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ABSTRACT

I study the role of heterogeneity and idiosyncratic risk in Macroeconomics,

and their implications on problems of income taxation. In the first chapter, I study

the effects of redistributive taxation in an incomplete market economy with heteroge-

neous agents and idiosyncratic risk. I focus on the role of distortions in labor supply

decisions and the interplay of heterogeneity and uninsurable idiosyncratic shocks,

conducting the first general equilibrium analysis of a Negative Income Tax (NIT).

I show that a NIT is a serious candidate to replace the current income tax in the

United States. I find that the optimal NIT has a marginal tax rate of 28% and a

transfer of 10% of per capita GDP, roughly $4600.

The welfare gains of replacing the current US income tax with a NIT are

equivalent to a 6.3% increase in annual consumption in every state of the world.

Low-ability agents, in the bottom quintile of the productivity distribution, benefit

the most, while high-ability agents are worse off. A consequence of the reform is that

the composition of the labor force changes, with high-productivity agents working

more, in relative terms, than low-productivity agents. Finally, I find that the riskier

the economy, the higher the welfare gains of the NIT as a provider of public insurance.

In the second chapter, I study labor income dynamics over the life cycle and

introduce a novel methodology that can detect the presence of patterns in the id-

iosyncratic earnings shocks and recognize economic forces in action. Using a sample

from the Panel Study of Income Dynamics (PSID), I estimate a Bayesian Logistic
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Smoothed Transition Autoregressive model of order 1 (LSTAR(1)) with a rich level

of heterogeneity in the innovations. I find that there is a life-cycle pattern in the

earning shocks: before the age 29, young workers experience shocks with higher vari-

ance and a positive probability of lower persistence than older workers. A comparison

with conventional models shows that an incorrect model specification introduces bias

in the estimates. The proposed model can be easily approximated with a discrete

Markov process. This means that this model can be used by macroeconomists to

calibrate income processes.
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All theories are valid and none is relevant.
What makes them relevant is what you do with them.

–Jorge Luis Borges, Complete Works
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CHAPTER 1
THE MACROECONOMIC EFFECTS OF A NEGATIVE INCOME

TAX

1.1 Introduction

There has been a continuous demand for a reform of the U.S. Federal income

tax, and numerous reform proposals have been floated. Some, like the flat tax (Hall

and Rabushka, 1985), sank, while others did not—e.g., the significant reduction of

marginal tax rates that took place in the 1980s. This study focuses on a particular

reform proposal, the Negative Income Tax1 (NIT; M. Friedman, 1962), and for the

first time carries out the quantitative analysis of the tax in a general equilibrium

setting.

A NIT works as follows. At the beginning of the fiscal year, all households

receive a transfer from the government , say $2000. During the period, all income

made is taxed at a constant rate, say 20%. Then, households with yearly income of less

than $10000 ($2000/0.2) pay no taxes and receive a positive net transfer (negative

tax). As income increases, the effect of the transfer declines. Under the NIT, all

households have a guaranteed minimum income.

In this chapter, I ask the following questions: What are the general equilibrium

effects of replacing the actual income tax with a NIT? Specifically, what are the

macroeconomic effects on income and earnings, labor supply, savings and welfare?

1There was a failed attempt to introduce it as a legislation during Richard Nixon’s
Presidency, but after all the modifications introduced in the Parliamentary debate, Milton
Friedman who was a candid advocate, withdrew his support.
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Should we pick a NIT?

To tackle these questions, I study a life-cycle economy, in which agents are ex-

ante homogeneous but grow different over time as a result of life uncertainty together

with age-independent and idiosyncratic persistent productivity shocks. At any point

in time, the resulting heterogeneity is characterized by the agents’ shock history, their

level of asset accumulation, and their age. There is a social security system and agents

receive benefits, once they are retired, in the form of lump-sum transfers. In addition,

accidental bequests may occur, and are distributed evenly among all living agents2.

I calibrate this model to match features of the U.S. economy, reproducing

the inequality of labor earnings across individuals. My model of the U.S. income

tax recognizes the important role of transfers like the Earned Income Tax Credit

(EITC). In addition, my tax function mimics the effective average tax rates paid

by the American households. I focus on a stationary equilibrium and find the level

of transfers and marginal tax rate such that the NIT reform is revenue neutral and

maximizes ex-ante welfare (i.e. expected utility prior to birth and revelation of agents’

types). My findings can be summarized as follows.

First and foremost, the NIT produces important welfare gains. A NIT with a

marginal tax rate of 28% and a transfer of 10% of per capita GDP, roughly $4600,

implies a welfare gain equivalent to 6.33% increase in annual consumption in every

2It is worth to notice that this benchmark economy has a level of transfers higher than
what is actually seen in the data, especially for low-income households, where accidental
bequests and social security benefits are not as important in relative terms as they are in
the model. This matter is not irrelevant as the transfer in the NIT will be relatively more
important for low-income than high-income households.
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state of the world. Low-ability agents in the bottom quintile of the productivity dis-

tribution benefit the most, with welfare gains that range from 12% to 64%. However,

there are losers under the NIT: those in the upper level of the productivity distribu-

tion –the “upper class”. Therefore, the NIT is a “Robin Hood tax”, taking from the

rich and giving to the poor.

The level of transfers plays an important role in the results. Indeed, a pro-

portional tax, i.e. a NIT with no transfers (a “non-negative income tax”), has a

welfare loss of 4.3% relative to the current tax system. This result is unsurprising as

redistribution by transfers is an important feature of the actual U.S. income tax. The

elimination of transfers benefits only the highest productivity agents, who as a result

face a lower marginal tax rate. Moreover, transfers are not only important, they are

essential - a flat tax (a “non-negative income tax” with a fixed deduction) does not

outperform the NIT. In particular, the optimal flat tax (characterized by a marginal

tax rate of 19% and a fixed deduction of 33% of per capita GDP, roughly $150003)

produces a welfare loss of 0.12%4. Therefore, the replacement of lump-sum transfer

by a fixed deduction is not welfare enhancing.

Second, there is a negative relationship between the size of the transfers and

per capita GDP, which decreases by 13% under the optimal NIT. The reason is sim-

ple: leisure is a normal good and the presence of the transfer insures agents against

3Hall and Rabushka (1985) propose a Flat Tax with a deduction of $22500 and marginal
tax rate of 19%.

4In order to put into perspective this welfare loss, it is necessary to note that I am not
taking into account the transition dynamics, and the comparison made is between steady
states.
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periods of low productivity, enabling them to work only when they are productive.

Therefore, the composition of the labor force changes: high-productivity agents in-

crease participation at the expense of low productivity types. This is reflected by the

fact that although labor supply measured in hours worked drops by 18%, labor supply

measured in efficiency units falls by only 7%. Consequently, the Gini coefficient for

labor earnings declines from 0.46 to 0.53.

Third, the transfer reduces the individual incentives to save, and the saving

rate drops 11%, implying a reduction in the capital stock of 23% and the capital out-

put ratio of 11%. The resulting decrease in the wage rate and increase in the interest

rate produces an extra source of welfare gain for capital income earners (retirees and

high-productivity agents) and a welfare loss for wage earners (the youngsters and low-

ability agents). In order to isolate the role of price changes in producing the welfare

gain, I employ a small open economy assumption (fixed interest rate and wages) and

find that welfare increases by only 3% relative to the current system. Moreover, the

decreases in the capital output ratio and per capita GDP are even larger (23% and

16%) than in the move to the optimal NIT.

This finding has an interesting implication that is worth pointing out. Usually,

the welfare gains in a closed economy are higher than in an open economy but, in

this case, the opposite is true which means that the agents in this economy are

over-accumulating capital. Therefore, the welfare gains of this reform in a closed

economy, taking into account the transitional dynamics, will be similar to the small

open economy welfare gains.
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Fourth, the way accidental bequests are modeled plays an important role in

the results. If instead of the generous scheme in which all accidental bequests are

returned as a lump-sum transfer to all agents, I assume a scenario in which all bequests

are taxed away by the government, the resulting optimal NIT implies a 40% larger

increase in welfare with respect to the benchmark case. As usual, the true state of

the world lies somewhere in between the scheme considered and the extreme case of

no accidental bequests.

Finally, there is a negative relationship between the persistence of the shocks

and the size of the transfers in the optimal NIT. I have considered two cases, one in

which the half life of the shocks is doubled relative to the benchmark case and another

in which the half life is halved. In the more persistent case, the welfare gain is 8.7%,

and the transfer level is 11% of per capita GDP, which are both higher than in the

baseline scenario. In the less persistent case, the welfare gain is reduced to 2.6% and

the transfer level is 9%. Clearly, the riskier the economy, the higher the gains from

providing public insurance.

1.1.1 Related Literature

This quantitative approach to optimal taxation has been followed in several

papers, with models similar to mine, in which artificial economies with heterogeneous

agents and incomplete markets (e.g. M. Huggett, 1993; and S.R Aiyagari, 1994) are

simulated and the individual and aggregate effects of tax reforms are studied (e.g.

G. Ventura, 1999; D. Altig et al, 2001; D. Domeij and J. Heathcote, 2004; J. Diaz-
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Gimenez and J. Pijon-Mas, 2005; S. Nishiyama and K. Smetters, 2005; among others).

For instance, G. Ventura (1999) studies the effects of a flat tax reform of the U.S.

income tax and finds that a flat tax has positive impacts on capital accumulation,

labor supply measured in efficiency units, earnings, and income. D. Domeij and

J. Heathcote (2004) study the distributional effects of reducing capital taxes and

I. Correia (2010) shows the distributional and welfare effects of replacing the U.S.

income tax with a flat tax on consumption plus lump-sum transfers. Her approach is

different than mine as she studies an economy populated with infinitely lived agents

differentiated by the initial level of wealth and life-long labor productivity, whereas

in my model, agents are born with no assets and there are no fixed inborn differences

in labor productivity.

J.C. Conesa and D. Krueger (2006) focus on the optimal level of progressivity

in the U.S. income tax and find that a flat tax with a tax rate of 17% and a deduction

of $9400 is optimal, with an ex-ante welfare gain of 1.7%. Their approach differs from

mine because they restrict themselves to a particular set of tax functions which do not

allow for transfers. Along the same line, J.C. Conesa, D. Krueger and Kitao (2009)

extend the work of J.C. Conesa and D. Krueger (2006) and allow for differences in

the tax rates on capital income and labor earnings and show that capital should be

taxed at a positive rate - in accordance with the results of A. Erosa and M. Gervais

(2002).

This chapter is also related to the literature on the effects of redistributive

taxation, in particular, two strands, one involving the effects of earnings shocks and
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insurance (e.g. J. Eaton and S. Rosen, 1980; M. Flodén, 2001; M. Flodén and J. Lindé,

2001; and D. Krueger and F. Perri, 2009) and another involving the distortions to

labor supply decisions (e.g. R. Rogerson, 2008; E. Prescott, 2002; and M. Feldstein,

1973; among others). M. Flodén and J. Lindé (2001) study the provision of insurance

through government transfers in the U.S. and Sweden, and find that a transfer of 15%

of per capita GDP in the U.S. and 1.6% of per capita GDP in Sweden are optimal with

welfare gains of 8.5% and 1.6%. M. Flodén (2001) studies the effects on risk sharing of

different combinations of Government debt and lump-sum transfers, and their effects

in isolation. My work differs from these previous two papers in one important aspect:

their aim is to find an optimal level of transfers or a combination of Government debt

and transfers without replacing any of the present taxes. On the contrary, I focus on

a particular revenue neutral tax reform that has a lump-sum transfer as an important

component but has another source of welfare gain: the increase in efficiency produced

by the replacement of increasing marginal tax rates with a constant tax rate.

This chapter is organized as follows. Section II introduces the model and

the definition of equilibrium. Section III presents the calibration strategy and the

quantitative results. Section IV shows a sensitivity analysis and Section V concludes.

1.2 Model

The modeling framework is a general equilibrium life-cycle economy, populated

by J heterogeneous overlapping generations. Agents face idiosyncratic risk and life
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uncertainty. Time is discrete and there is no aggregate risk5. There are no explicit

insurance arrangements.

1.2.1 Environment

At each date t, a continuum of ex-ante homogeneous agents is born. An agent

of age j faces a conditional survival probability sj+1 of being alive in the next period

but no one survives after age J . There is an exogenous retirement age R, adding the

first dimension of heterogeneity in the model: agents can be classified as workers or

retirees depending on whether their ages are higher or lower than R + 1.

There is a fixed positive population growth rate n and the total measure of the

population at time t is Nt. Despite the fact that the population size evolves through

time, each age j−generation represents a constant fraction µj of the total population

size, making the demographic structure stationary6.

All agents share a time separable utility function and value the expected dis-

counted stream of leisure and consumption:

J∑
j=1

β̃j−1

(
j∏
i=1

sj

)
u (cj,t, lj,t)

where cj,t and lj.t denotes consumption and leisure at age j and period t respectively.

The momentary utility function is Cobb-Douglas:

u (cj,t, lj,t) =

[
cνj,t (1− lj,t)1−ν]1−σ

1− σ
.

5Krusell and Smith (1998) show that the inclusion of aggregate uncertainty, besides of
introducing an extra layer of difficulty in the model, does not significantly change the results
of a model with no aggregate uncertainty.

6The weights µj are obtained by the recursive formula µj+1 = µj .sj+1/(1 + n)
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Consumption and leisure are not separable and the intratemporal elasticity

of substitution is equal to 1. The parameter ν ∈ (0, 1) influences the time spent

working, and together with σ > 0 influences the degree of risk of aversion and the

Frisch elasticity of labor supply7(Rios-Rull, 1995)

1.2.2 Agents’ endowments and labor productivities

Agents are born with no assets and during their working life they are endowed

with one unit of time. They receive a competitive wage rate wt and their labor

productivity is a first-order Markov process given by e(z′, j), which is a function of

the shock z′ ∈ Z, and their age j ∈ J :

ln e(z′, j) = γj + z′ and

z′ = ρz + ε, where ε ∼ N
(
0, σ2

ε

)
.

Thus, agents differ in the efficiency units of labor they supply to the market

depending on their age and their shock history. Therefore, the labor income of an

agent of age j and shock z is equal to wtlte(z, j), where lt is the amount of time that

the agent decides to work. At age 1, the measure of agents with shock z is q(z).

The possibilities for insurance in this economy are limited. There are no

annuity markets and agents cannot trade contingent claims. Nevertheless, agents

7The Frisch elasticity, which gives the elasticity of hours worked to changes in wages,
keeping the marginal utility of consumption constant, is given by:

η (ν, σ, l) =
(1− l)
l

[1− ν (1− σ)]

σ

The Arrow-Pratt measure of Relative Risk Aversion ρ = − cu′′cc(c)
u′c(c)

is 1− ν(1− σ).



10

trade a one-period risk-free asset aj,t ∈ A ⊆ R+ that will help them partially insure

against their idiosyncratic productivity shocks. Agents are not allowed to borrow.

1.2.3 Firms and Technology

There is a representative firm that produces total output Yt with a Cobb-

Douglas production function:

Yt = Kα
t (AtLt)

1−α .

where Kt and Lt are the aggregate capital and labor (measured in efficiency units)

at time t, and At = A0 (1 + g)t. The resource constraint is:

Ct +Kt+1 −Kt (1− δ) +Gt ≤ Kα
t (AtLt)

1−α .

Following conventional notation, δ is the depreciation rate, Gt is public consumption

and Ct is total private consumption.

1.2.4 Government and tax structure

At time t, the government receives payments from the social security system

and the income tax. The proceeds serve to finance government consumption Gt ,

pay social security benefits SSt and transfers TRt. The social security system is fully

funded by social security taxes paid by the working agents at a constant marginal tax

rate τss on labor earnings. Benefits are distributed evenly among all retirees of a par-

ticular cohort and are kept constant through out the retirement period8. Accidental

8This setting will not let me capture the actual degree of risk sharing present in the
actual social security system. Although, this assumption will underestimate the potential
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bequests occasioned by deaths of agents are returned as a lump-sum transfers to all

living agents. Agents do not derive any utility from government consumption Gt
9.

The actual U.S. income tax system is the benchmark case and I will aim to

replicate two of its main features: the double taxation of dividends and the effective

tax rates paid by households. For the case of the double taxation of dividends, I

introduce a constant corporate income tax τk that is levied on capital income.

In the personal U.S. income tax, an agent pays taxes on his total income,

defined as the sum of labor and capital income, according to an income scale given

by six brackets. Each bracket has a different statutory marginal tax rate τi that

increases with the bracket, making the tax progressive. Mimicking the income tax

requires recognition that there exists a considerable number of tax credits, deductions

and overlapping provisions, which together implies that the statutory tax rates faced

by an agent are not necessarily the ones effectively paid. Moreover, the presence of

the Earned Income Tax Credit (EITC) needs to be taken into account10. Therefore, I

follow N.Guner et al (2008) and replicate the average tax rate paid with the following

benefits of the reform, it eliminates the need to include agents’ past contributions as a state
variable.

9This assumption is consistent with either two views: 1) all government consumption is
wasteful; 2) the consumption of public goods enters linearly in the agent’s utility function.
In any case, the results would be the same.

10The Earned Income Tax Credit is a refundable tax credit for low and middle income
families, who satisfy certain requirements and is calculated based upon the number of chil-
dren in the household, among other things. It was enacted in 1975 and has been expanded
ever since (Moffit, 2003).
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function11:

Average Tax Rate (Normalized Income) = η1 + η2 log (Normalized Income) .

(1.1)

where Normalized Income is Income divided by the Mean Household Income.

Then, the total taxes paid by an Agent are:

TBenchkamrkj,t (Income) = Average Tax Rate (Normalized Income)× Income.

In the reform scenario, the NIT replaces the U.S. personal income tax, leaving

the rest of the taxes and the social security system unchanged. Now, all agents receive

a fixed lump-sum transfer TRNIT
t at the beginning of the period and pay a constant

marginal tax rate τ for every unit of income earned. Then, the total tax liability for

an agent of age j and shock z with income Ij,t ≡ wte (z, j) lj,t +aj,tr is:

TNITj,t = Ij,t × τ − TRNIT
t .

1.2.5 Agent’s problem: recursive formulation

The sate of any agent is fully described by his/her assets holdings a, productiv-

ity shocks z and age j. Let x = (a, z) be the non-age dependant variables of the state

vector. The mathematical formulation of the state space is formalized as follows.

11Several papers use the Gouveia and Strauss tax function (Gouveia and Strauss, 1994)
to approximate the average tax rates paid instead of the function depicted above. Even
though, it approximates the average tax rate well, it implies a lower marginal tax rate for
higher incomes than the ones seen in the U.S. income tax. Moreover, it behaves as a flat
tax for incomes higher than twice the household mean income. On the other hand, the tax
function that I am considering not only does approximate well the average tax rate but it
also does a good job for the marginal tax rates.
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Let (A,A), (Z,Z) and (J,J ) be measurable spaces, where A is the Borel

σ−algebra defined on A; Z is the Borel σ−algebra defined on Z, and J is the Power

set of J . Let (X,X ) = (A× Z,A×Z) be a product space and (x, j) ∈ X × J be

the state vector. Let (X,X , ψj) be the probability space, where ψj : χ→ [0, 1] is a

probability measure. The measure of agents with state x = (a, z) within the cohort

of age j is ψj (x) .

I need to do stationary inducing transformations of the variables in order to

express the model in terms of a dynamic programming formulation. Let aj (x) ≡ aj,t
At
,

lj (x) ≡ lj,t, cj (x) ≡ cj,t
At

be the asset, labor supply and consumption decision rules; let

w ≡ wt
At

and r ≡ rt be the wage rate and interest rate and let β ≡ β̃ (1 + g)ν(1−σ); let

G ≡ Gt
At
, K ≡ Kt

At
and L ≡ Lt be the aggregate government consumption, capital and

labor supply and let TR≡ TRt
At

and Tj (x) ≡ Tj,t
At

be the transfers and tax collection,

and SSj ≡ SS

(1+g)j−(R+1) , where SS = SSt
At

, be the social security benefits12. Finally, let

T : X × J → X × J be an operator and let ν denote the expected discounted stream

of consumption and leisure for an agent with state (x, j) behaving optimally from

now onwards.

Then, given prices {w, r} and a tax regime T kj with k ∈ {NIT, Benchmark},

an agent of age j with state x needs to choose the amount of labor lj (x) to supply

to the market, how much to consume cj (x) and the amount of assets aj+1 (x) to

carry over the next period. Optimal decisions rules solve the following dynamic

programming problem:

12Time subscripts have been dropped because I am interested in a stationary equilibrium.
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1. Working agents:

ν (x, j) = (Tv) (x, j) ≡ sup
(cj ,lj ,aj+1)

{u (cj, lj) + βE [v (x′, j + 1)]} .

subject to

cj+aj+1 (1 + g) ≤ aj (1 + r)+w (1− τss) e (i, j) lj−T kj (x)+TR if j ≤ R

cj ≥ 0, aj ≥ 0, aj+1 ≥ 0 and lj ∈ [0, 1] .

2. Retirees:

ν (x, j) = (Tv) (x, j) ≡ sup
(cj ,aj+1)

{u (cj, 0) + βE [v (x′, j + 1)]} .

cj + aj+1 (1 + g) ≤ aj (1 + r)− T kj (x) + TR + SSj if j > R

cj ≥ 0, aj ≥ 0, aj+1 ≥ 0 .

with

v (x, J + 1) ≡ 0

1.2.6 Stationary Equilibrium

Definition 1.1. A stationary equilibrium is a collection of value functions v (x, j) ,

decision rules {cj (x) , lj (x) , aj+1 (x)}Jj=0, factor prices {w, r} , a tax regime T kj , taxes

paid Tj (x) and transfers TR, aggregate capital K and labor L, government consump-

tion G and social security benefits SSj, with a collection of invariant distributions

(ψ1, . . . , ψJ) such that:
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1. Decision rules cj (x) , lj (x) and aj+1 (x) together with a value function v (x, j)

solve the decision problem for an agent of age j and state x.

2. Factor prices are competitive:

w = F2 (K,L) .

r = F1 (K,L)− δ.

3. Market clearing conditions are satisfied:

(a)
∑

j µj
[∫
X

(cj (x) + aj+1 (x) (1 + g)) dψj (x)
]

+G = F (K,L) + (1− δ)K

(b)
∑

j µj
∫
X
aj+1 (x) dψj (x) = (1 + n)K

(c)
∑

j µj
∫
X
lj (x) e (z, j) dψj (x) = L

4. Law motion of distributions are consistent with individual decision rules:

ψj+1 (B) =

∫
X

P (x, j, B) dψj (x) .

where P (x, j, B) = 1 if aj+1 (x) ∈ B, and P (x, j, B) = 0 otherwise, ∀B ∈ X,

j = 1, . . . , J. ψ1 (x) is unequivocally determined by q (z) as agents are born with

no assets.

5. Government budget is balanced:

G =
∑
j

µj

∫
X

Tj (x) dψj (x) .

6. The social security system is fully funded:

τsswL =
J∑

j=R+1

µjSSj.
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7. Transfers are equal to accidental bequests:

(1 + n) TR =
∑
j

µj (1− sj+1)

∫
X

aj+1 (x) (1 + r) dψj (x) .

1.3 Results

1.3.1 Calibration

In this subsection, I discuss the calibration strategy and the assumptions made

for the benchmark economy. I set the model period equal to 1 year. Table 1.1

summarizes the parameters values used in the calibration. Table 1.2 presents the

results for the calibrated economy.

Table 1.1: Calibrated Parameters.

Parameters Value Target.
β 0.979 K/Y = 2.89
σ 4 IES = 0.5.
ν 0.383 Average time spent working= 1/3
J 81 Maximum Age 100
R 45 Retirement age 65
n 1.1% Data

ρ and σ2
ε 0.973 and 0.02 J. Heathcote et al (2010)

α 0.35 Capital share.
δ 4% I/Y = 21.38%.
g 2.22% Data

η1 and η2 10.23% & 7.33% N. Guner et al (2008)
τss and τk 8.6% & 7.48% Data
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Table 1.2: Benchmark Economy

Variables Values
GDP per capita 0.682

Capital Stock per capita 1.976
Labor Supply per working agent 0.385

Hours per working agent 0.33
Measure working age population 0.80

Saving Rate 9.66%
Capital Output Ratio 2.89

Capital per Labor 5.141
Wage 1.153

Interest Rate 0.080
Social Security benefits per capita 0.235

Bequests per capita 0.022
Mean Household Income 0.662

1.3.1.1 Demographics

In my model, agents are born at age 21 (model period 1), work until age 65

(model period 45, i.e. R = 45) and die for certain at age 100 (model period 81,

i.e. J = 81). Survival probabilities sj+1 are taken from the National Vital Statistics

System13. Population growth n is set equal to 1.09% which is the average population

growth for the U.S. during 1990− 200914.

1.3.1.2 Preferences

I set σ equal to 4 and calibrate ν endogenously in order to achieve an average

time spent working equal to a 1/3. The resulting value for ν is 0.383 which together

with σ give an intertemporal elasticity of substitution approximately equal to 1/2,

13National Vital Statistics Report, volume 58, number 10, March 2010.

14Economic Report of the President 2010, Table B34.
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and a Frisch elasticity of 1, consistent with previous macro estimates15 (see D. Domeij

and M. Flodén, 2006; and L. Pistaferri, 2003).

The discount factor β is calibrated endogenously to 0.979 in order to target

a capital-output ratio equal to 2.89. This last figure is the average capital-output

ratio for the period 1960 − 2007. I calculate it following the Cooley and Prescott

Methodology16.

1.3.1.3 Technology

I set α equal to 0.35, which is the average of capital income over total income

for the period 1960 − 2007 (Cooley and Prescott, 1995). The parameters for the

labor augmenting technology are calibrated as follows. The growth rate g is equal

to 2.22% and is taken from the average growth rate of real per capita GDP during

1960− 200717. The parameter A0 is a free parameter and I set it equal to 1. Also, I

set the depreciation rate δ equal to 4% to assure an investment-output ratio equal to

21.38%18, which was the average for the 1960− 2007 period.

15The macro estimates of the Frisch elasticity tend to be higher than those from the labor
literature for prime age male workers. This apparent discrepancy is the result that macro
elasticities are unrelated to micro elasticities, as was documented by R. Rogerson and J.
Wallenius (2009)

16Data for Residential and non-residential structures (equipment and software,
structures) and consumer durable goods comes from Table 1.1. Current-Cost
Net Stock of Fixed Assets and Consumer Durable Goods BEA April 2010
(http://www.bea.gov/national/FA2004/SelectTable.asp). Data for the stock of Land comes
from Flow Funds Accounts, Table B.100, Table B.102 and Table B.103. Inventories are taken
from the Economic Report of the President 2010, Table B1.

17Economics Report of the President 2010, Table B.26.

18Investment comes from Economic report of the President 2010, Table B1. Consumption
of durables is taken from Economic report of the President 2010 Table B16.
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1.3.1.4 Taxes

I need to calibrate three taxes: the social security tax τss and the U.S. personal

and corporate income taxes. For the first case, I calculate the average social security

contribution as a fraction of total labor income for the 1990− 2000 period and set τss

equal to 8.6%.19.

In the case of the U.S. personal income tax, I need to specify a parametric

function to reproduce the effective average tax rate paid by an American household.

For that purpose, I use the N. Guner et al’s (2008) estimates for married households.

They use data from the U.S. Internal Revenue Service for the year 2000 and calculate

the average tax rate for every income bracket normalized by the mean household

income for the period as:

average tax rate =

total amount of income tax paid
number of taxable returns

total adjusted gross income
number of returns

.

They fit the function (1.1) and obtain η̂1 = 10.23% and η̂2 = 7.33% with an R2 = 99%.

As noted by N.Guner, this tax function fits the data a little better than the functional

form employed by M. Gouveia and R. Strauss (1994). Further, Figure 1.1 shows that

the two formulations lead to very similar average effective tax rates, while Figure 1.2

indicates that the Gouveia Strauss tax function displays a constant marginal tax rate

for incomes higher than twice the mean household income. This situation does not

correspond to what is seen in the data.

19I consider those contributions from Old Age, Survivors and DI programs. Social Security
Bulletin, Annual Statistical Supplement, 2005, Tables 4.A.3.
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Figure 1.1: Average Tax Rates.
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Figure 1.2: Marginal Tax Rates.

For the corporate income tax, I set τk equal to 7.48% in order to reproduce the

1.74% average ratio of capital net of depreciation to total income for the 1987− 2007

period (Cooley and Prescott, 1995).

1.3.1.5 Idiosyncratic Shocks

The efficiency profile e(z′, j) has an age-component γj, which is taken from

G. Hansen (1993), and an idiosyncratic shock-component z′, which follows an AR(1)

process whose values are taken from the J. Heathcote et al (2010) estimates using

the PSID data from the period 1967− 200020. They find a correlation coefficient ρ of

20The interesting feature of this paper -and the difference with K. Storeletten et al.(2004)-
is that they allow in their model for an endogenous supply of labor, which enables me to
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0.973 and a variance for the innovations σ2
ε equal to 0.02.

I use a Gaussian-Hermite quadrature procedure (Tauchen and Hussey, 1991) to

approximate this AR(1) with a 21 state Markov process. The transition-probability

matrix is Q −Qzz′ = P (Z = z′/Z = z)−, where Q is aperiodic and irreducible,

what insures an invariant distribution (Hopenhayn and Prescott, 1992). I follow

M. Flondé’s (2008) approach that consists of taking a weighted average of the condi-

tional and unconditional variances of the AR(1) as variance of the process, and gives

a good approximation for highly persistent processes.

The initial distribution of shocks q(z) follows a Gaussian Distribution with

mean zero and a variance σ2
z that is endogenously calibrated to match the 0.46 Gini

coefficient for labor earnings in the U.S. for the year 200021. Table 1.3 shows the 21

values of the shocks in log-scale with their initial and invariant distribution.

1.3.2 Tax Reform’s results

In order to understand the effects of a transfer in the tax scheme, I eliminate

the implicit/explicit transfers in the actual U.S. income tax through the introduction

of a proportional tax, i.e. a NIT with no transfers (a “non-negative income tax”),

and then I increase the transfer level in the NIT to 2.5% and 5% of per capita GDP

in the benchmark economy. These quantitative exercises will let me evaluate the

changes in the aggregate variables and understand how the transfer works. Table 1.4

summarizes the results.

take directly their estimates for the AR(1) process.

21US Census Bureau 2000.
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Table 1.3: Markov process

Types States Initial Distribution Invariant Distribution
1 -2.06 1.94% 0.27%
2 -1.77 1.81% 0.59%
3 -1.53 2.53% 1.17%
4 -1.31 3.35% 2.05%
5 -1.11 4.22% 3.23%
6 -0.91 5.09% 4.66%
7 -0.72 5.91% 6.23%
8 -0.54 6.63% 7.75%
9 -0.36 7.18% 9.04%
10 -0.18 7.52% 9.90%
11 0 7.64% 10.21%
12 0.18 7.52% 9.90%
13 0.36 7.18% 9.04%
14 0.54 6.63% 7.75%
15 0.72 5.91% 6.23%
16 0.91 5.09% 4.66%
17 1.11 4.22% 3.23%
18 1.31 3.35% 2.05%
19 1.53 2.53% 1.17%
20 1.77 1.81% 0.59%
21 2.06 1.94% 0.27%

Table 1.4: Aggregate variables for different levels of Transfers.

Variables Baseline Proportional Tax 2.5% TR 5% TR
GDP per capita 100 110.13 105.36 100.12
Capital Stock 100 116.90 108.08 98.77
K/Y 100 106.16 102.58 98.65
K/L 100 109.57 103.90 97.86
Saving rate 100 106.12 102.52 98.61
Labor supply 100 106.64 103.92 100.86
Hours 100 105.79 101.06 95.73
Wage 100 103.25 101.35 99.25
Interest Rate 100 91.31 96.30 102.13
Bequests 100 111.95 102.55 92.73
Social Security Benefits 100 110.23 105.42 100.23
Marginal tax rate − 12.28% 15.49% 19.03%

CEV − −4.26% −0.55% 2.63%
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In a world with a proportional tax, the marginal tax rate drops to 12%, and the

resulting dramatic decrease in the marginal tax rate faced by high-income households

means that they benefit more than other households. The absence of the transfer

eliminates any redistribution from high to low-productivity agents, making it possible

to have a low tax rate. Additionally, the 10% increase in per capita GDP augments

the size of the tax base, allowing for a further reduction of the tax rate. The tax bill

is reduced for high and medium-productivity agents, while the opposite is true for low

productivity types. As a result, labor supply measured in efficiency units increases

7%, while the number of hours worked increases less (6%).

A lower marginal tax rate induces medium and high-productivity agents to

supply more hours to the market via a substitution effect, even though there is an

income effect that works in the opposite direction. In contrast, low-productivity

agents deprived of transfers face a negative income effect making them work more,

while a substitution effect caused by a higher tax rate makes them want to work less.

The effect is not symmetric and there is a change in the composition of the labor

supply: high-productivity agents gain participation at the expense of low-productivity

agents. Therefore, average labor productivity increases.

Without transfers agents wish to save more for precautionary reasons: the

saving rate, defined as the interperiod change in household’s assets holdings divided

by GDP, increases 6% leaving this economy with a higher capital stock. Consequently,

with more capital and more productive labor available, GDP is higher.

It is worth point out that that the total transfers received by the households
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can be divided into three different sources: the social security system, the income tax

and the accidental bequests. The social security payments are a function of the total

earnings in the economy, the income tax transfers depend explicitly on the tax scheme

considered while the accidental bequests are proportional to the level of capital in the

economy. Therefore, changes in earnings and the capital stock change the composition

and size of the total transfers received by the households. The increase in the capital

stock (17%), labor supply (7%) and the wage rate (3%) imply that the social security

payments and accidental bequests has increased (10% and 12%).

Naturally, there has been a change in the composition of the total transfers

received and it can be argued that there has been an improvement in the income of

wage earners, particularly low-income households. However, the removal of the in-

come tax transfers has shut down an important redistributive channel that previously

benefited low-income households.

Does the increase in social security and accidental bequest transfers offset the

loss of the income tax transfers? No, because welfare is lower under the proportional

tax. Indeed, to make agents indifferent between a proportional tax and the US income

tax regime, consumption under the proportional tax regime would need to increase by

4.26% in every state of the world (i.e. the Consumption Equivalent Variation -CEV-

is -4.26%).

An analysis of the CEV by productivity types shows that losses are concen-

trated on the low types, with welfare losses as high as 8%, while more productive

types are better off. Not surprisingly, the most productive agents in this economy
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have a striking welfare gain of 15.13%. It is clear that the trade-off between tax rates

and transfers depends crucially on the productivity type: low-productivity types pre-

fer hight transfers and high tax rates while the opposite is true for high-productivity

types.

To illustrate this last point, I increase the transfer from 0 to 2.5% ($1150)

and 5% ($2250). By doing so, welfare increases by 3.71 and 6.86 percentage points

respectively. Naturally, the increase in the size of the transfer must be accompanied by

an increase in tax rates in order to make the tax reform revenue neutral: the marginal

tax rates for a NIT with 2.5% and 5% transfers are 16% and 19% respectively.

In the absence of complete markets, the transfer can be thought as a source

of insurance: in any state of the world, the transfer is present reducing the need to

save and work. Consequently, there is a negative correlation between the size of the

transfer, and the saving rate and hours worked. The saving rate moves from 10.25%

in a proportional tax regime or “non-negative income tax” to 9.5% in a NIT with 5%

transfers (NIT 5%), while the original 6% increase of hours worked in the proportional

tax subsides to a 1% increase in a NIT with 2.5% transfers (NIT 2.5%), to finally end

in a decrease of 4% in the NIT 5%.

Labor supply measured in efficiency units moves from a 7% increase in the

proportional tax case to a 4% and 1% increases in the NIT 2.5% and NIT 5% respec-

tively, remaining in the last case practically at the same level as in the benchmark

case, even though there is a drop in the hours worked. As the decrease in hours

worked is higher than the decrease in labor supply, it is evident that there is a change
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Table 1.5: Gini coefficients Pre-Tax Earnings

Gini Pre− Tax Earnings
Benchmark 0.46

Proportional 0.47
NIT 2.5% 0.48
NIT 5% 0.49

Optimal NIT 0.53

in the composition of the labor supply and average labor productivity increases.

The reasoning behind this result is that the presence of the transfer enables

agents to cope better with bad productivity shocks. Agents hit with a bad shock

increase their consumption of leisure, which is a normal good; i.e. they work fewer

hours. When positive shocks hit, they work more. This means that the transfer

enables them to work when they are more productive.

As a result, there is an increase in the dispersion and concentration of labor

earnings. The Gini coefficient on labor earnings deteriorates from 0.46 to 0.47 in the

proportional tax setting, 0.48 in the NIT 2.5% and 0.49 in the NIT 5% (see Table

1.5).

In this economy, prices are a function of the capital labor ratio, being the wage

rate an increasing function of the capital labor ratio and the interest rate a decreasing

function. The capital labor ratio moves from 5.6 in the proportional tax regime to

5.3 in the NIT 2.5%, and 5 in the NIT 5%. This translates into a 4% decrease in the

wage rate and a 12% increase in the interest rate from the proportional tax to a NIT

5%.
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These changes on prices have a natural impact on the distribution on income.

If we abstract from any other transfer present in this economy, it will be possible to

argue that young and low-productivity agents, who receive most of their income from

labor earnings, are worse off while capital income earners are better off. The final

verdict depends on the size of the different transfers.

A conflicting picture emerges for retirees, who have their social security ben-

efits practically unchanged in the NIT 5% after an initial increase of 10% in the

proportional tax setting. As the income tax transfer and the interest rate increase,

the social security benefits and the accidental bequests are reduced, attenuating the

potential gains from the income tax transfer.

It is interesting to notice the relationship between the welfare profile and the

introduction of transfers. In a “non-negative income tax” scenario, the welfare profile

is monotone increasing in productivity types. Once the transfer is introduced, a

U-shaped figure emerges with low productivity types benefitting directly from the

transfer, while high-productivity type agents enjoy lower marginal tax rates. The

“middle class” is caught in the middle: the transfer is not high enough for them and

the tax rates are not as low as they want to (see Figure 1.3).

1.3.3 The Optimal NIT versus the Flat Tax

A NIT with a marginal tax rate of 28% and a transfer of 10% of the bench-

mark’s economy per capita GDP, approximately $4600, is optimal in the sense that it

maximizes the expected lifetime utility calculated before the agent is born and knows
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Figure 1.3: Welfare gains by types: Proportional Tax, NIT 2.5% and NIT 5%.
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Table 1.6: Optimal NIT versus Optimal Flat Tax

Measures Optimal NIT (10% TR) FlatTax (33% deduction)
GDP per capita 87.18 103.81
Capital Stock 77.37 104.85
K/Y 88.74 101.00
K/L 83.22 101.37
Saving rate 88.74 100.89
Labor supply 92.97 103.26
Hours 82.41 101.96
Wage 93.77 100.48
Interest Rate 119.12 98.67
Bequests 70.76 105.91
Social Security Benefits 87.33 103.82
Marginal tax rate 27.95 18.47

CEV 6.33% −0.12%

his true type. The expected welfare gain is an impressive 6.33% increase in individual

consumption in every state of the world. The picture that emerges for this economy

is similar to those associated with the sub-optimal NIT’s of the previous subsection.

Table 1.6 summarizes the results.

A striking result is that the optimal NIT causes per capita GDP to decline

13%. This is due to a 23% decrease in the capital stock and a 7% decrease in the

labor supply measured in efficiency units. In the previous exercises, per capita GDP

declines as the transfer increases. The transfer in the optimal NIT is even larger and

per capita GDP declines further.

Next, I examine the determinants of the drop in the capital stock and labor

supply. The transfer from the optimal NIT enables agents to save less in order to

cope with the uncertainty they face, implying a lower level of capital. Indeed, the
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need to save for precautionary motives has subsided: the saving rate drops 11%; total

savings falls more than the GDP.

The transfer enables agents to substitute leisure for work when they are hit by

a bad shock, moving the threshold that splits the active population into working and

non-working agents. The NIT provides agents with fewer incentives to adjust their

labor supply decisions as means of insurance (see J. Pijoan-Mas, 2006): hours worked

decrease 18%, a decrease 2.5 times greater than the reduction of labor supply. Fur-

ther, the presence of the transfer means that the productivity of the least productive

working agent under the NIT is higher than that under the US tax system.

Because less productive agents work less and more productive ones work more,

income inequality goes up. The Gini coefficient for labor earnings jumps to 0.53 from

0.46, a deterioration of 15%.

The move to the optimal NIT also changes prices in this economy as a conse-

quence of the 11% and 17% reduction in the capital output ratio and capital labor

ratio. The wage rate falls 6% and the interest rate rises 19%, from 8% to 9.5%. For

capital income earners, who are concentrated among high-income households, this

increase in interest rates partially offset the increase in the tax rates.

As a result of the fall in savings, wage rates, and labor supply, social security

benefits and accidental bequests fall 13% and 29% respectively. It is clear that the

composition of the total transfers, given by the sum of income tax transfers, social

security benefits and accidental bequests, has changed because of the increase in the

income tax transfers and the decrease of the social security benefits and accidental
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bequests. However, it is not necessarily true that its size has diminished.

The welfare profile under the optimal NIT is different from the cases studied

above. The clear U-shape relationship has disappeared and there is a single cut-off

that separates winners from losers: the winners are agents from the productivity level

1 through 9 with welfare gains from 26% to 64%, while high-productivity agents lose

(see Figure 1.4).

Even though, the optimal NIT has a lower marginal tax rate than the actual

US income tax for the highest income households, their tax bill has increased as the

result of replacing a structure of increasing marginal tax rates under the US income

tax with a single tax rate under the optimal NIT. In relative terms, they are better off

with respect to medium-income households but for both groups financing a sizeable

transfer has increased their tax burden.

The large size of the income tax transfer is due to the persistence of the

idiosyncratic shocks. The calibrated value for the parameter ρ implies that a shock

has a half life of 25 periods. Thus, agents born with a low productivity shock are

plagued by it for a long time, so they prefer a high transfer in order to smooth

consumption. The opposite is true for agents born with a good shock. They prefer a

low marginal tax rate instead of a high transfer. The natural trade-off between low

marginal tax rates and high transfers is a question of efficiency versus insurance. A

high transfer means that the insurance and redistributive aspects of the NIT erode the

efficiency effects of the tax, i.e. the welfare gains come from the fact that low-ability

agents are able to insure themselves against bad shocks.
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Figure 1.4: Welfare gains by types: Optimal NIT versus Optimal Flat Tax.
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To further understand the NIT, I compare it with the popular flat tax and

evaluate the desirability of the reform. I search for the optimal flat tax that maximizes

ex-ante welfare and find, in accordance with the literature, that a 33% deduction

($15000) computed from the benchmark GDP and a marginal tax rate of 19% is

optimal.

The optimal NIT outperforms the optimal flat tax, which has a welfare loss

of 0.12%. It may seem surprising that an optimal flat tax implies a welfare loss but

as I noted above, I am not taking into account the transition dynamics which may

convert this welfare loss into a welfare gain. Even if this were to be the case, the

steady state welfare gain under the NIT outweighs any potential transitional gains

under the flat tax.

In a world with a flat tax, all the implicit/explicit transfers from the income

tax are replaced with a fixed deduction. With no transfer to fund, the marginal tax

rates are lower than the ones in the optimal NIT.

The most interesting result is related to the shape of the welfare profile.

It is clear that high-productivity agents benefit but the picture is mixed for low-

productivity agents: the lowest types are actually worse off. This result is at odds

with previous studies (e.g. G. Ventura, 1999; and Diaz-Gimenez and J. Pijoan-Mas,

2005) but it is explained by the way I modeled the U.S. income tax to capture the

actual level of transfers present in the system (e.g. EITC, among others). Such trans-

fers represent an important source of income for low-income households. Naturally,

these agents prefer a transfer to a deduction. As productivity increases, because of
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the U-shaped welfare gain profile, a fraction of the low-income households are better

off. This exercise highlights the importance of modeling the income tax transfers

carefully.

Under the flat tax, per capita GDP increases 4% as a result of an increase

in capital (5%) and labor supply (3%). The latter increases more than hours (2%),

a natural consequence of the lower marginal tax rate that gives high-productivity

agents more incentives to work and the increase in the lowest ability type’s tax bill,

due to the replacement of the transfer by a deduction. Agents in the low part of the

productivity distribution, between the lowest and the median, see a reduction in their

tax bill, while the middle types see the opposite. This explains the different effects on

hours and labor supply; in some groups an income effect prevails over a substitution

effect, and vice versa.

The saving rate remains practically at the same level with a modest increase of

1%. Nevertheless, total savings increases as a result of the elimination of the transfers.

This loss of transfers is partially offset by a 4% increase of social security benefits and

the 6% increase of accidental bequests.

The wage rate increases 0.5% and the interest rate drops 1%. The increase

in the wage rate partly offset the loss of the transfer for the low productivity types,

whose main source of income comes from labor earnings.

In summary, a flat tax implies higher GDP, capital accumulation and labor

supply than the optimal NIT, but considerably lower welfare.
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1.4 Sensitivity Analysis

In the previous section, I have established that the optimal NIT requires a high

level of transfers and produces important changes to prices, social security benefits and

accidental bequests that could dampen the potential welfare gains from the reform.

Therefore, in this section, I undertake a sensitivity analysis, disentangling the role of

prices, accidental bequests and the nature of the shocks in the welfare gains reported22.

1.4.1 The role of prices: An Open Economy

In this exercise, I make an open economy assumption, with free movements of

capital, and therefore, the wage rate and the interest rate are kept fixed. Doing so

will let us understand the direction and the role of prices in the tax reform. In this

scenario, the optimal NIT has a welfare gain of 6.5% and a slightly lower transfer

of 10% of the benchmark economy’s per capita GDP. Remarkably, even though the

transfer level slightly decreases, the marginal tax rate shows a moderate increase: the

new marginal tax rate is 29% (see Table 1.7).

This increase can be explained by the shrinkage of the tax base: GDP decreases

16% versus the 13% shrinkage under the optimal NIT with flexible prices. This

reduction is a direct consequence of the drop in the capital stock level. As the

interest rate remains constant, the fall in savings is larger, and there is no increase

in the interest rate that could partially offset the decrease in individual savings. The

saving rate falls a dramatic 23%, doubling the 11% fall previously seen.

22Otherwise stated, all comparisons made are against the optimal NIT found in the
previous section.
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Table 1.7: Optimal NIT in an Open Economy

Measures Optimal NIT (10% TR)

GDP per capita 83.64
Capital Stock 64.38
K/Y 76.98
K/L 66.69
Saving rate 76.85
Labor supply 96.30
Hours 86.86
Wage 100.00
Interest Rate 100.00
Bequests 52.21
Social Security Benefits 96.40
Marginal tax rate 28.74

CEV 6.48%

Even though GDP decreases more, labor supply decreases less: -4% versus

-7%. As there is no change in the wage rate, leisure does not get cheaper as it did

before, so labor supply does not decrease as much. The same effect can be seen in

the total hours worked (-12% versus -17%). Naturally, leaving the wage rate in the

same level gives high-productivity agents more incentive to supply more work, gaining

participation in the labor supply and changing the composition of the labor input.

As there is no decrease in the wage rate, all the change in the social security

benefits comes from the drop in the labor supply. However, the transfers are affected

by the drop of capital: accidental bequests are reduced by half (-48% versus -29%).

As can be seen, despite the fact that income tax transfers remains at practically

the same level, there is a higher welfare gain characterized by a smaller reduction in

hours and social security benefits, but a much larger reduction in accidental bequests.
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The direct consequence of shutting down the role of prices in the tax reform is that

capital income earners and retirees do not benefit from a higher interest rate, while

the wage earners are unaffected. This means that the welfare gains are concentrated

at the beginning of the working life, particularly for those suffering low productivity

shocks. These agents, despite suffering a dramatic decrease in accidental bequests,

are better off if the wage rate does not change. In contrast, retirees receive higher

social security benefits and this offsets the interest rate effect.

Moreover, a constant interest rate, lower than the one with flexible prices, gives

agents less incentives to postpone consumption, explaining the increase in welfare.

1.4.2 The role of accidental bequests

In the benchmark economy, I treated accidental bequests in the usual fashion

by returning them via equal lump-sum transfers to all living agents. Although the

assumption is common in this type of model, it implies that bequests are higher on

average than what is actually seen in the data. This is especially true for low-income

households. Moreover, as most of the welfare gains in this income group come from

the NIT explicit transfer, it is important to be careful in modeling the accidental

bequests because their treatment could affect the potential gains from the reform.

Therefore, in this exercise, I move to an opposite scenario and make the extreme

assumption that all accidental bequests are taxed away by the government, and used

to finance public consumption.

For this exercise, the definition of revenue neutrality that I am employing is
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Table 1.8: The role of accidental bequests

Measures Optimal NIT (10% TR)

GDP per capita 84.20
Capital Stock 72.11
K/Y 85.65
K/L 78.71
Saving rate 85.59
Labor supply 91.52
Hours 80.68
Wage 91.96
Interest Rate 125.34
Bequests 0.00
Social Security Benefits 84.21
Marginal tax rate 30.52

CEV 8.81%

different. Here, prior to the reform, there are two sources of income: the current tax

system and the total of accidental bequests. The tax reform will be revenue neutral

if it raises the same total revenue, accounting for any change in the equilibrium level

of accidental bequests. Table 1.8 summarizes the results.

The optimal NIT now has a transfer level of 10% of the benchmark economy’s

per capita GDP and a marginal tax rate of 31%. The increase in the tax rate arises

from the drop in the level of accidental bequests. As can be seen, the drop in individual

savings implies a fall in the capital stock (-28% versus -23%) that leads to lower

bequests and the need to raise the marginal tax rate to compensate the shrinkage of

the tax base. In a world with no accidental bequests as lump-sum transfers, savings

are higher from the very beginning and the introduction of the NIT transfer causes

the saving rate to fall more (-14% versus -11%).
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The welfare gains are impressive: the CEV is 8.8%, a 40% increment from

the original experiment. Naturally, the accidental bequests are not as important as

a source of income for the high-productivity agents, while the opposite is true for

the low-productivity agents. Therefore, the introduction of an optimal NIT implies

welfare gains for the latter group as high as 92%, while the changes in welfare for the

former group are not as spectacular.

Labor supply deteriorates 20%, moving to -8.5% from -7%. This is a natural

consequence of the higher marginal tax rate, which gives high productivity agents

smaller incentives to supply work. Hours deteriorate 10% (-19% versus -18%) and a

familiar message emerges again: high productivity types crowd out low productivity

ones, increasing the average labor productivity by hour worked.

The greater fall in labor supply and capital implies a greater drop in GDP

(-16% versus -14%). Naturally, there is a change in prices: the wage rate is lower

(-8% versus -6%) and the interest rate higher (25% versus 19%). A lower wage rate

negatively affects low productivity agents but their supply of labor is reduced by the

transfer, mitigating the impact of the lower wage rate. However, the transfer is not

large enough to compensate for the low wage rate to the medium-productivity types.

On the other hand, high productivity types enjoy a higher interest rate which offsets

the wage effect.

In a world with no accidental bequests returned evenly as lump-sum transfers

to all living agents, there is an increase in the welfare gains due to the NIT as a

provider of public insurance.
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Table 1.9: Idiosyncratic Shocks

Measures Optimal: 9% TR; ρ = 0.946 Optimal: 11% TR; ρ = 0.986

GDP per capita 89.48 84.49
Capital Stock 80.68 73.44
K/Y 90.16 86.92
K/L 85.08 80.40
Saving rate 90.03 86.78
Labor supply 94.62 91.12
Hours 86.87 77.64
Wage 94.50 92.65
Interest Rate 116.69 122.93
Bequests 73.82 67.59
Social Security Benefits 89.49 84.37
Marginal tax rate 25.71 30.31

CEV 2.60% 8.70%

1.4.3 The role of idiosyncratic shocks

In the final exercise, I analyze the effect of the persistence of the idiosyncratic

shocks on the optimal NIT. I analyze two cases. In the first, I pick a new ρ (equal

to 0.946) to reduce the half life of a shock by half. In the other, I do the opposite: I

choose a new ρ (equal to 0.986) to double the half life of a shock (see Figure 1.5). In

all cases, the variance of the error term is changed in order to keep the same mean of

the shock process, and by log normality, the variance of the log of the shock. Table

1.9 summarizes the results.

The welfare gains from the move to the NIT is higher the more persistent the

shocks are. For the high persistence shock, the welfare gain is 8.7%, an increment of

38% with respect to the benchmark case. In contrast, for the less persistent shock,

the welfare gain is 2.6% or a 59% reduction in welfare from the original exercise. It is
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Figure 1.5: Impulse Response Function.

clear that the decrease of the persistence of the shock has a large effect on the optimal

NIT and the welfare gains.

The results for transfers and tax rates are as expected. Naturally, the less

persistent the shock, the lower the level of the transfer; for a ρ equal to 0.946, the

transfer is just 9% while in the other case, it is 11% of the benchmark economy’s

per capita GDP. The positive association between marginal tax rates and transfers

re-emerges. In the less persistent case (low transfer), the marginal tax rate is 26%

against a marginal tax rate of 30% in the high persistence case (high transfer).
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The relation between the size of the transfer and the aggregate variables is

also similar to previous cases. With a lower transfer, GDP drops 11% while with a

higher transfer, the reduction is 15%, confirming the negative relationship between

the size of the transfer and GDP. A similar story appears in labor supply (-5% versus

-9%) and hours (-13% versus -22%): the adjustments are larger the more persistent

are the productivity shocks.

The less persistent the shocks, the less the need for higher individual savings.

In the less persistent case, capital drops 19% against the 27% reduction when shocks

are more persistent. Also, the wage rate falls less the lower the persistence (-6%

versus -7%) and the interest rate rises less (17% versus 23%). Consequently, social

security benefits (-11% versus -16%) and accidental bequests (-26% versus -31%) fall

less the less persistent are the shocks.

The conclusion is clear: with more persistent shocks, the gains from providing

public insurance are higher.

1.5 Conclusions

In this chapter, I provide a new, general equilibrium, analysis of a Negative

Income Tax (NIT) in a model with ex-ante homogeneous agents beset by idiosyncratic

shocks. The model reproduces key features of the U.S. economic data, and in a setting

that explicitly takes into account the tax credits, overlapping provisions, and transfers

from the actual U.S. income tax. The NIT is simple, consisting of a transfer and a

constant marginal tax rate, and produces an outstanding welfare gain, equivalent to
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a 6.33% increase of individual consumption in every state of the world. The NIT

outperforms the popular flat tax (a zero transfer NIT with deductions) by a huge

margin.

The optimal NIT has an important insurance component and benefits most

those agents who suffer low productivity shocks at the beginning of their working lives.

Different and smaller levels of transfers in the NIT have non trivial welfare gains. The

NIT has an effect on insurance and efficiency: regarding insurance, individual savings

drops as the transfer replaces the need to save, while for efficiency, high-productivity

agents face lower marginal tax rates, giving them incentives to work more hours, and

the NIT transfer enables all agents to work when they are more productive. Therefore,

the composition of labor supply changes and the average labor productivity by hours

worked increases. In all cases, the medium-productivity agents are worse off. A

similar result emerges from a flat tax.

I conduct sensitivity analyses and show that the persistence of the shocks and

the way accidental bequests are modeled have non trivial effects on the welfare gains

reported. Further, the more persistent the shocks, the more desirable the reform.

Moreover, modeling the level of accidental bequests in two ways brackets the welfare

gain that could be obtained from this tax reform: in the both cases considered, one

with a generous scheme of bequests and the other one with none, the differences in

welfare are not trivial, and in all cases the low-income households are better off.

My comparisons are of steady states and it could be argued that the transitions

dynamics of the NIT could be important. However, the welfare gains are of such
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magnitude that the computation of transitions will not change the direction of the

results. Moreover, the important drop in the capital stock in the optimal NIT implies

that moving from one steady state to the other one will increase welfare, as agents

will consume the capital they have already accumulated.

For future research, it will be interesting to model a NIT in a political economy

model, in order to understand the reasons why a tax with such welfare gains had so

many difficulties and obstacles at the time it was discussed in the U.S. Congress.
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CHAPTER 2
LIFE-CYCLE PATTERNS OF EARNINGS SHOCKS

2.1 Introduction

There is a common perception that a middle-age worker faces risks, in terms

of income volatility and job tenure, which are inherently different from those experi-

enced by a twenty-year-old worker, and that these risks are distinct from those faced

by a worker close to retirement. This popular belief that there is a life-cycle pattern

in labor earning risk has not received much attention in the empirical literature on

income dynamics. If such a pattern does exist, modeling it in a world of incomplete

markets could significantly improve our understanding of consumption-saving deci-

sions in the life cycle, wealth inequality, insurance, the welfare costs of business cycles

and public policies, and other phenomena.

In this chapter, I study labor income dynamics in the life cycle and ask the

following questions: Is there a life-cycle pattern in the idiosyncratic earnings shocks?

What is the role of aging in these shocks? If there is a life-cycle pattern to earning

risk, can it be modeled parsimoniously?

The starting point for addressing these questions is a reduced-form model of

income dynamics, as it has been the standard in the literature since the early 1970s,

with the early works on the matter by McCall (1973), Shorrocks (1976), Lillard and

Willis (1978), Lillard and Weiss (1979), MaCurdy (1982), and Gottschalk (1982).

While the starting point is a reduced form, this chapter introduces a novel
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methodology that is able to accommodate both statistical fit and economic interpre-

tation. Using a sample of male heads of households from the Panel Study of Income

Dynamics (PSID) from the years 1968 to 1996, I estimate a Logistic Smoothed Tran-

sition Autoregressive model of order 1 (LSTAR(1)), with a rich level of heterogeneity

in the innovations, that replaces the usual linear AR structure of the persistent com-

ponent of the earnings shocks with a nonlinear structure. At any point in time in

the life of a worker, the persistent shocks are a convex combination of two different

AR processes, where the weights are a function of a threshold variable that has its

own economic interpretation. This means that the model can detect the presence of

patterns in the life cycle as well as recognize the economic forces in action.

Although I limit my analysis to the effects of age on the idiosyncratic earnings

shocks in a Restricted Income Profile (RIP) setting, where there is no heterogeneity

in the income growth rates of the individuals, one important contribution of this

chapter is that I employ a Bayesian analysis. This makes it possible to extend the

results to a Heterogeneous Income Profile (HIP), i.e. with heterogeneity in the income

growth rates, and to cover a much wider range of years in the PSID. This was not

possible in the previous models used in the literature, and it has nontrivial economic

implications. My findings can be summarized as follows.

First, there is a life-cycle pattern in the idiosyncratic earnings shocks. Workers

younger than 29 experience shocks with higher variance and a positive probability

of having a lower persistence than older workers. The stationary variance of the

persistent component of the earnings shocks for a young worker is 2.5 times higher
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than the stationary variance for an old worker.

Second, the usual GMM estimates for the persistence in the AR process, in a

RIP setting, are higher than 0.95, but a comparison to a model with a rich structure of

innovations and the same linear AR structure shows a lower persistence, with a mean

of 0.89. Including nonlinearities reduces the persistence to a range of 0.82 to 0.84, a

substantial reduction with respect to the standard model used in the literature. A

potential explanation could be the unit root problem pointed out by Sims and Uhlig

(1991).

Third, the posterior mean of the persistence of the shocks for young workers is

higher than the persistence for older workers, but the difference is not as significant as

one might expect. The posterior standard deviation of the persistence parameter for

the young workers is almost twice that of the standard deviation for the older workers.

There is an overlap in the distributions of both persistence parameters that suggests

they might be equal. Moreover, this higher dispersion in the posterior distribution of

the persistence suggests that using age as threshold variable might not give a complete

picture of what is seen in the data.

Fourth, the introduction of nonlinearities shows the importance of correctly

modeling the structure of the innovations. The results strongly suggest that there

is dispersion in the individual variances of the innovations. The distribution of the

individual-specific component of this variance points out a small proportion of indi-

viduals with a higher conditional variance than the rest of the sample. Models that

ignore this fact introduce an upward bias on the variance estimations. Also, my model
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is in line with previous estimates of the transitory component of the earnings shocks.

Finally, in this model, the income process is defined as a convex combination of

two AR processes and can be easily approximated with a discrete Markov process (see

Vandekerkhove, 2005). This means the model is tractable and the usual calibration

techniques can be applied.

2.1.1 Literature Review

The empirical literature on income dynamics has produced a variety of models

with different levels of complexity and heterogeneity. These models can be classified

in terms of the degree of heterogeneity present in the conditional mean and the

conditional variance of the income process.

Recently, it has become popular in the macro literature to classify these models

in terms of the heterogeneity in the growth rates of individual earning profiles. An

income process with a common growth rate for all individuals is a RIP, while if these

rates are different for every individual the process is a HIP. Consequently, a RIP

and a HIP are just different degrees of heterogeneity in the conditional mean of the

process. This classification is motivated by models of human capital where agents

with different levels of ability have different returns on their investments in human

capital accumulation.

Examples of HIP models with no heterogeneity in the persistence nor the

conditional variance are Baker (1997); Baker and Solon (2003); Gottschalk and Moffitt

(2002); Gottschalk and Moffitt (2002); Guvenen (2007); Guvenen (2009); Guvenen,
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Ozkan and Song (2012); and Haider (2001).

Illustrations of RIP models are the papers of Abowd and Card (1989), Hryshko

(2012), Lillard and Willis (1978), Lillard and Weiss (1979), MaCurdy (1982), Storeslet-

ten, Telmer and Yaron (2004), just to name a few.

A second group of papers aims to explain different patterns seen in the data

by modeling the conditional variance of the income process instead of the conditional

mean. In this group, the persistent component of the earnings shocks is discarded,

and the variance is allowed to vary across time and individuals. This is the case of the

papers of Barsky et al. (1997), Chamberlain and Hirano (1999), Jensen and Shore

(2012), Meghir and Pistaferri (2004), and Meghir and Windmeijer (1999).

This chapter presents a RIP model and is in the intersection of both groups

because of its focus on the conditional mean as wells as the conditional variance of

the income process, as in the papers of Browning, Ejrnæs and Alvarez (2010) and

Hospido (2012) , to name two. It also contributes to the Bayesian literature on income

dynamics that has started recently with Geweke and Keane (2000), Jensen and Shore

(2012), Norets and Schulhofer-Wohl (2009), and Shore (2011).

Even though this Bayesian literature on income dynamics is in its initial stages,

there are reasons to believe that it will experience a surge. The need for models that

capture the right level of heterogeneity and, as Nakata and Tonetti (2012) point out,

the good small-sample properties of Bayesian estimates predict a widespread use of

Bayesian methods.

There have only been few attempts to model the role of aging in the structure
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of idiosyncratic earnings shocks. The most relevant papers on this matter are those

of Hause (1980), Meghir and Pistaferri (2004), and Karahan and Ozkan (2011).

Hause (1980) aimed to disentangle the effect of “on-the-job training” on the

individual earnings profiles in a sample taken from one cohort of Swedish white-collar

workers. The residual earnings is modeled with a time-varying AR structure, and

even though the variable age is not explicitly mentioned, the fact that there is only

one cohort in his sample makes this time-varying process an age-varying AR process.

Later, Meghir and Pistaferri (2004) focused on modeling the conditional variance of

labor earnings. They introduced an ARCH(1) specification for the permanent and

transitory component of the shocks. However, the variable age seems not to have

been significant.

Karahan and Ozkan (2011) is to date the most complete paper to explicitly

model the age profile of the earnings shocks. After making some identifying assump-

tions, they used GMM methods to model the residual earnings, including in their

specification the individual fixed-effects, a transitory shock, and a persistent AR

component, the last two being age dependent. They found that the transitory shocks

do not exhibit an age profile, but the persistent component does. They estimated

the persistence parameters and variances for every age-bin considered, and in order

to simplify their model, they fit an age polynomial onto their estimates.

My work is related to Karahan and Ozkan in the sense that both of our papers

are interested in the exploration of life-cycle patterns of the earnings shocks, and both

papers are the first to focus on the effects of aging on the structure of these shocks.
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However, there are methodological and conceptual differences that distinguish my

paper from theirs.

First, I follow a Bayesian approach. This enables me to deal with a level of het-

erogeneity that is not present in Karahan and Ozkan’s frequentist model. Moreover,

my model can easily be extended to a setting where the individual income growth

rates are different for each individual (HIP), while their model cannot. In addition,

my model delivers a simple story of two distinct regimes that are connected by a

smooth transition function instead of the multiple estimates that they had for which

they needed to reduce their number by fitting an age polynomial. Also, the results

are different: while they show that there are significant differences in the persistence

and the variances, my results indicate that even though the persistence is lower, the

bulk of the action is in the innovations.

Finally, the most important distinction between this chapter and Karahan

and Ozkan’s is that my model could take into account other variables besides age to

explain the patterns seen in the data. This allows me to take a stand on different

economic theories.

The chapter continues with a description of the statistical model. In Section

III the estimation strategy is explained. Section IV describes the data set, and the

selection criteria for the sample used. Section V presents the results and Section VI

concludes.
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2.2 Statistical Model

Let yih(t),t be the logarithm of labor earnings for an individual i of age h (t) at

time t. Individual i first appears in the PSID at time ti, and leaves the sample after

time Ti, so t ∈ {ti, ti + 1, . . . , Ti}. Labor age h (t) is normalized to 0 for calendar age

18, and h (t) ∈ {1, . . . , H}, where H is the maximum normalized labor age in the

sample (which corresponds to the calendar age 64).

The logarithm of labor earnings yih(t),t depends on the vector xih(t),t that controls

for the time or cohort effects, and the observable characteristics1 of an individual i of

age h (t) at time t, a temporary shock ωih(t),t, and a persistent shock εih(t),t:

yih(t),t = xi′h(t),tβ + εih(t),t + ωih(t),t

where β ∈ <k and ωih(t),t/σ
2
t ∼ N (0, σ2

t ). The temporary shock reflects the measure-

ment error present in the sample, and the temporary changes in the worker labor

productivity. In the case of the persistent component of the innovations, the simplest

assumption is to assume that εih(t),t follows an ordinary AR process:

εih(t+1),t+1 = ρεih(t),t + ηit+1

I am interested in studying an alternative to this simple specification: the possibility

that the persistent changes over the life cycle follow a nonlinear structure given by

the presence of two regimes in εih(t+1),t+1:

1This treatment effect consists of regressing the logarithm of labor earnings yih(t),t on
variables such as the level of education, a cubic polynomial for age, the interaction between
the polynomial of age and education, and dummy variables for race, immigration and marital
status.
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εih(t+1),t+1 =

{
ρ1ε

i
h(t),t + η1,i

t+1, when τ it ∈ (−∞, c]
ρ2ε

i
h(t),t + η2,i

t+1, when τ it ∈ (c,+∞)

or equivalently,

εih(t+1),t+1 = I
(
τ it ∈ (−∞, c]

) (
ρ1ε

i
h(t),t + η1,i

t+1

)
+ I

(
τ it ∈ (c,+∞)

) (
ρ2ε

i
h(t),t + η2,i

t+1

)
(2.1)

The variable τ it is an individual specific variable2 and, depending on its value

with respect to the threshold, c, triggers the switch of regimes. The nuisance terms

η1,i
t+1 and η2,i

t+1 are independent, with the same mean but different precision.

The model 2.1 is a Threshold Autoregressive Model (TAR), and was introduced

by Tong (1978), and further developed by Tong and Lim (1980), Tsay (1989), and

Tong (1993).

The abrupt change between regimes that happens in a TAR model adds an

extra degree of difficulty in maximum likelihood estimation, because the function is

not differentiable and the usual maximization techniques cannot be applied. What is

more, from an economic point of view, it is reasonable to think of a smooth function

that connects both regimes. Therefore, I use the following formulation:

εih(t+1),t+1 =
(
1−G

(
γ, c, τ it

))
ρ1ε

i
h(t),t +G

(
γ, c, τ it

)
ρ2ε

i
h(t),t + ηit+1 (2.2)

The specification 2.2 is called a Smoothed Transition Autoregressive

model of order 1 (STAR(1)). It was first proposed by Chan and Tong (1986) and

2Some examples of τ it are age, level of income, or number of weeks unemployed, to a
name a few possible possibilities.
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extensively studied by Luukkonen, Saikkonen and Teräsvirta (1988), and Teräsvirta

(1994)3.

My choice for the transition function is a logistic cumulative distribution and,

as a result, my statistical model is also called a Logistic Smoothed Transition

Autoregressive model of order 1 (LSTAR(1)).

Let G (γ, c, τ) be the logistic cumulative distribution function:

G (γ, c, τ) =
1

1 + exp [−γ (τ it − c)]

where γ ∈ (0,∞) is a smoothing parameter that has the following property:

the higher is γ, the less smooth the transition function. For instance, if γ → 0, the

weight function G (γ, c, τ) → 1/2 and there is an indeterminacy problem, because

ρ2 − ρ1 can take any value. On the other hand, if γ → +∞, then G (γ, c, τ) →

I(τ it − c > 0), and G (γ, c, τ) becomes an indicator function, and the model is reduced

to a TAR model.

I can rewrite the autoregressive component as:

εih(t+1),t+1 = εi (γ, c)h(t),t ρ̃+ ηit+1.

where εi (γ, c)h(t),t =
(
εih(t),t, G (γ, c, τ it ) ε

i
h(t),t

)
and ρ̃ = (ρ1, ρ2 − ρ1)′ . Then,

the LSTAR(1) model can be expressed as:

{
yih(t),t = xi′h(t),tβ + εih(t),t + ωih(t),t

εih(t+1),t+1 = εi (γ, c)h(t),t ρ̃+ ηit+1

(2.3)

3For a good review on nonlinear time series, see Bauwens, Lubrano and Richard (2000),
Dijk, Teräsvirta and Franses (2002), and Korenok (2009).
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The nuisance term ηit+1 in 2.3 is a linear combination of η1,i
t+1 and η2,i

t+1 from

2.1. I want the variance of ηit+1 to be a convex combination of the variances of the

two regimes. Therefore,

ηit = (κi)
−.5 ξit

√
1−G (γ, c, τ it ) + φG (γ, c, τ it )

with φ being the ratio of the variance of the second regime with respect to the

first regime. The distribution of ηit needs to be flexible enough to accommodate the

particular characteristics of the PSID (see Lillard and Willis, 1978).

As any continuous distribution can be well approximated with a finite Gaussian

mixture4, I assume that

ξit ∼
m∑
j=1

pgjN
(
0, g−1

j

)
Let sit ∈ {1, . . . ,m} be an indicator function for the individual i at time t,

which shows the normal distribution from which the shock received has been drawn

from. Therefore, the variance of ηit can be expressed as:

V ar
(
ηit/s

i
t

)
=

(
κigsit

)−1 [(
1−G

(
γ, c, τ it

))
+ φG

(
γ, c, τ it

)]
V ar

(
ηit/s

i
t

)
=

(
κigsit

)−1
kit (γ, c, φ) .

where kit (γ, c, φ) ≡ (1−G (γ, c, τ it )) +φG (γ, c, τ it ). I assume that the first age-period

shocks are given by:

ηi1,t = λ−.5
(
κ−.5i ξit

√
1−G (γ, c, τ it ) + φG (γ, c, τ it )

)
4For a detailed exposition of different applications of finite mixture models, see Everitt

and Hand (1981), Titterington, Smith and Makov (1985), and McLachlan and Peel (2000).
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where the factor λ allows me to capture the fact that a considerable size of the lifetime

earnings inequality is realized before the individual enters into the labor market (see

Keane and Wolpin, 1997; Storesletten, Telmer and Yaron, 2004; and Huggett, Ventura

and Yaron, 2011).

As can be seen from 2.3, at any point in time, the resulting process is a moving

weighted average of the different regimes, with the weights changing over the life cycle.

2.2.1 RIP versus HIP

In the empirical income macro literature, two types of models are widely used

to model the labor income dynamics: the Restricted Income Profile (RIP), and the

Heterogeneous Income Profile (HIP) model. The distinction between the two lies in

the growth rates of income: a RIP model assumes that the effect on income of an

extra year of labor market experience5 is common to all individuals, while a HIP

assumes that the effect is individual-specific. This unobservable individual-specific

effect gives a random-effect structure to the model instead of the RIP fixed-effect

structure.

This individual heterogeneity can be easily extended to the cubic polynomial

of labor market experience, but as pointed out by Baker (1997) and Guvenen (2009),

it does not substantially improve the model fit. The consensus is to keep the HIP

model with a simple structure and assume that the effects on income of the powers

of labor market experience are common to all agents.

5Alternatively, age can be used instead of labor market experience.
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The result is that a HIP model has lower persistence in the AR(1) process

than a RIP model, and the consequences are not trivial for the calibration of a macro

model with incomplete markets.

A RIP model can be summarized as follows:

yih(t),t = xi′h(t),tβ + εih(t),t + ωih(t),t

yih(t),t = α + h (t) β1 + x̃i′h(t),tβ2 + εih(t),t + ωih(t),t

where xih(t),t =
(

1, hi, x̃
i′
h(t),t

)′
, and β = (α, β1, β2)′ .

While a HIP is defined as:

yih(t),t = αi + h (t) βi1 + x̃i′h(t),tβ2 + εih(t),t + ωih(t),t

yih(t),t = xi′h(t),tβ
i + εih(t),t + ωih(t),t

where βi = (αi, βi1, β2)
′
.

Even though the economic rationale favors a HIP model6, the verdict is not

conclusive from a statistical point of view (see Abowd and Card, 1989; and Hryshko,

2012). In this chapter, I focus my analysis on a RIP model with age-dependent shocks.

2.3 Estimation

I study three models in this chapter: a conventional RIP model, a RIP model

with constant persistence and heterogeneity in the innovations, and a RIP model with

heterogeneity in both the persistence and the innovations.

6In a model with human capital accumulation, the differences in ability translate into
individual-specific growth rates of income.
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In each model, for the treatment effects of the logarithm of annual earnings I

include a cubic polynomial of age to capture the hump shape of mean earnings in the

life cycle, the logarithm of GDP per capita to control for the effects of any aggregate

shock in the economy7, and six educational categories:

• Elementary school (less than 8 years of education and Grades K-8)

• Some high school (9-11 years of education and Grades 9-11)

• High school graduate (12 years of education and Grade 12)

• Some college (13-15 years of education)

• College graduate (16 years of education)

• Graduate school (more than 16 years of education)

In the case of the conventional RIP, after controlling for the effects of the

observable characteristics, I identify the relevant moment conditions in the autoco-

variance matrix and proceed with the GMM estimation in the usual manner. For the

last two models, I follow a Bayesian approach and sample their posterior distributions

with Markov Chain Monte Carlo techniques.

2.3.1 Priors

My choices for prior distributions are centered in conjugate and uninformative

priors, depending on the information that I have available. The selection is stan-

dard. Appendix A includes a complete description and references to the values of the

7Instead of choosing the GDP per capita as a regressor to control for the effects of the
aggregate shocks in the economy, I could have controlled for time or cohort effects. These
last two options are common takes in the literature.
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hyperparameters. This is the list of the prior distributions:

1. ωih(t),t includes the measurement error and the transitory component of the

agent’s productivity. I assume that ωih(t),t/σ
2
t ∼ N (0, σ2

t ), and s2
ω (σ2

t )
−1 ∼

χ2 (νω) .

2. For the threshold variable c and the factor of proportionality φ, I choose an

uninformative prior distribution: p (c) ∝ 1 and p (φ) ∝ 1
φ
.

3. The smoothing parameter γ is distributed as a truncated Cauchy distribution:

p (γ) ∝
{

(1 + γ2)
−1

, γ > 0
0 , o.w.

.

4. I choose conjugate priors for sit and p: sit/p ∼ Multinomial
(
p
)
, and p ∼

Dir (α) , where α=(α1, . . . , αm)′ . Along the same lines, ξit/s
i
t = k ∼ N

(
0, g−1

k

)
,

with 1 ≤ k ≤ m. s2gj ∼ χ2
(
νg
)
.

5. The persistence ρ̃ has a normal distribution with mean µ
ρ̃

and precision hρI,

i.e. ρ̃ ∼ N
(
µ
ρ̃
, h−1

ρ I
)
.

6. β/ (µ,H) ∼ N (µ,H−1) , where µ ∼ N
(
µ
µ
, H−1

µ

)
and H ∼ Wishart (νH , SH)

7. s2
κκi ∼ χ2 (νκ) and s2

λλ ∼ χ2 (νλ) .

2.3.2 Posterior Distribution

The full posterior distribution of this model is the product of the LSTAR

likelihood and priors 1-7:

p
{(
y∗,
{
εih(t),t

}I,Ti
i=1,t=ti

, β,
{
σ2
t

}T
t=1

, ρ1, ρ2, γ, c, {κi}Ii=1 , λ, µ,H,p, {gj}
m
j=1 ,

{
sit
}I,Ti
i=1,t=ti

)
/y
}

(2.4)
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where yi =
(
yih(ti)ti

, . . . , yih(Ti)Ti

)′
and y = (y′1, . . . , y

′
I)
′ , as well as y∗i =

(
y∗,ih(ti)ti

, . . . , y∗,ih(Ti)Ti

)′
and y∗ = (y′∗1 , . . . , y

′∗
I )′, with y∗,ih(t),t being an imputed value, in case the value is missing

or top-coded, i.e.

yih(t),t =

{
yih(t),t, when the observation is present in the sample;

y∗,ih(t),t, when the observation is not present in the sample;

The object 2.4 has all the necessary information to infer the income dynamics

in the sample.

2.3.3 Markov Chain Monte Carlo Methods

The Markov Chain Monte Carlo Methods (MCMC) are simulation-based tech-

niques that consist of generating random draws that are neither independent nor

identically distributed, but rather form a Markov Chain that converges to an invari-

ant distribution that is the one under investigation (see Robert and Casella, 2010).

Two widely used MCMC methods to analyze a posterior distribution are the Gibbs

Sampler and the Metropolis-Hastings algorithm.

2.3.3.1 The Gibbs Sampler

The Gibbs Sampler (Geman and Geman, 1984) consists of partitioning 2.4,

and sampling each partition conditional on the other ones. A simple example will

illustrate the concept.

Suppose that the object of interest is p (θ | y) , the posterior distribution of

θ, with θ ∈ <k the parameter vector, and y ∈ <n the vector of observations. The

vector θ is split into the partitions θ0 and θ1. Let θ(0) =
(
θ

(0)
0 , θ

(0)
1

)′
be the starting
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point of the algorithm, and for each iteration m ∈ {1, . . . , B} of the Gibbs sampler,

new values are drawn and the partitions are updated iteratively in the following way:

θ
(m)
0 ∼ p

(
θ0 | θ(m−1)

1 , y
)

and θ
(m)
1 ∼ p

(
θ1 | θ(m)

0 , y
)

. Then,

p
(
θ(m) | θ(m−1), y

)
= p

(
θ

(m)
0 | θ(m−1)

1 , y
)
p
(
θ

(m)
1 | θ(m)

0 , y
)

For a sufficiently large B, this Markov Chain converges to an invariant distribution

that coincides with the distribution of interest p (θ | y).

Given the parameters of this model, I find it convenient to consider 15 blocks.

Of these, 12 are amenable to Gibbs sampling because the conditional distributions are

simple and follow known distributions. However, the other three blocks have distri-

butions from which random samples cannot be generated directly, and a Metropolis-

Hastings step within the Gibbs sampler is required. For complete algebraic derivations

of the posterior distributions of each partition, see Appendix B.

The 12 Gibbs Sampling steps are:

1. Sample y∗ conditional on β, {σ2
t }

T
t=1 ,

{
xih(t),t

}
i,t
, {sit}

I,Ti
i=1,t=ti

, {gj}mj=1 , ρ1, ρ2, γ,

c, φ, and y.

2. Sample
{
εih(t),t

}I,Ti
i=1,t=ti

conditional on y, y∗, β,
{
xih(t),t

}
i,t
, {σ2

t }
T
t=1 , ρ1, ρ2, γ,

c, {κi}Ii=1 , λ, φ, {sit}
I,Ti
i=1,t=ti

, and {gj}mj=1 .

3. Sample β conditional on y, y∗,
{
xih(t),t

}
i,t
,
{
εih(t),t

}I,Ti
i=1,t=ti

, µ,H, and {σ2
t }

T
t=1.

4. Sample {σ2
t }

T
t=1 conditional on y, y∗,

{
xih(t),t

}
i,t
,
{
εih(t),t

}I,Ti
i=1,t=ti

, and β.

5. Sample ρ̃ conditional on
{
εih(t),t

}I,Ti
i=1,t=ti

, γ, c, λ, {κi}Ii=1 , {sit}
I,Ti
i=1,t=ti

, φ,

and {gj}mj=1.
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6. Sample {κi}Ii=1 conditional on
{
εih(t),t

}I,Ti
i=1,t=ti

, (ρ1, ρ2) , λ, (γ, c) , φ, {sit}
I,Ti
i=1,t=ti

,

and {gj}mj=1.

7. Sample λ conditional on
{
εi1,ti
}I
i=1

, {κi}Ii=1 ,
{
siti
}I
i=1

, and {gj}mj=1.

8. Sample µ conditional on β, and H.

9. Sample H conditional on β, and µ.

10. Sample p conditional on {sit}
I,Ti
i=1,t=ti

.

11. Sample {sit}
I,Ti
i=1,t=ti

conditional on p,
{
εih(t),t

}I,Ti
i=1,t=ti

, {κi}Ii=1 , λ, ρ1, ρ2, γ, c, φ,

and {gj}mj=1.

12. Sample {gj}mj=1 conditional on {sit}
I,Ti
i=1,t=ti

,
{
εih(t),t

}I,Ti
i=1,t=ti

, {κi}Ii=1 , ρ1, ρ1, λ, γ, c,

and φ.

2.3.3.2 Metropolis-Hastings

There are three posterior distributions (3 blocks) that still need to be sampled

in order to have the full posterior distribution of the model. One way to do it is with

a Metropolis-Hastings algorithm (Metropolis et al., 1953; and Hastings, 1970).

The Metropolis-Hastings is a MCMC method that consists of drawing values

from an arbitrary density q (·), and accepting only those draws that are more likely

to be generated from the density p (·) under study. Under some regularity conditions,

the collection of accepted draws approximates well p (·).

Formally, let D ∈ <k be the support of the target distribution p (x) with

x ∈ D, and let q (x∗/x) with x∗ ∈ D be the arbitrary proposal density. At the

iteration m ∈ {1, . . . , N} of the algorithm and given x = x(m−1), the probability of



64

accepting a candidate draw x∗ is

α (x∗, x) = min

{
p (x∗)

p (x)

q (x/x∗)

q (x∗/x)
, 1

}
. (2.5)

If x∗ is accepted, x(m) = x∗, otherwise x(m) = x(m−1). A closer inspection of 2.5 shows

that a draw x∗ is more likely to be accepted if the chances to move from x to x∗ are

lower, and vice versa.

The Metropolis-Hastings acceptance criterion 2.5 ensures that a reversibility

condition is satisfied, and this is a sufficient condition to prove the convergence of the

Markov Chain, given by the collection of x(m) with m ∈ {1, . . . , N}. For a textbook

treatment of this MCMC method, see Chib and Greenberg (1995), and Geweke (2005).

In the solution of this model, I sample these three posterior distributions with

proposal densities that have the common property that q (x∗/x) is independent from

x8. This means that q (x∗/x) = q (x∗), and the acceptance criterion 2.5 is reduced to

α (x∗, x) = min

{
p (x∗)

p (x)

q (x)

q (x∗)
, 1

}
.

The Independent Metropolis-Hastings algorithms for the objects

(
γ/
{
εih(t),t

}I,Ti
i=1,t=ti

, c, (ρ1, ρ2) , λ, φ, {κi}Ii=1 ,
{
sit
}I,Ti
i=1,t=ti

, {gj}mj=1

)′
and (

φ/
{
εih(t),t

}I,Ti
i=1,t=ti

, ρ1, ρ2, γ, c, λ, {κi}Ii=1 ,
{
sit
}I,Ti
i=1,t=ti

, {gj}mj=1

)′
8A Metropolis-Hastings algorithm with this feature is also referred to as “Independent

Metropolis-Hastings”
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consists of draws taken from truncated normal distributions, with γ∗ ∼ N
(
µγ, σ

2
γ

)
I (aγ, bγ)

and φ∗ ∼ N
(
µφ, σ

2
φ

)
I (aφ, bφ).9

In the case of

(
c/
{
εih(t),t

}I,Ti
i=1,t=ti

, ρ1, ρ2, γ, φ, λ, {κi}Ii=1 ,
{
sit
}I,Ti
i=1,t=ti

, {gj}mj=1

)′
,

the variable c∗ is sampled from a discrete distribution in the support [ac, bc],

with the vector of probabilities pc. The parameters of the proposal densities are

chosen in such way that the acceptance probabilities are close to 30%. This ensures

a good mixing of the Markov Chain (see Müller, 1991; and Canova, 2007).

2.4 Panel Study of Income Dynamics (PSID)

The PSID is a rich panel dataset that has information for more than 9,000

families and 70,000 individuals, who have been followed since 1968. It is the largest

and longest household-based survey in the world and an excellent starting point to

study income dynamics in the United States.

My sample consists of male heads of households in the time period between

1968 and 1996, including those individuals satisfying the following conditions:

1. Has at least two consecutive earning observations;

2. Is between 20 and 64 years old at the time of the survey;

3. Does not belong to the Survey of Economic Opportunities sample (SEO);

9There are other ways to sample these objects. For instance, Lopes and Salazar (2006)

use a random-walk Metropolis chain to update (γ, φ, c), with γ∗ ∼ Γ

(
(γ(i))

2

∆γ
, γ

(i)

∆γ

)
, φ∗ ∼

Γ

(
(φ(i))

2

∆φ
, φ

(i)

∆φ

)
, and c∗ ∼ N

(
c(i),4c

)
I (ac, bc).
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4. Has positive values for hours and labor income10;

5. Has hourly labor income between $2 and $400 in 1993 dollars11;

6. Has worked between 520 and 5,110 hours every year12;

7. Has no missing values for years of education, nor any inconsistencies;

One particular feature of the PSID that needs to be taken into account: the

income reported is the income earned in the year before the survey takes place,

while all other variables refer to the same year. This mismatch makes things more

complicated in the first wave in 1968, where the income for 1967 is known but not

the values taken in that year for all the other variables. To a lesser extent, a similar

situation happens after 1997, when the PSID starts to have a biannual periodicity.

Therefore, I exclude the 1968, 1999-2011 waves from the sample.13

I start with a sample of 4,887 individuals and, after checking for any inconsis-

tency, my final sample is reduced to 4,548 individuals with 54,622 individual-year ob-

servations. On average, an individual is followed for 12 years. As shown in Table 2.1,

10The variables taken from the PSID for labor income are: V74, V514, V1196, V1897,
V2498, V3051, V3463, V3863, V5031, V5627, V6174, V6767, V7413, V8066, V9376, V8690,
V11023, V12372, V13624, V14671, V16145, V17534, V18878, V20178, V21484, V23323,
(ER4140+ER4117+ER4119), (ER6980+ER6957+ER6959), (ER9231+ER9208+ER9210),
and (ER12080+ER12065+ER12193).

11To deflate the labor income series, I use the CPI from the US Department Of Labor,
Bureau of Labor Statistics available at ftp://ftp.bls.gov/pub/special.requests/cpi/cpiai.txt

12The purpose of having an extreme value such as 5,110 hours is to discard those obser-
vations that are certainly misreported. To work 5,110 in a year implies working 16 hours a
day, 6 days a week. It is unlikely that anyone can work that much.

13The situation can be improved for the 1999-2011 waves by imputing the missing values
for income. A Bayesian approach is more convenient for dealing with situations of this sort.
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Table 2.1: Summary Statistics

5th Percentile : $8,999
25th Percentile : $19,631.52
Median: $30,072.29
Mean: $35,750
75th Percentile : $42,756.95
95th Percentile : $77,935.34

Std. deviation: $33,448.60
Interquantile Range: $23,125.43

Number of individuals: 4,548
Number of observations: 54,622

the mean and median income in the sample are $35,750 and $30,072, with a standard

deviation and interquantile range of $33,448 and $23,125 in 1993 dollars .

The earnings distribution has the typical right asymmetry for an income vari-

able, and a closer inspection of the medians in the boxplots, depicted in red in Figure

2.1, shows the typical hump shape for earnings in the life cycle. The interquantile

range, given by the size of the boxplots, is a robust measure of the income vari-

ability along the life cycle. It grows until individuals are in their mid-30s, remains

approximately constant until they reach their 40s, and starts to shrink thereafter.

A plausible economic interpretation is that these differences in the interquan-

tile ranges are a consequence of the individuals’ decisions to accumulate human cap-

ital in the life cycle (see Ben-Porath, 1967). Another hypothesis is that this vari-

ability in the interquantile ranges is due to occupational mobility in the life cycle,

with occupation-specific human capital (see Kambourov and Manovskii, 2009) and
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Figure 2.1: Boxplots by Age.
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occupations having a direct relationship between risk and return (see Cubas and Si-

los, 2012). Changes in the intra-household allocation (see Greenwood, Guner and

Knowles, 2003; and Knowles, 2012) or the “boomerang” of moving back to one’s par-

ent house as means of insurance against bad shocks (Kaplan, 2012) could be other

possible explanations.

Whether acquiring human capital, modulating risk, or intra-family dynamics

explains Figure 2.1, it is clear that to model income dynamics, the forces operating

in the life cycle must be taken into account.

2.5 Results

The size of the MCMC sample for the LSTAR(1) model is 20000 and seems

to converge in 5000 iterations. After discarding the initial 5000, a visual inspection

of the different trace plots shows a good mixing (see Figures 2.2 and 2.3). In the case

of the RIP model with constant persistence and heterogeneity in the innovations, the

MCMC sample is 14000 and seems to converge after 4000 iterations. These initial

4000 iterations are the burn-in phase of the algorithm and are thrown away. I repeat

the sampling from the posterior distributions several times, at different dispersed

starting points (Gelman and Rubin, 1992) to test for convergence, and the results are

favorable.

2.5.1 Bayesian RIP model

The benchmark and starting point is a conventional RIP model estimated with

GMM techniques. This is a standard model in the empirical macro literature and is



70

Figure 2.2: Trace plot for the threshold variable c.
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Figure 2.3: Trace plots for γ (left) and φ (right).
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Table 2.2: GMM

Parameters Values
ρ 0.96
σ2
α 0.043
σ2
η 0.11

generally used for the calibration of dynamic general equilibrium models.

Table 2.2 shows that the idiosyncratic earnings shocks in the life cycle are

persistent with a persistence parameter ρ equal to 0.96. This stationary AR(1) process

is close to a unit root process, and this high persistence has the practical implication

that an arbitrary shock is halved after 17 periods. This means that, assuming a

working life of 40 years, a worker spends more than 40% of his working life with the

effects of a shock that has not yet reduced in half.

Even though this model assumes that the income growth rate is common to all

agents, the starting point in the level of earnings is different for all workers. This is

represented by an intercept α which has a variance σ2
α; according to my estimations,

it is equal to 0.043. The innovations in the residual earnings have a variance σ2
η

equal to 0.11. The sum of σ2
α and σ2

η gives the variance of the idiosyncratic earnings

shocks for the first-age period without the transitory component of the variance. In

this case, this value is equal to 0.15 and means that a worker that suffers a one-

standard-deviation shock has a 37% increase in their earnings with respect to the

mean.14

14This increase can be explained in the following way: labor earnings in efficiency units
are modeled as exwθ, where w is the wage rate, θ is the hours worked, and x ∼ N

(
µ, σ2

)



73

Table 2.3: Persistence Parameters

Parameters Mean Std. Dev.
1 Regime: ρ 0.89 0.007
2 Regimes: ρ1 0.84 0.047
2 Regimes: ρ2 0.83 0.02

The first contender for this standard RIP is a model similar to the LSTAR(1)

previously presented but with just one regime. This means that this model is a RIP

with constant persistence in the life cycle and a rich structure of heterogeneity in

the innovations. Table 2.3 indicates that the posterior distribution of the persistence

parameter ρ has a mean of 0.89 and a standard deviation of 0.007. Moreover, as

can be seen in Figure 2.4, there is a 99% probability that the posterior value of ρ is

between 0.87 and 0.91. This means that the GMM value for ρ of 0.96 is not even

possible in this model.

In order to put into perspective this reduction in the value of ρ, a persistence

of 0.89 implies that a shock is halved in 6 periods: in contrast, it takes 17 periods for

a shock to be halved in the conventional model. Naturally, this significant reduction

in the persistence of the shocks has nontrivial economic implications and points out

the importance of the model specification.

Why does this reduction in the value of ρ occur? Even though the purpose of

this chapter is not to explain the reasons for this difference, it is interesting to point

is the earnings shocks. Therefore, the efficiency units ex is a log-normal random variable
with mean eµ+σ2/2. If a worker suffers a shock with a value of one-standard-deviation from
the mean µ, the increase in labor earnings is eσ−σ

2/2.
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Figure 2.4: Posterior density estimation for ρ in a model with 1 Regime.
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out some possible explanations. First, one might be tempted to think it is due to the

innovations’ structure, but unless the innovations are not orthogonal to the ε′s, this

conditional heteroscedasticity only affects the efficiency of the GMM estimator, not

its unbiasedness.

Another potential explanation is related to the asymptotic distribution of the

estimate of ρ, ρ̂. It is well known that ρ̂ is not asymptotically normal in an AR(1)

process when ρ → 1. This is one of the few cases, as pointed by Sims and Uhlig

(1991), in which the Bayesian posterior probability statements do not coincide with

the frequentist statements that emerge from the p-values. Sims and Uhlig (1991)

simulate the joint distribution of ρ̂ and ρ, and they show how the distribution of ρ̂

conditional to ρ becomes asymmetric, with high probability on values higher than 1,

as ρ is close to 1. They show that, on the contrary, the distribution of ρ conditional

to ρ̂ remains normal and well-behaved. Then, as an exemplar for selected values of ρ,

they find the prior distributions of ρ that will make the Bayesian posterior probability

statements equivalent to the corresponding statements from the p-values. All of these

priors puts a high probability on values of ρ higher than 1.

Therefore, in order to reach the same conclusions in the estimation of ρ in the

GMM and the Bayesian approach, one needs to assume a priori that it is highly likely

for ρ to be close to 1. This would be why the value of the GMM estimate is higher

than the posterior mean of ρ.

The parameters g−1, κ−1
i and λ−1 are the components of the variance of the

innovations. Figures 2.5 and 2.6 show the posterior distribution of λ−1 and g, while
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Figure 2.5: Posterior density estimation for λ−1 in a model with 1 Regime.
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Table 2.4: Variance components (1 regime)

Parameters Mean 25% 50% 75%
λ−1 0.0043 0.004 0.00424 0.0045
κ−1
i 0.517 0.372 0.441 0.608
g 0.0107 0.0103 0.0106 0.0111

Figure 2.7 refers to the boxplot of κ−1
i . It is interesting to notice that 75% of the

individuals in the sample have κ−1
i with values less than 0.608 (see Table 2.4), but

there is a proportion that has κ−1
i greater than 1. This means that in the sample there

is a group of individuals with a higher conditional variance than the rest. Because,

it was not possible to identify this group in the conventional RIP model, there might

be an upward bias in the variance estimation of the conventional RIP model.

The mean of the initial variance of the shocks in the first age-period is the

product of the mean of g−1, κ−1
i and λ−1 and is equal to 0.20. In economic terms, this

means that a positive one-standard-deviation shock represents 42% higher earnings

with respect to the mean earnings.

Both models deliver similar stories in the dispersion of the initial shocks. How-

ever, the wide dispersion of values for κ−1
i , which is not taken into account by the

conventional RIP, and the differences in the value of ρ suggest some potential draw-

backs in the standard specification.

2.5.2 LSTAR(1) model

In the previous subsection, the standard model used in the empirical macro

literature was compared against a RIP model with constant persistence and hetero-
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Figure 2.6: Posterior density estimation for the precision g in a model with 1 Regime.
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Figure 2.7: Posterior density estimation for κ−1 in a model with 1 Regime.
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Table 2.5: Parameters of the weight function.

Parameters Mean Std. Dev 25% 50% 75%
c 29.73 1.609 28 29 31
γ 0.0305 0.008 0.025 0.03 0.036

geneity in the innovations. Now, the assumption of a constant persistence is left and

the standard RIP is compared to a LSTAR(1) model which, by definition, exhibits

heterogeneity in the persistence and the innovations.

In a LSTAR(1) model two regimes are connected with a smooth transition

function. Depending on how close the variable age is from a threshold, the weights

assigned to each regime change and the nature of the idiosyncratic shocks changes in

every point of the life cycle.

Figure 2.8 depicts the histogram for the posterior distribution of the threshold

variable c, and Table 2.5 shows the summary statistics. The histogram for c reveals

that there is a probability higher than 50% that the threshold is between 28 and 29

years old, with 28 being the mode of the distribution and the most likely value.

This result means that a worker in his twenties experiences different shocks

than an older worker. If we want to know the economic reasons for this, we need to

inquire on the changes that happen during this time in the life of a worker. It might

be the case that questions related with job mobility, labor experience or changes in

the composition of the household are relevant.

The weight function that connects both regimes plays an important role in the

estimation results. The parameter γ controls the smoothness of this function and, in
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Figure 2.8: Histogram for the threshold variable age.
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Figure 2.9: Posterior density estimation for γ.

this case, has a posterior mean of 0.03 and a standard deviation of 0.008 (see Table

2.5). An inspection of Figure 2.9 shows that there is a 50% posterior probability that

γ is between 0.025 and 0.036. The parameters γ and c complete the description of

the weight function. This will matter for the analysis of the persistence parameters

ρ′s and the variance of the innovations.

It is quite interesting to notice what happens with ρ1 and ρ2. The posterior

means of ρ1 and ρ2 are 0.84 and 0.83, with a standard deviation of 0.047 and 0.02
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Figure 2.10: Joint posterior distribution of ρ1 and ρ2.

respectively and a correlation coefficient of -0.28 (see Table 2.3). Their joint poste-

rior distribution in Figure 2.10 has an important mass of probability in the region

[0.75, 0.95]× [0.80, 0.85].

It seems most likely that ρ1 should be higher than ρ2 and is true that there is a

positive probability for the persistence parameter ρ1 to be lower than the persistence

ρ2. However, the actual ρ in the life cycle is a convex combination of ρ1 and ρ2. This

weighted ρ does not show considerable variation in the life cycle, having a minimum
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Figure 2.11: Posterior density estimation for ρ1 (above) and ρ2 (below).

value of 0.829 and maximum value of 0.835.

This actual ρ is approximately equal to 0.83 and implies that a shock is halved

in 3.7 periods, significantly less than the 17 periods needed in the conventional RIP

model. The marginal densities for ρ are in Figure 2.11. The wide posterior dispersion

of ρ1 suggests that there might be forces in action that a threshold like age is unable

to detect.

The effect of the nonlinearities on the persistence parameters translates into
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Figure 2.12: Posterior mean of kit (γ, c, φ).

a reduction of the weighted ρ’s value and seems not to affect the difference between

ρ1 and ρ2. The situation is different for the variance of the innovations.

There are two parameters that show the effect of these nonlinearities on the

variance of the idiosyncratic shocks. These parameters are φ and kit (γ, c, φ), where φ

is the ratio of the variance of the second regime with respect to the first regime, and

kit (γ, c, φ) is the component of the variance that captures the nonlinearity effects.

Figure 2.12 shows the behavior of kit (γ, c, φ) for the average φ, c and γ, and it
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Table 2.6: Variance components (2 regimes).

Parameters Mean 25% 50% 75%
λ−1 0.0042 0.004 0.0042 0.0044
κ−1
i 0.477 0.357 0.408 0.546
g 0.005 0.0045 0.0049 0.0054
φ 0.397 0.37 0.398 0.426

is clear how the variance of the innovations is reduced as agents get older. Table 2.6

and Figure 2.13 indicate that there is a 50% posterior probability that φ is between

0.37 and 0.42, and the average of the ratio of these two variances is almost 40%. The

stationary variance of the regime for the young workers is 2.5 times the stationary

variance of regime for the old workers.15 While the actual variance in the life cycle of

a worker of 64 years is 74% of the corresponding variance for a 19-year-old worker.

The individual-specific component of the variance κ−1
i shows a similar behavior

as in the previous subsection. It has a posterior mean of 0.48 and 75% of the indi-

viduals in the sample have values of κ−1
i below 0.55. However, there is nonnegligible

proportion of individuals with values higher than 1 (see Figure 2.14). The posterior

distribution of the rest of the components of the variance, λ and g, can be seen in

Figures in 2.15 and 2.16.

The initial variance in the first-age period in this model is 0.30, which means

that a one-standard-deviation shock represents a 49% increase in labor earnings with

respect to the mean.

15The stationary variance of an AR(1) process with correlation coefficient ρ and variance

for the error term σ2 is equal to σ2

1−ρ2 .
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Figure 2.13: Posterior density estimation for φ.
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Figure 2.14: Boxplot for the posterior distribution of κ−1
i in a LSTAR(1).
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Figure 2.15: Posterior distribution of λ−1 in a LSTAR(1).
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Figure 2.16: Posterior distribution of the precision g in a LSTAR(1).
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2.6 Conclusion

In this chapter, I have shown an age profile in the idiosyncratic earnings shocks

and introduced for the first time a Smoothed Transition Autoregressive model for the

persistent component of the residual earnings. This nonlinear model has the main

advantage of disentangling the economic forces acting in the life cycle and a simple

structure capable of capturing the intrinsic complexity of an income process.

I have departed from the standard GMM framework used in the literature

by following a Bayesian approach. From a methodological point of view, Bayesian

methods are capable of dealing with nonlinearities and levels of heterogeneity in the

income process which are not easy to estimate with GMM techniques. They are better

suited to deal with a data set like the PSID, which has top-coded observations and a

biannual periodicity since 1997, where missing values need to be imputed. Moreover,

they simplify the estimation of income processes where the persistent component is

not directly observable and filtering techniques need to be applied.

My results show that workers younger than 29 experience income shocks with

higher variance and a positive probability of having a lower persistence than older

workers. These variances have significant differences in magnitude. On the one hand,

shocks seem to be riskier; however, they last less time when the worker is younger.

The opposite is true when the worker is older. The high dispersion in the posterior

distribution of the persistence when a worker is young suggests that using age as a

threshold variable might not give a complete picture of what is seen in the data.

A comparison of a RIP model with constant persistent and heterogeneity with
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respect to a standard RIP shows the unexpected result that the mean of ρ is lower

in the first model. Even though the purpose of this chapter is not to explain this

difference, one possible explanation could be the unit root problem pointed out by

Sims and Uhlig (1991). If that happens to be the case, Bayesian methods should be

the standard in the literature.

Possible venues for further research are the extension of this model to a HIP

setting and the introduction of new threshold variables, such as level of income,

whether the economy is in recession or not, occupational mobility, and the sectors

where the head of household is employed. After these extensions are studied, one can

apply a model selection criterion and with the best model simulate earning paths in

the life cycle. These simulations should be contrasted with the ones obtained with

a standard model at different age bins and compared with the actual earning paths

seen in the data. This comparison will shed light on the goodness of fit of different

models and their economic implications.

Perhaps because of the difficulties of modeling income processes with nonlin-

earities, few papers consider an age profile in the earnings shocks. This chapter fills

this gap and shows that these difficulties can be easily overcome and can substantially

improve our understanding of different economic phenomena.
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APPENDIX A
HYPERPARAMETERS

The values of the hyperparameters are set in such way that the prior distri-

butions are flexible enough to cover the range of all possible and reasonable values of

the parameters under investigation. My choices are in line with previous estimations

made in the literature. A good reference in this matter is Heathcote, Storesletten and

Violante (2010).

The nuisance term ωih(t),t includes the transitory component in the agent’s

productivity together with the measurement error present in the survey. As was

described in the main body of the paper, the variance ωih(t),t is distributed as a chi-

squared. My choice of hyperparameters is νω = 200 and s2
ω = 15, implying that

P (0.064 ≤ σ2
t ≤ 0.089) = 0.9. Moreover, there is a 99% probability that σ2

t is between

0.02 and 0.11.

For g−1
j , I choose s2 = 0.2 and νg = 2 which means that the variance of ηit in

the autoregressive component of the income process is between 0.033 and 1.95 with

a 90% probability. Formally, P
(
0.033 ≤ g−1

j ≤ 1.95
)

= 0.9 ∀j.

The vector p is distributed as a Dirichlet distribution with α = 10 × 1M ,

making it uniform over the M − 1 simplex, with p′js similar to each other and away

from zero.

With respect to the persistence parameters, the mean of the random vector

ρ̃ is µρ̃ = (0.5, 0)′ and the precision is hρI = 0.5I. The parameter λ that multiplies

the variance of the first age-period shocks is distributed as s2
λλ ∼ χ2 (νλ) with s2

λ = 2
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and νλ = 2, which gives a P (0.33 ≤ λ−1 ≤ 19.5) = 0.9. As can be seen, this is not

an informative prior. However, it seems reasonable to allow for a λ that could reduce

the variance in the first age-period by a third or increase it by a factor of twenty.

I choose µ to have mean 0 and considerable dispersion, making the prior

uninformative. The values chosen are µ
µ

= 0 and Hµ = 0.01I. In the same line,

H ∼ Wishart (νH , SH) with νH = 10 and SH = 1, 000I.

Finally, the agent-specific component κi of the variance of ηit is distributed as

a chi-squared random variable, where the degrees of freedom νκ and the multiplying

constant s2
κ are chosen in such way that the individual variance can be multiplied

by values that could potentially augment it by a factor of 10 or diminish it by 10%

with a high probability, i.e., s2
κκi ∼ χ2 (νκ) with s2

κ = 1 and νκ = 2, which implies

P
(
0.17 ≤ κ−1

i ≤ 9.75
)

= 0.9.
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APPENDIX B
POSTERIOR DISTRIBUTIONS

In this appendix, I derive the posterior distributions of the parameters of

interest in each of the Gibbs sampler steps:

•
(
y∗/
{
xih(t),t

}
i,t
, β, {σ2

t }
T
t=1 , {sit}

I,Ti
i=1,t=ti

, {gj}mj=1 , ρ1, ρ2, γ, c, φ, y

)′
Our starting point is:

yih(t),t = xi′h(t),tβ + εih(t),t + ωih(t),t

εih(t),t =
[(

1−G
(
γ, c, τ it

))
ρ1 +G

(
γ, c, τ it

)
ρ2

]︸ ︷︷ ︸
mit(γ,c,ρ1,ρ2)

εih(t)−1,t−1 + ηit

Then,

εih(t),t = yih(t),t−xi′h(t),tβ−ωih(t),t and yih(t),t = xi′h(t),tβ+mi
t (γ, c, ρ1, ρ2) εih(t)−1,t−1 +

ηit + ωih(t),t

Combining both equations, we have:

yih(t),t = xi′h(t),tβ +mi
t (γ, c, ρ1, ρ2)

(
yih(t)−1,t−1 − xi′h(t)−1,t−1β − ωih−1,t−1

)
+ ηit+

+ωih(t),t

yih(t),t =
(
xih(t),t −mi

t (γ, c, ρ1, ρ2)xih(t)−1,t−1

)′
β+mi

t (γ, c, ρ1, ρ2) yih(t)−1,t−1+ωi′h(t),t−

−mi
t (γ, c, ρ1, ρ2)ωih−1,t−1 + ηit

Using the above, we can find the posterior distribution:

p

(
y∗,ih(t),t/

{
xih(t),t

}
i,t
, β, {σ2

t }
T
t=1 , {sit}

I,Ti
i=1,t=ti

, {gj}mj=1 , ρ1, ρ2, γ, c, φ, y

)
∝

∝ p
(
yih(t)+1,t+1/y

∗,i
h(t),t, · · ·

)
p
(
y∗,ih(t),t/y

i
h(t)−1,t−1, · · ·

)
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∝ exp


−1

2



σ2
t+1 +mi

t+1 (γ, c, ρ1, ρ2)2 σ2
t + V ar

(
ηit+1

)︸ ︷︷ ︸
Rt+1


−1

×

×

[
yih(t)+1,t+1 −

(
xih+1,t+1 −mi

t+1 (γ, c, ρ1, ρ2)xih(t),t

)′
β−

−mi
t+1 (γ, c, ρ1, ρ2) y∗,ih(t),t

]2

+

+R−1
t

[
y∗,ih(t),t −

(
xih(t),t −mi

t (γ, c, ρ1, ρ2)xih(t)−1,t−1

)′
β−

−mi
t (γ, c, ρ1, ρ2) yih(t)−1,t−1

]2





∝ exp


−1

2



(
y∗,ih(t),t

)2 [(
mi
t+1 (γ, c, ρ1, ρ2)

)2
R−1
t+1 +R−1

t

]
−

−2y∗,ih(t),t



R−1
t+1m

i
t+1 (γ, c, ρ1, ρ2)×

×

(
yih(t)+1,t+1−(

xih+1,t+1 −mi
t+1 (γ, c, ρ1, ρ2)xih(t),t

)′
β

)

+ R−1
t


(

xih(t),t−
mi
t (γ, c, ρ1, ρ2)xih(t)−1,t−1

)′
β+

+mi
t (γ, c, ρ1, ρ2) yih(t)−1,t−1








∝ exp

{
−1

2
hy

(
y∗,ih(t),t − µy

)2
}

where

hy =
(
mi
t+1 (γ, c, ρ1, ρ2)

)2
R−1
t+1 +R−1

t

and

µy = h
−1

y



R−1
t+1m

i
t+1 (γ, c, ρ1, ρ2)×

×
(
yih(t)+1,t+1 −

(
xih+1,t+1 −mi

t+1 (γ, c, ρ1, ρ2)xih(t),t

)′
β

)
+

+R−1
t

[ (
xih(t),t −mi

t (γ, c, ρ1, ρ2)xih(t)−1,t−1

)′
β−

mi
t (γ, c, ρ1, ρ2) yih(t)−1,t−1

]


Therefore,

y∗,ih(t),t/ · · · ∼ N
(
µy, h

−1

y

)
.

In the case that y∗,ih(t),t is top-coded, I impute a value from the distribution

y∗,ih(t),t/ · · · ∼ N
(
µy, h

−1

y

)
I
(
y∗,ih(t),t

)
[y,+∞)

, where y is the top-coded value given

in the sample.
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• (
{
εih(t),t

}I,Ti
i=1,t=ti

/
{
xih(t),t

}
, β, {σ2

t }
T
t=1 , {ρi}

2
i=1 , γ, c, λ, φ, {κi}

I
i=1 , {sit}

I,Ti
i=1,t=ti

,

{gj}j , y, y
∗)′

Following Durbin and Koopman (2002), we have for each individual i, condi-

tional on {sit}
Ti
ti , a conditionally linear Gaussian state-space model given by:{

ỹih(t),t = yih(t),t − xi′h(t),tβ = εih(t),t + ωih(t),t

εih(t),t = mi
t (γ, c, ρ1, ρ2) εih(t)−1,t−1 + ηit

(A.1)

where ωih(t),t ∼ N (0, σ2
t ) and ηit/s

i
t ∼ N

(
0, g−1

sit

)
.

Let wi =
(
ωih(ti),ti

, ηiti , . . . , ω
i
h(Ti),Ti

, ηiTi

)′
, ỹi =

(
ỹih(ti),ti

, . . . , ỹih(Ti),Ti

)′
and εi =(

εih(ti),ti
, . . . , εih(Ti),Ti

)′
,

where wi ∼ N (0,Ω) , with Ω = diag

(
σ2
ti
, g−1
siti
, . . . , σ2

Ti
, g−1
siTi

)
.

Step 1: Take a random draw from w+ ∼ N (0,Ω) and use it to generate ỹi+

and εi+ from the recursion (A.1).

Step 2: Apply the Kalman filter (Kalman, 1960) and the disturbance smoother

to ỹi+ and ỹi :

Let

ε̂ih(t),t/t−1 = E
(
εih(t),t/ỹ

i
h(t)−1,t−1, s

i
t

)
eit = ỹih(t),t − ε̂ih(t),t/t

Rt/t−1 = V ar
(
εih(t),t/ỹ

i
h(t)−1,t−1, s

i
t

)
=

(
mi
t (γ, c, ρ1, ρ2)

)2
Rt−1/t−1 + g−1

sit

Pt/t−1 = V ar
(
ỹih(t),t/ỹ

i
h(t)−1,t−1, s

i
t

)
= Rt/t−1 + σ2

t
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As,

[(
ỹih(t),t

εih(t),t

)
/ỹih(t)−1,t−1, s

i
t

]
∼ N

((
ε̂ih(t),t/t−1

ε̂ih(t),t/t−1

)
,

(
Pt/t−1 Rt/t−1

R′t/t−1 Rt/t−1

))

Then,

ε̂ih(t),t/t = ε̂ih(t),t/t−1 +Rt/t−1P
−1
t/t−1︸ ︷︷ ︸

Kt

eit

Rt/t = Rt/t−1 −Rt/t−1P
−1
t/t−1Rt/t−1

= (I −Kt)Rt/t−1

The disturbance smoother is given by:

ŵt = E
(
wt/ỹ

i
)

=

(
σ2
tP
−1
t/t−1 −σ2

tK
′
t

0 g−1
sit

)(
eit
rt

)

where

rt−1 = P−1
t/t−1e

i
t +
(
mi
t (γ, c, ρ1, ρ2)−Kt

)
rt

with rTi ≡ 0.

Step 3: Compute ε̂i+ = E
(
εi+/ỹi+, {sit}

Ti
t=ti

)
and ε̂i = E

(
εi/ỹi, {sit}

Ti
t=ti

)
with

the forwards recursion:

ε̂ih(t)+1,t+1 = mi
t (γ, c, ρ1, ρ2) ε̂ih(t),t + g−1

sit
rt

Step 4: Keep ε̃i = εi+ − ε̂i+ + ε̂i.

Finally, {
ε̃i
}I
i=1
∼ p

({
εih(t),t

}I,Ti
i=1,t=ti

/ . . .
)
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•
(
β/
{
xih(t),t

}
i,t
, {σ2

t }
T
t=1 ,

{
εih(t),t

}I,Ti
i=1,t=ti

, µ,H, y, y∗
)′

p

(
β/
{
xih(t),t

}
i,t
, {σ2

t }
T
t=1 ,

{
εih(t),t

}I, Ti
i=1,t=ti

, µ,H, y, y∗
)
∝

∝
[
I∏
i=1

Ti∏
t=ti

p
(
yih(t),t/x

i
h(t),t, β, σ

2
t , ε

i
h(t),t

)]
p (β/µ,H)

∝
{

I∏
i=1

Ti∏
t=ti

exp

[
− 1

2σ2
t

(
yih(t),t − xih(t),tβ − εih(t),t

)2
]}

exp
{
−1

2
(β − µ)′H (β − µ)

}
∝ exp

[
−1

2

I∑
i=1

Ti∑
t=ti

(
yi
h(t),t

−xi′
h(t),t

β−εi
h(t),t

σt

)2
]

exp
{
−1

2
(β − µ)′H (β − µ)

}
∝ exp

{
−1

2

[
β′

I∑
i=1

Ti∑
t=ti

xi
h(t),t

xi
′
h,t

σ2
t

β − 2β′
I∑
i=1

Ti∑
t=ti

xi
h(t),t(yih(t),t−εih(t),t)

σ2
t

+ β′Hβ − 2β′Hµ

]}
∝ exp

{
−1

2

[
β′
(

I∑
i=1

Ti∑
t=ti

xi
h(t),t

xi′
h(t),t

σ2
t

+H

)
β − 2β′

(
I∑
i=1

Ti∑
t=ti

xi
h(t),t(yih(t),t−εih(t),t)

σ2
t

+Hµ

)]}
∝ exp

{
−1

2

[(
β − µβ

)′
Hβ

(
β − µβ

)]}
whereHβ =

I∑
i=1

Ti∑
t=ti

xi
h(t),t

xi′
h(t),t

σ2
t

+H and µβ = H
−1

β

(
I∑
i=1

Ti∑
t=ti

xi
h(t),t(yih(t),t−εih(t),t)

σ2
t

+Hµ

)
.

Thus,

β/

({
xih(t),t

}
i,t
, {σ2

t }
T
t=1 ,

{
εih(t),t

}I, Ti
i=1, t=ti

, µ,H, y, y∗
)
∼ N

(
µβ, H

−1

β

)
.

•
(
{σ2

t }
T
t=1 /

{
xih(t),t

}
i,t
, β,
{
εih(t),t

}I,Ti
i=1,t=ti

, y, y∗
)′

p
(
σ2
t /
{
xih(t),t

}
i
, β,
{
εih(t),t

}
i
, y, y∗

)
∝

∝
[ ∏
i∈Bt

p
(
yih(t),t/x

i
h(t),t, β, σ

2
t , κi, ε

i
h(t),t

)]
p (σ2

t )

where Bt =
{
i ∈ I s.t. yih(t),t is in the sample

}
, and ntI = #Bt

∝ (σ2
t )
−n

t
I
2 exp

{
− 1

2σ2
t

∑
i∈Bt

(
yih(t),t − xi′h(t),tβ − εih(t),t

)2
}

(σ2
t )
−( νω2 −1) exp

{
− 1

2σ2
t
s2
ω

}

∝ (σ2
t )
−
(
ntI
2

+ νω
2
−1

)
exp

− 1
σ2
t


∑
i∈Bt

(
yih(t),t − xi′h(t),tβ − εih(t),t

)2

+ s2
ω

2




∝ (σ2
t )
−
(
ntI
2

+ νω
2
−1

)
exp

{
− 1
σ2
t

[
ntIs

2
ω,t+s

2
ω

2

]}
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∴ (σ2
t )
−1
/ · · · ∼ Γ

ntI
2

+ νω
2
,

∑
i∈Bt

(
yih(t),t − xi′h(t),tβ − εih(t),t

)2

+ s2
ω

2


•
(
ρ̃/
{
εih(t),t

}I,Ti
i=1,t=ti

, γ, c, λ, φ, {κi}Ii=1 , {sit}
I,Ti
i=1,t=ti

, {gj}mj=1

)′
p

(
ρ̃/
{
εih(t),t

}I,Ti
i=1,t=ti

, γ, c, λ, φ, {κi}Ii=1 , {sit}
I,Ti
i=1,t=ti

, {gj}mj=1

)
∝

∝
{

I∏
i=1

Ti∏
t=ti+1

p

(
εih(t),t/

{
εih(t),t

}t−1

ti
, ρ̃, γ, c, λ, φ, κi, {sit}

t
t=ti

, {gj}mj=1

)}
× p (ρ̃)

∝
{

I∏
i=1

Ti∏
t=ti+1

p
(
εih(t),t/ε

i
h(t)−1,t−1, · · ·

)}
× p (ρ̃)

∝
{

I∏
i=1

Ti∏
t=ti+1

exp

{
−1

2

[
κigsit

kit(γ,c,φ)

(
εih(t),t − εi (γ, c)h(t)−1,t−1 ρ̃

)2
]}}

×

× exp
{
−1

2
hρ (ρ̃− µρ̃)′ (ρ̃− µρ̃)

}
∝ exp

−1
2


I∑
i=1

Ti∑
t=ti+1

κigsit
kit(γ,c,φ)

(
εih(t),t − εi (γ, c)h(t)−1,t−1 ρ̃

)2

+

+ hρ (ρ̃− µρ̃)′ (ρ̃− µρ̃)




∝ exp

−1
2


I∑
i=1

Ti∑
t=ti+1

κigsit
kit(γ,c,φ)

(
ρ̃′εi (γ, c)′h(t)−1,t−1 ε

i (γ, c)h(t)−1,t−1 ρ̃−
−2ρ̃′εi (γ, c)′h(t)−1,t−1 ε

i
h(t),t

)
+ hρ (ρ̃′ρ̃− 2ρ̃′µρ̃)




∝ exp

−1
2


ρ̃′
(

I∑
i=1

Ti∑
t=ti+1

κigsit
kit(γ,c,φ)

εi (γ, c)′h(t)−1,t−1 ε
i (γ, c)h(t)−1,t−1

)
ρ̃−

−2ρ̃′
(

I∑
i=1

Ti∑
t=ti+1

κigsit
kit(γ,c,φ)

εi (γ, c)′h(t)−1,t−1 ε
i
h(t),t

)
+ hρ (ρ̃′ρ̃− 2ρ̃′µρ̃)




∝ exp

−1
2


ρ̃′
(

I∑
i=1

Ti∑
t=ti+1

κigsit
kit(γ,c,φ)

εi (γ, c)′h(t)−1,t−1 ε
i (γ, c)h(t)−1,t−1 + hρI

)
ρ̃−

−2ρ̃′
(

I∑
i=1

Ti∑
t=ti+1

κigsit
kit(γ,c,φ)

εi (γ, c)′h(t)−1,t−1 ε
i
h(t),t + hρµρ̃

)



∝ exp
{
−1

2

[(
ρ̃− µρ̃

)′
H ρ̃

(
ρ̃− µρ̃

)]}
where H ρ̃ =

I∑
i=1

Ti∑
t=ti+1

κigsit
kit(γ,c,φ)

εi (γ, c)′h(t)−1,t−1 ε
i (γ, c)h(t)−1,t−1 + hρI, and

µρ̃ = H
−1

ρ̃

[
I∑
i=1

Ti∑
t=ti+1

κigsit
kit(γ,c,φ)

εi (γ, c)′h(t)−1,t−1 ε
i
h(t),t + hρµρ̃

]
∴ ρ̃/ . . . ∼ N

(
µρ̃, H

−1

ρ̃

)
•
(

(γ, c) /
{
εih(t),t

}I,Ti
i=1,t=ti

, (ρ1, ρ2) , λ, φ, {κi}Ii=1 , {sit}
I,Ti
i=1,t=ti

, {gj}mj=1

)′
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Let A = {i : individual i has a first-age period observation} , and q = #A.

p

(
(γ, c) /

{
εih(t),t

}I,Ti
i=1,t=ti

, (ρ1, ρ2) , λ, φ, {hi}Ii=1 , {sit}
I,Ti
i=1,t=ti

, {gj}mj=1

)
∝

∝
{

I∏
i=1

Ti∏
t=ti

p

(
εih(t),t/

{
εih(t),t

}t−1

ti
, (ρ1, ρ2) , γ, c, λ, φ, hi, µρ1 , hρ1 , {sit}

ti
t=ti

, {gj}mj=1

)}
×p (γ) p (c)

∝
{

I∏
i=1

Ti∏
t=ti

p
(
εih(t),t/ε

i
h(t)−1,t−1, · · ·

)}
p (γ) p (c)

∝

{
I∏
i=1

Ti∏
t=ti

(
higsit

kit(γ,c,φ)

) 1
2

exp

{
−1

2

[
λI(t=tiˆi∈A)higsit

kit(γ,c,φ)

(
εih(t),t − εi (γ, c)h(t)−1,t−1 ρ̃

)2
]}}

×p (γ) p (c)

∝

{
I∏
i=1

Ti∏
t=ti

(
higsit

kit(γ,c,φ)

) 1
2

exp

{
−1

2

[
λI(t=tiˆi∈A)higsit

kit(γ,c,φ)

(
εih(t),t − εi (γ, c)h(t)−1,t−1 ρ̃

)2
]}}

× (1 + γ2)
−1
I (γ > 0)

∝
{

I∏
i=1

Ti∏
t=ti

(kit (γ, c, φ))
−1

}
(1 + γ2)

−1
I (γ > 0)

× exp

{
−1

2

[
I∑
i=1

Ti∑
t=ti

λI(t=tiˆi∈A)higsit
kit(γ,c,φ)

(
εih(t),t − εi (γ, c)h(t)−1,t−1 ρ̃

)2
]}

•
(
{κi}Ii=1 /

{
εih(t),t

}I,Ti
i=1,t=ti

, (ρ1, ρ2) , (γ, c) , λ, φ, {sit}
I,Ti
i=1,t=ti

, {gj}mj=1

)′
p

(
κi/
{
εih(t),t

}Ti
t=ti

, (ρ1, ρ2) , (γ, c) , λ, φ, {sit}
Ti
t=ti

, {gj}mj=1

)
∝

∝
{

Ti∏
t=ti

p

(
εih(t),t/

{
εih(t),t

}t−1

ti
, (ρ1, ρ2) , γ, c, λ, φ, κi, µρ1 , hρ1 , s

i
t, {gj}

m
j=1

)}
p (κi)

∝
{

Ti∏
t=ti

p
(
εih(t),t/ε

i
h(t)−1,t−1, · · ·

)}
p (κi)

∝ (κi)
Ti
2 exp

{
−1

2

Ti∑
t=ti

λI(t=tiˆi∈A)κigsit
kit(γ,c,φ)

(
εih(t),t − εi (γ, c)h(t)−1,t−1 ρ̃

)2
}

(κi)
νκ
2
−1

× exp
{
−1

2
s2
κκi
}

∝ (κi)
Ti+νκ

2
−1 exp

{
−κi 1

2

[
Ti∑
t=ti

λI(t=tiˆi∈A)g
sit

kit(γ,c,φ)

(
εih(t),t − εi (γ, c)h(t)−1,t−1 ρ̃

)2

+ s2
κ

]}
∴ κi/ . . . ∼ Γ

(
Ti+νκ

2
, 1

2

[
Ti∑
t=ti

λI(t=tiˆi∈A)g
sit

kit(γ,c,φ)

(
εih(t),t − εi (γ, c)h(t)−1,t−1 ρ̃

)2

+ s2
κ

])
•
(
λ/
{
εi1,ti
}
i∈A , {κi}i∈A ,

{
siti
}
i∈A , {gj}

m
j=1 , γ, c, φ

)′
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p
(
λ/
{
εi1,ti
}
i∈A , {κi}i∈A ,

{
siti
}
i∈A , {gj}

m
j=1 , γ, c, φ

)
∝

∝
∏
i∈A

p
(
εi1,ti/λ, κi, s

i
ti
, {gj}mj=1 , γ, c, φ

)
p (λ)

∝
{∏
i∈A

(
λκigsiti

ki−1
t (γ, c, φ)

) 1
2

exp
{
−1

2
λκigsiti

ki−1
t (γ, c, φ)

(
εi1,ti
)2
}}

× (λ)
νλ
2
−1 exp

{
−1

2
s2
λλ
}

∝ (λ)
νλ+q

2
−1 exp

{
−1

2
λ

[∑
i∈A

κigsiti
ki−1
t (γ, c, φ)

(
εi1,ti
)2

+ s2
λ

]}
∴ λ/ . . . ∼ Γ

(
νλ+q

2
, 1

2

[∑
i∈A

κigsiti
ki−1
t (γ, c, φ)

(
εi1,ti
)2

+ s2
λ

])
• (µ/β,H)′

p (µ/β,H) ∝ {p (β/µ,H)} p (µ)

∝ exp
{
−1

2
(β − µ)′H (β − µ)

}
exp

{
−1

2

(
µ− µ

µ

)′
Hµ

(
µ− µ

µ

)}
∝ exp

{
−1

2

[
µ′Hµ− 2µ′Hβ + µ′Hµµ− 2µ′Hµµµ

]}
∝ exp

{
−1

2

[
µ′
(
H +Hµ

)
µ− 2µ′

(
Hβ +Hµµµ

)]}
∝ exp

{
−1

2

[
(µ− µ)′H (µ− µ)

]}
where H =

(
H +Hµ

)
and µ = H

−1
(
Hβ +Hµµµ

)
∴ µ/ (β,H) ∼ N

(
µ,H

−1
)

• (H/β, µ)′

p (H/β, µ) ∝ p (β/µ,H) p (H)

∝ |H|
1
2 exp

{
−1

2
(β − µ)′H (β − µ)

}
|H|

νH−(k+1)−1

2 exp
{
−1

2
tr
(
S−1
H H

)}
∝ |H|

1+νH−(k+1)−1

2 exp
{
−1

2
tr
[(

(β − µ) (β − µ)′ + S−1
H

)
H
]}

∴ H/ (β, µ) ∼ Wishart
(

1 + νH ,
[
(β − µ) (β − µ)′ + S−1

H

]−1
)
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•
(
p/ {sit}

I,Ti
i=1,t=ti

)′
p
(
p/ {sit}

I,Ti
i=1,t=ti

)
∝
{

I∏
i=1

Ti∏
t=ti

p (sit/p)

}
p (p)

∝
{

I∏
i=1

Ti∏
t=ti

p (sit/p)

}
p (p)

∝

{
I∏
i=1

Ti∏
t=ti

m∏
j=1

p
I(sit=j)
j

}
m∏
j=1

p
αj−1
j

∝
m∏
j=1

p

I∑
i=1

Ti∑
t=ti

I (sit = j) + αj − 1

j

∴ p/
(
{sit}

I,Ti
i=1,t=ti

)
∼ Dir

[(
I∑
i=1

Ti∑
t=ti

I (sit = j) + αj

)m
j=1

]

•
(
{sit}

I,Ti
i=1,t=ti

/
{
εih(t),t

}I,Ti
i=1,t=ti

, ρ1, ρ2, γ, c, λ, φ, {κi}Ii=1 , {gj}
m
j=1 ,p

)′
p

(
sit = j/

{
εih(t),t

}Ti
t=ti

, ρ1, ρ2, γ, c, λ, φ, κi, {gj}mj=1 ,p

)
∝

∝ p (ηit/s
i
t = j, · · · ) p (sit = j/p)

∝

λI(t=tiˆi∈A) (κigj)
1
2 (kit (γ, c, φ))

− 1
2

exp

−1
2
gjκi


(
λ
(
ηiti
)2
)
I (t = tiˆi ∈ A) +

+ (1− I (t = tiˆi ∈ A))
(ηit)

2

kit(γ,c,φ).

︸ ︷︷ ︸
wj

∴ p

(
sit = j/

{
εih(t),t

}Ti
t=ti

, ρ1, ρ2, γ, c, λ, φ, {κi}Ii=1 , {gj}
m
j=1 ,p

)
=

wj
m∑
j=1

wj

•
(
{gj}mj=1 /

{
εih(t),t

}I,Ti
i=1,t=ti

, ρ1, ρ2, λ, γ, c, φ, {κi}Ii=1 , {sit}
I,Ti
i=1,t=ti

)′
Let Cj = {(i, t) : sit = j} and ñj = #Cj.

p

(
gj/
{
εih(t),t

}
(i,t)∈Cj

, ρ1, ρ2, λ, γ, c, φ, {κi}(i,t)∈Cj , {s
i
t}(i,t)∈Cj

)
∝

∝

{ ∏
(i,t)∈Cj

p (ηit/s
i
t = j, · · · )

}
p (gj)
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∝ g
ñj
2
j exp

−
1
2
gj

 ∑
{(i,t)∈Cj∩Ac}

∪{(i,t)∈Cj∩A, with t≥ti+1}

κi
(ηit)

2

kit(γ,c,φ).
+ λκi

kiti
(γ,c,φ)

(
ηiti
)2
I (i ∈ A ∩ Cj)




× (gj)
νg
2
−1 exp

{
−1

2
gjs

2
}

∝ (gj)
ñj+νg

2
−1×

× exp

−
1
2
gj

s2 +
∑

{(i,t)∈Cj∩Ac}
∪{(i,t)∈Cj∩A, with t≥ti+1}

κi
(ηit)

2

kit(γ,c,φ).
+ λκi

kiti
(γ,c,φ)

(
ηiti
)2
I (i ∈ A ∩ Cj)




∴ gj/

({
εih(t),t

}
(i,t)∈Cj

, . . .

)
∼ Γ


ñj+νg

2
, s2

2
+

∑
{(i,t)∈Cj∩Ac}

∪{(i,t)∈Cj∩A, with t≥ti+1}

κi
(ηit)

2

kit(γ,c,φ).

2
+

+ λκi
kiti

(γ,c,φ)

(ηiti)
2
I(i∈A∩Cj)

2


•
(
φ/
{
εih(t),t

}I,Ti
i=1,t=ti

, ρ1, ρ2, γ, c, λ, {κi}Ii=1 , {sit}
I,Ti
i=1,t=ti

, {gj}mj=1

)′
p

(
φ/
{
εih(t),t

}I,Ti
i=1,t=ti

, ρ1, ρ2, γ, c, λ, {κi}Ii=1 , {sit}
I,Ti
i=1,t=ti

, {gj}mj=1

)
∝

∝
{

I∏
i=1

Ti∏
t=ti

p (ηit/s
i
t, · · · )

}
p (φ)

∝
{

I∏
i=1

Ti∏
t=ti

(kit (γ, c, φ))
− 1

2

}
exp

{
−1

2

I∑
i=1

κi
Ti∑
t=ti

λI(i∈Aˆt=ti)gsit
(ηit)

2

kit(γ,c,φ).

}
1
φ
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