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ABSTRACT

The motivation of this thesis is the study of markets in which consumers are

under-informed concerning the quality of any given product and in which the quality

of consumers also matters to producers of products. This study has resulted in a

primary application paper, comprising the first chapter which focuses on the market

for training lawyers, as well as a second technical chapter exploring theory which can

prove useful in analyzing these markets.

The first chapter is based on the observation that the number of lawyers being

produced at high cost combined with the relative lack of job options has recently

created significant concern. In order to partially explain this phenomenon, I propose

a game of incomplete information modeling the strategic interaction between law

schools as they compete for potential students. The information asymmetries come

from the fact that any given law school is better informed about the quality of its

education than its potential students. Using a change in market information structure

generated by student placement reporting requirements, I use the model to estimate

the dynamic effect of increased information on distributions of tuition rates, incoming

student ability, class sizes, and the rate at which law schools open and potentially

close. Using these estimates, I show that there have not necessarily been too many law

schools or students, but rather an equilibrium enforced mismatch between students

and their optimal schooling choices. The new information has acted as a forced

collusion mechanism to partially overcome this mismatch, which has differentially
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decreased school welfare, strictly increased student welfare, and resulted in a positive

total welfare gain of $685 million.

The second chapter provides a thorough exploration of the microeconomic

foundations for the multi-variate linear demand function for differentiated products

that is widely used in industrial organization. A key finding is that strict concavity

of the quadratic utility function is critical for the demand system to be well defined.

Otherwise, the true demand function may be quite complex: Multi-valued, non-linear

and income-dependent. The solution of the first order conditions for the consumer

problem, which we call a local demand function, may have quite pathological prop-

erties. We uncover failures of duality relationships between substitute products and

complementary products, as well as the incompatibility between high levels of com-

plementarity and concavity. The two-good case emerges as a special case with strong

but non-robust properties. A key implication is that all conclusions derived via the

use of linear demand that does not satisfy the law of Demand ought to be regarded

with some suspicion.
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PUBLIC ABSTRACT

The motivation of this thesis is the study of markets in which consumers are

under-informed concerning the quality of any given product and in which the quality

of consumers also matters to producers of products. This study has resulted in a

primary application paper, comprising the first chapter which focuses on the market

for training lawyers, as well as a second technical chapter exploring theory which can

prove useful in analyzing these markets.

The first chapter is based on the observation that the number of lawyers being

produced at high cost combined with the relative lack of job options has recently

created significant concern. In order to partially explain this phenomenon, I propose

a game of incomplete information modeling the strategic interaction between law

schools as they compete for potential students. The information asymmetries come

from the fact that any given law school is better informed about the quality of its

education than its potential students. Using a change in market information structure

generated by student placement reporting requirements, I use the model to estimate

the dynamic effect of increased information on distributions of tuition rates, incoming

student ability, class sizes, and the rate at which law schools open and potentially

close. Using these estimates, I show that there have not necessarily been too many law

schools or students, but rather an equilibrium enforced mismatch between students

and their optimal schooling choices. The new information has acted as a forced

collusion mechanism to partially overcome this mismatch, which has differentially
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decreased school welfare, strictly increased student welfare, and resulted in a positive

total societal benefit of $685 million.

The second chapter provides a thorough exploration of the foundations of one

of the standard models in the theoretical literature for studying markets in which

products are differentiated, not only by how good they are, but also by how they

contrast with each other. We show that some of the standard assumptions made on

this type of models do not necessarily hold and that the violation of these assumptions

can result in untrustworthy results.
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1

CHAPTER 1
INFORMATION ASYMMETRY IN PROFIT-GENERATING
GRADUATE EDUCATION MARKETS: A STRUCTURAL

APPROACH TO LAW SCHOOLS

1.1 Introduction

Over the last decade, there has been an influx of evidence suggesting a persis-

tent disconnect between expected and actual returns to attending law school. In 2010,

the projected national market surplus for lawyers exceeded 27,000, with all but two

states displaying oversupply [19]. Although a somewhat coarse measure, using total

number of bar-exam passers (53,508 in 2009, 54,448 in 2010, and 55,387 in 2011 [53])

compared to projected total number of annual job openings for bar-qualified workers

over the years 2010-2015 (26,239) is nevertheless telling. Further, there has been a

consistent increase in both number of schools operating, with 8-20 new schools per

decade and no schools closing down and enrollment increasing by roughly twenty-

thousand students nationwide per decade [1]. Consequently, while the American Bar

Association (ABA) predicts 440,000 new law graduates between 2008 and 2018, the

Bureau of Labor Statistics (BLS) predicts 240,400 lawyer jobs created during that

time [45].

By classical reasoning, this production behavior should be associated with an

increase in the expected value of going to law school, either through a decrease in the

price of attending school or through an increase in expected post-graduation earnings.

Neither seems to have been the case. Nominal tuition has grown at an average rate
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of 6.7% per year since 1993, 2.6 and 1.8 times more than private and public 4-year

undergraduate institutions, respectively [13]. In 2013, the average education-based

debt upon graduation from law school was over $80,000, with 83% of graduates from

ABA-accredited schools finishing with student debt [72].

Wages have not improved in real terms over this period, although they have not

dropped either. [68] show stable real wages for lawyers over the past two decades, with

a high mean of $100-$140 thousand. However, these data are for lawyers reporting to

the BLS, which is not necessarily indicative of graduates from law schools in general.

Besides the usual aggregate reporting bias (people happy with their salaries are more

likely to report), lawyer jobs are not necessarily available to graduates of any law

school. Consider, as an example, the case of Shell Oil [33]. Shell hires in-house

attorneys to handle various legal issues. Shell is certainly not one of the top lawyer

positions in the country, and yet if a student graduated from a fourth-tier school, they

will only consider her application at all if she was in the top 5% of her class. This

is one example of a broader phenomenon, that while students from top tier schools

might be able to get a job as a lawyer, this option might not even be available to

students from lower tier programs.

An answer to this apparent market failure comes in light of the information

structure inherent in this market. For the majority of law students, the primary

goal of attending law school seems to be to make more money (for example, in 2010

only five percent of students went in to public interest in favor of more profitable

sectors [52]). As such, the primary school quality indicator relevant to a student
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should be job placement. However, until 2010, the placement number reported each

year to the ABA, which governs official school-level statistics in the United States, was

percentage employed nine months after graduation. This statistic does not specify

if those jobs were in high paying law firms, the low skill service industry, or even at

the graduate’s law school with a part time position around the nine month marker.

There were other secondary statistics reported, such as proportion placed in a law job

or in business, but those were also fairly uninformative with respect to the quality of

work.

Given this information structure, a student was left to observe job placement

and impute wages from available data on lawyers, either from the BLS or from school

reports to the US News. However, the BLS data are highly skewed towards graduates

from top-tier programs and US News reports have suffered from underreporting and

misrepresentation. A student interested in a school might think the tuition payments

are reasonable given a 95% placement rate in jobs 9 months after graduation with

lawyers making $120,000 on average per year. The danger in this reasoning was

highlighted by an interview with the former Dean of the New York Law School who

asserted that, while NYLS students expect to be making $160,000 per year upon

graduation, the same as graduates from Yale or Harvard, they will actually be earning

a median wage of $35-75,000 (which could be inflated as well, given that this figure

was based on a 26% reporting rate of graduates) [65].

In 2010, in response to pressure from law school graduates and the media [64],

the ABA changed placement reporting standards for accredited law schools. Rather
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than a few vague categories, schools were now required to report a battery of specific

placement types, such as “number of students employed full time, short term in a law

firm with 101-250 employees” or “number of students employed part time short term

in a state or local clerkship”. With these new reporting standards, students could look

at any given school and much more accurately infer their expected post-graduation

wages.

In analyzing the time periods before and after the change in this market’s

information regime, I find significant positive and normative effects. First, using

raw data and reduced form results, I show suggestive evidence that students have

responded to the increased information through willingness-to-pay. Schools in lower

quality brackets have had to drop tuition rates in response to a drop in the marginal

valuation of their degree. Lower quality schools have also lowered their standards

for admissions as measured by the LSAT scores and undergraduate GPAs of their

incoming cohorts.

The relative elasticity of LSAT scores to undergraduate GPA in the incoming

class combined with inelastic class sizes suggests a significant rank premium affect-

ing a school’s decision making process. To capture the rank premium, to recover

student preference parameters and to allow for school shut-down and welfare calcula-

tion in counterfactual analysis, I propose a dynamic game of incomplete information

modeling the interaction of schools as they compete for student enrollment.

The dynamic game and corresponding structural estimates provide values for

both producer (school) and consumer (student) surplus. Schools are affected differen-
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tially by the new information policy. Top schools benefit from the quality separation

as their degrees are revealed to be highly lucrative. For schools in the lower half of

the top tier or in the second or third tiers, the extra information negatively affects

welfare through policy adjustments tailored to maintain rank premium.

Lower third tier and fourth tier schools actually benefit from the increased

information. This seemingly counterintuitive result stems from the fact that, under

the previous information regime, a substantial subpopulation of lower ability potential

students was being crowded out by higher ability students.

High ability students incorrectly believed that attending a low quality law

school would yield higher returns than their outside option (going straight into the

labor force). These students thus were incentivized to attend low quality programs.

Using the incorrect expectations, schools were able to enroll enough higher ability

students to both generate a sufficient revenue stream and maintain their relative

standing among other schools. This behavior by schools resulted in excluding lower

ability students from enrollment, who, based on their outside option, would have

actually benefited from a low quality law degree.

The new information regime acts as an exogenously imposed collusion mecha-

nism. All lower quality schools are forced to simultaneously reveal that their product

is of lower value than many of their previous students’ outside options. Since all

schools act simultaneously, there is little rank effect since ranks are relative. Further,

all low quality schools now have access to the previously underserved subpopulation

of lower ability students, thus actually increasing enrollment and consequent tuition
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revenue.

The aggregate change in producer surplus is negative with a mean estimate

of -$212 million. Much of the loss to producer surplus is recovered by students as

they receive a product, either through going to law school or opting out of the mar-

ket, consistent with their preferences and abilities. The aggregate consumer surplus

change is $575 million, resulting in a total surplus gain of $363 million.

The idea that students have incorrect expectations concerning returns to school-

ing has been the subject of several previous studies. [48] discusses this phenomenon,

explaining how students often can have post-education wage expectations different

from reality. [5] estimate expectations of the return to choosing a particular major.

They show that, not only do expected earnings matter when students choose a major,

but students’ expectations with respect to major-specific earnings are often wrong.

This inconsistency between schooling expectations and reality can partially explain

why students are willing to pay for a degree in a low-return field, with schools using

these expectations to extract tuition rent.

The problem of using information frictions between students and schools to

inflate profits is indicative of a broader phenomenon. That is, 1) information asymme-

try with respect to product differentiation can have serious effects on proper function

of market and 2) market function can be restored when the information asymmetry

is removed. These two points are part of the quality disclosure literature1. In the

case of law schools, schools have had more information than students concerning the

1For an excellent review of the quality disclosure literature, see [17]
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quality of their product (law degree). [18] show in the market for health care that

when patients are better informed concerning the quality of any specific hospital,

prices and general treatment both improve while hospitals also change the type of

risk they are willing to take on. This change in healthcare behavior gives evidence

that hospitals can use information asymmetry to affect prices in a similar way to law

schools. [37] show that consumers choose health plans consistent with published in-

formation available, but inconsistent with some important unpublished indicators of

quality. Health plan providers can extract rent based on the information asymmetry

between themselves and their clients.

While previous work has shown how information can affect prices and demand

for a product, this is the first paper, to my knowledge, to document a systemic

mismatch between consumers and producers created by information frictions. This

mismatch is due in large part to the two-sided nature of the legal (or any) education

market in which the quality of the consumer also matters to the producer. The paper

also gives encouraging evidence that information availability can provide a market-

based approach to at least partially mitigating this mismatch.

1.2 Information Structure

Information in the market for training lawyers is largely governed by the ABA.

The primary function of the ABA is to set accreditation standards for law schools in

the United States. If a school is not ABA accredited, its students may not (with the

exception of California) take the bar exam. Thus, for a school to be viable, it must
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be ABA accredited. One of the primary tools the ABA uses to make accreditation

decisions is its yearly school questionnaire, which is published each year jointly with

the Law School Admissions Council (LSAC) as part of the “ABA-LSAC Official

Guide to ABA-Approved Law Schools” [46]. This questionnaire provides statistics

on various attributes of a school such as Curriculum, JD Enrollment and Ethnicity,

GPA and LSAT Scores, and Grants and Scholarships. For a sample of a pre-2010

questionnaire, see Appendix B.1.

Much of the information reported in the ABA-LSAC report might be inter-

esting or important for reasons pertaining to social issues (ethnicity and gender of

students) or to educational atmosphere (student to teacher ratio or number of profes-

sional librarians). However, based on the prevailing motivation to attend law school,

the indicator of most concern to a student deciding which, if any, school to attend

should be expected wages after graduation.

In reports issued before 2010, placement success was primarily measured by

the number of students placed in a job nine months after graduation. There were also

refinements given, including number employed in law firms, in business and industry,

in government, in public interest, as judicial clerks, or in academia. However, these

refinements gave little information with respect to salaries. A student employed in

a law firm could make anywhere from $30-130 thousand a year. An employee in

“business” could likewise be earning a high salary on a management track at a large

corporation or minimum wage working in a low-skill sector.

Since the traditional ABA-LSAC report was mostly uninformative concerning
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post-graduation wages, if a potential student wanted to go to law school, she would

have to make a judgement based on the data provided for the market for lawyers

in general and extrapolate from the data provided by a law school for the ABA-

LSAC report. She might see, for example, a low-ranked school that places 85% of its

students in a job nine months after graduation, see BLS report that lawyers make

$120,000 per year and reason that it would be a good investment to take on $100,000

in student debt to get that degree.

This extrapolation does not, however, fit the reality of the lawyer market.

Oyer and Schaefer show that, not only do graduates from the top 20 law schools

comprise the majority of partners and associates in the top major law firms in the

United States [57], but graduates from the top 10 schools make 25% more money

than those from top 11-20 schools and 50% more than those from schools ranked

from 21-100 [56].

An alternative to the BLS wage reports is the Starting Salaries [52] report

from the National Association for Law Placement (NALP). This report has been

produced in an attempt to decrease the information gap between student expectation

and reality by reporting wage statistics for each of the reported categories in the ABA-

LSAC report. However, since the NALP does not have the same influence as the ABA,

it has not been able to maintain substantial reporting rates. For example, while over

40,000 lawyers passed the bar exam in 2010, there were only 18,398 respondents in

total who responded to the NALP survey. Further, those reporting are generally also

those making more money [65].
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While schools have generally been aware of the disparity between students’

wage expectations based on available data and the realities of the market [65], they

have been able to use their asymmetrically high information set to extract rent from

ever more students in the form of tuition revenues as new schools have opened, class

sizes have grown, and tuition rates have increased.

In an attempt to mitigate this issue, in 2010 the ABA modified its reporting

requirements. Rather than fifteen vague categories, schools were now required to

report on 144 specific placement types. Rather than “Employed,” a school would

now have to report various types of employment, such as “Employed - Bar Passage

Required, Full Time, Short Term.” Rather than “Employed in a Law Firm,” a school

would now have to report on the size of the firm, such as Solo, 2-10, 11-25, 251-500,

etc. The firm size reports are especially informative given information made available

by the NALP. Besides average starting salaries in general industries, the NALP also

reports starting salaries at law firms conditional on firm size. Table 1.1 is an example

report from 2011 [51]. As stated before, these numbers are likely biased. However,

Firm Size 2-10 11-25 26-50 51-100 101-250 251 or More
Salary 73,000 73,000 86,00 91,000 110,000 130,000

Table 1.1: Median Lawyer Starting Salary per Firm Size (2011)

given the motivation behind the reporting bias is aversion to reporting and getting
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reports on low salaries, the bias should either be uniform across category types or

more severe for lower-sized firms, generating lower wages generally. The difference

in reported wages between small firms and large firms should therefore be a lower

bound on the actual spread. The lower bound is still substantial, with the difference in

earnings expectations between the largest and smallest firms reaching almost $60,000.

Because of the reporting change, students debating law school attendance post-2010

can use the newly reported categories combined with these wage reports to make a

better informed decision about which, if any, law school to attend.

Besides the ABA and the NALP, the US News and World Report provides one

more major source of information. Although the US News does not provide a large

number of school characteristics for public consumption, it does serve as the primary

data aggregator in this market through its primary instrument, the US News and

World Report Graduate School Rankings [72].

To construct its rankings for law schools, the US News utilizes data required

for the ABA-LSAC report as well as several of its own measures. The most notable

variables with regard to salary expectations are percentiles for starting salaries of law

school graduates. While these measures should be the most informative to students,

they have traditionally possibly exacerbated the information asymmetries due to low

reporting standards, with documented evidence of schools reporting their graduates

earning as much as $100 thousand more on average than they actually were [65].
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1.3 Data

The market for training lawyers is characterized by two general sets of players:

schools and students. To estimate parameters relavent to both sets, I utilize both

school-level and student-level data. For initial results showing effects in the market

in Section 1.4, I will only use school-level data. Individual-level data will be necessary

for identifying welfare effects in Section 1.5.

1.3.1 School Level

School-level data were taken from the start of academic years 1998-2013, which

are designated as the years 2000-2015 for both the ABA-LSAC report and the US

News and World Report rankings data. The US News data includes both the rankings

and extra data used to for the rankings not included in the ABA-LSAC report.

Summary statistics are reported in Table B.1.

The variables reported represent student quality and school characteristics.

Quality is given by two measures. The measure is the US News Rank. While US

News rankings certainly do not give a perfect quality separation measure between

schools, it does give a reasonable approximation of tiers. For example, #1 ranked

Harvard clearly has a better law program than the #144 ranked South Texas College

of Law.

The second quality variable not only measures quality separation, but also

explicitly captures the new information made available to students concerning school

quality. I define this measure as a school’s placement ratio which is constructed using
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the new information available with the post-2010 ABA/LSAC reports.

I first take a weighted sum of graduate placement in law firms, weighted by

firms size according to the 2011 NALP report in Table 1.1. I normalize the highest

possible wage to unity, representing a “full” placement. Each subsequent category is

weighted as the fraction of the highest possible wage. For example, each placement

in a firm with 51-100 employees would be weighted by (91,000 / 130,000), or 0.7. For

solo firms, I assume the same wages as the next two smallest firm categories. I put

zero weight on placements in firms of unknown size.

After generating the weighted placement, I divide it by raw placement numbers

in law firms. Since I normalize the highest possible wage to unity, this ratio will always

lie strictly on the unit interval. As is shown in Table B.1, the mean and median are

close at 0.64, indicating that the average school is placing its students at jobs with

starting salaries only 60% of the top salaries. The best placing school is gaining

its graduates 97% of the top salaries on average and the worst placing schools are

achieving 33%.

For the placement ratio to be useful, it must span all the time periods available

in the data. However, by definition, it cannot be calculated earlier than 2010. I use

ratio persistence to motivate an imputation solution. A basic AR(1) model yields an

AR coefficient of 0.915 with a standard error of 0.015. Thus, I impute the ratio for all

previous years as that calculated for 2011 and designate this variable as each school’s

persistent type.

Tuition is the price of attending law school while Freshmen is the size of the
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incoming class. This class is characterized by its average undergraduate GPA and

LSAT scores. Schools also award grants and have other room/board expenses, cost

of books, large or small faculties relative to student body size, acceptance statistics,

and Bar examination passage rates at first attempt.

The variable for tuition is constructed from the sticker price for a full-time out-

of-state student for schools that price discriminate based on residency and standard

full-time tuition for schools that do not. I discuss the use of sticker price more in

depth in Section 1.5. Since the tuition reported in any given ABA-LSAC report

actually corresponds to the tuition paid by the previous year’s students, I lag tuition

by one year. The lag aligns payments with the academic year represented by the rest

of the report.

Table B.1 also shows summary statistics for 25th and 75th percentiles of re-

ported private sector salaries. The mean 25-75th percentile spread is about $56-89,000

which is somewhat higher than the median spread of $48-80,000. These suggest a pos-

sible median salary in the range of $64-72,000, which is about $10-20,000 lower than

the salaries implied by the transparency ratio. And once again, although better than

the NALP, reporting rates are somewhat low, with mean and median rates of 61%

and 64%, respectively. Since schools are aware that students are highly influenced by

the rankings developed by this report, the salary reports are once again likely biased

upwards.
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1.3.2 Student Level

Student-level data were taken from Law School Numbers (LSN) [44], an online

resource for potential law students. LSN was created primarily as a forum for law

school applicants to report on application, admission, and enrollment decisions as they

go through the process of possibly attending law school. LSN makes these reports

publicly available as a crowd-sourced database on the state of law school applications

and admissions.

A unit of observation in the dataset extracted from the LSN reports is a

school-student pair, with one observation for each pair. Each observation includes

the year of the potential match, the student’s profile, consisting of her LSAT score

and undergraduate GPA2, the name of each school she applied to, and the result of

that application, including whether or not the student was accepted (or waitlisted)

and the student’s decision (whether or not she decided to matriculate).

Various summary statistics for the LSN dataset are reported in Tables B.2,

B.3, and B.4. Table B.2 provides student summaries conditional on one of three

stages of the school admissions process: application, admission, and matriculation.

Tables B.3 and B.4 summarize the entire student sample by ability quartile. In all

tables, statistics are provided for student samples under the old and new information

regimes.

From Table B.2, it seems that the applicant skill distribution remains practi-

2GPA is reported for both raw degree GPA, the number reported on the student’s
diploma, and the LSAC-adjusted GPA, which is the one used by law schools for admis-
sion decisions.
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cally unchanged under the new information regime. The biggest difference between

the two samples is in admission and matriculation probabilities. In the treatment

period, probability of admission increases by roughly 0.06 while probability of matric-

ulation decreases by 0.06 percent. Although small, this is indicative of a phenomenon

that will be studied more in depth later in the paper. Specifically, schools face smaller

applicant pools under the new information regime and students have a lower valuation

of certain types of law degrees, thus decreasing matriculation probability.

The information effect is further emphasized in Tables B.3 and B.4. While

once again, the distribution of applicant type remains virtually unchanged across

information regimes, admission and matriculation probabilities change again, with

most of the difference observed in the second quartile of students. Once again, this

difference indicates a decrease in options for middle to high quality schools as well as

a shift in expectations for middle to high ability students.

1.4 Evidence of Information Effects

Behavior of law schools with respect to students has evolved according to

the information structure as well as market indicators. Figures B.1 and B.2 provide

visualization of the primary variables of interest. These variables include tuition rates,

number of students, incoming class profiles (undergraduate GPA and LSAT scores),

number of applicants, grant awards (both number and size), and starting salaries of

graduates (25th and 75th percentiles).
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1.4.1 Conditional Quartiles

Each variable is divided into quartiles based on school quality. In Figure B.1,

quality of a given school is measured by its rank as assigned by the US News and

World report. As previously discussed, this is a standard quality measure in this

market. In Figure B.2, I use the placement ratio as defined in Section 1.3.1.

Since the placement ratio was not observed before 2010, behavior of students

and schools conditional on the ratio should change based on being in a post-2010

world. The population thus becomes a policy treatment group with treatment being

the new school-idiosyncratic information administered starting in 2010. Ideally, the

data would include a control group as well, unaffected by this extra influx of infor-

mation. Although there is no strict control group, I can utilize the fact that the top

schools would be expected to place almost all their students in the most competitive

jobs. Thus, the extra information would technically have a negligible effect on these

programs. These schools could thus be considered a quasi-control group and the

treatment could be considered as given post-2010 in some varying amount over the

compact interval [0, 1], with 0 indicating a full dose and 1 indicating no treatment.

US News ranking as a quality measure does not explicitly capture the infor-

mation effect of 2010. Implicitly, the same school behavior stemming from the extra

information in 2010 should be observed with respect to rank as well since rank and

placement ratio are highly correlated, with a correlation coefficient of -0.75 for the

years in which placement ratio can be directly observed.
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1.4.2 Variable Evolution

There are two main features of Figures B.1 and B.2. The first and most obvious

is the aggregate drop in the market in 2010. This drop stems from two sources. The

first is the great recession of 2008. While many industries were affected immediately

by the market downturn, the effect on the market for lawyers lagged roughly two years

behind the rest of the economy. This effect is born out primarily in legal salaries, as

can be observed primarily in the 75th percentile of salaries and somewhat in the 25th

percentile as well.

While the effects of the recession could have a trickle down effect on school

and student behavior, such as application rates and quality of students going to

law school, it is likely that this is not the primary driver behind the corresponding

aggregate shocks in these other variables. This is due to the fact that the recession-

based shock affected all industries, not just lawyers. Without a stable outside option,

substitution effects should be small.

The second source of this aggregate drop in the market, however, was idiosyn-

cratic to the market for lawyers. Between 2010-2011, the legal market experienced an

aggregate opinion shift regarding law degree profitability. Stemming from the semi-

nal New York Times article by David Segal, “Is Law School a Losing Game?” [64], a

sentiment developed in the United States that many students were graduating from

law school, apparently without a way to pay back loans incurred during schooling.

Segal, and many authors following him, contended that going to law school might

not in fact be profitable on average. The ensuing series of articles, blog posts, etc.
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sparked an aggregate downturn in demand for law school. This is likely one of the

primary causes of the drop in applications to law school beginning in 2010.

The second feature of note in Figures B.1 and B.2 beyond the aggregate shocks

is the separation in several variables between quantiles after 2010. The most obvious

is undergraduate GPA of a given school. In both Figure B.1 and Figure B.2, the

lower the quality of a school, the more it had to drop its threshold for the quality

of students it would admit. The same separation holds for Tuition as well, although

more prominently in Figure B.2.

While it is clear that the separation holds for GPA, it seems possible upon

visual inspection that it might also be occurring in the other variables. This could be

of concern when trying to identify the effects of information. Specifically, if there is a

significant separation of salaries conditional on quality after 2010, it could be that the

recession effects are primarily driving the altered school behavior. The same holds

for the aggregate dropped expectations of the return to law degrees and number of

applicants to law school.

To test for the presence of quality conditional post-2010 separation, I propose

the following specification

yit = β0 + β1Rit + β2Post2010t + β3(Rit ∗ Post2010t) + γXit + εit, (1.1)

with R either rank or ratio and yit either one of the primary school outcome/choice

variables including class size and tuition (quantity and price) and quality of stu-

dents willing to attend (GPA and LSAT scores) or one of the other market variables

(starting salaries or number of applicants). X is a vector of controls from the set



20

{{Rank}, {Tuition, Median Undergraduate GPA, Median LSAT}, {Median Grant,

Percent Receiving Grants, Room/Board Expenses, Cost of Books}, {Student/Faculty

Ratio, Number Accepted, Acceptance Rate, Bar Passage Rate in Jurisdiction}}. Note

the subsetting of X. These subsets correspond to models controlling for 1) rank (in

the case of R = ratio), 2) school choice variables, 3) cost variables, 4) miscellaneous

quality controls. Each model will be estimated separately as well as once with all

four sets of controls.

For each possibility for y, β3 is the primary parameter of interest. Since an

increasing value of ratio and a decreasing value of rank both indicate an increase in

quality, the sign of β3 should be opposite between the two. I will proceed discussing

the case of ratio, but with the understanding that the converse should also hold for

rank.

I first address the question of either application or salary separation to deter-

mine if they might confound identification of the desired information effect. Consider

first the model with y = number of applications. The results are given in Tables B.6

and B.5. Notice that most of the model specifications result in an estimate of β statis-

tically indistinguishable from zero. The exceptions in both cases are when admission

rates are included as controls. However, this could yield artificially significant results

because of the high collinearity between number of applications and application rates.

The more worrisome results are in Tables B.8, B.7, B.10, and B.9 which cor-

respond to 25th and 75th percentile salaries. With R = ratio, β3 is significant and

positive for both percentiles under every model specification. However, for R = rank,
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the significance almost completely disappears. If both the ratio and rank specifica-

tions had yielded a significant interaction coefficient, there could have been strong

evidence that salaries themselves are driving the separation in the other variables.

However, the disparity between the two sets of models suggests that the connection

between the ratio models and salary separation is part of some process outside of the

effect connecting ratio and rank. As long as both the ratio and rank models yield

the correct values for β3, this would provide evidence that the information effect is

indeed being identified.

If the information treatment is effective, β3 should be positive for (y = Tu-

ition). That is, β3 represents the immediate shift in students marginal valuation of a

degree from any given law school based on increased transparency due to information

restructuring.

For GPA, LSAT and Class size, β3 depends on a school’s dynamic consider-

ation. A school with a decreased reputation could maintain class size and drop the

quality of students it accepts. This way, it can maintain immediate revenue. How-

ever, lowering student quality also hurts its future rank, which decreases its future

revenue. The elasticity of GPA, LSAT, and Class size will depend on how much a

school could gain or be hurt in the long or short run. The estimates for Model (1.1)

for dependent variables Tuition, Class Size, Undergraduate GPA, and LSAT are given

in Tables B.12 B.14 B.18 and B.16.

As expected, Tuition responded significantly to the information shock. For the

baseline estimate with no controls, the treatment coefficient indicates that a school
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with a 10 percentage point higher placement ratio will have a $1.6 thousand higher

marginal valuation on the part of its students. This increases when controlling for

Rank to $2.7 thousand, but drops to between $600 and $1.2 thousand for other control

specifications.

Controls are based on incoming class profile (Freshman Class Size, Under-

graduate GPA, and LSAT scores), cost structure (Median Grant, Percent Receiving

Grants, Room/Board Expenses, and Cost of Books), and other quality controls (Stu-

dent/Faculty Ratio, Number of Students Accepted, Acceptance Rate, and Bar Pas-

sage Rate in Jurisdiction). Incoming class profile seems to account for much of the

extra variation in tuition rates (highest effect on R2), as well as part of the covariance

between the treatment effect and Tuition.

The model only controlling for freshman profiles is the only model that causes

the significance of the treatment effect to fall below the 0.001 level. However, the

significance jumps back when including the other controls as well.

In the final estimate, most of the variables are highly significant. The three

exceptions are Post-2010, the level-effect for being in treatment period; Freshmen, the

size of incoming class; and Bar Passage Rate. Class size is likely highly correlated with

some of the other controls, making its insignificance in the full model not surprising.

Bar Passage Rate was never significant, which is surprising. Post-2010 is not only

most insignificant across specifications, but also changes signs frequently.

The treatment level effect is likely insignificant for two connected reasons.

First, the other variables in the dataset account for much of the variation in Tu-
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ition. Second, the treatment period is relatively short. This makes the fact that the

treatment effect is so significant even more surprising. In the final model with all

controls included, β3 = 9112.45, suggesting that a school with a 10 percentage point

higher placement ratio would optimally be able to charge $911.25 higher price for its

product.

The coefficient estimates for the class size and student profile models shed light

on the profit structure for law schools. First, as is seen in Table B.14, class size seems

to be completely inelastic with respect to the information shock. The ratio-treatment

interaction coefficient is insignificant in every model specification. LSAT scores are

similarly rigid. While the coefficients are all technically positive, none are significant.

Schools are statistically more flexible with the undergraduate GPA scores of

incoming classes, although the substantive reaction is small. For the baseline specifi-

cation with no controls, the ratio-treatment coefficient is 0.17. This coefficient implies

that a school that dropped 50% in its expected returns would have to lower its GPA

standards by roughly 0.09 GPA points. The change could also be as small as 0.045

GPA points. Across every specification, though, this change is significant and is on

average about 0.07.

Few of the controls are significant predictors of GPA and are motivated, not

by causation, but because of joint indication of school or student quality. For exam-

ple, students with higher GPAs will likely have higher LSAT scores. Thus, the LSAT

coefficient is significant. GPA is also understandably negatively correlated with ac-

ceptance rate, since in order to increase the student quality threshold, a school must
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be more selective in accepting students.

1.4.3 Discussion

The relative elasticity of tuition compared to class size is indicative of inelastic

supply with respect to demand. The change in information in 2010 would represent

a demand shift for any given school. As is well known, if the supply is relatively

inelastic with respect to demand, we would expect to see a large change in market

price but little to no change in the quantity being produced.

Inelasticity of supply indicates a high marginal cost of producing students.

In the case of law schools, this would arise not in direct marginal cost, but in the

forgone rank premium associated with enrolling a higher number of students. As a

school admits the marginal student, it must lower its quality threshold to allow a

marginally less qualified student to attend. In doing so, although the school gains in

current tuition, it loses future profits related to the drop in prestige.

The argument of a high rank premium is further born out in the relative

flexibility of GPA compared to LSAT scores. LSAT scores are not only considered a

more important prestige measure for a school, but they are also weighted 40% more

in the US News ranking formula. Given that schools apparently find it optimal to

maintain class size, they would rather lower GPA standards than the more valuable

LSAT standards.
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1.5 Structural Framework

The reduced-form evidence in Section 1.4 suggest that the new information

regime has changed the way that students view any given school as well as how schools

can behave with respect to students. It also highlighted that schools seem to make

dynamic decisions with respect to payoff-relevant variables like class size and quality.

However, the discussion thus far has been agnostic concerning the normative effects

of the new information regime. The question remains, has this influx of information

been good for the economy? If so, in what way and for whom? To determine societal

welfare effects, it is necessary to impose additional structure.

As stated, the reduced-form evidence suggests a dynamic decision-making pro-

cess. A school’s dynamic considerations should be with respect to its own evolution

as well as to the evolution of its competitors. Each time a school tries to attract

students, it is competing for those matriculations with several other schools of similar

quality. As such, to model the dynamic considerations of a school, it is necessary to

include the strategic effect.

Modeling this market as a dynamic game also has the benefit of allowing iden-

tification and estimation of structural payoff-relevant parameters otherwise unattain-

able. As was discussed in the previous section, the behavior of schools suggests a high

rank premium. This should affect schools not only though tuition revenue, but also

through donations and grants, a significant source of revenue but unobservable in the

data. The structure imposed in the following section will allow for identification of

parameters associated with the rank premium and allow for calculation of producer
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(school) surplus. The extra structure will also provide identification for the utility for

individual students from attending law school as well as their outside option. Thus,

we can also analyze consumer (student) surplus.

Structural estimates are also necessary for positive dynamic analysis concern-

ing entry and exit of schools. As stated earlier, between 8-15 new law schools have

opened nationally per decade for many years. There has, however, been no exit. The

estimates of Section 1.4 suggest that profitability for schools, especially low quality

schools, could decrease. For some schools who entered the market with the expecta-

tions of high revenue payments, the profitability drop could lead to shut-down.

In order to capture all the relevant player characteristics, I propose a school

choice model based on the application/admission game in [28], but extended to a

dynamic framework in the tradition of [49] and [23]. The dynamic extension allows

for explicit consideration of rank effects as well as entry/exit decisions.

1.5.1 Players

The market for training lawyers is characterized by two sides of players: schools

and students. Schools act as competing oligopolistic firms producing their good, a

law degree, for their consumers, prospective students. Schools are infinitely lived

and make decisions in discrete time periods (one year per period), discounting future

returns at rate β. Any given student only participates once for one period in the

market.

Schools, each consisting of a tuition office and an admissions office, are differ-
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entiated by their rank which acts as a proxy for relative quality. In this application,

rank will be operationalized by a school’s rank as measured by the US News and

World Report [72]. A more in-depth discussion of the use of US News rankings was

given in Section 1.3. A rank of zero indicates that the school is not operating (that

is, it has not yet opened or has closed). In any period, the state is represented by the

tuple (R, g). R is a vector of length N , where N is the maximum possible number

of operating schools and Rj ∈ R is the rank of school j in the current period for

any j ∈ J , the set of currently operating schools. The remaining state variable g is

a demand growth term that will be discussed later. Each school is endowed with a

fixed capacity Qj with Qj > 0 and
∑N

j=1Qj < 1.

The rank vector is proxy for the production technology available to any given

school. That is, a school ranks represents what quality of a product the school can

produce. In the case of law schools, quality of a program is assumed to be the expected

financial returns to getting a degree. Although some students do enter law school on

more philanthropic grounds, given that only five percent of 2010 law graduates went in

to public interest in favor of more profitable sectors [52], the assumption that students

attend law school in order to purchase a better wage distribution seems reasonable.

The other state tuple element, g, is a time-specific demand shifter. This will

grow according to a degenerate process and captures the persistent exogenous effects

on aggregate tuition growth in law schools. This is in large part due to an increase in

federal funding and loans to law students and is connected with the perceived benefits

of attending law school in general [54].
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There is a continuum of students, normalized to unit measure. Students differ

in ability endowment A, which is unobserved but correlated with a student’s LSAT

score and undergraduate GPA, given by the tuple (LSAT,GPA). I assume A is

distributed N(fA(LSAT,GPA), σ2
A), with ∂fA/∂LSLAT > 0, ∂fA/∂GPA > 0, and

∂2A/∂LSAT∂GPA > 0.

In order for student i to apply to school j, she must pay the application cost

C(·), which is increasing in number of applications.

1.5.2 Stage Game

In each period, students and schools play an application/admission game in

the spirit of [28]. The timing of the stage game is as follows: first, each school

announces a tuition level to which it must commit (which gives the game a Bertrand-

type competition structure, since tuition represents the price in this market); second,

students make application decisions while schools simultaneously choose admission

policies; and third, students learn about admissions results and make enrollment

decisions.

1.5.2.1 Student Payoffs

The preferences of student i with ability A with respect to attending school j

of rank R is given by the random indirect utility function

uij = u(Ai, Rj, I) + εij (1.2)

with u(·) the average preference for a student with ability A to attend a school with

rank R and εij ∼ N(0, σ2
u) student i’s idiosyncratic preference for school j. The
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realization of ε occurs after admissions decisions have been made. The variable I

is binary and represents the information regime in place, with I = 0 indicating the

reporting system in place before 2010 and I = 1 the system with more detailed

placement reports which the ABA implemented after 2010.

I assume that all students pay the same sticker price tuition rate, or that there

is no price discrimination in this market. This assumption ignores scholarship behav-

ior, an important aspect of the market, and is made due to data limitations. Given

the available data, integration of price discrimination is possible directly through the

mechanism in [28]. [24] also provides an alternate approach to utilizing price dis-

crimination based on an auction-theoretic model. However, since the primary goal of

the analysis at hand is to study the welfare changes from the introduction of a new

information regime, the only cause of potential bias would come from a systematic

change in price discrimination behavior based on the regime change. While the data

in Figure B.1 suggest that there is unlikely to be such a change, potential biases from

this omission will nevertheless be discussed in Section 1.7.

For tuition profile t ≡ {tj}j∈J , the ex-post payoff to student i for attending

school j is

Uij(t) = uij − tj. (1.3)
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1.5.2.2 School Payoffs

Period profits for an individual school are derived from tuition revenue as well

as yearly donations and fixed costs. Tuition revenue is given by

π̃j =

∫ Qj

0

tjdi (1.4)

with Qj the incoming class size for school j.

Donation revenue comes mostly in the form of alumni giving as well as earnings

from private and public endowments/grants and are a function of the school’s rank.

While there are effectively zero explicit marginal costs for schools (although there are

implicit marginal costs through reputation effects, which are discussed below), fixed

costs are substantial and vary according to quality of a school. Higher quality schools

generally offer higher faculty salaries, have better and more expensive resources that

require maintenance and replacement, etc.

Although donations and fixed operation costs are not separately identifiable,

since they are both functions of rank I can identify donations net of operating costs

with a net donation function. I parameterize the net donations with the quadratic

function

D(Rj; δ) = δ1Rj + δ2R
2
j . (1.5)

If fixed costs are greater then than yearly donations, D will be negative. There is

possibly also some fixed cost δ0 associated with running a school regardless of rank.

The decision to exclude δ0 is based on data availability, since I do not observe cases

in which schools shut down but do not leave the market. Without such variation, I
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cannot identify δ0. However, as long as δ0 is independent of the information regime,

its exclusion will not bias the final results with respect to change in welfare.

An inactive school deciding to open independently draws a private informa-

tion fixed entrance cost κ at the beginning a period from the distribution N(µκ, σ
2
κ).

Incumbent schools also at the beginning of a period receive a privately observed

independent scrap value draw φ from distribution N(µφ, σ
2
φ). Thus, a school i partic-

ipating in action a receives the period profit adjustment

Φ(aj;κj, φj) =


−κj, if the school is a new entrant

φj, if the school exits

(1.6)

The period returns for a school with any given action can be thus defined by the

profit function given by Equations (1.4), (1.5), and (1.6) as

πj = π̃j +D(rj; δ) + Φ(aj;κj, φj) (1.7)

1.5.2.3 Information

After applicant i has applied to school j, school j receives a private signal

νji ∼ N(0, σ2
ν) of student ability which enters into the expected ability of student i

additively as

E[Ai|LSATi, GPAi, νij] = fA(LSATi, GPAi) + νij. (1.8)

Thus, students’ private information consists of latent type A and idiosyncratic shock

εij while a school’s private information consists of νij and either κj if school j is a

potential entrant or φi if the school is an incumbent.
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1.5.2.4 Application, Admissions and Enrollment

This subsection adapts the application, admissions and enrollment process

of [28] to the current market and thus will closely follow her exposition3. I will thus

solve the student’s problem given tuition levels as well as the college admission’s

problem. To simply notation, define Xi = (LSATi, GPAi), S ≡ (t, I, (R, g)) and

εi ≡ (εij)j∈J .

Normalizing a student’s outside option to zero, the value to any admitted

student i is given by

wi(Oi, Ai, εi|S) = max{0,max
j∈Oi

Uij(t)} (1.9)

with Oi defined as the set of schools j admitting student i. Define the optimal

enrollment strategy as d(Oi, Ai, εi|S).

Given the probability pj(Ai, Xi|S) of student i being admitted to school j, the

value of an application portfolio Y for student i is

W (Y,Ai, Xi|S) ≡
∑
O⊆Y

Pr(O|Ai, Xi, S)E[w(O,Ai, εi|S)]− C(|Y |) (1.10)

with the expectation over the shock to the value of attending school j and |Y | the

number of applications. The probability that set O of colleges admits student i is

Pr(O|Ai, Xi, S) =
∏
j∈O

pj(Ai, Xi|S)
∏

j′∈Y \O

(1− pj′(Ai, Xi|S)). (1.11)

Finally, the student’s application problem is given by

max
Y⊆{1,...,J}

{W (Y,Ai, Xi|S)} (1.12)

3The empirical strategy will be different than in [28], but the theoretical results are
utilized to ensure a well-behaved stage game.
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with optimal application strategy Y (Ai, Xi|S).

1.5.3 Dynamics and Timing

When deciding which students to admit, a school must take two sets of oppos-

ing forces into account. The first is the immediate revenue effect. If a school wants

to admit more students given an applicant pool, it must lower its standards relative

to student quality. The immediate effect of such a quality drop is a gain in tuition

revenue. However, the school will also face a loss dynamically corresponding with the

state (rank) evolution process.

The rank transition probability for the set of N active firms is the function

P : R2 × RN × [120, 180]N × [0, 4]N × R2×N → [0, 1], (1.13)

defining the probability P (R,R′, t(R), FLSATM , FGPAM
, FA) that the state will transi-

tion from rank vector R to R′ given tuition vector t and the length-N vector of incom-

ing class distributions F with corresponding median LSAT scores, median GPA, and

distribution of ability. Note that the transition of Rj for any school j is dependent

on the entire vectors R, t and F since ranks are relative.

Function (1.13) is based on the ranking process used by the US News to rank

schools. The ranking system explicitly takes into consideration Tuition, LSAT, and

GPA as well as various types of reputation. These reputation measures as well as

other persistent characteristics are captured by the previous period’s rank. Note the

implication of Equation (1.13) on future profits. A lower rank will lead to fewer

students in the next period, less flexibility with tuition, and lower future donations.
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While schools benefit in the short run from dropping admissions criteria, this can be

counterbalanced by the long-run effects from the corresponding rank drop.

Schools will also be explicitly competing against other schools in this admis-

sions process. Specifically, in setting its optimal enrollment policy, school j must take

into account that any student i is also considering enrolling in all other schools in the

enrollment set O. This type of competition has the flavor of quality-local competition

suggested by [3] since Oi will likely contain schools of similar rank.

The timing of the dynamic aspect of the game is therefore as follows. Potential

entrants, that is, schools deciding whether or not to open, draw from a distribution

of fixed entrance costs. Incumbent schools decide, based on fixed costs and draws of

profit shocks, whether to close down. After entrance/exit decisions have been made,

staying incumbents and entrants compete in the application-admission game detailed

in Section 1.5.2 for matriculating students. After competition concludes, investment

matures, entry and exit occurs, then finally rankings are updated.

1.5.4 Strategies, Value Functions, and Equilibrium

For computational and theoretical tractability, I restrict the set of school

strategies to be Markovian, anonymous and symmetric. This is a standard assump-

tion in the literature (see, for example, [49], [23], [16], and [62]). Note that this implies

that the index j through Section 1.5.2.4 only matters inasmuch as it indicates the

rank of school j.

A strategy for school j is two-fold. The first part is a mapping, conditional on
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tuition and information structure, from components of the school-student match into

a binary admission outcome. The mapping is given by

σj1 : (Rj, νij, Xi|tj, I)→ {0, 1}. (1.14)

The second part of a schools strategy involves tuition setting and entry and

exit decisions, all of which I denote as aj. The remaining strategy is therefore

σj2 : ((Rj, g), ξj|I)→ aj (1.15)

with ξj defined as the vector of private information held by school j. Define σj to be

the vector (σj1, σj2) and σ = (σj)j=1,...,N .

Notice that σj1 and σj2 include only Rj, not R. This does not mean, however,

that other schools are not taken into account in the strategic behavior of school j.

Rather, since R defines a strict ordinal separation, knowledge of Rj is sufficient to

infer the state of school j relative to all other schools as well.

Let the parameters in Equation (1.7) be denoted by θ. The incumbent and

potential entrant school value functions are given, respectively, by

Vj((R, g);σ, I, θ)

= max

{
πj + max

{
φj, β

∫
EξjVj((R

′, g′);σ, I, θ, ξj)dP (R′;R, σ, I)

}} (1.16)

and

Vj((R,G);σ, I, θ)

= max

{
0, β

∫
EξjVj((R

′, g′);σ, I, θ, ξj)dP (R′;R, σ, I)− κj
}
.

(1.17)

The equilibrium can now be defined in two stages, first by the Application-Admission

Equilibrium of the stage game and second by the full markov-perfect equilibrium.
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Definition. Given tuition profile t, information regime I and rank vector (R, g),

a symmetric, anonymous application-admission equilibrium, denoted AE(S) is the

vector (d(·|·), Y (·|·), σj1(·|·), p(·|·)) such that

1. d(·|·) is an optimal enrollment decision

2. Given p(·|·), Y (·|·) is an optimal college application portfolio

3. For every j, given (d(·|·), Y (·|·), p−j(·|·)), σ∗j1(·|·) is an optimal admissions pol-

icy, and σ∗j1(·|·) = σ∗j′1(·|·) if Rj = Rj′

4. pj(·|·) =
∫
σ∗j1(·|·)Φ(0, σ2

ν)

The full equilibrium is now defined as follows

Definition. A symmetric, anonymous, markov-perfect equilibrium for the market for

training lawyers is the vector (σ∗j , d(·|·), Y (·|·), σj1(·|·), p(·|·)) such that

1. For every t, (d(·|·), Y (·|·), σj1(·|·), p(·|·)) constitutes an AE(t)

2. For every j, given σ∗−j2, Vj((R, g);σ∗1, σ
∗
−j2, σ

∗
j2, I, θ) ≥ Vj((R, g);σ∗1, σ

∗
−j2, σ̃j2, I, θ)

for σ̃j2 6= σ∗j2, V as defined in Equations (1.16) and (1.17), and σ∗j2 = σ∗j′2 if

Rj = Rj′

1.6 Empirical Strategy

To estimate the utility and profit parameters in the model outlined in Sec-

tion 1.5, I use the two-step estimator developed by [7] (BBL)4 for dynamic games.

BBL is one of several papers5 that use the conditional-choice probability innovation

4See [62], [25], and [76] for some applications of the BBL estimator.

5Others include [2], [58], and [59].
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in [35] to identify and estimate structural parameters in dynamic games. In the

BBL case, the researcher assumes that all observed players are playing a specific

equilibrium. Thus, behavior observed in the market corresponds to the optimal pol-

icy functions associated with that equilibrium. The researcher flexibly estimates the

reduced-form policy functions and uses those estimates to generate a value function

(in this case, Equations (1.16) and (1.17)) through forward-simulation corresponding

to the market equilibrium.

Estimation is based on the equilibrium definition, that unilateral deviations

from equilibrium play are suboptimal. By perturbing the optimal policy functions, the

researcher can forward-simulate off-equilibrium value functions for a specific school.

Since these should be lower than the value function generated by the optimal policy

functions, the researcher can construct an estimator that minimizes the profitable

deviations from the optimal policy.

1.6.1 Identifying Assumptions

For identification to hold, I need to make several assumptions on the market.

The first involves equilibrium selection.

Assumption 1. All players play the same equilibrium in all markets.

This assumption is standard in the literature and could be viewed as an “em-

pirical refinement” on the set of equilibria being played. While [16] prove existence

of Markov-perfect, symmetric equilibria given for games similar to the one currently

being played by schools, there are generally many possible such equilibria. Assump-
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tion 1 posits that, while many equilibria are possible, one is being played in the

market and that is the equilibrium which we estimate. It also assures that the policy

function being estimated is indeed the equilibrium policy function.

It is also necessary that schools make future plans based on the information

structure now in place. This leads to Assumption 2

Assumption 2. Players assume that information structure is permanent.

The final assumption allows for identification of the distribution of scrap val-

ues, since no exit is yet observed in the data.

Assumption 3. Let R be the least profitable ranking for a school. The mean and

variance of the distribution of scrap values are such that

1. µφ = {µφ : Pr(a = exit|Rj = R,No info) < 0.01}

2. σ2
φ = σ2

κ

While Assumption 3 is primarily for identification, it also has theoretical moti-

vation. Part 1 is based on the observation that schools have not traditionally left the

market. It states that under the previous “No information” regime, it is very unlikely

that even an lowest ranked – and thereby generally least profitable – school in the

least lucrative state in the United States will exit. It is still a possibility, as it would

be in real life under extreme circumstances, but highly unlikely. Part 2 of Assump-

tion 3 is necessary for Part 1 to be identifying and has the intuitive interpretation

that capital depreciates at a constant rate with respect to initial cost.
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1.6.2 Application-Admission Game

The application-admission game consists of three separate decision functions.

Two of the functions are based on the decision of a student with ability signal

(GPA,LSAT ) to 1) apply to any given school with profile (Rank, Tuition) and then

2) whether to enroll in one of her admitting schools and, if so, which one. The third

function is based on each school’s decision whether or not to admit the applicant.

These decisions will also be based on the information regime (ie. if the new infor-

mation treatment has been administered) and current year through the exogenous

demand growth g. Thus, the outcome of application-admission game is based on

functions for the three steps of the game

fk(LSATi, GPAi, Rankj, Tuitionj, treat{0,1}, year)→ (0, 1) (1.18)

for k ∈ 1, 2, 3 and a student i and school j.

It is theoretically probable and empirically likely that there is a significant

amount of both nonlinearity and interaction between variables in fk. Although a non-

parametric estimator based on spline or kernel fitting would capture the nonlinearity,

the number of variables alone, not including the interactions, would be prohibitive

due to the curse of dimensionality. To allow for nonparametric estimation with such

a large feature space, I estimate the conditional probability function f̂k with gradient

boosted classification trees6.

Classification trees are a subset of decision trees in which the final outcome

is discrete. Decision trees divide the set of explanatory variables into J hypercubes

6For a more in-depth discussion, see [31], especially Ch. 9-10.
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according to an optimal criterion function and uses some type of mean estimate of the

outcome variable as the predicted value conditional on the values in each hypercube.

The final result generated by a decision tree is either a conditional mean estimate

(for continuous outcomes) or a conditional probability function or classification rule

(for discrete outcomes) defined over the space spanned by the explanatory variables.

Boosting is an ensemble method for decision trees that utilizes the fact that a

combination of weak learners (in this case, trees) can be used to improve predictive

power [63]. The boosting algorithm is an iterative process that fits a small tree,

generates pseudoresiduals for the predictions of that tree, then fits a tree to those

residuals again. This process is continued until some M number of iterations has

been completed. Each new tree is added to the previous estimate, but weighted by a

shrinkage parameter λ, which determines the learning rate of the algorithm. Gradient

boosting is a modification of boosting that allows for a general loss function used in

solving for the optimal prediction value in any characteristic space hypercube [27]. For

binary outcomes, [26] show boosting is a close approximation to an additive logistic

regression.

Optimal values for J , M and λ are generally determined through K-fold cross-

validation. Following [31] Chapter 7, K-fold cross-validation consists of splitting the

dataset in to K distinct subsets fitting the estimator K different times. The kth

estimation repetition is fit to the data set after removing the kth partition. The K

estimates of the prediction error are then combined and values of the vector (J,M, λ)

are determined that minimize a these errors using some standard norm (for example,
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MSE). K-fold cross-validation is in essence a way of taking advantage of the training-

set/testing-set approach while using the entire data-set.

For this specific application, however, the parameters recommended by K-fold

cross-validation underperform due to the need to forecast based on out-of-sample

years. Since K-fold cross-validation randomly subsets the observed data, it “op-

timally” over-interacts year with the other covariates, thus leading to poor future

predictive power. As such, I will utilize a more simple tree structure.

Although boosting decision trees improves their accuracy, it also confounds

much of a tree’s interpretability. This loss is not concerning in the current setting

since the goal of the BBL first-stage estimator is to flexibly predict behavior so as to

accurately simulate market evolution.

The estimates of fk can be used to simulate school-level outcomes, including

class profile (median LSAT and undergraduate GPA) and class size. One approach

to incorporate this method into the broader BBL estimator is to run this market

simulation once per period. Since this must be repeated each period for each simula-

tion of every value function, the ensuing computational burden makes this approach

infeasible. To circumvent the problem, I use the estimated functions f̂k to simulate

outcomes for median LSAT and undergraduate GPA and incoming class size (see

Appendix A.2 for details). This results in the vector of outcome functions

f̃(Rankj, Tuitionj, treat{0,1}, year)→ ([120, 180], [0, 1],R+)′ (1.19)

Note that student profile has been integrated out from these functions. Thus, the

outcome in each period for a school j with profile (Rankj, Tuitionj) can be predicted
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using f̃ . While fk will not be used any more for estimating the school’s problem, f3

will still be necessary for identifying uij.

The focus on f̃ puts these estimates in the spirit of the endogenous threshold

literature (for example, [6]). While not explicitly setting student quality thresholds,

a school with rank Rj and tuition Tj is in essence deciding the quality of students it

would like to accept. The difference here is that the tuition decision also simultane-

ously determines class size given optimal enrollment behavior.

In each function in the vector f̃ , tuition and rank are taken as given. These are

determined by the tuition policy function and state evolution function, respectively.

1.6.3 Tuition Policy Function

The tuition policy function represents the primary investment decision on the

part of a school, in that tuition in the current period combined with the state vector

R stochastically determines next period’s state. The reduced form tuition function

fT (Rankj, treat{0,1}, year)→ R (1.20)

can be estimated flexibly with a gradient boosted regression tree, which is similar to

a classification tree but with primary difference being the use of the least-squares loss

function. I include year to control for demand growth effects on tuition through the

state variable g and allow for policy heterogeneity across information regimes.

1.6.4 State Evolution

To estimate the transition probabilities defined in Equation (1.13), I try to

mimic the actual U.S. News ranking process as closely as possible. This process
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consists of two steps. The first step involves constructing a score for each school,

and independent of other schools, based on many persistent characteristics as well as

current period policy-dependent attributes. The second step normalizes these scores

to discrete ranks in the sequence 1, 2, . . . based on relative standing.

To capture the first scoring step, I estimate the simple tobit model

R′j = f(ψ0 + ψ1Rj + ψxxj + εR) (1.21)

bounded at one below and with x ≡ (t, LSATM , GPAM). The persistence in this

estimate is captured by the parameter ψ1. Next, I use the standard tobit expected

value to simulate the scoring step as follows

R̃′ = Φ

(
Xβ̂ + ε̂

σ̂R

)[
Xβ̂ + ε̂+ σ̂Rλ(Xβ̂ + ε̂)

]
+ 1− Φ

(
Xβ̂ + ε̂

σ̂R

)
(1.22)

with λ defined as the Inverse Mill’s ratio, X ≡ [R, x], and ε̂ draws from N(0, σ̂2
R).

Ranks are then normalized to positive integers based on relative score.

1.6.5 The BBL Estimator

As in BBL, I exploit the fact that the structural parameters linearly enter

in to Equations (1.16) and (1.17) to construct the value function for an active firm

remaining in the market as

Vj((R, g);σ, I, θ) = E

[
∞∑
t=0

βtΨj(σ, (Rt, gt), εt|(R0, g0) = (R, g))

]
·θ = Wj((R, g);σ)· θ̃

(1.23)

with the basis functions taking the form

Ψj = [π̃j, rj, r
2
j ]
′
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and θ̃ ≡ [1, δ1, δ2]. By linearity, Wj can be simulated up to structural paraters θ̃. The

structural coefficients for the donation function can be estimated as usual with the

BBL estimator based on Equation (1.23). I simulate K = 1250 of these alternate

policies with 10 simulation runs per policy.

Denoting an off-equilibrium policy σ̃j, Definition 1.5.4 gives the condition

Wj((R, g);σ∗j , σ
∗
−j) · θ̃ ≥ Wj((R, g); σ̃j, σ

∗
−j) · θ̃ (1.24)

for all off-equilibrium policies. For the current application, I use a standard-normal

additive perturbation to the estimates of school policy functions outlined in Sec-

tion 1.6.3.

Following BBL, Equation (1.24) can be rewritten as

m(σ̃j; θ̃) = [Wj((R, g);σ∗j , σ
∗
−j)−Wj((R, g); σ̃j, σ

∗
−j)] · θ̃. (1.25)

The desired m-estimator can now be written as

min
θ̃
Qn(θ̃) =

1

K

K∑
k=1

1(m(σ̃j,k; θ̃) > 0)m(σ̃j,k; θ̃)
2, (1.26)

thus searching for parameter values that minimize profitable deviations from the op-

timal policy. To solve for these parameters, I use the numerical optimization package

KNITRO [12] via the Python API ktrinterface [21].

To estimate the distribution of entrance costs and scrap values, I could exploit

the fact that there has been no observed exit in this market to simulate an approxi-

mate value function with no exit included in the simulation. The approximate value

function could then be used as a basis for a method of simulated moments estimator.
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Details are given in Appendix A.1. However, this will prove unnecessary as 1) the

change in the value of production will not be enough for entry/exit candidates (poorly

(potentially-)ranked schools) to change their behavior and 2) post-treatment data are

not yet extensive enough to yield either exits or significant change in entrance rates.

1.7 Estimates

The BBL estimator proceeds in two steps. The first step is to estimate the

application-admission game functions, the tuition policy function, and transition

probabilities between states. The second step will be to construct an M-estimator

from simulated value functions leveraging the definition of a Markov-perfect equi-

librium to get estimates for Equation (1.5) and for the distribution parameters for

Equation (1.6).

1.7.1 BBL First Stage

To estimate the application-admissions game parameters, for each function fk

in Equation (1.18), I ran 100 boosting stages at a learning rate of 1.0, and a maximum

tree depth of 1. Relative importance of each contributing variable is reported in

Figure B.3.

The relative importance of each variable per game stage is telling. In pre-

dicting application probability, school rank is more than twice as important as the

next explanatory variable, Tuition. It is clear that school profile matters more for

application decisions than student profile. This is consistent with the observation

that schools face similar applicant profile distributions through all ranges of Rank.
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Year has little relative effect on predicting outcomes at any stage of the

application-admission game. The only time, however, in which it does not have the

lowest importance is in predicting application probability. This is consistent with the

model in which any yearly effect independent of the information treatment is due to

an exogenous growth in demand for law school, which would manifest itself primarily

in application probability, the closest proxy to demand in this game.

The most important variable in explaining admission decisions is applicant

LSAT scores. This is consistent with the rank premium argument in Section 1.4, that

schools care more about LSAT scores of their students because LSAT scores have a

higher weight in the US News Rankings than GPA, which contributes less than Rank

to admission decisions. Rank is understandably important since better schools are

more selective and tuition, being of second order importance at this stage to schools,

has an even lower relative effect.

Finally, matriculation decisions are based first and foremost on undergraduate

GPA of the applicant. This is to be expected, since GPA is the primary indicator in

the data of outside options for students. While LSAT scores matter for schools with

respect to rank effects, they make little difference in employment options outside of

law for potential students. Thus LSAT has a lower relative effect than both GPA

and school rank. It is surprising that Tuition has such low relative importance in

predicting matriculation probability. This is likely due to the fact that rank is the

primary predictor of post-graduation wages. Thus, the primary interaction should

be between expected wages conditional on going to law school (associated with rank)
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and outside option (associated with GPA).

To give further confirmation of the implied directions of effects from the

boosted estimates, Tables B.19, B.20 and B.21 show corresponding logit models with

similar, albeit less flexible, estimates. The direction on the coefficients seem to match

the interpretation of the results already discussed, although the amount of interaction

makes interpretation difficult as well.

As discussed in Section 1.6.2, the equations in (1.18) are used to simulate

estimates of the vector of equations (1.19). Outcomes reported in Figures B.4 and B.5

for treat=0, 1, respectively. Although somewhat uninformative by themselves, the

comparison of the relative importance plots across information regimes shows an

increase in the relative importance of rank, consistent with the newly induced quality

separation.

The estimate of the tuition function defined in Equation (1.20) is reported in

Figure B.6. The primary relationship of note in Figure B.6 is how little importance

the treatment indicator is assigned in estimator, which is initially surprising given

the analysis thus far. However, the relative importance result can be understood

in the context of the estimator itself. The flexibility of the boosted regression tree

allows the year variable to capture most of the level effect which otherwise would

have been allotted to the treatment dummy. As will be shown in Section 1.8.1, the

high importance placed on year will not confound the information regime effect. On

the contrary, the information effect will dominate the year effect in the estimator,

thus removing the tuition trend effect. While this will decrease base producer surplus
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estimates, it will not change the numbers for change in producer surplus since the

growth term g is constant across information regimes.

Due to the few number of years in the sample, there is not enough data to

recover a reliable estimate of entrance probability of schools or the change in that

probability based on the information switch. As such, I will compute the model

without entrance, simulate the market both with and without the information, and

compare the difference in positive and normative outcomes. It will be shown that these

results indicate changes in value functions for producers such that change in entry/exit

behavior should not be optimal. Thus, the analysis should still be informative.

1.7.2 BBL Second Stage

Having obtained first-stage estimates, I can simulate the market up to parame-

ter values in order to build the minimum distance estimator outlined in Section 1.6.5.

The primary parameters that needed to be estimated were those associated with the

rank premium in the donation function in Equation (1.5). The estimated values are

(δ̂1, δ̂2) = (14.78,−0.16). (1.27)

Since rank gets higher as schools get worse (a rank of 1 indicates the best school),

this indicates the concavity expected. Further, net donations become negative for a

high enough rank (approximately 90), showing that for lower quality schools, grants

and donations are outweighed by the cost of school operation. This also gives the

intuitive result that donations, grants, alumni giving, etc. are much more prevalent

among higher quality programs.
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1.8 Market Dynamics and Welfare

Having completed the estimation, I can now turn to analyzing the market

under both information regimes. To do so, I forward simulate market interactions

between schools and students for T periods in the future, first under the counterfactual

assumption that the reporting system never changed and second under the current

reporting system.

1.8.1 Market Dynamics

Dynamics in the simulated markets are given in Figures B.8-B.12. In each fig-

ure, the solid and dotted lines indicate the markets simulated under the previous and

current information systems, respectively. Cells represent quantiles of the reported

variable.

Demand in Figure B.8 changes very little for the bottom half of schools. In the

65th-75th quantiles, demand drops slightly, then starkly in the 85th quantile. Behav-

ior then changes drastically as demand actually increases for the top 95th percentile

of schools. The intuition behind this result is based on the new relative profitability

information available to students, revealing that top tier schools are in fact very lu-

crative. The responses to new information will be discussed in depth in Section 1.8.2.

Median LSAT scores of incoming students in Figure B.9 drop slightly for most

schools, consistent with the elasticity results in Section 1.4. Once again, the top

quantile of schools exhibits different behavior as they are able to attract even better

students than without the extra information.
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The primary purpose for Figure B.10 is to provide a consistency check for the

rank evolution estimator. In the data, there is little variation over time in rank and

this should be evident in the market evolution. Consistent with market behavior,

Figure B.10 shows a high persistence in rank.

Figure B.11 shows the evolution of tuition over this period. In this case, the

estimate loses power because of the estimator. Rather than capturing the time trend

directly, the boosted regression tree fits the years non-parametrically, attributing the

difference in pre and post treatment periods to a level effect. The growth term is

lost. However, while this will have implications for the stand-alone producer surplus

measure, the separation based on school quality is still estimated, which can be seen

by the increasing gap between the treatment and non-treatment tuition paths. Thus,

the difference in producer surplus can still be accurately inferred.

The final set of time path graphs is given in Figure B.12 for median undergrad-

uate GPA. As was suggested in Section 1.4, lower quality schools in general have to

decrease their admissions criteria significantly. Due to rank premium effects, dropping

GPA is the more profitable option over dropping LSAT requirements.

1.8.2 School Welfare

The change in school welfare can be retrieved by comparing the value functions

with and without the new information regime. This is given by the function difference

∆V (R) = V (R|info = 1)− V (R|info = 0) (1.28)
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with V as defined in Equations (1.16) and (1.17). The estimate of ∆V is shown in

Figure B.7.

Dividing schools into four tiers in equidistant segments conditional on rank,

the estimates in Figure B.7 suggest four approximate categories of schools to consider.

Category 1: The top half of the first tier (positive change)

Category 2: The bottom half of the first tier through the top half of the third tier

(negative change)

Category 3: The bottom and top halfs of the third and fourth tiers, respectively

(positive change)

There are two competing forces in effect causing the differences in welfare

changes across the categories. The first effect is based on behavior of continuing

students. The information regime change induces a increased observed separation

between schools of various ranks. Rather than mere ordinal differentiation, ranks

now provide a cardinal measure for a school of any given rank. Not surprisingly, the

top schools are revealed to be highly lucrative for students. Students then respond

with higher demand which in turn results in higher returns.

The separation effect decreases sharply as rank drops, turning negative at

approximately the 25th rank. At this point and on, schools are now revealed to be

of lower quality that previously believed. While the difference in welfare continues to

descend, it does so at a decreasing rate as the second force, the expansionary effect,

applied.

The expansionary effect also comes as a consequence of the drop in expected
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outcome of schooling from any given school, but is generated by students previously

not participating in this market. Before the change in reporting standards, a substan-

tial number of potential students were willing to attend law school and would have

benefited from the education, but were unable to attend based on their sub-standard

admissions profile. As a lower quality school is revealed as such, higher ability stu-

dents with better outside options are no longer interested in attending its program.

Lower ability students, however, have lower outside options and might therefore ben-

efit from attending such a school. Thus, around rank 60, the elasticity of demand

from lower quality students outweighs the corresponding elasticity from higher qual-

ity students and revenue begins to increase as the school opens up to this previously

under-served market.

One might ask at this point, if there was previously this entire subpopulation

willing to attend law school at high tuition prices and law schools had room, why

were they not admitted earlier? Why did schools wait until the change in information

structure to change their admissions behavior? The answer is in the rank premium.

For an individual school to admit this class of student, it would have to drop its

admissions criteria unilaterally. Since the ranking system is relative, all other schools

would immediately improve relative to the deviating school, thus revealing the deviat-

ing school to be of lower quality than previously believed. Through the rank premium,

the cost of deviation would outweigh the benefits of immediate tuition revenue. Thus,

not deviating corresponds with equilibrium behavior.

In this context, the new information regime acts as an exogenous enforcement
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mechanism for deviation. As all schools in a certain range are revealed to be of lower

quality than previously believed, none can enroll as many higher quality candidates

and so all offer enrollment to the lower-quality student pool. Since the deviations are

en masse, ranks remain fixed and schools maintain rank profits while simultaneously

increasing stage profits. Eventually, the expansionary effect dominates and profits

increase.

Another surprising implication of the producer surplus results is that quality

disclosure on the part of schools occurred because of regulatory pressure rather than

by voluntary action. Indeed, the process of the best producers voluntarily revealing

their quality, thus putting pressure on the next-best firm to disclose and so-on until

all firms have disclosed their quality, is a process called “unraveling,” the presence or

absence of which has been investigated in the quality-disclosure literature.

Conditions under which voluntary quality disclosure is not optimal are given

in [17]. The primary reason at play in the current case is costliness of disclosure. As

first discussed in [29] and [38], only high quality producers will disclose their quality

when the disclosure process itself is costly. In the case of law schools, disclosure

involves an extra battery of alumni surveys with all the accompanying administrative

structure required to administer the surveys. In order to comply with post-2010

requirements, many schools were required to hire extra administrative staff or invest

in other ways in generating the report.

An additional factor involved in the voluntary disclosure decision is the verifi-

ability of independent reports. While schools were free to report student placement,
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no regulatory body was previously in place to verify the veracity of the report. This

lack of oversight led to many of the problems in this market previously discussed,

such as students attending a school with artificially inflated expectations with regard

to post-graduation earnings.

Besides the information regime change, the remaining salient feature during

this time period is the aggregate recession in the United States beginning in 2008.

This is especially relevant since the recessionary effects on the lawyer labor market

did not begin to apply in force until 2009-2010. The expected dip is in fact clearly

observed in Figure B.1, raising the concern that some of the welfare effects estimated

could be due to business cycle effects rather than informational effects.

The recession could indeed have affected law school surplus, even differentially

based on school quality. If the drop in expected wages were uniform across rank, then

the change in producer surplus could be similar to the estimate in Figure B.7. Sub-

stitution effects would cause lower quality students to attend higher quality schools,

thus once again forcing the lower quality schools to open up to a lower ability student

pool.

There are two primary issues with this possibility. First, this story does not

explain the sharp increase in producer surplus in higher ranges, a feature characteristic

of the information effect. Further, wage changes do not seem to be uniform. In fact,

the biggest drops seem to be in wages expected from going to higher quality schools,

especially in the lower quantiles. In fact, the business cycle would not necessarily

bias the welfare results at all, since it is not clear that the corresponding gains and
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losses would not simply cancel each other out, resulting in a net zero effect. So, while

it is possible that the welfare changes in Figure B.7 were exacerbated by business

cycle effects, it seems information still plays the primary role in the total change in

producer surplus.

Since the entire school population is observed each period, the total change in

producer surplus can be calculated using Equation (1.28) and is given by

∆PS =
N∑
j=1

∆V (R̂)j ≈ −$211 million (1.29)

which amounts to slightly more than a 5% drop, with R̂ denoting the empirical state

vector R at any given period (in this case, 2013).

1.8.3 Student Welfare

Computing student surplus at this stage is more involved than computing

school surplus. While I computed school welfare through value function simulation,

I could not directly retrieve consumer surplus at each period because of the compu-

tational trick in Section 1.7.1 integrating out the student side from GPA, LSAT, and

matriculation functions.

To retrieve student welfare, I go through a similar simulation process as that

outlined in Section 1.7.1 and detailed in Appendix A.2, but with some differences.

The first difference is that, since students have no dynamic considerations themselves

with respect to the game and since the game is anonymous and symmetric, the entire

population over all time periods can be simulated simultaneously. The second differ-

ence, once again by symmetry, is that the entire game does not need to be simulated,
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only the student relevant outcomes at each stage. This includes admission and ma-

triculation probabilities and expected rank and tuition of the school conditional on

matriculation.

The third difference is implied by the second, specifically that now, all infor-

mation about both sides of the potential match is still included in the matricula-

tion function fM (no integration of school-side characteristics). This can be used to

identify uij by noting that the probability of matriculation at a given school is the

probability that the value of attending is greater than zero, given by the equation

Pr(Uij(t) > 0) = fM(LSATi, GPAi, Rankj, Tuitionj) ≡ fMij (1.30)

with Uij(t) defined in Equation (1.2). The proof of identification based on Equa-

tion (1.30) is given in Appendix A.3.1 and further estimation details are given in

Appendix A.3.2.7

There are three primary types of change with respect to student welfare. The

first follows from change in tuition rates, which can either be positive or negative

depending on the school. The second component changing welfare is the substitution

effect. Whether students go to a better school under the new information regime or

stop going to school all together, the change in student profiles indicates that in some

way, the type of school any given student will (or won’t) attend will change as a result

of the new information.

The final factor affecting student surplus is connected to the second. Besides

7Application costs are not currently incorporated into either computation or welfare
calculations. Since application costs are relatively low, this should not have a substantial
effect on welfare results.
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students who were going to law school who substitute into better schools or away from

law school in general, schools have also opened themselves up to a new previously

underserved subpopulation. This is evidenced in the significantly decreased admis-

sions profiles, especially in lower quality schools. These schools previously would have

never admitted these lower-ability students. Under the new information regime, while

higher ability students would no longer be willing to attend lower quality schools, the

marginal cost might actually be smaller than the benefit relative to outside options

for lower-ability students.

The total change in consumer (student) surplus is the net positive amount

∆CS =

∫
∆WidG(i) ≈ $896 million (1.31)

corresponding with a 0.5% increase, with Wi as defined in Equation (1.9) and ∆Wi ≡

Wi(I = 1)−Wi(I = 0).

1.8.4 Total Welfare

The total welfare change due to the change in the information regime is positive

and is given by Equation (1.32) as

∆TS = ∆SS + ∆PS = $685 million (1.32)

The implications of this result are intuitive. In markets characterized by informa-

tional friction with regard to producer quality separation, producers can use the

information asymmetry to extract rent from consumers. In the case that the quality

of the consumer matters to the producer as well, the information frictions also lead to
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systemic mismatch as consumers are matched with inefficiently low-quality products.

The fact that the total welfare change was positive gives evidence that a market based

approach, in which the only intervention involves enforcing honesty in reporting, can

at least partially mitigate the mismatch problem.

1.9 Conclusion

The lawyer glut has generated significant concern, both for legal education

and more broadly for the general higher education market. I have provided evidence

to suggest that that information asymmetry between students and their prospective

schools led to a systemic mismatch between the two sides of this market. I have

further argued that this mismatch was at least partially mitigated by an exogenous

influx of quality-separating information concerning school quality.

While there are some clear weaknesses due to the nature of the treatment,

primarily that there was no control group against which to estimate treatment effects

more precisely, the evidence still suggests the further use of this type of information

policy in other similar markets. One possible application would be to tailor the esti-

mators used in this paper to the undergraduate market in order to analyze the recent

information policy imposed on undergraduate programs in the United States. This

would further our understanding of markets with this type of information asymmetry

as well as motivate further application of similar policy.
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CHAPTER 2
ON THE MICROECONOMIC FOUNDATIONS OF LINEAR

DEMAND FOR DIFFERENTIATED PRODUCTS

2.1 Introduction

The emergence of the modern theory of industrial organization owes much to

the development of game theory. Due to its privileged position as the area where novel

game theoretic advances found their initial application in an applied setting, industrial

organization then served as a further launching ground for these advances to spread

to other areas of economics. Yet to explain the success of industrial organization in

reaching public policy makers, antitrust practitioners, and undergraduate students,

one must mention the role played by the fact that virtually all of the major advances

in the theory have relied on an accessible illustration of the underlying analysis using

the convenient framework of linear demand.

While this framework goes back all the way to Bowley [9], it received its first

well-known treatment in two visionary books that preceded the revival of modern

industrial organization, and yet were quite precise in predicting the intimate link to

modern game theory: Shubik [66] and Shubik and Levitan [67]. Then early on in the

revival period, Dixit [15], Deneckere [14] and Singh and Vives [69] were among the

first users of the linear demand setting. Subsequently, this framework has become so

widely invoked that virtually no author nowadays cites any of these early works when

adopting this convenient setting.

Yet, despite this ubiquitous and long-standing reliance on linear demand, the
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present paper will argue that some important foundational and robustness aspects

of this special demand function remain less than fully understood.1 Often limiting

consideration to the two-good case, the early literature on linear demand offered a

number of clear-cut conclusions both on the structure of linear demand systems as well

as on its potential to deliver unambiguous conclusions for some fundamental questions

in oligopoly theory. Among the former, one can mention the elegant duality features

uncovered in the influential paper by Singh and Vives [69], namely (i) the dual linear

structure of inverse and direct demands (along with the clever use of roman and greek

parameters), (ii) the duality between substitute and complementary products and the

invariance of the associated cross-slope parameter range of length one for each, and

(iii) the resulting dual structure of Cournot and Bertrand competition. In the way of

important conclusions, Singh and Vives [69] showed that, under linear demand and

symmetric firms, competition is always tougher under Bertrand then under Cournot.

In addition, were the mode of competition to be endogenized in a natural way, both

firms would always prefer to compete in a Cournot rather than in a Bertrand setting.

(Singh and Vives [69] inspired a rich literature still active today). Subsequently,

Häckner [30] showed that with three or more firms and unequal demand intercepts,

the latter conclusion is not universally valid in that there are parameter ranges for

which competition is tougher under a Cournot setting, and that consequently some

1One is tempted to attribute this oversight to the fact that industrial economists’ strong
interest in linear demand is not shared by general microeconomists (engaged either in the-
oretical or in empirical work), as evidenced by the fact that quadratic utility hardly ever
shows up in basic consumer theory or in general equilibrium theory.
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firms might well prefer a Bertrand world. Hsu and Wang [36] show that consumer

surplus and social welfare are nevertheless higher under Bertrand competition for any

number of firms.

With this as its starting point, the present paper provides a thorough inves-

tigation of the micro-economic foundations of linear demand. Following the afore-

mentioned studies, linear demand is derived in the most common manner as the

solution to a representative consumer maximizing a utility function that is quadratic

in the n consumption goods and quasi-linear in the numeraire. When this utility

function is strictly concave in the quantitites consumed, the first order conditions for

the consumer problem do give rise to linear demand, as is well known. Our first main

result is to establish that this is the only way to obtain such a micro-founded linear

demand. In other words, we address the novel question of integrability of linear de-

mand, subject to the quasi-linearity restriction on candidate utility functions and find

that linear demand can be micro-founded in the sense of a representative consumer

if and only if satisfies the strict Law of Demand in the sense of decreasing operators

(see [32]), i.e., if and only if the associated substitution/complementarity matrix is

positive definite. As a necessary first step, we derive some general conclusions about

the consumer problem with quasi-linear preferences that do not necessarily satisfy

the convexity axiom. In so doing, we explicitly invoke some powerful results from the

theory of monotone operators and convex analysis (see e.g., [73] and [32]), as well as

a mix of basic and specialized results from linear algebra.

We also observe that strict concavity of the utility function imposes significant
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restrictions on the range of complementarity of the n products. For the symmetric

substitution matrix of Häckner [30], we show that the valid parameter range for the

complementarity cross-slope is (− 1
n−1 , 0), which coincides with the standard range of

(−1, 0) if and only if there are exactly two goods (n = 2). In contrast, the valid range

for the cross parameter capturing substitute products is indeed (0, 1), independently

of the number of products, which is in line with previous belief. We also explore

the relationship between the standard notions of gross substitutes/complements and

the alternative definition of these relationships via the utility function. Here again,

the conclusions diverge for substitutes and for complements as soon as one has three

or more products. All together then, the neat duality between substitute and com-

plementary products breaks down in multiple ways for the case of three or more

products.

Another point of interest is that, in the case of complements, as one approaches

from above the critical value of − 1
n−1 , the usual necessary assumption of enough

consumer wealth for an interior solution becomes strained as the amount of wealth

needed is shown to converge to infinity! This further reinforces, in a sense that is

hard to foresee, the finding that linear demand is not robust to the presence of high

levels of inter-product complementarity!

Since many studies have used linear demand in applied work without concern

for microeconomic foundations,2 it is natural to explore the nature of linear demand

2A classical example appears in Okuguchi’s [55] early work on the comparison between
Cournot and Bertrand equilibria, which is discussed in some detail in the present paper.
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when the strict concavity conditions on utility do not hold. In other words, we inves-

tigate the properties of the solution to the first order conditions of the consumer prob-

lem. For simplicity we do so for the n-good fully symmetric case (i.e., all off-diagonal

terms of the substitution matrix are equal). Due to the lack of strict concavity, this

will be only a local extremum (with no global optimality properties), which we term a

local demand function. We find that, depending on which violation of strict concavity

one allows, several rather unexpected exotic phenomena might arise. Demand func-

tions might then fail the Law of Demand, even though each individual demand might

remain downward-sloping in own price. For another parameter violation, individual

demands might even be upward-sloping in own price (i.e., Giffen goods with a linear

demand). In particular, we explicitly solve for the global solution of the utility maxi-

mization problem with a symmetric quadratic utility function that barely fails strict

concavity, and show that the resulting demand can be multi-valued, highly non-linear

and overall quite complex even for the two-good case. (Though similar effects will

apply, higher values of n appear to be intractable as far as a closed-form solutions

are concerned).

As a final point, we investigate one special case of linear demand with a local

interaction structure. This is characterized by the fact that the representative con-

sumer is postulated as viewing products as imperfect substitutes if they are direct

neighbors in a horizontal attribute space and as unrelated otherwise. Though intended

as a model of vertical differentiation, the well-known model of the car industry due

to Bresnahan [10] has the same local interaction structure.
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This paper is organized as follows. Section 2 gathers all the microeconomic

preliminaries for general quasi-linear preferences. Section 3 specializes to quadratic

utility and investigates the integrability properties of linear demand. Section 4 nar-

rows consideration further to symmetric quadratic utility for tractability reasons.

Section 5 explores the relationship between the notions of gross substitutes/comple-

ments and the alternative definition of these relationships via the utility function.

Finally Section 6 offers a brief conclusion.

2.2 Some Basic Microeconomic Preliminaries

In this section, we work with the two standard models from the textbook

treatment of consumer theory, but allowing for general preferences that are quasi-

linear in the numeraire good, but do not necessarily satisfy the convexity axiom (i.e,

the utility function is not necessarily strictly quasi-concave). The main goal is to prove

that Marshallian demands are decreasing in the sense of monotone operators [32], and

thus also decreasing in own price.

2.2.1 On Consumer Theory With Quasi-Linear Utility

Let x ∈ Rn
+ denote the consumption levels of the n goods and y ∈ R+ be the

numeraire good. The agent is endowed with a utility function U : Rn
+ −→ R over the

n goods and the numeraire y appears in an additively separable manner in the overall

utility. The agent has income m ≥ 0 to spend on purchasing the (n+ 1) goods.

The utility maximization problem is, given a price vector p ∈ Rn
+ and the



65

numeraire price normalized to 1,

maxU(x) + y (2.1)

subject to (throughout, ”·” denotes the usual dot product between vectors)

p · x+ y ≤ m. (2.2)

We shall refer to the solution vector (i.e., the argmax) as the Marshallian demands,

denoted (x∗(p,m), y∗(p,m)) or simply (x∗, y∗). We shall also use the notation D(p) =

(D1(p), D2(p), ..., Dn(p)) for this direct demand function since the argument m will

be immaterial in what follows.

The (dual problem of) expenditure minimization is (with u being a fixed utility

level)

min p · x+ y (2.3)

subject to

U(x) + y ≥ u.

We shall refer to the solution vector as the Hicksian demands (xh(p, u), yh(p, u)) or

simply (xh, yh). We shall also use the notation Dh(p) for this direct demand function

since the argument u will not matter below. Recall that the (minimal) value function

is the so-called expenditure function, denoted e(p, u).

The following assumption is maintained throughout the paper.3

3Smoothness is assumed only for convenience here, and is not critical to any of the
conclusions of the paper.
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(A1). The utility function U is twice continuously differentiable and satisfies Ui ,

∂Ui

∂xi
> 0, for i = 1, 2, ..., n.

Since U is not necessarily strictly quasi-concave, the solutions to the two prob-

lems above, the Marshallian demands (x∗, y∗) and the Hicksian demands (xh, yh), may

be correspondences in general.4 By Weirstrass’s Theorem, both correspondences are

non-empty valued for each (p,m).

2.2.2 On the Law of Demand

In standard microeconomic demand theory, though not always explicitly rec-

ognized, the downward monotonicity of multi-variate demand is usually meant in

the sense of monotone operators (for a thorough introduction, see [73]). This is a

central concept in the theory of demand aggregation in economics [32] as well as in

several contexts in applied mathematics [73]. We begin with its definition and a brief

summary of some simple implications.

Let S be an open convex subset of Rn and F be a function from S into Rn.

We shall say that F is (strictly) aggregate-monotonic if F satisfies (here ”·” denotes

4It is important in this paper to allow for utility functions that do not satisfy the ubiq-
uitous quasi-concavity assumptions since we shall be concerned in some parts of this paper
with maximizing quadratic, but non-concave, utility functions.
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dot product) 5

[F (s)− F (s′)] · (s− s′) ≤ (<)0 for every s, s′ ∈ S. (2.4)

This notion of downward monotonicity is quite distinct from the more prevalent notion

of monotonicity in the coordinate-wise (or product) Euclidean order that arises natu-

rally in the theory of supermodular optimization and games ([70], [75]). Nonetheless,

for the special case of a scalar function, both notions boil down to the usual notion

of monotonicity, and thus constitute alternative but distinct natural generalizations.

The following characterization of aggregate monotonicity in this context is

well known. Let ∂F (s) denote the Jacobian matrix of F (s), i.e., the ijth entry of the

matrix ∂D(s) is ∂ijF (s) = ∂Fi(s)
∂sj

, which captures of the effect of a change in the price

of the jth good on the demand for the ith good. This is a well-known result; for a

proof, see e.g., Vainberg [73] or [Hildenbrand [32], Appendix].

Lemma 1. Let S be an open convex subset of Rn and F : S −→ Rn be a continuously

differentiable map. Then the following two properties hold.

(i) F is aggregate-monotonic if and only if the Jacobian matrix ∂F (s) is neg-

ative semi-definite.

(ii) If the Jacobian matrix ∂F (s) is negative definite, then F is strictly aggregate-

monotonic.

5In the mathematics literature, functions with this property are simply referred to as
monotone functions (or operators). The choice of the terminology ”aggregate-monotonic”
is ours, and is motivated by two considerations. One is that this is the standard notion of
monotonic demand in aggregation theory in economics. The other is a desire to distinguish
this monotonicity notion from the more prevalent one of coordinatewise monotonicity.
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In Part (ii), the equivalence between the two strict notions need not hold.

There are examples of strictly aggregate-monotonic maps with a Jacobian matrix

whose determinant is not everywhere non-zero.

An important direct implication of Lemma 1 is that the diagonal terms of

∂F (s) must be negative. However, this monotonicity concept does not impose restric-

tions on the signs of the off-diagonal elements of ∂F (s). In contrast, monotonicity

in the coordinate-wise order requires that every element of the Jacobian ∂F (s) be

(weakly) negative.

Definition. The Marshallian demand D(p) satisfies the (strict) Law of Demand if

D(p) is (strictly) aggregate-monotonic, i.e., for any two price vectors p and p′, D

satisfies

[D(p)−D(p′)] · (p− p′)(<) ≤ 0 (2.5)

In classical consumer theory, this property is well-known not to hold under

very general conditions on the utility function, but sufficient conditions that validate

it are available, see Hildenbrand [32] for details and discussion.

Consistent with Lemma 1, a demand function that satisfies the Law of Demand

necessarily has the property that each demand component is downward-sloping in own

price (i.e., the diagonal elements of the Jacobian matrix are all ≤ 0). In other words,

no good can be a Giffen good. In addition, as Lemma 1 makes clear, the Law of

Demand entails significantly more restrictions on the demand function.

The following general result reflects a key property of demand that constitutes

the primary motivation for postulating a quasi-linear utility function in industrial
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organization. This result will prove very useful below.

Proposition 1. Under Assumption A1, the Marshallian demand D(p) satisfies the

Law of Demand.

Proof. We first prove that the Hicksian demand satisfies the Law of Demand. In

the expenditure minimization problem, the expenditure function e(p, u), as defined

in (2.3), is the pointwise infimum of a collection of affine functions in p. Hence, by a

standard result in convex analysis (see e.g., [61], Theorem 5.5 p. 35), for an arbitrary

such collection, e(p, u) is a concave function of the price vector p. Since the Hicksian

demand Dh(p) is the gradient of e(p, u), i.e, ∂e(p,u)
∂pi

= Dh
i (p) = xhi (in other words,

this is just the standard Hotelling’s Lemma), it follows from a well-known result in

convex analysis, which characterizes the subgradients of convex functions [60], that

Dh(p) satisfies (2.5).

Since the overall utility is quasi-linear in the numeraire, it is well known that

the Marshallian demand inherits the properties of the Hicksian demand. Hence D(p)

too satisfies the Law of Demand (2.5).

Recall that in the standard textbook treatment of these monotonicity issues,

the utility function is assumed to be strictly quasi-concave. The main advantage of

using the given general results from convex analysis is to bring to light the fact that

quasi-concavity of the utility function is not needed for this basic result.
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2.3 The Case of Quadratic Utility

In this section, we investigate the implications of the general results from the

previous section that hold when we specialize the utility function U to be a quadratic

function in problem (2.1). Along the way, we also review and build on the basic

existing results for the case of a concave utility.

Using the same notation as above, the representative consumer’s utility func-

tion is now given by (here ”′” denotes the transpose operation)

U(x) = a′x− 1

2
x′Bx (2.6)

where a is a positive n-vector and B is an n× n matrix. Without loss of generality,

assume B is symmetric and has all its diagonal entries equal to 1.

2.3.1 A Strictly Concave Quadratic Utility

For this subsection, we shall assume that the matrix B is positive definite,

which implies that the utility function is strictly concave. This constitutes the stan-

dard case in the broad literature in industrial organization that relies on quadratic

utility.

It is well known that such a utility function gives rise to a generalized Bowley-

type demand function. We allow a priori for the off-diagonal entries of the matrix to

have any sign, although different restrictions will be introduced for some more definite

results. Thus, this formulation nests different inter-product relationships, including

substitute goods, complementary goods, and hybrid cases.



71

The consumer’s problem is to choose x to solve

max{a′x− 1

2
x′Bx+ y} subject to p′x+ y = m (2.7)

As a word of caution, we shall follow the standard abuse of terminology in

referring to the demand function at hand as linear demand, although a more precise

description would clearly refer to it as being an affine function whenever positive and

zero otherwise.

The following result is well known (see e.g, [4]), but included for the sake of

stressing the need to make explicit the following basic assumption.

(A2). The primitive data in (2.7) satisfy B−1(a− p) > 0 and pB−1(a− p) ≤ m.

As will become clear below, this Assumption is needed not only to obtain an

interior solution to the consumer problem (in each product), but also to preserve the

linear nature of the resulting demand function.

Lemma 2. Assume that (A2) holds and that the matrix B is positive definite. Then

the inverse demand is given by

P (x) = a−Bx (2.8)

and the direct demand is

D(p) = B−1(a− p) (2.9)

Proof. Since the utility function is quasi-linear in y, the consumer’s problem (2.1)

can be rewritten as max{a′x− 1
2
x′Bx + m− p · x}. Since B is positive definite, this

maximand in strictly concave in x. Therefore, whenever the solution is interior, the
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usual first-order condition with respect to x, i.e., a−Bx−p = 0, is sufficient for global

optimality. Solving the latter matrix equation directly yields the inverse demand

function (2.8). It is easy to check that this solution is interior under Assumption

(A2), as the part B−1(a−p) > 0 says that each quantity demanded is strictly positive,

and the part pB−1(a− p) ≤ m simply says that p ·D(p) ≤ m, i.e., that the optimal

expenditure is feasible.

Since B is positive definite, the inverse matrix B−1 exists and is also positive

definite (see e.g., [50]). Inverting in (2.8) then yields (2.9).

At this point, it is worthwhile to remind the reader about three hidden points

that will play a clarifying role in what follows. The first two points elaborate on the

tacit role of Assumption (A2).

Remark 1. In the common treatment of the derivation of linear demand in industrial

organization, one tacitly assumes that the representative consumer is endowed with a

sufficiently high income. The main purpose of Assumption (A2) is simply to provide

an explicit lower bound on how much income is needed for an interior solution. We

shall see later on that when Assumption (A2) is violated, the resulting demand is not

only non-linear, it is also income-dependent. Thus income effects are then necessarily

present, a key departure from the canonical case in industrial organization.

The second point explains the abscence of income effects, and thus captures

the essence of a quasi-linear utility.

Remark 2. Suppose we have a solution (2.8) and (2.9) for some m such that pB−1(a−
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p) ≤ m. Then it can be easily shown that, for every m′ > m, the solution of the con-

sumer problem is still given by (2.8)-(2.9).

The third point explains the need for the strict concavity of U .

Remark 3. The reason one cannot simply work with a quadratic utility function that

is just concave (but not strictly so) is that, then, a matrix B that is just positive

semi-definite (and not positive definite) may fail to be invertible. One immediate

implication then is that the direct demand need not be well defined (unless one uses

some suitable notion of generalized inverse).

It is well-known that when B is positive definite, direct and inverse demands

are both decreasing in own price (see e.g., [4]). In fact, we now observe that a stronger

property holds.

Corollary 1. If the matrix B is positive definite, both the inverse demand and the

direct demand satisfy the strict Law of Demand, i.e., (2.4).

Proof. This follows directly from Lemma 1, since the Jacobian matrices of the inverse

demand and the direct demand are clearly B and B−1 respectively, both of which are

positive definite.

The Law of Demand includes joint restrictions on the dependence of one good’s

price on own quantity as well as on all cross quantities. It captures in particular the

well known property that own effect dominates cross effects.
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2.3.2 Integrability of Linear Demand

In this subsection, we consider the reverse question from the one treated in the

previous subsection. Namely, suppose one is given a linear inverse demand function

of the form D(p) = d −Mp, where d is an n × 1 vector and M is an n × n matrix,

along with the corresponding inverse demand. The issue at hand is to identify minimal

sufficient conditions on d and M that will guarantee the existence of a utility function

of the form 2.1, a priori satisfying only continuity and quasi-linearity in the numeraire

good, such that D(p) can be obtained as a solution of maximizing that utility function

subject to the budget constraint (2.2)?

The framing of the issue under consideration here is directly reminiscent of the

standard textbook treatment of integrability of demand, but there are two important

distinctions. In the present treatment, on the one hand, we limit consideration to

quasi-linear utility, but on the other hand, we do not a priori require the underlying

utility function to reflect convex preferences. The latter point is quite important in

what follows, in view of the fact that one of the purposes of the present paper is to

shed light on the role that the concavity of the quadratic utility function (or lack

thereof) plays in determining some relevant properties of the resulting linear demand

function. The second distinction from the textbook treatment is that the starting

primitives here include both the direct and the inverse demand functions. It turns

out that this is convenient for a full characterization.

Proposition 2. (i) Let there be given a linear demand function D(p) = d−Mp with

di ≥ 0 for each i, along with the corresponding inverse demand P (·). Then there
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exists a continuous utility function U : Rn
+ −→ R such that D(p) can be obtained by

solving

max{U(x) + y} subject to px+ y ≤ m

if and only if M is positive definite and Assumption A2 holds.

Then the desired U is given by the strictly concave quadratic function (2.6)

with B = M−1, and both the demand and the inverse demand function satisfy the

strict Law of Demand.

Proof. Part (i) The ”if” part was already proved in Lemma 2, with being the quadratic

utility given in (2.6).

For the ”only if” part, recall that by Proposition 1, every direct demand func-

tion that is the solution to the consumer problem when U is continuous and quasi-

linear in the numeraire good (but not necessarily quadratic) satisfies the Law of

Demand. Therefore, via Lemma 1, the Jacobian of (d −Mp), which is equal to M,

must be positive semi-definite.

Now, since both direct and inverse demands are given, the matrix M must be

invertible, and hence has no zero eigenvalue. Therefore, sinceM is Hermitian, M must

in fact be positive definite. This implies in turn that the system of linear equations

Ma = d possesses a unique solution a with ai > 0, i.e., such that a = M−1d. Finally,

identifying M with B−1 yields the fact that the demand function can be expressed in

the desired form, i.e., D(p) = d−Mp = M(a− d) = B−1(a− d), as given in (2.9).

Inverting the direct demand D(p) yields the inverse demand (2.8). Integrating

the latter yields the utility function (2.6), which is then strictly concave since the
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matrix B is positive definite.

Finally, the fact that both D(p) and P (x) satisfy the strict Law of Demand,

then follows directly from Corollary 1.

The main message of this Proposition is that any linear demand that is micro-

founded in the sense of maximizing the utility of a representative consumer necessarily

possesses strong regularity properties. Provided the utility function is quasi-linear

(but not even quasi-concave a priori), the linear demand must necessarily satisfy the

Law of Demand, and originate from a strictly concave quadratic utility function.

This clear-cut conclusion carries some strong implications, some of which are

well understood, including in particular that (i) the demand for each product must be

downward-sloping in own price (i.e., no Giffen goods are possible), and (ii) demand

cross effects must be dominated by own effects.

On the other hand, the following implication is remarkable, and arguably quite

surprising.

Corollary 2. If a quadratic utility function of the form given in (2.6) is not concave,

i.e., if the matrix B is not positive semi-definite, then this utility could not possibly

give rise to a linear demand function.

We emphasize that this conclusion holds despite the fact that the utility func-

tion is concave in each good separately (indeed, recall that the matrix B is assumed

to have all 1’s on the diagonal). The key point here is that joint concavity fails.

This immediately raises a natural question: What solution is implied by the
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first order conditions for utility maximization in case the matrix B is not positive

semi-definite, and how does this solution fit in with the Corollary? This question is

addressed in the next section, in the context of a fully symmetric utility function,

postulated as a simplifying assumption, as in Singh and Vives [69], Häckner [30] and

others.

2.4 Symmetric Non-Concave Quadratic Utility

In this section, we investigate a common specification of linear demand in

industrial organization along the lines suggested by the results of the previous sec-

tion. We also elaborate on the question raised there about the meaning of first order

conditions when the substitution matrix fails to be positive semi-definite.

2.4.1 A Common Special Case

A widely used utility specification for a representative consumer foundation

is characterized by a fully symmetric substitution/complementarity matrix, i.e. one

in which all cross terms are identical for all pairs of goods and represented by a

parameter γ ∈ [−1, 1] (e.g., [69] and [30]). The substitution matrix is thus

B =


1 γ . . . γ

γ
. . . . . .

...
...

. . . . . . γ
γ . . . γ 1

 , (2.10)

which can be reformulated as B ≡ (1 − γ)In + γJn, where In is the n × n identity

matrix and Jn is the n× n matrix of all ones.

It is common in the literature to postulate that the meaningful range for the

possible values of γ is a priori [−1, 1], with γ ∈ [−1, 0) corresponding to (all goods
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being) complements, γ ∈ (0, 1) to substitutes, and γ = 0 to independent goods. While

we begin with [−1, 1] being the a priori possible range, we shall see below that for

the case of complements, further restrictions will be needed.

As previously stated, concavity of U is sufficient for the first-order condition

to provide a solution to the consumer’s problem. It turns out that for the special

substitution matrix at hand, concavity of U can easily be fully characterized.

Lemma 3. The quadratic utility function in (2.6) with B as in (2.10) is strictly

concave if only if γ ∈ (− 1
n−1 , 1).

Proof. For U to be concave, it is necessary and sufficient that B be positive semi-

definite. To prove the latter is equivalent to showing that all the eigenvalues of B are

positive. To this end, consider

B − λIn =


1− λ γ . . . γ

γ
. . . . . .

...
...

. . . . . . γ
γ . . . γ 1− λ


= γJn + (1− λ− γ)In

By the well known matrix determinant lemma, we have

det[B − λIn] = det[γJn + (1− λ− γ)In]

= (1− λ− γ)n−1[1− λ+ (n− 1)γ] (2.11)

The solutions of det[B − λIn] = 0 are then λ = 1 − γ and λ = 1 + (n − 1)γ. Since

a priori γ ∈ [−1, 1], by simple inspection, these solutions are > 0 if and only if

−1/(n− 1) < γ < 1.
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The following observation follows directly from the Proposition and the results

of the previous section.

Corollary 3. Given a linear demand D(p) = B−1a − B−1p with B as given in

(2.10), D(p) can be derived from a quadratic utility function of the form (2.6) if only

if γ ∈ (− 1
n−1 , 1), in which case both D(p) and the corresponding inverse demand

satisfy the Law of Demand.

It follows that the range of values of the parameter that validate a linear de-

mand function is not (0, 1], but rather (− 1
n−1 , 1). One important direct implication

is that there is a fundamental asymmetry between the cases of substitutes and com-

plements. For substitutes, the valid range is indeed (0, 1), as is widely believed, and

this range is independent of the number of goods n. However, for complements, the

valid range is (− 1
n−1 , 0), which monotonically shrinks with the number of goods n,

and converges to the empty set as the number of goods n −→ +∞.

This Corollary uncovers an exceptional feature of the ubiquitous two-good

case, as reported next.

Remark 4. The special case of two goods (n = 2) is the only case for which the valid

range of the parameter γ for a concave utility, and thus for a well-founded demand, i.e.

(− 1
n−1 , 1), is equivalent to the interval (−1, 1), as commonly (and correctly) believed

(e.g., [69]).6

6Actually, in industrial organization, it is not uncommon to find studies that postulate
the valid range as being the closed interval [−1, 1], instead of the open (−1, 1).
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Before moving on to explore the properties of the solutions of the first or-

der conditions when the latter are not sufficient for global optimality, we report a

remarkable result about the hidden regularizing effects of strict concavity.

Proposition 3. Consider the quadratic utility function in (2.6) with B as in (2.10).

As γ ↓ − 1
n−1 , the level of income required to obtain an interior linear demand function

converges to ∞.

Proof. We first derive a simplified version of Assumption (A2) for the case where the

matrix B as in (2.10). As ai = a > pi = p, one clearly has x > 0.

To check that px ≤ m, first note that bii = 1 and bij = γ (for i 6= j). In

addition, for the matrix B−1, each diagonal element is equal to 1 + (n−1)γ2
(1−γ)[1+(n−1)γ]

, and each off-diagonal term is −γ
(1−γ)[1+(n−1)γ] . Therefore, upon a short computation,

p ·x = np(a−p)
1+(n−1)γ . The latter fraction converges to +∞ as γ ↓ − 1

n−1 (since its numerator

is > 0).

Since Assumption (A2) requires that p · x = np(a−p)
1+(n−1)γ ≤ m, the conclusion

follows.

This Proposition is a powerful criticism of the assumption that the represen-

tative consumer is endowed with a sufficient income level to allow for an interior

solution to the utility maximization problem, in cases where the products under con-

sideration are strong complements (i.e., for γ close to the maximum allowed value of

− 1
n−1). If one needs to require infinite wealth to rationalize a linear demand system

for complements, then perhaps it is time to start questioning the well-foundedness
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of such demand functions. Put differently, perhaps industrial economists have been

overly valuing the analytical tractability of linear demand.

We next move on to other pathological features that might emerge in the

absence of a strictly concave utility function.

2.4.2 The Solution to the First Order Conditions

Continuing with our investigation of the robustness of the linear demand spec-

ification, we now address the following key issue: What properties are satisfied by the

solution implied by the first order conditions for utility maximization in case the util-

ity is given by (2.6), but with a matrix B in (2.10) that is not positive semi-definite?

The answer, as we shall justify in some detail below, is that although the said solu-

tion looks exactly like the familiar linear demand function, it is actually not the true

global solution to the utility maximization problem, due to the lack of concavity of

the utility function.

We know from Lemma 3 that for U not to be concave requires exactly the

following assumption, which we make throughout this subsection.

(A3) The parameter γ satisfies −1 < γ < −1/(n− 1).

In such a case, it is obvious that the first order conditions for utility maximiza-

tion continue to give rise to a candidate solution, which looks just like the standard

linear inverse demand (2.8). However, no longer being a priori the actual global

argmax of the consumer problem (due to the absence of concavity of the consumer’s

objective function), we shall refer to (2.8) as a local inverse demand function in this
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context. We stress that this just an extremum of the consumer problem, and not the

actual demand function. The true demand function in such cases will actually be

non-linear and quite complex, as illustrated in an example below.

In light of Assumption (A3) and Lemma 3, this candidate solution need not, a

priori, be invertible so as to yield a corresponding direct demand function. Thus the

first issue we tackle is the invertibility of the matrix B for this local demand, as given

in (2.10) but without positive definiteness. Due to the special structure at hand, we

obtain a full characterization via a closed-form inverse.

Lemma 4. As long as γ 6= 1 and γ 6= − 1
n−1 , the matrix B = (1 − γ)In + γJn is

non-singular and has the inverse

B−1 =
1

1− γ

[
In −

γ

(n− 1)γ + 1
Jn

]
. (2.12)

Proof. The proof follows from the identity that the inverse of of a matrix of the form

aIn+bJn takes the form ãIn+ b̃Jn. The unknown coefficients can be identified directly

by setting the product of B and B−1 equal to In as follows (removing n subscripts

for notational convenience):

[(1− γ)I + γJ ][aI + bJ ] = I

⇒ (1− γ)IaI + (1− γ)IbJ + γJaI + γJbJ = I

⇒ (1− γ)aI + (1− γ)bJ + γaJ + γbnJ = I

⇒ (1− γ)aI + [(1− γ)b+ γa+ γbn]J = I,

the third step following from the fact that JnJn = nJn. Letting a = 1
1−γ , all that
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remains to be done is solve for b with

(1− γ)b+
γ

1− γ
+ γbn = 0,

which has the solution

b = − γ

(1− γ)[(n− 1)γ + 1]
,

as long as γ 6= 1 and γ 6= − 1
n−1 . This concludes the proof.

To recapitulate, for all values of γ ∈ [−1, 1] other than γ = 1 and γ = − 1
n−1 ,

the solution of the first order conditions for utility maximization yields a well-defined

local inverse demand and direct demand of the forms (2.8) and (2.9). However, the

main results of the present paper indicate that this pair cannot be the actual solution

to the utility maximization problem unless γ ∈ (− 1
n−1 , 1) ! In other words, whenever

γ ∈ [−1,− 1
n−1 ], the utility maximization problem here is a well-defined non-concave

quadratic optimization problem for which the first order conditions do not yield an

actual solution, due to the absence of concavity.7

Nonetheless, it is worth investigating the properties of the local inverse and

direct demand functions, despite the fact that they do not arise from the actual

solution to the consumer problem. In particular, any study that postulates a demand

function with a B matrix that is not positive definite might be viewed as a local

demand function in the present sense. One such example appears in Okuguchi [55],

and is reviewed below.

7In the general theory of quadratic programming, this feature is well known to arise
when suitable second order conditions do not hold (see e.g., [11]).
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The following results will underscore the importance of strict concavity of the

utility function for consumer theory even in the quadratic case.

The first set of properties of the local direct demand function already contain

some major departures from familiar characteristics in industrial organization.

Proposition 4. Under Assumption (A2), the following hold.

(i) Though not aggregate-monotonic, the local inverse demand function is such

that the price of each good is downward-sloping in own quantity.

(ii) If γ ∈ [−1,− 1
n−2), the local direct demand of every good is decreasing in

own price, even though D does not satisfy the Law of Demand overall.

(iii) If γ ∈ (− 1
n−2 ,−

1
n−1 ], the local direct demand of every good is increasing

in own price, i.e., all goods are Giffen goods.

Proof. (i) It is obvious that the local inverse demand function P (x) = a−Bx is such

that each price is downward-sloping in own quantity since all the diagonal entries of

B are 1’s.

(ii)-(iii) Since the slope of the demand for each good is determined by the diagonal

elements of B−1, using (2.12), the following condition is equivalent to a downward-

sloping (upward-sloping) demand curve:

1− γ

(n− 1)γ + 1
> (<)0. (2.13)

Upon a simple computation, using Assumption (A3), the two desired conclusions

follow (the details are left out).
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2.4.3 Two Examples

Here, we shall solve explicitly for the demand function corresponding to a

quadratic utility function in the two-good case when the underlying utility function

is not strictly concave. This is meant as an example to illustrate the fact that with-

out strict concavity, the resulting true demand function can be quite complex and

non-linear. The restriction here to two goods is due to tractability. This example

will further highlight the importance of strict concavity when working with a lin-

ear demand. Of particular interest is that violations of concavity for a quadratic

utility easily lead to drastic departures from the usual properties one spontaneously

associates with linear demand.

Example 1. Here we consider a substitution parameter γ = −1. We find that even

though this is a boundary case, the optimal solution departs in substantial ways from

the familiar linear demand function.

For inverse demand function pi = 1 − xi − rxj, with γ = −1, the underlying

utility function is

U = x0 + x1 + x2 − 0.5x21 − 0.5x22 + x1x2.

Without loss of generality, assume that p1 < p2. If p1 ≥ 1, substituting from

the budget constraint x0 = m− p1x1 − p2x2 into U yields

U = m+ (1− p1)x1 + (1− p2)x2 − 0.5(x1 − x2)2.

Hence the demand is x1 = x2 = 0, x0 = m.
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Now we let p1 < 1, and consider the Lagrangian:

L = x0 + x1 + x2 − 0.5(x1 − x2)2 − λ(x0 + p1x1 + p2x2 −m).

We need to compare three cases to determine the optimal demand.

(i) Choose x0 = m, so x1 = x2 = 0, with U = m.

(ii) Choose x0 = 0,so p1x1 + p2x2 = m. Then substitute x2 = (m − p1x1)/p2

into the utility function to obtain

U = m+ (1− p1)x1 + (1− p2)(m− p1x1)/p2 − 0.5[x1 − (m− p1x1)/p2]2.

a) The optimal demand can be obtained by the first-order condition as the

second-order condition is easily seen to hold. If m ≥ (p2 − p1)p1/(p1 + p2), we have

x1 =
m

p1 + p2
+

(p2 − p1)p2
(p1 + p2)2

and x2 =
m

p1 + p2
− (p2 − p1)p1

(p1 + p2)2
.

This leads to the corresponding U = 2m
p1+p2

+ (p2−p1)2
2(p1+p2)2

.

b) If m < (p2 − p1)p1/(p1 + p2), the demands are x1 = m/p1 and x2 = 0, and

then U = m/p1 − 0.5(m/p1)
2.

(iii) Choose x0 ∈ (0,m), and x1 and x2 must satisfy the first-order conditions:

1 − x1 + x2 = p1, and 1 − x2 + x1 = p2. This is possible only if p1 + p2 = 2. The

budget constraint implies x1 = 0.5[m− x0 + p2(1− p1)], x2 = 0.5[m− x0 + p1(1− p2)]

where p1 + p2 = 2. This yields U = m+ (p2 − p1)2/8.

Finally the true demand function must be chosen from the solutions (i) – (iii),

which yield the highest utility, depending on the parameters m, p1 and p2.
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It can be shown that if p1 + p2 = 2, (iii) is indeed the optimal demand (equally

good as (iia)). However, if p1 + p2 < 2, it is dominated by (iia) and cannot be the

true demand.

This demand function may be discontinuous. For instance, let p1 = 3
4
, p2 =

9/4,m = 3/8. Then case (iii) is not relevant. As m = (p2 − p1)p1/(p1 + p2), both

(ii.a) and (ii.b) can apply as well as (i). All three cases yield the same utility of 3/8,

so all these three demand functions are valid.

If p1 falls marginally, (ii.a) is valid, but not (ii.b). The utility given by (ii.a)

rises while that in (i) remains constant. So we should have x1 = m/p1 = 0.5 and

x2 = 0.

However, if p1 rises marginally, (ii.b) applies, but not (ii.a). But the utility

given by (ii.b) falls, while that in (i) remains constant. Then the true demand becomes

x1 = x2 = 0. In this case the demand for good 2 remains continuous, but not for good

one.

To obtain a linear demand function, we assume prices are sufficiently low such

that p1 + p2 ≤ 2.

This implies some of x1 or x2 will be demanded, so case (i) is ruled out.

Furthermore we assume there is sufficient income (m ≥ (p2−p1)p1/(p1 +p2)), so that

(ii.b) is excluded. Then we only have two cases of (ii.a) and (iii) left.

If p1 + p2 < 2, the solution (ii.a) dominates (iii). The demand functions

are non-linear, and the income effect exists. Different from normal cases of concave

utility functions, the income effect never disappears regardless of how high the income
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is. This is because two goods are perfect complements, the marginal utility of income

can be kept above 1, so x0 is never consumed.

If p1 + p2 = 2, (ii.a) and (iii) become identical when x0 = 0. The demand for

x1 and x2 will be lower in (iii) when x0 > 0, but the utility is same (for both x1 and

x2 to be positive, x0 cannot be equal to m unless both p1 and p2 = 1). Even in this

case, (iii) cannot be a truly linear demand. First, p1 + p2 = 2 implies prices cannot

change independently. Secondly, x1 and x2 cannot be determined as both depend on

x0. So a linear demand is not feasible.

Given these conditions, the demand is a continuous function as long as p1 +

p2 < 2, but becomes an upper-semi continuous correspondence along the boundary

p1 + p2 = 2.

The second example appears in a classic study in the literature on the com-

parison between Cournot and Bertrand equilibria.

Example 2. Okuguchi [55] uses the following demand specification to show that equi-

librium prices may be lower under Cournot than under Bertrand.

Consider the symmetric inverse/direct demand pair (for i 6= j) :

pi =
1

8
(2 + xi − 3xj) and xi = 1− pi − 3pj (2.14)

Two violations of standard properties stand out: (i) The inverse demand is upward-

sloping, (ii) the two products appear to be complements in the inverse demand func-

tion, but substitutes in the inverse demand function.

The candidate utility function to conjecture as the origin of this demand pair
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is clearly

U =
1

8
(2x1 + 2x2 − 3x1x2 + 0.5x21 + 0.5x22) + x0.

This is not a concave function. In fact, in contrast to our treatment so far, this utility

function is actually strictly convex (and not concave) in each good separately, though

not jointly strictly convex.

It can easily be shown by solving the usual consumer problem with this util-

ity function that the resulting demand solution is not the one given in (2.14). The

true solution includes some of the same complex features encountered in the previous

example (the solution is not derived here for brevity).

This confirms what the results of the present paper directly imply for this de-

mand pair, namely that it cannot be micro-founded in the sense of maximizing the

utility of a representative consumer.

Therefore, this demand pair is essentially invalid, and thus the fact that it

leads to Bertrand prices that are higher than their Cournot counterparts does not

a priori constitute a valid counter-argument to the well known positive result under

symmetry [74][4].

2.4.4 Cournot and Bertrand Oligopoly

Here we consider the standard models of Cournot and Bertrand oligopolies

with linear (fully symmetric) demand, and linear costs normalized to zero. The issues

already discussed concerning the relationship between concavity of the underlying

utility function and the extent of product differentiation arise for oligopoly as well.
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To understand the role of the concavity of the utility function, we also consider local

demand functions that are not necessarily global solutions to the consumer problem.

After characterizing the concavity of each firm’s profit function in own action, we will

show how strategic substitutes or complements arise for different values of γ.

Under Assumption A2, the profit functions for firm i under Cournot and

Bertrand competition are respectively

ΠC
i (q) = qi(a− bi · q) (2.15)

ΠB
i (p) = pib

−1
i (a− p) (2.16)

where biand b−1i are the ith row of B and B−1 respectively. We allow a priori γ ∈

(−1, 1) since we wish to investigate the behavior of firms’ reaction curves even when

the demand and inverse demand are only valid in a local sense.

Lemma 5. For the profit functions in (2.15) and (2.16)

• ΠC
i (q) is strictly concave in own output qi if and only if γ ∈

(
− 1
n−1 , 1

)
.

• ΠB
i (p) is strictly concave in own price pi if and only if γ ∈

(
−1,− 1

n−2

)
∪(

− 1
n−1 , 1

)
.

Proof. The proofs of concavity come directly from the second-order conditions of

Equation (2.15) and Equation (2.16), which are straight forward to derive for firm i

as −2bii and −2b−1ii , respectively. That these terms are negative is easy to see from

the fact that the diagonal elements of B are 1 and B−1 are given by Equation (2.12).

The details are omitted.
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Häckner [30] imposes similar restrictions on the range of γ, as second order

conditions when investigating the properties of firms” reaction curves.

As pointed out in Singh and Vives [69], Bertrand reaction curves should be

upward-sloping under substitutes and downward-sloping under complements and the

converse should hold for Cournot. While this is clearly the case under Cournot

competition since the off-diagonal elements of B are simply γ, it is not necessarily

true for Bertrand.

Proposition 5. Under Bertrand competition, reaction curves are

(i) always upward-sloping for substitutes (γ > 0), and

(ii) downward sloping for complements (γ < 0) if and only if γ > −1/(n− 2).

Proof. The reaction function for firm i under Bertrand competition is given by

pi =
B−1i a

2Bii

−
B−1−i p−i

2Bii

with −i indicating that the ith element has been removed. We want to show that

∂pi
∂pj

= −
B−1ij
2Bii

=
γ

2[(n− 1)γ + 1− γ]
< 0

For γ > 0, the result holds trivially since γ < 1. For γ < 0. For γ < 0, all that is

required is that (n− 1)γ + 1 > 0, which implies the result.

Proposition 5 highlights the fact that excessive complementarity, i.e., −1 ≤

γ < −1/(n − 2), is also not compatible with a standard property of the behavior

of firms in price competition with complements and more than three firms, namely

strategic substitutes.



92

2.5 Gross Substitutes/Complements vs Substitutes/Complements in

Utility

The purpose of this subsection is to explore the relationship between the stan-

dard notions of gross substitutes/complements and the alternative definition of sub-

stitute/complement relationships via the utility function. The main finding argues

that two products may well appear as substitutes in a quadratic utility function, even

though they constitute gross complements in demand. On the other hand, we also

establish that when all goods are complements in a quadratic utility function, then

any two goods necessarily appear as gross complements in demand as well.

We begin with the formal definitions of the underlying notions, along with

some general remarks.

Definition. (a) Two goods, i and j, are said to be gross substitutes (gross comple-

ments) if ∂x∗i /∂pj = ∂x∗j/∂pi > (<)0

(b) Two goods, i and j, are said to be substitutes (complements) in utility if

the utility function U has increasing differences in (xi, xj), or for smooth utility, if

∂2U(x)/∂xi∂xj ≤ (≥ 0) for all x.

Here, Part (a) is a standard notion in microeconomics. On the other hand,

though a useful and well defined notion, part (b) is not as widely used in demand

theory. The following remark will prove useful below.

Remark 5. One can also define substitutes (complements) with respect to the in-

verse demand function, in the obvious way: i and j are substitutes (complements) if
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∂Pi/∂xj = ∂Pj/∂xi < (>)0. However, since the inverse demand is simply the gra-

dient of the utility function here, this new definition would simply coincide with part

(b).8

It is generally known that for two-good linear demand, the two definitions are

equivalent, namely two goods that are gross substitutes (complements) are always

substitutes (complements) in utility as well, and vice versa (see e.g., [69]). On the

other hand, this is not necessarily the case for three or more goods, as we now

demonstrate.

Example 3. Consider a quadratic utility function U(x) = a′x − 1
2
x′Bx with any

strictly positive vector a and

B =

 1 3/4 0.5
3/4 1 3/4
0.5 3/4 1

 .
It is easy to verify that this matrix is positive definite, so that U is strictly concave.

Hence the first order conditions define a valid inverse demand function, and we are

thus in the standard situation. It is also easy to check that the inverse of B is

B−1 =

 7/3 −2 1/3
−2 4.0 −2
1/3 −2 7/3


Recall that the slopes of both inverse and direct demand functions do not depend on the

vector a (though both intercepts do depend on a). Hence, invoking the above Remark,

8In other words, one always has directly from the first order conditions

∂2U(x)

∂xi∂xj
=

∂Pi
∂xj

=
∂Pj
∂xi

.



94

one sees by inspection that all goods are substitutes in utility (or according to inverse

demand), including in particular goods 1 and 3. On the other hand, the latter two

goods are clearly gross complements (according to B−1).

This possibility is actually quite an intuitive feature, as we shall argue below

by providing a basic intuition for it. Nonetheless, this might well appear paradoxical

at first sight because we tend to be over-conditioned by observations that hold clearly

for the standard two-good case, but are actually not fully robust when moving to a

multi-good setting (similar counter-examples are easy to construct whenever n ≥ 3).

The intuition behind this switch is quite easy to grasp. Assume for concrete-

ness that we consider an exogenous increase in p3. This leads to a lower demand

for good 3, but a higher demand for goods 1 and 2 through substitution. The latter

effect impacts good 2 relatively more than for good 1 (due to a constant of .75 for

3-2 versus .5 for 3-1). A second effect is that the large increase in the consumption

of good 2 ends up driving down that of good 1 (as the two are substitutes in utility).

The overall effect of the increase in p3 is a decrease in the consumption of both goods

3 and 1, which thus emerge as gross complements.

Consider next a three good utility function with all goods being complements

in utility instead. Adapting the foregoing intuition to this case will make it clear that

any two goods will then emerge as gross complements too. In fact, we now prove that

this constitutes a general conclusion for the n-good case.

Proposition 6. Consider an n-good concave quadratic utility U that is supermodular

in x (i.e., ∂2U(x)
∂xi∂xj

≥ 0 for all i 6= j). Then all the goods are gross complements.
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Proof. Since ∂2U(x)
∂xi∂xj

≥ 0 for all i 6= j, all the off-diagonal elements of B are negative.

Since B is positive semi-definite, it follows from a well known result (see e.g., Mc

Kenzie, 1960) that all the off-diagonal elements of B−1 are positive. This is turn

implies directly, via (2.9), that all goods are gross complements.

In this case, all the reactions to a given price change move is the same direction,

in a mutually reinforcing manner, so complementarity in utility across all goods always

carries over to gross complementarity between any two goods.

2.6 Linear Demand With Local Interaction

In this section, we introduce one more alternative form of the substitution

matrix B that may be of interest in particular economics applications. Specifically,

we suggest a particular substitution matrix based on product similarities, place it in

context of the broader study of linear demand, and highlight interesting properties

of the resulting inverse and direct demands.

Consider a consumer with a preference ordering over goods based on their

similarities. The main idea consists in capturing the intuitive notion that the closer

products are in their characteristics, the closer substitutes they ought to be. Specif-

ically, the consumer has preferences over n goods horizontally differentiated along

one dimension, with the goods uniformly dispersed over a compact interval in that

dimension. Without loss of generality, let i = i, . . . , n represent the order of the prod-

ucts over the interval. Consider a quadratic utility function (2.6) where B is now a

Kac-Murdock-Szegö matrix, that is, a symmetric n-Toeplitz matrix whose ij-th term
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is

bij = γ|i−j|, i, j = 1, . . . , n. (2.17)

As such matrices were first defined in Kac, Murdock, and Szegö [39], we will refer to

this as the KMS model. We focus on the case γ ∈ (0, 1), so that all products are

substitutes. In this specification, the price of any good j responds to changes in the

quantity of every other good j with a magnitude that decreases with the distance

between i and j in characterisitic space.

It is well known9 that this matrix is positive-definite for γ ∈ (0, 1) and has the

inverse10

B−1 =
1

1− γ2


1 −γ 0 . . . 0
−γ 1 + γ2 −γ . . . 0

. . . . . . . . .

0 . . . −γ 1 + γ2 −γ
0 . . . 0 −γ 1

 . (2.18)

While indirect demand facing a given firm is a function of all other goods,

direct demand is only a function of the two adjacent substitutes for interior firms,

and one adjacent substitute for the two firms at the edges. As an example of a

demand system with such structure in empirical industrial organization, consider the

vertically differentiated model for the automobile industry due to Bresnahan [10],

with equal quality increments. The key idea in this model is to capture the intuitive

fact that a given car is in direct competition only with cars of similar qualities.

From our previous general results, we easily deduce this demand system is

9See, for example, Horn and Johnson, Section 7.2, Problems 12-13 [34]

10Due to the location of two products at the end points of the segment (that can thus
have only one neighbor instead of two), direct demand is no longer fully symmetric.
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well-defined for all γ ∈ (0, 1).

Corollary 4. Both inverse and direct demand in the KMS model satisfy the strict

Law of Demand, i.e. Equation (2.4).

Proof. The proof follows directly from Corollary 1, since the matrix B is positive

definite.

This result has different implications for oligopolistic competition between

firms (when each firm sells one of the varieties), depending on the mode of competi-

tion. Under Cournot competition, each firm competes with all other firms, but reacts

more intensely to those whose products are more similar to its own. In contrast, under

Bertrand competition, each firm directly competes only with its one or two adjacent

rivals, i.e., those with very similar products (with respect to horizontal differentia-

tion). With respect to those similar firms, previous results still hold. Specifically, as

in Singh and Vives [69], the Bertrand reaction curve for a firm with respect to its

direct neighbors is upward sloping.

Proposition 7. In the KMS model, each firm i price competes only with its closest

substitutes, i + 1 and i − 1. With respect to these two rivals, firm i’s reaction curve

is upward sloping.

Proof. Reaction curves can be derived as in Proposition 5, yielding the derivative

(here, b−1ij is the ij-th term of the matrix (1− γ2)B−1)

∂pi
∂pj

= −
b−1ij
2bii

=


γ
K

for |i− j| = 1

0 for |i− j| 6= 1
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with K = 2 > 0 for boundary firms and K = 2(1 + γ2) > 0 for interior firms. The

conclusion follows from the fact that γ
K
> 0.

The KMS model thus highlights another interesting lack of duality between

oligopolistic price and quantity competition, which is a result of a lack of duality

between indirect and direct demands. When firms compete over price, a type of

local strategic interaction takes place in that each firm directly takes into account

the behavior of only their direct neighbors (though in equilibrium, every firm’s action

will still end up indirectly being a function of all the rivals’ actions). However, when

firms compete over quantity, they directly take into consideration the behavior of all

the other firms (as in the standard case).

2.7 Conclusion

This paper provides a thorough exploration of the theoretical foundations of

the multi-variate linear demand function for differentiated products that is widely

used in industrial organization. For the question of integrability of linear demand, a

key finding is that strict concavity of the quadratic utility function of the representa-

tive consumer is critical for the resulting demand system to be well defined. Without

strict concavity, the true demand function may be quite complex, non-linear and

income-dependent. In addition, the solution of the first order conditions for the con-

sumer problem, which we call a local demand function, may have quite pathological

properties.

The paper uncovers a number of failures of duality relationships between sub-
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stitute products and complementary products, as well as the incompatibility of high

levels of complementarity and concavity. The two-good case often investigated since

the pioneering work of Singh and Vives [69] emerges as a special case with strong but

non-robust properties.

A key implication of our results is that all conclusions and policy prescriptions

derived via the use of a linear multi-variate demand function that does not satisfy

the law of Demand ought to be regarded a priori with some suspiscion.
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APPENDIX A
PROOFS AND ESTIMATION DETAILS

A.1 Entry/Exit Distributions

I utilize Assumption 3 and Equation (1.6) to construct the equation

Pr(φi ≤ V (r, s)) = 0.999

⇒ Φ(V (r, s);µφ, σ
2
κ) = 0.999 (A.1)

The rest of the parameters can be estimated as follows

1. Use approximate value function and predicted entrances to estimate entrance

costs

2. Use the moment equality from Equation (A.1) and, replacing σ2
κ with σ̂2

κ from

Step 1, estimate µφ with the Method of Simulated Moments

3. Update the approximate value function based on Step 2

4. Iterate until |µ̂φ,τ+1 − µ̂φ,τ | < ε

with τ the iteration count. I can then estimate the distribution of entrance

costs using predicted probabilities of entrance based on first-stage BBL estimates.

A.2 Stage Game Outcome Simulation Subroutine

The required task is to simulate the outcomes of the application-admission

stage game for a representative population of applicants and schools. The final goal

of the simulation is to produce the function ftreat=0,1(outcome|Rank, Tuition), with

f a boosted random forest defined for either the period before (treat = 0) or after
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(treat = 1) the information regime chance and outcome one of three variables: 1)

median LSAT scores of matriculants, 2) median undergraduate GPA of matriculants,

and 3) total number of matriculants.

The outcome functions are simulated for a given year y in the set of possible

years defined by treat as follows:

1. Draw n̂ applicants with replacement from all reported applicants in y

2. Select n×J data points (Rankj, Tuitionj, LSATi, GPAi, treat, year)i∈n,j∈J cor-

responding to each applicant/school combination to generate the simulation

dataset

3. For each application, simulate admission based on predicted probability of a

positive admission decision

4. For each applicant with a non-zero number of admissions, simulate the decision

to enroll at all based on the highest rank of admitting schools

5. For each enrolling student, simulate the school to attend based on the highest

predicted probability of attendance among the admitting schools

6. Repeat K times

Each of the simulation runs results in an incoming class profile, consisting (among

other things) of median LSAT and GPA scores and class size. Finally, average the

results across the K runs to get the dataset to which the f can be fit, in this case

with a gradient boosted regression tree.
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A.3 Student Preferences

The preferences for students of any given observed quality must be calculated

in order to determine total welfare effects of the information regime change. The next

two sections outline identification and estimation of a student’s utility for attending

any given law school as well as her corresponding outside option.

A.3.1 Identification of Student Utility

Lemma 6. Equation (1.30) is sufficient to identify the value for student i of attending

school j.

Proof. Beginning with Equation (1.30) and, for ease of notation, defining uij ≡

u(Ai, Rj, I) and fMij ≡ fM(LSATi, GPAi, Rj, tj) and with Φ̃ and Φ̃−1 denoting the

normal distribution with variance σ2
u and quantile functions, respectively,

Pr(Uij(t) > 0) = fMij

⇒ Pr(uij + εij − tj ≥ 0) = fMij

⇒ Pr(εij ≥ tj − uij) = fMij

⇒ Φ̃(tj − uij) = fMij

⇒ (tj − uij) = Φ̃−1(fMij)

⇒ uij = tj − Φ̃−1(fMij)

which implies identification given σ2
u since fMij is non-parametrically identified in the

data and tj is observed. Finally, σ2
u can be identified using variation within groups of
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applicants with the same application profile and best-choice school.

A.3.2 Estimation Details for Student Preferences

To compare estimates based on the two information regimes, I sample a popu-

lation of students for each year 1, . . . , T , with T the cutoff year for forward simulation.

Each student i is drawn from the empirical distribution F̂ (LSATi, GPAi|treat), with

the number of draws equal to the average number of applicants in a given year con-

ditional on being in the treatment period or not. The size of the applicant pool is

taken from the ABA-LSAC End-of-Year summary of law school applicants [47].

To determine matriculation probability, I use estimates of admission and ma-

triculation probabilities to first simulate the binary admission outcome for student i

(did admission happen?) and second, calculate the expected rank of a matriculat-

ing school j, should the student matriculate. I then estimate the tuition for school

j using the tuition policy function estimate. Finally, I use the estimates from the

application-admission game to determine the probability of student i matriculating

to school j. This probability constitutes fMij.
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APPENDIX B
QUESTIONNAIRES, TABLES AND FIGURES

B.1 Questionnaires: Pre and Post Regime Change

The following are representative questionnaires given to schools before and

after the 2010 change in reporting requirements.

Tuition and Fees

Resident Nonresident

78

Curriculum
Full-time Part-time

Faculty and Administrators
Total Men Women Minorities

Fall Spr Fall Spr Fall Spr Fall Spr

The Basics

Official ABA Data

ABA
Approved

Since

The University of Akron School of Law
150 University Avenue
Akron, OH 44325-2901
Phone: 800.4.AKRON.U or 330.972.7331; Fax: 330.258.2343
E-mail: lawadmissions@uakron.edu; Website: www.uakron.edu/law

JD Enrollment and Ethnicity
JD

Men Women Full-time Part-time 1st-year Total Degs.
# % # % # % # % # % # % Awd.

The University of Akron School of Law

Living Expenses

Estimated living expenses for singles

Living on Living off Living
campus campus at home

1961

Type of school Public

Term Semester

Application deadline 3/1

Application fee $0

Financial aid deadline 3/1

Can first year start other than fall? No

Student to faculty ratio (fall) 16.5 to 1
Does the university offer:

housing restricted to law students? No
graduate housing for which law students are eligible? Yes

Full-time 25 25 17 16 8 9 2 3

Other
Full-time 0 0 0 0 0 0 0 0
Deans,
librarians, &
others who
teach 4 4 3 3 1 1 0 0
Part-time 27 21 14 8 13 13 1 0

Total 56 50 34 27 22 23 3 3

Typical first-year section size 41 58

Is there typically a “small section” of the
first-year class, other than Legal Writing,
taught by full-time faculty No No
If yes, typical size offered last year 0 0
# of classroom course titles
beyond 1st year curriculum 84
# of upper division Under 25 59
courses, excluding 25-49 27
seminars with 50-74 26
an enrollment: 75-99 4

100+ 0
# of seminars 21
# of seminar positions available 539
# of seminar positions filled 195 82
# of positions available in simulation courses 578
# of simulation positions filled 309 155
# of positions available in faculty
supervised clinical courses 264
# of faculty supervised clinical positions filled 73 19
# involved in field placements 55 13
# involved in law journals 35 17
# involved in moot court or trial competitions 40 11
# of credit hours required to graduate 88

Full-time $12,896 $20,332

Part-time $10,462 $16,411

$13,134 $13,134 $13,134

African Amer. 13 3.9 12 5.0 16 4.6 9 4.1 11 6.1 25 4.4 10

Amer. Indian 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

Asian Amer. 8 2.4 4 1.7 8 2.3 4 1.8 6 3.3 12 2.1 1

Mex. Amer. 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

Puerto Rican 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

Hispanic 7 2.1 4 1.7 7 2.0 4 1.8 7 3.9 11 1.9 2

Total Minority 28 8.5 20 8.4 31 8.9 17 7.8 24 13.3 48 8.4 13

For. Nation. 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0

Caucasian 254 76.7 194 81.5 272 77.7 176 80.4 132 72.9 448 78.7 135

Unknown 49 14.8 24 10.1 47 13.4 26 11.9 25 13.8 73 12.8 42

Total 331 58.2 238 41.8 350 61.5 219 38.5 181 31.8 569 190
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EMPLOYMENT SUMMARY FOR 2013 GRADUATES

The University of Akron

150 University Avenue  

Phone : 330-972-7331

Akron,  OH  443252901 

Website : www.uakron.edu/law

EMPLOYMENT STATUS FULL TIME 
LONG TERM

FULL TIME 
SHORT TERM

PART TIME 
LONG TERM

PART TIME 
SHORT TERM

NUMBER

Employed - Bar Passage Required 86 0 12 0 98

Employed - J.D. Advantage 21 0 4 0 25

Employed - Professional Position 18 0 3 1 22

Employed - Non-Professional Position 0 0 3 0 3

Employed - Undeterminable 0 0 0 0 0

Pursuing Graduate Degree Full Time 1

Unemployed - Start Date Deferred 1

Unemployed - Not Seeking 2

Unemployed - Seeking 8

Employment Status Unknown 6

Total Graduates 166

EMPLOYMENT LOCATION STATE NUMBER

State - Largest Employment Ohio 122

State - 2nd Largest Employment New York 4

State - 3rd Largest Employment District of Columbia 2

Employed in Foreign Countries 2

LAW SCHOOL/UNIVERSITY FUNDED POSITIONS FULL TIME 
LONG TERM

FULL TIME 
SHORT TERM

PART TIME 
LONG TERM

PART TIME 
SHORT TERM

NUMBER

Employed - Bar Passage Required 0 0 0 0 0

Employed - J.D. Advantage 0 0 0 0 0

Employed - Professional Position 0 0 0 0 0

Employed - Non-Professional Position 0 0 0 0 0

Total Employed by Law School/University 0 0 0 0 0

EMPLOYMENT TYPE FULL TIME 
LONG TERM

FULL TIME 
SHORT TERM

PART TIME 
LONG TERM

PART TIME 
SHORT TERM

NUMBER

Law Firms

Solo 9 0 0 0 9

2 - 10 30 0 8 0 38

11 - 25 11 0 0 0 11

26 - 50 8 0 0 0 8

51 - 100 3 0 0 0 3

101 - 250 1 0 0 0 1

251 - 500 2 0 0 0 2

501 + 2 0 0 0 2

Unknown Size 3 0 0 0 3

Business & Industry 35 0 4 0 39

Government 18 0 5 0 23

Pub. Int. 2 0 1 0 3

Clerkships - Federal 0 0 0 0 0

Clerkships - State & Local 0 0 1 0 1

Clerkships - Other 0 0 0 0 0

Education 1 0 1 1 3

Employer Type Unknown 0 0 2 0 2

Total 125 0 22 1 148

Page : 1 of  2

B.2 Tables and Figures
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Mean SD Min Median Max n
year 1999.50 8.08 1986.00 1999.50 2013.00 5376
Rank 136.35 69.03 1.00 178.00 195.00 5376
Ratio 0.64 0.12 0.33 0.61 0.99 5344
Tuition 22.77 7.01 0.56 22.61 44.11 3583
Students 612.32 273.25 32.00 555.00 1771.00 3754
Undergrad GPA 3.41 0.21 2.68 3.41 3.91 2410
LSAT 157.40 5.78 141.00 157.00 173.00 3101
Median Grant 8581.57 5894.01 294.00 7500.00 61737.00 3207
Percent Grants 45.66 19.37 1.00 43.98 100.00 3487
Room/Board Expenses 13.45 3.02 0.60 13.22 31.39 3710
Cost of Books 1345.44 482.37 33.00 1250.00 4474.00 2301
Student/Faculty Ratio 15.78 8.05 6.80 15.20 251.00 2947
Accepted 788.47 461.11 101.00 703.50 4174.00 2416
Acceptance Rate 38.68 15.24 4.34 37.00 88.18 3806
Bar Passage Rate 82.33 11.38 0.75 84.50 100.00 3197
Private Sector 25% Salary 49.41 21.67 4.01 42.00 128.43 3110
Private Sector 75% Salary 78.85 26.65 32.54 73.43 490.97 3110
% Private Sector Reporting 61.18 20.70 0.00 64.00 100.00 2656

Table B.1: Summary Statistics

Info Subset LSAT GPA nApps Pr(Admit) Pr(Matric) n
Treat=0 Applicants 161.79 3.46 9.43 0.86 8835

(7.85) (0.4) (6.27) (0.35)
Admitted 162.43 3.48 10.13 0.5 7600

(7.49) (0.38) (6.15) (0.5)
Matriculants 163.12 3.49 10.63 3780

(7.55) (0.39) (6.64)
Treat=1 Applicants 161.55 3.45 10.3 0.92 3242

(8.63) (0.4) (6.53) (0.27)
Admitted 162.01 3.46 10.79 0.44 2989

(8.35) (0.4) (6.44) (0.5)
Matriculants 163.15 3.48 11.29 1325

(8.32) (0.4) (6.67)

Table B.2: Stage Game Student Profile Summaries
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Info Pctl. LSAT GPA nApps pr(Admit) pr(Matric)
Treat=0 0-25th 158.26 2.91 9.11 0.8 0.38

(7.73) (0.27) (6.6) (0.4) (0.49)
25-50th 161.01 3.39 9.38 0.85 0.42

(7.55) (0.09) (5.95) (0.36) (0.49)
50-75th 163 3.65 9.56 0.88 0.43

(7.35) (0.07) (5.72) (0.32) (0.5)
75-100th 164.91 3.89 9.64 0.91 0.48

(7.2) (0.08) (6.67) (0.29) (0.5)
Treat=1 0-25th 157.28 2.89 10.2 0.9 0.39

(8.53) (0.27) (7.64) (0.3) (0.49)
25-50th 160.34 3.37 10.32 0.91 0.36

(8.17) (0.1) (6.39) (0.28) (0.48)
50-75th 163 3.65 10.42 0.94 0.42

(7.94) (0.07) (5.98) (0.24) (0.49)
75-100th 165.54 3.89 10.33 0.93 0.47

(7.59) (0.08) (6.06) (0.25) (0.5)

Table B.3: Summary by GPA Quantile

Info Pctl. LSAT GPA nApps pr(Admit) pr(Matric)
Treat=0 0-25th 151.5 3.29 8.56 0.75 0.33

(4.13) (0.42) (6.51) (0.43) (0.47)
25-50th 159.23 3.42 9.14 0.87 0.41

(1.96) (0.39) (6.14) (0.33) (0.49)
50-75th 164.5 3.5 9.89 0.89 0.44

(1.71) (0.36) (5.92) (0.31) (0.5)
75-100th 170.89 3.6 10.17 0.92 0.51

(3.3) (0.34) (6.25) (0.28) (0.5)
Treat=1 0-25th 150.59 3.26 8.97 0.86 0.33

(4.69) (0.42) (6.75) (0.35) (0.47)
25-50th 159.15 3.4 10.14 0.93 0.35

(1.99) (0.38) (7.06) (0.26) (0.48)
50-75th 164.98 3.52 11.44 0.95 0.43

(1.96) (0.37) (6.5) (0.22) (0.5)
75-100th 171.72 3.62 10.83 0.96 0.52

(3.05) (0.33) (5.61) (0.2) (0.5)

Table B.4: Summary by LSAT Quantile
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Figure B.1: Evolution by Rank Quantile
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Figure B.2: Evolution by Ratio Quantile
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Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) 4395.37∗∗∗ −24364.93∗∗∗ 1891.22∗∗∗ 3135.48∗∗∗ −10013.07∗∗∗

(71.39) (1538.59) (181.30) (177.28) (1317.14)
Rank −19.84∗∗∗ 2.86∗∗ −18.52∗∗∗ −6.32∗∗∗ 1.27

(0.67) (1.01) (0.64) (0.53) (0.80)
Post-2010 −144.84 −422.12∗∗∗ −229.45 −305.15∗∗∗ −379.44∗∗∗

(127.43) (88.66) (120.00) (65.32) (64.77)
Post-2010 * Rank 0.79 1.00 −0.49 4.04∗∗∗ 3.78∗∗∗

(1.16) (0.78) (1.08) (0.60) (0.59)
Tuition 43.41∗∗∗ 22.02∗∗∗

(4.75) (4.46)
Students 3.40∗∗∗ 1.18∗∗∗

(0.09) (0.09)
Undergrad GPA −985.65∗∗∗ 86.82

(203.56) (155.59)
LSAT 170.66∗∗∗ 74.29∗∗∗

(10.18) (8.50)
Median Grant 0.03∗∗∗ −0.01∗

(0.01) (0.00)
Percent Grants −8.02∗∗∗ −2.01∗

(1.60) (0.90)
Room/Board Expenses 245.49∗∗∗ 20.42∗∗

(10.75) (6.64)
Cost of Books −0.65∗∗∗ −0.15∗∗∗

(0.06) (0.03)
Student/Faculty Ratio −4.81 −16.86∗∗

(5.59) (5.74)
Accepted 2.82∗∗∗ 2.10∗∗∗

(0.04) (0.05)
Acceptance Rate −62.21∗∗∗ −50.70∗∗∗

(1.51) (1.72)
Bar Passage Rate 0.98 −4.01∗

(1.69) (1.79)
R2 0.35 0.74 0.51 0.84 0.88
Adj. R2 0.35 0.74 0.51 0.84 0.88
Num. obs. 2419 2263 2261 2353 2118
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table B.5: Difference-in-differences: Applicants vs Rank
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Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(Intercept) −4100.60∗∗∗ −2041.75∗∗∗ −21232.93∗∗∗ −2243.07∗∗∗ −606.97∗∗ −5829.84∗∗∗

(179.96) (283.33) (1554.56) (298.74) (201.79) (1250.96)
Ratio 10310.60∗∗∗ 8090.12∗∗∗ 2921.56∗∗∗ 5899.45∗∗∗ 4849.74∗∗∗ 4045.57∗∗∗

(273.55) (359.51) (292.94) (356.64) (179.64) (206.13)
Post-2010 −547.66 −360.87 146.07 −578.34 623.66∗∗∗ 724.93∗∗∗

(343.35) (337.95) (243.73) (321.77) (166.72) (170.78)
Post-2010 * Ratio 585.33 335.55 −700.30 500.97 −952.34∗∗∗ −1128.91∗∗∗

(520.12) (511.74) (367.76) (483.30) (249.08) (253.58)
Rank −6.76∗∗∗ 4.06∗∗∗ −9.41∗∗∗ 0.68 3.65∗∗∗

(0.73) (0.99) (0.72) (0.49) (0.74)
Tuition 36.59∗∗∗ 6.62

(4.74) (4.23)
Students 3.30∗∗∗ 0.98∗∗∗

(0.09) (0.09)
Undergrad GPA −822.66∗∗∗ 311.51∗

(200.82) (145.51)
LSAT 135.99∗∗∗ 27.09∗∗

(10.63) (8.30)
Median Grant 0.02∗∗∗ 0.00

(0.00) (0.00)
Percent Grants −5.52∗∗∗ −0.16

(1.51) (0.85)
Room/Board Expenses 197.31∗∗∗ 9.60

(10.43) (6.21)
Cost of Books −0.59∗∗∗ −0.13∗∗∗

(0.06) (0.03)
Student/Faculty Ratio −1.44 −16.01∗∗

(4.93) (5.38)
Accepted 2.65∗∗∗ 2.23∗∗∗

(0.03) (0.05)
Acceptance Rate −55.42∗∗∗ −50.49∗∗∗

(1.35) (1.59)
Bar Passage Rate −1.21 −3.75∗

(1.49) (1.67)
R2 0.46 0.48 0.75 0.58 0.88 0.89
Adj. R2 0.46 0.48 0.75 0.58 0.88 0.89
Num. obs. 2389 2389 2236 2232 2324 2091
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table B.6: Difference-in-differences: Applicants vs Ratio
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Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) 70.48∗∗∗ −459.10∗∗∗ 57.85∗∗∗ 78.28∗∗∗ −394.15∗∗∗

(0.63) (23.72) (2.30) (3.95) (28.09)
Rank −0.20∗∗∗ 0.05∗∗ −0.29∗∗∗ −0.19∗∗∗ 0.03

(0.01) (0.02) (0.01) (0.01) (0.02)
Post-2010 5.82∗∗∗ −8.24∗∗∗ −3.98∗∗ −3.33∗ −7.61∗∗∗

(1.35) (1.33) (1.49) (1.42) (1.36)
Post-2010 * Rank −0.10∗∗∗ 0.02 −0.01 0.03∗ 0.03∗

(0.01) (0.01) (0.01) (0.01) (0.01)
Tuition 0.52∗∗∗ 0.70∗∗∗

(0.07) (0.09)
Students 0.01∗∗∗ 0.01∗∗∗

(0.00) (0.00)
Undergrad GPA −5.02 1.07

(3.11) (3.30)
LSAT 3.19∗∗∗ 2.77∗∗∗

(0.16) (0.18)
Median Grant 0.00∗∗∗ 0.00

(0.00) (0.00)
Percent Grants −0.11∗∗∗ −0.11∗∗∗

(0.02) (0.02)
Room/Board Expenses 1.99∗∗∗ 0.45∗∗

(0.14) (0.14)
Cost of Books 0.00∗∗∗ 0.00∗∗

(0.00) (0.00)
Student/Faculty Ratio −0.32∗∗ −0.22

(0.12) (0.12)
Accepted 0.01∗∗∗ 0.00

(0.00) (0.00)
Acceptance Rate −0.49∗∗∗ −0.12∗∗

(0.03) (0.04)
Bar Passage Rate 0.02 −0.12∗∗

(0.04) (0.04)
R2 0.42 0.65 0.54 0.56 0.67
Adj. R2 0.42 0.65 0.54 0.56 0.67
Num. obs. 3110 2184 2200 2284 2074
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table B.7: Difference-in-differences: Salary (25th pct.) vs Rank
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Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(Intercept) −39.16∗∗∗ −18.40∗∗∗ −303.20∗∗∗ −34.57∗∗∗ −19.12∗∗∗ −243.57∗∗∗

(1.40) (2.05) (20.01) (3.01) (3.79) (23.54)
Ratio 135.84∗∗∗ 113.98∗∗∗ 112.34∗∗∗ 130.49∗∗∗ 127.85∗∗∗ 113.33∗∗∗

(2.10) (2.61) (3.69) (3.56) (3.32) (3.82)
Post-2010 −35.20∗∗∗ −36.11∗∗∗ −19.17∗∗∗ −24.07∗∗∗ −17.58∗∗∗ −16.67∗∗∗

(3.11) (3.02) (3.07) (3.22) (3.11) (3.18)
Post-2010 * Ratio 53.25∗∗∗ 53.34∗∗∗ 21.73∗∗∗ 30.31∗∗∗ 23.14∗∗∗ 19.59∗∗∗

(4.68) (4.55) (4.62) (4.82) (4.62) (4.71)
Rank −0.06∗∗∗ 0.09∗∗∗ −0.07∗∗∗ −0.01 0.08∗∗∗

(0.00) (0.01) (0.01) (0.01) (0.01)
Tuition 0.19∗∗ 0.19∗

(0.06) (0.08)
Students 0.01∗∗∗ 0.00∗∗

(0.00) (0.00)
Undergrad GPA 2.06 7.34∗∗

(2.55) (2.71)
LSAT 1.63∗∗∗ 1.26∗∗∗

(0.14) (0.16)
Median Grant 0.00∗∗∗ 0.00

(0.00) (0.00)
Percent Grants −0.05∗∗ −0.05∗∗

(0.02) (0.02)
Room/Board Expenses 0.88∗∗∗ 0.14

(0.10) (0.12)
Cost of Books 0.00∗∗∗ 0.00∗

(0.00) (0.00)
Student/Faculty Ratio −0.23∗ −0.19

(0.09) (0.10)
Accepted 0.01∗∗∗ 0.00∗∗∗

(0.00) (0.00)
Acceptance Rate −0.29∗∗∗ −0.13∗∗∗

(0.03) (0.03)
Bar Passage Rate −0.04 −0.12∗∗∗

(0.03) (0.03)
R2 0.67 0.69 0.77 0.75 0.76 0.78
Adj. R2 0.67 0.69 0.77 0.75 0.75 0.78
Num. obs. 3083 3083 2159 2173 2257 2049
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table B.8: Difference-in-differences: Salary (25th pct.) vs Ratio
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Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) 103.24∗∗∗ −128.55∗∗∗ 79.94∗∗∗ 104.59∗∗∗ −55.34

(0.79) (27.69) (2.51) (4.17) (31.83)
Rank −0.23∗∗∗ −0.16∗∗∗ −0.30∗∗∗ −0.28∗∗∗ −0.21∗∗∗

(0.01) (0.02) (0.01) (0.01) (0.02)
Post-2010 10.04∗∗∗ −5.51∗∗∗ −3.76∗ −0.44 −3.97∗

(1.69) (1.55) (1.63) (1.50) (1.54)
Post-2010 * Rank −0.14∗∗∗ −0.03∗ −0.05∗∗∗ −0.01 −0.02

(0.02) (0.01) (0.01) (0.01) (0.01)
Tuition 0.76∗∗∗ 0.61∗∗∗

(0.08) (0.11)
Students 0.02∗∗∗ 0.01∗

(0.00) (0.00)
Undergrad GPA −21.82∗∗∗ −14.89∗∗∗

(3.63) (3.74)
LSAT 1.73∗∗∗ 1.10∗∗∗

(0.18) (0.21)
Median Grant 0.00∗∗∗ 0.00

(0.00) (0.00)
Percent Grants 0.01 0.04

(0.02) (0.02)
Room/Board Expenses 2.49∗∗∗ 0.80∗∗∗

(0.15) (0.16)
Cost of Books 0.00∗∗∗ 0.00

(0.00) (0.00)
Student/Faculty Ratio 0.69∗∗∗ 0.94∗∗∗

(0.13) (0.14)
Accepted 0.02∗∗∗ 0.01∗∗∗

(0.00) (0.00)
Acceptance Rate −0.41∗∗∗ −0.31∗∗∗

(0.04) (0.04)
Bar Passage Rate −0.07 −0.06

(0.04) (0.04)
R2 0.40 0.62 0.57 0.61 0.66
Adj. R2 0.40 0.62 0.57 0.61 0.65
Num. obs. 3110 2184 2200 2284 2074
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table B.9: Difference-in-differences: Salary (75th pct.) vs Rank
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Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(Intercept) −3.15 48.54∗∗∗ −57.33∗ 38.61∗∗∗ 57.30∗∗∗ 14.63

(2.33) (3.29) (28.18) (4.20) (5.10) (31.96)
Ratio 125.46∗∗∗ 70.99∗∗∗ 41.42∗∗∗ 59.67∗∗∗ 62.34∗∗∗ 44.35∗∗∗

(3.51) (4.19) (5.19) (4.97) (4.47) (5.19)
Post-2010 −36.83∗∗∗ −39.13∗∗∗ −23.26∗∗∗ −29.55∗∗∗ −15.21∗∗∗ −19.14∗∗∗

(5.18) (4.84) (4.33) (4.50) (4.18) (4.32)
Post-2010 * Ratio 57.41∗∗∗ 57.68∗∗∗ 23.50∗∗∗ 33.25∗∗∗ 20.11∗∗ 21.18∗∗∗

(7.79) (7.29) (6.50) (6.73) (6.22) (6.40)
Rank −0.15∗∗∗ −0.16∗∗∗ −0.21∗∗∗ −0.20∗∗∗ −0.20∗∗∗

(0.01) (0.02) (0.01) (0.01) (0.02)
Tuition 0.64∗∗∗ 0.40∗∗∗

(0.08) (0.11)
Students 0.02∗∗∗ 0.00

(0.00) (0.00)
Undergrad GPA −18.24∗∗∗ −11.61∗∗

(3.59) (3.68)
LSAT 1.05∗∗∗ 0.43∗

(0.19) (0.21)
Median Grant 0.00∗∗ 0.00

(0.00) (0.00)
Percent Grants 0.04∗ 0.06∗∗

(0.02) (0.02)
Room/Board Expenses 1.93∗∗∗ 0.65∗∗∗

(0.15) (0.16)
Cost of Books 0.00∗∗∗ 0.00

(0.00) (0.00)
Student/Faculty Ratio 0.73∗∗∗ 0.96∗∗∗

(0.12) (0.14)
Accepted 0.02∗∗∗ 0.01∗∗∗

(0.00) (0.00)
Acceptance Rate −0.30∗∗∗ −0.32∗∗∗

(0.03) (0.04)
Bar Passage Rate −0.10∗∗ −0.06

(0.04) (0.04)
R2 0.39 0.47 0.64 0.61 0.65 0.67
Adj. R2 0.39 0.47 0.63 0.60 0.65 0.67
Num. obs. 3083 3083 2159 2173 2257 2049
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table B.10: Difference-in-differences: Salary (75th pct.) vs Ratio
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Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) 25.84∗∗∗ −117.42∗∗∗ 13.16∗∗∗ 25.66∗∗∗ −94.16∗∗∗

(0.19) (6.35) (0.54) (1.06) (6.10)
Rank −0.04∗∗∗ 0.05∗∗∗ −0.03∗∗∗ −0.03∗∗∗ 0.03∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)
Post-2010 8.73∗∗∗ 6.09∗∗∗ 3.60∗∗∗ 5.01∗∗∗ 2.74∗∗∗

(0.43) (0.37) (0.36) (0.39) (0.31)
Post-2010 * Rank −0.01∗∗∗ −0.01∗ −0.01∗∗ −0.01∗ −0.01∗

(0.00) (0.00) (0.00) (0.00) (0.00)
Students 0.01∗∗∗ 0.00∗∗∗

(0.00) (0.00)
Undergrad GPA −3.32∗∗∗ −0.84

(0.90) (0.76)
LSAT 0.92∗∗∗ 0.69∗∗∗

(0.04) (0.04)
Median Grant 0.00∗∗∗ 0.00∗∗∗

(0.00) (0.00)
Percent Grants 0.04∗∗∗ 0.04∗∗∗

(0.00) (0.00)
Room/Board Expenses 0.66∗∗∗ 0.33∗∗∗

(0.03) (0.03)
Cost of Books 0.00∗∗ 0.00

(0.00) (0.00)
Student/Faculty Ratio −0.29∗∗∗ −0.17∗∗∗

(0.03) (0.03)
Accepted 0.01∗∗∗ 0.00∗∗∗

(0.00) (0.00)
Acceptance Rate 0.00 0.06∗∗∗

(0.01) (0.01)
Bar Passage Rate 0.01 −0.02

(0.01) (0.01)
R2 0.41 0.56 0.63 0.55 0.74
Adj. R2 0.41 0.56 0.63 0.55 0.74
Num. obs. 3583 2265 2157 2235 2118
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table B.11: Difference-in-differences: Tuition vs Rank
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Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(Intercept) 6.32∗∗∗ 16.31∗∗∗ −103.20∗∗∗ 3.77∗∗∗ 12.92∗∗∗ −80.05∗∗∗

(0.55) (0.82) (6.60) (0.92) (1.30) (6.25)
Ratio 22.62∗∗∗ 12.11∗∗∗ 8.73∗∗∗ 13.75∗∗∗ 17.07∗∗∗ 7.51∗∗∗

(0.83) (1.03) (1.30) (1.10) (1.15) (1.06)
Post-2010 1.09 0.14 2.49∗ −0.87 −0.65 −0.64

(1.32) (1.28) (1.09) (0.99) (1.07) (0.89)
Post-2010 * Ratio 10.95∗∗∗ 11.52∗∗∗ 4.35∗∗ 5.55∗∗∗ 7.10∗∗∗ 4.25∗∗

(1.99) (1.92) (1.64) (1.48) (1.58) (1.31)
Rank −0.03∗∗∗ 0.05∗∗∗ −0.01∗∗∗ −0.01 0.03∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)
Students 0.01∗∗∗ 0.00∗

(0.00) (0.00)
Undergrad GPA −2.49∗∗ −0.17

(0.90) (0.76)
LSAT 0.78∗∗∗ 0.55∗∗∗

(0.04) (0.04)
Median Grant 0.00∗∗∗ 0.00∗∗∗

(0.00) (0.00)
Percent Grants 0.05∗∗∗ 0.04∗∗∗

(0.00) (0.00)
Room/Board Expenses 0.53∗∗∗ 0.28∗∗∗

(0.03) (0.03)
Cost of Books 0.00∗ 0.00

(0.00) (0.00)
Student/Faculty Ratio −0.30∗∗∗ −0.16∗∗∗

(0.03) (0.03)
Accepted 0.01∗∗∗ 0.00∗∗∗

(0.00) (0.00)
Acceptance Rate 0.03∗∗ 0.06∗∗∗

(0.01) (0.01)
Bar Passage Rate 0.00 −0.02

(0.01) (0.01)
R2 0.40 0.44 0.57 0.67 0.61 0.75
Adj. R2 0.40 0.44 0.57 0.66 0.60 0.75
Num. obs. 3556 3556 2238 2130 2208 2091
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table B.12: Difference-in-differences: Tuition vs Ratio
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Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) 782.08∗∗∗ −470.53 492.18∗∗∗ 245.03∗∗∗ −679.61∗

(8.81) (375.37) (31.42) (40.77) (316.08)
Rank −1.47∗∗∗ −1.24∗∗∗ −1.97∗∗∗ −1.49∗∗∗ −1.08∗∗∗

(0.07) (0.25) (0.11) (0.12) (0.19)
Post-2010 3.92 −140.69∗∗∗ −22.73 −38.81∗∗ −12.72

(20.17) (21.44) (20.79) (14.96) (15.56)
Post-2010 * Rank −0.37∗ 0.45∗ 0.12 0.48∗∗∗ 0.10

(0.18) (0.19) (0.19) (0.14) (0.14)
Tuition 18.23∗∗∗ 4.45∗∗∗

(1.09) (1.07)
Undergrad GPA −322.21∗∗∗ 0.07

(49.21) (37.38)
LSAT 11.84∗∗∗ 5.03∗

(2.47) (2.04)
Median Grant 0.00 0.00∗∗∗

(0.00) (0.00)
Percent Grants −2.27∗∗∗ −2.17∗∗∗

(0.28) (0.21)
Room/Board Expenses 38.44∗∗∗ 10.84∗∗∗

(1.86) (1.58)
Cost of Books −0.10∗∗∗ −0.02∗∗

(0.01) (0.01)
Student/Faculty Ratio 16.29∗∗∗ 16.61∗∗∗

(1.28) (1.33)
Accepted 0.40∗∗∗ 0.35∗∗∗

(0.01) (0.01)
Acceptance Rate −3.81∗∗∗ −2.31∗∗∗

(0.35) (0.41)
Bar Passage Rate 1.07∗∗ 0.78

(0.39) (0.43)
R2 0.14 0.32 0.34 0.64 0.67
Adj. R2 0.14 0.32 0.34 0.64 0.67
Num. obs. 3754 2265 2263 2351 2118
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table B.13: Difference-in-differences: Students vs Rank
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Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(Intercept) −107.71∗∗∗ 37.35 −10.87 147.70∗∗ −143.86∗∗ −326.16

(23.83) (36.55) (384.86) (54.49) (51.58) (320.51)
Ratio 1106.69∗∗∗ 954.31∗∗∗ 419.58∗∗∗ 478.41∗∗∗ 497.33∗∗∗ 317.27∗∗∗

(35.99) (46.24) (71.98) (65.06) (45.88) (52.36)
Post-2010 −71.93 −85.41 −107.77 −112.74 15.89 −67.95

(57.14) (57.00) (60.28) (58.71) (42.56) (43.74)
Post-2010 * Ratio 106.93 114.67 22.61 155.34 −24.23 104.43

(86.36) (86.07) (91.04) (88.20) (63.57) (64.94)
Rank −0.40∗∗∗ −0.94∗∗∗ −1.14∗∗∗ −0.74∗∗∗ −0.89∗∗∗

(0.08) (0.24) (0.13) (0.13) (0.19)
Tuition 16.36∗∗∗ 2.71∗

(1.12) (1.08)
Undergrad GPA −301.69∗∗∗ 17.04

(49.30) (37.29)
LSAT 6.86∗∗ 1.22

(2.63) (2.13)
Median Grant 0.00 0.00∗∗∗

(0.00) (0.00)
Percent Grants −2.08∗∗∗ −1.93∗∗∗

(0.27) (0.21)
Room/Board Expenses 34.61∗∗∗ 9.72∗∗∗

(1.90) (1.58)
Cost of Books −0.09∗∗∗ −0.02∗

(0.01) (0.01)
Student/Faculty Ratio 16.99∗∗∗ 16.65∗∗∗

(1.26) (1.33)
Accepted 0.38∗∗∗ 0.36∗∗∗

(0.01) (0.01)
Acceptance Rate −3.10∗∗∗ −2.25∗∗∗

(0.34) (0.41)
Bar Passage Rate 0.81∗ 0.72

(0.38) (0.43)
R2 0.24 0.25 0.33 0.36 0.66 0.68
Adj. R2 0.24 0.25 0.33 0.36 0.66 0.68
Num. obs. 3725 3725 2238 2234 2322 2091
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table B.14: Difference-in-differences: Students vs Ratio
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Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) 164.57∗∗∗ 134.11∗∗∗ 162.68∗∗∗ 163.53∗∗∗ 141.22∗∗∗

(0.12) (1.47) (0.31) (0.49) (1.39)
Rank −0.07∗∗∗ −0.06∗∗∗ −0.09∗∗∗ −0.07∗∗∗ −0.06∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)
Post-2010 2.89∗∗∗ −0.76∗∗∗ 0.40∗ 0.88∗∗∗ −0.37∗

(0.26) (0.18) (0.21) (0.18) (0.17)
Post-2010 * Rank −0.04∗∗∗ 0.00 −0.01∗∗∗ 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00)
Tuition 0.20∗∗∗ 0.19∗∗∗

(0.01) (0.01)
Students 0.00∗∗∗ 0.00∗

(0.00) (0.00)
Undergrad GPA 7.06∗∗∗ 4.84∗∗∗

(0.39) (0.39)
Median Grant 0.00∗∗∗ 0.00∗

(0.00) (0.00)
Percent Grants 0.00 0.00

(0.00) (0.00)
Room/Board Expenses 0.21∗∗∗ 0.05∗∗

(0.02) (0.02)
Cost of Books 0.00∗ 0.00∗∗∗

(0.00) (0.00)
Student/Faculty Ratio −0.07∗∗∗ 0.00

(0.02) (0.01)
Accepted 0.00∗∗∗ 0.00

(0.00) (0.00)
Acceptance Rate −0.10∗∗∗ −0.08∗∗∗

(0.00) (0.00)
Bar Passage Rate 0.05∗∗∗ 0.03∗∗∗

(0.00) (0.00)
R2 0.70 0.89 0.86 0.88 0.92
Adj. R2 0.70 0.89 0.86 0.88 0.92
Num. obs. 3101 2265 2256 2345 2118
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table B.15: Difference-in-differences: LSAT vs Rank
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Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(Intercept) 134.04∗∗∗ 150.70∗∗∗ 129.57∗∗∗ 155.23∗∗∗ 156.81∗∗∗ 136.84∗∗∗

(0.41) (0.48) (1.44) (0.50) (0.59) (1.39)
Ratio 35.95∗∗∗ 18.31∗∗∗ 8.49∗∗∗ 10.84∗∗∗ 9.02∗∗∗ 6.96∗∗∗

(0.62) (0.61) (0.56) (0.60) (0.53) (0.52)
Post-2010 −5.21∗∗∗ −5.77∗∗∗ −1.55∗∗ −2.29∗∗∗ −0.96∗ −0.32

(0.88) (0.68) (0.48) (0.54) (0.49) (0.45)
Post-2010 * Ratio 8.36∗∗∗ 8.29∗∗∗ 1.21 3.18∗∗∗ 2.34∗∗ 0.22

(1.34) (1.03) (0.73) (0.81) (0.73) (0.67)
Rank −0.05∗∗∗ −0.05∗∗∗ −0.08∗∗∗ −0.06∗∗∗ −0.05∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)
Tuition 0.15∗∗∗ 0.14∗∗∗

(0.01) (0.01)
Students 0.00∗∗ 0.00

(0.00) (0.00)
Undergrad GPA 6.91∗∗∗ 4.93∗∗∗

(0.37) (0.37)
Median Grant 0.00∗∗∗ 0.00∗∗

(0.00) (0.00)
Percent Grants 0.01∗∗∗ 0.00

(0.00) (0.00)
Room/Board Expenses 0.12∗∗∗ 0.02

(0.02) (0.02)
Cost of Books 0.00 0.00∗∗∗

(0.00) (0.00)
Student/Faculty Ratio −0.07∗∗∗ 0.00

(0.01) (0.01)
Accepted 0.00∗∗∗ 0.00∗∗

(0.00) (0.00)
Acceptance Rate −0.09∗∗∗ −0.08∗∗∗

(0.00) (0.00)
Bar Passage Rate 0.04∗∗∗ 0.03∗∗∗

(0.00) (0.00)
R2 0.61 0.77 0.90 0.88 0.90 0.92
Adj. R2 0.61 0.77 0.90 0.88 0.90 0.92
Num. obs. 3071 3071 2238 2227 2316 2091
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table B.16: Difference-in-differences: LSAT vs Ratio
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Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) 3.69∗∗∗ 0.86∗∗∗ 3.65∗∗∗ 3.45∗∗∗ 1.07∗∗∗

(0.01) (0.16) (0.01) (0.02) (0.18)
Rank 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)
Post-2010 0.07∗∗∗ 0.07∗∗∗ 0.06∗∗∗ 0.07∗∗∗ 0.06∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)
Post-2010 * Rank 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)
Tuition 0.00∗∗∗ 0.00

(0.00) (0.00)
Students 0.00∗∗∗ 0.00

(0.00) (0.00)
LSAT 0.02∗∗∗ 0.01∗∗∗

(0.00) (0.00)
Median Grant 0.00∗∗∗ 0.00∗

(0.00) (0.00)
Percent Grants 0.00∗∗∗ 0.00∗∗∗

(0.00) (0.00)
Room/Board Expenses 0.00∗ 0.00

(0.00) (0.00)
Cost of Books 0.00∗∗∗ 0.00∗∗

(0.00) (0.00)
Student/Faculty Ratio 0.00∗ 0.00

(0.00) (0.00)
Accepted 0.00∗∗∗ 0.00∗∗∗

(0.00) (0.00)
Acceptance Rate 0.00∗∗∗ 0.00∗∗

(0.00) (0.00)
Bar Passage Rate 0.00∗∗∗ 0.00∗∗∗

(0.00) (0.00)
R2 0.75 0.79 0.75 0.78 0.80
Adj. R2 0.75 0.79 0.75 0.78 0.80
Num. obs. 2410 2265 2256 2344 2118
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table B.17: Difference-in-differences: Undergrad GPA vs Rank
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Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(Intercept) 2.71∗∗∗ 3.71∗∗∗ 0.69∗∗∗ 3.64∗∗∗ 3.48∗∗∗ 0.92∗∗∗

(0.02) (0.02) (0.16) (0.03) (0.03) (0.19)
Ratio 1.06∗∗∗ −0.01 −0.17∗∗∗ 0.02 −0.03 −0.16∗∗∗

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
Post-2010 −0.18∗∗∗ −0.09∗∗ −0.06∗ −0.11∗∗∗ −0.09∗∗∗ −0.09∗∗∗

(0.04) (0.03) (0.03) (0.03) (0.03) (0.03)
Post-2010 * Ratio 0.30∗∗∗ 0.18∗∗∗ 0.14∗∗∗ 0.19∗∗∗ 0.19∗∗∗ 0.16∗∗∗

(0.06) (0.04) (0.04) (0.04) (0.04) (0.04)
Rank 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)
Tuition 0.00∗∗ 0.00

(0.00) (0.00)
Students 0.00∗∗∗ 0.00

(0.00) (0.00)
LSAT 0.02∗∗∗ 0.02∗∗∗

(0.00) (0.00)
Median Grant 0.00∗∗∗ 0.00∗

(0.00) (0.00)
Percent Grants 0.00∗∗∗ 0.00∗∗∗

(0.00) (0.00)
Room/Board Expenses 0.00∗∗ 0.00

(0.00) (0.00)
Cost of Books 0.00∗∗∗ 0.00∗

(0.00) (0.00)
Student/Faculty Ratio 0.00∗ 0.00

(0.00) (0.00)
Accepted 0.00∗∗∗ 0.00∗∗∗

(0.00) (0.00)
Acceptance Rate 0.00∗∗∗ 0.00∗∗∗

(0.00) (0.00)
Bar Passage Rate 0.00∗∗∗ 0.00∗∗∗

(0.00) (0.00)
R2 0.42 0.75 0.79 0.75 0.78 0.80
Adj. R2 0.42 0.74 0.79 0.74 0.78 0.79
Num. obs. 2380 2380 2238 2227 2315 2091
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table B.18: Difference-in-differences: Undergrad GPA vs Ratio
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Figure B.3: Application-Admission Game: Variable Importance
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Figure B.5: Application-Admission Outcome Functions (treat=1):
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Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) −0.08∗∗∗ −0.09∗∗∗ 4.88∗∗∗ 5.00∗∗∗ 4.64∗∗∗

(0.00) (0.00) (0.20) (0.20) (0.20)
OverallRank −0.00∗∗∗ −0.00∗∗∗ −0.00∗∗∗ 0.00∗∗∗ −0.00∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)
Tuition 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.01∗∗∗ 0.00∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)
LSAT 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)
LSDAS GPA −0.00 −0.00 0.00 0.00 0.05∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.01)
treat −0.01∗∗∗ 0.00 −0.03∗∗∗ −0.10∗

(0.00) (0.00) (0.00) (0.05)
year −0.00∗∗∗ −0.00∗∗∗ −0.00∗∗∗

(0.00) (0.00) (0.00)
OverallRank:Tuition −0.00∗∗∗

(0.00)
OverallRank:treat 0.00∗∗∗

(0.00)
Tuition:treat 0.00∗∗

(0.00)
OverallRank:Tuition:treat −0.00∗

(0.00)
LSAT:LSDAS GPA −0.00∗∗∗

(0.00)
LSAT:treat 0.00∗

(0.00)
LSDAS GPA:treat 0.02

(0.02)
LSAT:LSDAS GPA:treat −0.00

(0.00)
R2 0.04 0.04 0.04 0.05 0.04
Adj. R2 0.04 0.04 0.04 0.05 0.04
Num. obs. 2155488 2155488 2155488 2155488 2155488
RMSE 0.22 0.22 0.22 0.22 0.22
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table B.19: Logit: Applications
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Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) −5.22∗∗∗ −5.16∗∗∗ −24.31∗∗∗ −30.10∗∗∗ −21.70∗∗∗

(0.04) (0.04) (1.72) (1.71) (1.74)
OverallRank 0.01∗∗∗ 0.01∗∗∗ 0.00∗∗∗ −0.00∗∗∗ 0.00∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)
Tuition −0.00∗∗∗ −0.01∗∗∗ −0.01∗∗∗ −0.03∗∗∗ −0.01∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)
LSAT 0.03∗∗∗ 0.03∗∗∗ 0.03∗∗∗ 0.03∗∗∗ 0.02∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)
LSDAS GPA 0.25∗∗∗ 0.25∗∗∗ 0.25∗∗∗ 0.27∗∗∗ −0.28∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.08)
treat 0.11∗∗∗ 0.07∗∗∗ 0.14∗∗∗ −1.49∗∗

(0.00) (0.00) (0.03) (0.47)
year 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗

(0.00) (0.00) (0.00)
OverallRank:Tuition 0.00∗∗∗

(0.00)
OverallRank:treat −0.00∗

(0.00)
Tuition:treat −0.00

(0.00)
OverallRank:Tuition:treat −0.00

(0.00)
LSAT:LSDAS GPA 0.00∗∗∗

(0.00)
LSAT:treat 0.01∗∗

(0.00)
LSDAS GPA:treat 0.68∗∗∗

(0.14)
LSAT:LSDAS GPA:treat −0.00∗∗∗

(0.00)
R2 0.20 0.21 0.21 0.24 0.21
Adj. R2 0.20 0.21 0.21 0.24 0.21
Num. obs. 113781 113781 113781 113781 113781
RMSE 0.44 0.44 0.44 0.43 0.44
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table B.20: Logit: Admissions
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Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) 1.43∗∗∗ 1.44∗∗∗ 7.53∗∗∗ 8.97∗∗∗ 7.61∗∗∗

(0.05) (0.05) (1.77) (1.79) (1.81)
OverallRank −0.00∗∗∗ −0.00∗∗∗ −0.00∗∗∗ 0.00∗∗∗ −0.00∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)
Tuition −0.00∗∗∗ 0.00 0.00 0.01∗∗∗ 0.00

(0.00) (0.00) (0.00) (0.00) (0.00)
LSAT −0.01∗∗∗ −0.01∗∗∗ −0.01∗∗∗ −0.01∗∗∗ −0.01∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)
LSDAS GPA −0.06∗∗∗ −0.06∗∗∗ −0.06∗∗∗ −0.07∗∗∗ −0.15

(0.00) (0.00) (0.00) (0.00) (0.10)
treat −0.03∗∗∗ −0.02∗∗∗ −0.10∗∗ −0.40

(0.00) (0.01) (0.03) (0.57)
year −0.00∗∗∗ −0.00∗∗∗ −0.00∗∗

(0.00) (0.00) (0.00)
OverallRank:Tuition −0.00∗∗∗

(0.00)
OverallRank:treat 0.00∗∗

(0.00)
Tuition:treat 0.00

(0.00)
OverallRank:Tuition:treat −0.00

(0.00)
LSAT:LSDAS GPA 0.00

(0.00)
LSAT:treat 0.00

(0.00)
LSDAS GPA:treat 0.04

(0.16)
LSAT:LSDAS GPA:treat −0.00

(0.00)
R2 0.02 0.02 0.02 0.03 0.02
Adj. R2 0.02 0.02 0.02 0.03 0.02
Num. obs. 50200 50200 50200 50200 50200
RMSE 0.30 0.30 0.30 0.30 0.30
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table B.21: Logit: Matriculations
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Figure B.7: Change in producer surplus function: ∆V (R)



132

0

50

100

150

200
q5 q15 q25

0

50

100

150

200
q35 q50 q65

0 5 10 15 20 25
0

50

100

150

200
q75

0 5 10 15 20 25

q85

0 5 10 15 20 25

q95

No Info
Info

Figure B.8: Demand Quantiles
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Figure B.10: Rank Quantiles
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