs in Figure 4.9 gives an r value of 0.00759 mm. 

Inputting this value in Equation 2.7 gives a mode mixity, ψ of 29.6° for the as received 

DCB specimen. Both the mode mixities obtained at different crack lengths yield similar 

values, confirming that mode mixity doesn’t change with crack length. The average mode 

mixity obtained for the as-received EMC/Copper DCB geometry is 29.4°.  

4.5 DCB Analytical Solution  

 There are not many analytical SERR solutions available for a DCB geometry with 

different materials. Xiao et al. presents an analytical solution to obtain Gc for an 
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asymmetric DCB geometry with different materials, but this formulation is only valid for 

cracks with lengths much longer than the beam thickness [41]. Sundararaman and 

Davidson present an analytical solution for a DCB geometry with different materials, 

however this solution is complex and harder to implement [42]. Soboyejo et. al presents a 

simpler analytical solution for a DCB geometry to calculate Gc. Soboyejo et. al’s 

calculations assume that the thickness of the two materials is the same, so the mode 

mixity of the geometry is much closer to mode I than the set up used in this study [43]. 

The following equations are used to calculate Gc analytically for the DCB geometry. 
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4.4 

 Inputting the crack length and the Pcritical values for each of the 10 as-received 

samples and taking the average gives a Gc of 46.4 J/m
2
. As can be seen, the Gc value 

obtained through FEM is in good agreement with the analytical formulation used for the 

EMC/Copper DCB geometry. 

4.6 Discussion of As-Received EMC/Copper DCB Simulation Results  
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Figure 4.9 shows the peel stress, σY generated in a DCB simulation for an as-received 

EMC/Copper sample with a crack length of 9.30 mm and a Pcritical value of 2.59 N.   

 

Figure 4.9 – Peel stress (σY) for an as-received EMC/copper sample with a crack 

length = 9.30mm and Pcritical = 2.59N  

 As can be seen from shape of the elastic-plastic stress zone around the crack tip 

there is high asymmetry in the EMC/Copper geometry. This is further confirmation that 

the mode mixity of the DCB EMC/Copper geometry is not purely Mode I loading.  

 Figure 4.10 shows the von Mises stress contours generated for an as-received DCB 

EMC/Copper geometry with the same crack length and  Pcritical values as mentioned 

above.  
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Figure 4.10 –von Mises stress (σeqv) generated for an as-received DCB EMC/copper 

sample  

The maximum stress in the EMC/Copper sample occurs at the bottom edge of the 

Cu strip and is around 501 MPa. This value is greater than the yield stress of the copper 

leadframe which is around 334 MPa. However, since the stresses around the interface are 

below the copper leadframe yield stress value, it is safe to assume that there is very little 

plasticity in the DCB geometry and using a linear elastic model is sufficient for this 

study. 

4.7 FPB Experimental Testing   

 FPB is a mixed-mode fracture mechanics test that is commonly used to test the 

interfacial strength of bi-material specimen found in microelectronic packages. FPB 

delamination is independent of the crack length of the geometry [24, 38]. The moment 

created between the inner loading pins during delamination results in a constant load at 

which steady state delamination occurs. The FPB schematic for the EMC/Copper sample 

is shown in Figure 4.11. 
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Figure 4.11 - Schematic of FPB test set up for EMC/copper sample 

 A notch is created at the center of EMC such at 100 µm is leftover after the cut. 

This is done using a DISCO™ automated dicing machine. The EMC/Copper sample is 

placed with the copper leadframe facing up, on two pins 36 mm apart in length. A 

displacement controlled loading is applied by two other pins from the top that are 20mm 

apart. The load is applied until at some Pcritical load the crack will propagate rapidly from 

the EMC notch to the copper leadframe. From this point a constant moment arm is 

maintained between the inner loading pins and steady state delamination occurs at a 

Pcritical value. Figure 4.12 shows a picture of the FPB experiment in progress. The tests 

are performed on a Test Resources™ tensile tester. A deflectometer from Epsilon 
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Technologies™ is used to keep accurate track of the displacement of the sample. The 

load applied on the sample is measured by the Test Resources™  machine. 

 

Figure 4.12 – FPB experiment in progress  

 Figure 4.13 shows a typical load vs. displacement graph obtained after doing FPB 

testing on an as-received EMC/Copper sample. The load increases with respect to 

displacement until at some critical point the crack propagates through the EMC notch. At 
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this point, the crack starts propagating on one side of the EMC/Copper interface at a 

steady Pcritical value. After the crack on that side of the EMC notch has propagated some 

distance, the crack stops increasing in size and delamination is introduced on the 

EMC/Copper interface on the other side of the EMC notch. Ideally both EMC/Copper 

interfaces on either side of the EMC notch should propagate simultaneously. Once the 

crack on other side of the EMC notch is initiated, the crack propagates at a steady load of 

7.65 N. 

 

Figure 4.13 – Typical load vs. displacement graph obtained after conducting FPB 

testing on an as-received EMC/copper sample  

 FPB experiments are conducted on two as-received EMC/Copper sample. The 

load vs. displacement graphs obtained for the two samples tested are shown in Figure 

4.14.  
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Figure 4.14 – Load vs. displacement graphs for two as-received FPB EMC/copper 

samples  

 The steady state load values at which delamination occurs for the as-received FPB 

EMC/Copper samples that were tested was Pcritical = 7.65 N and Pcritical = 7.42 N.  

4.8 FPB Numerical Solution 

 Using the Pcritical values obtained from doing FPB testing on the as received 

EMC/Copper sample. FEM can be used to obtain the Gc value for the FPB geometry. 

VCCT is used to obtain the interfacial strength of the EMC/copper sample for FPB 

loading conditions. Figure 4.15 shows a schematic of the FPB geometry modeled using 

ANSYS
TM

 version 14.0. Similar to the DCB geometry, a 2-D plane strain assumption is 

used to model the FPB geometry. In addition, a half-symmetry model is used for 

modeling the FPB set up to reduce computational time. The material properties used for 

the EMC and Copper are obtained from Table 4.1 and Table 4.2 . Since the load is 

equally distributed amongst the two pins, the Pcritical value applied on the EMC/Copper 
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sample is divided by 2. Pcritical is also divided by the width, b since the FEM model being 

used assumes 2-D plane strain. 

 

Figure 4.15 - 2D plane strain FPB model for EMC/copper sample 

4.8.1 As-Received FPB EMC/Copper Sample Test Results  

 A total of two FPB tests were conducted on as received EMC/Copper specimen. 

Table 4.4 shows the SERR computed for the two Pcritical values obtained from FPB 

experiments.  

Table 4.4 - Gc results for FPB as received EMC/copper samples 

As Received 

EMC/Copper 

Specimen 

 

Pcriticial (N) 

Average Gc 

(J/m
2
) 

(VCCT) 

Sample 1 7.65 65.5 

Sample 2 7.42 69.6 

Average 7.54 67.5±2.90 

The average Gc obtained through VCCT for a FPB EMC/Copper geometry is 67.5 J/m
2
. 

4.9 FPB Mode Mixity Calculation   
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 The mode mixity of the FPB geometry is also calculated using the crack 

displacement method as described in Section 2.1.4. For this specific geometry, an as 

received sample with Pcritical value of 7.65 N is used to obtain the mode mixity, ψ
 
of the 

EMC/Copper sample. Once again, nodal displacements, δy and δx are calculated for 

varying values of r ahead of the crack tip for this given geometry. G* in this case is equal 

to Gc of the FPB setup which equals 65.5 J/m
2
. Both sides of Equation 2.8 are plotted 

together on Figure 4.16 for two different values of r. 

 

Figure 4.16 - Finding r to calculate ψ for an as received FPB EMC/copper sample 

 The intersection of the two graphs in Figure 4.16 gives an r value of 0.0237 mm. 

Inputting this value in Equation 2.7 gives a mode mixity, ψ of 35.7° for the as received 

FPB geometry. 
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4.10 FPB Analytical Solution   

 Charalambides et al. [44] obtained an analytical solution to calculate the SERR of 

a FPB geometry for a bi-material specimen. This analytical equation will be used to 

calculate Gc of a FPB geometry for the EMC/Copper sample. The equations used to 

obtain Gc for the FPB set up are shown as follows. 
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 IC and ICu are the area moment of interia quantities for the entire beam and the 

copper leadframe respectively. λ is a non dimensionless term that describes a stiffness 

ratio between the copper leadframe and the EMC. The two Pcritical values obtained from 

the FPB experiments are inputted in the above analytical formula. The average Gc value 

calculated analytically for the FPB EMC/Copper geometry was 64.9 J/m
2
. This value is 

in close agreement with the SERR value for the FPB geometry obtained using FEM.  
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4.11 Discussion of As-Received EMC/Copper FPB Simulation Results  

 Figure 4.17 shows the von Mises stress contours for an as-received EMC/Copper 

FPB geometry with a Pcritical value of 7.65 N. 

 

Figure 4.17 – von Mises stresses (σeqv) generated for an as-received FPB 

EMC/copper sample 

 Similar to the DCB EMC/Copper geometry, the maximum stress generated in the 

FPB sample occurs at the bottom edge of the copper leadframe strip and is around 576 

MPa. This value is higher than the yield stress of the copper leadframe which is 334 MPa. 

However, the von Mises stresses at the interface are less than the copper leadframe yield 

stress value suggesting that like the DCB geometry, the plasticity in the model isn’t 

significant and a linear elastic assumption is sufficient for the purposes of this study.  

4.12 SERR vs. Mode Mixity relationshisp  
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 The Gc and mode mixity, ψ that was obtained from DCB and FPB experiments 

can be fitted with the Hutchinson and Suo relationship as shown in Equation 2.10 [27]. 

 In order to get reasonable fit, a sensible value of λ will be invoked such that it is 

between 0 and 1 since it relates to the ductility or brittleness of the surface under 

consideration. λ must be less than 1 because otherwise a nearly infinite Gc value at 90° 

will be obtained, which is not a reasonable estimation. A λ value of 0.90 is chosen which 

is mostly a brittle material while also minimizing the error between the predicted and 

experimenal Gc values obtained from DCB and FPB experiments. The Gc vs. mode 

mixity, ψ  relationship obtained is shown as follows, 

        {      (    )} 4.9 

 The Gc vs. mode mixity, ψ curve generated from Equation 4.9 is shown in Figure 

4.18. The red points indicate the Gc and mode mixity, ψ values obtained from 

experimental DCB and FPB tests. 
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Figure 4.18 - Gc vs. ψ relationship obtained for EMC/copper sample  

 As can be seen from Figure 4.18, there is some error due to the spread of the 

experimental Gc values obtained from DCB testing. The Gc vs. mode mixity, ψ curve 

obtained overpredicts the Gc  value for a DCB geometry and underpredicts the Gc  value  
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for a FPB geometry as compared to the experimental DCB and FPB SERR values. 

Additional fracture mechanics tests need to be conducted at higher mode mixities ψ  to 

obtain a better fit for the Gc vs. mode mixity, ψ° relationship.  

 The Gc vs. mode mixity, ψ relationship can be used to obtain Gc values for pure 

Mode I and Mode II conditions for the EMC/Copper specimen. The GIC (Mode I) value 

obtained from Equation 4.9 is 42.6 J/m
2
 and GIIC (Mode II) value obtained is 1739 J/m

2
. 

These values can be used to obtain cohesive zone parameters for as-received, thermally 

aged and moisture exposed EMC/Copper specimen as demonstrated in the next chapters. 
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 COHESIVE ZONE PARAMETERS FOR AS-CHAPTER 5.

RECEIVED EMC/COPPER SAMPLE 

 Cohesive Zone Parameters for the EMC/Copper sample are obtained by 

implementing cohesive zone elements in DCB and FPB geometries using FEM software. 

ANSYS
TM

 version 14.0 is used to model the EMC/Copper sample. As mentioned in 

Section 2.3 the inverse method will be implemented in this study to obtain cohesive zone 

parameters. The inverse method involves fitting of certain CZ parameters in FEM 

software to obtain a simulated load vs. displacement for a DCB and FPB geometry. This 

result will then be compared and matched with experimental load vs. displacement data 

obtained by conducting interfacial fracture mechanics experiments. A bi-linear traction 

separation law will be used to characterize the EMC/Copper interface. The bilinear laws 

for CZM consist of Mode I and Mode II parameters. 

5.1 Cohesive Zone Elements  

 Cohesive zone elements are placed in between the bonded region of the EMC and 

Copper Leadframe. 2-D plane-strain 6 node quadratic interface elements are used to 

model the cohesive zone layer between the EMC and Copper. A schematic representing 

the CZ elements between the EMC and Copper is shown in Figure 5.1. 
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Figure 5.1 - Schematic of the CZ elements between the EMC and copper leadframe 

sample. 

 Prior to loading, the CZ elements have negligible thickness. Once the 

EMC/Copper sample is loaded, damage is incurred on the CZ elements. 

5.2 DCB Cohesive Zone Model  

 Figure 5.2 shows a schematic of the EMC/Copper DCB geometry with cohesive 

zone elements modeled using ANSYS
TM

 version 14.0. A 2D plane-strain assumption is 

implemented for the DCB model. In this particular DCB model, a crack length of 9.30 

mm is used as shown in Figure 5.2.  
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Figure 5.2 - Schematic of the EMC/copper DCB geometry with CZ elements 

 CZ elements are represented by the blue line in Figure 5.2. This region represents 

the segment where the EMC and Copper are bonded. The green line represents the crack 

length of the EMC/Copper ahead of the crack tip. A displacement applied to the DCB 

model to obtain a simulated load vs. displacement graph for a given set of CZ parameters. 

5.3 FPB Cohesive Zone Model 

 

Figure 5.3 - Schematic of the EMC/copper FPB geometry with CZ elements 
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 A 2D plane strain model is implemented for the FPB geometry. Half-symmetry is 

applied to the model to reduce computational time. CZ elements are represented by the 

blue line in Figure 5.3 and are placed in the all along the EMC/Copper interface. A 

displacement is applied to the FPB model and the force obtained from the model at the 

location where the displacement is applied will be equal to half the force from the 

experiment scaled by the width of the sample. A simulated load vs. displacement graph is 

obtained for a given set of CZ Parameters applied to the FPB geometry. 

5.4 CZ Simulation Results for As Received EMC/Copper Sample 

 A bilinear traction separation law is used to obtain the simulated load vs. 

displacement graphs for the EMC/Copper DCB and FPB geometries. The traction 

separation laws are adjusted until the simulated and experimental load vs. displacement 

curves match. A few important points should be considered while obtaining the CZ 

parameters.  

1. According to Equation 2.12 the area under the bi-linear traction triangle equals Gc. 

So increasing the maximum traction σmax for Mode I, will result in a decrease in 

the maximum interfacial separation, δc in order to keep Gc for Mode I constant. 

The same principle applies for Mode II parameters.  

2. As mentioned in Section 2.2.3 the mesh used around the crack tip region in the 

FEM software has an impact on the model. Alfano and Crisfield [35] mention that 

increasing the σmax to higher values might require the mesh around the crack tip 

region to be refined as well. Not doing so will lead to discretization errors in the 

simulated load vs. displacement data and oscillatory behavior during delamination 

as shown in Figure 2.6. For σmax values which are too high for a given mesh 

density and result in discretization errors and oscillatory behavior, sufficiently 
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increasing the mesh density around the crack tip will reduce the discretization 

errors and smooth out the curve. In this study, as different values of σmax are fitted, 

the mesh density is altered as required for higher maximum traction values to 

avoid these discretization errors. 

3. Increasing the maximum traction σmax too much for a given mesh density for 

either Mode I or Mode II can result in incorrect Pcritical values. This is because as 

the maximum interfacial traction, σmax is increased, the maximum interfacial 

separation, δc is decreased to ensure Gc is kept constant as mentioned in the first 

point. The interplay between the length scale of the mesh density and the 

maximum separation, and that of the maximum traction and the order of the stress 

field which is impacted by the choice of cohesive parameters can result in either 

an over or under prediction of Pcritical depending on the relative influences of these 

factors. For a given Gc as δc is reduced, δ
* 
also decreases if α is kept constant.  

4. The ratio α = δ
* 

/ δc   for either Mode I or Mode II can have a small effect on the 

initial slope of the load vs. displacement graph. α can also influence the extent of 

(if any) curvature of the load vs. displacement line depending on the choices of 

the other CZ parameters.  Both of these dependencies however are not 

omnipresent for all CZ parameter selections. 

 Using the above guidelines the CZ parameters are determined for Mode I and 

Mode II.   

5.4.1 DCB CZ simulation results 

 The Gc vs. mode mixity, ψ relationship overpredicts the Gc value for the DCB 

geometry. The DCB Gc value obtained from Equation 4.9 is 53.1 J/m
2
 as compared to the 

average experimental DCB value obtained which is 45.1 J/m
2
. This means that the 
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simulated load vs. displacement graph obtained for an as-received DCB EMC/Copper 

sample will have a higher Pcritical value and delamination path compared to the 

experimental DCB value. Figure 5.5 shows the simulated load vs. displacement graph for 

an as received DCB EMC/Copper sample. The simulation is run for two different crack 

lengths of 9.30 mm and 13.6 mm. The average Gc  value obtained for this sample after 

running a DCB VCCT simulation was 47.8 J/m
2
. This represents a 10% difference 

between the experimental Gc value and the Gc value obtained from Equation 4.9. Figure 

5.4 shows how the simulated load vs. displacement graph compares with the 

experimental load vs. displacement graph for this as-received EMC/Copper DCB sample. 

 

Figure 5.4- DCB CZ simulation compared with experimental DCB data for as- 

Received EMC/copper sample 
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 As can be seen in Figure 5.4 the initial slope for both simulated load vs. 

displacement graphs match the slope of the experimental load vs. displacement graph. In 

addition, the simulated load vs. displacement graphs slightly overpredicts the Pcritical value 

for delamination at both crack lengths due to the 10% difference between the 

experimental Gc value and the Gc value obtained from Equation 4.9 . The simulated load 

vs. displacement graphs shows delamination or debonding in the EMC/Copper specimen 

as the CZ elements at the interface start acquiring damage past Pcritical.. This process is 

repeated for another as-received DCB sample as shown in Figure 5.5. 

 

Figure 5.5- DCB CZ simulation compared with experimental DCB data for as- 

received EMC/copper sample. 
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 The average Gc value obtained for this sample after running a DCB VCCT 

simulation was 47.30 J/m
2
 representing a 10.9 % difference between experimental Gc 

value and the Gc value obtained from Equation 4.9. This difference is once again noticed 

in Figure 5.5 as the simulated load vs. displacement graphs slightly overpredicts the 

Pcritical value for delamination at both crack lengths. 

5.5 FPB CZ simulation results  

 The Gc value obtained from Equation 4.9  underpredicts the Gc value compared to 

the Gc value obtained from the experimental as-received FPB data as shown in Figure 

4.18. The FPB Gc value obtained from Equation 4.9 is 59.4 J/m
2
 as compared to the 

average experimental DCB value obtained which is 67.4 J/m
2
. This represents a 13.4% 

difference between the experimental FPB Gc value and the Gc value obtained from 

Equation 4.9. This means that the CZ simulated load vs. displacement graph obtained for 

an as-received FPB EMC/Copper specimen will have a lower Pcritical value and 

delamination path compared to the experimental FPB data.  

Figure 5.6 shows the simulated load vs. displacement graph for the EMC/Copper 

FPB geometry. These graphs are compared with the two as received FPB experimental 

load vs. displacements graphs. 
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Figure 5.6- FPB CZ simulation compared with experimental FPB data for as-

Received EMC/copper sample. 

The initial slope of the FPB simulated load vs. displacement graph is in good agreement 

with the slope of the FPB experimental load vs. displacement graphs. The FPB geometry 

doesn’t simulate crack propagation through the EMC notch so it is not shown in the 

simulated FPB graph.  In addition, the simulated FPB graph underpredicts the Pcritical 

value at which steady state delamination of the FPB geometry occurs  due to the 13.4% 

difference in the  experimental . Gc value and the Gc value obtained from Equation 4.9. 

The Pcritical value is 7.33 N for the simulated FPB model. Once the Pcritical value is reached 

CZ elements begin incurring damage and this leads to steady state crack propagation at 

the EMC/Copper interface.  

5.6 As-Received EMC/Copper CZ Parameters  

 The CZ parameters obtained for the as-received EMC/Copper sample are show in 

Table 5.1. The Mode I and Mode II bilinear traction separation triangles obtained are 

shown in Figure 5.7 and Figure 5.8 respectively. These CZ parameters can be used to 
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model crack initiation and propagation in an As Received EMC/Copper specimen for 

DCB and FPB geometries.  

Table 5.1 –CZ parameters for as-received EMC/copper sample  

As-Received 

EMC/Copper Bi-linear 

Traction Separation 

Laws  

  
Mode 

I 

Mode 

II  

σmax  (MPa) 6.41 513 

δc (μm) 5.46 2.79 

δ* (μm) 0.546 0.279 

GC (J/m2) 17.5 715 

 

Figure 5.7 – Mode I bilinear traction separation triangle for as-received 

EMC/copper sample 
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Figure 5.8 - Mode II bilinear traction separation triangle for as-received 

EMC/copper sample  
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 EXPERIMENTAL STUDY OF HUMIDITY-CHAPTER 6.

CONDITIONED SAMPLES 

 The EMC/Copper samples are exposed to different humidity conditions at 

different temperatures and durations. These conditions are based on stress test 

qualifications for packaged integrated circuits used by industry [45] The EMC/Copper 

samples are first prebaked at 125 °C for 24 hours to remove existing moisture content 

from the specimen. The samples then go through a moisture preconditioning step at 30 °C 

and 60 % R.H. for 192 hours. These conditions stimulate the storage conditions of a 

microelectronic package and represent the time allowed for the package to be left open 

before excessive moisture uptake affects the package’s performance.  These two steps are 

performed as a precursor before the humidity conditioning tests are conducted. DCB tests 

are performed after conducting these two steps to investigate how moisture 

preconditioning affects interfacial adhesion.  

 Humidity conditioning tests are conducted on samples at 85% R.H and 110°C for 

264hrs and 528hrs and 85% R.H and 130 °C for 96hrs and 192hrs. The humidity 

conditioning tests are done at NXP semiconductor. DCB tests are then performed at room 

temperature on humidity-conditioned samples and the Gc values are obtained. Modified 

cohesive zone parameters can be obtained using the Gc value obtained for humidity 

conditioned EMC/Copper samples.  

6.1 Experimental DCB results for humidity conditioned samples  

 Table 6.1 shows the average Gc value obtained for 4 EMC/Copper samples after 

doing DCB testing after a prebake and moisture preconditioning step. EMC/Copper 

samples are exposed to 60% R.H and 30 °C for 192hrs. Crack Length for the humidity 
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conditioned EMC/Copper samples are obtained using the compliance vs. crack length 

relationship shown in Section 4.3.1. Pcritical is taken to be the maximum load for each load 

curve. The average Gc value for each humidity conditioned EMC/Copper sample is 

obtained through VCCT. 

Table 6.1 - Gc values for DCB EMC/copper samples exposed to 60 %R.H and  30 °C 

for 192 hours  

Sample 

Number 

Gc (J/m
2
) (VCCT) 

after humidity 

conditioning at 60% 

R.H.  and 30°C for 

192hrs. 

1 43.9 

2 44.0 

3 40.7 

4 45.8 

Average 43.6±2.00 

 The average Gc value of the EMC/Copper specimen after humidity 

preconditioning is 43.6 J/m
2
. There is no substantial change in the interfacial adhesion of 

the EMC/Copper specimen after exposing the samples to 60 % R.H and 30 °C for 192 

hours. This clearly suggests that humidity conditioning as low as 60 % R.H. shows no 

significant reduction in Gc. This shows that when EMC/Copper samples are exposed to 

60% RH at 30 °C for 192 hours, there is no significant reduction in Gc. 

6.1.1 DCB test results for EMC/Copper samples exposed to 85% R.H  and 110 °C for 

264hrs and 528 hrs 

 Table 6.2 shows the average Gc value obtained from DCB testing after exposing 

the EMC/Copper sample to 85% R.H and 110 °C for 264hrs and 528 hrs. A total of two 
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samples are tested for each condition. Crack Length for the humidity conditioned 

EMC/Copper samples are obtained using the compliance vs. crack length relationship 

shown in section 4.3.1. Pcritical is taken to be the maximum load for each load curve. The 

average Gc value for each humidity conditioned EMC/Copper sample for this condition is 

obtained through VCCT using FEM. 

Table 6.2 - Gc values for DCB EMC/copper samples exposed to 85% R.H  and 110 

°C for 264hrs and 528 hrs 

Sample 

Number 

Gc (J/m
2
) 

(VCCT)  after 

humidity 

conditioning at 

85% R.H. & 

110°C for 

264hrs 

Gc (J/m
2
) 

(VCCT)  after 

humidity 

conditioning at 

85% R.H.  & 

110°C for 

528hrs 

1 26.0 24.3 

2 24.2 21.6 

Average 25.1±1.09 23.0±1.66 

 The average Gc value obtained after humidity conditioning at 85% R.H.and  

110°C  for 264 hrs is 25.1 J/m
2
.This shows that on increasing the moisture exposure level 

to 85% R.H. and ramping the temperature to 110°C there is a 44.3% reduction in the 

interfacial adhesion of the EMC/Copper sample from its as-received DCB value of 45.1 

J/m
2
. Increasing the exposure time to 528hrs for this humidity condition results in an 

average Gc value of 23.0 J/m
2
 for the DCB EMC/Copper sample. This suggests that 

increasing the duration of exposure at this condition had a small effect on the already 

reduced interfacial strength of the EMC/Copper sample and resulted in 49.0 % drop in 

the interfacial adhesion of the EMC/Copper sample from its as-received DCB value of 

45.1 J/m
2
. 
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6.1.2 DCB test results for EMC/Copper samples exposed to 130 °C and 85% R.H for 

264hrs and 528 hrs 

 Table 6.3 shows the Gc value obtained from DCB testing after exposing the 

EMC/Copper sample to 85% R.H and 130 °C for 96hrs and 192hrs. A total of two 

samples are tested for each condition. Crack Length for the humidity conditioned 

EMC/Copper samples are obtained using the compliance vs. crack length relationship 

shown in Section 4.3.1. Pcritical is taken to be the maximum load for each load curve. The 

average Gc value for each humidity conditioned EMC/Copper sample for this condition is 

obtained through VCCT using FEM.  

Table 6.3- Gc values for DCB EMC/copper samples exposed to 85% R.H  and 110 °C 

for 96hrs and 192hrs 

Sample 

Number 

Gc (J/m
2
) 

(VCCT)  after 

humidity 

conditioning at 

85% R.H. and 

130°C for 

96hrs 

Gc (J/m
2
) 

(VCCT)  after 

humidity 

conditioning at  

85% R.H. and 

130°C for 192hrs 

1 17.6 18.1 

2 17.6 18.9 

Average 17.6±1.14 18.5±1.09 

 The average Gc value obtained after humidity conditioning at 85% R.H and 130°C 

for 96hrs is 17.6 J/m
2
. These results suggest that increasing the temperature exposure to 

130°C from 110°C further reduces the interfacial strength of the EMC/Copper sample. 

There is a 61.0% reduction in the interfacial adhesion of the EMC/Copper sample from 

its as-received DCB value of 45.1 J/m
2
 when the sample is humidity conditioned at 85% 

R.H and 130°C for 96hrs. Increasing the duration of exposure to 192hrs at this humidity 
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condition results in a Gc value of 18.5 J/m
2
 for the EMC/Copper sample. This suggests 

that increasing the exposure time at this humidity condition resulted in almost no change 

in the already reduced interfacial strength of the EMC/Copper sample. There is a 59.0% 

reduction in the interfacial adhesion of the EMC/Copper sample from its as-received 

DCB average experimental value of 45.1 J/m
2
 when the sample is humidity conditioned 

at 85% R.H and 130°C for 192hrs. 

6.2 Discussion of DCB results for humidity conditioned EMC/copper samples 

 Figure 6.1 shows a plot of Gc vs. time for all the different humidity conditioned 

samples. As can be seen from the graph, moisture exposure at 85 % R.H. results in a 

reduction in the interfacial strength of the EMC/Copper sample. This is in agreement with 

the results from Shirangi et al. and Ferguson et al. who demonstrate that exposure at 85°C 

and 85 % R.H. for various exposure times results in a clear reduction in the interfacial 

adhesion of the EMC/Copper sample [9, 36]. The graph also suggests that temperature 

with humidity conditioning has an impact on the interfacial adhesion. Increasing the 

temperature exposure from 110°C to 130°C further reduced the interfacial strength of the 

EMC/Copper sample by approximately 8%  
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Figure 6.1- Plot of DCB Gc values for all humidity conditioned EMC/copper samples 

with as-received EMC/Copper Gc value 

 Increasing the exposure time at a given humidity condition doesn’t seem to have 

much effect on the interfacial adhesion. This is in good agreement with moisture studies 

done by Shirangi et al. on EMC/Copper samples where it is shown that the biggest drop 

in interfacial adhesion at 85% R.H and 85°C occurs after 168hrs (1 week). The interfacial 

strength show little change after continued exposure at 85% R.H and 85°C for longer 

durations [36].  

 As mentioned in Section 2.3, there are several reasons for the drop in Gc seen at 

the humidity condition levels investigated on the EMC/Copper sample. 

1. Moisture exposure might be resulting in chemical degradation of the adhesive 

bonds at the EMC/copper interface [9]. 
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2. Humidity conditioning for longer durations, seems to be resulting in a permanent 

damage in the adhesion bonds of the EMC/Copper that cannot be reversed [36]. 

3. The EMC used might have a high moisture diffusion rate and most of the 

absorption could have occurred within the initial 96/264hrs of humidity 

conditioning. This would explain why subsequent humidity conditioning at longer 

durations of 192/528hrs did not lead to any further change in Gc. It is important to 

keep track of the mass of the EMC during humidity conditioning. Shirangi et al. 

[36] investigated the change in mass at regular intervals during moisture 

conditioning and observed that after a set amount of time and for given RH and 

temperature conditions, the mass reaches a saturation value. Most of the moisture 

absorption of the EMC could therefore have occurred during humidity exposure at 

85% R.H. and 110°C for 264hrs and 85% R.H. and 130°C for 96hrs.  Preliminary 

humidity conditioning tests on EMC/Copper samples showed that after removing 

the EMC/Copper samples from the humidity chamber some of the moisture mass 

was retained. The mass of the EMC measured was greater than the original mass 

of the EMC prior to any moisture conditioning. This suggests that some moisture 

absorption was retained and therefore could have played a role in affecting the 

interfacial strength of the EMC/Copper interface. As mentioned by Ferguson and 

Qu [9] increased moisture absorption of the EMC could be causing a reduction in 

adhesion strength through the displacement of the EMC, hence reducing Van der 

Waals forces at the interface. 

6.3 CZ Parameters for humidity conditioned EMC/Copper samples 
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 The Gc values obtained for the humidity conditioned samples can be used to 

develop modified CZ parameters that characterize the interfacial behavior of the 

EMC/Copper sample. Since no FPB tests are conducted on the moisture conditioned 

samples the percentage drop in the DCB Gc value after humidity conditioning will be 

applied to the GIC  and GIIC values obtained from the Gc vs. ψ relationship shown in Figure 

4.18. The guidelines mentioned in Section 5.4 are then followed to obtain modified mode 

I CZ parameters for the humidity conditioned EMC/Copper samples.  

6.3.1 CZ Parameters for EMC/Copper samples exposed to 85% R.H and 110°C for 

264hrs   

 The DCB Gc value for an EMC/Copper sample humidity conditioned at 85% R.H. 

and 110° for 264 hrs drops from an as-received Gc value of 45.1 J/m
2 

to 25.1 J/m
2
. This 

represents a 44.3 % drop in Gc. Table 6.4 shows the new GIC and GIIC values obtained 

after invoking this percentage drop on the as received GIC and GIIC values for the 

EMC/Copper sample.  

Table 6.4: Modified GIC and GIIC values for EMC/copper sample conditioned at 85% 

R.H.  and 110°C for 264hrs 

 
As Received 

85%RH  & 

110°C humidity 

conditioning for 

264hrs  

exposure 

GIC (J/m
2
) 42.6 23.7 

GIIC (J/m
2
) 1739 967 

 After obtaining the new GIC and GIIC values for the humidity conditioned 

EMC/Copper sample, the guidelines in Section 5.4 are followed to obtain the modified 

CZ parameters that accurately mimic the behavior of the EMC/Copper samples 
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conditioned at 85% R.H. and 110 °C for 264hrs. Figure 6.2 shows the simulated load vs. 

displacement graph for EMC/Copper sample conditioned at 85% R.H.  and 110 °C for 

264hrs at two different crack lengths. 

 

Figure 6.2 - DCB CZ simulation compared with experimental DCB data for 

EMC/copper sample conditioned at 85 % R.H. and 110 °C for 264hrs 

 As can be seen in Figure 6.2, the simulated load vs. displacement graph for the 

humidity conditioned sample overpredicts the Pcritical value at which delamination occurs. 

Since the experimental as received DCB Gc value underpredicts the Gc value obtained 

from Equation 4.9, this error is carried forward in subsequent calculations for humidity 
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and temperature conditioned samples. The modified CZ parameters obtained for 

EMC/Copper samples conditioned at 85% R.H. and 110 °C for 264hrs are shown inTable 

6.5. Figure 6.3 and Figure 6.4 shows a plot of Mode I and Mode II modified bilinear 

traction separation triangles for this humidity condition respectively. 

Table 6.5 - CZ parameters for EMC/Copper sample conditioned at 85% R.H.  and 

110 °C for 264hrs.  

Bi-linear Traction Separation Laws 

85% R.H  and 110 °C for 264hrs 

  Mode I Mode II  

σmax  (MPa) 7.46 596  

δc (μm) 6.35  3.24 

δ* (μm) 0.635 0.324 

GC (J/m
2
) 23.7 967 

 

Figure 6.3 - Mode I CZ bilinear traction separation triangles for EMC/Copper 

Specimen conditioned at  85% R.H. and 110 °C for 264hrs. 
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Figure 6.4 - Mode II CZ bilinear traction separation triangles for EMC/copper 

sample conditioned at 85% R.H. and 110 °C for 264hrs.  

6.3.2 CZ Parameters for EMC/Copper samples exposed to 85% R.H and 110°C for 

528hrs   

The DCB Gc value for an EMC/Copper sample exposed to 85% R.H. and 110°C 

for 528hrs drops from an as-received Gc value of 45.1 J/m
2 

to 22.7 J/m
2
. This represents a 

49.6 % drop in Gc. Table 6.6 shows the new GIC and GIIC values obtained after invoking 

this percentage drop on the as received GIC  and GIIC values for the EMC/Copper sample. 

Table 6.6- CZ Parameters for EMC/copper sample conditioned at 85% R.H.  and 

110 °C for 528hrs. 

 
As Received 

85%RH  and 

110°C  for 

528hrs  

exposure 

GIC (J/m
2
) 42.6 21.5 

GIIC (J/m
2
) 1739 876 
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 After obtaining the new GIC and GIIC values for the humidity conditioned 

EMC/Copper sample, the guidelines in Section 5.5 are followed to obtain the modified 

CZ parameters that accurately mimic the behavior of the EMC/Copper samples 

conditioned at 85% R.H and 110 °C. for 528hrs. Figure 6.4 shows the simulated load vs. 

displacement graph for EMC/Copper sample conditioned at 85% R.H and 110 °C for 

528hrs at two different crack lengths. 

 

Figure 6.5 - DCB CZ simulation compared with experimental DCB data for 

EMC/copper sample conditioned at 85% R.H. and 110 °C for 528hrs. 
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shown in Table 6.7. Figure 6.6 and Figure 6.7 shows a plot of Mode I and Mode II 

modified bilinear traction separation triangles for this humidity condition respectively. 

Table 6.7 - CZ parameters for EMC/copper sample conditioned at 110 °C and 85% 

R.H. for 528hrs. 

Bilinear Traction Separation Laws 

85% R.H  and 110 °C for 528hrs 

  Mode I Mode II  

σmax  (MPa) 7.10 568 

δc (μm) 6.04 4.35 

δ* (μm) 0.604 0.435 

GC (J/m
2
) 21.5 876 

 

Figure 6.6 - Mode I CZ bilinear traction separation triangles for EMC/copper 

sample conditioned at 85% R.H. and 110 °C for 528hrs.  
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Figure 6.7 - Mode II CZ bilinear traction separation triangles for EMC/copper 

sample conditioned at  85% R.H. and 110 °C for 528hrs. 

6.3.3 CZ Parameters for EMC/Copper samples exposed to 85% R.H. and 130°C for 

96hrs   

 The DCB Gc value for an EMC/Copper sample exposed to 85% R.H and 130°C 

for 96hrs drops from an as-received Gc value of 45.1 J/m
2 

to 17.6 J/m
2
. This represents a 

61.0 % drop in Gc. Table 6.8 shows the new GIC and GIIC values obtained after invoking 

this percentage drop on the as received GIC and GIIC values for the EMC/Copper sample.  

Table 6.8 - Modified GIC and GIIC values for EMC/copper sample conditioned at 

85% R.H. and 130°Cfor 96hrs  

 
As Received 

85%RH  and 

130°C  for 96hrs 

exposure 

GIC (J/m
2
) 42.6 16.6 

GIIC (J/m
2
) 1739 678 
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 After obtaining the new GIC and GIIC values for the humidity conditioned 

EMC/Copper sample, the guidelines in Section 5.5 are followed to obtain the modified 

CZ parameters that accurately mimic the behavior of the EMC/Copper samples 

conditioned at 85% R.H.  and 130 °C for 96hrs. Figure 6.8 shows the simulated load vs. 

displacement graph for the EMC/Copper sample conditioned at 85% R.H and 130 °C and 

for 96hrs at two different crack lengths. 

 

Figure 6.8 - DCB CZ simulation compared with experimental DCB data for 

EMC/copper sample conditioned at 85% R.H. and 130 °C for 96hrs. 
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parameters obtained for EMC/Copper samples conditioned at 85% R.H. and 130 °C for 

192hrs are shown in Table 6.9. Figure 6.9 and Figure 6.10 shows a plot of Mode I and 

Mode II modified bilinear traction separation triangles for this humidity condition 

respectively. 

Table 6.9 - CZ Parameters for EMC/copper sample conditioned at 85% R.H.  and 

130 °C for 96hrs.  

Bilinear Traction Separation Laws 

85% R.H and 130 °C for 96hrs 

  Mode I Mode II  

σmax  (MPa) 6.24 500 

δc (μm) 5.32 2.72 

δ* (μm) 0.532 0.272 

GC (J/m
2
) 16.6 678 

 

Figure 6.9 - Mode I CZ bilinear traction separation triangles for EMC/copper 

sample conditioned at 85% R.H. and 130 °C for 96hrs. 
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Figure 6.10- Mode II CZ bilinear traction separation triangles for EMC/copper 

sample conditioned at  85% R.H. and 130 °C for 96hrs. 

6.3.4 CZ Parameters for EMC/Copper samples exposed to 130°C and 85% R.H. for 

192hrs   

 The DCB Gc value for an EMC/Copper sample exposed to 85% R.H and 130°C 

for 192hrs drops from an as-received Gc value of 45.1 J/m
2 

to 18.5 J/m
2
. This represents a 

58.9 % drop in Gc. Table 6.10 shows the new GIC and GIIC values obtained after invoking 

this percentage drop on the as received GIC  and GIIC values for the EMC/Copper sample. 

Table 6.10 - Modified GIC and GIIC values for EMC/copper sample conditioned at 

85% R.H.  and 130°C for 192hrs 

 
As Received  

85%RH  and 

130°C for 

192hrs  

exposure 

GIC (J/m
2
) 42.6 17.5 

GIIC (J/m
2
) 1739 715 
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 After obtaining the new GIC and GIIC values for the humidity conditioned 

EMC/Copper sample, the guidelines in Section 5.5 are followed to obtain the modified 

CZ parameters that accurately mimic the behavior of the EMC/Copper samples 

conditioned at 85% R.H. and 130 °C for 192hrs. Figure 6.11 shows the simulated load vs. 

displacement graph for an EMC/Copper sample conditioned at 85% R.H.  and 130 °C for 

192hrs at two different crack lengths. 

 

Figure 6.11 - DCB CZ simulation compared with experimental DCB data for 

EMC/copper sample conditioned at 85% R.H. and 130 °C for 192hrs. 
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Mode II modified bilinear traction separation triangles for this humidity condition 

respectively. 

Table 6.11 - CZ Parameters for EMC/copper sample conditioned at 85% R.H.  and 

130 °C for 192hrs. 

Bilinear Traction Separation 

Laws 130 °C and 85% R.H for 

192hrs 

  Mode I Mode II  

σmax  (MPa) 6.41 513 

δc (μm) 5.46 2.79 

δ* (μm) 0.546 0.279 

GC (J/m
2
) 17.5 715 

 

Figure 6.12 - Mode I CZ bilinear traction separation triangles for EMC/copper 

sample conditioned at  85% R.H. and 130 °C for 192hrs. 
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Figure 6.13 - Mode II CZ bilinear traction separation triangles for EMC/copper 

sample conditioned at  85% R.H. and 130 °C for 192hrs.  

6.4 Discussion of the modified CZ Parameters obtained after humidity 

conditioning EMC/Copper samples. 

Figure 6.14 shows all the modified Mode I CZ traction separation laws obtained 

after humidity conditioning the EMC/Copper sample at various levels. Figure 6.15 shows 

the same for Mode II CZ traction separation laws.   
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Figure 6.14- Mode I CZ bilinear traction separation triangles for EMC/copper 

sample exposed to different humidity condition levels  

 

Figure 6.15- Mode II CZ bilinear traction separation triangles for EMC/copper 

sample exposed to different humidity condition levels 
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Figure 6.14 and Figure 6.15 both show that the reduction in the Gc value observed 

due to humidity conditioning at 85 % R.H and 110 °C and 85% R.H. and 130 °C is 

represented by a reduction in the maximum traction, σmax and the maximum interfacial 

separation, δC of the as-received Mode I and Mode II CZ Parameters.  
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 EXPERIMENTAL STUDY OF  ISOTHERMALLY CHAPTER 7.

AGED EMC/COPPER SAMPLES 

 EMC/Copper sample is exposed to different temperatures and durations. These 

conditions are based on stress test qualifications for packaged integrated circuits used by 

industry [45]. The conditions replicated are accelerated stress tests derived from 

reliability models that represent years of device operation.  

EMC/Copper samples are exposed to temperatures of 150 °C and 175 °C for 

various durations. Modified cohesive zone parameters can be found using the Gc value 

obtained for thermally aged EMC/Copper samples. 

7.1 Experimental DCB results for thermally aged EMC/Copper samples 

EMC/Copper samples are exposed to temperatures of 150 °C and 175 °C for 

168hrs, 504hrs and 1000hrs. DCB testing is conducted on the thermally aged 

EMC/Copper samples at room temperature. EMC/Copper samples are exposed to 

temperatures of 150 °C and 175 °C for 168hrs, 504hrs and 1000hrs. DCB testing is 

conducted on the thermally aged EMC/Copper samples at room temperature.  

7.1.1 DCB test results for EMC/Copper samples exposed to 150°C for 168hrs, 504hrs 

and 1000hrs 

Table 7.1 shows the average Gc value obtained after thermally aging EMC/Copper 

samples at 150°C. EMC/Copper samples are exposed to 150°C for 168hrs, 504hrs and 

1000hrs. Crack Length for the temperature conditioned EMC/Copper samples are 
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obtained using the compliance vs. crack length relationship shown in Section 4.3.1. 

Pcritical is taken to be the maximum load for each load curve. The average Gc value for 

each temperature conditioned EMC/Copper sample is obtained through VCCT using 

FEM. 

Table 7.1 - Gc values for DCB EMC/copper samples exposed to 150°C for 168hrs, 

504hrs and 1000hrs 

Sample 

Number 

Gc (J/m
2
) 

(VCCT)  after 

isothermal aging 

at 150°C for 

168hrs 

Gc (J/m
2
) (VCCT)  

after isothermal 

aging at 150°C for 

504hrs 

Gc (J/m
2
) (VCCT)  

after isothermal 

aging at 150°C 

for 1000hrs 

1 50.6 49.7 29.4 

2 42.4 46.5 20.8 

3 38.7 x 37.0 

Average 43.9±6.53 48.1±3.22 29.1±7.72 

As can be seen from Table 7.1, no significant change in interfacial adhesion is 

noticed after temperature conditioning at 150°C. The average Gc value obtained after 

isothermal aging at 150°C for 168hrs and 504hrs was 43.9 J/m
2 

and 48.1 J/m
2 

respectively. This clearly indicates that temperature conditioning at 150°C for 168hrs and 

504hrs lead to no significant change in the Gc value.  A decrease in Gc value is seen after 

thermally aging the EMC/Copper sample at 150°C for 1000hrs. The average Gc value 

obtained after isothermal aging at 150°C for 1000hrs is 29.1 J/m
2
. There is a 35.5 % loss 

in the Gc value of the EMC/Copper sample from its as-received Gc value of 45.1 J/m
2 

after thermal aging at 150°C for 1000hrs. This may be due to the fact that exposure for 

longer durations at 150°C leads to chemical degradation of the adhesive bonds at the 

EMC/Copper interface. 
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7.1.2 DCB test results for EMC/Copper samples exposed to 175°C for 168hrs, 504hrs 

and 1000hrs 

Table 7.2 shows the average Gc value obtained after thermally aging EMC/Copper 

samples at 175°C. EMC/Copper samples are exposed to 175°C for 168hrs, 504hrs and 

1000hrs. Crack Length for the temperature conditioned EMC/Copper samples are 

obtained using the compliance vs. crack length relationship shown in Section 4.3.1. 

Pcritical is taken to be the maximum load for each load curve. The average Gc value for 

each temperature conditioned EMC/Copper sample is obtained through VCCT using 

FEM. 

Table 7.2 - Gc values for DCB EMC/copper samples exposed to 175°C for 168hrs, 

504hrs and 1000hrs 

Sample 

Number 

Gc (J/m
2
) (VCCT) 

after isothermal aging 

at 175°C for 168hrs 

Gc (J/m
2
) (VCCT) 

after isothermal 

aging at 175°C for 

504hrs 

Gc (J/m
2
) 

(VCCT) after 

isothermal aging 

at 175°C for 

100hrs 

1 55.9 50.7 16.1 

2 55.1 47.7 21.0 

3 50.5 x x 

Average 53.8±5.32 49.2±3.49 18.6±2.83 

As can be seen from Table 7.2, no significant change in interfacial adhesion is 

noticed after temperature conditioning at 175°C. The average Gc value obtained after 

isothermal aging at 175°C for 168hrs and 504hrs was 53.8 J/m
2 

and 49.2 J/m
2 

respectively. This clearly indicates that temperature conditioning at 175°C for 168hrs and 

504hrs lead to no significant change in the Gc value of the EMC/Copper sample.  A 

decrease in the Gc value is seen after thermally aging studies were conducted on the 

EMC/Copper sample at 175°C for 1000hrs. The average Gc value obtained after 
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isothermal aging at 175°C for 1000hrs is 18.6 J/m
2
. There is a 58.8% loss in the Gc value 

of the EMC/Copper sample from its as-received Gc value of 45.1 J/m
2 

after thermal aging 

at 175°C for 1000hrs. The loss in the Gc value was greater after thermal aging at 175°C 

for 1000hrs compared to the results obtained after testing at 150°C for 1000hrs. This 

clearly indicates that increasing the temperature to 175°C at 1000hrs conditioning 

introduced further chemical degradation of the EMC/Copper interface bonds compared to 

the loss incurred after thermal aging at 150°C for 1000hrs.  

7.2 Discussion of DCB results for isothermally aged EMC/copper samples 

Figure 7.1 and Figure 7.2 show a plot of Gc EMC/Copper samples thermally aged at 

150°C and 175°C for 168hrs, 504hrs and 1000hrs respectively.  

 

Figure 7.1 - Plot of DCB Gc values EMC/Copper samples thermally aged at 150 °C 

for 168hrs, 504hrs and 1000hrs.  
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Figure 7.2 - Plot of DCB Gc values EMC/Copper samples thermally aged at 175 °C 

for 168hrs, 504hrs and 1000hrs. 
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parameters for EMC/Copper samples thermally aged at 150°C and 175°C for 168hrs, 

504hrs and 1000hrs.   

7.3.1 CZ Parameters for EMC/Copper samples exposed to 150°C for 168hrs 

The DCB Gc value for an EMC/Copper sample thermally aged at 150°C for 

168hrs drops from an as-received Gc value of 45.1 J/m
2 

to 44.6 J/m
2
.This represents a 

1.09% drop in Gc. Table 7.3 shows the new GIC and GIIC values obtained after invoking 

this percentage drop on the as received GIC  and GIIC values for the EMC/Copper sample. 

Table 7.3 - Modified GIC and GIIC values for EMC/Copper sample thermally aged at 

150°C for 168hrs 

 
As Received 

150°C and 

168hrs exposure 

GIC (J/m
2
) 42.6 42.1 

GIIC (J/m
2
) 1739 1720 

After obtaining the new GIC and GIIC values for the thermally aged EMC/Copper 

sample, the guidelines in Section 5.5 are followed to obtain the modified CZ parameters 

that accurately mimic the behavior of the EMC/Copper samples conditioned at 150°C. for 

168hrs. Figure 7.3 shows the simulated load vs. displacement graph for EMC/Copper 

sample conditioned at 150°C. for 168hrs. at two different crack lengths. 
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Figure 7.3 - DCB CZ simulation compared with experimental DCB data for 

EMC/copper sample thermally aged at 150°C for 168hrs 

Like the previous CZ DCB simulation graphs the simulated load vs. displacement graph 

overpredicts the Pcritical value at which delamination occurs. The modified CZ parameters 

obtained for EMC/Copper samples thermally aged at 150°C for 168hrs are shown in 

Table 7.4. Figure 7.4 and Figure 7.5 shows a plot of Mode I and Mode II modified 

bilinear traction separation triangles for this thermally aged condition respectively. 
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Table 7.4 - CZ Parameters for EMC/copper sample thermally aged at 150°C for 

168hrs 

Traction Separation Laws 150C 168hrs 

 
Mode I Mode II 

σmax  (MPa) 9.95 796 

δc (μm) 8.47 4.32 

δ* (μm) 0.847 0.432 

GC (J/m
2
) 42.1 1720 

 

Figure 7.4 - Mode I CZ bilinear traction separation triangles for EMC/copper 

sample thermally aged at 150°C for 168hrs 
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Figure 7.5 - Mode II CZ bilinear traction separation triangles for EMC/copper 

sample thermally aged at 150°C for 168hrs 
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2
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that accurately mimic the behavior of the EMC/Copper samples conditioned at 150°C. for 

504hrs. Figure 7.6 shows the simulated load vs. displacement graph for EMC/Copper 

sample conditioned at 150°C. for 504hrs. at two different crack lengths. 

 

Figure 7.6 - DCB CZ simulation compared with experimental DCB data for 

EMC/copper sample thermally aged at 150°C for 504hrs 
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Table 7.6 - CZ Parameters for EMC/copper sample thermally aged at 150°C for 

504hrs 

Traction Separation Laws 150C 

504hrs exposure 

 
Mode I Mode II 

σmax  (MPa) 10.4 829 

δc (μm) 8.82 4.51 

δ* (μm) 0.882 0.451 

GC (J/m
2
) 45.7 1868 

 

Figure 7.7 - Mode I CZ bilinear traction separation triangles for EMC/copper 

sample thermally aged at 150°C for 504hrs 
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Figure 7.8 - Mode II CZ bilinear traction separation triangles for EMC/copper 

sample thermally aged at 150°C for 504hrs 
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that accurately mimic the behavior of the EMC/Copper samples conditioned at 150°C. for 

1000hrs. Figure 7.9 shows the simulated load vs. displacement graph for EMC/Copper 

sample conditioned at 150°C. for 1000hrs. at two different crack lengths. 

 

Figure 7.9 - DCB CZ simulation compared with experimental DCB data for 

EMC/copper sample thermally aged at 150°C for 1000hrs 

Like the previous CZ DCB simulation graphs the simulated load vs. displacement 

graph overpredicts the Pcritical value at which delamination occurs. The modified CZ 

parameters obtained for EMC/Copper samples thermally aged at 150°C for 1000hrs are 

shown in Table 7.8Table 7.4. Figure 7.10 and Figure 7.11 shows a plot of Mode I and 
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Mode II modified bilinear traction separation triangles for this thermally aged condition 

respectively 

Table 7.8 - CZ Parameters for EMC/Copper sample thermally aged at 150°C for 

1000hrs 

Traction Separation Laws 150C 

1000hrs Exposure 

  Mode I Mode II  

σmax  (MPa) 8.30 664 

δc (μm) 7.07 3.61 

δ* (μm) 0.707 0.361 

GC (J/m
2
) 29.3 1198 

 

Figure 7.10 - Mode I CZ bilinear traction separation triangles for EMC/copper 

sample thermally aged at 150°C for 1000hrs 
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Figure 7.11 - Mode II CZ bilinear traction separation triangles for EMC/copper 

sample thermally aged at 150°C for 1000hrs 

7.3.4 CZ Parameters for EMC/Copper samples exposed to 175°C for 168hrs 

The DCB Gc value for an EMC/Copper sample thermally aged at 175°C for 

168hrs increases from an as-received Gc value of 45.1 J/m
2 

to 54.2 J/m
2
.This represents a 

20.2% increase in Gc. Table 7.3 shows the new GIC and GIIC values obtained after 

invoking this percentage drop on the as received GIC  and GIIC values for the EMC/Copper 

sample. 

Table 7.9 - Modified GIC and GIIC values for EMC/copper sample thermally aged at 

175°C for 168hrs 
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2
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2
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After obtaining the new GIC and GIIC values for the thermally aged EMC/Copper 

sample, the guidelines in Section 5.5 are followed to obtain the modified CZ parameters 

that accurately mimic the behavior of the EMC/Copper samples conditioned at 150°C. for 

168hrs. Figure 7.12 shows the simulated load vs. displacement graph for EMC/Copper 

sample conditioned at 175°C. for 168hrs. at two different crack lengths. 

 

Figure 7.12 - DCB CZ simulation compared with experimental DCB data for 

EMC/Copper Sample thermally aged at 175°C for 168hrs 

Like the previous CZ DCB simulation graphs the simulated load vs. displacement 
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modified bilinear traction separation triangles for this thermally aged condition 

respectively. 

Table 7.10 - CZ Parameters for EMC/copper sample thermally aged at 175°C for 

168hrs 

Traction Separation Laws 175C 168hrs  

  Mode I Mode II  

σmax  (MPa) 11.0 877 

δc (μm) 9.34 4.77 

δ* (μm) 0.934 0.477 

GC (J/m
2
) 51.2 2091 

 

Figure 7.13 - Mode I CZ bilinear traction separation triangles for EMC/copper 

sample thermally aged at 175°C for 168hrs 
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Figure 7.14 - Mode II CZ bilinear traction separation triangles for EMC/copper 

sample thermally aged at 175°C for 168hrs 

7.3.5 CZ Parameters for EMC/Copper samples exposed to 175°C for 504hrs 

The DCB Gc value for an EMC/Copper sample thermally aged at 175°C for 
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2 
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2
.This represents a 

9.98% increase in Gc. Table 7.11shows the new GIC and GIIC values obtained after 

invoking this percentage drop on the as received GIC  and GIIC values for the EMC/Copper 

sample. 

Table 7.11- Modified GIC and GIIC values for EMC/copper sample thermally aged at 
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2
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2
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After obtaining the new GIC and GIIC values for the thermally aged EMC/Copper 

sample, the guidelines in Section 5.5 are followed to obtain the modified CZ parameters 

that accurately mimic the behavior of the EMC/Copper samples conditioned at 175°C. for 

504hrs. Figure 7.15 shows the simulated load vs. displacement graph for EMC/Copper 

sample conditioned at 175°C. for 504hrs. at two different crack lengths. 

 

Figure 7.15 - DCB CZ simulation compared with experimental DCB data for 

EMC/copper sample thermally aged at 175°C for 504hrs 

Like the previous CZ DCB simulation graphs the simulated load vs. displacement 

graph overpredicts the Pcritical value at which delamination occurs. The modified CZ 
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modified bilinear traction separation triangles for this thermally aged condition 

respectively. 

Table 7.12 - CZ parameters for EMC/copper sample thermally aged at 175°C for 

504hrs 

Traction Separation Laws 175C 

504hrs  exposure 

  Mode I Mode II  

σmax  (MPa) 10.5 839 

δc (μm) 8.93 4.56 

δ* (μm) 0.893 0.456 

GC (J/m
2
) 46.8 1913 

 

Figure 7.16 - Mode I CZ bilinear traction separation triangles for EMC/Copper 

Specimen thermally aged at 175°C for 504hrs 
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Figure 7.17- Mode I CZ bilinear traction separation triangles for EMC/copper 

sample thermally aged at 175°C for 504hrs 

7.3.6 CZ Parameters for EMC/Copper samples exposed to 175°C for 1000hrs 

The DCB Gc value for an EMC/Copper sample thermally aged at 175°C for 

1000hrs drops from an as-received Gc value of 45.1 J/m
2 

to 17.7 J/m
2
.This represents a 

60.7% drop in Gc. Table 7.13 shows the new GIC and GIIC values obtained after invoking 

this percentage drop on the as received GIC  and GIIC values for the EMC/Copper sample. 

Table 7.13 - Modified GIC and GIIC values for EMC/copper sample thermally aged at 

175°C for 1000hrs 
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2
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2
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that accurately mimic the behavior of the EMC/Copper samples conditioned at 175°C. for 

1000hrs. Figure 7.18 shows the simulated load vs. displacement graph for EMC/Copper 

sample conditioned at 175°C. for 1000hrs. at two different crack lengths. 

 

Figure 7.18 - DCB CZ simulation compared with experimental DCB data for 

EMC/copper sample thermally aged at 175°C for 504hrs 

Like the previous CZ DCB simulation graphs the simulated load vs. displacement 

graph overpredicts the Pcritical value at which delamination occurs. The modified CZ 

parameters obtained for EMC/Copper samples thermally aged at 175°C for 1000hrs are 

shown in Table 7.14. Figure 7.19 and Figure 7.20 show a plot of Mode I and Mode II 

modified bilinear traction separation triangles for this thermally aged condition 

respectively. 
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Table 7.14 - CZ Parameters for EMC/copper sample thermally aged at 175°C for 

1000hrs 

Traction Separation Laws 175C 

1000hrs exposure 

  Mode I Mode II  

σmax  (MPa) 6.27 502 

δc (μm) 5.34 2.73 

δ* (μm) 0.534 0.273 

GC (J/m
2
) 16.7 684 

 

Figure 7.19- Mode I CZ bilinear traction separation triangles for EMC/copper 

sample thermally aged at 175°C for 1000hrs 
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Figure 7.20 - Mode II CZ bilinear traction separation triangles for EMC/copper 

sample thermally aged at 175°C for 1000hrs 

7.4 Discussion of the modified CZ Parameters obtained after thermally aging 
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triangles obtained for humidity conditioned EMC/Copper samples, the loss in adhesion 

seen at 150°C and 1000hrs is represented by a reduction in σmax and δc of the as-received 

Mode I and Mode II CZ bi-linear traction triangles.  

0.00

100.00

200.00

300.00

400.00

500.00

600.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Tr
ac

ti
o

n
  M

o
d

e
 II

 (
M

P
a)

  

Separation (μm) 

Mode II 175C 1000hrs



 108 

 

Figure 7.21 – Mode I CZ bilinear traction separation triangles for EMC/copper 

sample thermally aged at 150°C for 168hrs, 504hrs and 1000hrs  

 

Figure 7.22 - Mode II CZ bilinear traction separation triangles for EMC/copper 

sample thermally aged at 150°C for 168hrs, 504hrs and 1000hrs 
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aging the EMC/Copper sample at 175°C for 168hrs and 504hrs since there isn’t a loss in 

the interfacial adhesion at these conditions. There is an even greater loss in interfacial 

adhesion after thermally aging the EMC/Copper sample at 175°C for 1000hrs compared 

to the Gc value obtained after conditioning at 150°C for 1000hrs. This loss in interfacial 

strength is also represented by a reduction in as received Mode I and Mode II σmax and δc 

CZ parameters. 

 

Figure 7.23 - Mode I CZ bilinear traction separation triangles for EMC/copper 

sample thermally aged at 175°C for 168hrs, 504hrs and 1000hrs 
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Figure 7.24 - Mode II CZ bilinear traction separation triangles for EMC/copper 

sample thermally aged at 175°C for 168hrs, 504hrs and 1000hrs 
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 CONCLUSIONS AND FUTURE WORK  CHAPTER 8.

 The primary objective of this work was to develop mixed-mode CZ parameters 

that model the interfacial strength of thermally aged and humidity conditioned 

EMC/Copper samples.  

 DCB and FPB tests were conducted on EMC/Copper samples. Using the load vs. 

displacement data obtained from these tests, the critical SERR and mode mixity, ψ for 

each geometry was computed using FEM and analytical solutions. The Hutchinson and 

Suo [27] relationship was used to characterize the critical SERR as a function of ψ for an 

as-received EMC/Copper sample. Using this relationship, Mode I and Mode II CZ 

parameters were obtained by fitting the simulated load vs. displacement graphs obtained 

from FEM software with experimental load vs. displacement data from DCB and FPB 

tests. Isothermal aging and humidity conditioning tests were run on EMC/Copper 

samples based on stress test qualifications for packaged integrated circuits used by 

industry [45]. DCB tests were run on EMC/Coppers samples after thermal aging and 

humidity conditioning exposure. Modified Mode I and Mode II CZ Parameters were 

formulated by fitting simulated load vs. displacement graphs with experimental load vs. 

displacement data obtained by running DCB tests on thermally aged and humidity 

conditioned EMC/Copper samples.  The following conclusions can be made from this 

study  

8.1 Gc vs. mode mixity, ψ relationship for EMC/Copper interface 
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 Using DCB and FPB tests, the interfacial strength of the EMC/Copper sample 

was characterized for two different loading conditions. The mode mixity of each loading 

condition was calculated using the crack-displacement method by Matos et al. [28]. The 

mode mixity obtained for the DCB test was 29.4°, whereas the mode mixity for the FPB 

test was 35.7°. Since, the mode mixities for both tests are so close to each other, more Gc 

values need to be experimentally determined at other mode mixities to get a stronger Gc 

vs. mode mixity, ψ fit for the EMC/Copper interface. Future work should look at 

developing and investigating fracture tests that characterize the interfacial strength of the 

EMC/Copper sample for mode mixities other than the ones discussed in this thesis. 

8.2 Effect of humidity conditioning and thermal aging on EMC/Copper interface 

strength  

 Humidity conditioning tests were conducted on the EMC/Copper sample at 60% 

R.H and 30°C for 192hrs, 85% R.H and 110°C for 264hrs and 528hrs and 85% R.H and 

130°C for 96hrs and 192hrs. Humidity conditioning at 60% R.H and 30°C for 192hrs 

revealed no loss in interfacial adhesion. Conditioning at 85% R.H and 110°C for 264hrs 

resulted in a 44.3% loss in the interfacial adhesion of the EMC/Copper sample. 

Increasing the duration of humidity exposure to 528hrs seemed to have minimal effect on 

the already reduced interfacial strength of the EMC/Copper sample.  

 Furthermore, conditioning at 85% R.H and 130°C for 96hrs resulted in a 61.0% 

reduction of the EMC/Copper interfacial strength. This showed that increasing the 

temperature from 110°C to 130°C further weakened the EMC/Copper interfacial 

adhesion. Increasing the duration of the humidity exposure to 192hrs for this humidity 
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condition also seemed to have minimal effect on the already reduced interfacial strength 

of the EMC/Copper sample.  

The following conclusions can be made from the humidity conditioning tests conducted 

on the EMC/Copper sample.  

1. 60% R.H at 30°C humidity exposure does not seem to affect the interfacial 

strength of the EMC/Copper sample. 

2. Increasing the humidity exposure level to 85% R.H. at 110°C results in a 

reduction in the interfacial strength of the EMC/Copper sample.  

3. Humidity conditioning tests at temperatures close to the glass transition 

temperature of the EMC have an effect on the interfacial adhesion since 

increasing the temperature from 110°C to 130°C at 85% R.H further weakened 

the EMC/Copper interfacial strength.  

4. Interfacial adhesion of the EMC/Copper sample seems to be unaffected by 

humidity exposure at longer durations. For both humidity condition tests that were 

conducted, the interfacial strength of the EMC/Copper sample did not change 

when the exposure time was doubled.   

Thermal aging tests were conducted on the EMC/Copper sample at 150°C and 

175°C for 168hrs, 504hrs and 1000hrs. The results showed that the interfacial adhesion of 

the EMC/Copper sample was unaffected at temperatures of 150°C and 175°C after 

exposure for 168hrs and 504hrs. A significant decrease in the interfacial strength of the 

EMC/Copper sample was seen after aging for 1000hrs at both these temperatures. There 

is a 35.5 % loss in the interfacial adhesion of the EMC/Copper sample from its as-
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received value after thermal aging at 150°C for 1000hrs. There is a 58.8% loss in the 

interfacial adhesion of the EMC/Copper sample from its as-received value after thermal 

aging at 175°C for 1000hrs. The main conclusion that can be made from these tests is that 

for temperature conditioning at 150°C and 175°C permanent degradation is only seen at 

the EMC/Copper interface for longer durations in excess of a 1000hrs.   

8.3 Determination of As-Received and modified CZ Parameters  

8.3.1 As-Received CZ Parameters  

 CZ Parameters were successfully obtained for as-received, thermally aged and 

humidity conditioned copper/EMC samples. The Gc vs. mode mixity, ψ fit over-predicted 

the DCB critical SERR value and under-predicted the FPB value. Consequently, CZ 

parameters showed a good fit between simulated and experimental load vs. displacement 

data but over-predicted the critical delamination load value for DCB tests and under-

predicted this value for FPB tests. The initial loading slope prior to delamination for the 

simulated load vs. displacement graph and the experimental data showed a good fit for 

both tests. 

8.3.2 Modified CZ Parameters  

 Modified CZ Parameters were obtained to model the interfacial strength of the 

humidity conditioned and thermally aged EMC/Copper samples. The simulated graphs 

obtained from the modified CZ parameters over-predicted the critical delamination load 

when compared with the experimental data, similar to the as-received simulation graphs. 

Like the as-received CZ graphs, the initial slope of the simulated load vs. displacement 
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graphs for the modified CZ parameters matched the slope of the experimental load vs. 

displacement graphs. A loss in interfacial adhesion in the EMC/Copper sample is 

represented by a reduction in the maximum interfacial traction, σmax and the maximum 

interfacial separation, δc for both Mode I and Mode II as-received CZ parameters. This is 

seen for all modified CZ parameters obtained for humidity conditioned and thermally 

aged EMC/Copper samples that show a significant loss in interfacial strength.  

These modified CZ parameters can be used in EMC/Copper interfaces present in 

flip chip packages, 3-D IC packages, SOIC packages and multichip modules to keep 

track of the damage incurred at the interface. Interfacial damage and debonding due to 

accelerated stress life tests and qualifications in packages with EMC/Copper interfaces 

can be modeled with these modified CZ parameters. 

8.4 Future Work   

Future work on the effect of isothermal aging and humidity conditioning on 

EMC/Copper mold compound interfacial adhesion and the modified CZ parameters will 

be done with the following next steps in mind.  

1. FPB tests and other fracture mechanics tests will be conducted on as-received, 

thermally aged and humidity conditioned EMC/Copper samples to obtain a better 

Gc vs. mode mixity, ψ fit for the interface. By doing so, the CZ parameters 

obtained will better match the experimental load vs. displacement data obtained.  

2. Studies by Ferguson and Qu [9] showed that the Young’s modulus of the EMC, 

EEMC is affected by moisture exposure. Future work will investigate the change in 

the EEMC after humidity conditioning tests. An updated mode mixity for DCB and 
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FPB geometries can be evaluated using the new EEMC. This value can be used to 

obtain a new Hutchinson and Suo[27] fit for the geometry as well the updated CZ 

parameters.  

3. Future studies will also investigate the effect of stress relaxation and creep on the 

EMC due to thermal aging. EEMC will be computed as a function of time at 

different temperatures and this information will be used to generate a master 

stress relaxation curve and prony series for the EMC. A viscoelastic material 

model for the EMC can be created with this information and be used to calculate 

the effect of both temperature and time on the EEMC.  Stress relaxation and creep 

effects should have an effect on the EEMC especially at longer durations (1000hrs). 

The new EEMC and Gc value obtained from this study can be used to obtain 

updated CZ parameters for the thermally aged EMC/Copper samples. 

4. Future work will also investigate the crack front shape. Visual inspections of 

thermally-aged copper leadframe surfaces reveal a straight crack front that is 

curved on the edges. At the edges, the sample experiences stress tri-axiality as the 

width of the sample is not large enough to obey the plain strain criterion. As the 

width increases, the sample obeys the plain strain criterion in the middle of the 

sample where the crack front is flat or straight. Three-dimensional FE analysis of 

the interfacial strength at the crack front will be investigated in future studies. C-

Mode Scanning Acoustic Microscopy (C-SAM) imaging will also be used in 

addition to visual inspection to investigate the shape of the crack-front of the 

EMC/Copper sample during future delamination and debonding studies.  
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5. Future studies will also investigate how sub-critical loading as a function of time 

affects the interfacial strength of the EMC/Copper sample for different interfacial 

fracture experiments including DCB and FPB testing. Samples will be loaded and 

held with a sub-critical load prior to any delamination.  Displacement-controlled 

experiments will be carried out, the change in the force will be investigated as a 

function of time.  

6. As discussed earlier, existing literature[9] shows that the copper oxide formation 

during thermal aging leads to the displacement of the EMC at the interface 

resulting in a loss in interfacial strength. Thermal aging studies will be conducted 

in a nitrogen, N2 (inert) chamber to investigate whether or not the formation of 

copper oxide is a driver for the loss in interfacial strength. 

7. Preliminary X-ray Photoelectron Spectroscopy (XPS) studies were conducted on 

copper leadframe surface to investigate the copper oxide deposition. Future work 

will perform XPS studies and depth profile measurements to investigate the type 

of oxide and the thickness of oxide after thermally aging the EMC/Copper 

samples for different durations.  

8. Future work will also investigate the effect of adding an adhesion promoter at the 

EMC/Copper interface and how that enhances the interfacial strength of the 

sample.  
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APPENDIX A. EXPERIMENTAL LOAD VS. DISPLACEMENT 

GRAPHS OBTAINED FOR AS-RECEIVED, THERMALY AGED 

AND HUMIDITY CONDITIONED EMC/COPPER SAMPLES 

 This appendix illustrates the experimental load vs. displacement graphs obtained 

for DCB tests conducted on as-received, thermally aged and humidity conditioned 

EMC/Copper samples.  

A.1  As-Received DCB data   

 The following figures illustrate the experimental load vs. displacement graphs 

obtained from DCB tests conducted on as-received EMC/Copper samples. 

 

Figure A.1 – Experimental load vs. displacement data as-received EMC/copper 
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Figure A.2 - Experimental load vs. displacement data as-received EMC/copper 

sample 2 

 

Figure A.3 - Experimental load vs. displacement data as-received EMC/copper 

sample 3 
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Figure A.4 - Experimental load vs. displacement data as-received EMC/copper 

sample 4 

 

Figure A.5 - Experimental load vs. displacement data as-received EMC/copper 

sample 5 
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Figure A.6 - Experimental load vs. displacement data as-received EMC/copper 

sample 6 

 

Figure A.7 -  Experimental load vs. displacement data as-received EMC/copper 

sample 7 
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Figure A.8 -  Experimental load vs. displacement data as-received EMC/copper 

sample 8 

 

Figure A.9 -  Experimental load vs. displacement data as-received EMC/copper 

sample 9 

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Lo
ad

 (
N

) 

Displacement (mm) 

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Lo
ad

 (
N

) 

Displacement (mm) 



 123 

 

Figure A.10 - Experimental load vs. displacement data as-received EMC/copper 

sample 10 

 

Figure A.11-  Experimental load vs. displacement data as-received EMC/copper 

sample 11 
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A.2  Humidity conditioned DCB data   

The following figures illustrate the experimental load vs. displacement graphs obtained 

from DCB tests conducted on humidity conditioned EMC/Copper samples. 

A.2.1 DCB data for EMC/Copper samples humidity conditioned at 60%R.H & 30°C for 

192hrs 

 

Figure A.12 - Experimental load vs. displacement data for EMC/copper sample 

conditioned at 60%R.H. & 30°C for 192hrs, sample 1 
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Figure A.13 - Experimental load vs. displacement data for EMC/copper sample 

conditioned at 60%R.H. & 30°C for 192hrs, sample 2 

 

Figure A.14- Experimental load vs. displacement data for EMC/copper sample 

conditioned at 60%R.H. & 30°C for 192hrs, sample 3 
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Figure A.15 - Experimental load vs. displacement data for EMC/copper sample 

conditioned at 60%R.H. & 30°C for 192hrs, sample 4 

A.2.2 DCB data for EMC/Copper samples humidity conditioned at 85%R.H & 110°C 

for 264hrs 
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Figure A.16 - Experimental load vs. displacement data for EMC/copper sample 

conditioned at 85%R.H. & 110°C for 264hrs, sample 1 

 

Figure A.17 - Experimental load vs. displacement data for EMC/copper sample 

conditioned at 85%R.H. & 110°C for 264hrs, sample 2 
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A.2.3 DCB data for EMC/Copper samples humidity conditioned at 85%R.H & 110°C 

for 528hrs 

 

Figure A.18- Experimental load vs. displacement data for EMC/copper sample 

conditioned at 85%R.H. & 110°C for 528hrs, sample 1 

 

Figure A.19 - Experimental load vs. displacement data for EMC/copper sample 

conditioned at 85%R.H. & 110°C for 528hrs, sample 2 
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A.2.4 DCB data for EMC/Copper samples humidity conditioned at 85%R.H & 130°C 

for 96hrs 

 

Figure A.20 - Experimental load vs. displacement data for EMC/copper sample 

conditioned at 85%R.H. & 130°C for 96hrs, sample 1 
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Figure A.21- Experimental load vs. displacement data for EMC/copper sample 

conditioned at 85%R.H. & 130°C for 96hrs, sample 2 

A.2.5 DCB data for EMC/Copper samples humidity conditioned at 85%R.H & 130°C 

for 192hrs 

 

Figure A.22 - Experimental load vs. displacement data for EMC/copper sample 

conditioned at 85%R.H. & 130°C for 192hrs, sample 1 
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Figure A.23 - Experimental load vs. displacement data for EMC/copper sample 

conditioned at 85%R.H. & 130°C for 192hrs, sample 2 

A.3  Thermally aged DCB data   

The following figures illustrate the experimental load vs. displacement graphs obtained 

from DCB tests conducted on thermally aged EMC/Copper samples. 

A.3.1 DCB data for EMC/Copper samples thermally aged at 150°C for 168hrs 
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Figure A.24 - Experimental load vs. displacement data for EMC/copper sample 

thermally aged at 150°C for 168hrs, sample 1 

 

Figure A.25- Experimental load vs. displacement data for EMC/copper sample 

thermally aged at 150°C for 168hrs, sample 2 
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Figure A.26- Experimental load vs. displacement data for EMC/copper sample 

thermally aged at 150°C for 168hrs, sample 3 

A.3.2 DCB data for EMC/Copper samples thermally aged at 150°C for 504hrs 

 

Figure A.27- Experimental load vs. displacement data for EMC/copper sample 

thermally aged at 150°C for 504hrs, sample 1 
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Figure A.28- Experimental load vs. displacement data for EMC/copper sample 

thermally aged at 150°C for 504hrs, sample 2 

A.3.3 DCB data for EMC/Copper samples thermally aged at 150°C for 1000hrs 

 

Figure A.29 - Experimental load vs. displacement data for EMC/copper sample 

thermally aged at 150°C for 1000hrs, sample 1 
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Figure A.30 - Experimental load vs. displacement data for EMC/copper sample 

thermally aged at 150°C for 1000hrs, sample 2 

A.3.4 DCB data for EMC/Copper samples thermally aged at 175°C for 168hrs 

 

Figure A.31- Experimental load vs. displacement data for EMC/copper sample 

thermally aged at 175°C for 168hrs, sample 1 
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Figure A.32- Experimental load vs. displacement data for EMC/copper sample 

thermally aged at 175°C for 168hrs, sample 2 

 

Figure A.33- Experimental load vs. displacement data for EMC/copper sample 

thermally aged at 175°C for 168hrs, sample 3 
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A.3.5 DCB data for EMC/Copper samples thermally aged at 175°C for 504hrs 

 

Figure A.34 - Experimental load vs. displacement data for EMC/copper sample 

thermally aged at 175°C for 504hrs, sample 1 

 

Figure A.35- Experimental load vs. displacement data for EMC/copper sample 

thermally aged at 175°C for 504hrs, sample 2 
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A.3.6 DCB data for EMC/Copper samples thermally aged at 175°C for 1000hrs 

 

Figure A.36 - Experimental load vs. displacement data for EMC/copper sample 

thermally aged at 175°C for 1000hrs, sample 1 

 

Figure A.37- Experimental load vs. displacement data for EMC/copper sample 

thermally aged at 175°C for 1000hrs, sample 2 
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APPENDIX B. EXPERIMENTAL LOAD VS. DISPLACEMENT 

DATA OBTAINED FOR AS-RECEIVED, THERMALY AGED 

AND HUMIDITY CONDITIONED EMC/COPPER SAMPLES 

This appendix shows the experimental data obtained for DCB tests conducted on as-

received, thermally aged and humidity conditioned EMC/Copper samples. 

B.1  As-Received DCB data   

Table B.1 – As Received EMC/Copper samples experimental data  

Sample 

Number Compliance 

Crack 

Length (mm) Pcritical(N) 

Gc (J/m
2
) 

[VCCT] 

1 0.268 9.30 2.59 47.0 

1 0.435 11.0 2.17 45.6 

1 0.810 13.6 1.80 47.5 

1 1.141 15.2 1.67 51.3 

2 0.131 7.25 3.27 46.3 

2 0.223 8.73 2.70 45.2 

2 0.367 10.4 2.24 43.3 

2 0.546 11.9 1.96 43.2 

3 0.391 10.6 2.31 48.1 

3 0.682 12.8 1.92 48.1 

3 0.972 14.4 1.71 48.3 

3 1.417 16.4 1.45 44.7 

4 0.253 9.12 2.54 43.6 

4 0.383 10.5 2.12 39.9 

4 0.558 11.9 1.88 40.4 

4 0.792 13.5 1.70 41.7 

5 0.414 10.8 2.29 49.0 

5 0.792 13.5 1.81 47.2 

5 1.423 16.4 1.46 45.4 

5 2.328 19.4 1.21 43.3 
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5 3.517 22.3 1.05 42.9 

6 0.612 12.3 1.87 42.5 

6 1.072 14.9 1.58 44.1 

7 0.329 9.97 2.38 45.5 

7 0.538 11.8 2.05 46.8 

8 0.306 9.73 2.37 43.0 

8 0.638 12.5 1.84 42.3 

9 0.409 10.7 2.26 47.4 

9 0.643 12.5 1.92 46.3 

10 0.420 10.8 2.13 42.9 

10 0.607 12.3 1.92 44.6 

 

B.2  Humidity Conditioned DCB data   

The following tables show the experimental data obtained from DCB tests conducted on 

humidity conditioned EMC/Copper samples. 

B.2.1 DCB data for EMC/Copper samples humidity conditioned at 60% R.H. and 30°C 

for 192hrs 

Table B.2- DCB data for EMC/Copper sample humidity conditioned at 60% R.H. 

and 30°C for 192hrs 

Sample 

Number  Compliance  

Crack 

Length 

(mm) Pcritical(N) Gc (J/m
2
) [VCCT] 

1 0.279 9.42 2.47 44.0 

1 0.484 11.38 2.05 43.5 

1 0.786 13.42 1.75 43.7 

1 1.25 15.72 1.50 44.2 

2 0.256 9.15 2.54 44.0 

2 0.452 11.11 2.11 44.1 

2 0.722 13.03 1.79 43.3 

2 1.03 14.72 1.61 44.5 

3 0.317 9.85 2.27 40.3 

3 0.506 11.55 1.94 40.2 
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3 0.753 13.22 1.69 39.7 

3 1.17 15.37 1.51 42.9 

4 0.293 9.59 2.50 46.3 

4 0.560 11.96 1.99 45.4 

4 0.957 14.35 1.67 45.6 

4 1.42 16.41 1.47 45.8 

B.2.2 DCB data for EMC/Copper samples humidity conditioned at 85% R.H. and 

110°C for 264hrs 

Table B.3 - DCB data for EMC/Copper sample humidity conditioned at 85% R.H. 

and 110°C for 264hrs 

Sample 

Number Compliance 

Crack Length 

(mm) Pcritical(N) Gc (J/m
2
) [VCCT] 

1 1.96 18.3 0.989 25.8 

1 3.58 22.4 0.814 26.1 

2 2.07 18.6 0.932 23.8 

2 3.08 21.3 0.830 24.6 

B.2.3 DCB data for EMC/Copper samples humidity conditioned at 85% R.H. and 

110°C for 528hrs 

Table B.4 - DCB data for EMC/Copper sample humidity conditioned at 85% R.H. 

and 110°C for 528hrs 

Sample 

Number Compliance 

Crack 

Length 

(mm) Pcritical(N) Gc (J/m
2
) [VCCT] 

1 2.04 18.5 0.930 23.4 

1 2.93 21.0 0.855 25.2 

2 1.41 16.4 1.02 22.2 

2 2.00 18.4 0.897 21.5 

2 2.91 20.9 0.786 21.2 

B.2.4 DCB data for EMC/Copper samples humidity conditioned at 85% R.H. and 

130°C for 96hrs 
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Table B.5 - DCB data for EMC/Copper sample humidity conditioned at 85% R.H. 

and 130°C for 96hrs 

Sample 

Number Compliance 

Crack 

Length 

(mm) Pcritical(N) Gc (J/m
2
) [VCCT] 

1 1.32 16.0 0.954 18.5 

1 1.76 17.6 0.861 18.2 

1 2.37 19.5 0.767 17.6 

2 1.66 17.3 0.904 19.0 

2 2.38 19.5 0.808 19.3 

2 3.17 21.5 0.720 18.5 

B.2.5 DCB data for EMC/Copper samples humidity conditioned at 85% R.H. and 

130°C for 192hrs 

Table B.6- DCB data for EMC/Copper sample humidity conditioned at 85% R.H. 

and 130°C for 192hrs 

Sample 

Number Compliance 

Crack Length 

(mm) Pcritical(N) Gc (J/m
2
) [VCCT] 

1 1.96 18.3 0.989 25.8 

1 3.58 22.4 0.814 26.1 

2 2.07 18.6 0.932 23.8 

2 3.08 21.3 0.830 24.6 

B.3  Thermally Aged DCB data   

The following tables show the experimental data obtained from DCB tests conducted on 

thermally aged EMC/Copper samples 

B.3.1 DCB data for EMC/Copper samples humidity conditioned at 150°C for 168hrs 

Table B.7- DCB data for EMC/Copper sample thermally aged at 150°C for 168hrs 

Sample 

Number Compliance 

Crack 

Length 

(mm) Pcritical(N) Gc (J/m
2
) [VCCT] 
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1 0.598 12.2 2.01 48.3 

1 1.176 15.4 1.70 54.2 

1 2.046 18.6 1.35 49.5 

1 3.066 21.3 1.19 50.4 

1 5.258 25.5 0.960 47.0 

2 0.472 11.3 2.06 43.4 

2 1.387 16.3 1.40 41.1 

2 2.956 21.0 1.11 42.7 

2 5.486 25.9 0.860 38.8 

3 0.274 9.4 2.56 46.5 

3 0.688 12.8 1.68 37.1 

3 1.895 18.0 1.13 32.7 

3 4.544 24.3 0.86 34.2 

B.3.2 DCB data for EMC/Copper samples humidity conditioned at 150°C for 504hrs 

Table B.8- DCB data for EMC/Copper sample thermally aged at 150°C for 504hrs 

Sample 

Number  Compliance  

Crack 

Length 

(mm) Pcritical(N) Gc (J/m
2
) [VCCT] 

1 0.197 8.37 3.07 53.9 

1 0.440 11.0 2.26 49.8 

1 0.723 13.0 1.93 50.6 

1 1.12 15.1 1.64 48.9 

1 1.66 17.3 1.44 49.0 

1 2.76 20.5 1.18 46.2 

1 5.06 25.2 0.97 46.8 

2 0.259 9.18 2.67 48.8 

2 0.848 13.8 1.83 50.6 

2 2.12 18.8 1.26 44.2 

2 3.60 22.5 1.03 42.4 

B.3.3 DCB data for EMC/Copper samples humidity conditioned at 150°C for 1000hrs 

Table B.9- DCB data for EMC/Copper sample thermally aged at 150°C for 1000hrs 
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Sample Number  Compliance  

Crack 

Length 

(mm) Pcritical(N) 

Gc (J/m
2
) 

[VCCT] 

1 3.60 22.5 0.862 29.4 

2 2.28 19.3 0.843 20.8 

3 1.45 16.5 1.31 37.1 

3 3.14 21.5 1.01 36.9 

B.3.4 DCB data for EMC/Copper samples humidity conditioned at 175°C for 168hrs 

Table B.10- DCB data for EMC/Copper sample thermally aged at 175°C for 168hrs 

Sample 

Number  Compliance  Crack Length (mm) Pcritical(N) 

Gc (J/m
2
) 

[VCCT] 

1 0.297 9.62 2.90 63.0 

1 0.490 11.4 2.35 57.8 

1 0.763 13.3 2.04 58.5 

1 1.56 16.9 1.52 52.3 

1 3.23 21.7 1.14 47.8 

2 0.379 10.5 2.54 56.9 

2 1.16 15.3 1.73 55.8 

2 2.45 19.7 1.31 52.6 

3 0.207 8.50 3.09 56.2 

3 0.742 13.2 1.93 51.5 

3 2.05 18.6 1.27 43.9 

B.3.5 DCB data for EMC/Copper samples humidity conditioned at 175°C for 504hrs 

Table B.11- DCB data for EMC/Copper sample thermally aged at 175°C for 504hrs 

Sample 

Number  Compliance  

Crack 

Length (mm) Pcritical(N) 

Gc (J/m
2
) 

[VCCT] 

1 0.331 10.0 2.41 46.8 

1 0.628 12.4 2.10 54.5 

1 1.12 15.1 1.68 51.1 

1 1.94 18.2 1.40 51.4 

1 3.50 22.3 1.13 49.7 
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2 0.513 11.6 2.16 50.4 

2 1.64 17.2 1.46 49.9 

2 3.390 22.0 1.06 42.7 

B.3.5 DCB data for EMC/Copper samples humidity conditioned at 175°C for 1000hrs 

Table B.12- DCB data for EMC/Copper sample thermally aged at 175°C for 1000hrs 

Sample Number Compliance 

Crack 

Length 

(mm) Pcritical(N) 

Gc (J/m
2
) 

[VCCT] 

1 2.1158 18.77 0.761 16.08 

1 3.0837 21.32 0.672 16.12 

2 3.7614 22.8 0.724 21 
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