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SUMMARY

Examination of the materials used in nuclear reactors is one of the most pressing

issues of current nuclear engineering research. One of the primary focuses of research

into Generation IV reactors and work to extend the life of today’s commercial plants

is developing new materials and examining the ability of currents materials to handle

the harsh radiation environments found in nuclear reactors. These materials interact

with their environment on an atomic scale, however, the properties important to

choosing the right materials for an application are often seen on a continuum scale.

Kinetic Monte Carlo (kMC) is a computationally intensive but extremely powerful

tool for bridging the gap between these scales.

Five kMC simulations have been developed within the SPPARKS framework for

use with different applications related to nuclear and energy materials. The behavior

of each of the models was examined and compared to relevant literature or other

methods of modeling where available. The models are based on three of the built in

simplistic models available in SPPARKS, diffusion, Potts, and chemistry, and required

extensive modification of the original code.

The first of the models created examines the diffusion behavior of vacancies in

a doped fluorite lattice. The goal of this study was to examine the behavior of the

diffusivity and ionic conductivity as well as examine the behavior of vacancy-dopant

pairs across a wide range of dopant atoms.

In the second model, the behavior of defects in bcc metals was examined. In

particular we examined the effect of increasingly complex vacancy clusters on the

resulting defect concentrations using both kMC simulations and rate equations.

xi



In the third simulation, a Potts model is developed to examine the evolution of

gas bubbles and HBS formation in nuclear fuels. The model examines the behavior

of the lattice constant under irradiation and the HBS formation over local burnups

in the outer region of the fuel pellet consistent with use in a nuclear reactor.

The final two models that have been developed examines the formation of nanoporous

materials through a dealloying process and combine cluster dynamics with the kMC

algorithm in a method known as stochastic cluster dynamics to examine defect be-

havior on a larger scale.

Additionally sensitivity analysis was performed on three of the models in order

to examine which of the input parameters are most important in the output of the

simulation. Two types of sensitivity analysis were performed on the simulations.

The first, MOAT examines changes in one parameter at a time while keeping the

other parameters constant but performs this in an efficient manner that is known

to approximate a global sensitivity analysis. The second, PRCC uses LHS which is

an efficient method of sampling the input parameter space in order to rank each of

the input parameters based on the importance of the parameter in determining the

resulting outcome variable.

xii



CHAPTER I

INTRODUCTION

1.1 kinetic Monte Carlo

Examination of the materials used in nuclear reactors is one of the most pressing

issues of current nuclear engineering research. One of the primary focuses of research

into Generation IV reactors and work to extend the life of today’s commercial plants

is developing new materials and examining the ability of currents materials to handle

the harsh radiation environments found in nuclear reactors. These materials interact

with their environment on an atomic scale, however, the properties important to

choosing the right materials for an application are often seen on a continuum scale.

Kinetic Monte Carlo (kMC) is a computationally intensive but extremely powerful

tool for bridging the gap between these scales (figure 1).

The basis for using kMC is the fact that in general the fundamental processes and

mechanisms observed in nature often appear to behave stochastically. Thus, with

an appropriate deterministic equation stochastic phenomenon when viewed within a

statistically large sample can yield deterministic results. In simple cases this behavior

may be described analytically but more often approximations must be made to arrive

at an analytical solution. KMC is often the only method for producing solutions with

the minimum approximations necessary.

In this work we create 3 models using the SPPARKS [144] code for materials used

in nuclear reactors and examine the sensitivity of the input parameters on the output

parameters in each of these models. The models examine two types of applications

that kMC has successfully been applied to in the past, diffusivity and grain growth,

1



Figure 1: The types of models available at different length and time scales for simu-
lation of nuclear materials.
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using different methods. In addition, two models are presented that have been de-

veloped but have not had sensitivity analysis performed on them. The first of these

models, examines the behavior of the formation of nanoporous foams. The second,

examines a method that relies on the kMC algorithm but seeks to combine kMC with

rate theory by reformulating cluster dynamics in a stochastic manner.

1.1.1 History

Since the introduction of the Monte Carlo method in 1946 it has been used to describe

a large array of scientific problems. In 1953 Metropolis et al. [121] introduced an im-

provement to the modeling scheme which would become known as Metropolis Monte

Carlo and form the basis for the rejection based algorithm available in SPPARKS.

The original n-fold algorithm was introduced by Bortz, Kalos, and Lebowitz[27] and

became the basis for the most common kMC algorithm. It was also the first method

to introduce a stochastic method for the time incrementation, allowing for the mea-

surement of time directly through rates instead of as an interpretation of the number

of steps performed. This method was independently discovered by Gillespie[59] and

has since been updated by Voter[194]. It has since been applied to a range of materials

applications.

1.1.2 SPPARKS

SPPARKS is an open source parallel kMC code written and maintained by Plimpton

et al. at Sandia National Labs. It is written in the C++ programming language and

is therefore object oriented. SPPARKS is primarily meant to be used in on-lattice

applications, although it does have off-lattice applications and one of the general

applications (independent of spatial positioning) has been modified in this work and

presented in the other model section (Section 6.2). In addition, it uses the message

passing interface (MPI) to allow for parallelization of the lattice through the use of

sublattices.
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The code can be split into four groups of features (application styles, diagnos-

tic styles, input script commands and solve styles) that may be updated by users

in addition to the core components that drive the code. In general when creating

new applications the application style and input script commands were the primary

components of code that needed modification. For instance in each of the applica-

tions created for this work one of the basic application styles, i.e. diffusion, Potts, or

chemical reactions, was modified to fit the particular parameters of the simulation.

Due to the object oriented nature of C++ a new application is a class object that is

then able to interact with the other objects with minimal modification of the original

code. Thus, it is simple to modify and extend SPPARKS to fit new applications.

1.2 Sensitivity Analysis

Sensitivity analysis of models can be used to determine the most important input

parameters when designing a simulation and thus direct studies in which parameters

should be most accurately examined and refined. For example, sensitivity analysis

has been used to prioritize data collection and research by identifying the important

uncertainties[43]. In addition, sensitivity analysis has been used to examine the ro-

bustness of model results when making decisions [143, 199, 110, 112]. When going

through the process of model development and refinement sensitivity analysis can

play a role in model validation [96, 97, 53]. These methods have been applied across

a variety of different fields [137, 8, 39, 17, 1, 89, 120, 40] and have been used in relation

to nuclear and radiological engineering [75, 76, 77] and kinetic Monte Carlo [145, 6].

The method for performing sensitivity analysis is widely varied with more then

ten different methods that have been studied in-depth [71]. The particular method

chosen will depend on the complexity of the model both in terms of the number

of input parameters and the computational time required to run the simulation, the

monotonicity of the solution, and dependence of the input parameters on one another.
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Therefore, in this study we attempt to present several forms of sensitivity analysis

for each model studied without an attempt to judge which method is best suited for

the particular model.

The first, the Morris One at a Time (MOAT) method is a modification of the

simplest method of one at a time sensitivity analysis. It was proposed by Morris

[130] in 1991 as a screening method through the use of Elementary Effects (EE),

which measure the importance of a variable, and performs a group of one at a time

analyses in order to present a hybridized version of local sensitivity analysis, which is

more efficient [171] and can be considered as an approximation of a global sensitivity

analysis [197].

The second method we use is a combination of Latin Hypercube Sampling (LHS),

which is a method for choosing random values, for the input parameters introduced

by McKay et al. [111] and Partial Rank Correlation Coefficient (PRCC) [82] which

is a powerful method of sensitivity analysis. LHS presents an efficient tool to explore

the entirety of the parameter space with a minimum number of computer simulations.

PRCC is best suited for nonlinear relationships between the input parameters and

the output which is vital when applied to the models presented in this work.

5



CHAPTER II

METHODOLOGY

2.1 kinetic Monte Carlo

2.1.1 n-fold method

For many applications the most efficient algorithm for evolving the system is a rejec-

tion free form of kMC. These methods are a modification of the n-fold way algorithm

[27]. The modified version of this algorithm used by the simulation is given in table

1. The advantage of this method is that if the likelihood of events is varied, time is

not wasted attempting to perform the low likelihood events, instead each event that

is chosen occurs and the system is able to evolve efficiently. In addition, the time

for each event can be calculated directly and does not need to be inferred. In this

method for each event that can occur, a rate constant is computed [195]:

ri = νie
− ∆Q
kBT (1)

Where ∆Q is the change in energy of the system, kB is Boltzmann’s constant and

T is the temperature of the system. In order to evolve the system a list of all events

is compiled. Next, an event is chosen randomly from the list of possible events based

on the probability of each individual event being chosen. In particular if there is M

events and the mth event is chosen. The formula for calculating m is given by[16]:

m−1∑
i=0

ri

M∑
i=0

ri

< ξ1 <

m∑
i=0

ri

M∑
i=0

ri

(2)
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Table 1: General kMC algorithm used in simulations. Note that the addition of step
5 and step 6 are improvements on the original kMC method.

Step Procedure
Step 0 Set the time t = 0
Step 1 Form a list of all the possible

events at an individual site ri
Step 2 Calculate the cumulative function

RN =
N∑
i=1

ri

where N is the total number of
sites

Step 3 Get a uniform random number
µ ∈ [0, 1]

Step 4 Find the site to perform an event
ri where:

ri−1 < µRN ≤ ri

Step 5 Choose an event on site i using a
similar procedure to Step 4 and
perform the event

Step 6 Recalculate all ri that may have
changed

Step 7 Get a new uniform random num-
ber µ ∈ [0, 1]

Step 8 Update the time by adding:

∆t =
−logµ
RN

Step 9 Repeat from Step 2

7



Where ri is event i’s rate of occurrence and ξ1 is a random number generated

over the range [0,1). After the event is chosen it is performed, the time is advanced,

and the list of events is updated appropriately. This process is repeated for a set

simulation time or number of simulation steps. The time associated with each event

is dynamic and stochastic and is based on the formula:

dt = −ln(ξ2)
M∑
i=1

ri (3)

Where ξ2 is a random number distributed uniformly from (0,1). An in depth

explanation of how this formula is derived can be found in the literature[27, 16], an

abbreviated form is given here.

In traditional kMC methods the system is sampled at regular time intervals and

the time intervals are chosen so that only one or zero events has occurred in the time

range, thus the timestep is limited by the most frequent event. Instead the method

employed in this work determines the time increment since the last event occured,

which is especially useful given the wide range of migration barriers which leads to

a wide range of time steps over which events occur. In order to determine this time

value we examine the probability no event occurs during a time ∆t + dt, which is

equivalent to the probability no event occurs during ∆t and no event occurs during

the following dt,

P (∆t+ dt) = P (∆t)(1− Πdt) (4)

This can be rewritten as the differential equation,

dP

dt
= −P (∆t)Π (5)

which with the appropriate boundary conditions has the solution,
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P (∆t) = exp(−Π∆t) (6)

If this equation is solved for ∆t and the probability P (∆t) is assigned a random

probability this becomes analogous to the time value we used above.

2.1.2 rejection kMC

In particular applications the use of a rejection kMC algorithm is more common

and potentially more efficient. The advantage of this method is that the simulation is

evolved quickly if the probability of a state change is likely. However, it does not have

a direct time component and thus the time is often described only as the number of

steps, Monte Carlo Steps (MCS) taken by the simulation and cannot be compared

directly to experimental times. In this method the probability of an event occurring

is given by[78]:

Pi =


1 if ∆E ≤ 0

e
− ∆E
kBT if ∆E > 0

(7)

Where ∆E is the change in energy of the system, kB is Boltzmann’s constant and

T is the temperature of the system. In order to evolve the system a loop is performed

over each of the sites on which an event can occur. At each site an event is attempted

with the probability calculated for the event. The probability is then compared to

a random number [0, 1) and accepted if the probability is larger than the random

number. After a full cycle though all possible sites the time is incremented by 1/Q

MCS where Q is the number of possible states for the system. The general algorithm

for this method is given in table 2.
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Table 2: General rkMC algorithm used in simulations. Note that the time is calcu-
lated only based on the number of possible states and the number of steps taken.

Step Procedure
Step 0 Set the time t = 0
Step 1 Choose a site to attempt an event
Step 2 Calculate the probability the

event will occur

Pi =

{
1 if ∆E ≤ 0

e
− ∆E
kBT if ∆E > 0

Step 3 Get a uniform random number
µ ∈ [0, 1) and accept the even if
Pi > µ

Step 4 Repeat from Step 1 until all sites
have been chosen

Step 5 Update the time by adding: 1/Q
MCS

Step 6 Repeat from Step 1

2.2 Sensitivity Analysis

2.2.1 Morris One at a Time Method

We use Morris One at a time sensitivity analysis[130, 197]. This method creates a

series of Elementary Effects (EE) which are a measure of the importance of each of

the parameters:

EEi(x) = 1
τy

y(x1,...,xi−1,xi+∆,xi+1,...,xk)−y(x)
∆

(8)

Where τ is the normalization factor for the output, xi is the parameter examined

and ∆ is the change in the parameter. An average of this is taken by performing

r paths of k + 1 simulations, which is essentially one instance of local sensitivity

method. By attempting multiple paths we are able to get an ensemble of EE values.

Thus the total number of simulations required to analysis all the parameters is r(k+1)

simulations. These can be improved upon by examining the absolute value of the EE,

which eliminates cancellations of effect due to negative and positive changes in the

output value. These |EE| can then be plotted against the standard deviation of each
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value to give a measure or the linearity and interaction of each of the parameters. As

such it can be used as a good approximation of the Sti found using global sensitivity

method at a fraction of the computational cost [197].

2.2.2 Partial Rank Correlation Coefficients Using Latin Hypercube Sam-
pling

Latin Hypercube Sampling (LHS) is a method for sampling a probability distribution

function (PDF) that ensures each portion of the distribution is sampled in an efficient

manner [111]. In this method the number of input parameters, k, that are uncertain

are given distributions over which the values may be chosen. The number of simu-

lations, N, to be run is then chosen based on the need to ensure a proper level of

statistical certainty with a minimal value based on the empirically proven inequality

N > (4/3)k[111]. A table of N by k random values are then chosen in the following

manner:

• For each input parameter, vi, the PDF is divided into N equal subgroups (s0,

s1,. . .,sN).

• From each of these subgroups a random value vim is chosen such that sm <

vim < sm+1. When this is complete for each of the input parameters k vectors

of N values is formed.

• The input parameters for each of the N simulations are then formed by choosing

a random value from each of the k vectors to be used as the simulation value of

each parameter. This combines to form a table of N by k values.

Partial Rank Correlation Coefficients (PRCC) provide a method for examining

the effect parameter has on an outcome variable by performing statistical analysis on

the ranks of the variables in different simulations relative to one another.

PRCC are calculated for each of the outcome and input values using the following

method. For each outcome value the vector of its values is appended to the original
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N by k table of values calculated from LHS. This results in an N by k + 1 matrix of

values. For each of the k columns of the matrix an ordinal number between 1 and

N is given to the values in the column based on the relative size of the value. From

these ranks a k+1 by k+1 matrix (C) is formed where the elements cij are defined by

the equation[168]:

cij =

N∑
n=1

(rin − µ)(rjn − µ)√
N∑
n=1

(rin − µ)2
N∑
n=1

(rjn − µ)2

i, j = 1, 2, . . . , k + 1 (9)

Where µ the average rank of the N simulations. We then define a matrix B such

that it is the inverse of the C matrix.

The PRCC between the xth input parameter and the yth outcome variable is

defined as:

PRCCxy =
−bx,k+1√
bxxbk+1,k+1

(10)

Where bij is is an element of the matrix B. Each value of the PRCC (reported in

the tables as γ) is a measure of the sensitivty of the model results on that parameter

with +1 meaning very sensitive and directly correlated, -1 meaning very sensitive and

inversely correlated, and 0 meaning insensitive. Each of these values are accompanied

by a p-value which is a measure of the PRCC confidence interval.
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CHAPTER III

FLUORITE LATTICE DIFFUSION MODEL

3.1 Introduction

Fluorite-structured oxide compounds are of interest as fuel cell electrolytes and oxy-

gen sensors[83] as well as nuclear fuel [54, 139, 167]. When doped with trivalent

cations charge compensating oxygen defects form [104, 105, 38, 2, 176, 177]. Ex-

perimental and computational research suggests energetic binding/clustering tenden-

cies between cations and oxygen vacancies which correlates strongly with ionic radii

[151, 170, 125, 26, 25, 150, 3, 204]. Strong oxygen vacancy-cation association affects

the mobility of oxygen ions and therefore the ionic conductivity in aliovalently-doped

fluorite oxides. A decrease in ionic conductivity adversely affects performance as

fuel cell electrolyte and oxygen sensor [83] and reduces the concentration of mobile

oxygen vacancies which facilitates oxidation and eventual dissolution of the nuclear

fuel.Therefore understanding thermochemical and kinetic properties of such defects

in fluorite structured oxides is of great interest.

The behavior of oxygen vacancies introduced into UO2 is of interest due to its

possible effects on next generational fuels and the oxidation behavior of the fuel dur-

ing long term storage. The introduction of compounds that cause vacancies in the

production of nuclear fuel provide many potential material benefits for the fuel. How-

ever, there may be downsides from the introduction of these dopants, in particular

with the interaction of dopants, vacancies, and fission gases released during irradia-

tion. Some experimental studies on potential replacements for UO2 fuels suggest that

the introduction of xenon from fission into UO2 doped with chromium, introduced

for its positive effects on UO2 grains, results in migration of the chromium to grain
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boundaries potentially mitigating its positive impact on the fuel. In addition to the

introduction of these compounds during the production of uranium fuels, many fission

products form trivalent ions that dissolve in UO2. Understanding the defect order-

ing/clustering behavior can provide insight into how material properties are affected

by these impurities.

In this study we have examined the influence of 12 aliovalent cation dopant (Ru,

Lu, Yb, Er, Y, Gd, Eu, Sm, Nd, Pr, Ce, and La) in CeO2 and UO2. The ionic radius

of six coordinated Ru3+ ion is 0.68 Å, while the ionic radius of eight coordinated

3+ ions for Lu, Yb, Er, Y, Gd, Eu, Sm, Nd, Pr, and La are 0.977, 0.985, 1.004,

1.019, 1.053, 1.066, 1.079, 1.109, 1.109, and 1.16 Å respectively. In order to examine

such a large problem we have chosen to use an interatomic potential created by

the Grimes research group. In order to capture the majority of effects associated

with the local geometry we have chosen to use each nearest neighbor cations of both

the vacancy and oxygen ion to determine the migrations barrier for diffusion. The

resulting barriers are then compared to DFT literature where available in order to

determine and assess the validity of these values as an input parameter for the kMC

simulation. Energy barriers for oxygen diffusion are calculated by determining the

minimum energy pathways for ionic migration. With this comprehensive analysis,

we have presented the influence of various dopants, their size and concentration on

oxygen diffusivity and ionic conductivity in aliovalent doped fluorite oxides.

3.2 Related Works

In this paper we study the kinetics of oxygen migration in aliovalent doped fluo-

rite structured oxides using kinetic Monte Carlo (kMC) simulations. A kMC based

prediction of oxygen ion conductivity in doped fluorites has received attention from

several research groups. The kMC based studies of oxygen diffusion in doped fluorite

structures so far can be broadly divided into three classes based on the complexity of
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the model in terms of the number of neighbor cations used in calculating the barrier

to migration of an oxygen vacancy. The first of which uses only the shared nearest

neighbor cations of an oxygen and vacancy pair. The second group examined the

shared nearest neighbor cations and at least some of the nearest neighbor cations

exclusive to both the oxygen ion and vacancy. The third and final group used a

larger local area to determine the migration barrier, in addition to the ions described

in the previous groups these studies involved either additional cation neighbors or a

blocking term due to the presence of other oxygen vacancies in the local vicinity of

the oxygen ion and vacancy pair.

One class of researchers used only the two atoms located directly in the path of

the oxygen vacancy migrations [47, 100, 62]. This configuration required the smallest

number of barriers (three) as an input for the simulation. Krishnamurthy etal. [100]

used DFT calculations to inform a KMC model of yttrium stabilized zirconium (YSZ).

Grieshammer etal. [62] examined yttrium doped ceria and used Metropolis Monte

Carlo in addition to the kMC to examine the effect of distribution of dopants on ionic

conductivity.

The second class used each of the six nearest neighbor cations along the path of the

oxygen vacancy migration [146, 68, 135]. These studies have either attempted to treat

each neighbor atom separately requiring 30 unique barrier configurations or creating

sub groups to reduce the number of barrier calculations further. Pornprasertsuk etal.

[146] used DFT to estimate migration barriers for kMC in order to examine yttria

stabilized zirconia. They made the assumption that no more than three dopant atoms

were present in any local group of six atoms. Part of the study in Grope etal. [68]

studied the ionic conductivity for three aliovalent cations (Y, Sm, and Sc in CeO2)

using calculated values for each of the possible cases in the first class of researchers

while also examining the nearest neighbors of the oxygen vacancies as an additive

value calculated from DFT. Oaks etal. [135] examined La-doped ceria and calculated

15



all barriers using molecular statics calculations with three interatomic potentials.

The final class of kMC and atomistic studies included explicit information about

additional atoms such as other neighbors or additional oxygen atoms [45, 46, 109].

These studies calculated a large number of migration barriers and have focused on

trends in these barriers rather than estimating the full ionic conductivity. For example

Dholabhai etal. [45, 46] used a combination of DFT and kMC to calculate the effect

of a dopant on an oxygen vacancy out to the 3rd nearest neighbor atom and then

added the effect of each atom to come up with a migration barrier. Li etal. [109]

examined the formation and growth of defect clusters such as CeO2 · M2O3 (M =

La3+, Pr3+, Sm3+, Gd3+, Dy3+, Y3+, Yb3+) and CeO2 · DO (D = Cd2+, Ca2+, Sr2+,

Ba2+) in ceria using molecular dynamics (MD) simulations.

In addition to the diffusivity we examine the grouping behavior of dopants and

vacancies. Solomon etal. [176, 177] have recently provided significant insight into the

thermochemical behavior of UO2 doped with trivalent cations using density functional

theory (DFT). They examined formation energetics and defect ordering tendencies

in UO2 compounds substituted with Y, Dy, Gd, Eu, Sm, Pm, Nd, Pr, Ce, and La

cations, which are common soluble fission products in nuclear fuel. They considered

substitutional configurations that are charge-compensated with oxygen vacancies, and

found that phase separation is energetically favored for all compositions considered for

UO2 with Y, Dy, Gd, Eu, Sm, Pm, Nd, and Nd doping, whereas compound formation

is favored for Ce and La-substituted UO2. These calculations show dependence of

relative cation size on stability of solid solutions.

3.3 Model

When a 3+ oxide M2O3 (M = Sm, Eu, Ce, Pr, Gd, La, Y, Er, Yb, Lu, Ru) is

introduced in a fluorite structured QO2 (Q = Ce or U), the charge imbalance may

be compensated by the introduction of defects in the crystal. Charge compensating
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defects could include anion vacancies on the O−2 sublattice or cation interstitials

(host or dopant) on the Q+4 sublattice. In order to determine the correct charge

compensating defect, we calculate and compare the solution energies of these defect

structures when aliovalent dopants are added using interatomic potentials developed

by Minervini et al. figure 2a and 2b shown the solution energies for each of the defect

types in a M-doped QO2 where M = Al, Cr, Ga, Fe, Sc, In, Y, Gd, and La. If

the size mismatch between M and Q is small, we find that the anion vacancy has

lowest solution energy, suggesting that it is the dominant charge compensating defect

when an aliovalent dopant is added. When ionic radius of M is much smaller than Q

(e.g., Al, Cr dopants), we find that dopant interstititials may be an equivalent charge

compensating mechanism.

In this work, we mainly consider dopants with large ionic radii. Thus we can safely

assume that the anion vacancies compensate for the the charge imbalance when alio-

vant dopants are introduced in a fluorite structured QO2 (Q = Ce or U). These

additional vacancies provide opportunities for oxygen atoms to migrate via a vacancy

exchange mechanism on the anion sublattice, thereby enhancing the ionic conductiv-

ity. Such an enhanced ionic conductivity has limits - as the dopant concentration

and hence the vacancy concentration increases, the point defects impede each others

migration as well as creating traps or clusters. Thus for each ionic dopant there is an

optimum concentration that enhances ionic conductivity.

Figure 3a shows an oxygen ion and an oxygen vacancy along with their immediate

neighboring cations in ceria. Six cation neighbors (marked Q-1 through Q-6) are in-

dicated in the figure. These are neighbors of the oxygen ion (Q-1 and Q-2), neighbors

of the vacancies (Q-5 or Q-6) and shared neighbors (Q-3 and Q-4) that represent a

bond edge that must be crossed by the oxygen ion in order to complete the vacancy

exchange. Thus, both the ion and the vacancy are tetrahedrally co-ordinated by four

cations - Q-1 through Q-4 for the ion and Q-3 - Q-6 for the vacancy [68].
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(a)

(b)

Figure 2: The solution energy was calculated for a range of dopant sizes for both
ceria (a) and uranium dioxide (b). The values found for all but the smallest ionic radii
show that the assumption of vacancy compensation as the only extrinsic mechanism
available is valid for the dopants considered in this study
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(a) (b)

Figure 3: The oxygen ion moves to a neighboring vacant site in the fluorite lattice
(a). There are 6 neighbor ions which are used to calculate the migration barriers (b).
These are separated into three groups: neighbors of the oxygen site only (1 and 2),
shared neighbors (3 and 4), and neighbors of the vacancy only (5 and 6).

The oxygen ion can perform a jump into the oxygen vacancy by crossing the

edge that is formed by the two adjacent tetrahedra [68]. This jump is thermally

activated and has an activation energy that depends on the local environment, i.e.

the occupation of the cation sites with dopant ions and the occupation of other

oxygen sites with oxygen vacancies. In this paper, the dopant cations M or Ce are

assumed to be randomly distributed and immobile, as it is well known that cation

diffusion in fluorite structured oxides is extremely slow compared to oxygen diffusion.

Furthermore, we will consider only nearest-neighbor interactions for which we had

calculated the corresponding oxygen migration energies Emig by means of the nudged

elastic band (NEB) method for 12 dopants in UO2 and CeO2. We calculate for each

of these systems how the barrier to the oxygen ion - vacancy exchange depends on

the occupation of these 6 neighboring sites by the host or the dopant ion. Thus, there

are 26 = 64 configurations and corresponding energy barriers for the oxygen vacancy

exchange.
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Figure 4: Migration path of an oxygen atom with nearest neighbors highlighted with
bonds

3.3.1 kinetic Monte Carlo (kMC)

The algorithm for the Kinetic Monte Carlo (KMC) simulations was implemented

using the SPPARKS package. In order to simulate an infinitely extended lattice a

finite lattice with periodic boundary conditions in the rectilinear co-ordinate system

was employed. A rigid fluorite lattice was created within this periodic box. For each

fraction, xM , of the the dopant cations, the corresponding number of dopant cations

M+3 ions and oxygen vacancies were distributed on the fluorite lattice. The rest of

the fluorite structure was populated with the host Q+4 and oxygen O−2 ions.

In order to evolve the system a list of all oxygen ions that can migrate to a

neighboring vacant site is created. For each oxygen ion that can migrate, a rate

constant is computed,

ri = νie
−
Emig,i
kBT (11)

The migration energy depends on the local environment, namely, the presence or

absence of dopants ions at sites Q-1 through Q-6 and is calculated using the nudged

elastic band method described in the following section. The temporal evolution of
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the oxygen ion concentration is accomplished by a kinetic Monte Carlo procedure

in which one reaction is executed at one site during each time step. Only oxygen-

vacancy exchanges are possible in the system and any of the oxygen ions adjacent to

the vacancies can move with the rate constant specified in Equation 11. Thus, if there

are N vacancies (each with 6 oxygen neighbors), there are a maximum of 6N oxygen

migration events. The rate of each event is calculated by Equation 11 depending on

the local environment of the ion-vacancy pair. The set of rates computed in this way

comprise a rate catalog[194, 195] for the evolution of the system from state to state.

One of the possible events is chosen based on the rate associated with that event.

More specifically, the probability of choosing an event is equal to the rate at which

the event occurs relative to the sum of the rates of all of the possible events. Once

an event is chosen, the system is altered appropriately and the set of events that can

occur at the next time step is updated. So at each time step, one event denoted by

m is randomly chosen from all of the M events that can possibly occur at that step,

as follows:

m−1∑
i=0

ri

M∑
i=0

ri

< ξ1 <

m∑
i=0

ri

M∑
i=0

ri

, (12)

where ri is event i’s rate of occurrence given by Equation 11 and ξ1 is a random

number uniformly distributed (U) on (0,1] i.e., ξ1 ∈ U(0, 1]. The event chosen is

executed (e.g., the positions of the vacancy and the oxygen ion are interchanged), the

time is advanced, and the list of events is updated appropriately. The time increment

is sampled as the time increment for which no event occurred and is sampled from

the Poisson distribution of the rates of all the events,

dt = ln(ξ2)
M∑
i=1

ri (13)
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where ξ2 ∈ U(0, 1]. This process is repeated for the duration of the simulation.

Consider, as an example of the simulation, the diffusion of a vacancy in flourite

structure CeO2 as shown in figure 5. Consider two vacancies that can exchange with

neighboring ions. In the fluorite structure, each vacancy can exchange positions with

up to 6 oxygen ions. The rates of all possible events are calculated using Equation

11 In step 2, the cumulative rate function is calculated using Equation 12. In step 3,

an event is chosen among all possible events. If, as shown in the example, vacancy

exchange with ion at site 2 is chosen, this vacancy-ion exchange is executed (Step 5).

Time is incremented by sampling from the Poisson distribution of the rate catalog

(Equation 13). Finally all rates are recalculated based on the changed ensemble (Step

6) and the procedure is repeated. The procedure is repeated until the difference

between peak diffusivity reaches within a value of ε < 3×10−7 of the value at infinite

time, which occurs at approximately 500,000 steps.

The kMC code is adapted from the SPPARKS framework developed by Plimpton

et al. at Sandia National Laboratory and a Python based framework for dealing

with multiple simulations and analyzing the results. The code, an adaptation of the

standard diffusion method works with the framework in the following fashion:

1. Input data is passed into the python framework.

2. Each dopant concentration is read in.

3. A latttice of cations and anions is formed with the appropriate number of

dopants and vacancies using python’s built in random module.

4. A python dictionary is accessed or created containing the migration barriers in

order to determine the values for each oxygen site.

5. A set of SPPARKS input files are created based on the initial conditions of the

simulation.
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Step 1

Step 3

Step 4

Step 5

Step Procedure
Step 1 Form a list of all the possible va-

cancy migrations at each vacant
site ri

Step 2 Calculate the cumulative function

RN =
N∑
i=1

ri

where N is the total number of
sites

Step 3 Get a uniform random number
ξ1 ∈ (0, 1] and select the migra-
tion event ri where ri−1 < ξ1 ∗
RN ≤ ri

Step 4 Exchange the vacancy and ion
Step 5 Recalculate all ri that may have

changed
Step 6 Get a new uniform random num-

ber ξ2 ∈ (0, 1] and increment time
by

∆t =
−logµ
RN

Figure 5: KMC algorithm used in the simulation with pictorial explanation for the
migration of one oxygen vacancy on a fluorite structured CeO2 lattice

6. Multiple simulations can be run at once through the use of the python multi-

threading module to execute a SPPARKS instance.

7. The SPPARKS run command has been altered to allow the simulations to be
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run for a given number of events as opposed to the traditional use of time as

an end parameter.

8. The code examines only the oxygen sublattice to save memory as the host and

dopant atoms are fixed.

9. Post processing is performed in the python framework to calculate the diffusivity

and ionic conductivity; with figures being produced in matplotlib.

3.3.2 Empirical Potential

We have used empirical potentials developed for various oxides by the Grimes group

[196, 63, 30, 65, 64, 23, 31, 125, 126, 67, 41, 42, 189] in this study. The pair poten-

tials can be described by a combination of long-range Coulombic interaction (Vcoul -

attractive), and short-range interaction (primarily repulsive). The short-range inter-

action is described by the Buckingham potential (Vbuck,ij) for rigid ion model (ions

are described as a rigid core). In the shell model, the ions are described by a core and

shell which are coupled by a harmonic spring. The sum of the core and shell charge

of each ion describes the ionic charge. The core and shell of each ion interacts with

the core and/or shell of other ions via Coulombic interaction, whereas the short-range

interaction is given by a combination of Buckingham and core-shell potential (Vbuck,ij

+ Vcs). The long-range and short-range potential equations are given as:

Vcoul = 1
2

N∑
i=1

{
N∑
j=1

qiqj
rij

}
(14)

Vbuck,ij = A exp(−rij/ρ)− C/r6
ij (15)

Vcs = 1
2
kω2 (16)

where, A, ρ, and C are the fitted parameters for each pair-potential, k is the

harmonic spring constant, and ω is the core-shell displacement. Table 3 lists all the

pair potential parameters used to describe CeO2, UO2, and all the 3+ ion doping.
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Only Ce-O, U-O, and O-O pair potentials are described by shell model, while the

rest of the interactions are represented as rigid ion model. We have first optimized

the bulk CeO2 and UO2 structures with the empirical potentials. All the migration

energies are calculated in fluorite supercell based on these optimized cell parameters

using NEB within GULP [56].

3.3.3 Calculations of migration energy barriers

In order to examine the diffusivity of oxygen in doped fluorite oxides a catalog of mi-

gration energy barriers for each possible oxygen movement through the doped lattice

structure was created. This catalog was then used by the kMC simulation to deter-

mine the probabilities that events would occur during the course of the simulation.

The calculation of these energies was performed using the General Utility Lattice

Program (GULP). The program perform molecular dynamics simulation based on

calculations done with an interatomic potential.

In the first step the optimize subroutine where the lattice structure was assumed

to maintain a constant volume and the system was allowed to relax until the lowest

energy state was achieved. A 4x4x4 cell was used to avoid size effects in the simulation.

In order to maintain a consistent approach one vacancy was introduced and the

necessary number of dopants were inserted into the relevant lattice sites. Any charge

imbalance that resulted was resolved with the introduction of a background charge

by the GULP program itself.

The initial and final positions of the atoms were calculated for each of the 30

unique configurations. This resulted in a series of symmetric and asymmetric cases.

We used the NEB method to create a series of ”replicas” of the system along a path

from the initial to final configuration [123, 124]. Each replica is chosen as a step on

the path from the initial to the final configuration and is attached to the previous

replica with a ”spring” with a particular spring constant associated with it.
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Table 3: Empirical potential parameters used to describe the short-range interactions
in this study. The parameters are compiled from references [196, 63, 30, 65, 64, 23,
31, 125, 126, 67, 41, 42, 189]. The first paper to use the set of parameters is given
in the reference column. Only O2−, Ce4+, U4+ are described by shell model, where
the core and shell charges are +0.04e and -2.04e for oxygen, 4.20e and -0.20e for both
host cations. All the 3+ ions are described by rigid ion model with an ion charge of
+3.0e. The oxygen pair potential is the same for all oxide calculations.

Ion pair A (eV) ρ (Å) C(eV.Å6) k (eV.Å−2) Reference

O2−-O2− 9547.96 0.21920 32.0 O2−: 6.30 [63]
Ce4+-O2− 1809.68 0.35470 20.40 Ce4+: 177.84 [196]
U4+-O2− 1761.775 0.35642 0 U4+: 160.00 [30]

Al3+-O2−* 1725.20 0.28971 0 [63]
Co3+-O2−* 1226.31 0.30870 0 [23]
Cr3+-O2−* 1204.18 0.31650 0 [64]
Ga3+-O2−* 1625.72 0.30190 0 [65]
Fe3+-O2−* 1414.60 0.31280 0 [65]
Sc3+-O2−* 1575.85 0.32110 0 [65]
Ru3+-O2− 2988.58 0.298210 0 [31]
U3+-O2−** 1165.65 0.37430 0 [41]
Pu3+-O2−** 1150.745 0.37430 12.1 [42]
In3+-O2−* 1495.65 0.33270 4.33 [65]
Lu3+-O2− 1618.80 0.33849 19.27 [67]
Yb3+-O2− 1649.80 0.33860 16.57 [126]
Er3+-O2− 1739.91 0.33890 17.55 [126]
Y3+-O2− 1766.40 0.33849 19.43 [65]

Gd3+-O2− 1885.75 0.33990 20.34 [125]
Eu3+-O2− 1925.71 0.34030 20.59 [126]
Sm3+-O2− 1944.44 0.3414 21.49 [126]
Nd3+-O2− 1995.20 0.34300 22.59 [126]
Pr3+-O2− 2055.35 0.34380 23.95 [189]
Ce3+-O2− 2010.18 0.34490 23.11 [125]
La3+-O2− 2088.79 0.34600 23.25 [65]

* Unable to obtain barriers for all cation combinations likely
due to small size of ion
** Actinide values were not used in this study.
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Table 4: Explicit representation of the 30 unique oxygen migration conditions (12
symmetric cases and 18 asymmetric cases) possible for M3+ doping in AO2 lattice.
Each digit in the configuration corresponds to the labels given in the figure (Q-1 to
Q-6) with a 0 representing a host ion (A) and a 1 representing a dopant ion (M). For
the asymmetric cases migration energy calculations can be further reduced to 9 due
to mirror symmetry. Therefore only 21 different NEB calculations were performed to
obtain Em for the 30 configurations.

symmetric cases asymmetric cases

Case Configuration Case Configuration Mirror
1 000000 13 100000 000001
2 001000 14 110000 000011
3 001100 15 101000 001001
4 100001 16 111000 001011
5 100010 17 110010 100011
6 101001 18 101100 001110
7 101010 19 111100 001111
8 101101 20 111010 101011
9 101110 21 111110 101111
10 110011
11 111011
12 111111
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We then varied the atom positions in each replica until the path along the mini-

mum energy curve from one configuration to the other is found. The difference be-

tween the minimum and maximum energy along this path correspond to the migration

barrier required for the oxygen atom to move from its lattice site to a neighboring

vacant site. From figure 4 for the asymmetric case it can be seen that by looking at

the situation in reverse, i.e. the final configuration to the initial configuration, nine

of the 30 unique cases are already calculated as they correspond to mirror images of

other configurations. Thus the number of calculations in GULP can be reduced to 21

all of which are listed in table 4 including their respective mirror cases if applicable.

This reduction in the number of calculations required along with NEB’s ability to

determine the maximum value with fewer replicas illustrate its benefit over manual

minimization calculations like those done by Oaks et al.[135]

3.3.4 Diffusivity and Ionic Conductivity

In order to examine our model compared to other models and experimental data we

calculated two values from the kMC simulation the first of these is the diffusivity or

diffusion coefficient the equation for this is given by Kofstad[98] for vacancy diffusion

as

DVO =
〈x2〉
6t

(17)

Where 〈x2〉 is the average distance squared transversed by a vacancy in time t

and can be related to the oxygen diffusivity as

DO =
[VO]

[OO]
DVO (18)

Where [VO] and [OO] are the concentration of vacancies and oxygen atoms respec-

tively. In this equation the oxygen concentration is often assumed to be one and the

equation is reduced to
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DO = [VO] ∗DVO (19)

However, due to the large ranges of concentrations examined this approximation

has not been used in this work unless otherwise noted to conform to previous pub-

lications. Since the diffusivity cannot be measured directly by experimentation it is

often more convenient to determine the ionic conductivity as means of comparison

with experimental methods. According to Kofstad[98] the Nerst-Einstein equation

vi =
zie

kT
Di (20)

Can be combined with the equation for conductivity in terms of the charge mo-

bility, vi[98]:

σionic = ziecivi (21)

To relate the ionic conductivity to the vacancy diffusivity[98]:

σionic =
cvz

2
ve

2

kT
Dv (22)

Where zi is the valence, e is the charge of an electron, and kT is the Boltzmann

temperature. For the case of oxygen difussion on the fluorite lattice stucture zi is 2 and

ci reduces to 2x/a3
0 where x is the concentration of dopant fraction, Ce1−xMxO2(1−x/4)

giving:

σi =
8xe2

kTa3
0

Dv (23)
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3.4 Results

3.4.1 Energy barriers

For each of the dopants studied, the migration barriers for each of the thirty unique

cases were calculated for both CeO2 and UO2. Due to the large computational cost

of using DFT the calculation of these energies was performed with molecular statics

using empirical pair potentials within GULP [56]. The results of these calculations are

then compared with available literature on DFT calculations to attempt to determine

the difference between the two methods. The long-range interaction is given by

the Coulombic interaction whereas the short-range interactions are described by the

Buckingham potential.

A 4x4x4 cell was found to be sufficiently large enough to avoid size effects in the

GULP simulation. In order to maintain consistency, one vacancy was introduced and

the necessary number of dopants were inserted into the relevant lattice sites. Figures

6 and 7 represents all the 64 cases possible for oxygen migration in the presence of

M3+ ion. There are 24 symmetric cases and 40 asymmetric cases. The symmetric

cases indicate conditions where the configuration before and after migration are en-

ergetically equivalent. However, for asymmetric cases the energy of the initial and

final configuration are different. Visual inspection of symmetry cases reduce the total

number of configurations from 24 to 12. Similar analysis of asymmetric cases result

in 18 unique configurations. For calculation purposes the 18 asymmetric cases can be

further reduced to 9 as all the configurations have an equivalent mirror configuration.

Therefore, only 12 symmetric and 9 asymmetric cases are calculated using NEB to

obtain the Em for the 30 unique configurations. The difference between the minimum

and maximum energy along the oxygen motion pathway correspond to the migration

barrier required for the oxygen atom to move from its lattice site to a neighboring

vacant site. The calculated migration energies for CeO2 are reported in table 5 and

those for UO2 are reported in table 6.
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Figure 6: Nearest neighbor ball-and-stick model representation of all the 24 symmet-
ric cases of M3+ ion doping in AO2 lattice (host cations are illustrated darker than
the dopant cations). The numbers correspond to the 12 unique cases where cases
1, 3, 10 and 12 have one unique configuration; cases 2, 4, 5, 8, 9, and 11 have two
equivalent configurations; while cases 6 and 7 have four equivalent configurations.
The configuration numbers are related to those described in Table 4.
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18
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Figure 7: Nearest neighbor ball-and-stick model representation of all the 40 asym-
metric cases of M3+ ion doping in AO2 lattice (host cations are illustrated darker than
the dopant cations). The numbers correspond to the 9 unique cases along with the
mirror cases separated in the two columns. These asymmetric configuration numbers
are related to those described in Table 4.
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3.4.2 Comparison with Density Functional Theory

Andersson et al. [5] examined the migration barrier for 5 of the calculated barriers

for 6 of the dopants (La, Pr, Nd, Sm, Gd, Er) studied here. These barriers were

formed by inserting an M2O3 molecule into a CEO2 lattice and examining the different

configurations of the atoms. The cases studied in the work are 3, 14, 14m, 15, and

15m. In each case the trend of the barrier is the same, however, the values calculated

from MD have a wider spread than those found from DFT with values farther from

the undoped case spreading out farther relative to those close to this average. In

addition there appears to be a trend in the relation with regard to the size of the

dopant with smaller dopants causing a wider spread in large value migration barriers

and larger dopants causing a wider spread in low value dopants.

Nakayama et al. [132] and Grieshammer et al. [62] published results for cases 1, 2,

and 3 for Lu, Y, Gd, Sm, Nd, and La as a dopant in the case of Kakayama and Y as

a dopant in Grieshammer. The result for case 1 suggests that the undoped migration

energy is approximately 0.2 eV below the value predicted by DFT. In addition the

results for case 2 and 3 confirm the comparison with Andersson that the interatomic

potential over-predicts large energy barriers. In addition Kakayama examined cases

13, 13m, 14, and 14m for the case of Y dopant. When these cases are compared to

those found with MD the same trends are established.

Combined these results suggest that the use of interatomic potentials will result in

a good approximation of the trends of the diffusivity in different dopants but taking

into account the exponential effect of large values that the absolute values should be

scaled by a factor of 0.15-0.2eV, taking the lower of these values gives us:

e
−0.15eV
kbT (24)

for comparison with DFT and experiment.
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3.4.3 Influence of Dopant size on the migration energy barrier

From the energy barrier results some general trends in migration energy can be sum-

marized based on the ionic radii of the dopants with eightfold coordination. Due to

the lack of eightfold coordination ionic radius for Ru3+, the results in this section are

discussed for Lu, Yb, Er, Gd, Eu, Sm, Nd, Pr, and La dopant ions. The behavior of

dopants in the oxygen neighbor positions (figure 3a) is given in figure 7a, which shows

the migration energy as a function of dopant size with dopants in two representative

asymmetric cases: case 13 and case 14. In case 13 there is one dopant ion as the

first nearest neighbor of the oxygen ion in either position 1 or 2, while for case 14

there are two dopant ions as the first nearest neighbor of the oxygen ion in positions

1 and 2 (figure 7). Due to the increase in the dopant ionic radius (from Lu to La),

the barrier for oxygen ion migration in ceria increases (figure 7a). This confirms that

large dopant ions have a stronger affinity toward oxygen atoms and thus will trap the

oxygen ions.

A similar set of calculations are repeated to examine the mirror cases for case 13

and 14, where the dopant ions are sitting in the first nearest neighbor position of the

oxygen vacancy (vacancy neighbor positions (figure 3a)). Following figure 7, these are

represented as dopant in either position 5 or 6 for case 13 and dopants in positions

5 and 6 for case 14. The results in figure 7b indicates that smaller ions have an

affinity toward oxygen vacancies as the migration barrier increases with reduction in

dopant ionic radius. In the presence of smaller dopant ions it is expected that oxygen

vacancies would be trapped by these ions. The impact of large dopant ions in the

oxygen neighbor positions and small dopant ions in the vacancy neighbor positions

on diffusion is observed to be the same.

The behavior of dopants in the shared nearest neighbor positions (figure 3a) is

examined by considering two symmetric cases: case 2 (dopant in either position 3 or

4) and case 3 (dopants in position 3 and 4) (figure 6). Consistent with the trend for
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oxygen neighbor, the migration barrier increases with the increase in dopant ionic

radius for shared nearest neighbor positions (figure 7c). In addition, the change

in migration energy is observed to be the largest for the shared nearest neighbor

positions. Based on these data it is evident that 3+ ion dopants has a tendency to

trap either the oxygen or oxygen vacancy and hinder migration.

In order to examine the impact of considering the barriers only associated with

the shared nearest neighbor positions (as performed by the first class of researchers,

e.g. reference [100]), we have estimated the additional energy required to perform

a migration event when one or two of the shared neighbors are occupied with the

dopant ion in ceria. Energy comparisons between cases 1, 2, and 3 are performed

for the symmetric case, while cases 13, 15, and 18 are considered for the asymmetric

cases. Figure 9a shows the energy difference between cases 2 and 1, cases 3 and 2,

cases 15 and 13 and cases 18 and 15. These data shows the increase in the barrier

with the relative increase in the dopant ionic radius. However, comparing the energy

difference between the two symmetric and two asymmetric cases it is clear that the

increase in energy is not the same for the first and second added dopant to the shared

neighbor positions. The migration energies are affected by the number of dopants in

the nearest neighbor positions of the oxygen and vacancy.

Similar analysis has been performed for the oxygen neighbor positions (e.g., mi-

gration reported by [68]). Figure 9b shows the energy difference between cases 13 and

1, cases 14 and 13, cases 15 and 2 and cases 16 and 15. This shows the addition of

dopants in the 1(5) or 2(6) position does not decrease(increase) the migration energy

by a constant value. These results suggest the migration barriers are dependent on

the number of dopants in the 3 or 4 position. Therefore, while the simplified models

are valuable to investigate oxygen migration, it is necessary to explicitly include mi-

gration barriers based on all the six nearest neighbor cation positions to describe the

system more accurately.
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13 14

(a)

13m 14m

(b)

2 3

(c)

Figure 8: (Color online) The migration energy (in eV) calculated (a) for cases 13
and 14 , (b) for mirror image cases 13 and 14 , and (c) for cases 2 and 3.
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(a) (b)

Figure 9: (Color online) The difference in migration energy ∆Em (a) for cases 2 and
1 (adding a dopant in position 3 to the undoped case), cases 3 and 2 (adding a dopant
in position 4 to the previous case), cases 15 and 13 (adding a dopant in position 3
to the case with a dopant in position 1), and cases 18 and 15 (adding a dopant in
position 4 to the previous case) (b) for cases 13 and 1 (adding a dopant in position 1
to the undoped case), cases 14 and 13 (adding a dopant in position 2 to the previous
case), cases 15 and 2 (adding a dopant in position 1 to the case with a dopant in
position 3), and cases 16 and 15 (adding a dopant in position 2 to the previous case).

3.4.4 Diffusivities and Ionic Conductivities calculated with kMC

The kMC simulation was performed using a periodic lattice with dimensions of

15 × 15 × 15, which is larger than the mean distance traveled by vacancies, at two

temperatures, 800 and 400 ◦C, for a dopant range 0 < x < 0.33 with Cerium and

Uranium used as the host ion. For each simulation the exponential prefactor related

to the attempt frequency was assumed to be νo = 1013/s. There is evidence that

this value may be different[88]. Each set of conditions was simulated ten times with

different random seeds in order to provided good statistics. From these results the

oxygen self diffusivity was calculated.

The oxygen diffusivity results for 800 ◦C using Cerium as the host lattice is given

in figure 10. The results show that diffusivity increases with increasing concentration

until it reaches a maximum value between x = 0.1 - 0.25 for all the 3+ ions investi-

gated. This maximum suggests that the increase in vacancies results in more paths

for oxygen mobility until the number of dopants added becomes large enough that
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Figure 10: Concentration dependent diffusivity in doped ceria estimated at 800 ◦C.
The highest diffusivity is observed for Sm with 10-20% doping (x = 0.1 - 0.25).

vacancies become trapped. This observation of reduction in diffusivity with the in-

crease in defect concentration is in agreement with previous kMC results of vacancies

in doped fluorites [100, 68, 135, 45, 46] and oxygen interstitials in hyperstoichiometric

fluorites [21].

Since diffusivity is difficult to measure experimentally, it is often more convenient

to determine the ionic conductivity therefore the ionic conductivity was calculated

from Eq 23. The calculated results for the ionic conductivity are given in figure 11

for all the dopants. The results of several of the dopant ions at x = 0.2 concentration

are compared with Eguchi etal. [51], which is representative of experimental results

at this temperature [205, 87, 149]. The kMC results on ionic conductivity follow the

same trend as experiment based on the dopant size figure 12. In addition, samarium

(Sm) doping in ceria is predicted to achieve the highest ionic conductivity at 800 ◦C,

which is consistent with experiment. The ratio of ionic radius of Sm3+ to Ce4+ is
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Figure 11: Concentration dependent ionic conductivity predicted by kMC in doped
ceria at 800 ◦C. The highest conductivity is observed for Sm3+ doping in ceria.

calculated to be 1.112. Dopant ions smaller or larger than Sm3+ ionic radius results

in lower ionic conductivity. While the kMC results accurately predicts the qualitative

trend with experiment, the quantitative comparison results in an overestimation of

ionic conductivity by 1.5-2.5 orders of magnitude at this temperature. For example,

our kMC model predicted ionic conductivity of Sm doping in ceria is 2.521Scm−1,

compared to the experimental value of 0.0974Scm−1.

In order to determine the influence of temperature, additional calculations were

performed at 400◦C. The results for oxygen self diffusivity and ionic conductivity at

400 ◦C are given in figure 13. Figure 14 illustrates the computational and experimen-

tal [7] comparison of ionic conductivity of several of the dopants at 20% concentration

(x = 0.2). The ionic conductivity result at 400 ◦C also qualitatively follow the same

trend as experiment with the highest conductivity predicted for ceria doped with eu-

ropium or samarium (ionic radius ratio of Eu3+ with Ce4+ is 1.10). The experimental

measurement of ionic conductivity for Eu is significantly smaller than Sm doping in
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Figure 12: Comparison of ionic conductivity calculated by kMC simulation for 6
dopants at 800 ◦C at x = 0.2 dopant concentration with experiment[51]. The results
are plotted as a function of dopant size ionic radius. The kMC results qualitatively
match the experimental trend with a peak ionic conductivity occurring for Sm doping
in ceria. In addition we have multiplied the results by the factor in eq 24 and found
much better agreement.

ceria at 400 ◦C. Quantitative comparison of the kMC data with experiment show a

relatively larger overestimation (3 - 4 orders of magnitude. For example, our kMC

model predicted ionic conductivity of Sm doping in ceria is 0.5965Scm−1, compared

to the experimental value of 6.792×10−4Scm−1. Comparison of results at 400 ◦C and

800 ◦C with experiment emphasizes the temperature dependent nature of ionic con-

ductivity. In order to improve the quantitative comparison, additional sophistication

can be included to the existing kMC model such as temperature dependent attempt

frequency, possibility of oxygen clustering, grain boundaries, and better migration

barrier description (estimate from density functional theory rather than with empir-

ical potential [68]). We have attempted this last result by multiplying our results

in the experimental plots by the difference between our migration barriers and those
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(a)

(b)

Figure 13: Concentration dependent (a) diffusivity, and (b) ionic conductivity esti-
mated with kMC for doped Ceria at 400 ◦C. The highest conductivity is observed for
Eu3+ doping in ceria.

found in DFT as shown in eq 24.

Finally we have performed the migration energy, diffusivity, and ionic conductivity
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Figure 14: Comparison of kMC calculated ionic conductivity for 10 dopants at 400
◦C at x = 0.2 dopant concentration with experiment[7]. The results are plotted as a
function of dopant size ionic radius. The peak ionic conductivity is achieved for Eu
and Sm doping in ceria. In addition we have multiplied the results by the factor in
eq 24 and found much better agreement.

calculation for M3+ ion doping in urania. Only the oxygen self diffusivity estimated

at 800 ◦C in Uranium Oxide are presented in figure 15. The self diffusivity data for

most of the the 3+ ions show the expected initial increase and then decrease with

concentration except for Lu. Thus the current model fails to describe Lu doping in

urania. The maximum diffusivity in urania is observed to occur in either Pr, Ce or Nd

doping at concentrations around x = 0.225. The ratio of ionic radius of Pr3+, Ce3+,

and Nd3+ with U4+ results in the range of 1.126± 0.017, which is comparable to the

ionic radius ratio of Sm3+ with Ce4+. This suggests that care must be taken while

estimating the diffusion in doped urania based on the diffusion response in doped

ceria. Even though ceria is used as a surrogate to urania, the diffusion behavior with

the same aliovalent dopant is expected to be different in ceria and urania. These

results show a second maximum in the diffusivity of the smallest dopants, which

45



Figure 15: Concentration dependent oxygen self diffusivity in doped urania estimated
at 800 ◦C. The highest diffusivity is obseved for Pr, Ce, and Nd with x = 0.225.

is most evident in Ru and Lu, at high concentrations in simulations involving small

radius dopants. However, at these high concentrations the fluorite lattice would begin

to break down with small dopant cluster forming.

3.4.5 Examination of dopant-vacancy interaction

We examined the location of dopants and vacancies on the fluorite lattice in UO2 in

order to determine if the results on the mesoscale corresponded with those on the

atomistic scale [177]. Based on DFT simulations it is expected that as the size of the

dopant increases the likelihood that oxygen vacancies would occupy nearest neighbor

sites to the dopant would decrease. In order to get an idea of whether vacancies in a

non-random configuration would occupy neighbor positions we examined the lattice

structure of simulations where x = 0.2 both before and after the simulation was run.

46



Figure 16: The average number of vacancy-dopant pairs after a simulation is run
with the random configuration pairs subtracted out. A positive number means a
dopant favors vacancy neighbors while a negative number means a dopant favors
oxygen neighbors.
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Figure 17: The percentage of vacancy-dopant pairs with 1, 2, or 3 dopant neighbors
after a simulation is run.

We then took the average number of vacancies with dopant nearest neighbors in each

case and subtracted the before number from the after number. This gave the average

number of vacancies that migrated to or from a nearest neighbor position in the

simulation. The results of this study are plotted in figure 16 for a range of different

dopants. From these results it is clear that the larger dopants prefer more oxygen

nearest neighbors. This is in line with the enthalpy of formation as calculated with

DFT [177].

In addition we examined the percentage of vacancies that were neighbors to one,

two, and three dopant ions. Based on the results of Solomon et al. we would expect

that the larger the dopant ion the more likely that a vacancy would be positioned

as a neighbor to only a single dopant. Conversely small dopants would have the

majority of the vacancies with 3 dopant nearest neighbors. Based on the results for

the same simulations plotted in figure 17 we see that for small dopants the percentage
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of vacancies with one dopant neighbor is significantly less than the percentage of

dopants with two or three dopant neighbors. For large dopant ions the percentage of

vacancies with only one dopant neighbors is significantly higher than the percentage

with two or three neighbors. These results correspond well with what is predicted by

the formation enthalpies from DFT.

3.4.6 Sensitivity Analysis

3.4.6.1 MOAT

We have calculated the EE, average EE and standard deviation for the diffusivity in

the fluorite lattice for each of the 30 unique input parameters at a dopant concentra-

tion of 0.20. We then normalized the values of diffusivity by dividing each EE and

standard deviation value by the max EE, max(EEdiff ), we then plot the resulting

values.

Figure 18: The |EE| values for each of the input parameters for the fluorite model
are calculated and plotted. The number markers correspond to those in table 4. The
upper left region corresponds to those values which are important and non linear.

The |EE| values are calculated for the model in figure 18. The marker correspond
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to the numbers for each configuration given in table 4 and pictured in figures 6 and

7. The plot is divided into three sections to the left of the vertical line is the region

with values that have a negligible effect on the output, below the horizontal lines are

values that have linear effects without interactions, and the remaining region contains

those parameters with non-linear effects and/or interactions. We find that the most

important input parameter is the non doped case. This is logical as even at this high

doping concentration this would be the most numerous of the configurations. The

remaining input parameters have relatively low importance so we plot them without

the non doped case.

Figure 19: The EE values for each of the input parameters for the fluorite model. The
number markers correspond to those in table 4. The upper left region corresponds to
those values which are important and non linear.

The |EE| values are calculated for the all the parameters that contain at least

one dopant in figure 19. From this we can see that the important parameters with

dopants each contain at least one oxygen or vacancy only neighbor. Thus, there

does not seem to be any particular correlation between the shared neighbors and the
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importance to the model. We examine the input parameters using PRCCs to see if

the results correspond to those found with MOAT.

3.4.6.2 PRCC

In examining the importance of different input parameters on the diffusivity using

PRCC a dopant concentration of x = 0.2 was chosen. Each of the input parameters

were allowed to vary over the full range of values found from molecular statics for

the dopants studied (0.05-2.0 eV). In order to accumulate accurate statistics 500

simulations were run. The results of the analysis are provided in table 7. From these

results it is clear that the most important factor in determining the diffusivity is

the non doped configuration. This was seen in the MOAT examination as well. In

addition nearly all of the parameters are negative except for several that are positive

but small. This result is also to be expected as an increase in a migration barrier would

increase the time for an event to occur and thus decrease the diffusivity. Finally, it

should be noted that there is no consistent difference in relative importance between

configurations with the same number of dopants suggesting that each of the 6 nearest

neighbor atoms are important in examining the behavior of the model.
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Table 7: The results of PRCC sensitivity analysis on the fluorite model at x = 0.2
are given. From these results the most important parameter is the non dopant case.
The remaining cases have low importance with a trend toward less importance as the
number of dopants increases.

Input Parameter γ p value
1 -0.6434 8.87× 10−60

2 -0.2223 5.13× 10−7

3 -0.0146 7.44× 10−1

4 -0.1511 6.99× 10−4

5 -0.0666 1.37× 10−1

6 -0.0985 2.77× 10−2

7 -0.0685 1.26× 10−1

8 -0.0321 4.74× 10−1

9 -0.0098 8.28× 10−1

10 0.0246 5.84× 10−1

11 -0.0138 7.59× 10−1

12 0.0664 1.38× 10−1

13 -0.2197 7.01× 10−7

13m -0.1518 6.62× 10−4

14 -0.0193 6.66× 10−1

14m -0.1076 1.59× 10−2

15 -0.1945 1.18× 10−5

15m -0.2073 2.93× 10−6

16 -0.0749 9.42× 10−2

16m -0.1275 4.28× 10−3

17 -0.1154 9.80× 10−3

17m -0.0496 2.69× 10−1

18 0.0083 8.52× 10−1

18m -0.0281 5.30× 10−1

19 -0.0901 4.42× 10−2

19m -0.0046 9.19× 10−1

20 -0.0329 4.62× 10−1

20m -0.0076 8.66× 10−1

21 0.0307 4.93× 10−1

21m 0.0479 2.85× 10−1
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3.5 Conclusions

In this section we have used kinetic Monte Carlo (kMC) simulation (within the SP-

PARKS framework) to examine the defect kinetics in aliovalent doped fluorite lattice.

With the aim of examining the influence of 3+ ion doping (Ru, Lu, Yb, Er, Y, Gd, Eu,

Sm, Nd, Pr, Ce, and La) in CeO2 and UO2, we used empirical potentials to estimate

the energy for all possible charge compensating mechanisms. Our results predicted

oxygen vacancy compensation as energetically the most favorable mechanism for both

CeO2 and UO2. In order to establish the effect of doping on oxygen migration, we

calculated an extensive list of migration barriers using pair potentials, which are used

as the input for the kMC simulations. Based on the occupancy of the six nearest

neighbor cation positions with respect to the migrating oxygen ion and vacancy, the

migration barriers for all the 3+ ions were computed by the NEB method. The oc-

cupancy of the six nearest neighbor cations (oxygen neighbor, vacancy neighbor, or

shared neighbor positions) is observed to have a significant influence on the migration

barrier. For each dopant, the kMC model used 64 possible migration barriers, which

are reduced to 30 unique pathways for examining oxygen diffusion over a large range

of dopant concentration (x < 0.33).

The qualitative comparison of our kMC results confirms that with the increase in

dopant concentration both diffusivity and ionic conductivity initially increase, reach

a maximum, and then decrease for very high concentration. This trend is consis-

tent with previous experimental and computational investigation of defect migration

in fluorite lattice. The initial increase can be assigned to the increase in vacancy

concentration, while the decrease can be explained by the defect interactions and

trapping. For both CeO2 and UO2, the highest diffusivity for all the dopants inves-

tigated is observed to be in the range of x = 0.1 - 0.25. Further analysis based on

the ionic radius of the dopant ions indicate that the maximum diffusivity/ionic con-

ductivity is obtained for Sm doping in ceria, which is consistent with experimental
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measurements. Similar analysis on urania indicates Nd, Pr, and Ce doping results in

comparable highest diffusivity. The ratio of ionic radius of dopant showing the high-

est conductivity to the host ions is calculated to be 1.112 for ceria and 1.126± 0.017

for urania. In addition, quantitative comparison of the kMC results with experi-

ment show a significant overestimation of the predicted ionic conductivities for all

the dopants. These overestimation in comparison to experimental results is observed

to improve with the increase in temperature (comparing ionic conductivities at 400

and 800 ◦C). Based on this fact and examination of available DFT results the mi-

gration barriers calculated by the interatomic potential are about 0.15eV low. By

adjusting these values upward we get better agreement with experimental results.

Our results provide a comprehensive investigation of 3+ ion doping in fluorite

lattice. These results can be used in selecting alliovalent dopants to achieve particular

level of relative ionic conductivity for single doping in various applications such as fuel

cells. Improvement of the model to investigate the effect of more than one dopant in

the fluorite lattice will be valuable for guiding experimental design of materials with

desired diffusivity and conductivity.

In addition we have examined the behavior of vacancy-dopant paris and compared

the results to atomistic studies on the behavior of dopants in UO2. We find that as

the size of the dopant ion increases the likelihood of vacancies to be located in the

nearest neighbor positions decreases. This is consistent with DFT studies that suggest

large dopants require higher oxygen coordination. We also examined the percentage

of vacancies that neighbored 1, 2, or 3 dopant ions and found that as the size of the

dopant ion increased vacancies were more likely to be positioned near a single dopant

ion. Again this is consistent with the results of DFT studies[177].

Finally, we performed sensitivity analysis on the 30 input parameters that con-

stitute the different initial configurations. We discovered that MOAT shows that the

non doped case is the most important input parameter. Other configurations are
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significantly less important, however, there is no distinguishable difference in impor-

tance for configurations involving dopants in the shared nearest neighbor positions

and those without such dopants. Consistent with these results our examination using

PRCCs found that the non doped configuration is the most important configuration,

that the majority of configurations were inversely related to the output variable, and

that within each group of configurations with the same number of dopants there was

no indication that any dopant location was consistently more important than any

other positions suggesting that the 6 neighbors positions carry equal importance in

determining the behavior of the system.
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CHAPTER IV

BCC METAL DIFFUSION MODEL

4.1 Introduction

BCC metals provide significant material advantages in the formation of structural

materials for use in nuclear applications. Fe-Cr alloys are used as radiation tolerant

alloys in both current generation and next generation nuclear facilities[50]. In ad-

dition, Tungsten’s high melting point makes it an ideal material for use in plasma

facing components of fusion devices and is seen as one of the main components of

ITER divertor armor[192]. Due to the need for modern reactors to replace the current

commercial fleet of generation III reactors and research into generation IV and fusion

reactors the need to focus on nuclear materials is increasing[66].

BCC metals are of interest for their material properties in radiation environ-

ments such as low defect accumulation, reduced swelling, and improved creep be-

havior compared to fcc metals under similar irradiation[58, 136]. However, constant

irradiation can cause defects which affect the performance of these metals. The be-

havior of voids is particularly important as they may form in nearly all materials

under irradiation[203]. The most common method for performing simulations into

the macroscopic behavior of metals under irradiation is through crystal plasticity

models that examine the physical properties of the metals by using rate equations

to determine the statistical concentrations of relevant defects. However, through this

approach of informing the crystal plasticity model with rate equations we lose in-

formation related to the geometry of the metal thus we look at kMC as a way of

reconciling the rate equations to the behavior of the material in question[166].

Models of irradiation in metals in order to provide concentrations of defects for
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use in continuum scale models have historically consisted of the use of rate equations.

The increase in computational power over the past several decades has resulted in

the possibility of using kMC models to capture a more complete picture of the defect

structure. Due to the complex nature of these models coupled with the uncertainty in

the values for input parameters requires the use of uncertainty analysis and sensitivity

analysis in order to examine the variability and the effect of input parameters on

output parameters.

4.2 Related Works

4.2.1 kMC models of bcc metals

The behavior of defects in bcc metals has been studied in depth using rate equations[28,

101, 175, 200] and kMC simulations. We examine in more detail the groups that have

studied the behavior using kMC simulations. Different groups focused on the be-

havior of different defect types and examined the effect of defect production on the

simulation.

The following studies focused on the behavior of defects within pure bcc metals

with increasing defect complexity. Studies by Heinisch et al. [57, 73, 72, 74] focused

on the behavior of interstitials and the formation of interstitial clusters. Barashev et

al. [9, 10] focused on the behavior of interstial clusters. Cai et al. [33, 32] examined

the behavior of dislocation loops in bcc metals and the applied it to the specific case

of bcc-Mo. This study is unique in that the dislocation behavior is examined directly

instead of studying the interaction of various defects together. Soneda et al. [179]

examined the behavior of defects in bcc-Fe with the inclusion of boundary conditions

to simulate grain boundaries. In particular the examined the effects of temperature,

dose rate and neutron spectrum on cluster formation. KMC studies done by Becquart

and Domain et al. [48, 20] focused on the mobility of larger defect clusters. Rottler et

al. [166] examined the results of various models with both simple defects and clusters
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vs their rate equations counterparts.

The focus of studies then shifted to the implantation of other elements into the

metals and their clustering behaviors. Caturla [35] focused on alloys and the behavior

of voids. Deo et al. [44] introduced Helium atoms into the voids. Morishita et al.

[129] examined the behavior of voids and He clusters in bcc-Fe as an extension of

previous MD-MC studies on the subject. Du et al. [49] examined the behavior of

grain boundaries and Hydrogen clusters in bcc-Fe at various temperatures. Guo et al.

[69] examined the behavior of He clusters in bcc-Fe with a focus on the temperature

and its effect on the size distribution of the resulting clusters. Oaks et al. [134]

presented a simple study on the formation of voids in bcc-Fe for two different models

for the size of the cluster radius.

4.2.2 atomistic studies of defect migration energies

The literature provides a wide range of values and behavior for bcc metals and in

particular the behavior of defects in iron has been studied extensively. Vincent et

al. [193] examined the behavior of self interstitial iron defects in both α-Fe and solid

solutions of iron and common alloying metals using VASP. Ventelon et al. [192] exam-

ined the migration behavior of mono-vacancies in tungsten using SIESTA. Huang et

al. [81] examined the behavior of vacancy defects and impurity migration of a range

of bcc metals in α-Fe using VASP. Satta et al. [173, 172] examined the behavior of

vacancies in various bcc metals using DFT-LDA methods. Fu et al. [55] examined

the behavior of vacancies and interstitials in α-Fe using the SIESTA method. Olsson

[140] examined the behavior of self interstitial and vacancies in a range of bcc transi-

tion metals using an EAM interatomic potential. Pasianot et al. [141] examined the

behavior of self interstitial defects in bcc Molybdenum using EAM and ED poten-

tials. Mishin et al. [128] determined the migration barrier for vacancy migration in

bcc Tantulum using ADP. Johnson [86] examined the migration of interstitials and
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vacancies in α-Fe using a simple interatomic potential. Shimomura et al. [174] ex-

amined the behavior of defects and clusters in α-Fe and found the migration energy

of vacancies using EAM. Soneda et al. [178] used a combination of MD and kinetic

Monte Carlo methods to calculate the vacancy and interstitial migration energies in

α-Fe.

Based on a review of these sources (Tables 8, 9 and 10) the following ranges were

chosen for the input parameters in the different models for sensitivity analysis used:

Ei =0.02 - 0.6 eV

Er = 1- 5 Ei

Ev = 0.6 - 2.0 eV

Table 8: Table of interstitial migration barriers of bcc metals found in literature
Interstitial Migration Barrier

First Author Value Metal
Soneda [178] 0.17 Fe

Fu [55] 0.34 Fe
Pasianot [141] 0.62 Mo
Pasianot [141] 0.6 Mo
Olsson [140] 0.022 Ta
Olsson [140] 0.016 V
Olsson [140] 0.1 W

Table 9: Table of interstitial rotational barriers of bcc metals found in literature
Rotation Barrier

First Author Value Metal
Soneda [178] 0.16 Fe

Fu [55] 0.56 Fe
Pasianot [141] 0.71 Mo
Olsson [140] 0.1 Ta
Olsson [140] 0.059 V
Olsson [140] 0.43 W
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Table 10: Table of vacancy migration barriers of bcc metals found in literature
Vacancy Migration Barrier

First Author Value Metal
Chamati [36] 0.477 Fe
Olsson [140] 0.83 Fe

Fu [55] 0.67 Fe
Olsson [140] 0.96 Ta
Satta [173] 0.81 Ta
Satta [173] 0.75 Ta
Satta [173] 0.83 Ta
Satta [173] 0.67 Ta

Olsson [140] 0.51 V
Ventelon [192] 1.78 W
Becquart [19] 1.66 W
Mundy [131] 1.7± 0.1 W
Olsson [140] 1.61 W
Satta [173] 1.82 W

4.3 Model

4.3.1 Simple Defects

For the simplest case where only point defects are considered explicitly and all larger

defects are considered to be part of a generic sink concentration the change in defect

concentrations with respect to time are governed by the following particle balance

equations [166]:

dni
dt

= σF − κvωivni − κiωvinv − κsωisni (25)

dnv
dt

= σF − κvωivni − κiωvinv − κsωisnv (26)

where σF is the Frankel pair production rate, κvωivni and κiωvinv are pair recom-

bination due to the diffusion of an interstitial and vacancy respectively, and κsωisni

and κsωisnv are the loss of interstitials and vacancies to sinks respectively. Relation-

ship between the encounter rate, ω, and the diffusivity D (from random walk):
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ω =
nD

a2
(27)

In all bcc metals except iron the ground state intersitial configuration is the 〈111〉

dumbbell interstitial. This configuration results in interstitials that move in a 1D

random walk with the ability to rotate into another (111) plane giving a modified

random walk term:

ω1D/3D = ω3D

√
γra2

Di

(28)

where γr is the rate at which rotations occur. In order to simplify the simulation

and provide results that would cover the full range of bcc metals only the dumbbell

interstitial motion was incorporated into the rate equation and kMC models. These

give a modified point defect balance equation:

dni
dt

= σF − ninv(κv
√
βDi
a2 + κi

1
α
Di
a2 )− κsnins Dia2 (29)

dnv
dt

= σF − ninv(κv
√
βDi
a2 + κi

1
α
Di
a2 )− κsnvns 1

α
Di
a2 (30)

where β = γr
a2

Di
and α = Di

Dv

For direct comparison with kMC we use Ei, Ev, and Er instead of Di, β, and α:

Di = e
−Ei
kT (31)

β = a2e
Ei−Er
kT (32)

α = e
Ev−Ei
kT (33)

4.3.2 Irreversible Voids

In the second model we add immobile, irreversible voids to the list of defects. These

voids are created by 2 vacancies diffusing to nearest neighbors. They can grow to
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larger sizes by incorporating more neighboring vacancies. However, the vacancies

cannot leave the void except by annihilation with a neighboring interstitial, thus the

only way a vacancy that has entered a void can return to a mobile vacancy is if the

remaining vacancies in the void are annihilated. The final restraint on the voids in

the kMC model is that no assumptions is made on the shape of the void thus the

void’s shape encompasses all of the lattice points that the vacancies occupied when

they became a member of the void. The defect balance equations for this case are:

dni
dt

=
σF − ninv(κv

√
βDi
a2 − κi 1

α
Di
a2 )− κsnins Dia2

−
∑
m

κininc(m)
√
βDi
a2

(34)

dnv
dt

=
σF − ninv(κv

√
βDi
a2 − κi 1

α
Di
a2 )− κsnvns 1

α
Di
a2

−2κvnvnv
1
α
Di
a2 −

∑
m

κvnv
1
α
Di
a2 nc(m) + κinc(2)

√
βDi
a2 ni

(35)

dnc(m)

dt
=

nv(κvnc(m− 1)− κvnc(m)) 1
α
Di
a2

+ni(κinc(m+ 1)− κinc(m))
√
βDi
a2

(36)

where in equation (34) a term for the annihilation of an interstitial with a void of

size m is given by
∑
m

κininc(m)
√
βDi
a2 and in equation (35) terms for the addition of a

vacancy to a void of size m is given by −2κvnvnv
1
α
Di
a2 +

∑
m

κvnvnc(m) 1
α
Di
a2 and a term

for the formation of vacancies from the annihilation of one member of a divacancy

by an interstitial is given by κininc(2)
√
βDi
a2 . Finally, equation (36) is a series of

infinite equations with four terms describing the behavior of the voids of size m. The

former two terms describe the voids interaction with vacancies with the first term,

κvnvnc(m − 1) 1
α
Di
a2 describing the formation of a void of size m from the addition of

a vacancy to a void of size m-1 and the second term, κvnvnc(m) 1
α
Di
a2 , describing the

loss of a void of size m due to the addition of a vacancy which results in a void of

size m+1. The latter two terms describe the formation of a void of size m due to

annihilation of an interstitial and void of size m+1, κininc(m+ 1)
√
βDi
a2 , and the loss
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of a void of size m due to annihilation of one of its member from interaction with an

interstitial κininc(m)
√
βDi
a2 , respectively.

4.3.3 Reversible Voids

The final model introduces a possibility for vacancies to leave the void spontaneously

with some rate given by γdetached This rate is in addition to the normal diffusion

barrier for a vacancy to move. The rate can be calculated from the binding energy of

voids of different sizes. In this paper the rate is calculated one of two ways, either by

averaging the binding energy over a range of void sizes or by examining a power law

found using a best fit of the binding energies over the same range of void sizes. This

leads to modification of the previous equations for irreversible voids:

dni
dt

=
σF − ninv(κv

√
βDi
a2 − κi 1

α
Di
a2 )− κsnins Dia2

−
∑
m

κininc(m)
√
βDi
a2

(37)

dnv
dt

=
σF − ninv(κv

√
βDi
a2 − κi 1

α
Di
a2 )− κsnvns 1

α
Di
a2

−2κvnvnv
1
α
Di
a2 +

∑
m

(κd(m)
γdetached(m)

a2 − κvnv 1
α
Di
a2 )nc(m)

(38)

dnc(m)

dt
=

nv(κvnc(m− 1)− κvnc(m)) 1
α
Di
a2

+ni(κinc(m+ 1)− κinc(m))
√
βDi
a2

+(κd(m)nc(m+ 1− κd(m)nc(m)))γdetached(m)
a2

(39)

4.3.4 Molecular Dynamics

In addition to size independent binding energies based on values found in literature,

molecular dynamics simulations were conducted with four different interatomic po-

tentials as shown in table 11 in order to produce equations for calculating a void size

dependent detachment rate, γdetached(m).

In each case, In order to estimate the void stability and formation energy, a

periodic super-cell consisting of 10x10x10 body centered cubic (bcc) unit-cells (2000
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Table 11: Semi-empirical Iron Potentials used to calculate a size dependent detach-
ment rate for vacancies.

Potential Type Why Developed

Mendelev et al. 2003 [119] EAM Developed for both crystalline and liq-
uid iron

Lee et al. 2001 [103] MEAM-0 Developed to mimic 0K elastic con-
stants and formation energies of iron
at 0K

Lee et al. 2012 [106] MEAM-T Developed to mimic correct structural
phase behavior of iron with respect to
temperature

Lee et al. 2012 [106] MEAM-P Developed to mimic correct structural
phase behavior of iron with respect to
pressure

atoms in the defect free system) was simulated. We performed energy minimization

in order to achieve the energy of a perfect bcc lattice. Then in order to calculate

the defect formation energy of a vacancy, an atom was removed from the perfect

bcc lattice creating a vacancy in the system. This new system with the vacancy

then underwent another energy minimization to find the relaxed structure. Then the

vacancy formation energy can be calculated using these relaxed structure energies:

Ef,vac = En−1 −
n− 1

n
En (40)

The formation energy of a void can be calculated similar to that of a vacancy, but

now you have multiple clustered vacancies creating a void. The formation energy of

a void can be calculated by:

Ef,void(x) = En−x −
n− x
n

En (41)

where x is the number of vacancies in the void. The formation energies can then

be used to find the vacancy binding energy to an existing void. The binding energy

can be obtained by:
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BEvac(x) = Ef,void(x− 1) + Ef,vac − Ef,void(x) (42)

where x is the size of the existing void. This binding energy of the vacancy to a

void can be directly incorporated into the rate equations formulation.

Figure 20: MD results of void formation for different potentials. Void sizes up to
35 were considered which is beyond the size formed in kMC simulations of reversible
voids with constant detachment rates. In addition power law equations were fitted
to the results for use in the kMC simulations.

Figure 20 shows the void formation energy for the three potentials namely the

EAM, MEAM-T and the MEAM-P. The formation energy difference between the

three potentials can be seen in the figure above. The MEAM-0 potential was found

to be unstable after the introduction of defects and could not be used. The epistemic

uncertainty from the differing semi-empirical potential used in a 35 vacancy void is

seen to be as large as approximately 10eV. Each semi-empirical potential formation

energy versus number of vacancies in the void was fit to a power law equation. The

power law fit has been used by previous simulations[178] and been shown to work

reasonably well.
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4.4 Results

4.4.1 Examination of Void Behavior in Models

4.4.1.1 Simple Defect Model

Figure 21: Results of the simple defect model for 5 different values for the Frankel-
pair production rate (σF ): 5.55×107, 5.55×106, 5.55×105, 5.55×104, and 5.55×103

dpa/s (From top to bottom). The rate equations assumed that all defects within one
lattice constant of a sink or opposite defect type were annihilated giving a value of
4π for the capture radius.

Table 12: Input parameters for the simple defect model of bcc metals and all subse-
quent models.

kMC Rate Equations
Ei 0.1 eV Di 0.055
Er 0.258 eV β 0.01
Ev 0.338 eV α 1000
T 400K a2 1

The kMC model and equivalent rate equations for the model that only accounts

for simple defects is given in figure 21 for 5 different values for the Frankel-pair
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Figure 22: Results of the simple defect model for 5 different values for the Frankel-
pair production rate (σF ): 5.55×107, 5.55×106, 5.55×105, 5.55×104, and 5.55×103

dpa/s (From top to bottom). The rate equations assumed that all defects were
annihilated by a sink or opposite defect type only upon reaching the nearest neighbor
position giving a value of 4π

√
3/2 for the capture radius.
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production rate (σF ): 5.55 × 107, 5.55 × 106, 5.55 × 105, 5.55 × 104, and 5.55 × 103

dpa/s. These values are well above the range of those found in experiment but were

chosen to correspond to those performed by Rottler et al. [166] for comparison of

the models. The other parameters for this example are given in Table 12. In general

the results are in agreement, however, in order to fit the rate equations to the kMC

the choice of the rate constants, κ, is different. According to Rottler et al. their

model corresponds to a value for κ of 21 for all species interactions. In our model the

value for κ is chosen based on the definition of this term as found in Fundamentals

of Radiation Materials Science: Metals and Alloys [200] which is 4πR where R is

the radius of the interaction. Based on the fact our models assumes only defects in

the nearest neighbor position interact this value should be between 4π, which is the

closest next nearest neighbor distance in the bcc lattice and 4π×
√

3/2, which is the

nearest neighbor distance. The value for the closest next nearest neighbor distance

was used in figure 21 and shows good agreement, while the value for the nearest

neighbor position is given in figure 22 and also shows good agreement. Since there is

no indication in Rottler et al. as to why 21 was chosen as this value, in general our

kMC results correspond with those in Rottler, et al. and our value is chosen based

on the established definition of κ, we assume that our model is accurate and that 4π

is an appropriate value to use for κ in future studies.

4.4.1.2 Irreversible Voids Model

The next set of simulations introduced irreversible voids to the simple defects exam-

ined in the previous section. The addition of voids creates an infinite set of equations

to describe the behavior of voids of size m we must therefore choice a maximum void

size (mmax) when using the rate equations method. However, this approximation is

unnecessary for the kMC model as voids of any size may form if the vacancies diffuse

to neighboring locations on the lattice. Thus we expect some divergence of the two
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Figure 23: The results of the irreversible voids simulation for three different values of
σF (5.55×104, 5.55×102, and 5.55×100). The rate equations for voids are truncated
after a void size of 20. The capture radius for voids is set to 2 times the value for
simple defects.
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Figure 24: The results void size distribution for the irreversible voids simulation for
σF = 5.55× 104.

models if the value of mmax is not chosen to be large enough to encompass the largest

void sizes found from kMC. For comparison with Rottler et al. we choose a value

of 20 for mmax in the simulations. The results of the simulation for three different

values of σF (5.55 × 104, 5.55 × 102, and 5.55 × 100) are given in figure 23. From

these results we see good agreement between the kMC and rate equation results at

lower values of σF , however, in order for this agreement we have chosen a capture

radius of all cluster sizes of 2× κ which is similar to the value used in Rottler et al.

This choice of κm is arbitrary and done only to match the kMC results. In addition

it appears that at low values of the production rate this assumption begins to break

down. Thus it appears that examination of the interaction of vacancies with the voids

is an important point to study and may be dependent on the rate of irradiation. We

have plotted the void size distribution for the highest production rate (figure 24) and

we will compare this to more complicated models.
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4.4.1.3 Reversible Voids Model - Constant Barrier

In the next simulation the voids are now assumed to be reversible, requiring vacancies

to overcome an additional barrier in order to detach from a void. Initially this barrier

is assumed to be a constant value independent of the size of the void. Again we

examine the difference in the kMC simulation and the rate equations we assume the

same parameters as in the previous section with the detachment rate set at the same

value as the vacancy barrier and examine only two production rates (5.55× 104 and

5.55×102). The results are shown in figure 25. Again there is good agreement between

the kMC simulation and the rate equations and between previously published values.

In addition we examine the size of the resulting vacancy clusters for the production

rate 5.55×104 (figure 27 with results of size dependent barriers included) and find that

the size of clusters is similar to those found using the irreversible voids suggesting that

the irreversible voids model is likely the highest level of complexity need to examine

bcc metals.

4.4.1.4 Reversible Voids Model - MD generated power law

In our final simulation we examine the behavior of size dependent barriers for the

detachment rates in the voids. The power law equations for the three atomistic

models examined in 4.3.4 were inputted into the kMC model as the values for the

barriers of vacancies attempting to leave a void. The results of each simulation at a

production rate of 5.55 × 104 are compared to the results for a constant barrier in

figure 26, from these results it is clear that there is minimal difference in the resulting

concentrations of both simple defects and voids between the different models. In

addition we examined the frequency of different sized clusters in the different models

(figure 27) and found that the void size distribution is nearly independent of the

method for calculating the detachment rate and that they are nearly identical to the

values produced using a constant barrier. This suggests that a constant barrier is
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Figure 25: The results of the reversible voids simulation for two different values of
σF (5.55× 104 and 5.55× 102). The detachment rate is assumed to be constant for
all void sizes and is equal to 0.01 × Dv. The rate equations for voids are truncated
after a void size of 20. The capture radius for voids is set to 2 times the value for
simple defects.
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Figure 26: The results of the void detachment rates for different interatomic poten-
tials are compared to the results for the constant barrier model and it is found that
the difference between potentials and the constant barrier is minimal especially at
long times.

likely sufficient for studies of both the concentrations of defects in bcc metals and the

distribution of the size of voids.

4.4.2 Sensitivity Analysis

4.4.2.1 Simple Defects Model MOAT

We have calculated the average EE and standard deviation for both the concentration

of interstitials ni and vacancies nv for each of the four parameters examined in the

simple defect model: interstitial barrier |EE|int, rotational barrier |EE|rot, vacancy

barrier |EE|vac, and |EE|sink. We then normalized the values of ni and nv by dividing

each EE and standard deviation value by the average of the concentrations mean(ni)

and mean(nv), respectively. Finally, we normalize all the concentrations and standard

deviations by dividing by the max concentrationmax(max(ni),max(nv)) we then plot
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Figure 27: The results for the void sizes formed by different interatomic potentials
are compared to the results for the constant barrier model and it is found that the
difference between potentials and the constant barrier is minimal especially at long
times.

the resulting values.

The |EE| values are calculated for the KMC model in Figure 28. The plot is

divided into three sections to the left of the vertical line is the region with values that

have a negligible effect on the output, below the horizontal lines are values that have

linear effects without interactions, and the remaining region contains those parameters

with non-linear effects and/or interactions. Examination of the results shows that the

model is most sensitive to the effect of the interstitial barrier on the concentration

of interstitials. In addition the vacancy concentration is most dependent on the

sink concentration input and the value for the interstitial barrier. These results also

suggests the value of rotational barrier is largely irrelevant to the simulation. For the

concentration of vacancies it has some importance when compared to other values

effect on the vacancy concentration but the effect on the concentration of interstitials
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Figure 28: The |EE| were calculated for the simple defect model using kMC. The
most important factors are located in the upper left quadrant of the simulation.

is insignificant. Some of the remaining factors have some effect on the results but

these are minor compared to the previously discussed factors.

Next we calculated the |EE| values for the rate equations in order to compare the

results to that of the kMC model. The results of these calculations are presented in

figure 29. It is clear from these results that the sink concentration is too low to affect

the mathematical model. In addition because of the low value the third term on the

right side of Equation 26 is so small that the effect is negligible. This means that

the results of the other parameters on the vacancy and interstitial concentrations are

correlated. This suggests the use of |EE| to examine the sensitivity of the model

to input parameters is inadequate. Thus PRCCs will be used to better gauge the

sensitivity of the model to input parameters.
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Figure 29: The |EE| are calculated for the simple defect model using rate equations.
Note that each of the input parameters have the same effect on the vacancy and
interstitial terms this is due to the small value of the sink concentration which limits
the third term in the equations.
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4.4.2.2 Simple Defects Model PRCC

In order to examine the effect of input parameters on the concentration of vacancies

and interstitials in rate equation models the PRCC between each input parameters

and the outcome variables were calculated. The results of these calculations are

contained in Table 13. Based on the results of these calculations it can be seen that

for the vacancy concentration the sink concentration is the most important variable

while the interstitial and vacancy barriers also have significant importance. However,

for the interstitial concentration the interstitial and vacancy barriers are of the highest

importance while the sink concentration also has a high importance. In both cases the

rotational barrier is of little importance to the final result. These results are similar

to those found using MOAT sensitivity analysis on kMC simulations. Perhaps the

most important result from this is that the low importance for the rotational barrier

suggests that the mechanism for the interstitial migration is generally not important

for multiscale simulations and that models of bcc metals can be used independent of

the particular metal attempting to be studied.

4.4.2.3 Irreversible Voids Model MOAT

We have calculated the average EE and standard deviation for both the concentration

of interstitials, ni, vacancies, nv, and clusters, nc, for each of the four parameters

examined in the simple defect model: interstitial barrier |EE|int, rotational barrier

|EE|rot, vacancy barrier |EE|vac, and |EE|sink. We then normalized the values of

ni, nv, and nc by dividing each EE and standard deviation value by the average

of the concentrations mean(ni), mean(nv) and mean(nc), respectively. Finally, we

normalize all the concentrations and standard deviations by dividing by the max

concentration max(max(ni),max(nv),max(nc)) we then plot the resulting values.

The |EE| values are calculated for the KMC model in Figure 30. The plot is

divided into three sections to the left of the vertical line is the region with values that
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Table 13: PRCC values for the simple defect model using rate equations. The
gamma value is the importance of the input parameter with positive meaning a direct
relationship and negative meaning an inverse relationship. The p value is a measure
of the confidence of the value.

Vacancy Concentration

Input Parameter γ p value
Rotational Barrier -0.1623651 -0.0265
Interstitial Barrier 0.5333 9.336× 10−9

Vacancy Barrier 0.4544 1.809× 10−6

Sink Concentration 0.8776 2.208× 10−33

Interstitial Concentration

Input Parameter γ p value
Rotational Barrier 7.925484× 10−1 1.0476× 10−1

Interstitial Barrier 0.9806 7.070× 10−72

Vacancy Barrier 0.8341 2.491× 10−27

Sink Concentration -0.6660 6.156× 10−14

Figure 30: The |EE| were calculated for the irreversible voids model using kMC.
The most important factors are located in the upper left quadrant of the simulation.
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have a negligible effect on the output, below the horizontal lines are values that have

linear effects without interactions, and the remaining region contains those param-

eters with non-linear effects and/or interactions. Examination of the results shows

that the model is most sensitive to the effect of the rotational barrier on the concen-

tration of interstitials, vacancies, and clusters. This is in contrast to the simple model

and suggests when clusters are included the behavior of the interstitial movement is

important, thus the behavior of iron vs. other bcc metals should be accounted for.

In addition the interstitial barrier is important for each of the defect types. These

results also suggests the value of rotational barrier and sink concentration is largely

irrelevant to the simulation. The change in importance of the rotational barrier is

interesting and the use of rate equations may determine if this effect is consistent

independent of the simulation model.

Figure 31: The |EE| were calculated for the irreversible voids model using rate
equations. The most important factors are located in the upper left quadrant of the
simulation.

The |EE| values are calculated for the rate equations in Figure 31.
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4.5 Conclusions

In this section we have used kinetic Monte Carlo (kMC) simulations, within the

SPPARKS framework, of increasing complexity to examine the behavior of defects in

bcc metals with a particular interest in the treatment of voids. The simulations are

compared to rate equations and previous published studies to determine the validity of

the models. In addition, sensitivity analysis is performed on the simplest two models

in order to determine the importance of the various input parameters and to begin an

examination of how the introduction of increasingly complex defect structures affect

the resulting importance of the parameters. The first model studied examines only

the behavior of simple defects and shows excellent agreement with rate equations

studies.

The second model introduces irreversible vacancy clusters and again provides ex-

cellent agreement at low concentrations, however, some discrepancies arise in the

behavior of the capture radius for the rate equations that merits further investiga-

tion. The third model introduces the possibility of vacancies spontaneously being

emitted by clusters. It is found that the results for a constant barrier are nearly

identical for both the kMC simulation and rate equations assuming the same capture

radius from the irreversible voids model. It should be noted that the size distribution

of this model results in an average value of void size nearly identical to the irreversible

model suggesting that this level of complexity does not gain in accuracy at long time

intervals over simpler models. As a final addition we assume that the rate at which

vacancies leave clusters is not a constant but instead dependent on the size of the

cluster. For this method the rate for different cluster sizes is found through several

different interatomic potentials using Molecular Dynamics.

The final two methods are compared to one another in order to determine the

sensitivity of the model to size dependent cluster detachment rates. It is found that

due to the small size of the resulting cluster there is little difference in the resulting
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cluster densities. In addition examination of the cluster size using both methods

suggests there is little difference between constant barrier and size dependent barriers

for void detachment rates. These results suggests that a constant barrier, informed

by the results from atomistic studies is generally sufficient to model the behavior of

voids in bcc metals.

Sensitivity analysis was performed using MOAT on both the rate equation and

kMC models for the models involving only simple defects and simple defects with

irreversible voids. While the results of each model varied there were some similarities

between the models. In all cases the effect of the interstitial migration barrier on the

concentration of interstitials was moderately to very important. In addition the sink

density had a low importance in each of the models. Based on the results of MOAT

analysis the rotational barrier was only highly important on any defect concentration

in the irreversible voids model with kMC. Otherwise it was of moderate to little

importance.

Additionally, sensitivity analysis using PRCCs was performed on the simple defect

model using rate equations as the MOAT analysis was unable to accurately separate

the different input parameters’ importance due to the small effect from the sink

concentration. This analysis showed similar results to those of the MOAT analysis

for the kMC model suggesting that the results from the MOAT when able to be

performed correctly is an accurate measurement of the sensitivity of input parameters

in this model.
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CHAPTER V

NUCLEAR FUEL POTTS MODEL

5.1 Introduction

As nuclear fuel is irradiated in reactors the lattice experiences a high number of dis-

placements per atom. This process is not uniform throughout the fuel and due to

geometrical considerations of the reactor setup the outer edges of the fuel experiences

significantly more irradiation damage then the center of the fuel. Over time this

creates a localized burn-up level higher on the rim of the fuel. In turn this damage

causes a restructuring of the grains in the outer edge of the fuel. The new grain

structure is known as High Burn-up Structure (HBS) [165]. This structure was ini-

tially discovered in the 1950s and 1960s [13, 22, 24] during initial experimentation in

nuclear fuels. At this time it was not studied in detail due to fears it caused release

of fission gases and the low Burn-up levels reached in commercial reactors of the time

[113, 165]. It was examined again in the 1980s and 1990s in a series of works looking

to examine its properties [14, 12, 142, 99, 94, 180].

Based on recent studies [93, 191, 183, 185] there is general agreement that the

release of fission gases in reactors does not occur in the HBS region. In fact the

interconnection of intergranular bubbles formed by the fission gases in this region is

conducive to retention of these gases. There is also additional evidence that HBS

provides other characteristics for UO2 fuel that is either beneficial or neutral to its

performance. One advantage is that the restructured grains are softer and tougher

then traditional fuels which can relieve mechanical stresses from the fuel cladding

interaction [181]. Another concern of HBS was a reduction in thermal conductivity

due to increased grain boundary and porosity. However, this effect is mitigated by a
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reduction in the amount of defects contained in the new grains [164].

The formation mechanism of HBS structure is still a mystery [165]. In this work

we propose to extend a model of the formation based on the Potts model [138]. Our

model will focus on the behavior of the lattice parameter expansion in order to create

a model that simulates the behavior of the lattice under irradiation appropriately.

Finally, we will present results of the new model for uranium silicide fuel in addition

to the standard uranium dioxide fuel.

5.2 Related Works

5.2.1 Mathematical Models

Previous studies involving the formation and behavior of HBS in nuclear fuels have

primarily focused on mathematical models, in particular the use of rate equations is

prevalent. While many of these models are able to accurately predict the behavior

of the HBS and fission gas bubbles on the macroscopic scale they lack the ability

to examine the evolution of HBS on a step by step scale. Presented here is a brief

examination of mathematical models that have been performed on the behavior of

HBS and fission gases in nuclear fuels to date.

Rest [158, 152, 153, 155, 157] presents a series of increasingly complex models

using coupled differential equations to examine the behavior of bubbles, porosity and

HBS in U3Si, U3Si2, UO2, and U-Mo fuels.

Lassmann et al. [102] present a simple model to determine the thickness of the

HBS zone and the Xe depletion using the differential equation based TUBRNP model,

part of the TRANSURANUS model.

Rest and Hofman [159, 161, 162, 156] present models using coupled differential

equations to examine the bubble distribution, change in lattice parameter, grain size,

and other properties of HBS formation in U3Si2, UO2, and U-Mo fuels.

Kinoshita [92] presents a model which uses differential equations to examine defect
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behavior in UO2 fuels. In addition Kinoshita et al. [95] suggests using density func-

tional theory and molecular dynamics calculations to examine the defect behavior in

these fuels.

Baron et al. [15] present a mathematical model for simulating the behavior of

xenon in UO2 fuels.

Spino et al. [184] presents a model which uses differential equations to examine

the fuel density, porosity, and retained Xe-concentration in UO2 fuels.

Xiao and Long [202] present a model on the coarsening behavior of fission gas pores

in the HBS structure of UO2 fuels based on a mathematical model using differential

equations.

5.2.2 Potts Model

Our model is an extension of the Potts model which is a generalized form of the

Ising model originally applied to magnetic domain problems[147]. However, it has

since been applied to the problem of grain growth[169, 4, 61, 80, 37, 201, 79]. In

addition it has been used to model recrystallization[187, 188, 163, 78, 84] which will

be implemented in this model. Additionally it has been used to simulate porosity

and bubble migration in materials, in particular UO2[190].
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5.3 Model

The model in its current form has been implemented for a 2D triangular lattice and

would need modification of the energy term to work on a wider range of geometries.

As such each site is hexagonal in shape. The model is a modification of the Potts

model where each lattice site is a part of a grain with a particular spin representing

the orientation of the grain. In addition the model incorporates HBS grains, which

follow the same dynamics as the ordinary grains, and bubble sites, which incorporate

diffusion dynamics instead. The size of a site is determined by the size of a nanobubble

found in UO2 grains [138], which is assumed to be 40 nm.

Each grain site has two integer values associated with it. The first value is asso-

ciated with the orientation of the grain and there are assumed to be Q states with

which this value can take, where Q is large enough that the grains can assumed to

be independent. The second integer value is related to the type of grain, thus it can

have two values: one for an ordinary grain and one for an HBS grain. Thus there are

a total of 2Q states that the grains can occupy. Any neighboring sites with the same

state are assumed to be part of the same grain. An example of this is given in Figure

32 In addition bubble sites are given there own state for a total of 2Q +1 possible

states within the system.

As mentioned in literature, due to their smaller size and the recrystallization

process, HBS grains have a lower dislocation density [165] then normal grains under

irradiation. Thus, the energy of the system and as a result, the evolution of the HBS

grain structure is controlled by two competing factors: the increased grain boundary

energy and decreased stored strain energy. The total energy of the system, G, is given

by [138]:

G =
M∑
i

[
Hf(Si) +

J

2

nn∑
j

(1− δSiSj)

]
(43)
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Figure 32: The grains (different colors) are represented on the triangular lattice.
Each site is hexagonal in shape and has a value associated representing the grain
boundary angle.

where M is the total number of lattice sites, nn is the number of nearest neighbors, f

is 1 for ordinary grains and 0 for HBS grains Si is the current site and Sj a neighboring

site. J and H are the boundary energy and stored energy respectively. The equation

for J and H are given by:

J =


√

2γSbv
√
ρNS for grain boundary

γSS for pore surface

(44)

H =
1

2

(
∆a

a

)
EA (45)

where γS is the surface energy, bv is the burgers vector ρN is the dislocation density,

S is the contact length between sites, ∆a/a is the change in lattice parameter, E is the

elastic modulus and A is the site area. The values for these input parameters for UO2

and U3Si2 are given in Table 14. It is important to note that because the simulation is

only 2 dimensional the units of these values do not match those of the thermal energy

and thus this value requires reduced units which are mentioned whenever applicable.
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Table 14: Input parameters and source for UO2 and U3Si2. Several of these parame-
ters are dependent on Temperature (T) which is assumed to be 923K, a typical value
for reactors.

UO2 U3Si2
Parameter value source value source

γS 0.85 − 1.4 × 10−4T [70] 0.7eV [154]

bv
√

2
2
a [157] 3.9Å a

ρN

{
100.022·Bu+13.8 for Bu ≤ 44

5.86 × 1014 for Bu > 44
[133] 1.43 × 109 [160]

S a a

∆a
a

12.43 × 10−4(1 + 0.060e−0.042·Bu−0.042e−0.060·Bu

0.042−0.060
) [182] (3.88008 · Bu2 + 0.79811 · Bu)1/3 [122]

E 2 × 1011(1 − 1.09154 × 10−4T ) [157] 1.63 × 1011 [198]
A a a

a from geometric considerations

(a) (b)

(c)

Figure 33: (a) A site is chosen on which to perform a grain growth/HBS recrystal-
lization event. First there is an attempt to convert the site to a fission gas bubble.
Then the energy of the site is calculated. (b) A new site value is chosen and the
new energy is calculated. For wild flips the site will only change when the internal
energy surpasses the boundary energy. (c) However, if the new state is the same as a
neighbor site the event will be accepted as long as the energy of the system is lowered.
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In this model we use a rejection based kMC method to compare with other similar

simulations. In this case each site is tested and the probability of a state change is

determined based on equation 7. As with other Potts model simulations of grain

growth [190] it is assumed that only those grain growth events which lower or leave

unchanged the total energy of the system are successful (this corresponds to a 0

temperature simulation). A pictorial representation of this process is presented in

figure 33.

In addition to the grain growth elements described previously, the bubbles are

now inserted into the simulation. Bubbles are inserted as part of the standard rkMC

procedure. The probability of a bubble insertion occurring is based on the experi-

mentally measured porosity, which for UO2[185] and U3Si2[158] is given respectively

by the equations:

P (%) =


0.06 · Bu for Bu ≤ 60

−6.6 + 0.17 · Bu for 60 < Bu ≤ 100

4.4 + 0.06 · Bu for Bu > 100

(46)

P (%) = 0.044 · Bu (47)

If a bubble event is chosen the bubble is randomly inserted into the lattice. Bubble

migration occurs differently in the simulation then grain growth. The migration is

a diffusion event. This means that the energy of the system is calculated and an

attempt is made to switch the bubble site with a neighboring site, thus leaving the

number of bubble sites unchanged. As mentioned in previous works [190] if the

original bubble site is changed to the neighboring site this assumes that the system

retains knowledge of what was at that site which is not a physical result. Thus instead

of simply switching sites, the state of the old bubble site is chosen by selecting one of

the neighboring sites’ state that results in the minimum energy and the new system
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(a) (b)

(c)

Figure 34: (a) A bubble site is chosen and the energy of the site is calculated.
(b) A neighboring non-bubble site is chosen and the energy of the site is calculated
before the states are switched. (c) A neighboring state is chosen so that the energy is
minimized and the new energy of the system is calculated. The event is then accepted
or rejected.

energy is then calculated. A pictorial representation of this process is presented in

figure 34. The probability of a jump is then calculated using Eq 7 assuming the value

for kBT = 0.7J . In addition it is assumed that the mobility of bubbles is faster than

that of grain growth. Specifically we attempt 10 bubble migrations for each cycle of

grain growth events.
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Figure 35: Virgin grain structure used for simulation of the Potts model in all
subsequent simulations. The average grain size is between 9 and 10 µm

5.4 Results

5.4.1 High Burnup Structure Formation in Porous Uranium Dioxide

5.4.1.1 rejection kMC for uranium dioxide

We begin by validating the model by comparing it to a similar model. Oh et al. [138]

created a Potts model to calculate the HBS formation in UO2 using the same method

for calculating the energy as we used. However, their model uses the change in lattice

parameter due to annealing instead of the change due to irradiation. The equation

for this lattice change is given by ∆a/a = 1.57 × 10−5Bu. When we substitute this

parameter into our model without the use of bubbles to simulate the evolution of

the original UO2 grain structure (figure 35) we get similar results to theirs (figure

36). However, in calculating this value we also needed to divide the value for the

grain boundary energy by a factor of two. This may correspond to calculating the

change in energy for the current site while ignoring the resulting change in energy
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Figure 36: Comparison of Potts model of UO2 with previously published
literature[138]. In this simulation the bubble condition is turned off and the lattice
parameter expansion equation used is for annealed fuels.
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for neighboring sites. The reason this was done is unknown and the appropriate

calculation of the system energy value is used in all subsequent simulations.

In examining this model we can see certain characteristics occurring, we note

that no HBS is formed until Bu = 85. At this point the value of H is more than 2J

which corresponds to the energy change required to make HBS formation energetically

favorable at grain boundary tri-junctions, that this is indeed where the formation

occurs can be seen in figure 37, which shows the grain structure at a local burnup

of 95 GWD/MTU with HBS shaded black. At a burnup level of 104 GWD/MTU

the value of H is now greater than 3J and HBS will begin to spread out from these

junction sites and other grain boundaries to the rest of the grain (figure 38 at a

burnup of 106 GWD/MTU).

Figure 37: The grain structure at 95 GWD/MTU simulated burnup with no bubbles
using parameter values found in literature. Note that the formation of HBS at this
point is limited to the areas surrounding tri-junctions.
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Figure 38: The grain structure at 106 GWD/MTU simulated burnup with no bubbles
using parameter values found in literature. Note that the formation of HBS at this
point has begun to spread out from all grain boundaries.

An attempt was made to replicate the bubble conditions found in Oh et al. .

However, our model is unable to accurately reflect the exact behavior of this model.

Instead we assume the bubble movement follows the procedure described by Tikare

et al. [190] that was described in the previous section and we move to examine the

behavior of UO2 using the lattice parameter change representative of irradiation in a

reactor [182].

Initially we examine the behavior of UO2 with the conditions for bubble formation

and migration turned off. The values of the input parameters used in this and all

subsequent simulations, except where noted, are found in Table 14. For this simu-

lation we ran to a local burnup of 115 GWD/MTU and tracked the percentage of

the original grain structure that had turned to HBS as well as the average lattice

parameter. The average lattice parameter is calculated assuming that ordinary grain

sites would see an expansion of their lattice parameter based on fission damage (the

first term in the equation for ∆a/a in Table 14) and the α damage (the second term
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Figure 39: The simulation of UO2 fuel under irradiation with no bubble growth. Note
that the formation of HBS begins at approximately 70 GWD/MTU and progresses
slowly to the point that the HBS fraction at 115 GWD/MTU is only about 10%,
resulting in no lattice contraction as seen in experiment.
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in the table), while HBS sites would have only the alpha damage contribution remain.

Thus we would expect the behavior of the lattice parameter to mirror that found in

Spino et al. [182]. The results of this simulation are presented in figure 39. It is clear

that without the bubbles introduced into the simulation the HBS structure is unable

to form until well past the local burnup expected based on experimental results.

Figure 40: The simulation of UO2 fuel under irradiation with no bubble growth. A
small amount of HBS is formed due to local bubble geometry below 70 GWD/MTU.
Unlike in the no bubble case, the increased grain boundaries due to the presence of
bubbles causes an increase in the rate of HBS formation. This results in a drop in
lattice parameter at 73 GWD/MTU local burnup similar to experiment.

We now turn to the full simulation including the introduction of bubbles in order to

determine if this simulation is able to accurately model the behavior of the UO2 fuel’s

HBS formation. Again we track the percent of the fuel that is now HBS structure

as well as change in the average lattice parameter using the same assumptions as

above. The results of the simulation are given in figure 40. From this we see that the

introduction of bubbles results in a small amount of HBS structure forming between
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60 and 70 GWD/MTU local burnup with the rest of the grain transforming rapidly

above 73 GWD/MTU, resulting in a sudden decrease in the lattice parameter. These

result agree with Spino et al. although further examination of the method that causes

the change in lattice parameter may be needed as the decrease is potentially shallow

when compared to experimental results.

Figure 41: The grain structure at 75 GWD/MTU simulated burnup with no bub-
bles using parameter values for irradiated fuels. Not the formation of small bubbles
on grain boundaries and in the fuel. The bubbles help to create HBS near grain
boundaries and between bubble clusters.

Examining the structure of the bubble that have formed in the grain structure

at 75 GWD/MTU (figure 41) we can see that a large number of small bubbles have

formed in the structure. The distribution of bubbles at this burnup is given in figure

42. In this we have assumed the resolution of bubbles is 100nm, which is the resolution

of an SEM with 1000x magnification. THus bubbles with smaller than six members

were removed from the count. If we assume none of the smaller bubbles diffuse to

other bubble sites post irradiation the average bubble diameter is 0.65µm, below
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Figure 42: The bubble distribution at 75 GWD/MTU local burnup. It was assumed
that the resolution of bubbles was approximately 100 nm, which is the resolution of
an SEM with 1000x magnification. The resulting average cluster size is 0.65µm.
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Figure 43: The grain structure at 115 GWD/MTU simulated burnup with no bubbles
using parameter values for irradiated UO2. Nearly the entire original grain structure
is gone and the bubbles have begun to coarsen.
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Figure 44: The bubble distribution at 115 GWD/MTU local burnup. It was assumed
that the resolution of bubbles was approximately 100 nm, which is the resolution of
an SEM with 1000x magnification. The resulting average cluster size is 0.87µm.
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the value given in Spino et al. [185] of 1.0µm. However, it is believed that the

bubbles coarsen after the HBS structure has formed so we again examine the structure

after 115 GWD/MTU (figure 43) and find, again ignoring bubbles smaller than 100

nm, that the average bubble diameter is 0.87µm still below the value predicted by

experiment but showing signs of coarsening bubbles. In addition the plots share

characteristics with those of experiment including a tail of increasingly larger bubble

diameters. Considering the rudimentary nature of bubble motion and processes in

our simulation further agreement is not necessarily expected.

Figure 45: Simulation of UO2 fuel under irradiation assuming dislocations size and
density are the cause of the lattice parameter expansion. Note that the lattice expan-
sion curve is exponential until it reaches a point where burnup is nearly immediate
and then drops.

So far we have assumed the damage is a result of individual defects formed from

the irradiation processes. Instead we examine an alternate theory [182] for the change

in the lattice constant based on the formation of dislocation loops of increasing size

in the grains. In this case the dislocation loops would expand continuously in the fuel
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until they reach a saturation point at which they are of comparable size to that of

the grains in which case they would no longer grow and the large size would result in

the formation of HBS. Using the equation for the relative change in lattice parameter

due to dislocation loops[182] and the values for dislocation loop and density found in

Rest et al. [162] we found another equation for the change in lattice parameter:

∆a

a
=


2.19× 10−8 ·Bu3 for Bu ≤ 60

0.00436 for Bu > 60

(48)

which we used in our simulation (figure 45). From this we see that the behavior of

the lattice parameter at low temperatures is not consistent with experiment nor is the

location of the start of large scale HBS formation which results in a lattice parameter

contraction. This suggests that although the size and quantity of the dislocation

loops is consistent with them causing the formation of HBS structure in this model

they do not accurately represent the behavior of the lattice parameter and cannot be

used to simulate the formation of HBS structure.

A third method for calculating the rate of lattice expansion in Spino et al. suggests

the swelling is due to the increase in the number of excess vacancies in the fuel. From

this, a linear relationship between the change in lattice parameter and the burnup

is calculated based on swelling data in Olander [139] where if we assume a lack of

gaseous elements in the solid fuel structure is given by:

∆a

a
= 4.64× 10−5 ·Bu (49)

The results of this simulation is given in figure 46. Again it is found that the fuel

forms HBS too early and the resulting shape for the lattice parameter curve does not

match experimental results. Thus an assumption that the change in lattice parameter

is due to a combination of α and fission damage that saturates over time is the best

fit for simulating the behavior of HBS formation in UO2 fuels.
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Figure 46: Simulation of UO2 fuel under irradiation assuming excess vacancies are
the cause of the lattice parameter expansion. Note that the lattice expansion curve
is linear until it reaches a point where burnup is gradual before dropping nearly
immediately.
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5.4.1.2 rejection kMC for uranium silicide

Figure 47: Simulation of U3Si2 fuel under irradiation with bubble growth. Note that
HBS formation occurs at approximately 40 GWD/MTU. This corresponds roughly
to an increase in porosity in experiment.

In order to examine accident tolerant fuels we run the simulation using U3Si2.

The values of each of the parameters of the model used in this simulation are found

in the second column of Table 14. Many of these values are approximate or assump-

tions based on limited experimental data. The results of the simulation at the same

temperature as the previous UO2 simulations is given in figure 47. From these re-

sults we see that HBS formation occurs between 35 and 45 GWD/MTU which is

slightly lower than the point of fission gas release found in experiment[158]. Due to

the cruder methods used for calculating the input parameters for U3Si2 these results

seem reasonable , suggesting this model would work for other fuels.
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5.4.2 Sensitivity Analysis

5.4.2.1 PRCC

In order to examine the effect of input parameters on the Potts model the PRCC

between each input parameters and the local burnup at which lattice contraction

began and the point at which 95% local burnup was reached were calculated. Each

of the parameters were allowed to vary ±25% in their value at each burnup step and

100 trials were performed. The results of these calculations are contained in Table

15. Based on the results of these calculations it can be seen that each of the input

parameters examined carries at least a moderately high importance. The dislocation

density carries the least importance and this is probably due to the fact in UO2 it is

assumed to be constant after a local burnup of 44 GWD/MTU. In both models the

lattice constant expansion behavior is deemed to be most important and is inversely

correlated to the point at which the local burnup affects the output parameters.

This result makes sense as we saw from examining the method for which the lattice

constant expansion was calculated the way the value changed with the local burnup

had a large impact on both the shape of the lattice expansion in the overall fuel and

the HBS formation behavior. In looking at uranium silicide fuel this was also one of

the parameters that required the most approximation therefore an in-depth study of

the behavior of the lattice parameter in new fuels such as that performed by Spino

et al. [182] on uranium dioxide would be beneficial for examining the HBS formation

behavior of new fuels.
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Table 15: The calculated PRCC values for the UO2 grain growth and HBS formation
Potts model. The gamma value is the importance of the input parameter with positive
meaning a direct relationship and negative meaning an inverse relationship. The p
value is a measure of the confidence of the value.

Lattice Contraction

Input Parameter γ p value
Site Area -0.8243 5.9840× 10−26

Elastic Modulus -0.8204 1.597× 10−25

Surface Energy 0.8480 9.041× 10−29

Lattice Expansion -0.9442 4.592× 10−49

Dislocation Density 0.5305 1.373× 10−08

95% Burnup Level

Input Parameter γ p value
Site Area −0.6699 2.494× 10−14

Elastic Modulus -0.7104 1.263× 10−16

Surface Energy 0.6696 2.593× 10−14

Lattice Expansion -0.8953 3.486× 10−36

Dislocation Density 0.2976 2.642× 10−03
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5.5 Conclusions

In this section we have used kinetic Monte Carlo (kMC) simulations, within the

SPPARKS framework, to examine the behavior of high burnup structure in uranium

based fuels. The model examines the behavior of grain growth, recrystallization and

bubble migration in a 2D grain structure meant to represent the rim region of a fuel

pellet. Initially we examine UO2 fuels with the goal of examining the behavior of

the lattice parameter under irradiation. Three competing models for the swelling of

the lattice parameter are studied based on previous experimental work [182]: fission

damage due to an increase in simple defect concentration, increased dislocation loop

density and size, and swelling due to excess vacancy concentrations. It is found

that for this simulation fitting of the resulting behavior based on the formation of

simple defects in the fuel from fission events produces lattice parameter behavior that

is representative of the experimental results. The simulation is able to accurately

predict an exponential growth in the lattice parameter up to a local burn up of 73

GWD/MTU followed by an sharp decrease in the lattice parameter as the formation

of the HBS results in most of this damage being removed from the lattice.

The input parameters of the simulation are then adjusted to examine the behavior

of U3Si2, a potential accident tolerant fuel for use in next generation reactors. Based

on the results of this simulation we see that HBS formation occurs between 35 and

45 GWD/MTU which is slightly lower than the point of fission gas release found in

experiment, suggesting this model would work for other fuels.

We performed sensitivity analysis on the UO2 model while examining 5 of the

input parameters. Based on the results of this study each of the 5 input parameters

had at least a moderate importance on the local burnup at which lattice contraction

began and when the grains were 95% HBS. However, the dislocation density was

found to be least important for both outputs, which is likely caused by the fact it

reaches a maximum value early in the evolution of the UO2 structure. The lattice
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parameter expansion was found to be the most important parameter for both outputs

suggesting that in-depth analysis of the behavior of the lattice constant in potential

fuel candidates would help to model the formation of HBS in the fuels.
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CHAPTER VI

OTHER MODELS

6.1 Nano Porous Foams

6.1.1 Introduction

The use of nanoparticles in energy applications is of particular interest due to their

large surface to volume ratios[108]. In particular nanofoams have characteristics far

superior to those of dense metals, bulk metal foams, or ordinary nanoparticles. One

method used for forming these nanofoams is through dealloying.

Dealloying is the selective dissolution of components in an alloy based on the

eloctrochemical potentials of the constituent metals [118]. Upon dealloying select

systems can exhibit nanoporous behavior. The formation of the nanoporrous metal is

dependent on the relative electrochemical potentials on the different metal alloys[52].

In general the larger the difference the more likely that a nanoporous structure will

form. In addition it is usually necessary for the dealloying metal components to

be a dominant part of the system. In addition the structure in general should be

homogenous with fast diffusion of the species that will be dealloyed.

Dealloying is an excellent problem to study using SPPARKS. The main com-

ponents, the dissolution of a metal and diffusion, are already contained within the

SPPARKS framework. Thus we have modified the SPPARKS diffusion application

in order to create a model that simulates dealloying of a two system metal alloy in

order to study the morphology of nanoporous foams.

6.1.2 Methodology

In general this model follows the diffusion application with the standard kMC algo-

rithm in table 1 as described previously in this paper. The simulation contains two
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metal types that are allowed to diffuse to empty lattice sites throughout the lattice

structure. The rate of diffusion is given by[118]:

rdiff = ν1e
−nEB
kBT (50)

where n is the number of bonds, ν1 is the prefactor constant assumed to be 1013,

which is the Debye frequency in most metals, and EB is the binding energy.

In addition to the standard diffusion the model also allows one of the species to

dissolve from a surface point. The act of dissolution is the inverse of the deposition

mechanism already allowed as an option for diffusion simulations in the SPPARKS

code. Thus it is modified to allow for the removal of atoms from the lattice with the

following rate[118]:

rdiss = ν2e
−nEB−φ

kBT (51)

where ν2 is the rate of dissolution taken to be roughly 10 orders of magnitude

smaller than that of diffusion and φ is the electrochemical potential.

6.1.3 Results

The model was tested with parameters similar to those used by Erlebacher [52] with

ν2 = 104, EB = 0.15eV , T = 300K, and φ = 0.98eV . The results at times: 0,

100s, 1000s, and 10000s are shown in figure 48. Based on these results it can be

seen that we have successfully replicated the results shown in Erlebacher [118]. We

can see an initial roughening stage in short time intervals while the second metal is

dealloyed from near the surface. A Wulf structure quickly forms after this until the

dealloying metal begins to percolate to the surface resulting in nano pits being form

in the surface.
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(a) (b)

(c) (d)

Figure 48: Evolution of the nanofoam dealloying model on a sphere of radius 30
lattice sites: (a) t = 0 the primary metal on the surface is the one that can dealloy
due to its larger composition. (b) t = 100 The dealloying metal has been removed
from the surface. (c) t = 1000 A wulf structure has begun to form. (d) t = 10000
Nano pits begin to form and expand as more of the dealloying metal is able to reach
the surface.

6.1.4 Conclusions

We have successfully modified the SPPARKS diffusion application to examine the

behavior of dealloying on nanostructures. We are able to replicate the results of
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previous theoretical studies[52, 118]. However, there is evidence that the behavior

described using pure dealloying is not found in the experimentally observed results

of dealloying silicom from platinum to obtain a platinum nanofoam[108]. Based on

this further work should be done on the model to attempt to replicate the results

found in platinum. In particular it may be beneficial to examine the value of φ away

from the surface of the metal and see if localized changes in this value would result in

behavior that more closely matches experimental studies into the dealloying behavior

of platinum.

6.2 Stochastic Cluster Dynamics

6.2.1 Introduction

In the field of nuclear materials the most common method for examining the effects

of radiation damage on microstructure has been the use of cluster dynamics. How-

ever, with the increase in computational power in the past two decades there has

been exploration of alternative methods that allow for more in depth examination

of the microstructure. One of the most computationally intensive of these methods

is kMC which examines the full geometric effects of the defects on the microstruc-

ture. This method can still be too computationally inefficient especially when dealing

with the effects of large defect clusters. A relatively new method in the field of nu-

clear materials is the idea of stochastic cluster dynamics (SCD) which combines a

stochastic algorithm similar to kMC with the statistical averaging methods of cluster

dynamics[114].

Stochastic cluster dynamics provides the advantage of examining only the events

that occur within the system at a given time avoiding the explosion of computational

cost necessary for considering large scale defects required when using cluster dynam-

ics. In general for each defect type considered in cluster dynamics a new ordinary

differential equation must be added and solved for. Thus when considering large
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clusters methods must be devised to account for the defect clusters without the need

for an ever increasing number of equations. However, by eliminating the geometric

constraints of the problems SCD provides the same benefit as cluster dynamics over

KMC in that the amount of repeating high probability but low consequence events

is no longer necessary and only events that affect the system in meaningful ways are

performed.

The chemistry application, found in SPPARKS, allows for the simulation of events

based on rates where any number of reactants can be turned into any number of

products. This application is very similar in nature to the principles behind SCD

thus we have modified it in order to be used for the application needed here.

6.2.2 Methodology

6.2.2.1 Stochastic Cluster Dynamics

In general the master equations for any of the three methods cluster dynamics, kMC,

and SCD are the same for each species involved in the system:

dCµ
dt

= K0 +K1CµCν + SCµ (52)

In converting these equations for use in SCD the only adjustment needed is to

convert the concentrations to number densities by multiplying by the volume. These

equations consist of four parts:

• 0th order source terms: In general particles are introduced into the system

through irradiation in the form of damage cascades. These events can be ap-

proximated through lower order simulations such as molecular dynamics or

atomistic simulations. In this simulation defects were introduced exclusively

as Frankel pairs. The rate of introduction of the defects must be in units of 1/s

so in general must be converted from the more traditional dpa/s.
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• 1st order terms: The first order terms are the result of emission of defects

from clusters. There is some disagreement as to the form of these terms in the

literature. In particular there are different forms in papers by Marian et al.

[114] and Barbu et al. [11]. However, several of the rate terms in the paper by

Marian were ill defined so the form found in Barbu was used in this simulation:

4π

Ω
rνµDµe

−EB
kBT (53)

Where rνµ is the capture radius of the defect in question and EB is the binding

energy given by:

EB =


Ef
µ +

Efν−EB2ν
22/3−1

[(n+ 1)2/3 − n2/3] µ 6= ν

Ef
µ +

EB2ν−E
f
µ

22/3−1
[(n+ 1)2/3 − n2/3] µ = ν

(54)

• 2nd order terms: The second order terms are the result of combinations of defect

species. In general these terms may be the result of one or two mobile species

that may move in a range of different diffusion mechanisms. However, in our

simulation the types of mobile defects were limited to the case of interstitials

and vacancies moving in 3 dimensions. The form used as a result was:

4π

V
rνµDµ (55)

• Sink terms: The interaction of defects with irreducible sinks such as dislocations,

grain boundaries and surfaces can in general be described as first order or second

order terms. However, it is generally simpler to treat these effects as first order

terms. In this case sinks were limited to effects due to surface terms with the

assumption of a thin foil with no equilibrium dislocation density[29]:
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(ZρN)1/2

l

[
coth(ZρN)1/2l − 1

(ZρN)1/2l

]−1

(56)

Where ρN is the dislocation density of the metal, l is the thickness and Z is a

bias factor.

6.2.2.2 SPPARKS

The general SPPARKS code provides a number of applications commonly used in

kinetic Monte Carlo simulations. The majority of these applications are for on lattice

simulations; however, there are options for off lattice and non lattice simulations. In

particular for the formation of Stochastic Cluster Dynamics code there is a chemistry

application that allows for the introduction of species and equations involving these

species. In order to create the SCD application this general application was modified

to better suit the exact purpose for which it was used.

The SPPARKS code in general uses the C++ programming language to create a

series of classes that when used together build a specific application that is then used

for the simulation. These classes can be loosely defined into three groups: overhead,

solving, and application. There is some overlap in these groups and they each use

information stored in other classes. However, in terms of modification requirements

these groups generally will remain separated. For the case of SCD the application

group was heavily modified and the other two groups were changed only in the way

they interact with this group.

The first modification to the code was the introduction of C++ standard contain-

ers in place of C style arrays and strings. These containers have many advantages

over the classic C counterparts including the fact that they include multiple types

of containers that provide benefits for the SCD application. In particular the map

container is a type similar to a hash table that is ordered so that it can be iterated

over. This container was used to store the species and reaction information in order
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to allow for faster access of the elements and to iterate over the list to build depen-

dencies of the reactions. This has the potential to eliminate the high time cost of

deleting elements from an array.

The use of the map allowed for the formation of data structures for the species

and reactions in the simulation and keys that provided information on the species

and reactions. In the previous chemistry application this information was stored in

a series of arrays. The species data structure consists of the number of that type of

defect in the simulation and the size of the defect. The reaction data structure was

more complicated and consists of the reactions propensity, rate, and several vectors to

store the reactants, products, and other reactions dependent on the selected reaction.

The vector is another standard container and prior to the latest version of C++ was

the container that most resembled the traditional C array. It has the advantages of

internal memory management and a prebuilt size function.

One of the main components of an SCD simulation is the formation of larger

and larger clusters of defects. In the traditional chemistry application this would be

impossible to feasibly implement as each species and reaction need to be declared in

the input file prior to the start of the simulation. Thus large scale changes needed

to be made to the application in order to accommodate the creation of new species

and their reactions as the simulation progressed. This was accomplished primarily

by creating two new functions. The first was a method for introducing new reactions

based on the size of a new species, the mobile species, and the species that are able to

leave the new species. This task was aided by the use of a set structure to the strings

to define each reaction and species as these strings contained the relevant information

as to the species type and size of the new species or reaction. Thus they acted as

building blocks for creating new reactions and species. This allowed for the formation

of new species by the code during the simulation and the accompanying reactions to

accompany each new species. Thus there is no longer an artificial limitation to the
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number of species examined like needs to be imposed in traditional rate theory. The

second was a method for generating the rates associated with each new reaction which

was accomplished through a series of equations for the capture and emission events

possible in the simulation. At the moment these equations are hard coded and need

to be changed if the form or values are changed.

In the original chemistry application each reaction was stored in an array and

given a number which indicated its order in the array. In order to accommodate the

switch from arrays to maps for storage of the reactions a change was made in the

way the chosen solver interacts with the application. In the original application the

propensities, event to perform and time change were controlled by the solver and the

information passed back and forth to the application as needed. With the use of the

map reactions were stored as strings instead of numbers. Instead of modifying the

solver to handle this change we instead limited the role of the solver to providing the

time change and random number associated with the event choice to the application

on demand. Now the propensity information is stored solely in the application and

in the iteration function of the application the event to perform is chosen based on

the random number returned by the solver.

6.2.3 Results

The SCD code was used to calculate the concentrations of defects and clusters in a

thin iron film after 120 seconds of irradiation. The parameters used in the simulation

are given in table 16 and the results are presented in figure 49. The results found

were within an order of magnitude across a range of temperatures. Due to the fact

that the concentrations of all vacancies and interstitials are nearly identical to the

values found in other simulations this suggests that the issue is a discrepancy in the

emission of defects from clusters or that the size is too small resulting in too few

interstitials to properly interact with the vacancies.
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Figure 49: The results of the simulation are presented in green and the results of
Marian et al (blue) and Barbu et al (red) are presented for comparison. The results
for interstitials (top figure) and vacancies (solid bottom figure) seem to be in almost
exact agreement. The results for voids (hollow bottom figure) seem to be high for
high temperatures, the reason for this is unclear

6.2.4 Conclusions

The SCD code seems to be working properly based on the results achieved so far.

The lack of consensus on the form of equations to be used suggests there is general

disagreement or at least ambiguity as to the appropriate way to form the rates needed

to perform SCD. In the future a sensitivity study can be performed on the parameters

in the simulation in order to determine whether the discrepancy in the literature

concerning the 1st order equations. In addition there is a need to optimize the

code in its current form. The code has been setup to work specifically for the case

examined in this paper. In addition there are methods that can be applied to increase

the efficiency of the code.

Currently the code builds the number of species available based on whether the
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Table 16: Input parameters for SCD model of defects in iron

Parameter value
K0 1.5× 10−4dpa/s
l 0.287µm
Em
v 1.3eV
Ef
v 1.6eV

Dv0 1cm2/s
Em
i 0.3eV

Ef
i 4.3eV

Di0 4× 10−4cm2/s
Zv 1.0
Zi 1.2
EB

2v 0.2eV
EB

2i 0.9eV
ρN 1.5× 1015/m2

species type has been used by the simulation up to that time. However, the code

does not eliminate species that no longer have counts. Eliminating species as they are

removed from the simulation may not be the most efficient method computationally

for eliminating unused species, however, never eliminating them causes unnecessary

memory storage. An algorithm can be created to maximize the efficiency of the code

in terms of memory storage and computational efficiency. In the current form of

the code the only available mobile species are interstitials and vacancies. In order

to expand into more in depth and realistic simulations the use of more than two

mobile species will be necessary. The final upgrade to the current code deals with

the equations that determine the rates for different reactions. In the current form the

values associated with the equations need to be hard coded in the C++ code. Based

on research of C++ coding there is limitations to the extent these can be included in

the input for an individual run but there is definitely room to eliminate the full hard

coding currently required.
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CHAPTER VII

CONCLUSIONS

Five kMC simulations have been developed within the SPPARKS framework for use

with different applications related to nuclear and energy materials. The behavior

of each of the models was examined and compared to relevant literature or other

methods of modeling where available. The models are based on three of the built in

simplistic models available in SPPARKS, diffusion, Potts, and chemistry, and required

extensive modification of the original code.

Additionally sensitivity analysis was performed on three of the models in order

to examine which of the input parameters are most important in the output of the

simulation. Two types of sensitivity analysis were performed on the simulations.

The first, MOAT examines changes in one parameter at a time while keeping the

other parameters constant but performs this in an efficient manner that is known to

approximate a global sensitivity analysis[197]. The second, PRCC uses LHS which is

an efficient method of sampling the input parameter space in order to rank each of

the input parameters based on the importance of the parameter in determining the

resulting outcome variable[168].

The first of the models created examines the diffusion behavior of vacancies in

a doped fluorite lattice. The goal of this study was to examine the behavior of the

diffusivity and ionic conductivity as well as examine the behavior of vacancy-dopant

pairs across a wide range of dopant atoms. A range of 3+ dopants (Ru, Lu, Yb,

Er, Y, Gd, Eu, Sm, Nd, Pr, Ce, and La) which are found as fission products in

UO2 were examined in both a CeO2 and UO2 lattice structure. The input parameters

were calculated in GULP using an interatomic potential fitted by the Grimes research
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group based on the 6 nearest cation neighbors.

Based on our results we found that in ceria the largest ionic conductivity and

diffusivity are found when the ceria is doped with samarium. In uranium dioxide,

the largest diffusivity is found when cerium, praseodymium, or neodymium. In both

cases the ratio of dopant ion to host ion is 1.12. In addition the clustering behavior

of vacancies in uranium dioxide was examined. It was found that as the size of the

dopant ion increased the vacancies were less likely to be found next to a dopant.

This observation agrees with studies on the formation enthalpies of dopant vacancy

clusters in UO2 found in atomistic studies performed using DFT[177].

We performed sensitivity analysis on the 30 input parameters that constitute the

different initial configurations. We discovered that MOAT was unable to produce

meaningful results. However, our examination using PRCCs found that the non

doped configuration is the most important configuration, that the majority of con-

figurations were inversely related to the output variable, and that within each group

of configurations with the same number of dopants there was no indication that any

dopant location was consistently more important than any other positions suggesting

that the 6 neighbors positions carry equal importance in determining the behavior of

the system.

In the second model, the behavior of defects in bcc metals was examined. In

particular we examined the effect of increasingly complex vacancy clusters on the re-

sulting defect concentrations using both kMC simulations and rate equations. Initially

vacancies were assumed not to form separate clusters but could only be annihilated

by interstitials or generic sinks. Then it was assumed the vacancies the neighbored

other vacancies were forming a void that could only be reversed if one of the vacancies

was annihilated by a neighboring interstitial atom. Finally, vacancies were able to

attach and detach from voids that were formed by vacancies moving to neighboring

positions. It was assumed that the detachment rates were void-size independent and
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dependent and the resulting concentrations of defects were compared.

The initial simple defect kMC model was compared to previously published results[166]

and found to be satisfactory. However, when compared with rate equations the cap-

ture radius had to be adjust to get agreement between the two methods. The capture

radius used was based on the definition published elsewhere and was therefore as-

sumed to be appropriate. In the irreversible voids model the kMC results again

agreed with available literature results with the exception of the capture radius.

The reversible voids models were compared with each other and with the irre-

versible voids model and it was found that there was little disagreement between the

concentration of different defect concentrations as well as the size of the resulting

vacancy clusters with the same initial conditions. Thus it is assumed that using the

irreversible voids simulation is sufficient to model the behavior of voids in bcc metals.

Sensitivity analysis was performed using MOAT on both the rate equation and

kMC models for the models involving only simple defects and simple defects with

irreversible voids. While the results of each model varied there were some similarities

between the models. In all cases the effect of the interstitial migration barrier on the

concentration of interstitials was moderately to very important. In addition the sink

density had a low importance in each of the models. Based on the results of MOAT

analysis the rotational barrier was only highly important on any defect concentration

in the irreversible voids model with kMC. Otherwise it was of moderate to little

importance.

Additionally sensitivity analysis using PRCCs was performed on the simple defect

model using rate equations as the MOAT analysis was unable to accurately separate

the different input parameters’ importance due to the small effect from the sink

concentration. This analysis showed similar results to those of the MOAT analysis

for the kMC model suggesting that the results from the MOAT when able to be

performed correctly is an accurate measurement of the sensitivity of input parameters

121



in this model.

In the third simulation, a Potts model is developed to examine the evolution of

gas bubbles and HBS formation in nuclear fuels. The model examines the behavior

of the lattice constant under irradiation and the HBS formation over local burnups in

the outer region of the fuel pellet consistent with use in a nuclear reactor. The model

uses a 2D triangular lattice and would need to be modified to examine a more general

lattice shape. Different methods for the proposed change in the lattice constant

are examined with an 1 − ex curve providing the best fit for the lattice constant

behavior when compared to experiment. An attempt is made to fit the model to the

behavior of uranium silicide as a potential accident tolerant fuel. It is found to cause

HBS formation at a lower local burnup then experimental evidence would suggest.

However, the experimental evidence is limited and therefore the input parameters are

not as well known as in the case of UO2.

We performed sensitivity analysis on the UO2 model while examining 5 of the

input parameters: lattice parameter expansion, site area, dislocation density, elastic

modulus, and surface energy. Based on the results of this study each of the 5 input

parameters had at least a moderate importance on the local burnup at which lattice

contraction began and when the grains were 95% HBS. However, the dislocation

density was found to be least important for both outputs, which is likely caused by

the fact it reaches a maximum value early in the evolution of the UO2 structure. The

lattice parameter expansion was found to be the most important parameter for both

outputs suggesting that in-depth analysis of the behavior of the lattice constant in

potential fuel candidates would help to model the formation of HBS in the fuels.

The fourth model that has been developed examines the formation of nanoporous

materials through a dealloying process. The model is a modification of the diffusion

application in SPPARKS and uses an inverse deposition procedure for the dealloying.

The model is able to replicate the results of other simulations. However, there is
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evidence that for certain metal alloys the evolution of the dealloying metal is not

consistent with these results. Further development of the model is necessary and may

need to focus on the change in chemical potential due to the local environment.

The final model uses the chemistry application built into SPPARKS to create

an SCD simulation. The application has been modified to allow for the creation of

clusters of arbitrary size as they are formed in the course of the simulation. This is a

major advantage over traditional cluster dynamics which requires the size of clusters

to be truncated in order to create a set of equations to solve. The model has been

applied to a similar problem as that of the second model. The model provides results

which are consistent with those found in other models [114, 11]. Further development

of the model should focus on improving the automation within the code and applying

it to novel problems.

KMC models incorporate input parameters calculated from atomistic simulations

and experiment and provide output that can then be applied to macroscopic simula-

tions and higher level mesoscale simulations such as phase field modeling and crystal

plasticity. The use of sensitivity analysis in this work has given a better understand-

ing to the importance of the different energies that are used as input parameters in

the various kMC models examined. This information can be used by other researchers

to examine the uncertainty in these parameters and provide more refined values that

will reduce the uncertainty when bridging scales. KMC modeling can be used as a

comparison for phase field modeling across scales in which they are both applicable.

In addition the output parameters from kMC simulations such as the concentration

and diffusivity of defects and the size distribution and geometric behavior of clusters

can be used by phase field models and crystal plasticity models to complete the bridge

to a full multiscale modeling approach. The ability of the kMC simulation to provide

information about the interaction and behavior of small scale material properties is of

particular importance to enabling the evolution of macroscale models from qualitative
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to quantitative results.

The use of SPPARKS to create a series of kMC applications that apply to nuclear

and energy materials provides a method for bridging the simulation gap between

atomistic and continuum models that is highly efficient and more easily incorporated

by research groups. In addition the sensitivity analyses performed in this work provide

a basis for understanding which input parameters are most important in order to

reduce uncertainty in the model in the future by focusing research efforts on those

parameters that would most reduce the uncertainty.
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APPENDIX A

EXAMPLE INPUT FILES

A.1 Fluorite Diffusion

This model has two input files. One for the python script that runs the simulation

and an input file for SPPARKS is generated for each run that is performed. This is

an example of a working input file for the python script:

# Commented l i n e s should have hash , s l a sh , or p a r e n t h e s i s

#i n f o # Comments at end o f l i n e should be ignored

# Run in format ion

Steps 500000 # Spec i f y number o f s t ep s or time f o r run

# Can have mul t ip l e s tep va lue s f o r mu l t ip l e output t imes

# L a t t i c e dimension

15 x15x15 #s p e c i f y the l a t t i c e dimension in x , y , z

# Type o f run Vacancy , I n t e r s t i t i a l Fast ,

# or I n t e r s t i t i a l Fu l l

Vacancy

# Inc lude b lock ing opt ions

#( e i t h e r nonblock NONE, block NONE, or block b a r r i e r )
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# Defau l t i s nonblock NONE

# block NONE means an i n f i n i t e b a r r i e r

nonblock NONE

#Spec i f y Output name

output CeSm

#Spec i f y a temperature

Temp 673

#Percent Dopant Run S e l f D i f f Run Num of Runs

0 .0035 Yes Yes 10

# Here are the runs you can add as many as you l i k e .

# The order doesn ’ t matter

# The percent can be in terms o f a percent or

# the number o f vacanc i e s

# Don ’ t mix the two

# A Dopant Run i s one with the dopant migrat ion b a r r i e r s

# A S e l f D i f f Run i s one where a l l migrat ion b a r r i e r s

# are the undoped c o n f i g u r a t i o n

# Number o f runs w i l l run mul t ip l e runs with d i f f e r e n t

# geometr i e s and d i f f e r e n t seed numbers

# This f i l e w i l l run with the s p e c i f i e d s e t t i n g s and

# produce 10 runs that w i l l s t o r e the f u l l r e s u l t s i n to
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# a d i r e c t o r y c a l l e d cesm and prov ide a f i l e c a l l e d

# d i f f l e n g t h 0 . out that can be analyzed by a python s c r i p t .

This is an example of the SPPARKS input file that is generated:

# This i s a spparks input f i l e f o r a doped f l u o r i t e l a t t i c e

# automat i ca l l y c r ea ted from a program by Richard Hoffman

seed 56789

# This i s the seed f o r the random number genera to r

a pp s ty l e d i f f a r g l i n e a r event nonblock NONE hop

# This i s the app s t y l e

# Not the d e f a u l t nonblock NONE

# I t i s a l s o an event based run time

dimension 3

# Dimensions o f s imu la t i on

r e a d s i t e s read56789 . d i f f a p p

# a python created f i l e with the s i t e in fo rmat ion

s o l v e s t y l e l i n e a r

# Solve s t y l e
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d i a g s t y l e energy

# S t a t i s t i c s output s t y l e

temperature 0.09246041

# Temperature in eV

dump 1 text 1000000000000000000 dump . 0 . 3 . 5 6 7 8 9 . ∗ . d i f f a p p

id s i t e i 2 x y z i 3 i 4 i 5

# Dump command note the f requency i s a dummy

s t a t s 100000000000000000000

# We don ’ t want s t a t s too o f t en so dummy again

run 500000 upto

# Run time in s t ep s . The upto a l l ows mul t ip l e

# looks at d i f f e r e n t t imes

dump one 1

# After i t has run we produce a dump

In addition to a series of dumpfiles that provide the raw data on the results

geometrical configurations of each simulation box, the python script produces a file

containing the diffusivity and other relevant data on each of the runs. This data, for

example, can be read by a python script to plot the values of the diffusivity across

the calculated dopant concentrations in order to produce a plot similar to figure 10
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A.2 Diffusion in bcc Metals

This model is run by calling the SPPARKS executable with the following input file

with a command such as ./spk serial<input file and produces a series of dump files

that can be read by a python script utilizing matplotlib to produce plots of the

resulting defect concentrations similar to figure 23.

# SPPARKS Input f o r bcc Metal d i f f u s i o n

seed 56789

#Seed f o r random number genera to r

a pp s ty l e d i f f d e f e c t a 9 .0 0 .34 0 .1 0 .26 0 .0001

# app in fo rmat ion

# t h i s i s a run with s imple d e f e c t s only

# The f i r s t va lue i s the product ion ra t e i s seconds

# between pa i r product ion

# The second value i s the vacancy b a r r i e r

# The th i rd value i s the i n t e r s t i t i a l b a r r i e r

# The four th value i s the r o t a t i o n a l b a r r i e r

# The f i n a l va lue i s the s ink dens i ty

dimension 3

# Dimension o f the s imu la t i on

l a t t i c e bcc 1 .0

# Informs the type o f l a t t i c e i s bcc with a=b=c =1.0
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r eg i on box block 0 100 0 100 0 100

# Creates the s imu la t i on space with x , y , z s i z e s

c r ea t e box box

# Sets up the s imu la t i on box

c r e a t e s i t e s box

# Creates the s i t e s in the r eg i on

s e t s i t e va lue 3 f r a c t i o n 1

# Sets a l l va lue s to occupied

s o l v e s t y l e l i n e a r s i m

# Sets the s o l v e s t y l e

s e c t o r no

# I f us ing mu l t ip l e p r o c e s s o r s t h i s must be yes

d i a g s t y l e energy

# Diagnos t i c in fo rmat ion f o r s t a t i s t i c s

temperature 0.034469372

# Temperature o f the s imu la t i on in eV

s t a t s 100
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# How of t en to p r i n t s t a t i s t i c s on the run

dump 1 text 20 dump . d i f f v o i d ∗ id s i t e i 2 i 3

# Sets up text dump f i l e s at a p a r t i c u l a r frequency ,

# with a f i l ename , and the in fo rmat ion to prov ide

# The cur rent dump g i v e s the l a t t i c e s i t e , p a r t i c l e type ,

# d i r e c t i o n ( f o r i n t e r s t i t i a l s ) , and c l u s t e r number

dump modify 1 l o g l i n f r e q 20 10

# Change the dump frequency to log l i n e a r .

# This i s v i t a l f o r long runs

run 20000000

# The TIME to run
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A.3 HBS Formation Potts Model

This model is run by calling the SPPARKS executable with the following input file

with a command such as mpirun -np num of processors ./spk linux<input file and

produces a series of dump files that can be read by a python script utilizing matplotlib

to produce plots of the resulting burnup and lattice parameter like figure 40 or a plot

of the grain structure at a particular burnup as in figure 41.

# SPPARKS Input f i l e f o r 2D UO2 HBS format ion s imu la t i on

seed 56789

#Seed f o r random number genera to r

a pp s ty l e p o t t s d e r i v e 100 2e13 1 .7574 e−7

# App in fo rmat ion

# 100 i s the number o f sp in s

# The other two va lue s are f o r f i s s i o n ra t e and c a l c u l a t e d

# burnup step time

# These are ignored in an rkMC s imu la t i on

dimension 2

#Number o f dimensions

l a t t i c e t r i 1

#l a t t i c e type and normal ized d i s t ance between s i t e s
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r eg i on box block 0 1024 0 1024 0 1

# Create s imu la t i on s i z e . In 2D s imu la t i on the z dimension

# must be 0 to 1 .

c r ea t e box box

# Creates s imu la t i on area

c r e a t e s i t e s box

# Creates the l a t t i c e s i t e s

r e a d s i t e s output cont2

# Read in the i n i t i a l g ra in s t r u c t u r e

sweep r a s t e r

# Sweep s t y l e

s e c t o r yes

# Allows f o r MPI runs

d i a g s t y l e energy

# S t a t i s t i c s to output

temperature 923

# Temperature . Modif ied to be in K.

s t a t s 10
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# Frequency to output s t a t i s t i c s to the s c r e en

dump 1 text 10 dump . pottsgood4 .∗ id i 1 i 2 x y z

# Output tex t dumpf i l e s . i 1 i s the sp in and i 2 i s whether

# i t i s bubble , HBS or gra in

run 1250

# Time o f run . Should be n t imes bu where n i s the number

# of bubble s t ep s per g ra in step
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A.4 Nano Porous Foams

This model is run by calling the SPPARKS executable with the following input file

with a command such as ./spk serial<input file and produces a series of dump image

files that are similar to the images in figure 48.

# SPPARKS input f i l e f o r Nano Porous Foams Models

# Refer to bcc metal model f o r exp lanat ion o f

# redundant commands

seed 56753

a pp s ty l e d i f f a l l o y l i n e a r hop

# App command . Same as standard d i f f u s i o n except app name .

dimension 3

l a t t i c e f c c 1 . 0

boundary n n n

# Ensure non p e r i o d i c boundar ies f o r f r e e s u r f a c e s

r eg i on mysphere sphere 31 31 31 30

# Creates a sphere with a rad iu s o f 30

c r ea te box mysphere

c r e a t e s i t e s r eg i on mysphere

#s e t s i t e va lue 1 f r a c t i o n 1
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#s e t s i t e va lue 2 f r a c t i o n 1 .0

#s e t s i t e va lue 3 f r a c t i o n 0 .25

r e a d s i t e s input . txt

# Read in s i t e s from text or input s i t e s randomly

s o l v e s t y l e l i n e a r

s e c t o r no

d i a g s t y l e energy

temperature 0 .17235

s t a t s 0 .01

dump 1 text 0 .1 dump . ∗ . d i f f 3 d

dump 2 image 0 .01 dump3d . ∗ . jpg s i t e x sdiam 1 .0 crange 0 3

view 150 30 axes yes 1 0 .01 box yes 0 .02

# An image f i l e produced at the s p e c i f i e d f requency

dump modify 2 thresh s i t e > 1 s c o l o r 2∗3 red / blue

# Modify the dump image to j u s t show metals

# and s p e c i f y c o l o r s

run 1 .0

# Run time . Modify dumps i f running f o r long t imes
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A.5 SCD

This model is run by calling the SPPARKS executable with the following input file

with a command such as ./spk serial<input file and produces a log file that includes

the cluster types and amounts that can be read by a python script utilizing matplotlib

to produce plots of the resulting defect concentrations similar to figure 49.

# SPPARKS input f i l e f o r SCD a p p l i c a t i o n

seed 12345

# Seed f o r random number genera to r

a pp s ty l e scd

# App s t y l e i s scd no other opt ions needed

s o l v e s t y l e l i n e a r

# Solve s t y l e

volume 2.3393656 e−15

# Volume o f box

temperature 623

# Temperature in K

a dd s pe c i e s 1 v

a dd s pe c i e s 1 i
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a dd s pe c i e s Z

# Add i n i t i a l s p e c i e s . In t h i s ca s e s vacanc ies ,

# i n t e r s t i t i a l s , and s i n k s

# Any s p e c i e s with equat ions are needed

add reac t i on 1 i v c 1 i 1 v ?Eq3

add reac t i on 1 v i c 1 v 1 i ?Eq4

add reac t i on 1 v v c 1 v 1 v ?Eq1 2 v

add reac t i on 1 i i c 1 i 1 i ?Eq2 2 i

add reac t i on 5 +30000 1 i 1 v

# Reaction equat ions .

# The f i r s t va lue i s the name . In order to a l low f o r

# auto gene ra t i on i t must in c lude the name o f the

# re ac ta n t s and what they are forming or number f o r

# product ion r a t e s

# The next group o f va lue s i s the r e a c t a n t s .

#Note : no r e a c t a n t s in the product ion equat ion .

# The next value i s the ra t e f o r the r e a c t i o n

# (+ i s needed ) or the equat ion number to generate

# the r e a c t i o n ra t e (? i s needed ) .

# Fina l ly , the products i f a p p l i c a b l e are l i s t e d .

# More advanced r e a c t i o n s are generated by the code

# as they become needed .

count 1 i 0

count 1 v 0
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count Z 1000

# I n i t i a l counts

s t a t s 10

# How o f t en to p r i n t s t a t s

run 120 .0

# How long to run .

# Stat s are saved in a f i l e f o r l a t e r use .
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