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SUMMARY 

 The current approach to manual wheelchair design lacks a sound and objective 

connection to metrics for manual wheelchair (MWC) performance.  Wheelchair 

performance directly impacts propulsion effort, which is a strong determinant of user health 

and mobility.  To date, medical reimbursement for MWCs is coded heavily around a 6-lb 

difference between standard (low-end) and ultra-lightweight (high-end) wheelchairs, with 

three other weight-based wheelchair categories falling within this small weight range.  This 

further reflects the pervasive lack of a suitable metric for characterizing wheelchair 

performance.  Studies to date have attempted to distinguish performance between different 

manual wheelchairs, but have lacked the repeatability or external validity necessary.  

Human subject tests are mostly non-representative of everyday MWC mobility and have 

demonstrated a low sensitivity to performance differences.  Studies of MWC mechanical 

design, while more sensitive, are almost exclusively based on passive measurements not 

involving active propulsion of the MWC. 

 The objective of this dissertation research was to develop capabilities to 

characterize and predict manual wheelchair performance, with three specific research aims: 

1. Develop component-level test methods to evaluate the inertial and resistive 

properties of manual wheelchair components. 

2. Develop a system-level test method to distinguish the mechanical performance of 

various manual wheelchair configurations across maneuvers representative of 

everyday wheelchair mobility. 
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3. Develop empirical models to relate component-level measures to system-level 

results. 

 The first research aim was accomplished through designed methodologies that 

characterized the rotational inertia, rolling resistance, and scrub torque of caster and drive 

wheels.  Three new measurement devices were fabricated to this end: the coast-down cart, 

the caster scrub test rig, and the drive wheel scrub test rig.  A diverse set of 4 drive wheels 

and 8 casters were evaluated for tile and carpet surfaces with these instruments.  These 

tests demonstrated the variance in the resistive properties of wheelchair components, as 

well as illustrated different optimal components for different surfaces. 

 The second research aim was accomplished by methodologies that quantified the 

propulsion torque and propulsion cost of various MWC configurations on tile and carpet.  

To this end, a wheelchair-propelling robot, AMPS, was developed.  Three canonical 

maneuvers for AMPS were defined, based on their external validity and balanced collective 

representation of different kinetic energies and resistive losses.  These maneuvers were 

applied towards investigating the impact of mass and weight-distribution on propulsion 

torque, as well as the impact of 4 casters and 3 drive wheels on propulsion cost.  The first 

study identified weight-distribution as having a larger impact on propulsion torque in 

turning than in straight maneuvers.  The second study identified the tradeoffs of 

wheelchairs configured with different components, with drive wheel differences exerting 

a greater performance impact across all maneuvers. 

 The research aim of predicting system-level MWC performance was accomplished 

by applying linear regression modeling.  System-level propulsion costs from the second 
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aim were used as outcome variables, and component measures of resistive loss from the 

first aim were used to calculate system resistance predictor variables.  The system 

resistance definitions were based on the resistive loss models developed as part of the 

second aim.  System yaw inertia and weight-distribution were also entered as predictor 

variables.  Two of the empirical models (straight and zero-radius turns) demonstrated 

strong predictive capabilities that linking system propulsion cost to component resistive 

properties.   

 The outcomes of this research empower clinicians and users to make a more 

informed choice in wheelchair selection by means of a standard, scientifically-motivated 

performance metric.  Furthermore, the empirical models offer manufacturers a basis by 

which to optimize their future wheelchair designs, thus motivating a better product for all 

wheelchair stakeholders. 
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CHAPTER 1. INTRODUCTION 

1.1 Significance and Objectives 

 The current approach to manual wheelchair design lacks a sound and objective 

connection to metrics for wheelchair performance.  Wheelchair performance directly 

impacts propulsion effort, which is a strong determinant of user health and mobility 

(Bohannon, 2007; Levy et al., 2010; Oyster et al., 2011; Sonenblum SE, Sprigle S, & Lopez 

RA, 2012b).  Certain wheelchair designs and configurations require more effort to propel 

because of their inertial and frictional parameters.  Given the breadth of wheelchair options, 

users, clinicians and manufacturers need information about how these options impact the 

effort required to propel wheelchairs.  Most directly, wheelchair manufacturers can use 

information about the influences of configuration on propulsion effort to optimize designs 

and improve their development cycles. The objective of this research is to empirically 

characterize the inertial and resistive properties of different wheelchair components 

and configurations, and develop empirical models for wheelchair manufacturers that 

define the impact of these properties on system-level wheelchair performance.  

1.2 Background 

 For the 1.6 million wheelchair users who live in the United States (Kaye, Kang, & 

LaPlante, 2000), the wheelchair forms the foundation for all of their academic, vocational, 

and societal activities (Bohannon, 2007; Levy et al., 2010; Oyster et al., 2011; Sonenblum 

SE et al., 2012b).  Amongst these users, 94% own manual wheelchairs (MWCs), a mobility 

device that relies on the occupant for propulsive force (Kaye et al., 2000).  The inefficient 
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nature of wheelchair propulsion (van der Woude LHV, Veeger HEJ, Rozendal RH, & et 

al, 1988; van der Woude LHV, 1988) often has a detrimental effect on the user well-being.  

Wheelchair users move about in short bouts of activity (Sonenblum SE et al., 2012b) where 

the higher inertia and greater energy loss translates into the need for users to perform more 

propulsion work during wheelchair maneuvers.  Furthermore, less mechanically efficient 

wheelchairs require the user to exert greater instantaneous force and total effort for 

accomplishing desired travel.  Greater propulsion effort can lead to difficulty in achieving 

desired speeds, a higher probability of fatigue over long bouts of mobility, and difficulty 

negotiating inclines.  The accumulation of this greater effort can also increase the potential 

for injury in the upper extremities (Boninger et al., 2003; van der Woude LHV, Dallmeijer 

AJ, Janssen TWJ, & Veeger D, 2001).  Regretfully, despite the risks associated with low 

performance wheelchairs, modern wheelchair design is hinged upon meeting unempirical 

weight cutoffs defined by Medicare for varying amounts of financial coverage. 

 The need to improve manual wheelchair mobility has motivated a substantial body 

of research targeting wheelchair propulsion effort.  The effort required to propel manual 

wheelchairs is a reflection of two sets of variables: the mechanics of the wheelchair and 

the biomechanics of the human propulsion.  This project focuses on the wheelchair as a 

mechanical system which, to date, has not received much attention from the research 

community.  The existing studies of mechanical systems target improved design and 

configuration and have largely focused on frictional energy loss.  In 2003, van der Woude 

evaluated a rolling-resistance measurement technique that measured the force required to 

push (via handlebars) different wheelchairs at various constant speeds over multiple 

surface types (Thacker & Foraiati, 1991; van der Woude, Geurts, Winkelman, & Veeger, 
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2003).  Alternatively, Frank and Abel investigated the impact of caster size and shape on 

caster rolling resistance (Frank & Abel, 1989).  Within the same study, they also measured 

the scrub resistance of different casters by loading individual casters on a turntable and 

measuring the requisite torque to rotate the platform.  In a 1989 study by Gordon, multiple 

performance characteristics of different wheelchair drive wheels were assessed, including 

rolling resistance, static friction, and spring rate (Gordon, Kauzlarich, & Thacker, 1989).  

In 2002, roll-down tests by Sawatzky compared the rolling resistance of a lightweight 

manual wheelchair when fitted with five different sets of drive wheels (Sawatzky, Denison, 

& Kim, 2002).  While the findings of these studies do further the base of knowledge for 

wheelchair resistive losses, they do not fully translate to clinically-useful knowledge 

because they are largely limited to component-level tests and omit the complex interactions 

that take place between wheelchair components at a systems level during active propulsion. 

 System-level dynamic wheelchair models would offer the ability to analytically 

investigate how different components and designs influence performance.  The prevalence 

of dynamic models for mechanical systems is a testament to their value as analytical tools.  

In the automotive industry, vehicle dynamics are modeled in order to optimize suspension 

systems, chassis form, and various other design factors that determine performance (Ellis, 

1969).  Bicycle models have also been implemented for design optimization, as well as to 

investigate lateral stability (Franke, Suhr, & Rieß, 1990).  Similar models have been 

developed by the wheelchair community, but these are either limited or lack sufficient 

empirical validation.  Multiple models for characterizing the rolling resistance of drive 

wheels have been developed, with Kauzlarich presenting the hysteresis loss model for 

solid-filled tires (J. J. Kauzlarich & J. Thacker, 1985) and Sauret defining a simplified 
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model where only system mass, wheel mass, wheel radius, and the fore-aft distance 

between the theoretical and actual tire centers of pressure are required (Sauret et al., 2012).  

System-level wheelchair models have been developed in two separate studies by Cooper 

and Chenier, but the former is a model limited to straight motion (Cooper, 1990), while the 

latter lacks accurate modeling of kinetics by assuming all system rolling resistance is 

attributed to the caster wheels (Chénier, Bigras, & Aissaoui, 2011).  In 1985, Johnson and 

Aylor did develop a substantial dynamic model for controlling an electric wheelchair that 

was mechanically similar to modern manual wheelchairs, encompassing the power 

transmission dynamics from the motor to the drive wheels and all of the potential resistive 

forces that may act at the wheel-surface interfaces (Johnson & Aylor, 1985).  However, the 

resistive forces included in this model were largely estimated without empirical 

measurements, and model validation was only conducted for straight maneuvers with the 

casters angled at different initial headings.  The lack of model validation for the Johnson 

and Aylor study was likely a result of limited system controllability and repeatability, 

indicating the need for a controllable precision propulsion system that could drive the 

wheelchair through a wide range of maneuvers to validate the wheelchair dynamic model. 

1.3 Research Aims  

 Based on the reviewed literature, we can conclude that manual wheelchair research 

can greatly benefit from the two following advancements: 1) a standardized and higher 

resolution benchmark for wheelchair performance, and 2) models based on empirical 

testing that inform manufacturers how to optimize the design of MWC components.  For 

this purpose, a wheelchair-propelling robot (Liles, Huang, Caspall, & Sprigle, 2014) has 

been developed to permit highly repeatable measurements and a larger volume of collected 
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trials than possible with human subjects.  While the use of this robot excludes the human 

biomechanics from wheelchair propulsion, it is not different from modern test methods that 

characterize the mechanical performance of a system independent of the user.  Coupling 

this system-level testbed with empirical models further represent a novel and synergistic 

approach to the study of MWC performance.  The basis of these models are centered on 

the energy conservation equation defining MWC propulsion work (Equation 1), assuming 

it is traveling over a level surface. 

 𝑊𝑖𝑛 = ∆𝐾𝐸 + 𝐸𝑙𝑜𝑠𝑠 (1) 

In this equation, 𝑊𝑖𝑛 is the input propulsion work, 𝐾𝐸 is the system kinetic energy, and 

𝐸𝑙𝑜𝑠𝑠 is the resistive energy loss.  The stored energy represented by 𝐾𝐸 is a function of the 

inertial properties of the wheelchair components, while the dissipated work, 𝐸𝑙𝑜𝑠𝑠, is 

dependent on the resistive/frictional forces associated with each component.  Furthermore, 

both types of work are dependent on the motion of each wheelchair component.  This 

relationship illustrates that propulsion work is a function of the wheelchair’s inertial and 

frictional parameters, as well as the type of maneuver performed. 

The work of this dissertation can be summarized into the three following research aims. 

1. Develop component-level test methods to evaluate the inertial and resistive 

properties of manual wheelchair components. 

 Under this aim, we seek to design component-level test methods with motivation 

from theoretical models of MWC kinetic energy and resistive energy loss.  For the test 

methods that show precedent in the current literature, we will attempt to simplify and refine 
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the existing methods.  Fulfilling this aim with offer manufacturers a series of tools for 

comparing the ex-situ energy consumption of various wheelchair components. 

2. Develop a system-level test method to distinguish the mechanical performance 

of various manual wheelchair configurations across maneuvers representative 

of everyday wheelchair mobility. 

Prior human-based approaches have demonstrated their lack of measurement resolution 

when attempting to distinguish MWC configurations.  Furthermore, the maneuvers are 

largely constrained to linear motion, effectively neglecting the impact of turning on 

everyday MWC mobility.  Previous mechanical system-level experiments are also largely 

constrained to linear motion, and their measurements of passive motion may not translate 

accurately to active propulsion.  Fulfilling this aim would offer a reliable method and 

metric by which clinicians and manufacturers can define mechanical MWC performance. 

3. Develop empirical models to relate component-level measures to system-level 

results. 

The system-level test method, while a better measure of in-situ performance, is likely to be 

much more instrumentation-intensive than the component-level test methods.  Thus, 

fulfilling this third aim will create an opportunity for manufacturers to key off of the 

simpler component-level tests to estimate the system-level MWC performance.  By 

improving accessibility to this information, manufacturers will be empowered to better 

optimize their MWC designs. 
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CHAPTER 2. COMPONENT-LEVEL TEST METHODS 

Like with any other mechanical system, the components that a MWC is comprised 

of determine its mechanical performance.  The composite mass and inertia of the 

components dictate the difficulty with which the MWC system can accelerate, and resistive 

losses due to frame flexion and vibrations can lead to increased propulsion effort during 

the non-braking phase of maneuvers.  For this study, the components that were selected for 

characterizing their inertial and resistive properties are the MWC drive wheels (rear 

wheels) and casters (front wheels).  This decision was motivated by the general notion that 

the tires in most wheel-based system are usually the strongest determinants of that system’s 

performance, and MWC especially so.  Unlike automobiles, the typical MWC relies solely 

on human-applied forces to navigate, thus rendering propulsion efficiency a predominantly 

biomechanics-dependent variable.  When compared to other human-propelled vehicles 

such as the bicycle, the MWC is distinct in its significantly lower range of operating 

velocities (Sonenblum SE et al., 2012b), which diminish its sensitivity to vibrational loss 

and air drag.  Experimental and modeling wheelchair literature lend support that drag and 

bearing loss contributions can be considered negligible (Hofstad & Patterson, 1994), which 

leaves casters and drive wheels as the predominant sources of loss for MWCs.  The 

component-level tests for the drive wheels and casters will be divided into the assessment 

of their properties of inertia and resistive loss.  Furthermore, the inertial properties will be 

divided into measurement of component mass and moment of inertia, while the resistive 

loss properties will be divided into rolling resistance force and scrub torque. 

 



 8 

2.1 Component Diversity 

A diverse set of casters and drive wheels were selected for component testing.  This 

wide variety enabled us to capture a better representation of the variance in commercial 

wheelchair components.  Additionally, being able to test components of various size and 

shape demonstrates the robust capabilities of the developed measurement methods.  This 

will describe the dimensions, shape, and tire hardness of the selected casters and drive 

wheels, as well as the different loading conditions and surface types they were tested across 

for evaluating their resistive loss properties.   

Each wheelchair caster and drive wheel were acquired brand new for the purpose 

of component testing, and were assumed to be a representative sample for that entire 

component type.  The unloaded diameter of each caster and drive wheel were measured via 

ruler and their tire thicknesses were measured via caliper.  A digital scale was used to 

measure the mass of each drive wheel and caster.  In lieu of tire stiffness, tire hardness was 

measured using a Type A durometer as demonstrated in Figure 1.  To mitigate the impact 

of tire surface non-homogeneity, three hardness readings were taken for each wheel, and 

Figure 1. Durometer measurement of tire 

hardness 



 9 

the resultant average recorded as the representative tire hardness.  All measurements of 

pneumatic casters and wheels were taken with their inner tubes inflated to the 

recommended pressure.  The comprehensive properties of each caster and drive wheel are 

described in Table 1 and Table 2, respectively.  

Table 1. Caster Wheel Properties 

Caster Wheel 

(Hub View) 

Caster Wheel 

(Profile View) 

Name Diameter 

[cm] 

Tire width 

[cm] 

Mass 

[kg] 

Tire 

Hardness 

  

4 x 1.5’’ 

Frog Legs 

Soft Roll 

(FLSR) 

10.6 3.60 0.22 76 

  

5 x 1.5’’ 

Primo Soft 

Roll (SR) 

12.6 2.18 0.39 65 

  

5 x 1’’ 

Primo 

12.4 2.43 0.22 85 
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6 x 1’’ 

Primo 

Pneumatic 

(35 psi 

inflation) 

15.1 2.79 0.26 60 

  

6 x 1.5’’ 

Primo 

14.7 3.69 0.33 89 

  

6 x 1’’ 

Primo 

14.4 2.58 0.30 89 

  

3 x 1’’ 

Frog Legs 

Narrow 

Court 

(FLNC) 

7.6 2.45 0.12 88 

  

6 x 1’’ 

Frog Legs 

Narrow 

Court 

(FLNC) 

15.2 2.45 0.31 89 
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Table 2. Drive Wheel Properties 

Drive Wheel 

(Hub View) 

Drive Wheel 

(Profile View) 

Name Diameter 

[cm] 

Tire width 

[cm] 

Mass 

[kg] 

Tire 

Hardness 

  

24 x 1’’ 

Solid Mag 

62 2.75 2.07 82 

  

24 x 1’’ 

Spinergy 

(100 psi 

inflation) 

60 2.65 1.71 49 

  

24 x 1-3/8’’ 

Primo 

Orion Stock 

Pneumatic  

(75 psi 

inflation) 

62 3.28 1.86 67 

  

24 x 1’’ 

Schwalbe 

Right Run 

(100 psi 

inflation) 

60 2.85 1.82 N/A 

The ranges and medians of each wheel property, separated by casters and drive wheels, is 

given in Table 3.  Based on the statistics, the casters are quite diverse in their diameter and 

mass, while their tire width tends towards the lower end of the range and their hardness 
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tends towards the higher end of the range.  The drive wheels do not appear to vary much 

in both diameter and mass, but present a moderate diversity in both tire width and hardness, 

with the tire width tending towards the lower end of the range.  The wheel profile outlines 

in Figure 2 further serve to illustrate the diversity of the shapes and sizes of the tested 

components. 

Table 3. Summary of Component Properties 

 Casters (8 total) Drive Wheels (4 total) 

Wheel Property Range Median Range Median 

Diameter [cm] 7.6 – 15.2 13.5 60 – 62 60 

Tire Width [cm] 2.18 – 3.69 2.52 2.65 – 3.28 2.85 

Mass [kg] 0.12 – 0.39 0.28 1.71 – 1.86 1.82 

Hardness 60 – 89 86.5 49 – 67 58 

 

Figure 2. Component Tire Profile Outlines 
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 The loading conditions applied to the casters and drive wheels for measurements of 

rolling resistance force and scrub torque were based on the framework of an idealized 

MWC at three distinct weight distributions. The total mass of the loaded MWC was defined 

as 100 kg and configuration weight distributions were identified as 60%, 70%, and 80% 

load on the drive (rear) wheels.  Thus, this equated to the casters and drive wheels each 

being loaded at their three representative configuration loads during the resistive loss 

component tests.  Table 4 defines these loading values and their corresponding wheels and 

configurations. 

Table 4. Component Loadings by Representative System Weight-Distribution 

Percent Load on Drive 

Wheels 

(Total Load = 100 kg) 

Normal Load on Each 

Caster 

Normal Load on Each  

Drive Wheel 

60% 20 kg 30 kg 

70% 15 kg 35 kg 

80% 10 kg 40 kg 

 The surfaces types on which the component resistive losses were measured are 

linoleum tile and low-pile carpet.  Since test surfaces have to accommodate both 

extractable samples and sufficient space for corresponding systems-level MWC testing, the 

tile material was sourced from the old Rehabilitation Engineering and Applied Research 

lab space, which was assessed to have sufficient room to accommodate a systems-level 

MWC test track.  Given its comparative ease of installation and removal, the carpet was 

sourced from Home Depot in a large enough roll to provide a systems-level MWC test 

track.  Figure 3 depicts a sample of each surface type.  
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2.2 Predicate Work (Trifilar Pendulum) 

 The inertia and mass of the wheelchair system’s components contribute to the total 

propulsion work that is stored as mechanical energy.  While the mass of these components 

can be easily evaluated, the rotational inertias are not. Due to the irregular shape and non-

homogenous density of the wheelchair system components, it is necessary to empirically 

measure the wheelchair constants mass and moment of inertia.  An instrument well-

documented in literature, the trifilar pendulum (Du Bois JL, Lieven NA, & Adhikari S, 

2009; Hou ZC, Lu Y, Lao Y, & Liu D, 2009; Ringegni, Actis, & Patanella, 2001), was 

employed to measure the moment of inertias of the various drive wheels and casters used 

within this study.  The trifilar pendulum is comprised of two equilateral Dibond triangles 

connected by their corners via steel wires.  One of the triangles are fixed to the ceiling, 

Figure 3. Samples of Test Surfaces 
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leaving the second one to be suspended in the air via the aforementioned steel wires, with 

both triangles adjusted to be perpendicular to gravity via a level.  When the bottom triangle 

is perturbed such that it oscillates about its yaw axis without translation, it presents the 

behavior of a simple damped harmonic system.  The operating principal of this device is 

that the moment of inertia of the bottom triangle is a function of its mass and period of 

rotation, specifically described as 

 
𝐼 =

𝑚𝑔𝑅2𝑇2

4𝜋2𝐿
 (2) 

where I is the moment of inertia of the bottom triangle, m is the mass of the bottom triangle, 

g is gravitational acceleration, R is the distance from the triangle center to a triangle corner, 

L is the wire length connecting the two triangles, and T  is the period of yaw rotation.  This 

relationship remains true when a wheelchair component such as a drive wheel (Figure 4) 

is placed atop the bottom triangle, except now m and I represent the combined component 

and platform mass and moment of the inertia, respectively.  Note that the component being 

Figure 4. Drive Wheel Rotational Inertia Measurement by Trifilar Pendulum 
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tested must be centered on its rotational/yaw axis, and cannot be allowed to rotate as the 

platform oscillates.  The mass of the component is measured via a digital scale and the 

length dimensions are measured with a ruler and tape measure.  The period of oscillation 

is derived from a video recording of the bottom of the platform (Figure 5) using a camera 

of known frame rate (60 fps).  By tracking one of the triangle corners as a reference point, 

it is possible to manually count the number of frames (in QuickTime Player) it takes for 

the reference point to oscillate 50 cycles; converting these frames to time and dividing by 

the number of cycles results in the period, T.  Using this method also allows the 

experimenter to confirm that there is minimal translational motion of the platform’s center 

of rotation.  

In addition to the drive wheels (Figure 5) and casters (Figure 6) rotational inertias 

being assessed on the trifilar pendulum, the yaw inertias of the casters-and-fork assemblies 

(Figure 6) were characterized to account for the swivel kinematics presented in wheelchair 

Figure 5. Screenshot of Frame Counting for Cycle Period 
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maneuvers.  These methods were adopted for this study to characterize the moment of 

inertias of 8 casters and 6 drive wheels, which will be detailed in the results section of this 

chapter. 

 

2.3 Development of Coast-down Method 

 The rolling resistance of the caster and drive wheels were assessed utilizing a coast-

down cart method.  Prior approaches documented in literature include the “rolling” of a 

two-wheel cart over a treadmill/roller while forces are measured on the un-wheeled end 

(Frank & Abel, 1989).  This methodology minimizes the need for four identical wheels and 

measures the rolling resistance forces directly.   Utilizing this method, however, greatly 

limits the surfaces that can be evaluated given the constraints of what can be applied to a 

treadmill/roller surface.  Over-ground methods, on the other hand, rely on measuring or 

inferring the deceleration rate of a rolling, four-wheel cart on the surface of interest.  

Conventionally, this is approached in one of two ways: 1) controlling the release velocity 

and measuring the cart travel distance, or 2) measuring the change in velocity during a 

Figure 6. Caster Rotational Inertia and Caster-and-Fork Yaw Inertia 

Measurement 
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distance/period of the cart’s travel.  The former approach usually requires a curved ramp 

that allows the cart to be released with a fixed potential energy and a smooth ramp-to-

surface transition, as well as needing a sufficiently large space for a the cart to complete its 

travel (Frank & Abel, 1989).  The second approach is much less constrained by space, but 

typically requires a series of break-beam sensors to evaluate a series of discrete time-

position data points for the cart (Hoffman, Millet, Hoch, & Candau, 2003).  An 

instrumented drive wheel (SmartWheel) popularly used in studies of wheelchair propulsion 

biomechanics (Cowan, Boninger, Sawatzky, Mazoyer, & Cooper, 2008; Hurd, Morrow, 

Kaufman, & An, 2009) could potentially be to measure the cart deceleration as a function 

of wheel rotation rate.  However, the use of an instrumented wheel is not only expensive, 

but also bases all rolling resistance measures on the properties of that particular drive 

wheel.  In most of these existing over-ground rolling resistance measurement methods, the 

manual wheelchair itself has been used as the “cart”, which means these system-level 

rolling resistances do not allow for the impact of casters and drive wheels to be 

differentiated. 

2.3.1 System Design and Rationale 

 The coast-down cart method devised in this study improves upon all facets of the 

existing rolling resistance measurement methods: 1) the cart is adaptable use for both 

casters and drives wheels, 2) the instrumentation does not impact the component inertias 

and resistive forces, 3) the cart can used on any surface, 4) there are comparatively minimal 

space requirements, and 5) only two “test” wheels are needed.  These enhancements are a 

result of three particular design features in the coast-down cart methodology: multi-axle 

mounts, wheel “encoders”, and “control” cart wheels. 
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 The body of the coast-down cart was constructed with a 41 cm x 71 cm 

sheet of plywood, with a 3/4” thickness to support loads upwards of 100 kg.  The front axle 

mounts were designed to only accommodate the “control” wheels (6”x 1.5” Primo casters), 

and thus required a single mounting hole.  These wheels are always mounted to the cart for 

reasons that will described later in this section.  The rear axle mounts however, were 

designed for mounting the “test” wheels, and thus meant to accommodate both drive 

wheels and various sizes of casters.  The height of these axle holes were cut such that when 

a set of “test” wheels were mounted, the angle of cart surface formed with the floor surface 

never exceeded 2 degrees, meaning that the intended normal loads on the cart were 

impacted by less than 0.1%.   The drive wheel axle hole was designed for nominal 24”-

diameter drive wheels, while the caster axle holes could fit casters with diameters of 3”, 

4”, 5”, or 6”.  Furthermore, the hole and axle sizes were selected based on the common 

bearing diameter of the drive wheels (1/2”) and casters (5/16”) used in this experiment.  

Figure 7. Coast-down Cart Frame Design 
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 The “encoders” used on the coast-down cart are simply a pair of time-synchronized 

3-axis accelerometers (MSR Electronics) that are mounted to the face of the “control” 

wheels.  Each accelerometer is set to sample at the maximum rate of 51.2 Hz.  Given that 

the coast-down decelerations are significantly smaller than that of gravitational 

acceleration (5% or less), the accelerometers can be used reliably as angular encoders by 

tracking the angle their intrinsic coordinate axes form with the direction of gravitational 

acceleration.  More specifically, the equation describing this can be written as: 

 

=

{
 
 

 
 2𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑎𝑦

√𝑎𝑥2 + 𝑎𝑦2 + 𝑎𝑥
) 𝑖𝑓 𝑎𝑥 > 0 𝑜𝑟 𝑎𝑦 ≠ 0,

𝜋 𝑖𝑓 𝑎𝑥 < 0 𝑎𝑛𝑑 𝑎𝑦 = 0,

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑓 𝑎𝑥 = 0 𝑎𝑛𝑑 𝑎𝑦 = 0.

 (3) 

where 𝜙 is the angle the accelerometer x-axis forms with the direction of gravity, 𝑎𝑥 is the 

acceleration measured along the accelerometer x-axis, and 𝑎𝑦 is the acceleration measured 

Figure 8. Accelerometer Mounted on "Control" Wheel 
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along the accelerometer y-axis.  This calculation is employed in a MATLAB script as the 

“atan2” function, which calculates this four-quadrant inverse tangent.  Taking the time-

derivative of 𝜙 results in that “control” wheel’s angular velocity. 

The Figure 8 depicts how the accelerometer is mounted onto the “control” wheel 

and Figure 9 shows a sample reading of one of the sensors following a few revolutions of 

the “control” wheel.  Using this measurement method, one can see that a higher frequency 

measurement equates to higher rotational velocities.  The wheel angular velocity derived 

from these accelerometers are then coupled with dimensional measurements of the cart and 

“control” wheels to determine the velocity of the center of mass.   Figure 10 illustrates the 

dimensions for Equations 4 - 6 that define the velocity of the cart at the center of the front 

axle, the cart yaw rate, and the velocity of the cart at the center of mass, respectively. 

Figure 9. Accelerometer Sample Data 
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𝑣𝐴𝐶 = 𝑟 (

�̇�𝐿 + �̇�𝑅
2

) (4) 

 
�̇� =  𝑟 (

�̇�𝑅 − �̇�𝐿
𝑠

) (5) 

 
𝑣𝐶𝑂𝑀 = √𝑣𝐴𝐶2 + (𝑢�̇�)

2
 (6) 

The  𝑣𝐴𝐶  is the cart front axle center velocity, �̇� is the cart yaw (turning) rate, 𝑣𝐶𝑂𝑀 

is the cart center of mass velocity, 𝑟 is the “control” (front) wheel radii, 𝑠 is the lateral 

Figure 10. Coast-down Cart Dimensional Variables 
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wheel base of the “control” wheels, �̇�𝐿 and �̇�𝑅 are the left and right “control” wheel angular 

velocities, and 𝑢 is the distance from the front axle to the center of mass.  

Utilizing a MATLAB code to implement Equations 4 - 6, both 𝑣𝐴𝐶  and 𝑣𝐶𝑂𝑀 are 

calculated.  A velocity window of 0.95 m/s to 0.65 m/s – defined based on wheelchair user 

propulsion speeds (Sonenblum SE et al., 2012b) – is applied to parse out a segment of the 

coast-down velocity, as shown in Figure 11 (0.95 m/s green line; 0.65 m/s red line).  A 

linear regression is fit to this segment and the slope of the line is taken as the average 

deceleration rate.  For a typical coast-down test, the manually pushed release speed (peak 

velocity) is controlled to be within the ranges of 1.0-1.2 m/s, all while maintaining the same 

point of release.  While it has been previously established that wheelchair deceleration rate 

is not a function of velocity (Bascou, Sauret, Villa, Lavaste, & Pillet, 2015; Lin, Huang, & 

Sprigle, 2015), we have secondary reasons for controlling the release velocity.  The 

minimum bound of this release speed ensured the desired window of analysis was captured.  

The maximum bound was enforced for spatial contraints, as well as to ensure the coast-

Figure 11. Velocity Profile of Single Coast-down 
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down phase took place over a consistent stretch of surface, diminishing the impact of 

surface irregularities.  

Taking a step back, we should note that 𝑣𝐶𝑂𝑀 is a function of 𝑢 (distance from front 

axle to center of mass), which, unlike the wheelbase, is not a fixed physical dimension of 

the cart that can be directly measured.  To evaluate the COM position, we placed the cart 

on the iMachine (Eicholtz, Caspall, Dao, Sprigle, & Ferri, 2012), an in-house device that 

can measure the mass and horizontal center of gravity of large bodies, as shown in Figure 

12.  As per iMachine protocol, the cart was adjusted via feedback from the iMachine’s 

visual interface until the cart COM coincided with the origin of the platform coordinates.  

Measuring the front axle position along the y-axis in this configuration yields 𝑢.  It is 

important to point out here that 𝑟, the “control” wheel radius, is a function of 𝑢.  This arises 

from the fact that 𝑢 can be used to calculate the fore-aft weight distribution of the cart, 

which impacts the load on the “control” wheels, and thus the wheel radius.  To calculate 

the fore-aft weight distribution, we refer to the free body diagram in Figure 13 and take 

moments about A, the point of contact between the “control” (front) wheels and the surface. 

Figure 12. Coast-down Cart on iMachine 
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  Combining like terms yields Equation 7, 

 𝑅𝑟 = 𝑊 (
𝑢

𝑑
) (7) 

where 𝑅𝑟 is the reaction force of the “test” (rear) wheels, 𝑊 is the total load (including cart 

weight), 𝑢 is the horizontal distance from the front axle to the center of mass, and 𝑑 is the 

horizontal distance from the front axle to rear axle.  Since the total reaction forces equate 

to the total load, the load on the front wheels can be defined by Equation 8 as 

 𝑅𝑓 = 𝑊 (1 −
𝑢

𝑑
) (8) 

Once the load on the “control” (front) wheels have been established, one can measure its 

corresponding loaded radius.  This measurement is taken via a standing caliper that 

measures the height of the cart top (Figure 14).  Subtracting this height by the fixed vertical 

Figure 13. Cart Free-body Diagram 
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distance from the cart top to the axle center yields the loaded “control” wheel radius.  This 

loaded radius estimates the active radius of the “control” wheels during coast-downs. 

 Having described all of the parameters and methods necessary to evaluate the cart’s 

coast-down deceleration, the final step is to translate this deceleration rate into rolling 

resistance force.  The utility of the “control” wheels allows for the rolling resistance forces 

of the “test” wheels to be isolated.  By loading a cart fitted with four identical “control” 

wheels such that there is 50-50 fore-aft weight distribution and lateral load symmetry, the 

rolling resistance force of a single “control” wheel can be described by Equation 9 

 
(𝐹𝑅𝑅)𝑐 =

𝑀𝑎𝐶𝑂𝑀
4

 (9) 

where (𝐹𝑅𝑅)𝑐 is the rolling resistance force of a single “control” wheel, 𝑀 is the total mass 

of the loaded cart system, and 𝑎𝐶𝑂𝑀 is the deceleration of the cart center of mass as 

Figure 14. Measurement of "Control" Wheel Loaded Radius 
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measured by coast-down.  By pairing this rolling resistance force with cart configurations 

that have the same 
𝑀

4
 load on each “control” (front) wheel, the equation for the rolling 

resistance force on the “test” (rear) wheels can be defined by Equation 10 

 
(𝐹𝑅𝑅)𝑡 =

𝑀𝑎𝐶𝑂𝑀 − 2(𝐹𝑅𝑅)𝑐
2

 (10) 

where (𝐹𝑅𝑅)𝑡 is the rolling resistance force of a single “test” wheel.  

 To apply the previously designated configuration loads to each caster and drive 

wheel, a total of six cart configurations were defined, three for casters and three for drive 

wheels.  Two cart configurations, both corresponding to the 60% weight distribution on 

drive wheels for a 100 kg MWC, are depicted in Figure 15.  Table 5 further defines each 

configuration’s cart load, combined “control” wheel load, and combined “test” wheel load. 

Figure 15. Cart 60%WD Configurations for Caster and Drive Wheels 
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Table 5. Cart Weight-distribution Configuration Loads 

Configuration Cart Total Mass 

Combined 

“Control” Wheel 

Load 

Combined “Test” 

Wheel Load 

60% Load on DWs 

(Testing Casters) 
80 kg 40 kg 40 kg 

60% Load on DWs 

(Testing Casters) 
60 kg 30 kg 30 kg 

60% Load on DWs 

(Testing Casters) 
40 kg 20 kg 20 kg 

60% Load on DWs 

(Testing DWs) 
100 kg 40 kg 60 kg 

60% Load on DWs 

(Testing DWs) 
100 kg 30 kg 70 kg 

60% Load on DWs 

(Testing DWs) 
100 kg 20 kg 80 kg 

 For the specific tile and carpet surfaces utilized in our study, cleaning procedures 

were followed to ensure a consistent surface condition across all trials.  The tile surface 

Figure 16.  Tile and Carpet Test Tracks 
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was wiped down with a light cleaner after each set of coast-downs, while the carpet was 

vacuumed with the same frequency.  Since the carpet test surface would normally be stored 

as a roll between uses, a power wheelchair was used to drive over the carpet after it was 

initially laid out in order to help the carpet settle into a flat shape.  Figure 16 shows what 

both test tracks looked like. 

2.3.2 System Validation 

 The coast-down cart methodology was validated in both measurement accuracy and 

test repeatability.  The accuracy of the accelerometer-based angular velocity was validated 

against the angular velocity measured by a digital encoder (US Digital), a device designed 

for accurate measurement of rotational motion.  The impact of cart turning and surface bias 

on COM deceleration accuracy was investigated, leading to the development of 

countermeasures.  Test repeatability was considered achieved based on the benchmark of 

a CV (coefficient of variation) < 10% for deceleration rates measured across 10 repeated 

trials. CV is simply sample standard deviation divided by sample average.  A manual 

wheelchair was used in a series of nine straight motion coast-down maneuvers to compare 

the angular velocity data collected via accelerometer and digital encoder.  The manual 

wheelchair data was used because the digital encoders could not be easily retro-fit to the 

coast-down cart.  The setup for the accelerometer versus digital encoder measurement 

method is shown in Figure 17, with the accelerometer mounted on the in-house casing 

built for the encoder.  While it would have been more desirable to mount the accelerometer 

to the flat face of the encoder to minimize translational accelerations and more closely 

emulate the setup of the coast-down cart, the encoder signal cable obstructed the rotation 

of the accelerometer.  Figure 18 illustrates the angular velocity time series as measured by 
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the encoder and accelerometer (MSR).  Solely from visual assessment, we can see that the 

two data sets are very close, with the MSR data presenting a slight negative offset from the 

encoder data at the peaks.  An analytical comparison of data sets’ coast-down decelerations 

resulted in the accelerometer data having an average absolute error of 1.76% with respect 

to the encoder data; the maximum error observed was 3.75%.  These values indicate that 

the accelerometer measurement error of coast-down deceleration is sufficiently small to be 

considered an accurate substitute for the digital encoder.  Furthermore, the positioning the 

accelerometers on the coast-down cart is conducive to reducing the errors that arise from 

translational acceleration due to the off-axis accelerometer positioning during the 

validation MWC coast-downs. 

Figure 17. Accelerometer Mounted on Digital 

Encoder for Validation Testing 
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 During pilot cart coast-down tests, it was observed that small heading changes of 

~10 degrees took place from start to stop of rolling.  Seeing as the window of analysis (0.95 

m/s to 0.65 m/s) only accounts for about 30% of the total displacement, the heading change 

during the analyzed period would be ~3 degrees.  To ensure that this did not adversely 

affect the coast-down analysis, 𝑎𝐶𝑂𝑀 (the cart’s COM deceleration) was compared to 𝑎𝐴𝐶 

(the cart’s front axle-center deceleration) in every trial for data quality control.  All coast-

downs were controlled such that the percent difference of 𝑎𝐶𝑂𝑀 with respect to 𝑎𝐴𝐶 never 

exceeded 1%.  Furthermore, it was noted that coast-downs in two opposing direction would 

typically result in a difference of 10% or more in the deceleration values.  Thus, to capture 

an accurate representation of rolling resistance over level ground, a designated track space 

was defined and tests were conducted in both the “forward” and “backward” directions 

along this track.  The resulting deceleration values of the two directions were averaged and 

used to calculate rolling resistance force. 

Figure 18. Accelerometer versus Encoder Velocity Measurements 
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 Test repeatability was characterized for every trial set of coast-downs.  For each 

unique combination of cart load, “test” wheel, surface, and track direction, a series of 15 

repeated coast-down trials were performed.  From this series, a trial set of 10 were selected 

based whether their release velocities fell within the 1.0 – 1.2 m/s range, as well as if their 

linear regressions were good fits to the coast-down velocity curve.  Initially, the R2 value 

was used to assess the latter, but given that practically all the R2 > 0.99, we opted to use a 

visual assessment of the plotted data.  Figure 19 illustrates an unacceptable and acceptable 

coast-down velocity curve.  As long as the regression R2 > 0.99 and the velocity regression 

line is shown to closely hug the velocity data (green), it is classified as an acceptable trial. 

2.4 Development of Wheel Scrub Method 

 Characterizing the rolling resistance of casters and drive wheels illustrates the 

resistive losses this components impart on the MWC during purely rectilinear motion.  

However, this is not reflective of everyday wheelchair mobility where turning maneuvers 

are ever-present (Sonenblum SE et al., 2012b).  Few studies have ventured to characterize 

Figure 19. Coast-down Data Selection Criteria 
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the turning resistances of maneuver wheelchairs as a system (Bascou et al., 2014; Bascou 

et al., 2015), and even less have examined the resistive losses of individual MWC 

components.  Frank and Abel examined the resistive losses of casters in terms of their scrub 

torque, which is the resistance experienced by the wheel when pivoted without rolling 

(Frank & Abel, 1989).  This torque can be likened to the resistance experienced when one 

dry steers in an automobile.  However, as seen in Figure 20, the use of manual force via a 

handle to elicit wheel scrub may produce misleading results due to uncontrolled pulley 

rotation rates.  

 A more recent study (Silva, Corrêa, Eckert, Santiciolli, & Dedini, 2017) has taken 

steps to empirically measure the cornering force present in MWC drive wheels, a resistive 

force that manifests itself when the MWC undergoes any turns with a non-zero radius of 

curvature.  Usually this involves the wheels simultaneously rolling and turning.  For this 

study, we elected to characterize the scrub torque of the casters and drive wheels instead 

of their corner force.  While measuring cornering forces would better represent curvilinear 

MWC maneuvers, there was a two-fold rationale for our choice: 1) the scrub torque 

Figure 20. Predicate Measurement Method of Caster Wheel 

Scrub Torque 
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represents an upper bound on the turning resistance a component would experience at a 

given load, and 2) the scrub torque measurement methodology was significantly more 

simplistic, which is an important factor in the primary goal of making these component 

tests extendable to industry application.  

2.4.1 System Design  

 The scrub measurement methodology in this study improves upon the existing 

Frank and Abel approach by defining and controlling consistent scrub (turning) rates 

representative of everyday wheelchair mobility, as well as implementing a modular design 

that allows for both casters and drive wheels to be tested on the same platform. 

 The wheel scrub torque measurement test rig operates by applying a normal load to 

a surface-wheel interface, and then applying pull forces that generate a constant rotation 

rate of the surface via an attached spool.  The relative motion between the test surface and 

wheel emulates the wheel scrubbing (pivoting) on the test surface.  The overall apparatus 

can be divided into three modular parts: 1) the pull force actuator/sensor, 2) the wheel 

Figure 21. Caster Wheel Scrub Torque Test Rig 
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mounting structure, and 3) the surface loading post.  As seen in Figure 21, these three 

modules are introduced incrementally from left to right.  Note that the middle and right 

image depict the wheel mounting structure used for casters.  In Figure 22, the wheel 

mounting structure used for drive wheels is incorporated instead.   

 Figure 22. Drive Wheel Scrub Torque Test Rig 

Figure 23. Pull Force Actuator/Sensor 
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The pull force actuator module incorporates a materials testing system (Zwick) to 

make use of its linear actuator, load cell, and data acquisition software (testXpert II).  The 

load cell and actuator are pictured in Figure 23.  A pulley attachment is also part of this 

module, and is responsible for translating the vertical pull force into a horizontal pull force 

via a cable.  

The caster mounting structure (Figure 24) suspends the caster between a set of 

mounting posts via a threaded axle through its bearing.  Properly sized spacers prevent 

lateral motion of the caster, and a set of plungers clamp the caster to prevent caster rotation 

when scrub torque is applied.  While casters are not constrained in rotation during in-situ 

scrubbing, this constraint is enforced to remove the impact of caster rotation variance.  To 

control and document the caster scrub test patches, a 5/32” centering punch pin mounted 

perpendicular to the caster hub face is used to align the caster angular position based on 

marked reference points on the caster rim.  This module also includes the frame and vertical 

linear bearing used to house the surface loading post.  The drive wheel mounting structure 

shares all of the same characteristics at the caster mounting structure, except the drive 

Figure 24. Caster Wheel Mounting Structure 



 37 

wheel orientation is rotated by 90 degrees and wheelchair brakes are used to lock drive 

wheel rotation (Figure 25). 

 

Figure 25. Drive Wheel Mounting Structure 

Figure 26. Surface Loading Post 
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The surface loading post is comprised of a loading platform, cable spool, and 

surface mounting plate (Figure 26).  The loading platform is a circular Dibond disk 

designed to support multiple standard plate weights.  A length of 1/2" steel rod connects 

the loading platform to the cable spool, although their rotational motion is disconnected 

due to a bearing internal to the spool.  The spool holds the wound cable that connects to 

the Zwick linear actuator and is bolted to the surface mounting plate.  Thus, when a pulling 

motion is applied to the cable, the spool and surface mounting plate rotate to scrub the 

wheel while the loading plate remains stationary.  The test surfaces attach to the surface 

mounting plate via four attachment screws in each corner.  The 5” x 5” size of these test 

surfaces were designed to accommodate the largest contact patch size of the drive wheels 

when loaded at 40-kg, as shown in (Figure 27).  

Figure 27. Drive Wheel Contact Patch on Surface Mounting Plate 
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In order to accurately apply and measure scrub torque, the cabling is visually 

assessed to ensure proper alignment is maintained.  As shown in Figure 28, the tangent of 

the spool should be aligned with the pulley and cable mount of the Zwick.  Once aligned, 

the lateral position of the pulley and spool do not require any adjustments across any caster 

scrub tests.  The vertical height of the pulley, however, is adjusted with every different 

wheel tested in order to maintain a horizontal cable from the spool to pulley.  This 

alignment is necessary as any vertical component of the pull force would result in not only 

any inaccurate scrub torque reading, but also potentially alter the normal load on the wheel.  

Visual assessment of cable alignment is able to achieve alignment errors less than 5 degrees 

as verified with angle gauges.  The impact of this error was demonstrated through small 

sample testing to change the scrub measurement by less than 0.2% 

In order to achieve pure scrub without sliding on the caster, the test surface’s axis 

of rotation must align accurately with the center of the contact patch between the wheel 

and test surface.  A pin-mounted centering bar is used to project the position of the axis 

onto a machined centering tip, which is then used as a point of reference to adjust the 

Figure 28. Pull Cable Alignment 
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position of the mounted wheel.  An example of how a centered caster would look relative 

to the centering tip is displayed in Figure 29. 

 For each scrub test, the pull rate of the linear actuator is 5 cm/s for a total pull length 

of 38 cm.  Since the spool diameter is 6.41 cm, the linear motion equates to a rotational 

rate of 1.56 rad/s (a quarter revolution per second) and a total rotation of 11.85 radians (or 

1.89 revolutions) for the test surface.  This rotational rate was selected based on previously 

observed rates of MWC turning (Sonenblum SE et al., 2012b), while the rotational 

displacement was selected to capture at least one revolution of steady-state scrub torque.   

 The collected load cell pull force data and the corresponding actuator linear 

displacement were collected at a sample rate of 100 Hz by the data acquisition software 

and output for post-processing in MATLAB.  The selected window of analysis was from 

150 mm to 351 mm of the linear actuator displacement (also termed as standard travel).  

The lower limit of the window was selected to allow the linear actuator time to take up the 

slack in the cable, as well as for the caster-surface scrub interaction to enter a steady-state.  

Figure 29. Centering Test Surface Rotation in Caster 
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The 351 mm upper limit was selected based on its 201 mm difference with the 150 mm 

lower limit, which can be converted to a rotational displacement of exactly one full 

revolution.  Figure 30 illustrates this window by the shaded region in the MATLAB post-

processing graph.  The force data within this window was averaged and multiplied by the 

spool diameter (6.41 cm) to yield the scrub torque for that trial.  To catch instances of bad 

trials where the pull force data was too noisy, a criteria of CV < 10% was enforced for each 

trial’s analyzed force data.  Trials that did not meet this requirement were re-measured. 

In characterizing the scrub torque of a caster for a single load on a single surface, a 

set of 5 repeated trials are performed on one pre-defined patch on the caster surface.  This 

trial set is preceded by surface cleaning and a single surface conditioning trial, which brings 

the total number of trials per caster tire patch to 6.  The scrub torques of the 5 trial set are 

averaged to give the representative value for that caster under that load and surface 

Figure 30. Caster Scrub Test Pull Force Data 
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configuration.  The same protocol is followed for drive wheels, except that each 

configuration is tested on two tire patches instead of one, and the average scrub torque of 

the two patches is taken as the representative scrub torque.  The test of two patches on drive 

wheels is intended to reduce the impact of greater tire non-homogeneity due to increased 

tire surface area. 

 To apply the previously designated configuration loads to each caster and drive 

wheel, a total of six disk weight combinations were defined, three for casters and three for 

drive wheels.  Table 6 defines each applied load, including the surface loading post mass. 

Table 6. Wheel Scrub Test Configuration Loadings 

Percent Load on Drive 

Wheels 

(Total Load = 100 kg) 

Load on Caster  

(with surface loading post) 

Load on Drive Wheel  

(with surface loading post) 

60% 20 kg 30 kg 

70% 15 kg 35 kg 

80% 10 kg 40 kg 

 For the specific tile and carpet test surfaces utilized in our study, cleaning and 

conditioning procedures were followed to ensure a consistent surface condition across all 

trials.  A single tile test surface was used across all trials conducted in this study, while a 

new carpet test surface was used with every distinct tire patch.  The reason for replacing 

the carpet test surface after each set of trials was to remove testing order bias as the carpet 

material experienced substantial wear with each repeated trial.  Figure 31 illustrates the 

two types of surface test patches, and Figure 32 demonstrates the degree of carpet wear 

after a trial set of 5 trials and 1 pre-conditioning trial. 
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Figure 31. Tile and Carpet Scrub Torque Test Surfaces 

Figure 32. Carpet Test Surface Before and After Scrub Test Trial Set 
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2.4.2 System Validation 

The wheel scrub measurement methodology was validated in both measurement 

accuracy and test repeatability.  The measurement accuracy was not based on the Zwick 

load cell given its well-documented accuracy and periodic maintenance calibrations.  

Instead, the accuracy and variance of the applied normal load was assessed during scrub 

torque tests.  Pilot testing indicated that pull forces on the caster test rig could reach 90 N 

and pull forces on the drive wheel test rig could be upwards of 250 N.  These large lateral 

loads had the potential to misalign the surface loading post and cause binding in the steel 

post’s linear bearing, thus impacting the applied normal load.  To assess the consistency of 

the applied normal load, a digital force gauge (Shimpo Instruments) was retrofitted to the 

caster and drive wheel mounting structures.  A rubber bumper was placed atop the force 

gauge to emulate the contact patch of the caster/drive wheel, as shown in Figure 33.  

Figure 33. Validating Normal Loading for Caster and Drive Wheel Scrub Test 

Rigs 
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Normal force data was collected at a sample rate of 10 Hz over the course of each scrub 

test and transmitted in real-time to the force gauge software.  Figure 34 depicts the 

graphical output of the measured normal load for the drive wheel test rig loaded with 30 

kg (60%WD configuration) on a tile test surface.  

Table 7. Caster Scrub Test Rig Normal Load Variability 

Trial 

Name 

Mean 

Load 

[N] 

StDev 

Load 

[N] 

CV 

Start 

Load 

[N] 

Max 

Load 

Decr. 

 [N] 

Max 

Load 

Incr. 

 [N] 

Max Load 

Decr.  

[% Start 

Load] 

Max Load 

Incr. 

[% Start 

Load] 

Mean 

Load Diff. 

[% Start 

Load] 

(10kg) 1 97.2 0.5 0.01 97.4 -1.4 0.6 -1.44% 0.62% -0.21% 

(10kg) 2 97.5 0.8 0.01 97.3 -1.1 1.5 -1.13% 1.54% 0.24% 

(10kg) 3 97.7 0.6 0.01 97.4 -1.0 1.3 -1.03% 1.33% 0.30% 

(15kg) 1 146.8 0.7 0.00 146.5 -1.0 1.4 -0.68% 0.96% 0.19% 

(15kg) 2 146.4 0.8 0.01 146.4 -1.6 1.2 -1.09% 0.82% -0.02% 

(15kg) 3 146.0 0.7 0.00 146.4 -1.9 0.6 -1.30% 0.41% -0.29% 

(20kg) 1 195.2 0.5 0.00 195.6 -1.5 0.2 -0.77% 0.10% -0.22% 

(20kg) 2 194.6 0.9 0.00 194.9 -1.8 1.5 -0.92% 0.77% -0.15% 

(20kg) 3 195.4 0.8 0.00 195.6 -1.6 1.0 -0.82% 0.51% -0.10% 

Figure 34. Force Gauge Force Measurement Plot 
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Table 8. Drive Wheel Scrub Test Rig Normal Load Variability 

 

Validation tests were conducted on the tile test surface for both the caster and drive 

wheel test rigs.  The caster test rig was tested at 10, 15, and 20 kg loads; the drive wheel 

test rig was tested at 30, 35, and 40 kg loads.  Each load condition involved three repeated 

scrub test trials.  The results of these trials are summarized in Table 7 and Table 8.  The 

results of the normal load validation experiment indicate that the caster test rig is capable 

of applying a consistent normal load, with maximum load deviations of less than 2 N and 

at most 1.54% of the starting load.  The largest percent difference between the starting load 

and average applied load over the course of the scrubbing action is only 0.30%.  This 

outcome is predictable given the lower pull forces that are being imparted to the caster test 

rig as a result of its lower configuration loadings. 

Trial 

Name 

Mean 

Load 

[N] 

StDev 

Load 

[N] 

CV 

Start 

Load 

[N] 

Max 

Load 

Decr. 

[N] 

Max 

Load 

Incr. 

[N] 

Max Load 

Decr.  

[% Start 

Load] 

Max Load 

Incr. 

[% Start 

Load] 

Mean 

Load Diff. 

[% Start 

Load] 

(30kg) 1 289.5 2.6 0.01 293.8 -8.6 0.0 -2.93% 0.00% -1.46% 

(30kg) 2 297.8 3.8 0.01 294.4 -1.8 10.5 -0.61% 3.57% 1.15% 

(30kg) 3 292.7 2.6 0.01 294.5 -6.3 2.7 -2.14% 0.92% -0.62% 

(35kg) 1 347.1 4.3 0.01 343.9 -3.5 11.2 -1.02% 3.26% 0.93% 

(35kg) 2 340.8 2.8 0.01 343.6 -7.9 2.1 -2.30% 0.61% -0.81% 

(35kg) 3 342.2 3.6 0.01 342.4 -6.5 6.6 -1.90% 1.93% -0.07% 

(40kg) 1 392.1 7.2 0.02 393.6 -11.6 12.4 -2.95% 3.15% -0.37% 

(40kg) 2 386.9 4.9 0.01 393.3 -13.4 2.6 -3.41% 0.66% -1.62% 

(40kg) 3 388.7 5.7 0.01 393.1 -12.2 6.2 -3.10% 1.58% -1.13% 
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  The drive wheel test rig also exhibited the capacity to apply relatively consistent 

normal loads.  However, maximum load deviations of 13 N and 3.57% of the starting load 

were considered marginally too high.  Coupled with video observations of the surface 

loading post flexing during the 40 kg load trials, an additional structural support was 

introduced to the drive wheel test rig.  Figure 35 shows the removal cross brace used to 

constrain the surface loading post from flexing in the direction of the pull force.  Adjustable 

standoffs prevent the cross brace from being too tight against the steel post.  A ball bearing 

in the center of the brace allows the steel post to move vertically with minimal friction and 

normal loads to be transferred completely when in contact with the brace.  Under these 

improved structural conditions, the normal load validation trials for the drive wheel were 

re-conducted to evaluate whether load consistency improved.  Table 9 summarizes the 

findings for the drive wheel test rig with the added cross brace.  

 

Figure 35. Drive Wheel Test Rig Cross-Brace 
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Table 9. Drive Wheel Scrub Test Rig (with cross-brace) Normal Load Variability 

 

 The results of Table 9 indicate that the additional cross brace provided the 

anticipated improvement to the normal load consistency during drive wheel scrub tests.   

The maximum load deviation was reduced by almost half to 7.9 N, while the maximum 

percent deviation was reduced by almost 1% to 2.70%.  The largest percent difference 

between the trial average load from the trial start load was also lowered by 0.6% to 1.0%.  

Video observation of the scrub tests also affirmed that the cross brace was fulfilling its 

role by keeping the surface loading post vertical during scrub trials. 

The repeatability of the scrub test rigs were assessed with the benchmark of CV < 

10% for a trial set of 5 repeated trials.  In conducting a few of these experiments, it was 

observed that the caster and drive wheel scrub torques underwent an incremental increase 

with each consecutive test, as illustrated by Figure 36.  It is hypothesized that this increase 

was due to the abrasion of the caster surface caused by each test, which altered the patch 

material friction and increased contact area.  The large rise in scrub torque between the 

Test 
Name 

Mean 
Load 
[N] 

StDev 
Load 
[N] 

CV 
Start 
Load 
[N] 

Max 
Load 
Decr. 
[N] 

Max 
Load 
Incr. 
[N] 

Max 
Load 
Decr.  
[% Start 
Load] 

Max 
Load 
Incr.  
[% Start 
Load] 

Mean 
Load 
Diff. 
[% Start 
Load] 

(30kg) 1 293.7 2.9 0.01 293.8 -5.8 4.1 -1.97% 1.40% -0.03% 

(30kg) 2 295.9 4.1 0.01 292.9 -4.6 7.9 -1.57% 2.70% 1.04% 

(30kg) 3 296.8 3.6 0.01 293.9 -4.0 7.9 -1.36% 2.69% 0.99% 

(35kg) 1 342.2 3.3 0.01 343.9 -6.0 5.9 -1.74% 1.72% -0.49% 

(35kg) 2 340.9 1.0 0.00 343.5 -3.8 0.0 -1.11% 0.00% -0.74% 

(35kg) 3 341.8 3.5 0.01 342.6 -5.2 6.5 -1.52% 1.90% -0.24% 

(40kg) 1 388.5 3.0 0.01 391.8 -7.5 2.1 -1.91% 0.54% -0.85% 

(40kg) 2 389.1 2.2 0.01 389.4 -4.6 3.7 -1.18% 0.95% -0.07% 

(40kg) 3 389.3 3.5 0.01 392.1 -7.3 3.8 -1.86% 0.97% -0.72% 
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first and second trial can be explained by the removal of any cleaning residue during the 

abrasions caused by the first trial.  The presence of this incremental increase prevented the 

test repeatability criteria from being achieved.  Keying off of the repeatability assessment 

results, we noted that the incremental increase with each trial diminished significantly by 

the third or fourth trial.  Thus, two complete trial sets were collected for each wheel surface 

patch, with the second trial set being used for analysis.  This equated to the 5 trials of 

interest being preceded by two surface cleaning procedures and 7 conditioning trials (recall 

that a single trial set consists of 1 trial to pre-condition the surface after cleaning and 5 

trials for the data).  This conditioning methodology shares consistency with ASTM 

standards (D1349-14, 2014; E1337-90, 2012) for measuring auto tire braking resistance 

and evaluating rubber material friction.  Analysis of this second, conditioned trial set 

allowed for the test repeatability benchmark of CV < 10% to be achieved across scrub 

torque measurements of both casters and drive wheels. 

2.5 Component Test Results and Discussion 

2.5.1 Component Mass and Moment of Inertia  

Figure 36. Impact of Scrub Test Trial Order 

Sample Caster Sample Drive Wheel 
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The mass of the various casters were smaller than the mass of the drive wheels by 

about an order of magnitude, with casters ranging between 0.12 – 0.39 kg and drive wheels 

ranging between 1.71 – 2.07 kg (Table 10 and Table 11).  Within casters, the heaviest 5 x 

1.5’’ Primo SR was 0.27 kg, or 225% greater in mass than the lightest 3 x 1’’ FLNC.  

Within drive wheels, the heaviest Solid Mag was 0.36 kg (21%) greater in mass than the 

lightest Spinergy.  However, when comparing these components to the overall mass of the 

MWC system (approximated as 100 kg), the drive wheels and casters each only account at 

most for 4% and 0.8% of the system mass, indicating that the benefits gained from a lighter 

caster or drive wheel are minute.  Let’s put this in the context of kinetic energy (KE), or 

the amount of mechanical energy that needs to be stored for a MWC system to reach a 

particular speed.  The translational KE of a 100 kg MWC system traveling at 1 m/s2 would 

be 100 J.  If the described system was initially using Solid Mag drive wheels and switched 

to Spinergy drive wheels, the translational KE under the same conditions would only be 

reduced to 99.28 J, or by 0.72%.  This percent reduction may indeed be greater in instances 

of turning maneuvers or lighter MWC loads, but in general will not exceed a few percent.  

Thus, the mass-based advantage of using different casters and drive wheels is very small. 

Table 10. Caster Inertial Measurements 

Caster Wheel Mass [kg] 
Rotational Inertia 

[kg-m2] 
Yaw Inertia (with fork) 

[kg-m2] 

4 x 1.5’’ FLSR 0.22 0.00050 0.00206 

5 x 1.5’’ Primo SR 0.39 0.00109 0.00204 

5 x 1’’ Primo 0.22 0.00076 0.00206 

6 x 1’’ Primo Pneumatic 0.26 0.00071 0.00209 

6 x 1.5’’ Primo 0.33 0.00116 N/A 

6 x 1’’ Primo 0.30 0.00097 0.00206 

3 x 1’’ FLNC 0.12 0.00042 N/A 

6 x 1’’ FLNC 0.31 0.00102 N/A 
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The caster-in-fork yaw inertias were very uniform and were twice in value 

compared to the greatest rotational inertia amongst the casters (Table 10).  Despite this 

difference, it should be noted that the casters only undergo yaw angle displacement 

(swivel) during MWC direction changes, which are transient in nature.  On the other hand, 

the rotation of the casters are ever-present in all instances of MWC motion.  The rotational 

inertias of the various casters were smaller than the rotational inertias of the drive wheels 

by more than two orders of magnitude, with casters ranging between 0.00042 – 0.00116 

kg-m2 and drive wheels ranging between 0.1120 – 0.1242 kg-m2.  Within casters, the 6 x 

1.5’’ Primo had the greatest rotational inertia and was 0.00074 kg-m2, or 176% greater in 

rotational inertia than the 3 x 1’’ FLNC, which had the smallest rotational inertia. 

Table 11. Drive Wheel Inertial Measurements 

 

 

 

Within drive wheels (Table 11), the Solid Mag had the greatest rotational inertia 

and was 0.0122 kg-m2 (11%) greater in rotational inertia than the Spinergy, which had the 

smallest rotational inertia.  Again, we would like to understand whether these differences 

in component rotational inertia significantly impact the overall system KE.  Assuming the 

MWC is traveling in a straight motion at 1 m/s, a drive wheel with an active radius of 30 

cm would be rotating at a rate of 3.33 rad/s.  Squaring this term and multiplying it with the 

drive wheel rotational inertia yields that component’s rotational KE.  Thus, the rotational 

KE difference between using a Solid Mag and Spinergy drive wheel comes out to be 0.14 

Drive Wheel Mass [kg] Rotational Inertia [kg-m2] 

Solid Mag 2.07 0.1242 

Spinergy 1.71 0.1120 

Stock Pneumatic  1.86 0.1180 

Schwalbe Right Run 1.82 0.1143 
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J.  Doubling this value to account for there being two drive wheels, the system’s rotational 

KE changes from 2.76 J to 2.48 J.  However, compared to the translational KE that 

dominates the system (100 J), this reduction accounts for less than 1% of the total system 

KE.  Thus, the rotational-based advantages between using different casters and drive 

wheels is also very small. 

2.5.2 Rolling Resistance 

Table 12. Caster and Drive Wheel Rolling Resistance Force on Tile 

In this section, the rolling resistances of casters and drive wheels under their 

configuration loads are tabulated, separated into tile and carpet results in Table 12 and  

Table 13, respectively.  Casters and drive wheels are separated in each table.  Within each 

table section, the components are listed in descending order of average rolling resistance, 

which is the mean rolling resistance across all loads for a single component (not tabulated).  

Rolling Resistance Force [N] 

Tile Caster Load (kg) Linear Regression 

Caster 20 15 10 Coefficient Constant R-squared 

6 x 1" Pneumatic 3.59 2.58 1.47 0.212 -0.635 0.999 

5 x 1.5" Primo SR 2.83 1.98 1.17 0.166 -0.495 1 

6 x 1.5" Primo 2.63 1.82 1.09 0.154 -0.462 0.999 

3 x 1" FLNC 2.44 1.67 0.92 0.152 -0.598 1 

5 x 1" Primo 2.39 1.63 0.93 0.146 -0.535 1 

6 x 1" Primo 2.06 1.52 0.96 0.11 -0.134 1 

6 x 1" FLNC 1.7 1.21 0.7 0.1 -0.294 1 

4 x 1.5" FLSR 1.69 1.14 0.64 0.106 -0.426 0.999 

Tile DW Load (kg) Linear Regression 

DW 30 35 40 Coefficient Constant R-squared 

24 x 1" Solid Mag 3.61 4.51 5.48 0.187 -2.029 1 

24 x 1" Spinergy 1.07 1.58 1.99 0.092 -1.673 0.996 

24 x 1" Schwalbe Right Run 1.12 1.48 1.72 0.06 -0.657 0.986 

24 x 1-3/8" Stock Pneumatic 0.53 1.12 1.37 0.084 -1.919 0.946 
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“Load” columns are ordered left to right to correspond to 60%, 70%, and 80% weight-

distribution on drive wheels for a 100 kg wheelchair, respectively.  Linear regressions of 

load versus rolling resistance were applied for each component, and their regression 

coefficient, constant, and R2 are also included in the tables.  Across all rolling resistance 

linear regressions, R2 > 0.94, suggesting that it is suitable to use the regression slope as a 

metric of component sensitivity to load.  The load versus rolling resistance regressions for 

casters on tile, drive wheels on tile, casters on carpet, and drive wheels on carpet are also 

plotted for illustrative purposes in Figure 37, Figure 38, Figure 39, and Figure 40, 

respectively.    

For casters on tile, the rolling resistance average across all three loads ranged from 

1.16 – 2.55 N, with the lowest being the 4 x 1.5" FLSR and the highest being the 6 x 1" 

Pneumatic.  Switching between these two casters equates to a 120% increase in average 

rolling resistance.  For drive wheels on tile, the rolling resistance average across all three 

Figure 37. Caster Rolling Resistance on Tile 
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loads ranged from 1.01 – 4.53 N, with the lowest being the Stock Pneumatic and the highest 

being the Solid Mag.  Switching between these two drive wheels equates to a 349% 

increase in rolling resistance.  These differences within casters and drive wheels are 

significant, especially since rolling resistance plays a dominant role in dissipating stored 

mechanical energy during any linear MWC motions.   

The casters rolling resistance data on tile present trends that both corroborate and 

conflict with the findings of a field assessment of manual wheelchair rolling resistance 

(Sauret et al., 2012).  Rolling resistance forces fall within the same range found by the 

Sauret study, but casters do not seem to follow the trend of greater rolling resistance with 

decreasing diameter.  This can be explained by our study’s much smaller sample size of 

components, where the variance of other caster properties prevent the impact of caster 

radius from being teased out.  To investigate the impact of these other properties, we can 

compare three casters that are similar in dimensions and wheel profile, as depicted in Table 

Figure 38. Drive Wheel Rolling Resistance on Tile 
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1 (pages 5-6): 6 x 1" Pneumatic, 6 x 1" Primo, and 6 x 1" FLNC.  The 6 x 1" Pneumatic 

has the greatest rolling resistance and a tire hardness of 60, followed by the 6 x 1" Primo 

and 6 x 1" FLNC, which both share a tire hardness of 89.  Conventional mechanics of 

deformable bodies indicate that rolling resistance is a function of wheel and surface 

stiffness, which could explain this separation.  Wheel stiffness is impacted by not only the 

tire hardness, but also the rigidity of the wheel hub.  This second concept may explain why 

the 6 x 1" Primo with a polymer hub had an average rolling resistance 26% greater than 

the 6 x 1" FLNC with an aluminum hub, despite registering the same tire hardness.  This 

theory is consistent with drive wheels, where the Solid Mag, while having the greatest tire 

hardness, is the only drive wheel with polymer spokes instead of the more rigid tensioned 

metal spokes.  Figure 38 depicts the corresponding difference in rolling resistance, with 

the Solid Mag clearly a higher outlier to the remaining drive wheels.  This results match 

well with the findings of a dynamometer-based rolling resistance study (Kwarciak AM, 

Yarossi M, Ramanujam A, Dyson-Hudson TA, & Sisto SA, 2009).  Comparing three solid 

drive wheels to two pneumatic drive wheels, Kwarciak found – under the same load 

conditions as our study – that the solid tires presented rolling resistances of 4 – 9 N while 

pneumatic tires exhibited rolling resistances of 2 – 3 N.  Specific value differences are 

likely due to their use of a dynamometer surface instead of a flat tile surface. 

 Examining caster sensitivity to load on tile, the magnitude of rolling resistance 

appears to correlate with the regression slope.  This leads to a greater separation between 

casters at higher loads, with rolling resistances ranging from 1.69 – 3.59 N (1.9 N 

difference) at a 20 kg load, compared to rolling resistances of 0.64 – 1.47 N (0.83 N 

difference) at a 10 kg load.  This suggests that when a MWC on tile is configured such that 
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the weight distribution on the casters are low (e.g. 100 kg @ 80% load on drive wheels), 

caster selection does not significantly impact rolling resistance.  However, for weight 

distributions that equate to a caster load of 20 kg or more, the selection of casters can 

significantly affect the user effort.  Drive wheel load sensitivity presents itself as quite 

uniform in Figure 38, with only the Solid Mag presenting a larger regression slope.  Thus, 

amongst the metal spoked drive wheels, there is not weight-distribution based benefit to be 

gained relative to each other. 

 Table 13. Caster and Drive Wheel Rolling Resistance Forces on Carpet 

 

 Comparing the tile rolling resistances of casters and drive wheels, we see that all 

drive wheels besides the Solid Mag have lower rolling resistance values than the casters in 

the 60%WD load configuration (30 kg on DW, 20 kg on caster) despite their greater 

loading, and exhibit a greater load insensitivity compared to all casters.  The Solid Mag, 

however, is similar in load sensitivity to the casters and exhibits larger rolling resistances 

Rolling Resistance Force [N] 

Carpet Caster Load (kg) Linear Regression 

Caster 20 15 10 Coefficient Constant R-squared 

3 x 1'' FLNC 10.62 7.69 5.6 0.503 0.431 0.991 

6 x 1" Primo 8.35 6.68 4.5 0.385 0.738 0.994 

6 x 1'' FLNC 7.92 5.89 4.34 0.358 0.686 0.994 

6 x 1.5" Primo 7.21 5.4 3.65 0.357 0.067 1 

5 x 1.5" Primo SR 7 5.01 3.52 0.348 -0.044 0.993 

5 x 1" Primo 6.34 4.82 3.42 0.292 0.48 0.999 

4 x 1.5" FLSR 6.21 4.89 3.38 0.283 0.591 0.999 

6 x 1" Pneumatic 6.03 4.33 3.04 0.299 -0.019 0.994 

Carpet DW Load (kg) Linear Regression 

DW 30 35 40 Coefficient Constant R-squared 

24 x 1" Solid Mag 5.25 7.25 8.54 0.329 -4.505 0.985 

24 x 1" Schwalbe Right Run 3.44 4.41 5.13 0.168 -1.563 0.993 

24 x 1" Spinergy 3.36 4.15 5.06 0.17 -1.758 0.998 

24 x 1-3/8" Stock Pneumatic 2.34 3.24 4.27 0.193 -3.467 0.998 
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for its configuration loads. Based on these observations, the shifting of more load onto the 

metal spoke drive wheels is the most effective means of reducing rolling resistance on tile. 

 

 For casters on carpet, the rolling resistance average across all three loads ranged 

from 4.47 – 7.97 N, with the lowest being the 6 x 1" Pneumatic and the highest being the 

3 x 1" FLNC.  Switching between these two casters equates to a 78% increase in average 

rolling resistance.  For drive wheels on tile, the rolling resistance average across all three 

loads ranged from 3.28 – 7.01 N, with the lowest being the Stock Pneumatic and the highest 

being the Solid Mag.  Switching between these two drive wheels equates to a 114% 

increase in rolling resistance. 

 The carpet rolling resistances increased by an average of 4 N compared to tile, while 

drive wheel rolling resistances increased by an average of 2.57 N compared to tile.  The 

drive wheels’ comparatively small change in rolling resistance may be attributed to its 

larger wheel radius, which has been shown to be inversely related with rolling resistance 
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(Sauret et al., 2012).  Since rolling resistance is a function of surface deformation (Pacejka, 

2005) as well, the flat wide profile of the Solid Mag and “buoyant” nature of the pneumatic 

drive wheels may have reduced the deformation of the softer carpet surface.  These 

concepts can be extended to the casters which, unlike drive wheels, underwent a significant 

shift in the order of casters ranked by rolling resistance.  The 6 x 1" Pneumatic went from 

having the greatest rolling resistance on tile to exhibiting the least rolling resistance on 

carpet.  Simultaneously, the smallest 3 x 1'' FLNC increased to having the greatest rolling 

resistance on carpet.  This increase in rolling resistance with decreasing caster diameter is 

consistent with Sauret’s findings on carpet (Sauret et al., 2012).  Casters with greater tire 

widths dropped in rank below narrower casters (except for the 5 x 1" Primo) which likely 

sank deeper into the carpet surface. 

Load sensitivity for both component types increased on carpet.  Caster regression 

slopes increased by an average of 0.21 N/kg, while drive wheel regression slopes increased 

Figure 40. Drive Wheel Rolling Resistance on Carpet 
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by an average of 0.11 N/kg.  Regression slopes for casters became more uniform, thus 

maintaining constant separation between casters across loads.  However, the magnitude of 

the rolling resistance differences between casters is greater on carpet, indicating that across 

all weight distributions, casters selection is more impactful on carpet than tile. 

 Comparing the carpet rolling resistances of casters and drive wheels, we see that all 

drive wheels besides the Solid Mag have lower rolling resistance values than the casters in 

both the 60%WD and 70%WD load configurations despite their greater loading, and 

exhibit a greater load insensitivity compared to all casters.  The Solid Mag, however, is 

similar in load sensitivity to the casters and exhibits larger rolling resistances for its 

configuration loads.  Similar to the findings for rolling resistance on tile, the shifting of 

more load onto the metal spoke drive wheels is the most effective means of reducing rolling 

resistance on carpet.  This approach should be even more effective than on tile, given the 

larger differences between drive wheel and caster rolling resistances on carpet.  

2.5.3 Scrub Torque 

In this section, the scrub torques of casters and drive wheels under their 

configuration loads are tabulated, separated into tile and carpet results in Table 14 and 

Table 15, respectively.  Casters and drive wheels are separated in each table.  Within each 

table section, the components are listed in descending order of average scrub torque, which 

is the mean scrub torque across all loads for a single component (not tabulated).  “Load” 

columns are ordered left to right to correspond to 60%, 70%, and 80% weight-distribution 

on drive wheels for a 100 kg wheelchair, respectively.  Linear regressions of load versus 

rolling resistance were applied for each component, and their regression coefficient, 
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constant, and R2 are also included in the tables.  Across all rolling resistance linear 

regressions, R2 > 0.83, suggesting that it is suitable to use the regression slope as a metric 

of component sensitivity to load.  The load versus rolling resistance regressions for casters 

on tile, drive wheels on tile, casters on carpet, and drive wheels on carpet are also plotted 

for illustrative purposes in Figure 41, Figure 42, Figure 43, and Figure 44, respectively.   

Table 14. Caster and Drive Wheel Scrub Torque on Tile 

Scrub Torque [Nm] 

Tile Caster Load (kg) Linear Regression 

Caster 20 15 10 Coefficient Constant R-squared 

6 x 1" Pneumatic 2.79 1.93 0.93 0.186 -0.907 0.998 

5 x 1.5" Primo SR 1.76 1.33 0.91 0.085 0.064 1 

4 x 1.5" FLSR 1.74 1.23 0.74 0.1 -0.262 1 

6 x 1" Primo 1.22 0.86 0.49 0.073 -0.235 1 

5 x 1" Primo 1.03 0.67 0.42 0.061 -0.211 0.99 

6 x 1.5" Primo 0.96 0.66 0.32 0.063 -0.306 0.999 

6 x 1'' FLNC 0.97 0.62 0.32 0.065 -0.338 0.998 

3 x 1" FLNC 0.77 0.57 0.33 0.044 -0.103 0.998 

Tile DW Load (kg) Linear Regression 

DW 30 35 40 Coefficient Constant R-squared 

24 x 1-3/8" Stock Pneumatic 5.72 6.97 8.18 0.246 -1.658 1 

24 x 1" Schwalbe Right Run 4.83 4.99 6.19 0.136 0.576 0.837 

24 x 1" Spinergy 4.52 5.2 6.06 0.154 -0.134 0.996 

24 x 1" Solid Mag 2.99 3.86 4.49 0.151 -1.491 0.991 

 

For casters on tile, the scrub torque average across all three loads ranged from 0.56 

– 1.88 Nm, with the lowest being the 3 x 1" FLNC and the highest being the 6 x 1" 

Pneumatic.  Switching between these two casters equates to a 236% increase in average 

rolling resistance.  For drive wheels on tile, the scrub torque average across all three loads 

ranged from 3.78 – 6.96 Nm, with the lowest being the Solid Mag and the highest being 

the Stock Pneumatic.  Switching between these two drive wheels equates to an 84% 

increase in rolling resistance.  These differences within casters and drive wheels are of 
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particular significance as they are a strong determinant of the energy dissipated during any 

MWC motions involving direction change. 

 Once again, we can compare three casters that are similar in dimensions and wheel 

profile, as depicted in Table 1 (pages 5-6): 6 x 1" Pneumatic, 6 x 1" Primo, and 6 x 1" 

FLNC.  The 6 x 1" Pneumatic has the greatest scrub torque and a tire hardness of 60, 

followed by the 6 x 1" Primo and 6 x 1" FLNC, which both share a tire hardness of 89.  

Since rotational friction is dependent upon the distribution of the contact area about the 

axis of rotation, it stands to reason that a more deformable tire such as the 6 x 1" Pneumatic 

would experience greater scrub torque than its similar counterparts.  This idea is potentially 

reinforced by the fact that 5 x 1.5" Primo SR and 4 x 1.5" FLSR rank second and third in 

scrub torque on tile, respectively.  In terms of tire hardness, they are only greater in value 

than the 6 x 1" Pneumatic, with hardnesses of 65 and 76, respectively.  Furthermore, the 

greater tire width of these two casters may also contribute to the increased scrub torque, 
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although this theory is not entirely consistent with the 6 x 1.5" Primo.  For drive wheels on 

tile (Figure 42), the Stock Pneumatic presents the largest tire width, which may be related 

to its particularly high scrub torque.  The Solid Mag is the only tread-less drive wheel, 

which may link to its particularly low scrub torque. 

 With regards to component load sensitivity, the caster scrub torque on tile displays 

a behavior comparable to that of caster rolling resistance on tile.  At the 80%WD 

configuration (10 kg) loading, the caster scrub torques only range from 0.33 – 0.93 Nm.  

However, due to casters with larger scrub torques exhibiting greater load sensitivity, caster 

scrub torques range from 0.77 – 2.79 Nm at the 60%WD configuration (20 kg) loading.  

The casters can be separated into three groups based on similar load sensitivities 

(regression slope), consisting of the 6 x 1" Pneumatic, the 5 x 1.5" Primo SR and 4 x 1.5" 

FLSR, and the remaining five casters.  Thus, picking casters from between these three 

groups becomes impactful for a MWC (100 kg) in the 60%WD configuration in terms of 

Figure 42. Drive Wheel Scrub Torque on Tile 
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caster scrub torque.  The drive wheels on average display a greater sensitivity to load than 

casters, with an average regression slope of 0.172 Nm/kg versus the casters’ average 

regression slope of 0.085 Nm/kg.  The Stock Pneumatic’s load sensitivity is greater relative 

to the other drive wheels, leading to larger differences in drive wheel scrub torque in the 

80%WD wheelchair configuration.  Combined with the existing large separations between 

the drive wheels, these results suggest the impact of component selection on drive wheel 

scrub torque, and that this impact becomes more pronounced with increased drive wheel 

weight-distribution for the Stock Pneumatic. 

Table 15. Caster and Drive Wheel Scrub Torque on Carpet 

 

Comparing the tile scrub torques of casters and drive wheels, we see that all drive 

wheels present markedly greater scrub torques than the casters across all load 

configurations, and exhibit a greater load sensitivity compared to all casters except the 6 x 

1" Pneumatic.  Thus, contrary to rolling resistance, the shifting of more load onto the 

Scrub Torque [Nm] 

Carpet Caster Load (kg) Linear Regression 

Caster 20 15 10 Coefficient Constant R-squared 

6 x 1" Pneumatic 2.53 1.75 1.19 0.133 -0.177 0.991 

5 x 1.5" Primo SR 1.78 1.41 0.89 0.089 0.018 0.99 

4 x 1.5" FLSR 1.69 1.35 0.85 0.084 0.045 0.988 

6 x 1'' FLNC 1.46 1.14 0.72 0.074 0 0.995 

6 x 1.5" Primo 1.55 1.05 0.63 0.092 -0.302 0.997 

6 x 1" Primo 1.38 1.05 0.69 0.068 0.02 0.999 

5 x 1" Primo 1.41 1 0.66 0.075 -0.103 0.998 

3 x 1" FLNC 1.21 0.93 0.53 0.068 -0.13 0.988 

Carpet DW Load (kg) Linear Regression 

DW 30 35 40 Coefficient Constant R-squared 

24 x 1" Spinergy 6.41 7.24 8.32 0.191 0.626 0.994 

24 x 1" Schwalbe Right Run 5.9 6.87 8.15 0.224 -0.874 0.994 

24 x 1-3/8" Stock Pneumatic 5.23 5.82 6.36 0.114 1.827 0.999 

24 x 1" Solid Mag 4.82 5.49 7.05 0.224 -2.045 0.95 
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casters is the most effective means of reducing the combined drive wheel and caster scrub 

torque.  However, the instances of caster and drive wheel scrub may not be as coupled as 

the instances of caster and drive wheel rolling, suggesting that the effectiveness of this 

approach is more dependent on the type of curvilinear maneuvers executed.  

 For casters on carpet, the scrub torque average across all three loads ranged from 

0.89 – 1.82 Nm, with the lowest being the 3 x 1" FLNC and the highest being the 6 x 1" 

Pneumatic.  Switching between these two casters equates to a 104% increase in average 

rolling resistance.  For drive wheels on tile, the scrub torque average across all three loads 

ranged from 5.79 – 7.32 Nm, with the lowest being the Solid Mag and the highest being 

the Spinergy.  Switching between these two drive wheels equates to an 84% increase in 

rolling resistance.   

Figure 43. Caster Scrub Torque on Carpet 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

8 10 12 14 16 18 20 22

Sc
ru

b
 T

o
rq

u
e 

[N
m

]

Load [kg]

Caster Scrub Torque (Carpet) with Linear Regressions

4 x 1.5" FLSR

5 x 1.5" Primo SR

5 x 1" Primo

6 x 1" Pneumatic

6 x 1.5" Primo

6 x 1" Primo

6 x 1'' FLNC

3 x 1" FLNC



 65 

 As a whole, the caster scrub torques changed very little between tile and carpet 

results, increasing only 0.22 Nm in scrub torque on average.  In fact, the 5 x 1.5" Primo SR 

was entirely insensitive to the surface differences, while the 6 x 1" Pneumatic diminished 

slightly in both average scrub torque and load sensitivity, and almost all of the remaining 

casters increased marginally in both average scrub torque and load sensitivity.  The ranking 

of casters by scrub torque underwent a single change, where the 5 x 1" Primo was reduced 

to the caster with the second lowest scrub torque on carpet.  As a result of these changes, 

the differences between the caster scrub torques became more muted on carpet.   

 In transitioning from tile to carpet, the drive wheel scrub torques increased by 1.14 

Nm in scrub torque on average.  In Figure 44, however, we can see that the Stock 

Pneumatic’s scrub torques decreased by an average of 1.15 Nm across all three loads, while 

the remaining drive wheels increased in scrub torque by an average of 1.90 Nm.  

Furthermore, while the load sensitivities of these three drive wheels did not vary much 

Figure 44. Drive Wheel Scrub Torque on Carpet 
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from tile to carpet, the Stock Pneumatic’s load sensitivity decreased from 0.246 Nm/kg to 

0.114 Nm/kg.  This ultimately results in the Stock Pneumatic having the least scrub torque 

on carpet at any weight distribution greater than 70%WD (35 kg on drive wheels).  This 

difference between tile and carpet indicates that the utility of the Stock Pneumatic has 

become more advantageous on carpet in reducing drive wheel scrub torque. 

2.5.4 Combined Analysis 

To better visualize the combined resistive loss properties of components across 

surface types, Figure 45, Figure 46, Figure 47, and Figure 48 plot rolling resistance 

versus scrub torque for casters and drive wheels on tile and carpet.  Looking at Figure 45, 

we can see that the 4 x 1.5" FLSR experiences the lowest rolling resistance but has a 

moderate scrub torque.  In contrast, the 3 x 1" FLNC experiences the lowest scrub torque 

but has a midrange rolling resistance.  The 6 x 1" Pneumatic is high in both scrub torque 

and rolling resistance, and based on the spread of its points, is quite sensitive to load.  In 

Figure 45. Caster Rolling Resistance versus Scrub Torque on Tile 
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contrast, the 6 x 1” FLNC is less sensitive to load, especially in terms of scrub torque, and 

represents one of the best balances in minimizing both types of resistive loss.  However, 

depending on the nature of the usage, minimizing one type of resistive loss may take 

precedent over the other.  For example, cases of heavy in-home MWC use may prioritize 

minimizing caster scrub due to the frequent direction changes, while long-distance outdoor 

usage would benefit more from a caster of lower rolling resistance. 

 

In Figure 46, we observe that the 6 x 1" Pneumatic still experiences the greatest 

scrub torque on carpet, but has also shifted to exhibit the least rolling resistance on carpet.  

The 3 x 1" FLNC experiences increases in both resistive losses, with moderate scrub torque 

and the largest rolling resistance.  On carpet, the 6 x 1” FLNC is no longer the most 

balanced caster due to its relative increase in rolling resistance.  Instead, the 5 x 1” Primo 

offers a good compromise between scrub torque and rolling resistance on carpet. 
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Figure 46. Caster Rolling Resistance versus Scrub Torque on Tile 
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 Figure 47 and Figure 48 clearly illustrate the much larger differences in the 

resistive losses across drive wheels.  On tile, the Solid Mag exhibits the lowest scrub 

torque, but is by far the greatest in rolling resistance.  Its separation from the other drive 
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Figure 48. Drive Wheel Rolling Resistance versus Scrub Torque on Carpet 

Figure 47. Drive Wheel Rolling Resistance versus Scrub Torque on Tile 
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wheel rolling resistances is diminished on carpet, but at the cost of a reduced relative 

benefit in scrub torque.  Amongst the four drive wheels, the Solid Mag’s rolling resistance 

is the most sensitive to load.  The Stock Pneumatic displays the least rolling resistance and 

both tile and carpet, and has the greatest scrub torque and load sensitivity to scrub torque 

on tile.  The Spinergy and Schwalbe Right Run have very similar resistive losses across 

both surfaces.  On tile, they are quite balanced with low rolling resistances and moderate 

scrub torques.  On carpet, however, they both exhibit the highest scrub torques.   

The collective results of the drive wheels demonstrate the tradeoffs between 

reducing rolling resistance and scrub torque.  However, unlike casters, reducing drive 

wheel turning resistance beyond a threshold may negatively impact wheelchair traction and 

stability during turning.  With this caveat in mind, we proceed to observe that the Solid 

Mag can be selected to minimize turning resistances at the expense of a greater rolling 

resistance, while the Stock Pneumatic has the least rolling resistance but is greatest in 

turning resistance on tile.  On carpet, the differences in drive wheel scrub torque are 

diminished, and the Stock Pneumatic turning resistance is reduced relative to the Spinergy 

and Schwalbe Right Run.  The Spinergy, sold commercially as high-cost, high-end drive 

wheels, do not seem to reflect a superior performance in either rolling resistance or scrub 

torque.  While they can be said to be “balanced” on tile, their higher turning resistance and 

still greater rolling resistance than the Stock Pneumatic makes it difficult to warrant them 

as a performance improvement worth the cost. 
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CHAPTER 3. ANATOMICAL MODEL PROPULSION SYSTEM 

 The Anatomical Model Propulsion System (AMPS) is a robotic system designed to 

propel a MWC through maneuvers that reflect wheelchair usage in everyday life while 

measuring the applied propulsion forces and wheelchair kinematics (Liles et al., 2014).  

The AMPS is designed to autonomously navigate predefined maneuvers that, together, 

encompass all the important dynamic response characteristics of manual wheelchair 

propulsion.  Derived results - obtained from the recorded wheel velocity and motor current 

data - are a set of torques and work energies corresponding to the various maneuvers, which 

collectively characterize the wheelchair as a mechanical system.  The AMPS can be 

described via three primary subsystems: the anthropomorphic structure, the propulsion 

system, and the data acquisition system. 

Figure 49. The Anatomical Model Propulsion System (AMPS) 
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3.1 System Design and Rationale 

3.1.1 Anthropomorphic Design 

The AMPS (Figure 49) represents a human operator in an abstract form, and was 

designed to be consistent with the wheelchair dummy used in standardized test methods 

defined in ISO 7176-11 (International Standards Organization, 2008).  Using ISO 7176, 

the AMPS was designed with a mass of 100 kg to test typical adult size wheelchairs.  

Length parameters were defined by assessing the ISO 7176 dummy and relating its 

dimensions to the anthropometry of the Hybrid III ATD (Foster J, Kortge J, & Wolanin M, 

1977) (Table 16).  Overall, the AMPS reflects the body segment parameters of an 

American male at the 50th percentile in height and 95th percentile in mass.   

Table 16. AMPS Body Segment Parameters 

(Based on 100kg Wheelchair ISO Dummy and Hybrid III 50TH ATD) 

 
* Origin located at the midpoint of line formed by wheelchair seat and back planes intersecting.   
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The size and weight specifications are utilized to capture the inertia of an occupied 

wheelchair and the interaction between the occupant and the wheelchair.  This interaction 

primarily consists of loadings on the frame joints, the casters and drive wheels, and their 

bearings.  Matching the inertia and mass of the wheelchair user is vital, given that the user 

heavily influences the inertia and resistive losses within the wheelchair system. 

The AMPS torso structure is composed of an aluminum frame that houses the 

batteries that power the AMPS, and together they approximate upper body mass.  A 

concrete mold shaped to match the mass and profile of the human posterior supports the 

torso structure.  This mold connects to two aluminum rods, which serve as the lower legs 

as shown in Figure 50.  Weights are affixed along the length of these rods to mimic the 

mass distribution of the lower legs and feet.  The arms are attached to the upper torso via a 

ball joint and are composed of aluminum tubing.  The ball joints provide a significant range 

Figure 50. AMPS Leg and Torso Segments 
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of adjustability for the positioning of the arms on various manual wheelchairs.  At the end 

of these adjustable arms, the motor housings are attached. Of note is the fact that this 

modular design offers the flexibility to alter the mass and mass distribution of the AMPS 

in order to model different types of wheelchair users. 

3.1.2 Propulsion Control 

The AMPS propulsion system was designed to emulate human propulsion forces 

by using tangential force drive, dedicated pushrim interfacing, and high-torque DC motors. 

Manual wheelchairs are conventionally propelled by human users applying force 

to the pushrims.  This applied force can be deconstructed to three force components: 

tangential, radial, and normal to the pushrim plane.  In this case, only the tangential force 

performs work that contributes to propelling the wheelchair.  However, humans are 

biomechanically constrained so that applying purely tangential force is impossible 

(Rozendaal LA, Veeger HE, & van der Woude LH, 2003).  By applying purely tangential 

force to each pushrim, AMPS is able to isolate the efficiency of the mechanical design 

without the confounding inefficiencies associated with biomechanics.   Additionally, the 

need to maneuver the wheelchair using differential drive led to the decision to use DC 

motors.  Independent control of two DC motors enables turning and bidirectional motion, 

and the proximal motor mounting to the drive wheel offers a simple transmission.  These 

motors contact the ring gears about 40 degrees forward of the top dead center of the drive 

wheel (Figure 50).  This “hand” is positioned in the center of a wheelchair user’s contact 

with the pushrim during a propulsion stroke, making it coincident with where peak forces 

are applied in human kinetic studies (Robertson, Boninger, Cooper, & Shimada, 1996). 
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To accommodate the variety of manual wheelchair pushrim styles, two design 

alternatives were considered: 1) design a propulsion system that would be compatible with 

all pushrim sizes and cross-section shapes (van der Linden, Valent, Veeger, & van der 

Woude, 1996), or 2) design a dedicated pushrim that can be attached to all wheelchairs 

during testing.  The latter approach was selected because it offered a standard interface that 

enabled consistent force input, a more robust gripping mechanism, and an overall simpler 

design.  This dedicated handrim is a PVC ring gear interfaced with the motors via a pinion 

gear, as depicted in Figure 51.  The ring gear has a mass of 0.75 pounds, which is within 

the range of commercial pushrims, whose weights vary between 0.7 and 1.5 pounds.   

DC motor specifications were based upon the torque demands required of over-

ground motion.  Literature sources indicate that the maximum tangential pushrim force 

applied during typical steady-state propulsion (~0.75 m/s) is less than 100N (22.5 lbf), and 

averages at 81N (18.2 lbf) (Robertson et al., 1996).  Selection of an appropriate high-torque 

DC motor was based on matching the motor’s peak efficiency torque to the nominal 81N, 

Figure 51. Gear and sprocket interface between motor and pushrim 
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while assuming a pinion gear pitch diameter of 1.25-in. An additional constraint required 

that the motor max RPM achieve a minimal 0.75 m/s tangential velocity on the pinion gear 

during peak motor efficiency. 

Based on these specifications, a pair of A28-150 Ampflow motors was chosen to 

provide propulsion to the wheelchair, with one for each drive wheel.  The motors selected 

for this design meet the torque and speed requirements of the system and are contained 

with a specialized housing fixture that enable them to appropriately interface with the load 

cell sensor bracket.  This bracket contains two components – a force-sensing load cell and 

a pivot axis for the motor – which work in conjunction to enable direct measurement of the 

tangential force applied to the pushrim.   

The motors are also directly attached to the AMPS arms so that the loading induced 

by action and reaction forces at the motor-pushrim interface will be translated to the upper 

torso via the shoulder joint in the same manner as would occur if the chair were being 

propelled by a human user.  This enables the selected design to achieve realistic and 

representative loading on the MWC frame and upholstery.  This configuration also enables 

widespread adaptability for a multitude of manual wheelchair designs and sizes.  The 

propulsion of the AMPS is controlled by a Roboteq motor controller.  This controller is 

supplied power by a set of four 12-volt batteries and serves as the interface through which 

the motors are powered.  These internal batteries enable the AMPS to maneuver through a 

variety of environments without the need to connect to a local power source.  This motor 

controller incorporates PID parameters and executes the closed loop velocity control of the 

motor system.  While all desired trajectories are programmed via a NI data acquisition 

(DAQ) device, all real-time control of the motor is managed by the Roboteq controller.  
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Upon receiving the input command from the NI device, the controller performs the 

necessary real-time calculations to incorporate the feedback from the motor encoders, and 

continuously sends the appropriate commands to the motor.  Figure 52 depicts this control 

scheme, which is applied to the left and right motor separately.  

The visual interface for the “PC Input” allows for maneuver kinematics to be 

defined by either manual entry or uploading predefined trajectory files.  The manual entry 

is limited to defining a trapezoidal velocity profile for each drive wheel.  The adjustable 

parameters using this method are wheel speed, ramp start time, ramp up duration, cruise 

duration, ramp down duration, coast duration, and wheel radius.  By setting the wheel 

velocity and ramp times, it also become possible to dictate the acceleration and deceleration 

rate of the maneuver.  Setting the velocity profiles for both wheels to be identical results in 

straight trajectories, whereas setting them differently results in various curvilinear paths.  

These parameters can be seen in the LabVIEW VI screenshot, Figure 53. 

For maneuvers where the drive wheel(s) needs to accelerate or decelerate to 

multiple steady-state velocities, or for instances where the acceleration is non-constant, the 

use of a predefined trajectory file is required.  These files are formatted as text files with 

two comma-separated columns, each representing the left and right wheel’s angular 

velocity, respectively.  Since the NI DAQ is set to sample at 40 Hz, each row in the text 

Figure 52. AMPS Control Diagram 
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files are separated by 25 ms to match the real-time loop of the LabVIEW program.  These 

text files are generated via a MATLAB code that takes a time vector, linear velocity vector, 

and wheel radius for each wheel.  Figure 54 illustrates how the trajectory files are then 

selected for use in the LabVIEW program. 

 

Figure 53. AMPS VI Manual Trajectory Entry 

Figure 54. AMPS VI Pre-defined Trajectory 
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3.1.3 Data Acquisistion 

The requisite condition for calculating task propulsion work involves knowing the 

propulsion torque while monitoring system kinematics.  Within the AMPS, this entails 

measuring the motor current, tangential pushrim force, and the rotational position of the 

drive wheels.   

Measurement of the motor current is motivated by its proportionality with the motor 

torque.  Two ACS758xCB current sensors are integrated into the circuit powering the drive 

motors by directly connecting to the motor power cables.  Within this circuit, the sensors 

monitor the current flowing into the motors.  The output reading is in the form of a voltage 

that is proportional to the current flowing through the sensors and is recorded by the DAQ.  

This data provides direct measurement of the energy that is input into the AMPS to execute 

the desired maneuvers.  

Load cell measurement of the tangential pushrim force serves as a redundant system 

for determining the drive wheel torque.  A pair of Omega LCFA-50 load cells are mounted 

onto a bracket connected to the motor housing unit.  During propulsion, the reaction force 

of the gear teeth is tangential to the ring gear pushrim, requiring that the AMPS arm be 

positioned such that the load cell axis is parallel to the ring gear tangent.  In this orientation, 

the propulsion force can be accurately measured by the load cell. 

The AMPS incorporates a pair of M-260 Accu-Coder axle mounted encoders, each 

attached to the central axle of a drive wheel (as shown in Figure 51) via a custom housing 

connector.  These 2540 count encoders provide angular position data to the AMPS system, 

enabling precise measurement of the drive wheel motion.  Using the known motion of the 
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drive wheels with the predetermined geometry of the wheelchair, the system kinematics 

can be derived for kinetic energy calculations (Medola, Dao, Caspall, & Sprigle, 2013). 

A NI USB-6341 data acquisition system is used to record data and serves as the 

primary system controller for the AMPS.  This DAQ connects to a computer via USB, and 

a LabVIEW visual interface is used to communicate with the DAQ.  The DAQ collects all 

the data from the AMPS drive wheel encoders, current sensors, and load cells.  It also sends 

analog voltage signal commands to the Roboteq motor controller.  The DAQ system is 

powered by a lithium-ion battery that is completely independent of the batteries supplying 

power to the AMPS propulsion subsystem. 

In all data used for analysis, the measured raw force, current, and velocity are 

filtered in post-processing by passing them through a 3rd order Butterworth filter with a 

cutoff frequency of 0.15 Hz (MATLAB). 

3.2 Calibration and Validation 

Because the AMPS is a fundamentally new approach to measuring mechanical 

efficiency of wheelchairs, validating the hardware and measurement techniques was 

required.  Specifically, the motor current sensors were calibrated, followed by system-level 

validation to investigate the repeatability of the commanded trajectory and measured 

propulsion torque during over-ground wheelchair maneuvers.  The load cells were 

eliminated from use entirely due to their comparatively noisy data output during over 

ground maneuvers.  Figure 55 illustrates the qualitative difference between data collected 

via the current sensors and load cells.  It was postulated that this noisier data was due the 

load cell detecting transient motions of the motor arm itself.  Note that the large spikes 
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from the load cell data could have been (and were) dealt with via low-pass filtering in post-

processing. However, the overall reduced quality of the force data combined with the load 

cell sensitivity to non-tangent alignment with the wheel rim led to their elimination as an 

unreliable measurement source. 

3.2.1 Calibrating Motor Current Sensors 

To determine the relationship between current measured by the sensors and torque 

applied by the motors, some background on a motor’s current-torque curve is required.  

One of the properties of a DC motor is the proportional relationship between the current it 

draws and the torque it outputs.  This is usually expressed as a “Kt” coefficient with units 

of torque per unit current (Figure 56).  Furthermore, the current-torque curve is a piecewise 

function due the motor’s characteristic of no-load current.    

Figure 55. Comparison of Current (Torque) and Force Data 
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Therefore, to calculate these two defining properties, the motors were each loaded 

with a known torque by attaching a 3-inch diameter pulley to the motor shaft and using the 

motor as a winch to lift free-hanging weights of known mass.  Simultaneously, the 

corresponding motor current for each applied torque was measured via the sensors and 

recorded.  Several weights of varying mass were used to develop a calibration curve over 

a range of torques.  The applied torques were determined by using mass of the weight, 

acceleration due to gravity and radius of the pulley.  The measured current for each motor 

was then plotted against the applied torque, and a linear regression was fit to the data.  

Figure 57 and Figure 58 show the calibration curves for the two motors, both of which 

have an R2 > 0.99.  Based on the regression equation, the left motor was determined to 

have Kt = 5.61 oz-in. and no-load current = 1.96 A, while the right motor had Kt = 5.73 

and no-load current = 1.60 A.  These calibrated values are relatively close to the AmpFlow 

manufacturer-provided value of Kt = 5.32, but also distinct from their no-load current of 

3.4 A.  With the features of the current-torque curve for each motor defined, a simple step-

wise function was then used to calculate the motor torque from the sensor-measured 

Figure 56. Motor Current-Torque Relationship 
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current.  It is important to note that in Figure 57 and Figure 58, these torque values seem 

quite small because they represent the torque coming directly from the motor. 

 

Figure 57. AMPS Left Motor Calibration 

Figure 58. AMPS Right Motor Calibration 
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The torque of interest, or the drive wheel torque, is determined by the following 

equations (Equations 11 and 12). 

  
𝜏𝑤ℎ𝑒𝑒𝑙

𝑁𝑟𝑖𝑛𝑔 𝑔𝑒𝑎𝑟
=

𝜏𝑚𝑜𝑡𝑜𝑟

𝑁𝑝𝑖𝑛𝑖𝑜𝑛 𝑔𝑒𝑎𝑟
  

(11) 

 
𝜏𝑤ℎ𝑒𝑒𝑙 =

𝑁𝑟𝑖𝑛𝑔 𝑔𝑒𝑎𝑟

𝑁𝑝𝑖𝑛𝑖𝑜𝑛 𝑔𝑒𝑎𝑟
𝜏𝑚𝑜𝑡𝑜𝑟 (12) 

Note that 𝜏𝑤ℎ𝑒𝑒𝑙 and 𝜏𝑚𝑜𝑡𝑜𝑟 are the torques on the drive wheel and motor shaft, and 

Nring gear and Npinion gear are the teeth count of the ring gear and pinion gear. Since the gear 

ratio between the ring gear and pinion gear is 17, the range of drive wheel torques the 

calibration procedure spans is about 2-Nm to 13-Nm, encompassing the bulk of torque 

values encountered during AMPS’s over-ground maneuvers. 

3.2.2 System-level Validation 

The AMPS was also validated on a systems-level by performing maneuvers on a 

tile floor.  The AMPS was loaded onto a Quickie GT manual wheelchair with 24” diameter, 

spoked, pneumatic tires.  A straight maneuver was programmed, consisting of acceleration 

to a steady state speed over 2.5 seconds, maintaining this speed for 5 seconds, and then 

ramping down to a stop over 2.5 seconds.  This maneuver was conducted at two speeds, 

1.4 m/s and 0.7 m/s, and for a total of ten trials in each condition.  These speeds represent 

greater than average velocities based upon measurements of wheelchair users during 

everyday mobility (Sonenblum SE, Sprigle S, & Lopez RA, 2012a).  The maneuver was 

conducted ten times at each speed while measuring wheel velocity, current, and force data.  
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Control system accuracy was characterized by comparing the programmed velocity 

profile to the measured velocity profile and computing the error between the two 

waveforms (Figure 59) every 0.5 seconds.  Furthermore, the repeatability of the profile 

was characterized by determining the coefficient of variation of the entire maneuver for 

both the left and right wheels at both speeds (Table 17).  Velocity error was ≤0.1 m/s for 

both the left and right wheels across both speeds.  Propulsion torque metrics included peak 

acceleration, peak deceleration and the average steady state torque.  Repeatability of 

propulsion torque (Table III) was assessed for repeatability using the coefficient of 

variation (CV) and standard error of the mean (SEM).  As indicated by the values in Table 

Table 17. AMPS Propulsion Torque Repeatability  

(Derived from Motor Current) 
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17, the AMPS control scheme can deliver an accurate velocity profile and the system can 

reliably measure propulsion torque during over-ground maneuvers.  The CVs of the 

current-based torque were <5% during acceleration, <10% during deceleration and <8% 

during steady state velocity. 

 

  

Figure 59. Angular velocity profile of drive wheels at 2.33-rad/sec (0.7 m/s) 
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CHAPTER 4. SYSTEM-LEVEL TEST METHODS 

 This chapter describes the system-level test methods that were developed to 

evaluate the mechanical performance of manual wheelchairs.  Canonical maneuvers 

representative of everyday MWC mobility were defined and applied to the system-level 

tests. Models of MWC system-level kinetic energy and resistive energy loss were also used 

to generate additional rationale for the selection of canonical maneuvers.  Clinically-

relevant performance metrics were defined and applied towards two systems-level studies:  

1) the impact of mass and weight distribution on propulsion torque, and 2) the impact of 

casters and drive wheels on propulsion cost.   

4.1 Predicate Work (The iMachine) 

 In order to compare multiple different MWC configurations utilizing the AMPS, it 

is first necessary to characterize system-level properties of MWCs.  According to literature 

(Brubaker, 1986; Caspall, Seligsohn, Dao, & Stephen Sprigle PhD, 2013), there are three 

particular attributes of MWC systems that can significantly influence propulsion effort: 

mass, yaw inertia, and weight distribution.  Mass increases the rectilinear inertia of the 

system, thus requiring more force to propel the wheelchair in a straight motion.  Yaw inertia 

is analogous to mass in turning motions, increasing the difficulty of changing direction 

quickly.  Fore-aft weight distribution impacts not only the yaw inertia, but also the overall 

system resistances if the casters are more sensitive to loading than the drive wheels, and 

vice-versa.  
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The iMachine (Eicholtz et al., 2012) is a system-level measurement device that was 

designed precisely to characterize all three of the aforementioned system properties.  The 

mechanical system is comprised of a turntable of circular steel mounted on a square frame 

of aluminum struts (80-20 Inc.).  Two lengths of steel cable are anchored to one end of the 

turntable, and each run along the disc’s circumference such that their other end attaches to 

a linear spring fixed to either the left or right vertical aluminum post (Figure 60).  This 

effectively applies a torsional stiffness to the overall turntable.  By applying a perturbation 

that induces a small angular displacement (~5 degrees), it is possible to determine the yaw 

(rotational) inertia of the disc and any mass placed atop it using the following equation, 

 
𝐼 =

𝐾 ∗ 𝑅2

(𝑤𝑛2𝜋)2
 (13) 

where 𝐼 is the system yaw inertia, 𝐾 is the combined spring stiffness, 𝑅 is the disc radius, 

and 𝑤𝑛 is the natural frequency of the disc rotation.  Given that the spring stiffness and disc 

Figure 60. iMachine Schematic Diagram and Top View 
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radius are constant, the natural frequency is the only variable determined from 

instrumentation.  This instrumentation comes in the form of a digital encoder (US Digital) 

that houses the stem of the turntable and tracks the relative angular position of the steel 

disc.  However, it must be noted that in order to determine the yaw inertia of a MWC 

system (such as AMPS) placed atop the turntable, the MWC must be positioned with its 

center of mass over the axis of rotation.  To accurately achieve this positioning, three button 

load cells (OMEGA Engineering) were fixed equidistance from the disc center and 120 

degrees apart from each other.   

 A rectangular Dibond loading platform (Figure 61) reinforced with aluminum 

struts was then placed atop the disc such that the only three points of contact were the three 

load cells.  Thus, by adjusting any MWC system placed on the loading platform until the 

load cells register a uniform reading, one can align the MWC center of mass with the axis 

Figure 61. iMachine with a Manual Wheelchair Loaded on the Platform 
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of rotation.  As a helpful physical reference, the loading plate also has a coordinate system 

that corresponds to features on the disk.  The origin is coincident with the center of rotation, 

the x-axis is parallel to the line connecting load cells B and C, and the y-axis intersects 

with load cell A.  The remaining caveat to measuring MWC yaw inertia is that the yaw 

inertia of the unloaded disc and platform must first be measured (using the iMachine) so 

its value can be subtracted from the yaw inertia of loaded iMachine measurements. 

Finding system mass using the existing iMachine instrumentation is a 

straightforward matter of summing the readings from all three load cells, given that the 

load cells have first zeroed out the mass of the loading platform.  However, determining 

the MWC weight distribution requires additional information of the wheelchair 

dimensions.  While the MWC is always adjusted to achieve lateral balance, the fore-aft 

weight distribution varies depending on the axle position relative to the center of mass 
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Figure 62. Free-body Diagram of Occupied Manual Wheelchair Normal Forces 
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(COM) and front casters.  Using the free-body diagram in Figure 62, we can take the sum 

of moments about the point the drive wheel ground reaction force (RDW) is acting.  Doing 

so, we find that 

 𝑅𝑐 = 𝑊(
𝑢

𝑑 − 𝑏
) (14) 

 where 𝑅𝑐 is the caster ground reaction force, 𝑊 is total load, 𝑢 is the distance from the 

rear axle to the COM, 𝑑 is the distance from the drive wheel axle to the caster fork stems, 

and 𝑏 is the caster trail length.  Normalizing this equation by the total load, 

 From this, we can also infer that 

For the scope of this research, Equation 16 serves as the definition (termed %WD) for 

characterizing the fore-aft weight distribution of various MWC configurations due to its 

overlapping use in clinical settings.  These dimensional parameters of the MWC system 

are determined via the use of a series of plumb lines and straight edges while the MWC is 

centered on the iMachine. 

 

 % 𝑙𝑜𝑎𝑑 𝑜𝑛 𝑐𝑎𝑠𝑡𝑒𝑟𝑠 = (
𝑢

𝑑 − 𝑏
) (15) 

 % 𝑙𝑜𝑎𝑑 𝑜𝑛 𝑑𝑟𝑖𝑣𝑒 𝑤ℎ𝑒𝑒𝑙𝑠 = 1 − (
𝑢

𝑑 − 𝑏
) (16) 
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 The iMachine data is collected in real-time via a LabVIEW program that runs off a 

LabJack DAQ.  Figure 63 displays the visual interface used to provide feedback on the 

MWC COM when loaded on the iMachine.  As shown in the screenshot, the “xOffsetError” 

and “yOffsetError” denote (in meters) how far the MWC system’s COM is from the axis 

of rotation.  As part of the protocol, all iMachine measurements were taken with offsets 

less than 5 mm.  While all system yaw inertia measurements are corrected via the parallel 

axis theorem, 

 𝐼𝑠𝑦𝑠 = (𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝐼𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚) + 𝑀𝑠𝑦𝑠(𝑥𝑜𝑓𝑓𝑠𝑒𝑡
2 + 𝑦𝑜𝑓𝑓𝑠𝑒𝑡

2)  (17) 

the tight alignment tolerance is enforced to avoid rotational imbalance that may skew 

measurements.  After the MWC system is centered, the loading platform (and disc) is 

perturbed to rotate via the triangular arm shown in Figure 64. 

Figure 63. iMachine VI During Load Centering (black rectangles) 
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 The resultant periodic angular displacement measured by the encoder is sent to the 

LabJack and displayed on the VI as shown in Figure 65.  The bottom display in the VI 

shows the window of angular displacement that is being used for yaw inertia calculation, 

and the top display is the fast-Fourier transform of the displacement data.  The LabVIEW 

program extracts frequency of the dominant peak shown in this window uses it as the 

natural frequency for yaw inertia calculation in Equation 13. 

 

Figure 64. iMachine Perturbation Triangle 
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4.2 Defining Canonical Maneuvers 

 To fully characterize propulsion work, canonical maneuvers that represent typical MWC 

usage patterns were defined.  These are relatively short maneuvers that collectively represent the 

complex maneuvers typical of everyday mobility. Predicate studies by researchers at the 

Rehabilitation Engineering and Applied Research lab have reported on how wheelchair users move 

about during everyday mobility (Sonenblum SE et al., 2012b).  Usage data show that most bouts 

of mobility are relatively short and low speed (<1 m/s), and are embodied by starting, stopping 

and turning.  To be representative, the collection of canonical maneuvers must impart kinetic 

energy (KE) into the system and include the different types of resistive energy loss. Specifically, 

Figure 65. iMachine VI During Measurement of System Yaw Inertia 
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the maneuvers should collectively impart all three types of KE – translational, turning (yaw), and 

rotational – and include rolling resistance and tire scrub of both the drive wheels and casters. 

 

 In prior work, we described an approach for determining the kinematics and kinetic 

energy of a manual wheelchair (Medola et al., 2013).  The wheelchair can be viewed as an 

assembly of 7 rigid bodies: frame, two drive wheels, two caster forks, and two caster 

wheels, as shown in Figure 66.  Maneuvering the wheelchair over ground requires force 

input to both drive wheels.  By measuring the drive wheels’ rotation rates, one can 

determine via geometric constraints (wheelchair dimensions) the turning radius, velocity 

of the center of mass as well as the yaw rotation rate of the chair, and swivel and rotation 

rates of the caster wheel assemblies, assuming the wheelchair rolls without slipping.   

𝐼𝑧𝑧 – yaw inertia; 𝐼𝑦𝑦 – rotational inertia; 

𝑣 – velocity; �̇� – rotation rate; Ψ̇ – yaw rate 

Figure 66. Schematic of wheelchair for use in deriving 

wheelchair kinematics during over-ground motion 
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 Combining the inertias with kinematics, it becomes possible to calculate 

component kinetic energies.  The summation of these individual energies can be used to 

define the kinetic energy of wheelchair motion on flat ground, as shown in Equations 18-

21.  (Nomenclature from Figure 66.)  Translational KE is based solely on the system mass 

and COM velocity, while the turning (yaw) KE is based on the system and caster yaw 

inertias and their respective yaw rates.  Rotational KE is based solely on the component 

properties and kinematics, defined as a function of caster and drive wheel rotational inertias 

and rotational speed.  Combining these three categories of KE yields the total system KE.  

 
𝐾𝐸𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 =

1

2
𝑚𝑠𝑦𝑠𝑣𝐺

2 (18) 

 
𝐾𝐸𝑡𝑢𝑟𝑛𝑖𝑛𝑔 =

1

2
𝐼𝑍𝑍,𝑠𝑦𝑠
𝐺 Ψ̇𝑓𝑟𝑎𝑚𝑒

2 +
1

2
𝐼𝑍𝑍,𝐿𝐹𝐿𝐶  Ψ̇𝐿𝐶

2 +
1

2
𝐼𝑍𝑍,𝑅𝐹𝑅𝐶  Ψ̇𝑅𝐶

2  (19) 

 
𝐾𝐸𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 =

1

2
𝐼𝑌𝑌,𝐿𝐷ϕ̇𝐿𝐷

2 +
1

2
𝐼𝑌𝑌,𝑅𝐷ϕ̇𝑅𝐷

2 +
1

2
𝐼𝑌𝑌,𝐿𝐶ϕ̇𝐿𝐶

2 +
1

2
𝐼𝑌𝑌,𝑅𝐶ϕ̇𝑅𝐶

2  (20) 

 𝐾𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐾𝐸𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 + 𝐾𝐸𝑡𝑢𝑟𝑛𝑖𝑛𝑔 + 𝐾𝐸𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 (21) 

 The variables described in Equations 18 - 20 are all empirically determined via the 

component and system-level methods discussed thus far.  By applying the AMPS as a test 

bed to perform the selected canonical maneuvers, the drive wheel rotational rates are 

measured via the system’s wheel encoders, and the remaining system kinematics are 

inferred from the predicate kinematic model (Medola et al., 2013).  The caster and drive 

wheel rotational inertias and caster-in-fork yaw inertias are derived from the trifilar 

pendulum measurements; the AMPS system yaw inertia is measured by the iMachine. 
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 Keeping the kinetic energy model in mind, we move on to define the three canonical 

MWC maneuvers that the AMPS would perform to emulate the short bouts of everyday 

MWC mobility.  Each maneuver description is accompanied by a figure of AMPS 

performing that maneuver, as well as a plot of pilot data illustrating the commanded, raw, 

and filtered AMPS wheel velocities for that maneuver. 

1) Straight trajectory.  Starting from rest, with casters aligned forward, accelerate to 1.0 

m/s in 2.5 s, maintain this speed for 5 s and then decelerate to a stop in 2.5 s.  Total 

linear distance traveled equates to 7.5 m.  

Rationale: This maneuver highlights rectilinear inertia of the system, rotational inertia 

of the wheels, rolling resistance, and other resistive losses in the frame and bearings.  

 

2) Fixed-wheel turn.  Starting from a stop, with the casters aligned perpendicular to the 

center of the locked drive wheel, drive the unlocked drive wheel to accelerate the 
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Figure 67. AMPS Straight Maneuver with Drive Wheel Velocity Profile 
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system to a 1.56 rad/s (90 degree turn per second) yaw rate in 2.5 s.  Maintain this yaw 

rate for 5 s, then decelerate to a stop in 2.5 s.  Total system yaw displacement equates 

to 11.7 radians (a 675 degree turn). 

Rationale: This maneuver highlights system yaw inertia, rotational wheel inertia, 

rolling resistance, caster and drive wheel scrub, and other resistive losses. 

 

3) Zero-radius turns.  Due to unanticipated AMPS motor torque limits, this maneuver on 

carpet was reduced in velocity and acceleration, but the total yaw displacement was 

preserved.   

On Tile.  Starting from a stop, with casters aligned forward, counter-rotate drive wheels 

to reach a yaw rate of 1.56 rad/s (90 degree turn per second) in 1.0 s.  Maintain this 

yaw rate for 1.0 s, then decelerate to a stop in 1.0 s.  Pause for one second, then repeat 

the turn except with the drive wheels counter-rotating such that the MWC system turns 

Figure 68. AMPS Fixed-Wheel Turn Maneuver with Drive Wheel Velocity Profile 
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in the direction opposite to the preceding turn (e.g. a counter-clockwise turn would be 

preceded by clock-wise turn).  Repeat until a total of six turns have been completed.  

System yaw displacement of a single turn equates to 3.14 radians (a 180 degree turn).  

Total system yaw displacement equates to 18.84 radians (a 1080 degree turn). 

On Carpet.  Same maneuver pattern, except the steady-state yaw rate is reduced to 1.17 

rad/s (67.5 degree turn per second) and is maintained for 1.67 s. 

Rationale: This maneuver includes direction changes that highlight caster swivel, 

system yaw inertia, rolling resistance, wheel and caster scrub and other resistive losses. 
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 Figure 71, Figure 72, and Figure 73 illustrate how these selected canonical 

maneuvers collectively offer a balanced representation of all three types of kinetic energy.  

In Figure 71, we see that the KE of the straight maneuver is dominated by translational 

KE, with a very small stored as rotational KE and no presence of turning KE.  This is an 

expected outcome given that the inertial contribution of the AMPS mass is several 

magnitudes greater than that of the rotational inertias of the casters and drive wheels.  

Additionally, the absence of directional changes in the straight maneuver support the lack 

of turning KE.   In Figure 72, the system KE of the fixed wheel turn is close to evenly split 

between translational and turning KE, while rotational KE is comparatively very minimal.  

The presence of the translational KE arises from the velocity of the system COM, which is 

a function of the system yaw (turn) rate and the distance from the fixed wheel to the system 

COM, as shown in Equation 22. 

Figure 70. AMPS Zero-Radius Turns Maneuver Drive Wheel Velocity Profile 

(Tile) 
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 𝑣𝐺 = �̇�√(
𝑠

2
)
2

+ 𝑢2 (22) 

In this equation, 𝑣𝐺  is the COM velocity, �̇� is the yaw rate of the system, 
𝑠

2
 is the distance 

from the fixed drive wheel to the axle center, and 𝑢 is the distance from the axle center to 

the system COM.  

Figure 71. System Kinetic Energies of the Straight Maneuver 
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Figure 72. System Kinetic Energies of the Fixed Wheel Turn Maneuver 
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 In Figure 73, the system KE of the zero radius turns is dominated by turning KE, 

and the remaining KE comprised of translational KE and a very small amount of rotational 

KE.  Since the system turning occurs about the center of the axle, the presence of the 

translation KE arises from the COM velocity that is a function of system yaw rate and the 

COM-to-axle center distance.  This is described by Equation 23. 

 𝑣𝐺 = �̇�𝑢 (23) 

The 𝑣𝐺  of the zero radius turns maneuver is much smaller than that of the fixed-wheel turn 

maneuver due to the reduced moment arm between the center of rotation and system COM.  

This reduction of 𝑣𝐺 , and thus translational KE, was part of the designed rationale for using 

the zero radius turns maneuver.  The goal of this maneuver is to investigate the impact of 

non-steady-state directional changes on propulsion effort.  Alternative maneuvers that meet 

this goal were tested, including slalom or a series of chained, fixed-wheel left and right 

turns.  However, these maneuvers all presented a dominant proportion of translational KE 
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that obscured the turning KE stored because of directional changes.  Thus, the zero-radius 

turns maneuver was assessed to be most effective in pinpointing differences between 

different MWCs due to non-steady-state directional changes. 

The resistive losses collectively experienced by the three canonical maneuvers also 

offer a balanced representation of the rolling resistances and scrub torques that were 

measured for casters and drive wheels in the component testing chapter.  This parallel is 

critical for allowing us to link component resistive properties to the system-level 

performance of MWCs in the next chapter.  The resistive forces acting on the MWC during 

each of the canonical maneuvers are illustrated in Figure 74, Figure 75, and Figure 76.  

Note that the propulsive forces are purposely excluded not only in the diagrams but also 

the equations of motion for this section.  Table 18 highlights the nomenclature used in 

these diagrams and equations of motion.  Note that for instances where a wheel turned 

while rolling, the resultant resistive kinetics were broken up into the linear rolling 

resistance and a wheel scrub torque termed with a special subscript to denote its association 

with rolling.  This additional term is meant to represent the increased rolling resistance that 

wheels experience from the cornering forces of turning. 
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Table 18. System Resistance Models Nomenclature 

 

 For the straight maneuver (Figure 74), only rolling resistance forces act on the 

MWC system due to the lack of directional changings.  This leads to the equation of motion 

in Equation 24, which is similarly derived in Sauret’s rolling resistance study (Sauret et 

al., 2012).  

Variable Definition 

𝑀𝑠𝑦𝑠  Manual wheelchair system mass 

𝐼 Rotational inertia (note: 𝐼𝐺 is system yaw inertia) 

𝑅 Wheel radius 

𝑟𝑋/𝑌 Distance from point Y to point X (example) 

𝜃 Angle between moment arm and force at a point 

𝑢 Distance from axle center to system center of mass 

𝑠 Distance between drive wheels 

𝑣𝐺 System center of mass velocity 

𝑎𝐺 System center of mass tangential acceleration 

�̇� System yaw (turning) rate 

𝐹𝑅𝑅 Rolling resistance force 

𝜏𝑠𝑠 Wheel scrub torque 

Subscripts Definition 

A Left caster (fork center) 

B Right caster (fork center) 

C Right drive wheel (tire center) 

D Left drive wheel (tire center) 

O Center of drive wheel axle 

Caster Used to denote caster forces/torques 

DW Used to denote drive wheel forces/torques 

DW,RR Special case used to denote drive wheel scrub torque with rolling 

(𝑀𝑠𝑦𝑠 +
𝐼𝐴

𝑅𝐴
2  + 

𝐼𝐵

𝑅𝐵
2 +

𝐼𝐶

𝑅𝐶
2  + 

𝐼𝐷

𝑅𝐷
2)𝑎𝐺 = (𝐹𝑅𝑅)𝐴 + (𝐹𝑅𝑅)𝐵 + (𝐹𝑅𝑅)𝐶 + (𝐹𝑅𝑅)𝐷 (24) 
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 From our results in Chapter 2, we know that the inertial contribution of the 

rotational inertias of the drive wheels and casters are very small relative to the system.  

Additionally, we can assume that A and B have the same caster rolling resistance, and C 

and D have the same drive wheel rolling resistance.  Therefore, we can simplify Equation 

24 to the following. 

Figure 74. System Resistances During Straight Maneuver  

Figure 75. System Resistances During Fixed Wheel Turn Maneuver 
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𝑀𝑠𝑦𝑠𝑎𝐺 = 2(𝐹𝑅𝑅)𝐷𝑊 + 2(𝐹𝑅𝑅)𝐶𝑎𝑠𝑡𝑒𝑟 (25) 

 For the fixed-wheel turn maneuver, we can see than drive wheel scrub has been 

entered into the system because of the steady-state changes in heading.  No significant 

scrub torque is experienced by the casters due to the lack of caster swivel.  This leads to 

the equation of motion in Equation 26. 

[𝐼𝐺 +𝑚(𝑢
2 +

1

4
𝑠2) + 𝐼𝐴 (

𝑟𝐴/𝐷

𝑅𝐴
)
2

sin 𝜃𝐴 + 𝐼𝐵 (
𝑟𝐵/𝐷

𝑅𝐵
)
2

sin 𝜃𝐵

+ 𝐼𝐶 (
𝑟𝐶/𝐷

𝑅𝐶
)
2

] (
𝑎𝐺
𝑟𝐺/𝐷

) 

=  (𝑟𝐴/𝐷)(𝐹𝑅𝑅)𝐴 sin 𝜃𝐴+ (𝑟𝐵/𝐷)(𝐹𝑅𝑅)𝐵 sin 𝜃𝐵 +(𝑟𝐶/𝐷)(𝐹𝑅𝑅)𝐶 + (𝜏𝑠𝑠)𝐶 + (𝜏𝑠𝑠)𝐷 

(26) 

 To simplify, we can assume the θ angles are very close to 90 degrees since based 

on typical wheelchair dimensions, θ is never less than 87 degrees in steady-state turning.  

Coupled with the previous assumptions, Equation 26 becomes the following. 

[𝐼𝐺 +𝑚(𝑢
2 +

1

4
𝑠2)] (

𝑎𝐺

𝑟𝐺/𝐷
)  

=  [(𝑟𝐴/𝐷) + (𝑟𝐵/𝐷)](𝐹𝑅𝑅)𝐶𝑎𝑠𝑡𝑒𝑟+ (𝑟𝐶/𝐷)(𝐹𝑅𝑅)𝐷𝑊 + (𝜏𝑠𝑠)𝐷𝑊, 𝑅𝑅 + (𝜏𝑠𝑠)𝐷𝑊 

(27) 

 Note that the fixed-wheel turn equation of motion is structured to define the system 

yaw deceleration due to resistive losses.  Therefore, the resistances are caster and drive 

wheel rolling resistance forces acting at different distances from the center of rotation, as 

well as drive wheel scrub torques.  Of note is the rolling drive wheel’s forces have been 

split into a pure rolling resistance force and rolling scrub torque in accordance with the 

previously described rationale. 
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The zero-radius turns maneuver incorporates the caster scrub torque that is absent 

from the straight and fixed-wheel turn maneuvers by changing directions between 

clockwise and counter-clockwise turning, causing the casters to swivel.  Figure 76 depicts 

the “steady-state” of the zero-radius turn where the casters have already aligned 

perpendicular to the center of rotation (Point O).  The resistive loss term due to the transient 

caster swivel is added as the last term to Equation 28 as a function of caster scrub torque. 

[𝐼𝐺 +𝑚𝑢
2 + 𝐼𝐴 (

𝑟𝐴/𝑂

𝑅𝐴
)
2

sin 𝜃𝐴 + 𝐼𝐵 (
𝑟𝐵/𝑂

𝑅𝐵
)
2

sin 𝜃𝐵 + 𝐼𝐶 (
𝑟𝐶/𝑂

𝑅𝐶
)
2

+ 𝐼𝐷 (
𝑟𝐷/𝑂

𝑅𝐷
)
2

] (
𝑎𝐺

𝑟𝐺/𝑂
)  

(28) 
= (𝑟𝐴/𝑂)(𝐹𝑅𝑅)𝐴 sin 𝜃𝐴+ (𝑟𝐵/𝑂)(𝐹𝑅𝑅)𝐵 sin 𝜃𝐵 +  (𝑟𝐶/𝑂)(𝐹𝑅𝑅)𝐶 +  (𝑟𝐷/𝑂)(𝐹𝑅𝑅)𝐷 

+(𝜏𝑠𝑠)𝐶 + (𝜏𝑠𝑠)𝐷 + 𝑓((𝜏𝑠𝑠)𝐴, (𝜏𝑠𝑠)𝐵) 

 

Figure 76. System Resistances During Zero Radius Turns Maneuver 
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Applying the same simplifying assumptions that were used in the two previous 

equations, we get Equation 29. 

[𝐼𝐺 +𝑚𝑢
2] (

𝑎𝐺
𝑟𝐺/𝑂

) =  (𝑟𝐴/𝑂+𝑟𝐵/𝑂)(𝐹𝑅𝑅)𝐶𝑎𝑠𝑡𝑒𝑟 +  (𝑟𝐶/𝑂 +  𝑟𝐷/𝑂)(𝐹𝑅𝑅)𝐷𝑊 

+2(𝜏𝑠𝑠)𝐷𝑊, 𝑅𝑅 + 𝑓((𝜏𝑠𝑠)𝐴, (𝜏𝑠𝑠)𝐵) 

(29) 

 

 With these three maneuvers, the resistive losses of rolling resistance and scrub 

torque for both caster and drive wheels have been highlighted, each with considerable 

representation. 

4.3 Defining a Performance Metric 

 Propulsion torque and propulsion cost are defined as the AMPS system-

level performance metrics, and were inspired by their clinical relevance.  Propulsion torque 

is directly measured by AMPS and describes the kinetics involved in driving the 

wheelchair.  While the AMPS does not engage in cyclic propulsion like a human does, the 

propulsion torque of AMPS’s continuous drive defines a lower bound for push forces a 

human user must apply to complete the same maneuver.  An example of the velocity and 

torque profiles for a drive wheel is shown in Figure 77.  The acceleration and steady-state 

phase propulsion torques (per drive wheel) are quantified by averaging the torque values 

bounded in their respective time spans, as denoted by regions A and B in Figure 77. These 

time spans key off of time versus torque plots, and are manually selected via the MATLAB 

function ginput. We define the phases based on an ideal torque and velocity profile, in 

which each velocity phase would have a constant torque associated with it. The transition 

phases of the torques are excluded since they do not reflect an accurate representation of 
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phase torque.  The per drive wheel torques for phase are combined at the end to yield the 

system’s phase propulsion torque. 

 

 Propulsion cost keys off of the concept cost of transport, which quantifies the 

energy efficiency of transporting a human or vehicle from one place to another.  Typically, 

it is defined as the transportation energy normalized against the transported weight and 

distance.  In our application to the AMPS, we adopt the definition of propulsion work 

normalized against the displacement.  Normalizing the AMPS propulsion work by each 

canonical maneuver’s characteristic displacement minimizes the impact of path differences 

between each separate AMPS trial.  For the straight maneuver, this definition becomes 

 
𝑃𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 =

𝑊𝑖𝑛

Δ𝑠
 (30) 

Figure 77. AMPS Drive Wheel Velocity and Torque Profiles 
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where 𝑊𝑖𝑛 is the propulsion work (units of joules) done by the AMPS motors and Δ𝑠 is the 

length of the path traveled by the MWC system’s COM (units of meters).  For fixed-wheel 

turning and zero radius turns, the definition takes the form of 

 
𝑃𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 =

𝑊𝑖𝑛

Δ𝜓
 (31) 

where Δ𝜓 is the total yaw angle traveled by the MWC system (units of radians).  The 

propulsion work done by AMPS can be calculated as shown in Equations 32 and 33. 

 𝑃𝑖𝑛 = 𝜏𝜔 (32) 

 
𝑊𝑖𝑛 = ∫ [(𝑃𝑖𝑛)𝐿 + (𝑃𝑖𝑛)𝑅]𝑑𝑡

𝑡𝑓

𝑡𝑖

 (33) 

In Equation 32, the AMPS propulsion power input for one motor is defined by the product 

of 𝜏, the torque applied to the drive wheels, and 𝜔, the angular velocity of the propelled 

drive wheel.  Recall these are determined via measures of motor current sensors and digital 

encoders, respectively.  In Equation 33, the left and right motor powers are combined and 

integrated over time to yield the propulsion work input. 

4.4 System-Level Study Designs 

 The aforementioned canonical maneuvers were applied towards two studies which 

are detailed separately below.  The first is a standalone study, whereas the second was used 

to model the relationship between component properties and propulsion cost (which will 

be detailed in the next chapter). 
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4.4.1 Impact of Mass and Weight Distribution on Propulsion Torque  

Configurations 

 A TiLite Aero Z wheelchair was configured in four different manners to reflect 

different masses and weight distributions. The wheelchair had Primo 5 x 1.5” front casters 

and 24 x 1-3/8” stock pneumatic drive wheels.  In its regular configuration, the wheelchair 

had a 12.1 kg mass and an axle position resulting in 70% weight distribution on drive 

wheels when occupied by the AMPS.  The second configuration was based upon 

measurements of a standard folding frame wheelchair which had a mass of 17.6 kg and 

55% of weight upon the drive wheels.  These two configurations defined the mass and 

weight distributions to be tested.  Specifically, the wheelchair was tested in four 

configurations defined by two masses (12.1 and 17.6 kg) and two weight distributions (70% 

and 55% weight over the drive wheels).  The 5.6 kg additional mass was added at the center 

of mass of the standard TiLite configuration to minimize the impact on yaw inertia.  Axle 

position was adjusted to achieve the different weight distributions. Occupied system mass 

and yaw inertia were measured using the iMachine. 

Maneuvers 

 The straight and fixed-wheel turn canonical maneuvers were applied to this study.  

The fixed-wheel turn was programmed with a steady-state yaw rate of 1.9 rad/s instead of 

the previously defined 1.56 rad/s.  Both fixed-wheel left and right turns were performed.  

Maneuvers were performed on tile and low pile carpet surfaces. Each configuration was 

tested 10 times for each maneuver and surface type, resulting in 240 total AMPS trials. 
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Analysis 

 The propulsion torque performance metric was applied to this study for the 

acceleration and steady-state phases of each maneuver.  Analysis was performed on each 

configuration and surface combination for both straight and turning maneuvers.  For each 

set of ten repeated trials, the propulsion torque mean and standard deviation for both the 

acceleration and steady-state phases were calculated.  Left and right fixed-wheel turns were 

averaged together to yield a single propulsion torque value.  The percent differences and 

effect sizes relative to the torque of the 12.1 kg chair with a 70% weight distribution were 

calculated.  This reference configuration reflects that of an ULW wheelchair.  Effect size, 

also termed Cohen’s d (Cohen, 1988), can be interpreted as the average percentile standing 

of the tested configuration relative to the reference configuration.  This data provides the 

most direct evaluation of differences with the ability to judge meaningfulness.  In a strict 

sense, testing multiple wheelchair configurations over multiple trials does not permit use 

of ANOVA to infer differences due of the violation of the assumption of independence. 

However, in deference to convention, simple univariate ANOVA results are reported for 

the straight and turning maneuvers during the acceleration and steady-state phases. 

4.4.2 Impact of Casters and Drive Wheels on Propulsion Cost  

Configurations 

 A Quickie GT wheelchair was outfitted with combinations of three different types 

of drive wheels and four different types of casters, resulting in twelve MWC configurations 

with distinct component pairings.  The casters used were the 4 x 1.5” FLSR, 5 x 1.5” Primo 

SR, 5 x 1” Primo, and 6 x 1” Pneumatic.  The drive wheels used were the Solid Mag, 

Spinergy, and Stock Pneumatic.  Each of these component pairings were adjusted to have 
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60%, 70%, and 80% load on drive wheels.  These different weight distributions were 

achieved by shifting the weights inside the AMPS “buttocks”, whose original cement build 

had been replaced with a Dibond reinforced hollow acrylic mold to house removable 

weights.  Including these different weight distributions, the total number of distinct MWC 

configurations used in this study was 36.  The total mass (~113 kg) for all MWC 

configurations did not vary beyond the differences caused by switching components, which 

were < 1.5 kg across the board.  The constant system mass helps frame the outcome of this 

study as the impact of casters and drive wheels for a single MWC user.  Occupied system 

mass and yaw inertia were measured using the iMachine for all configurations. 

 

Figure 78. AMPS Loaded at the 70%WD Configuration 
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Maneuvers 

 The straight, fixed-wheel turn, and zero-radius turns canonical maneuvers were all 

applied to every configuration in this study.  To minimize the impact of surface bias, two 

sets of trials were conducted for each canonical maneuver.  For straight, a “forward” 

direction was defined by the first set of trials, and then trials were conducted at a 180 degree 

heading from this direction, termed the “backward” direction.  Both left and right fixed-

wheel turns were conducted, and zero-radius turns consisted of two trial sets that started 

with either clockwise (CW) yaw rotation or counter-clockwise (CCW) yaw rotation.  All 

tests were conducted on both tile and carpet, with the zero-radius turns maneuver being 

reduced in steady-state speed on carpet due to motor torque constraints (detailed in Section 

4.2).  Each trial set consisted of 5 repeated trials, resulting in 2160 total AMPS trials. 

Analysis 

 The propulsion cost performance metric was applied to this study.  For AMPS trials 

of both straight and fixed-wheel turn maneuvers, the propulsion cost across the acceleration 

and steady-state phases was used for analysis (MATLAB).  The deceleration or braking 

phase is intentionally omitted as the goal is to highlight energy expended for task 

propulsion.  For AMPS trials of the zero-radius turns maneuver, the propulsion cost across 

the last four of the six total turns in each trial was used for analysis.  The first two turns 

were omitted due to their propulsion instabilities from misaligned casters.  The propulsion 

cost of each turn’s braking phase is included out of necessity, as the zero-radius turns do 

not exhibit as distinct and consistent of a propulsion phase as the straight and fixed-wheel 

turn maneuvers.  Statistical analysis of each canonical maneuver and surface combination 

is handled separately.  Within each canonical maneuver and surface combination, two sets 
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of trial averages were formed, one by collapsing data across casters to form drive wheel 

averages and one by collapsing data across drive wheels to form caster averages.  Each 

drive wheel average consisted of 40 trials, while each caster average consisted of 30 trials.  

The standard deviation of the trials for each average was also calculated.  For collapsed 

drive wheels, the percent differences and effect sizes relative to the 5 x 1” Primo caster 

within each weight-distribution was calculated.  The percent differences and effect sizes 

relative to the 80%WD for each caster was also calculated.  For collapsed casters, the 

percent differences and effect sizes relative to the Stock Pneumatic within each weight-

distribution was calculated.  Again, the percent differences and effect sizes relative to the 

80%WD for each drive wheel was also calculated.  The reference caster and drive wheels 

reflect the stock components used on ULW wheelchairs, while the reference weight-

distribution is the clinically-recommended configuration for a ULW wheelchair.  Effect 

size, also termed Cohen’s d (Cohen, 1988), can be interpreted as the average percentile 

standing of the tested configuration relative to the reference configuration.  This data 

provides the most direct evaluation of differences with the ability to judge meaningfulness.  

In a strict sense, testing multiple wheelchair configurations over multiple trials does not 

permit use of ANOVA to infer differences due of the violation of the assumption of 

independence.  However, in deference to convention, a 3-way ANOVA was run to identify 

the wheelchair configuration factors that influence measures of propulsion cost for each 

task and surface.  The 3 drive wheels, 4 casters and 3 weight distributions were entered 

into the analysis.  In addition to main effects, second level interaction with weight 

distribution was included.  All p-values are reported, and data significance is discussed at 

levels of p ≤ 0.05. 
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4.5 System-Level Experimental Results and Discussion 

4.5.1 Impact of Mass and Weight Distribution on Propulsion Torque 

 The mass, yaw inertias, and weight distributions of each configuration are shown 

in Table 19. The 5.5 kg mass represented a 45% increase in wheelchair mass, but when 

loaded with the AMPS, this increase was only 5%.  Yaw inertia was increased by 33% 

when the mass was redistributed from 70% to 55% on the drive wheels.  Acceleration and 

steady-state phase propulsion torque values of each wheelchair configuration are tabulated 

in Table 20 and Table 21 and plotted in Figure 79 – Figure 82 for both straight and fixed-

wheel turning trajectories on tile and carpet. 

Table 19. Test Wheelchair Configurations 

Configuration Wheelchair Mass [kg] Yaw Inertia [kg-m2] % weight on drive wheels 

12kg&70% 12.1 7.82 71.6 

17.6kg&70% 17.6 7.89 72.1 

12kg&55% 12.2 10.21 58.1 

17.6kg&55% 17.7 10.68 56.5 

  

 The torques required to propel the four configurations differed during both straight 

and turning trajectories on both tile and carpet (p < 0.0001). The torques imparted during 

straight and turning trajectories were greater during acceleration than during steady-state 

speed (p < 0.0001).  

 On both surfaces, the lowest torques was recorded on the 12 kg wheelchair 

configured with 70% of its weight on the drive wheels (12kg&70% configuration). The 

relative differences between this torque and the other configurations varied across the 

different maneuvers and phases on the tile and carpet surfaces (Table 20 and Table 21). 
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The effect sizes were very large in all cases, except during the steady-state straight 

trajectory (0.47) on carpet when comparing the 2 masses with a 70% weight distribution. 

All other effect sizes exceeded 1.4. 

 

Table 20. Propulsion Torques During Maneuvers on Tile 

 

  

Maneuver/Phase 

Torques 
Configuration 

Mean 

(Nm) 

Stand. Dev. 

(Nm) 

% 

change 

Cohen's 

d 

straight 

acceleration 

12kg&70% 18.0 0.281   

17.6kg&70% 19.1 0.427 6.1% 3.04 

12kg&55% 18.4 0.217 2.1% 1.59 

17.6kg&55% 20.0 0.648 10.9% 4 

straight 

steady-state 

12kg&70% 4.1 0.060   

17.6kg&70% 4.2 0.078 2.5% 1.43 

12kg&55% 4.3 0.086 6.9% 2.7 

17.6kg&55% 5.0 0.144 23.1% 8.15 

turning 

acceleration 

12kg&70% 11.7 0.467   

17.6kg&70% 12.3 0.312 4.7% 1.38 

12kg&55% 13.5 0.368 14.6% 4.09 

17.6kg&55% 14.5 0.503 23.9% 5.77 

turning 

steady-state 

12kg&70% 5.6 0.171   

17.6kg&70% 5.7 0.157 2.3% 0.791 

12kg&55% 8.9 0.421 59.9% 10.36 

17.6kg&55% 10.6 0.274 90.0% 21.89 
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Table 21. Propulsion Torques During Maneuvers on Carpet 

   

 For the categories of straight steady-state, turning steady-state, and turning 

acceleration, the configurations with 55% weight distribution accounted for the highest 

propulsion torques. In distinction, the highest torques during straight acceleration were 

recorded for the chair configurations with a 17.6 kg mass. Torques on carpet were less 

different across configurations compared to torques measured on tile during both 

trajectories and phases. The greatest torque differences existed during the steady-state 

phases of both trajectories. 

Maneuver/Phase 

Torques 
Configuration 

Mean 

(Nm) 

Stand. Dev. 

(Nm) 
% change 

Cohen's 

d 

straight 

acceleration 

12kg&70% 21.9 0.477   

17.6kg&70% 23.5 0.361 7.2% 3.78 

12kg&55% 22.6 0.354 3.2% 1.67 

17.6kg&55% 23.6 0.561 7.8% 3.26 

straight  

steady-state 

12kg&70% 7.0 0.129   

17.6kg&70% 7.1 0.266 1.5% 0.478 

12kg&55% 7.7 0.131 9.3% 5.38 

17.6kg&55% 8.2 0.326 16.0% 4.84 

turning 

acceleration 

12kg&70% 19.4 0.567   

17.6kg&70% 20.6 0.657 6.4% 2.19 

12kg&55% 20.7 0.523 6.6% 2.36 

17.6kg&55% 21.0 0.760 8.1% 2.34 

turning  

steady-state 

12kg&70% 11.4 0.211   

17.6kg&70% 12.0 0.182 5.4% 3.09 

12kg&55% 12.0 0.157 5.6% 3.39 

17.6kg&55% 12.5 0.205 10.1% 5.53 
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  The relative influences of mass and weight distribution on torque varied between 

the straight and turning trajectories and whether the wheelchair was accelerating or at a 

steady-state speed. During straight acceleration (Figure 79), the greater mass required, on 

average, 7.4% greater torque on tile and 5.8% greater torque on carpet. For this maneuver, 

the configurations with a 55% weight distributions required 3.3% greater torque on tile and 

2% greater torque on carpet. During straight steady-state speeds (Figure 80), the 17.6 kg 

configurations required 8.8% more torque on tile and 3.8% more torque on carpet. The 

55% weight distribution configurations required 13.5% greater torque on tile and 11.8% 

more torque on carpet.  

Figure 79. Propulsion torque across configurations for acceleration phase of straight 

maneuver 
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 Turning torques indicated a greater influence of weight distribution. For the 

acceleration phase (Figure 81), the increased mass required 6.4% and 3.9% more torque 

on tile and carpet, respectively, while the change in weight distribution increased torque 

by 16.5% on tile and 4.1% on carpet. During steady-state turning (Figure 82), the 

additional mass increased torque by 10.6% on tile and 4.8% on carpet whereas the 55% 

weight distribution increased torque by 73% on tile and 5.1% on carpet. 

   The standard deviations of the means reflect the high repeatability of the AMPS 

system in measuring propulsion torque, with the forward axle and high mass configuration 

exhibiting a slightly higher variability. This underscores its value for comparing different 

configurations of manual wheelchairs. Both the percent changes and effect sizes serve as 

Figure 80. Propulsion torque across configurations for steady-state phase of straight 

maneuver 
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useful comparisons against the base configuration of the ULW wheelchair and are reported 

in Table 20 and Table 21. An effect size of 1.0 indicates that the mean torque of the tested 

wheelchair is at the 84th percentile of the 12kg&70% wheelchair. An effect size of 2.0 

indicates that the tested wheelchair is at the 97.7th percentile of the base ULW wheelchair 

configuration. The very large effect sizes, therefore, show a distinction between the torques 

measured across configurations, trajectories, and surfaces. 

 Percentage differences, on the other hand, offer a relative comparison that can be 

used to apply clinical relevancy. Torques measured during acceleration and steady-state 

speed phases are considered to be stable, meaning that a single torque is required to impart 

the acceleration or speed during the respective phase of the maneuver. The work performed 

Figure 81. Propulsion torque across configurations for acceleration phase of turning 

maneuver 
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over that phase is directly related to the torque as well as the distance over which the torque 

is applied. Differences in work, therefore, can be used to assess the propulsion effort that 

a user must impart to complete the maneuver. In this study, the distances traveled in each 

phase were the same for each test so the torque can be used to evaluate differences in 

propulsion effort of a user. As an example, consider the straight trajectory on tile. Adding 

5.5 kg to the 12.1kg&70% wheelchair increases torque by 6% during acceleration but only 

by 2.5% when propelling at steady-state. However, if 5.5 kg is added in combination to 

shifting weight to the casters (17.6kg&55% configuration), 11% greater torque is needed 

to accelerate and 23% greater torque is required to propel at a constant speed. This 

comparison must be made with the knowledge that the acceleration phase was 2.5 s long 

and the steady-state speed phase was 5 s long. If a user propels a longer distance, he or she 

Figure 82. Propulsion torque across configurations for steady-state phase of turning 

maneuver 
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would be applying this extra propulsion torque for longer durations, so percent difference 

in torque is a more meaningful comparison compared to the magnitude difference. 

 The torque required to maneuver a wheelchair is directly related to the inertial and 

frictional influences of the wheelchair system. Torque during acceleration must be applied 

to overcome both inertia and friction. In distinction, the torque required to maintain steady-

state velocity is influenced by the need to overcome friction. Therefore, torques are 

naturally greater during acceleration than during steady-state velocity because work is 

required to accelerate all components with mass.  

 For the configurations tested, the torque required to accelerate the chair in a straight 

direction was over twice that required to keep the chair moving. In turning, the acceleration 

torques were 80% greater than the steady-state torques, a lower but still appreciable 

increase. From a human perspective, this large difference in torque translates to a 

heightened instantaneous torque required for a user to accelerate a wheelchair compared to 

that required to maintain speed. This instantaneous torque imparted by the user can be 

lowered by accelerating more slowly. 

 Friction is directly related to tire design and the surface the wheels are rolling on. 

The influence of friction is very apparent by the large torque differences on carpet versus 

tile.  Carpet required, on average, 55% greater torque than that during maneuvers on tile.    

 The torque differences between straight and turning are not as straightforward to 

discuss since different velocities were targeted and a fixed-radius turn requires torque to 

be applied to only one wheel. However, a statement can be made towards how these two 

trajectories differ with respect to the types of kinetic energy imparted onto the wheelchair 
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during a maneuver. A straight trajectory involves a lot of translational KE because the 

center of mass is moving over a distance; this requires work to be imparted into the system. 

Turning also involves translational KE as well as turning KE, but the maneuver requires 

less energy. However, the resistive losses in turning are greater than during straight 

movement. A straight trajectory involves frictional losses dominated by rolling resistance 

on the wheels and casters. Turning includes rolling resistance plus tire scrub. The energy 

losses in turning are much greater as evidenced by the fact that one slows down quicker 

while turning compared to moving straight (Lin & Sprigle, 2014).   

 Assessing the torque differences across mass and weight distribution are more 

complex, but still highlight the influences of inertia and friction.  Mass directly impacts 

inertia and thus would be expected to have greater influence while accelerating.  The 

change in weight distribution affects yaw inertia and the relative friction that exists on the 

casters and drive wheels. In general, added mass had a greater impact on torque while 

accelerating a wheelchair in the straight direction on both surfaces.  Weight distribution 

had a greater influence on torque during straight steady-state speeds on both surfaces and 

during both acceleration and steady-state phases while turning on tile. Mass and weight 

distribution had nearly equal influences while turning on carpet during both the 

acceleration and steady-state phases. 

 During acceleration in a straight trajectory, the respective influences of mass and 

weight distribution were similar on both surfaces (Figure 79). While mass had a greater 

influence during acceleration, acceleration torque also increased when more weight was 

placed upon the casters (55% configuration). This latter result can be explained by the 

greater rolling resistance of the smaller diameter casters relative to the drive wheels (J. J. 
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Kauzlarich & J. G. Thacker, 1985; Thacker, Sprigle, & Morris, 1994).  During steady-state 

speeds, weight distribution had the greater impact.  Figure 82 illustrates this by the larger 

torques of the 55% weight distribution configurations regardless of wheelchair mass. 

 In turning, the relationship between mass and weight distribution changes because 

of two factors, a change in yaw inertia and an enhanced influence of friction at the drive 

wheels due to tire scrub.  Table 19 shows that shifting weight to the casters impacts yaw 

inertia much more than adding 5.5 kg of mass.  This corroborates previously reported 

results on the impact of axle position and configurations on inertia (Caspall, Seligsohn, 

Dao, & Sprigle, 2013).  Because friction is directly related to the normal forces between 

the surfaces in contact, drive wheel scrub during turning is greater when 70% of weight is 

placed upon the drive wheels (Lin & Sprigle, 2014).  So, while accelerating into a turn, 

inertia and friction exert opposite influences on propulsion torque.  During acceleration on 

tile, the increased yaw inertia of the 55% configurations leads to greater torques despite the 

lower scrub torque (Figure 81).  This inertial influence becomes muted on carpet when 

friction becomes more pronounced, resulting in nearly identical torques except for the 

lower torque for the 12kg&70% configuration.  During steady state turning, the torque 

influences are more complex to partition, but AMPS empirically measures system torque.  

Propulsion torque in steady-state follows the same relationship as during acceleration.  

Weight distribution has a greater impact on turning torque compared to mass while on tile, 

but these influences become much smaller when turning on carpet (Figure 82). 
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4.5.2 Impact of Casters and Drive Wheels on Propulsion Cost 

Table 22. AMPS Weight-Distribution Configurations and System Yaw Inertia 

Configuration 
Yaw Inertia 

[kg-m2] 
% weight on drive wheels 

60% 8.89 59.3% 

60% with 6 x 1” 

Pneumatic caster 
9.46 62.6% 

70% 7.33 69.7% 

70% with 6 x 1” 

Pneumatic caster 
7.75 73.4% 

80% 6.37 79.2% 

80% with 6 x 1” 

Pneumatic caster 
6.72 82.6% 

  

 The yaw inertias and weight distributions of each weight-distribution configuration 

are shown in Table 22.  Separate rows for configurations using the 6 x 1” Pneumatic caster 

were added, as the use of this caster resulted in a 2” increase in the front wheel elevation, 

effectively shifting more load onto the drive wheels and changing the wheelbase relative 

to other casters.  However, as this reflects how a single user (as simulated by the constant 

113 kg AMPS mass) would configure their wheelchair, the weight distributions with the 6 

x 1” Pneumatic caster will be considered categorically equivalent to the other weight-

distributions.  Yaw inertia increased by 15% and 40% when mass was redistributed from 

80% to 70% and 80% to 60% on drive wheels, respectively. 

 Table 23 – Table 28 summarize the propulsion cost - collapsed by casters and 

collapsed by drive wheels - for each canonical maneuver on both tile and carpet. 
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Table 23. AMPS Propulsion Cost for Straight Maneuvers on Tile 

 

Table 24. AMPS Propulsion Cost for Straight Maneuvers on Carpet 

 

 

Table 25. AMPS Propulsion Cost for Fixed Wheel Turn Maneuvers on Tile 

Drive Wheels 
Average [J/rad] Standard Deviation [J/rad] 

60% 70% 80% 60% 70% 80% 

Solid Mag 14.3 13.9 14.1 1.0 0.5 0.4 

Spinergy 13.3 13.1 13.3 0.9 0.8 0.7 

Stock Pneumatic 13.4 13.3 13.5 1.0 0.8 0.7 

Casters 
Average [J/rad] Standard Deviation [J/rad] 

60% 70% 80% 60% 70% 80% 

4x1.5" FLSR 12.5 12.8 13.3 0.5 0.6 0.7 

5x1.5" Primo SR 14.0 13.5 13.6 0.7 0.8 0.7 

5x1" Primo 13.3 13.1 13.4 0.6 0.4 0.6 

6x1" Pneumatic 14.9 14.2 14.2 0.6 0.4 0.4 

Drive Wheels 
Average [J/m] Standard Deviation [J/m] 

60% 70% 80% 60% 70% 80% 

Solid Mag 31.1 31.6 32.5 2.7 2.3 2.1 

Spinergy 24.5 23.0 22.2 2.0 1.8 1.9 

Stock Pneumatic 21.9 20.3 19.6 1.9 1.7 1.6 

Casters 
Average [J/m] Standard Deviation [J/m] 

60% 70% 80% 60% 70% 80% 

4x1.5" FLSR 24.0 23.7 23.9 4.0 5.0 5.8 

5x1.5" Primo SR 26.1 25.3 24.8 4.4 5.5 6.3 

5x1" Primo 25.1 24.6 24.6 3.9 4.9 5.7 

6x1" Pneumatic 27.9 26.3 25.7 4.8 5.3 6.1 

Drive Wheels 
Average [J/m] Standard Deviation [J/m] 

60% 70% 80% 60% 70% 80% 

Solid Mag 44.1 43.7 43.2 1.5 1.4 1.4 

Spinergy 37.6 35.4 33.0 1.2 1.4 1.3 

Stock Pneumatic 38.4 35.6 33.1 1.5 1.5 1.3 

Casters 
Average [J/m] Standard Deviation [J/m] 

60% 70% 80% 60% 70% 80% 

4x1.5" FLSR 39.8 38.5 36.9 3.1 4.1 5.0 

5x1.5" Primo SR 40.8 38.8 36.9 3.1 4.0 4.9 

5x1" Primo 40.4 38.6 36.6 3.3 4.1 5.0 

6x1" Pneumatic 39.2 37.0 35.4 3.1 4.3 5.2 
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Table 26. AMPS Propulsion Cost for Fixed Wheel Turn Maneuvers on Carpet 

 

Table 27. AMPS Propulsion Cost for Zero Radius Turns Maneuvers on Tile 

 

Table 28. AMPS Propulsion Cost for Zero Radius Turns Maneuvers on Carpet 

 

Drive Wheels 
Average [J/rad] Standard Deviation [J/rad] 

60% 70% 80% 60% 70% 80% 

Solid Mag 22.6 21.7 21.5 0.7 0.5 0.5 

Spinergy 23.5 23.1 22.8 0.8 1.2 1.1 

Stock Pneumatic 23.4 22.3 22.1 0.9 1.1 1.1 

Casters 
Average [J/rad] Standard Deviation [J/rad] 

60% 70% 80% 60% 70% 80% 

4x1.5" FLSR 23.2 22.5 22.2 0.6 0.7 0.8 

5x1.5" Primo SR 23.8 23.1 22.9 0.8 1.1 1.1 

5x1" Primo 23.5 22.8 22.2 0.7 1.0 0.8 

6x1" Pneumatic 22.2 21.3 21.1 0.5 0.6 0.6 

Drive Wheels 
Average [J/rad] Standard Deviation [J/rad] 

60% 70% 80% 60% 70% 80% 

Solid Mag 14.1 11.9 10.8 2.1 1.0 0.5 

Spinergy 11.4 9.0 7.6 1.9 0.8 0.4 

Stock Pneumatic 11.1 9.5 8.3 1.4 1.0 1.1 

Casters 
Average [J/rad] Standard Deviation [J/rad] 

60% 70% 80% 60% 70% 80% 

4x1.5" FLSR 10.5 9.3 8.4 1.1 1.3 1.7 

5x1.5" Primo SR 13.0 10.7 9.8 1.2 1.5 1.5 

5x1" Primo 10.8 9.2 8.3 1.4 1.1 1.2 

6x1" Pneumatic 14.6 11.2 9.0 2.2 1.4 1.3 

Drive Wheels 
Average [J/rad] Standard Deviation [J/rad] 

60% 70% 80% 60% 70% 80% 

Solid Mag 16.6 15.0 13.9 1.0 0.6 0.6 

Spinergy 14.7 12.8 11.0 0.9 0.5 0.3 

Stock Pneumatic 16.3 14.4 12.7 0.8 0.4 0.5 

Casters 
Average [J/rad] Standard Deviation [J/rad] 

60% 70% 80% 60% 70% 80% 

4x1.5" FLSR 14.8 13.7 12.4 0.7 1.0 1.3 

5x1.5" Primo SR 16.5 14.5 13.2 1.1 0.9 1.4 

5x1" Primo 15.3 13.7 12.3 1.1 1.0 1.1 

6x1" Pneumatic 16.8 14.4 12.2 0.7 1.1 1.0 



 128 

 The propulsion cost for all three canonical maneuver increased between tile and 

carpet surfaces.  On average, straight propulsion cost increased by 52%, fixed-wheel turn 

propulsion cost increased by 66%, and zero-radius turns propulsion cost increased by 36%.  

This suggests straight and fixed-wheel turn maneuvers are the most sensitive to rough 

surface conditions.  On tile, fixed-wheel turn maneuvers had on average a 30% greater 

propulsion cost than zero-radius turns maneuvers.  On carpet, this percent difference 

increased to 59%.  Both of these maneuvers have a kinematic outcome based on heading 

change.  However, the fixed wheel turn is impacted by its larger translational kinetic energy 

as well as the scrub torque of its fixed drive wheel.  The sole resistive loss that is present 

in zero-radius turns but absent in fixed-wheel turn maneuvers is caster scrub due to swivel, 

which appears to be too small to offset the differences between these two maneuvers. 

ANOVA Analysis 

 Normality of the dependent measures were assessed using Kolmogorov-Smirnov 

analysis.  Propulsion cost during the straight trajectories was found to violate the 

assumption of normality.  ANOVA was run using a Box-Cox transformation of this data. 

Table 29. ANOVA of Straight Maneuvers on Tile 

Source DF Adj SS Adj MS F-Value P-Value 

  DRIVE WHEEL 2 1.20037 0.600186 882.85 0 

  CASTER 3 0.05607 0.018691 27.49 0 

  WD CONFIG 2 0.01867 0.009333 13.73 0 

  DRIVE WHEEL*WD CONFIG 4 0.0309 0.007724 11.36 0 

  CASTER*WD CONFIG 6 0.00533 0.000888 1.31 0.304 

Error 18 0.01224 0.00068   
Total 35 1.32358    
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Table 30. ANOVA of Straight Maneuvers on Carpet 

Source DF Adj SS Adj MS F-Value P-Value 

  DRIVE WHEEL 2 0.347627 0.173813 1573.83 0 

  CASTER 3 0.010059 0.003353 30.36 0 

  WD CONFIG 2 0.060054 0.030027 271.89 0 

  DRIVE WHEEL*WD CONFIG 4 0.020189 0.005047 45.7 0 

  CASTER*WD CONFIG 6 0.000778 0.00013 1.17 0.363 

Error 18 0.001988 0.00011 
  

Total 35 0.440695 
   

 

 For the straight trajectory, the mean propulsion cost values within all three factors 

were significantly different on both tile and carpet. This result means that the levels within 

each factor were not equal.  The interaction between drive wheel and %WD was also 

significant on both surfaces, meaning that the response for the type of drive wheel 

depended on the %WD value. 

Table 31. ANOVA of Fixed Wheel Turn Maneuvers on Tile 

Source DF Adj SS Adj MS F-Value P-Value 

  DRIVE WHEEL 2 5.1288 2.56442 28.07 0 

  CASTER 3 12.4056 4.13521 45.27 0 

  WD CONFIG 2 0.4508 0.22541 2.47 0.113 

  DRIVE WHEEL*WD CONFIG 4 0.1635 0.04087 0.45 0.773 

  CASTER*WD CONFIG 6 2.242 0.37367 4.09 0.009 

Error 18 1.6444 0.09135 
  

Total 35 22.0351 
   

 

Table 32. ANOVA of Fixed Wheel Turn Maneuvers on Carpet 

Source DF Adj SS Adj MS F-Value P-Value 

  DRIVE WHEEL 2 8.548 4.27402 29.72 0 

  CASTER 3 14.6265 4.87551 33.9 0 

  WD CONFIG 2 7.2156 3.60778 25.09 0 

  DRIVE WHEEL*WD CONFIG 4 0.7178 0.17945 1.25 0.326 

  CASTER*WD CONFIG 6 0.2156 0.03593 0.25 0.953 

Error 18 2.5884 0.1438 
  

Total 35 33.9119 
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 For fixed wheel turns, propulsion cost significantly differed across both drive wheel 

and caster type on both tile and carpet with %WD being significantly different only on 

carpet.  Because the %WD main effect was not significant on tile, its interactions were not 

assessed. On carpet, because neither interaction was significant, one can infer that the 

propulsion cost of the components are independent of %WD during fixed wheel turns.  

Table 33. ANOVA of Zero Radius Turns Maneuvers on Tile 

Source DF Adj SS Adj MS F-Value P-Value 

  DRIVE WHEEL 2 61.956 30.9781 78.82 0 

  CASTER 3 35.946 11.9821 30.49 0 

  WD CONFIG 2 68.334 34.1669 86.94 0 

  DRIVE WHEEL*WD CONFIG 4 1.21 0.3026 0.77 0.559 

  CASTER*WD CONFIG 6 10.939 1.8231 4.64 0.005 

Error 18 7.074 0.393 
  

Total 35 185.46 
   

 

Table 34. ANOVA of Zero Radius Turns Maneuvers on Carpet 

Source DF Adj SS Adj MS F-Value P-Value 

  DRIVE WHEEL 2 34.018 17.009 134.38 0 

  CASTER 3 7.574 2.5248 19.95 0 

  WD CONFIG 2 66.991 33.4957 264.64 0 

  DRIVE WHEEL*WD CONFIG 4 1.164 0.2909 2.3 0.099 

  CASTER*WD CONFIG 6 4.261 0.7102 5.61 0.002 

Error 18 2.278 0.1266 
  

Total 35 116.287 
   

 

 For zero radius turns, the mean propulsion cost values within all three factors were 

significantly different on both tile and carpet. The interactions between casters and %WD 

was also significant on both surfaces at the p < 0.05 level while the interactions between 

drive wheel and %WD on carpet was significant at the p < 0.1 level.  The propulsion cost 

of drive wheel type did not depend on %WD when traveling on tile based upon the non-

significant interaction. 
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 The cost of propulsion differed significantly across drive wheel and caster types 

during all three canonical maneuvers and on both surfaces. This result can be inferred to 

mean that the selection of drive wheels and casters influences the propulsion of manual 

wheelchairs on both high and low friction surfaces for both straight and turning trajectories.  

Different configurations of %WD impacted propulsion cost during two maneuvers, straight 

and zero radius turns, suggesting that adjustments of fore-aft axle position on a wheelchair 

strongly influence user effort during these two maneuvers.  The 60%-80% span of weight 

distributions influenced propulsion cost during fixed wheel turns on the higher friction 

carpeted surface but not on tile.    

 The interactions with Drive Wheel and Caster types provide insight into the 

combined influences of %WD, drive wheels and casters on the cost of propulsion. During 

a straight trajectory, the performance of drive wheels - as measured by propulsion cost - is 

dependent on the %WD of the wheelchair system.  Caster performance is not dependent 

on the %WD during a straight trajectory.  Together, this illustrates the significant impact 

that drive wheel load has on system rolling resistance, while the load-based variance in 

caster rolling resistance contribution to the system is not significant.  During fixed wheel 

turns, neither drive wheel or caster performance depends on the %WD of the wheelchair, 

demonstrating the components’ insensitivity to load in this maneuver.  Finally, during zero 

radius turns, caster performance was dependent on %WD levels on both surfaces but drive 

wheel performance is only dependent on %WD when traveling on carpet.  This can be 

rationalized by the presence of the high-resistance swiveling of the casters in this 

maneuver, where added front load would amplify this resistive force greatly.  Drive wheels, 

on the other hand, only seem to experience significant load sensitivity on carpet. 
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Effect Sizes and Percent Differences 

 Keying off of the ANOVA analysis, both the effect sizes and percent changes were 

leveraged as useful comparisons against a stock MWC configuration with 80%WD, 5 x 1” 

Primo casters, and Stock Pneumatic drive wheels.  An effect size of 1.0 or 2.0 indicates 

that propulsion cost of the tested wheelchair is at the 84th percentile or 97.7th percentile of 

the base wheelchair configuration, respectively.  The very large effect sizes, therefore, 

show a distinction between the propulsion cost measured across configurations, 

trajectories, and surfaces.  Percentage differences, on the other hand, offer a relative 

comparison that can be used to apply clinical relevancy.  These differences in work can be 

used to quantify the relative propulsion effort that a user must impart to complete the 

maneuver with different components.  In the follow section, the percent changes and effect 

sizes for different component and weight-distribution configurations are tabulated, each 

table separated by maneuver and surface type.  Green and red highlighting are used to 

denote increase and decrease with respect to the stock component/configuration, 

respectively.  Effect sizes > 1 are bolded.  Corresponding plots of average caster and drive 

wheel propulsion cost are also included for each maneuver and surface type.  These plots 

will serve to better illustrate the differences between components and configurations 

summarized by the tables. 
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Table 35. Straight (Tile) Propulsion Cost % Differences and Effect Sizes 

Drive Wheels 
% Change Cohen's d 

60% 70% 80% 60% 70% 80% 

Solid Mag 42.2% 55.2% 66.3% 3.94 5.54 6.93 

Spinergy 12.1% 13.1% 13.4% 1.35 1.51 1.47 

Stock Pneumatic 0.0% 0.0% 0.0% 0.00 0.00 0.00 

%WD 

% Change Cohen's d 

Solid Mag Spinergy 
Stock 

Pneumatic 
Solid Mag Spinergy 

Stock 

Pneumatic 

60% -4.4% 10.5% 11.8% -0.60 1.19 1.29 

70% -2.8% 3.8% 4.1% -0.42 0.45 0.48 

80% 0.0% 0.0% 0.0% 0.00 0.00 0.00 

Casters 
% Change Cohen's d 

60% 70% 80% 60% 70% 80% 

4x1.5" FLSR -4.3% -3.5% -3.0% -0.28 -0.18 -0.13 

5x1.5" Primo SR 3.9% 2.7% 1.0% 0.24 0.13 0.04 

5x1" Primo 0.0% 0.0% 0.0% 0.00 0.00 0.00 

6x1" Pneumatic 11.2% 6.9% 4.4% 0.65 0.33 0.18 

%WD 

% Change Cohen's d 

4x1.5" 

FLSR 

5x1.5" 

Primo SR 

5x1" 

Primo 

6x1" 

Pneumatic 

4x1.5" 

FLSR 

5x1.5" 

Primo SR 

5x1" 

Primo 

6x1" 

Pneumatic 

60% 0.7% 5.1% 2.2% 8.9% 0.03 0.23 0.11 0.42 

70% -0.5% 1.7% 0.1% 2.5% -0.02 0.07 0.00 0.11 

80% 0.0% 0.0% 0.0% 0.0% 0.00 0.00 0.00 0.00 
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Figure 83. Propulsion Cost of Drive Wheel Configurations for 

Straight Maneuvers on Tile 
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 For propulsion cost of straight maneuvers on tile, MWCs configured with the Solid 

Mag exhibit the largest positive and increasing effect size (3.94 – 6.93) with respect to 

configurations with the Stock Pneumatic, which is lowest in propulsion cost.  Percent 

differences between these two drive wheels range from 42.2% to 66.3% across 60%WD to 

80%WD.  The Spinergy configurations also have large positive effect sizes with respect to 

the Stock Pneumatic configurations (1.35 – 1.51), with percent differences across weight-

distributions ranging from 12.1% to 13.4%.  Both Spinergy and Stock Pneumatic 

configurations experience an increase in propulsion cost with decreased load on drive 

wheels, with significant effect sizes at 60%WD with respect to their 80%WD 

configurations (1.19 and 1.29).  This translates to a 10.5% and 11.8% increase in propulsion 

cost, respectively.  The Solid Mag configurations, however, decrease in propulsion cost 

with less load on drive wheels, which translates to the Solid Mag being, on average, less 

efficient in rolling than the casters within these weight-distributions.  Differences between 
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Figure 84. Propulsion Cost of Caster Configurations for Straight 

Maneuvers on Tile 
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casters for straight maneuver propulsion cost on tile are smaller, with the 6x1” Pneumatic 

having the greatest effect size of 0.65 (11.2% greater) at 60%WD when compared to the 

5x1” Primo.  The 6x1” Pneumatic configurations are also the most sensitive to load, with 

an effect size of 0.42 (8.9% greater) between its 80%WD and 60%WD configurations.  The 

only caster configurations to register a reduction in propulsion cost relative to the 5x1” 

Primo is the 4x1.5” FLSR (-4.3%). 

Table 36. Straight (Carpet) Propulsion Cost % Differences and Effect Sizes 

 

 For straight maneuvers on carpet, the Solid Mag maintains its large positive effect 

sizes but reflects smaller percent differences (3.79 – 7.47, 14.7% – 30.8%) with respect to 

the Stock Pneumatic configurations across all weight distributions.  On carpet, the Spinergy 

Drive Wheels 
% Change Cohen's d 

60% 70% 80% 60% 70% 80% 

Solid Mag 14.7% 22.8% 30.8% 3.79 5.59 7.47 

Spinergy -2.1% -0.5% -0.2% -0.59 -0.12 -0.04 

Stock Pneumatic 0.0% 0.0% 0.0% 0.00 0.00 0.00 

%WD 

% Change Cohen's d 

Solid Mag Spinergy 
Stock 

Pneumatic 
Solid Mag Spinergy 

Stock 

Pneumatic 

60% 1.9% 14.0% 16.2% 0.58 3.72 3.75 

70% 1.0% 7.2% 7.5% 0.31 1.78 1.75 

80% 0.0% 0.0% 0.0% 0.00 0.00 0.00 

Casters 
% Change Cohen's d 

60% 70% 80% 60% 70% 80% 

4x1.5" FLSR -1.4% 0.0% 0.7% -0.17 0.00 0.05 

5x1.5" Primo SR 1.0% 0.5% 0.8% 0.13 0.05 0.06 

5x1" Primo 0.0% 0.0% 0.0% 0.00 0.00 0.00 

6x1" Pneumatic -2.9% -4.0% -3.3% -0.36 -0.36 -0.24 

%WD 

% Change Cohen's d 

4x1.5" 

FLSR 

5x1.5" 

Primo SR 

5x1" 

Primo 

6x1" 

Pneumatic 

4x1.5" 

FLSR 

5x1.5" 

Primo SR 

5x1" 

Primo 

6x1" 

Pneumatic 

60% 8.0% 10.5% 10.3% 10.7% 0.71 0.95 0.88 0.88 

70% 4.5% 5.0% 5.3% 4.6% 0.37 0.41 0.42 0.34 

80% 0.0% 0.0% 0.0% 0.0% 0.00 0.00 0.00 0.00 
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configuration propulsion costs are no longer greater than that of Stock Pneumatic 

configurations and slightly lower in certain cases (-2.9%).  This suggests that the Stock 

Pneumatic straight propulsion costs have increased relative to Spinergy and Solid Mag 

configurations on carpet.  All drive wheel configurations on carpet exhibit an increasing 

benefit of reduced propulsion with more load on the drive wheels (80%WD).  The benefit 

is small for the Solid Mag configurations (1.9%), but the Spinergy and Stock Pneumatic 

have a 14% and 16.2% propulsion cost difference between 80%WD and 60%WD.  This 

suggests that increased percent loading on drive wheels is more advantageous on carpet 

than on tile.  

 Propulsion cost differences between caster configurations are smaller on carpet 

compared to on tile.  On tile, the caster configurations differed from the 5x1” Primo 

configurations by an average of 4.5%, while on carpet, they only differed by an average of 

1.6%.  Furthermore, configurations with the 6x1” Pneumatic were the only caster 

configuration to have an absolute effect size greater than 0.2, or at greater than the 58th 

percentile of the 5x1” Primo’s propulsion costs.  ANOVA results presented a significant 

difference between the propulsion costs of different caster configurations, but it would 

appear only MWCs configured with 6x1” Pneumatic casters were distinct from the others.  

The 6x1” Pneumatic configurations are also different in their propulsion costs on carpet 

when compared to tile.  On carpet, instead of having an increased propulsion cost, this 

caster’s configurations now registered a 2.9% - 4% reduction in propulsion cost relative to 

the base caster’s configurations.  This suggests the 6x1” Pneumatic may be an effective 

caster to use on carpet when traveling in straight maneuvers. Casters configurations were 

also more sensitive to weight-distribution differences for straight maneuvers on carpet, 
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with an average 7.4% propulsion cost difference (0.62 effect size) from the base 60%WD, 

compared to the 2.7% propulsion cost difference (0.12 effect size) on tile. 
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Maneuvers on Carpet 
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Table 37. Fixed Wheel Turn (Tile) Propulsion Cost % Differences and Effect Sizes 

Drive Wheels 
% Change Cohen's d 

60% 70% 80% 60% 70% 80% 

Solid Mag 6.9% 4.3% 4.6% 0.91 0.89 1.05 

Spinergy -0.7% -1.8% -1.2% -0.10 -0.30 -0.22 

Stock 
Pneumatic 0.0% 0.0% 0.0% 0.00 0.00 0.00 

%WD 
% Change Cohen's d 

Solid Mag Spinergy 
Stock 

Pneumatic 
Solid Mag Spinergy 

Stock 
Pneumatic 

60% 1.8% 0.0% -0.4% 0.33 0.00 -0.06 

70% -1.4% -1.8% -1.2% -0.42 -0.31 -0.21 

80% 0.0% 0.0% 0.0% 0.00 0.00 0.00 

Casters 
% Change Cohen's d 

60% 70% 80% 60% 70% 80% 

4x1.5" FLSR -6.4% -2.4% -0.3% -1.54 -0.59 -0.06 

5x1.5" Primo SR 5.3% 2.8% 1.6% 1.11 0.57 0.34 

5x1" Primo 0.0% 0.0% 0.0% 0.00 0.00 0.00 

6x1" Pneumatic 12.1% 8.3% 6.3% 2.76 2.49 1.69 

%WD 
% Change Cohen's d 

4x1.5" 
FLSR 

5x1.5" 
Primo SR 

5x1" 
Primo 

6x1" 
Pneumatic 

4x1.5" 
FLSR 

5x1.5" 
Primo SR 

5x1" 
Primo 

6x1" 
Pneumatic 

60% -6.4% 3.3% -0.3% 5.1% -1.35 0.63 -0.07 1.41 

70% -3.8% -0.5% -1.7% 0.1% -0.75 -0.10 -0.45 0.05 

80% 0.0% 0.0% 0.0% 0.0% 0.00 0.00 0.00 0.00 

Figure 87. Propulsion Cost of Drive Wheel Configurations for Fixed 

Wheel Turn Maneuvers on Tile 
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 For fixed-wheel maneuvers on tile, the propulsion cost differences amongst MWCs 

configured with different casters was greater than that of MWCs configured with different 

drive wheels.  On average, the caster-influenced propulsion cost percent difference was 

more than 3%, while the drive wheel-influenced difference was 2%.  Only the Solid Mag 

configurations had a significant effect size in their propulsion costs with respect to the 

Stock Pneumatic configurations, ranging from 0.89 to 1.05 with percent differences from 

4.3% to 6.9%.  Furthermore, as seen in Figure 87, the propulsion cost of each drive wheel 

configuration appears to reach their minimums at 70%WD.  Recalling that the system yaw 

inertia differences between weight distribution configurations 60%WD and 70%WD 

(decrease of 1.56 kg-m2), and 70%WD and 80%WD (decrease of 0.96 kg-m2) are different, 

one might speculate that the balanced between inertial and resistive effects are being altered 

by the inconsistent system yaw inertias between weight-distribution configurations.   
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 To test this theory, we determined the propulsion cost of the steady-state phase for 

fixed-wheel turn maneuvers to remove the impact of system yaw inertia.  Plotting this data 

in Figure 88, we see that while the propulsion costs are reduced across all configurations 

due to no changes in system kinetic energy, the relative relationship between the different 

propulsion torques across the three weight-distributions does not change.  This implies that 

the “minimum” propulsion cost occurring at 70%WD is a result of the interactions between 

the different load sensitivities of their component resistive losses. 

 The “minimum” propulsion cost feature can also be seen with the 5x1.5” Primo SR 

and 5x1” Primo casters.  Again, examination of the steady-state propulsion cost yielded no 

relational changes.  In spite of the ANOVA results that indicate a lack of weight-

distribution impact on propulsion cost for fixed-wheel turning, the 4x1.5” FLSR and 6x1” 

Pneumatic configurations exhibited considerable sensitivity to load, with percent 

differences of -6.4% and 5.1% (effect sizes -1.35 and 1.41) at 60% WD, respectively.  This 
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load sensitivity causes the caster-grouped propulsion costs to become more distinct from 

each other as you move from 80%WD to 60%WD, as seen in Figure 89.  At 60%WD, the 

4x1.5” FLSR propulsion cost is the smallest, 6.3% (effect size -1.54) less than 5x1” Primo 

configurations, whereas the 6x1” FLSR propulsion cost is the largest, 12.1% (effect size 

2.76) greater than 5x1” Primo configurations.  This demonstrates the significant impact 

casters have on fixed-wheel turning on tile when the MWC is configured at low %WDs. 

 

Table 38. Fixed Wheel Turn (Carpet) Propulsion Cost % Difference and Effect Size 

 

 For fixed-wheel turn maneuvers on carpet, the average propulsion cost percent 

differences amongst casters and drive wheels are quite similar, both at ~2.7%.  This is 

reduced relative to the differences observed amongst components on tile.  From tile to 

Drive Wheels 
% Change Cohen's d 

60% 70% 80% 60% 70% 80% 

Solid Mag -3.4% -2.8% -2.7% -0.98 -0.75 -0.71 

Spinergy 0.2% 3.6% 3.2% 0.06 0.71 0.66 

Stock Pneumatic 0.0% 0.0% 0.0% 0.00 0.00 0.00 

%WD 

% Change Cohen's d 

Solid Mag Spinergy 
Stock 

Pneumatic 
Solid Mag Spinergy 

Stock 

Pneumatic 

60% 5.4% 3.0% 6.1% 1.93 0.74 1.35 

70% 1.2% 1.6% 1.3% 0.50 0.34 0.27 

80% 0.0% 0.0% 0.0% 0.00 0.00 0.00 

Casters 
% Change Cohen's d 

60% 70% 80% 60% 70% 80% 

4x1.5" FLSR -1.2% -1.2% -0.1% -0.43 -0.30 -0.03 

5x1.5" Primo SR 1.4% 1.2% 2.8% 0.42 0.27 0.64 

5x1" Primo 0.0% 0.0% 0.0% 0.00 0.00 0.00 

6x1" Pneumatic -5.2% -6.7% -5.4% -1.95 -1.80 -1.71 

%WD 

% Change Cohen's d 

4x1.5" 

FLSR 

5x1.5" 

Primo SR 

5x1" 

Primo 

6x1" 

Pneumatic 

4x1.5" 

FLSR 

5x1.5" 

Primo SR 

5x1" 

Primo 

6x1" 

Pneumatic 

60% 4.2% 4.0% 5.5% 5.6% 1.34 0.94 1.58 2.23 

70% 1.3% 0.9% 2.4% 1.0% 0.37 0.18 0.57 0.36 

80% 0.0% 0.0% 0.0% 0.0% 0.00 0.00 0.00 0.00 
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carpet, configurations with Solid Mag go from having the greatest propulsion cost to the 

least, with an average of 3% less propulsion cost than the base Stock Pneumatic 

configurations.  The opposite is true for the Spinergy configurations, which is an average 

of 2.3% greater in propulsion cost than the Stock Pneumatic configurations.  In contrast to 

ANOVA results, Solid Mag and Stock Pneumatic have moderate sensitivity to weight 

distribution, with 5.4% and 6.1% (effect sizes 1.93 and 1.35) greater propulsion cost at 

60%WD than 80% WD. 

 The benefit of the configurations with 4x1.5” FLSR caster is diminished on carpet, 

only 1% less in propulsion cost than the 5x1” Primo configurations.  Configurations with 

the 6x1” Pneumatic and 5x1.5” Primo SR take on the opposite behavior, with the 6x1” 

Pneumatic configurations going from greatest in propulsion cost on tile to least propulsion 

cost on carpet, with an average of 5.8% (effect size -1.82) less propulsion cost than the 

5x1” Primo configurations.  All casters exhibit some sensitivity to load, with 4% to 5.6% 

increase in propulsion cost between the 80%WD and 60%WD configurations.  This result 
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corroborates the Bascou’s 2015 study of wheelchair turning resistance, where increased 

COM distance from the rear axle corresponded to increased turning deceleration (Bascou 

et al., 2015). 
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 Table 39. Zero Radius Turns (Tile) Propulsion Cost % Differences and Effect Sizes 

 For zero-radius turns maneuvers on tile, large differences were present amongst 

both drive wheels and casters.  Solid Mag configurations presented the greatest percent 

increase in propulsion cost with respect to the Stock Pneumatic configurations, ranging 

from 24.7% to 29.4% (effect sizes 1.66 to 2.75).  Spinergy configurations were lowest in 

propulsion cost for 70%WD and 80%WD, with 6% and 8.7% percent reductions with 

respect to the Stock Pneumatic configurations.  Drive wheels as a whole were very sensitive 

to weight distribution changes, with effect sizes > 1 for all comparisons of 70%WD and 

60%WD to the base 80%WD.  The percent increases in propulsion cost ranged from 10.5% 

- 18.1% and 31.3% - 50.4%, respectively. 

Drive Wheels 
% Change Cohen's d 

60% 70% 80% 60% 70% 80% 

Solid Mag 26.8% 24.7% 29.4% 1.66 2.34 2.75 

Spinergy 2.4% -6.0% -8.7% 0.16 -0.61 -0.86 

Stock Pneumatic 0.0% 0.0% 0.0% 0.00 0.00 0.00 

%WD 

% Change Cohen's d 

Solid Mag Spinergy 
Stock 

Pneumatic 
Solid Mag Spinergy 

Stock 

Pneumatic 

60% 31.3% 50.4% 34.0% 2.16 2.77 2.23 

70% 10.5% 18.1% 14.6% 1.43 2.12 1.12 

80% 0.0% 0.0% 0.0% 0.00 0.00 0.00 

Casters 
% Change Cohen's d 

60% 70% 80% 60% 70% 80% 

4x1.5" FLSR -2.6% 1.8% 1.1% -0.22 0.14 0.06 

5x1.5" Primo SR 20.8% 17.0% 18.0% 1.68 1.18 1.08 

5x1" Primo 0.0% 0.0% 0.0% 0.00 0.00 0.00 

6x1" Pneumatic 35.0% 22.2% 8.8% 2.01 1.62 0.58 

%WD 

% Change Cohen's d 

4x1.5" 

FLSR 

5x1.5" 

Primo SR 

5x1" 

Primo 

6x1" 

Pneumatic 

4x1.5" 

FLSR 

5x1.5" 

Primo SR 

5x1" 

Primo 

6x1" 

Pneumatic 

60% 25.2% 33.0% 29.9% 61.2% 1.46 2.35 1.85 3.05 

70% 11.4% 9.6% 10.5% 24.1% 0.62 0.63 0.74 1.65 

80% 0.0% 0.0% 0.0% 0.0% 0.00 0.00 0.00 0.00 
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 Amongst casters, the 4x1.5” FLSR was similar to the 5x1” Primo in propulsion cost 

across weight distributions.  The 5x1.5" Primo SR and 6x1” Pneumatic configurations, in 

contrast, were significantly greater in propulsion cost, with percent differences ranging 
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from 18% - 20.8% (effect sizes 1.08 – 1.68) and 8.8% to 35% (effect sizes 0.58 – 2.01), 

respectively.  As seen from the ranges, the propulsion cost of  the 6x1” Pneumatic 

configurations did not differ much from the 5x1” Primo configurations during larger loads 

on the drive wheels, but presented a significant difference as more load was shifted from 

drive wheels to casters.  The 5x1.5” Primo SR configurations maintained a more constant 

difference from the base caster configurations across weight distributions.  Based on the 

larger propulsion cost percent differences between %WDs compared to drive wheels, it 

may be hypothesized that the caster rolling resistance and swivel scrub torque play a larger 

part in zero-radius turns on tile than drive wheels. 

Table 40. Zero Radius Turns (Carpet) Propulsion Cost % Difference and Effect Size 

 

Drive Wheels 
% Change Cohen's d 

60% 70% 80% 60% 70% 80% 

Solid Mag 1.9% 4.6% 8.8% 0.33 1.39 2.04 

Spinergy -9.4% -11.1% -13.7% -1.85 -3.52 -4.25 

Stock Pneumatic 0.0% 0.0% 0.0% 0.00 0.00 0.00 

%WD 

% Change Cohen's d 

Solid Mag Spinergy 
Stock 

Pneumatic 
Solid Mag Spinergy 

Stock 

Pneumatic 

60% 19.7% 34.0% 27.8% 3.18 5.55 5.55 

70% 8.4% 16.0% 12.7% 1.98 4.01 3.83 

80% 0.0% 0.0% 0.0% 0.00 0.00 0.00 

Casters 
% Change Cohen's d 

60% 70% 80% 60% 70% 80% 

4x1.5" FLSR -3.3% -0.2% 0.8% -0.55 -0.02 0.08 

5x1.5" Primo SR 7.3% 6.0% 7.6% 1.02 0.86 0.73 

5x1" Primo 0.0% 0.0% 0.0% 0.00 0.00 0.00 

6x1" Pneumatic 9.8% 5.0% -1.3% 1.63 0.64 -0.14 

%WD 

% Change Cohen's d 

4x1.5" 

FLSR 

5x1.5" 

Primo SR 

5x1" 

Primo 

6x1" 

Pneumatic 

4x1.5" 

FLSR 

5x1.5" 

Primo SR 

5x1" 

Primo 

6x1" 

Pneumatic 

60% 19.6% 24.3% 24.6% 38.5% 2.41 2.57 2.68 5.31 

70% 10.0% 9.5% 11.1% 18.1% 1.09 1.08 1.25 2.04 

80% 0.0% 0.0% 0.0% 0.0% 0.00 0.00 0.00 0.00 
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 For zero-radius turns maneuvers on carpet, the order of component configuration 

propulsion costs were preserved relative to the results found on tile.  Component sensitivity 

to load was also preserved (effect size magnitudes almost all greater than 1 across all 

components), with caster configurations’ propulsion cost percent differences ranging 

19.6% - 38.5% between 80%WD and 60%WD, and drive wheel configurations’ propulsion  

cost percent differences ranging 19.7% - 34% between 80%WD and 60%WD.  However 

the magnitude of the propulsion cost differences between most components was reduced.  

The Solid Mag configurations were only 1.9% - 8.8% (effect sizes 0.33 – 2.04) greater in 

propulsion cost, compared to 26.8% - 29.4% greater on tile.  However, the Spinergy 

configurations did undergo a relative increased reduction in propulsion cost, 9.4% - 13.7% 

less than Stock Pneumatic configurations on carpet. 

 

6.0

8.0

10.0

12.0

14.0

16.0

18.0

60% 70% 80%

P
ro

p
u

ls
io

n
 C

o
st

 [
J/

ra
d

]

% load on DW

Zero-Radius Turns Propulsion Cost - DWs (Carpet)

Solid Mag

Spinergy

Stock Pneumatic

Figure 94. Propulsion Cost of Caster Configurations for Zero Radius 

Turns Maneuvers on Carpet 



 148 

 Propulsion cost differences amongst casters were greatest at the 60% WD, with the 

4x1.5 FLSR 3.3% (effect size -0.55) less than the 5x1” Primo, and the 5x1.5” Primo SR 

and 6x1” Pneumatic 7.3% and 9.8% (effect sizes 1.02 and 1.63) greater in propulsion cost, 

respectively. On carpet, the relative propulsion cost differences between drive wheel 

configurations (average of 8.2%) was greater than that of caster configurations (average of 

4.6%), implying that drive wheel impact for zero-radius turns on carpet is greater. 

  

Figure 95. Propulsion Cost of Drive Wheel Configurations for Zero 

Radius Turns Maneuvers on Carpet 
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Visualized Component Performance Across Maneuvers and Surfaces 

 To illustrate the performance of each component and its tradeoffs between straight 

and turning maneuvers, the straight and turning propulsion costs for each component - 

separated by drive wheels and casters - were plotted against each other for tile and carpet 

surfaces (Figure 96 – Figure 99).  Turning propulsion cost of fixed-wheel turning was 

used for the drive wheel plots, while zero-radius turns was used for caster plots.  The 

rationale for these plot combinations stems from pairing the caster and drive wheels with 

the turning canonical maneuver where they each theoretically present the largest 

contribution to system turning resistance. 

 Figure 96 and Figure 97 plots of drive wheel data are on the same scale, as are 

Figure 98 and Figure 99 plots of caster data.  This allows for the change in differences 

between components when moving between a tile and carpeted surface to be perceived. 

Figure 96. Straight versus Turning Propulsion Cost for DW 
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 Configurations with the Stock Pneumatic drive wheel outperformed the other drive 

wheels on tile, with only slightly more turning propulsion cost than the Spinergy across the 

different %WDs.  On carpet, the Spinergy exhibited a similar straight propulsion cost to 

that of the Stock Pneumatic and a substantially reduced turning propulsion cost, making it 

the best performer amongst the pneumatic drive wheels on this surface.  The Solid Mag 

performed poorly for both straight and turning propulsion cost on tile, but presented the 

lowest in turning propulsion cost on carpet.   

 Based on these results, the advantage a Stock Pneumatic has over the Solid Mag is 

significant in straight maneuvers on tile and carpet, as well as turning maneuvers on tile.  

Both of these drive wheels often come as standard accessories to MWCs, so selecting the 

Stock Pneumatic would offer the best performance at the same financial expense.  The 

Solid Mag, however, may be a more suitable choice for instances of indoor wheelchair use 

on rough surfaces given its reduced turning propulsion cost in these settings.   The Spinergy 

Figure 97. Straight versus Turning Propulsion Cost for DW 
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drive wheels also largely outperform the Solid Mag on both surfaces, corroborating human 

study findings comparing high pressure pneumatics and solid drive wheels (de Groot, 

Vegter, & van der Woude, 2013).  The Spinergy drive wheels, however, typically price in 

at $600+ for a set.  Its difference in performance from the Stock Pneumatic is only better 

in turning propulsion cost on carpet, and in fact worse in straight propulsion cost on hard 

(tile) surfaces.  This lack of difference in performance was also found in human subject 

studies comparing stock pneumatic and Spinergy drive wheels (Hughes, Sawatzky, & Hol, 

2005; Mason, Lemstra, van der Woude, Vegter, & Goosey-Tolfrey, 2015).  Thus, the 

performance “difference” may not justify the cost of these particular drive wheels.  

 

 Use of different casters, as a whole, did not demonstrate as large a separation in 

propulsion costs as the drive wheels.  Straight propulsion cost on both carpet and tile 

appeared to be more impacted by %WD than differences amongst casters.  A notable 

difference, however, was the 6x1” Pneumatic’s change from having the greatest straight 

Figure 98. Straight versus Turning Propulsion Cost for Caster 
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propulsion cost on tile to having the least on carpet.  The 6x1” Pneumatic is also greatest 

in turning propulsion cost on tile, but is relatively close to the other caster configurations 

in turning propulsion cost on carpet.  This implies that the 6x1” Pneumatic may be an 

advantageous caster to use on carpet surfaces.  Another caster that stands out is the 4x1.5” 

FLSR, which is least in both straight turning propulsion cost on tile.  However, its straight 

propulsion torque on carpet is the greatest at 80%WD.  Thus, the 4x1.5” FLSR may be the 

more optimal caster to use on a hard (tile) surface. 
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CHAPTER 5. EMPIRICAL MODELING 

 This chapter highlights the use of competent-level measurements of resistive loss 

(Chapter 2) to develop predictive models of system-level MWC propulsion cost, as 

measured by AMPS (Chapter 4).  Three linear regression models were developed, one for 

each AMPS canonical maneuver.  Linking the component-level test results to system-level 

MWC propulsion cost enables third parties to predict MWC performance based on 

comparatively simple component-testing methodologies. 

5.1 Model Definitions 

 The outcome variable for each model was propulsion cost, as defined for each 

corresponding maneuver.  The predictor variables included both inertial and resistive 

parameters, either measured on a system-level or calculated from component-level 

measurements.  Ultimately, system weight-distribution, system yaw inertia, and system 

resistance were selected as the potential predictors in each model, with the system yaw 

inertia omitted from the straight maneuver model due to the absence of turning.  The 

selection basis for these model predictors stemmed from the underlying mechanics of each 

maneuver, as well as the predicate findings in the component-level and system-level 

testing, specifically those pertaining to the AMPS study of caster and drive wheels.   

  Within inertial predictors, system yaw inertia was fed into the models for the fixed-

wheel turn and zero-radius turns.  Mass was omitted due to its invariance across system-

level tests (within the AMPS caster and drive wheels study).  Component inertial 
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measurement were also omitted due to their previously assessed insignificant contribution 

to system propulsion work across all canonical maneuvers.   

 Within resistive predictors, weight-distribution was selected for its load-based 

impact on resistance and system resistance was defined as a weighted combination of caster 

and drive wheel rolling resistance and scrub torque.  All three models’ system resistances 

were defined differently, framed off of the resistive loss models defined in Chapter 3 for 

each canonical maneuver.  By using system resistance instead of the individual measured 

component resistances, we offer a theoretical model-motivated predictor of each 

maneuver’s resistive loss, as well as verify the accuracy of the resistive loss models. 

 In defining the system resistance for each model (maneuver), the equations 

followed the forces and torques in of the resistive loss models of Chapter 4, except for two 

distinctions.  First was how the resistance of combined rolling and turning were defined.  

In the resistive loss models, the equations of motion for fixed-wheel turning and zero-

radius turns both incorporated a two-force term to describe each instance of rolling and 

turning of drive wheels.  The first term was linear rolling resistance, and the second term a 

scrub torque with rolling.  However, component testing only measured pure scrub of the 

drive wheels without rolling.  Therefore, two definitions of combined drive wheel rolling 

and turning were devised: 1) only linear rolling resistance, and 2) a combination of linear 

rolling resistance and pure scrub torque.  It is understood that the true resistance of 

combined drive wheel rolling and turning falls somewhere in between these two 

definitions, as this resistance should be greater than that of linear rolling resistance, but 

also much less pronounced than that of pure scrub torque.  The implementation of two 
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different definitions resulted in two corresponding types of system resistance definitions 

for both fixed-wheel turning and zero-radius turns: “type 1” and “type 2”. 

 The second distinction between the Chapter 4 equations of motion are in the zero-

radius turns model’s definitions of system resistance.  Previously, the caster scrub torque 

contribution to system turning resistance was a separate undefined function, as the 

instances of scrub torque from caster swivel were transient, not continuous like the other 

resistive terms in the definition.  However, while transient, the swiveling of casters had 

been observed in AMPS trials to slow the system momentarily as a whole, indicating the 

resistive scrub torque is brief but large in magnitude.  This notion, combined with starting 

with simplicity, motivated us to simply add the two caster scrub torques directly to the 

system resistance definitions for the zero-radius turns model.  

 The system resistance definition(s) for each model are listed below.  To clarify 

terminology, “DW” refers to drive wheel, “RR” refers to rolling resistance force, and 

“scrub” refers to scrub torque. 

 

Straight [N] 

1) System Resistance = 2*(DW RR) + 2*(Caster RR) 

 

Fixed Wheel Turn [Nm] 

1) System Resistance = (DW torque) + (DW RR)*(DW – DW distance) + (Caster 

RR)*(left caster – fixed DW distance) + (Caster RR)*(right caster – fixed DW 

distance) 

2) System Resistance = 2*(DW torque) + (DW RR)*(DW – DW distance) + (Caster 

RR)*(left caster – fixed DW distance) + (Caster RR)*(right caster – fixed DW 

distance) 
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Zero Radius Turns [Nm] 

1) System Resistance = 2*(Caster torque) + 2*(DW RR)*(DW – DW distance)/2 + 

(Caster RR)*(left caster – axle center distance) + (Caster RR)*(right caster – axle 

center distance) 

2) System Resistance = 2*(DW torque) + 2*(Caster torque) + 2*(DW RR)*(DW – 

DW distance)/2 + (Caster RR)*(left caster – axle center distance) + (Caster 

RR)*(right caster – axle center distance) 

 

5.2 Modeling Methods 

 Outcome variable values of propulsion cost were taken from the AMPS systems-

level study of different casters and drive wheels.  Within this study, four casters (4x1.5” 

FLSR, 5x1.5” Primo SR, 5x1” Primo, 6x1” Pneumatic), three drive wheels (Solid Mag, 

Spinergy, Stock Pneumatic), and three weight-distribution configurations (60%WD, 

70%WD, 80%WD) were combined to measure propulsion cost across the three canonical 

maneuvers on tile and carpet.  One representative average of 10 repeated trials (5 per 

direction) was used for each configuration combination, resulting in 72 propulsion cost 

values per maneuver, 36 on tile and 36 on carpet.  These 72 values were used as the 

outcome values for their corresponding models.  The zero-radius turns maneuver’s velocity 

profile differed between tile and carpet surfaces.  However, as the propulsion and braking 

phases of the maneuver were both used to calculate propulsion cost, there was no impact 

on ΔKE work due to different velocities since starting and ending velocities were always 

zero.  Furthermore, maneuvers on carpet and tile were programmed to travel the same yaw 

angles, and the use of propulsion cost over propulsion work normalizes any velocity profile 

differences.  Thus, it was justified to also combine the zero-radius turns maneuver’s carpet 

and tile propulsion costs in the model. 



 157 

 Predictor variable values were assigned based on the corresponding components 

and weight-distribution a propulsion cost represented.  System yaw inertia was taken from 

previous iMachine data and the caster and drive wheel rolling resistances and scrub torques 

were taken from the results of the component-level testing in Chapter 2.  The resistive loss 

terms were combined in accordance to each model’s definition to yield the system 

resistance predictors. 

 Linear regression modeling was conducted via SPSS (IBM) following the forward 

method, where predictors were entered into the model based on an F ≤ 0.05 criterion.  

Multicollinearity amongst predictors was assessed using variable inflation factors (VIF).  

Model R2 values were recorded, as were unstandardized predictor coefficients and 

standardized beta coefficients. 

 

5.3 Model Results 

Table 41. Linear Regression Modeling Results 

Model 
Adjusted  

R2 

Std. Error 
of the 

Estimate 
Predictors Entered 

Unstd. 
Coeff. 

(B) 

Std. 
Coeff. 
(Beta) 

Significance 
(p-value) 

Straight 0.973 1.32 
System Resistance 1.234 0.987 0 

Constant 14.602  0 

Fixed Wheel 
Turn 1 

0.891 1.52 
System Resistance 1 1.457 0.945 0 

Constant 1.464  0.043 

Fixed Wheel 
Turn 2 

0.752 2.29 

System Resistance 2 1.056 0.884 0 

System Yaw Inertia 0.9 0.213 0.001 

Constant -6.986  0.007 

Zero Radius 
Turns 1 

0.876 0.98 
System Resistance 1 0.875 0.937 0 

Constant 5.36  0 

Zero Radius 
Turns 2 

0.503 1.97 

System Resistance 2 0.375 0.513 0 

System Yaw Inertia 1.245 0.486 0 

Constant -4.554  0.026 
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 Overall, at least one model per maneuver type registered a strong fit to the data, all 

with adjusted R2 > 0.87.  These models all had their maneuver’s System Resistance as their 

sole predictors, indicating that the resistive loss models coupled with component testing 

are good predictors of system propulsion cost.  Weight distribution was not entered into 

any of the regression models, likely because the load configuration differences were 

already captured and represented in the different system resistance predictors.  System yaw 

inertia and System Resistance (type 2) was entered into the second models for both fixed-

wheel turn and zero-radius turns, with no signs of collinearity between the entered 

predictors (VIF < 1.01).  These multi-variable regression models expressed a poorer 

predictive power, with adjusted R2 ≤ 0.752.  Furthermore, the SEE for the type 2 models 

(2.29, 1.97) were substantially greater than that of type 1 models (1.52, 0.98).  The selection 

of the type 1 system resistances as better fitting models indicate that the type 2 models are 

indeed over-estimating the resistances associated with combined rolling and turning of 

drive wheels.  Based on these results, we can say that the combined rolling and turning 

resistance is better represented by linear rolling resistance force (type 1) than by a direct 

summation of linear rolling resistance force and non-rolling scrub torque (type 2). 

 While the adjusted R2 value informs the closeness of the data to our model 

projection, the distribution of data along the regression line should be assessed visually.  In 

doing so, we observed that while the fixed-wheel turn model demonstrated a higher 

adjusted R2 of 0.891 compared to the zero-radius turns model’s adjusted R2 of 0.876, the 

distribution of the fixed-wheel turn model’s data was very clustered (Figure 102).  In 

contrast, the straight model and zero-radius turns models both displayed a very high 
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variance in the modeled data, with even distributions along the regression model lines as 

seen in Figure 100 and Figure 101.  Data is colored categorically by surface type. 

 Comparing Figure 100 and Figure 101, the straight model displays a tighter fit to 

the data, reflecting its higher adjusted R2 of 0.973 compared to the zero-radius turns 

model’s adjusted R2 of 0.876.  In the straight model, the regions for tile and carpet are quite 

distinct, with minimal overlap.  In the zero-radius turns model, the regions of tile and carpet 

demonstrate more overlap, indicating that this maneuver is more sensitive to surface 

conditions than the straight maneuver. 

 

Figure 100. Straight Maneuver Linear Regression Model 
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 In Figure 102, we can observe the aforementioned clustering of data for the fixed-

wheel model.  Tile data is grouped entirely at the lower range of the model while carpet 

data is grouped entirely at the higher range of the model.  Within each surface type, the 

data does not appear to take on a strong linear relationship.  Furthermore, this “model” 

presents the largest SEE at 1.52, relative to  

 To assess why this clustering is present in the fixed-wheel model, we compared the 

propulsion cost variation for all three maneuvers.  On tile, both straight and zero-radius 

turns maneuvers’ propulsion costs had CV (coefficient of variation) > 20%, while fixed 

wheel turn maneuvers’ propulsion cost had CV = 5.8%.  On carpet, both straight and zero-

radius turns maneuvers’ propulsion costs had CV (coefficient of variation) > 11%, while 

Figure 101. Zero Radius Turns Maneuver Linear Regression Model 



 161 

fixed wheel turn maneuvers’ propulsion cost had CV = 4.4%.  Based on these statistics, it 

can be said that the fixed-wheel turn model’s outcome variable values are too low variance.  

This indicates one of two things: 1) the fixed-wheel turn maneuver requires more 

propulsion cost variance, such as by testing an intermediate surface between tile and carpet, 

or 2) the fixed-wheel turn canonical maneuver needs to be adjusted such that it stresses the 

system more greatly, either by adjusting maneuver accelerations or the proportion between 

acceleration and steady-state phase.   

 

  

Figure 102. Fixed Wheel Turn Maneuver Linear Regression Model 
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 In Figure 103, we color the fixed-wheel turn data by drive wheel type.  In both tile 

and carpet, each drive wheel’s data forms a distinct cluster.  On tile, the model over-predicts 

Solid Mag propulsion cost and under-predicts the Stock Pneumatic propulsion cost.  On 

carpet, the model under-predicts Solid Mag propulsion cost and over-predicts the Stock 

Pneumatic propulsion cost.  From the plot, the Spinergy data lines up well with the existing 

model slope, while the Stock Pneumatic data appears to fit better to a model with greater 

regression slope and the Solid Mag data fits better to a model with a smaller regression 

slope.  Since drive wheel scrub torque is only present in the system resistance of the fixed-

wheel turn model, this particular component test may be impacting the system resistance 

predictor to cause these separations.   

Figure 103. Fixed Wheel Turn Maneuver Linear Regression Model 

(Colored by Drive Wheels) 
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 In Figure 104, we plot the system resistance with the drive wheel scrub torque 

removed from the system resistance predictor.  The relative system resistance of the drive 

wheels seem to change, but the horizontal spread of the data doesn’t appear to improve, 

suggesting the drive wheel scrub torque measurements may not responsible be responsible 

for the system resistance variance.  This reinforces that the component resistive differences 

are real, and that it is likely the lack of the current fixed-wheel turn’s sensitivity to 

distinguish propulsion cost across components that is causing the data clustering.  

  

 

Figure 104. Fixed Wheel Turn Maneuver Linear Regression Model 

(System Resistance Minus Drive Wheel Scrub) 
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 In applying each model towards predicting MWC performance, the standard error 

of the estimate (SEE) listed in Table 41 quantifies the uncertainty of the predicted 

propulsion cost.  To put this in perspective, we can compare these uncertainties to measured 

propulsion cost differences.  The straight model SEE = 1.32 J/m, while straight propulsion 

cost differences between the more similar Spinergy and Stock Pneumatic are at 2.6 J/m, 

which at the worst case uncertainty of 2.64 J/m (opposite but equal max SEE) would make 

these two wheels indistinguishable.  Applying a more conservative combined uncertainty 

of 1.32 J/m, however, the model would only been unable to distinguish the propulsion costs 

of the 5 x 1” Primo from the 4 x 1.5” FLSR and 5 x 1.5” SR configurations.  Using this 

same rationale, the drive wheel propulsion costs for fixed-wheel turning on tile would be 

indistinguishable if predicted by the model (SEE = 1.52), and only the 4 x 1.5” FLSR and 

6 x 1” Pneumatic would be predicted to be different in propulsion cost.  In the zero-radius 

turns model (SEE = 0.98), differences between every component for zero-radius turning 

on tile could be predicted, except for very similar components like the Spinergy and Stock 

Pneumatic, as well as the 4 x 1.5” FLSR and 5 x 1” Primo caster, each differing only by a 

propulsion cost of 0.3 J/rad. 
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

 Within the breadth of the work conducted for this dissertation, the research 

objective of developing capabilities to characterize and predict manual wheelchair 

performance were met.   

 The research aim of measuring MWC component inertial and resistive properties 

was accomplished through designed methodologies that characterized the rotational inertia, 

rolling resistance, and scrub torque of caster and drive wheels.  Three new measurement 

devices were fabricated to this end: the coast-down cart, the caster scrub test rig, and the 

drive wheel scrub test rig.  A diverse set of 4 drive wheels and 8 casters were evaluated for 

tile and carpet surfaces with these instruments.  These tests yielded several interesting 

observations, including: 

 Differences in component inertial properties have a negligible impact relative to 

combined system mass of the MWC and user (< 1% change in system kinetic for a 

100 kg user) 

 Drive wheel differences in rolling resistance and scrub torque are much more 

pronounced than casters, implying the greater impact in their proper selection. 

 The solid mag experiences rolling resistance several times greater than the three 

pneumatic drive wheels, indicating it is ill-suited for long-distance use. 
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 The stock pneumatic out-performs the high-priced Spinergy except for in scrub 

torque on tile, suggesting the limited performance benefits of the Spinergy may not 

justify its financial cost. 

 Soft and pneumatic casters have the greatest rolling resistance on tile, but the lowest 

on carpet. 

 The 4 x 1.5” Frog Leg Soft Roll and 5 x 1” Primo caster demonstrated the best 

balance of minimal rolling resistance and scrub torque on tile and carpet surfaces, 

respectively. 

 The three pneumatic drive wheels are the least sensitive to load compared all 

other components (casters included) in terms of rolling resistance, but are also the 

most load-sensitive in terms of scrub torque.  

 The research aim of characterizing system-level MWC performance was 

accomplished by methodologies that quantified the propulsion torque and propulsion cost 

of various MWC configurations on tile and carpet.  To this end, a wheelchair-propelling 

robot, AMPS, was developed.  Three canonical maneuvers for AMPS were defined, based 

on their external validity and balanced collective representation of different kinetic 

energies and resistive losses.  These maneuvers were applied towards investigating the 

impact of mass and weight-distribution on propulsion torque, as well as the impact of 4 

casters and 3 drive wheels on propulsion cost.  The two studies yielded the following 

important observations: 

 Mass has a more dominant effect on straight propulsion torque during acceleration, 

while weight-distribution exerts a greater influence than mass during steady-state 

velocities.  
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 Weight distribution has a greater impact on turning propulsion torque compared to 

mass while on tile, but these influences become much smaller when turning on 

carpet. 

 The Spinergy configurations out-performed the stock pneumatic configurations on 

carpet, primarily in turning maneuvers, but under-performed on tile, primarily in 

the straight maneuver.  Does this justify the financial investment it requires? 

 Consistent with the component test results, the solid mag was by far the greatest in 

rolling resistance.  In contrast with the component test results, it performed better 

on carpet than tile for turning maneuvers.  This indicates a more advantageous use 

of this ubiquitous drive wheel in indoor spaces requiring ample turning and on high 

friction surfaces like carpet. 

 Straight maneuvers on tile are more insensitive to caster type than on carpet. 

 Best performing casters were the 4 x 1.5” Frog Leg Soft Roll and 5 x 1” Primo, 

only greater in propulsion cost for straight maneuvers on tile. 

 Consistent with component test results, the Primo 6 x 1” caster had the greatest 

straight propulsion cost on tile and least on carpet. 

 The research aim of predicting system-level MWC performance was accomplished 

by applying linear regression modeling.  System-level propulsion costs from the second 

aim were used as outcome variables, and component measures of resistive loss from the 

first aim were used to calculate system resistance predictor variables.  The system 

resistance definitions were based on the resistive loss models developed as part of the 

second aim.  System yaw inertia and weight-distribution were also entered as predictor 

variables.  The regression results were as follow: 
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 System yaw inertia and weight-distribution were not entered into the accepted 

(strongest) regression models, partially due to collinearity as both system yaw 

inertia and system resistance are indirect functions of weight-distribution. 

 Accepted fixed-wheel turn and zero-radius turns models had system resistance 

values (type 1) without scrub torque from combined drive wheel rolling and 

turning, indicating linear rolling resistance is a better and reasonable approximation 

of combined rolling and turning within our canonical maneuvers. 

 All accepted models had R2 > 0.87.  However, based on visual assessment and 

comparison of model SEE to measured component differences, it was found the 

straight and zero-radius turns models were able to make much more distinguishing 

propulsion cost predictions than the fixed-wheel turn model. 

 As a whole, the work of this dissertation has developed a scientifically-motivated 

MWC performance metric and measurement method, the results of which will empower 

wheelchair users and clinicians to make more informed choices on selecting MWC 

components and setting MWC configurations.  Furthermore, the modeling efforts have 

demonstrated the capacity for using simple MWC component tests to predict system-level 

performance, creating a series of tools for manufacturers to assess and optimize their MWC 

designs. 

6.2 Future Work 

 Further research can be done using the tools and findings of this dissertation work.  

The first next steps would involve improving the existing methodologies and shoring up 

certain weaknesses.  These include: 
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 Assessing the fixed-wheel turn maneuver at different surface types to add 

variance to the model. 

 Modifying the specific kinematics of the fixed-wheel turn to increase sensitivity 

between different components, if those differences exist. 

 Developing component-level test methods to characterize the resistive losses of 

combined rolling and turning of wheels. 

 Adding variance to all models by test several different system masses.  This is 

also very likely to introduce inertial predictors in the models, which current are 

only represented by system resistance predictors. 

 Incorporating cyclic propulsion to the AMPS system to better reflect the kinetics 

and kinematics of human propulsion of MWCs. 

 Beyond these next steps that can be framed as short-term goals, there exists an 

opportunity for collaborative work with more far-reaching impacts.  These include: 

 Engaging more representatives of the wheelchair industry to promote assimilation 

of AMPS propulsion cost as a standard, representative performance metric for 

grading manual wheelchairs. 

 Packaging the models and component-test methods for easy adaptation by 

wheelchair industry manufacturers to optimize their designs in-house. 

 Using AMPS to inform the variables for human-subject wheelchair studies, as the 

system’s higher sensitivity can better detect mechanical performance differences 

amongst MWCs and configurations.  Being cognizant of the relative mechanical 

performance differences will also help isolate the impact of human-wheelchair 
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interaction biomechanics, as the propulsion effort measured by the human-subject 

studies are a function of both factors.  

 Applying system-level test methods to validate the existing wheelchair models in 

literature, as most are not empirically validated or are based purely on component-

level test methods that can overlook the impact of system-level propulsion 

properties, such as shift in weight-distribution. 
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