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ABSTRACT

This dissertation adds to the current understanding of contests. Contests are

a class of games in which players compete for a prize be expending resources. Some

portion of the resources expended cannot be recuperated, even in the event of a

loss. Each chapter extends standard models to incorporate realistic features such as

nonprobabilistic uncertainty, budgets, dynamics, or intermediate outcomes.

Chapter 1 introduces ambiguity aversion to the all-pay auction and war of

attrition. Increasing ambiguity causes weak types to bid lower and strong types to

bid higher, in the all-pay auction. In the war of attrition, ambiguity can uniformly

decrease the bids. A revenue ranking for the all-pay auction, war of attrition, and

standard sealed bid auctions is provided. These results are consistent with much of

the experimental literature.

Chapter 2 continues the discussion of ambiguity aversion. The main result is

a characterization of the set of increasing equilibria in games like the all-pay auction

and war of attrition. Unlike with subjective expected utility, even when beliefs are

independent of type, an increasing equilibrium may not exist. Sufficient conditions

are provided for such an equilibrium to exist.

Chapter 3 models endogenous budgets in sequential elimination contests. Con-

testants depend on a strategic group of players to provide resources that will be spent

in the contest. We analyze the effect of timing and spending rules on aggregate spend-

ing. When budgets are not replenished between stages, spending is higher. When

v



unspent resources are refunded, total spending is higher than when all spending is a

sunk costs.

Chapter 4 introduces an all-pay auction game with an intermediate outcome

between winning and losing. When bids are sufficiently different, the player with the

highest bid wins a prize, and the other player receives nothing . When bids are close,

the outcome is called a tie, and each player receives an intermediate prize. Ties are

common in sports, political competition, and war. Equilibrium is characterized for a

set of parameters where the tying region is relatively large.
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1

CHAPTER 1
AMBIGUITY AVERSION AND ALL-PAY AUCTIONS

1.1 Introduction

I introduce ambiguity aversion to the all-pay auction and war of attrition

with incomplete information. This paper fits into a large literature, beginning with

Ellsberg[32], that demonstrates that ambiguity aversion can explain observations that

cannot be explained by standard models with subjective expected utility(SEU). In the

finance and macroeconomics literature, ambiguity aversion, has been shown to solve

many puzzles regarding asset prices, notably the equity premium puzzle.1 Mukerji[87]

has shown that ambiguity aversion can explain incompleteness of contracts in situ-

ations where costly contracting alone gives counter-factual predictions. Kagel and

Levin[56] proposed ambiguity aversion as one explanation for overbidding in first-

price auctions. Here I show that ambiguity aversion can explain several results in the

experimental literature on all-pay auctions and the war of attrition.

The all-pay auction[90] and war of attrition[79] have been used to model a

wide variety of strategic environments in which players compete for a prize by ex-

pending resources or effort. Environments modeled by a war of attrition include firms

competing to determine industry standards[25], firms exiting a crowded market[38],

labor strikes[58], and provision of a public good[20]. Some online auctions also share

similar qualities with the war of attrition[95]. Some applications of the all-pay auc-

1See Guidolin and Rinaldi[44] for a recent survey. See also Hansen and Sargent[45].
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tion are political competition[11], litigation[14], and students competing for college

admissions[49].

Ambiguity is likely to be present in many environments modeled by the all-pay

auction and war of attrition. In these games, players are uncertain about how much

another player values a prize. In the SEU model, a player’s uncertainty is modeled as

a distribution over the other players’ values called a belief distribution. The player’s

interim utility is the expected utility calculated using that distribution. However,

in many applications the distribution of the other players’ values is hard to learn

either because the environment is changing or because of a lack of experience. In the

above mentioned applications, it seems unlikely that players can be certain of the

distribution of the other players’ values.

I find that ambiguity aversion has a significant impact on the outcome of these

games. I provide revenue rankings between the all-pay auction, war of attrition, first-

price, and second-price auction. With MEU, players expend more resources in the

first-price auction than in the all-pay auction. Under conditions that insure the

existence of an increasing equilibrium, players expend more in the all-pay auction

than in the war of attrition. Players expend less in the war of attrition than in

the second-price auction under stronger conditions on the form of ambiguity. I also

provide comparative statics regarding how the degree of ambiguity aversion affects

strategies. I show that ambiguity decreases bids for low values in the war of attrition.

I also provide conditions under which all types bid less. In the all-pay auction, players

with low values bid less and players with high values bid more as ambiguity increases.
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These observations are also consistent with experimental observations.

The pattern of over and underbidding in the all-pay auction is consistent with

a number of experimental papers including Barut, Kovenock, and Noussair[10] and

Noussair and Silver[91]. In addition, Hörisch and Kirchkamp[54] find prevalent un-

derbidding relative to the benchmark in the war of attrition which is also consistent

with MEU. Hörisch and Kirchkamp[54] also find that the war of attrition generates

less expenditure than the all-pay auction. The revenue ranking between the first

price and all-pay auction is not confirmed by the experiments. Barut, Kovenock, and

Noussair[10] did not find any difference in average revenues between the two types of

games. On the other hand, in early rounds of the experiments Noussair and Silver[91]

find that high types overbid to such a degree that average expenditure in the all-pay

auction is far above that of the first price auction.

1.1.1 Related Literature

In his seminal work, Lo[74] applied the maxmin expected utility(MEU) model

to the first-price auction where he derived the unique increasing equilibrium. Fol-

lowing Lo[74], I model ambiguity using the maxmin expected utility model of Gilboa

and Schmeidler[41]. With MEU, beliefs are modeled by a set of distributions, ∆, of

which any one may generate the other players’ values. The player’s interim utility

is the lowest expected utility generated by any distribution in ∆. Given the other

players’ strategies, each player chooses an action which maximizes the minimum ex-

pected utility. Thus an ambiguity averse player chooses an action which is robust to
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the worst case distribution.

The revenue equivalence theorem[88][98] implies that when players have SEU

and independent beliefs the sum of expenditures in the games studied here is the

same as in the first-price and second-price auctions. With a particular form of ∆,

Lo[74] showed that the first-price auction generates more revenue than the second-

price auction with MEU. Bodoh-Creed[21] showed that more generally no revenue

ranking exists between the two auctions when players have MEU. The ranking that

I provide for the all-pay auction and first-price auction holds quite generally; the

ranking of the all-pay auction and war of attrition holds under a set of conditions

that insure that an increasing equilibrium exists. Thus, these revenue rankings are

the first general rankings for commonly used mechanisms.

It should be noted that these rankings are the reverse of what Krishna and

Morgan[69] find with SEU. Their environment differs from this paper in two ways.

They assume that players do not face ambiguity, and beliefs may depend on the

player’s type. Here players may be ambiguity averse but beliefs are assumed to be

independent of type. Thus affiliation of beliefs and ambiguity aversion tend to push

the revenue ranking in opposite directions.

The ranking between the first-price and all-pay auction complements the re-

sults of Fibich, Gavious, and Sela[35] who study the independent values environment

with risk averse players who have SEU preferences. The over and underbidding found

here also occurs with risk averse bidders. In the conclusion I discuss some differences

between ambiguity aversion and risk aversion in first-price and all-pay auctions.
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This paper is also related to the literature on mechanism design with ambigu-

ity aversion. Bodoh-Creed[21] and Bose, Ozdenoren, and Pape[24] analyze abstract

mechanism design problems in which agents may be ambiguity averse. In this pa-

per, rather than characterizing the optimal mechanism, I compare some commonly

observed mechanisms for allocating objects.

1.2 Model

Consider the environment of a mechanism that allocates m indivisible units

of a good to n > m players who can consume at most one unit. Player i values a

unit at vi ∈ [v, v]. Players compete for a prize by submitting a signal called a bid;

player i’s bid is bi ≥ 0. The allocation depends on the player’s bids. The m players

with the highest bid receive an object. In the event that there is a tie for the m-th

highest bid, the players with the m-th highest bid may receive one of the remaining

units with equal probability. The other players do not receive a unit. In addition,

players must make a payment that depends on the bids. Player i’s payment is given

by ti : [0,∞)n → [0,∞).

The mechanisms can be split into two main categories, all-pay and winner-

pay auctions. In a winner-pay auction, player i’s utility ui(bi, b−i, vi) is given by vi −

ti(bi, b−i) if the player receives an object and zero, otherwise. Examples of winner-pay

auctions include the first-price and second-price auctions. In an all-pay auction player

i’s utility is given by vi − ti(bi, b−i) if the player receives an object and −ti(bi, b−i),

otherwise. The all-pay auctions that are analogous to the first-price and second-price
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auctions are the standard all-pay auction and the war of attrition, respectively. A

more detailed description of the mechanisms follows in Section 1.3.2

Behavior will be modeled as the equilibrium of a game of incomplete informa-

tion. It is assumed that players know their own value for the prize when they submit

their bid; however, this information is private and not known to the other players.

This incomplete information is modeled as ambiguity using the MEU model of Gilboa

and Schmeidler[41].

Let D be a set of distributions over [v, v]. Each player believes that the values

of the other players are random draws from a distribution in D. For this reason,

D is often called the player’s ambiguous belief or a multiple prior belief. If G has a

density, then g is the density of g, and in general lower case letters refer to the density

of the corresponding distribution. Define a strategy for player i to be a measurable

function, si : [v, v]→ [0,∞).3 Player i’s expected utility given that the other player’s

values are drawn from G is

Ui(bi; vi, G) =

∫ v

v

· · ·
∫ v

v

[ui(bi, s−i(v−i); vi)]
∏
j 6=i

dG(vj)dG(v1) . . . dG(vn−1) (1.1)

where s−i(v−i) is taken to be the vector of bids that the other players submit given

that the vector of other players’ types is v−i.

Since players do not know which distribution generates the other players’ val-

ues, players choose a bid that maximizes the expected utility for the worst case

2These ex post utility functions is referred to as the private values risk neutral utility.

3Measures throughout this paper can be taken to be the Borel measure.
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distribution. That is players maximize the minimum expected utility given by

Vi(bi; vi) = inf
G∈D

U(bi; vi, G). (1.2)

Players are assumed to play Nash equilibrium strategies with respect to the MEU

preferences.

Some additional notation will be useful throughout. For the mechanisms stud-

ied, a player’s expected utility only depends on the distribution of the m-th highest

value of the other n-1 players. Because of this it is often convenient to reformulate

the problem in terms of the distribution of this order statistic.

∆ = {H : H is the distr. of the m-th highest draw of n-1 iid draws from G ∈ D}

(1.3)

The following assumption will insure that the infimum can be replaced by the

minimum in the definition of MEU.

A. 1. The set ∆ is a compact set of absolutely continuous distributions on [v, v], with

respect to the weak∗ topology.

I have assumed that the players’ preferences are identical conditional on the

value for the prize. In addition, I will focus on symmetric equilibrium in which

all players use the same strategy. Because of this I will frequently omit the player

subscript when referring to a generic player.

1.3 Equilibrium Analysis

In this section, I will derive the symmetric increasing equilibrium strategies

for some commonly studied mechanisms. Increasing strategies are strategies which
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are a strictly increasing function of the player’s type. First, I will analyze the all-

pay auction(APA) and its winner-pay counterpart, the pay-as-bid auction(PBA). The

analysis of these two auctions uses the method first employed by Lo[74] to study the

first-price auction which is a special case of the PBA. Then I turn attention to the war

of attrition(WOA) and Vickrey’s auction[114]. The WOA can be studied in a way

analogous to the PBA and APA provided that ∆ satisfies an assumption regarding

the worst case distribution.

1.3.1 All-pay Auction

The payment function of the APA is that each player pays its own bid whether

the player receives a prize or not, ti(bi, b−i) = bi. When there is only one unit of a prize

to allocate, this is sometimes called a first-price all-pay auction. The only difference

from winner-pay or standard first-price auction is that the losers also pay their bids

in the APA. In a symmetric increasing equilibrium a player wins a prize if at least

n-m players have lower values than that player. The probability of winning a prize

given a bid b is H(s−1(b)) where H is the distribution of the m-th highest value of the

n-1 other players, and s is the increasing strategy the other players are using. The

player’s utility given a bid is

V (b; v) = min
H∈∆

vH(s−1(b))− b. (1.4)

It is easy to identify a distribution that minimizes the probability of winning

given a bid. Let HM be the lower envelope of the distributions in ∆. If H ∈ ∆

minimizes the expected utility at a bid of b, then H(s−1(b)) minimizes the probability
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of winning a prize. This implies that H(s−1(b)) = HM(s−1(b)) where HM(v) ≡

minH∈∆H(v) for all v ∈ [v, v]. Thus the utility can be rewritten as

V (b; v) = vHM(s−1(b))− b. (1.5)

With this observation the equilibrium can be derived using standard methods.

Taking the derivative of equation 1.5 yields

vi
1

s′(s−1(b))
hM(s−1(b))− 1. (1.6)

If s is a symmetric equilibrium strategy, then the derivative must be zero at the

equilibrium bid s(v) for almost all v. Thus s must solve

s′(v) = vhM(v). (1.7)

The initial condition is that the type with the lowest value bids zero. This follows

because in a symmetric increasing equilibrium the lowest type wins with probability

zero and must pay the bid. The solution to equation 1.7 is an equilibrium as is stated

in the following lemma.

Lemma 1.3.1. The increasing, symmetric equilibrium of the APA is given by

sa(v) =

∫ v

v

thM(t)dt. (1.8)

The proof of the lemma follows standard argument once it is observed that

the lowest probability of having one of the m highest values is given by HM so that

the utility can be rewritten as 1.5.
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1.3.2 Pay-as-bid Auction

The PBA is similar to the APA in that the winner pays its bid, but players

that do not win an object make no payment. In the single unit case, this auction is

known as the first price auction. The first price auction has been studied in detail

under ambiguity aversion4. The analysis of the PBA mirrors this previous work and

the discussion above.

When other players use a symmetric, strictly increasing strategy s(v) the

player’s utility is

V (b; v) = min
H∈∆

H(s−1(b))(v − b). (1.9)

Just as in the APA the distribution that minimizes the utility is the one which mini-

mizes the probability of winning an object. As before, the minimizing probability is

given by HM(.). So players choose a bid to maximize HM(s−1(b))(v − b).

Using the same method as in the APA, the first order condition defines an

equilibrium. The resulting differential equation is

s′(v) =
hM(v)

HM(v)
(v − s(v)). (1.10)

This differential equation can be solved with the equilibrium initial condition s(v) = v.

5

Lemma 1.3.2. The increasing, symmetric equilibrium of the PBA is

sp(v) = v −
∫ v
v
HM(t)dt

HM(v)
. (1.11)

4See Lo[74]; Levin and Ozdenoren[71]; and Bodoh-Creed[21]

5See Milgrom and Weber[85] and Lo[74] for details.
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1.3.3 War of Attrition

There are multiple ways to define the payment function for a multi-player war

of attrition[20]. The war of attrition is often meant to model a dynamic environment

in which players expend effort until they concede to their opponents. Once n-m

players concede the remaining players receive a prize without expending any more

effort. The payment function of the static analog is that the losers pay there own

bid and the m players who receive a prize pay the highest losing bid or the m+ 1-th

highest bid. In the single unit case this could be called second-price all-pay auctions

since the winner would pay the second highest bid and the losers pay their own bids.

The bidder takes as given that the other bidders are playing the same increas-

ing equilibrium strategy s. For the WOA the MEU of bidding b is given by

V (b; v) = min
H∈∆

vH(s−1(b))−
∫ s−1(b)

v

(s(t))h(t)dt−
(
1−H(s−1(b))

)
b. (1.12)

The first part of the expression is the expected utility of the allocation. The second

part is the expected value of winning payments, and the last part is the expected

value of losing payments. Unlike in the APA and PBA, it is not so easy to identify

the expected utility minimizing distribution. This is because distribution affects both

the player’s probability of winning and the payment in the event of winning.

In addition, the minimizing distribution will generally depend on the player’s

value for the prize. The player’s value for the prize determines the trade-off between

higher payments and a higher probability of winning. Thus a player with a high

value is more concerned about the probability of winning than a low value player who

is relatively more concerned about the expected payment. Stong[110] shows that in
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games like the WOA where the minimizing distribution depends on the player’s type,

an increasing equilibrium may not exist. To insure existence of an equilibrium, one

must restrict the form of ∆. The following assumption insures the existence of an

equilibrium.

A. 2. HM ∈ ∆.6

Assumption 8 both makes it easy to identify the minimizing distribution, and

the minimizing distribution is independent of the type. To understand why this is

the case, observe that HM first order stochastic dominates(FOSD) every distribution

in ∆. Clearly, this means that HM minimizes the probability of winning. In addition,

HM maximizes the expected payment. This follows because the payment is a weakly

increasing function of the m-th highest bid of the n− 1 bids, and bids are increasing

in the players’ values. By FOSD the expected payment is minimized by HM . This

argument does not depend on the player’s value.

With Assumption 8 the player’s MEU can be rewritten as

V (b; v) = vHM(s−1(b))−
∫ s−1(b)

v

(s(t))hM(t)dt−
(
1−HM(s−1(b))

)
b. (1.13)

The first order condition implies that the equilibrium strategy must solve

s′(v) =
vhM(v)

1−HM(v)
(1.14)

6Let HM and H be the distributions of the m-th highest value of n-1 iid draws from
distributions GM and G, respectively.[106] By a standard result, HM FOSD H if and only
if GM FOSD G. Thus, Assumption 8 could be equivalently stated that the lower envelope
of D is an element of D.
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Lemma 1.3.3. Assumption 8 implies that the symmetric increasing equilibrium of

the WOA is

sw(v) =

∫ v

v

thM(t)

1−HM(t)
dt. (1.15)

1.3.4 Vickrey’s Auction

Vickrey’s auction is similar to the WOA because the m players with the highest

bid pay the highest losing bid. However, unlike the WOA in Vickrey’s auction the

losers do not make a payment. In the case of one unit, Vickrey’s auction is often

referred to as the second price auction. It is well known that in Vickrey’s auction

there is an equilibrium in weakly dominant strategy where each player bids its own

value. This equilibrium continues to be an equilibrium with uncertainty about values.

I will focus on this equilibrium.

1.4 Comparative Statics

Now that I have described equilibrium behavior, I will discuss how ambiguity

affects equilibrium strategies. In particular, I am interested in how increasing ambi-

guity changes the strategies that players use. Of particular interest is the effect of

moving from the case when ∆ is singleton, the SEU case, to ambiguous beliefs. To

do so I first define what it means to increase ambiguity.

Definition 1.4.1. If ∆ ⊂ ∆̃, then ∆̃ is more ambiguous than ∆.

Let H̃M be the lower envelope of ∆̃. s̃a(v) is the equilibrium when the players’

beliefs are ∆̃, and sa(v) is the equilibrium for ∆. The following results state how

ambiguity affects the equilibrium strategies.
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Proposition 1.4.2. Let ∆ ⊂ ∆̃, and HM(v) > H̃M(v) for some v ∈ (v, v). In the

APA

1. there is a v∗ ∈ (v, v) such that sa(v) ≥ s̃a(v) for all v ∈ [v, v∗] with the inequality

being strict for some v ∈ [v, v∗], and

2. there is a v∗∗ ∈ (v, v) such that sa(v) < s̃(v) for v ∈ (v∗∗, v].

Proof: Part 1: Since ∆ ⊂ ∆̃, HM(v) ≥ H̃M(v) for all v. H(v) > H̃(v) for some

v ∈ (v, v) implies that there is an interval of values [v, v′) such that hM(v) ≥ h̃M(v) for

almost all values in that interval with the inequality being strict almost everywhere

on some open set in [v, v′). This implies that

sa(v) =

∫ v

v

thM(t)dt ≥
∫ v

v

th̃M(t)dt = s̃a(v) (1.16)

for all v ∈ [v, v′) with the inequality being strict at v′.

Part 2: The following is an implication of FOSD.∫ v

v

th̃M(tdt >

∫ v

v

thM(t)dt (1.17)

So sa(v) < s̃a(v), and the result follows by the continuity of sa and s̃a. �

Hopkins and Kornienko[53] show a similar comparative static which implies

that if G̃ likelihood ratio dominates G the strategy has the same comparative static

even for concave transformation of the ex post utility function. The results of Fibich,

Gavious, and Sela[35] together with Proposition 1.4.2 imply that if risk aversion is

added to the ambiguity aversion model bids will further decrease for low types and

increase for high types. Thus risk aversion and ambiguity aversion are complementary

with respect to this comparative static.
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Example 1.4.3. n = 6 and m = 2. Let D̃ = {G : |f(v)− g(v)| ≤ ε (∀v ∈ V )}. Also

let f(v) = 1 on [0, 1]. It is easy to verify that in this case if ε ∈ (0, 1),

Fm(v) =


(1− ε)v for 0 ≤ v ≤ .5

(1 + ε)v − ε for .5 < v ≤ 1

. (1.18)

If we suppose that the true distribution is F (v) = v then an ambiguity neutral bidder’s

strategy is s(v) = 4v5 − 10
3
v6 as shown by Barut, Kovenock, and Noussair[10]. In

Figure 1.1, I have graphed the strategy, s, for the no ambiguity case (ε = 0) and

strategy, sm, for the case that ε = .3. �

Figure 1.1: All-pay Auction Example: Uniform n = 6, m = 2

This example has a nice property in that the two strategies cross at only one

point. In general this may not be so.

The first part of the Proposition 1.4.2 has an analog for the WOA. Under

stronger conditions, increasing ambiguity decreases the players bids for all types.
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Definition 1.4.4. If G is greater than G̃ in the monotone hazard rate order,

g(z)

1−G(z)
≤ g̃(z)

1− G̃(z)

for all z ∈ [z, z] the common support of G and G̃.

Proposition 1.4.5. ∆ and ∆̃ satisfy Assumption 8, and ∆ ⊂ ∆̃. HM(v) > H̃M(v)

for some v ∈ (v, v).

1. In the WOA, there is a v∗ ∈ [v, v] such that sw(v) ≥ s̃w(v) for all v ∈ [v, v∗],

and the inequality is strict for some v ∈ [v, v∗].

2. Moreover, if H̃M is greater thanHM in the hazard rate order, then sw(v) ≥ s̃w(v)

for all v ∈ [v, v].

The proof of part one is similar to that of Proposition 1.4.2 and is omitted.

The proof of part 2 follows directly from the definition of the monotone hazard rate

order.

In contrast it has been observed that ambiguity creates overbidding in first-

price auctions[56]. This can also be demonstrated in the PBA. Behavior in Vickrey’s

auction is not affected by ambiguity since bidding one’s own value continues to be an

equilibrium.

1.5 Revenue and Welfare

Given the effect of ambiguity aversion on behavior it is natural to ask how

ambiguity affects aggregate behavior such as the sum of expenditures. Also, it is

natural to ask how the expected revenue varies across the different mechanisms. Here

the WOA and APA are compared to each other and to the winner-pay auctions.



17

Let the distribution F : [v, v],→ [0, 1] be the distribution that is used to

calculate expected utility. One interpretation of F is that a seller believes that the

players’ values are independent draws from F .7 HF is the distribution of the m-th

highest value of n-1 independent draws from F . The following assumption guarantees

a minimal degree of agreement between the distribution F and the players’ beliefs.

A. 3. F ∈ D

Without this assumption it would be possible to create arbitrary revenue rank-

ings by picking F appropriately.

Denote the expected payment of a player with valuation v by el(v) for l ∈

{w, a, p, v}. w, a, p, and v index the expected payment in the WOA, APA, PBA, and

Vickrey’s auction, respectively. For instance, in Vickrey’s auction,

ev(v) =

∫ v

v

thF (t)dt. (1.19)

Since in the all-pay auction the bidders pay their bids,

ea(v) = sa(v). (1.20)

The sum of expected expenditures which is called the revenue is given by

Rl ≡ n

∫ v

v

el(t)f(t)dt (1.21)

for mechanism l.

7At the end of this section I discuss the plausible situation in which the sell is also
ambiguity averse.
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It is particularly useful to compare the revenue from another mechanism to the

revenue in Vickrey’s auction. The reason for this is that players always bid their own

values in Vickrey’s auction regardless of the form of ambiguity. Thus the expected

revenue only depends on F and does not depend on ambiguity. In addition, the

revenue equivalence theorem implies that when there is no ambiguity, the revenue

is the same for all of the mechanisms studied here. These facts together imply that

comparing the revenue in a mechanism to the revenue in Vickrey’s auction is the same

as comparing the revenue with ambiguity to the SEU case.

For this reason, I begin by comparing the revenue in the APA to the revenue in

Vickrey’s auction. It has already been shown by Bodoh-Creed[21] that the first-price

and second-price auctions cannot generally be ranked. Given that, in the all-pay

auction, ambiguity increases the bid for some types and decreases the bid for others,

it is no surprise that the effect of ambiguity on revenue is ambiguous. The following

example demonstrates this.

Example 1.5.1. Let the true distribution and belief of the seller be F (v) = v on the

interval [0, 1]. n = 2 and m = 1. Let ∆ = {G : G(v) = vα for α ∈ [1, c]}. If c > 1,

then the minimizing distribution is FM(v) = vc by FOSD.

s(vi) =

∫ vi

0

ctcdt =
c

c+ 1
vc+1
i (1.22)

Ra = 2

∫ 1

0

s(v)f(v)dv = 2

∫ 1

0

c

c+ 1
vc+1dv =

2c

(c+ 1)(c+ 2)
(1.23)

Rv = 2

∫ 1

0

∫ v

0

tdtdv =
1

3
(1.24)

When c = 3
2
, Ra = 12

35
> 1

3
. When c = 5

2
, Ra = 20

63
< 1

3
. When c = 2, Ra = 1

3
. It can be
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shown that revenue is increasing in c for 1 ≤ c <
√

2 and decreasing in c for c >
√

2.

This shows that ambiguity can increase or decrease the expected expenditures in the

APA.

In contrast to these negative results, the following revenue rankings can be

established. Assumption 3 is implicitly assumed throughout this section.

Proposition 1.5.2. The PBA produces higher expected revenue than the all-pay

auction.

Proof:

ep(v) =

(
v −

∫ v
v
HM(t)dt

HM(v)

)
HF (v) (1.25)

Using integration by parts

ea(v) = sa(v) = vHM(v)−
∫ v

v

HM(t)dt (1.26)

ep(v)− ea(v) = v (HF (v)−HM(v)) +

(
HM(v)−HF (v)

HM(v)

)∫ v

v

HM(t)dt (1.27)

= (HF (v)−HM(v))

(
v −

∫ v
v
HM(t)dt

HM(v)

)
(1.28)

= (HF (v)−HM(v))sp(v) ≥ 0 (1.29)

The inequality follows from the fact that HM FOSD H and that the strategy sp(v)

is non-negative. Thus each type is expected to bid more in the PBA. �

Proposition 1.5.3. If HM ∈ ∆, the APA gives higher expected revenue than the

WOA.
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Proof:

ew(v) =

∫ v

v

sw(t)hF (t)dt+ (1−HF (v))sw(v) (1.30)

= sw(v)H(v)−
∫ v

v

s′w(t)HF (t)dt+ (1−HF (v))sw(v) (1.31)

=

∫ v

v

t
hM(t)

1−HM(t)
dt−

∫ vi

v

t
hM()

1−HM(t)
HF (t)dt (1.32)

=

∫ v

v

t
hM(t)

1−HM(t)
(1−HF (t))dt (1.33)

≤
∫ v

v

thM(t)dt = ea(v) (1.34)

The inequality follows from FOSD of HM .�

Proposition 1.5.4. If HM is greater than HF in the monotone hazard rate order,

then Vickrey’s auction generates more revenue than the WOA.

Proof: From the proof of Proposition 1.5.3, ew(v) can be written

sw(v) =

∫ v

v

t
hM(t)

1−HM(t)
(1−HF (t))dt. (1.35)

The revenue in Vickrey’s auction can be written

sv(v) =

∫ v

v

t
hF (t)

1−HF (t)
(1−HF (t))dt. (1.36)

By the monotone hazard rate order sv(v) ≥ sw(v) for all v ∈ [v, v]. �

Thus the PBA generates higher revenue than the all-pay auction and the WOA

generates less than both of them if HM ∈ ∆. Since the monotone hazard rate order

implies FOSD, under slightly more restrictive conditions the WOA generates the
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least revenue. This last comparison is not surprising given that bids are uniformly

decreasing in the WOA. This suggests that under circumstances in which expenditure

is wasteful to society the WOA may be preferable.

In terms of interim utilities the bidders are indifferent between auctions which

have the same equilibrium minimizing distributions. This is a direct extension of

the payoff equivalence theorem for auctions with SEU.8 Thus bidders are indifferent

between the PBA and APA. If Fm ∈ ∆ bidders are indifferent between all of the

auctions. Lo[74] demonstrates that bidders prefer the second price auction to the

first price auction when Fm /∈ ∆. The same applies to multiple unit auctions.

1.5.1 Ambiguity Averse Seller

The revenue ranking above can be easily extended to payoff rankings for a

seller who is ambiguity averse. Let Ds be the seller’s analog of D.

Definition 1.5.5. FM(t) ≡ maxG∈Ds G(t)

I make the following assumptions on DS.

A. 4. FM ∈ Ds

A. 5. Ds

⋂
D 6= ∅

Let Rl(G) represent the expected revenue with respect to distribution G for

the auction format indexed by l. The sellers utility is given by

Vs,l = min
G∈∆

Rl(G). (1.37)

8For a generalized version of the payoff equivalence theorem for MEU see Bodoh-
Creed[21].
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In all of the mechanisms studied, the player’s equilibrium expected payment is in-

creasing in the player’s value, so the worst case distribution is FM , when assumption

4 is satisfied. This follows because every distribution in ∆s dominates FM in the

sense of FOSD.

Let G ∈ D
⋂
Ds. FM ≥ G ≥ FM with the order of FOSD. Thus, all of the

revenue rankings above can be extended to payoff ranking for an ambiguity averse

seller. Under assumptions 4 and 5, the proofs of the statements are valid with F

being replaced by FM .

1.6 Conclusion

Ambiguity has a significant impact on strategies and expected expenditure in

all-pay auctions. Several of the regularities highlighted here are also consistent with

experimental data. One of the most robust predictions is that in the all-pay auction

low types bid less and high types bid more than in the ambiguity neutral equilibrium.

In the studies by Barut, Kovenock, and Noussair[10]; Hörisch and Kirchkamp[54];

and Noussair and Silver[91], this is also observed. In the war of attrition, Hörisch and

Kirchkamp[54] find prevalent underbidding relative to the ambiguity neutral case; this

is also consistent with ambiguity aversion. Furthermore, Horisch and Kirchkamp[54]

observe that expected expenditure is lower in the WOA than the APA.

It should also be noted that Fibicci, Gavious, and Sela[35] show similar results

in the APA with risk aversion. One difference between ambiguity and risk aversion is

that the highest bid in the APA and first-price auction are the same when there is only
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ambiguity aversion. However, Fibicci et al.[35] show that with risk aversion a player

with the highest type bids higher in the APA than the FPA. Distinguishing between

the role of risk aversion and ambiguity aversion is important because risk is to some

extent an integral part of the game which cannot be ameliorated without changing

the rules; whereas, it seems possible that ambiguity may be reduced as players better

understand the information structure. More experimental and theoretical work is

needed in this area.

One prediction that is not born out in the experimental literature is the revenue

dominance of the PBA. Barut et al.[10] did not find any pattern in ranking the revenue

of the PBA and APA. In a single prize setting, Noussair and Silver[91] have higher

average revenue in an APA than could ever be conceived of in a first-price auction.

This result was partially driven by overly aggressive bidding in early rounds of the

experiment. In contrast, Horisch and Kirchkamp[54] find that expected expenditure

is lower in WOA experiments than in the APA. This result is consistent with the

findings here.
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CHAPTER 2
MONOTONE EQUILIBRIUM IN GAMES
WITH MAXMIN EXPECTED UTILITY

2.1 Introduction

Since the work of Ellsberg[32], there has been a large body of experimental

work that demonstrates that some behavior under uncertainty cannot be explained

by maximization of subjective expected utility (SEU). Behavior that contradicts SEU

is particularly common when there is ambiguity about the probability of events. In

the finance and macroeconomics literature, ambiguity aversion, which generalizes

SEU, has been shown to solve many puzzles regarding asset prices, notably the eq-

uity premium puzzle.1 Mukerji[87] has shown that ambiguity aversion can explain

incompleteness of contracts in situations where costly contracting alone gives counter-

factual predictions. Kagel and Levin[56] proposed ambiguity aversion as an explana-

tion for overbidding in first-price auctions.

I apply ambiguity aversion to a class of games of incomplete information where

the all-pay auction[90] and war of attrition[79] are limiting cases[118][89]. These

games have been used to model a wide variety of strategic environments in which

players compete for a prize by expending resources or effort. Examples include firms

competing to determine industry standards[25], firms exiting a crowded market[38],

students competing for college admissions[49], and online auctions[95].

Ambiguity is likely to be present in many environments modeled by games of

1See Guidolin and Rinaldi[44] for a recent survey. See also Hansen and Sargent[45].
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incomplete information. In the games studied here, players are uncertain about how

much another player values a prize. With SEU, this uncertainty is modeled using

a distribution over the other player’s value called a belief distribution. The player’s

interim utility is the expected utility calculated using that distribution. However, in

many applications the distribution of the other player’s value is hard to learn either

because the environment is changing or because of a lack of experience. Following

Lo[74], I model ambiguity using the maxmin expected utility model of Gilboa and

Schmeidler[41]. With MEU, beliefs are modeled by a set of distributions, ∆, of which

any one may generate the other player’s value. The player calculates the expected

utility for each distribution in ∆, and the utility is the lowest expected utility for any

distribution in ∆. By choosing an action which maximizes the minimum expected

utility an ambiguity averse player chooses an action which is robust to the worst case

distribution.

I find that ambiguity can have a significant impact on the efficiency of the

games studied here. These games may fail to have an efficient equilibrium in the

sense that the prize is not always awarded to the player who values it the most. As

I explain in the literature review, these results contrast the results in an analogous

SEU environment.

I provide a characterization for the increasing, symmetric equilibria of games

in this class. Previously, a general characterization of equilibrium was only available

for games like the first-price auction where the minimizing distribution is the one

which minimizes the probability of winning. Because the games studied here may
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not have that property, a different method is required to derive the equilibrium. The

technique for characterizing equilibria can be applied to other games with MEU. I

also provide conditions for an increasing equilibrium to exist.

2.1.1 Related Literature

In his seminal work, Lo[74] applied the MEU model to the first-price auction

where he derived the unique increasing equilibrium. His analysis depends on the

following observation about the first-price auction. Any bid submitted by a player

results in one of two outcomes; either the player wins the object and pays the bid, or

the player does not win the object and makes no payment. Because of this, assuming

that players bid below their own value, an expected utility minimizing distribution is

a distribution in ∆ which minimizes the probability of having the highest bid. Thus,

the set of expected utility minimizing distributions does not depend on the player’s

value. As Lo[74] noted, in many auctions the expected utility depends on more

than just the probability of having the highest bid. More generally, the minimizing

distribution may also depend on the player’s own value if the ex post utility depends

on more than whether the player wins and the player’s own bid.

Since the work of Lo[74], there have been a number of papers that apply

MEU to a variety of games and mechanism design environments. These games and

mechanisms have the property that the ex post utility, given a bid, only depends on

winning or losing. Levin and Ozdenoren[71] study the first-price auction with par-

ticular emphasis on uncertainty about the number of bidders. Again, the minimizing
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distribution is the one which minimizes the probability of winning. Bose, Ozdenoren,

and Pape[24] and Bodoh-Creed[21] consider the problem of designing revenue maxi-

mizing mechanisms. Both of the mechanism design papers find that, in the optimal

mechanism, the set of minimizing distributions is the same as in the first-price auction

and does not depend on the type of the player.

In the war of attrition, the worst case distribution may depend on the player’s

type. In this game the player with the highest bid wins the object and pays the losing

bid. The loser pays his own bid and does not receive a prize. Thus the ex post utility

in the war of attrition depends on whether the player wins or not, and for the winner,

it depends on the losing bid. This makes the war of attrition much different from the

first-price auction when there is MEU. The expected utility will depend on both the

probability of winning and the expected payment. The relative importance of these

two parts will depend on how much the player values the prize. Players with high

values will tend to prefer distributions with a higher probability of winning, whereas

players with low values will be more concerned with the expected payment. Thus

the distribution in ∆ that minimizes a player’s expected utility may be different for

types with different values. As a result, a different method of analysis is needed from

the one used for first-price auctions. One consequence is that, whereas the first-price

auction has an increasing equilibrium in the symmetric MEU model, this may not be

the case with the war of attrition.

The existence of an increasing equilibrium in the war of attrition and all-pay

auction has been studied with SEU. An equilibrium exists when the players’ values
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are distributed independently so that each player’s belief does not depend on the

player’s own type[3][5][118]. In the affiliated private values model with players who

have SEU, Milgrom and Weber[85] show that to have an increasing equilibrium, in

the first-price auction, it is sufficient that a player’s belief is increasing in the player’s

value, in the sense of affiliation. Krishna and Morgan[69] show that, when players

have SEU, an increasing equilibrium exists in the war of attrition and all-pay auction

if the affiliation is moderate.

In the MEU model, even when the player’s belief, ∆, is independent of the

player’s value, an increasing equilibrium may not exist. This is because the expected

utility minimizing distribution may depend on the player’s value. The dependence

arises because in games like the war of attrition the payment, in the event of winning,

depends on the other player’s bid. Since the expected payment depends on the other

player’s strategy, the set of minimizing distributions depends on the equilibrium. This

contrasts Krishna and Morgan[69] where the distribution used to calculate expected

utility depends on the value exogenously through Bayesian updating.

The remainder of the paper is organized as follows. Section 2.2 formally

presents the model. Section 2.3 contains a characterization of the set of symmet-

ric, increasing equilibria in the general model. Sufficient conditions for existence of

such an equilibrium are provided. Section 2.4 provides an example that illustrates

why an ex post efficient equilibrium may not exist with MEU. Section 2.5 discusses

some extensions including the smooth ambiguity aversion model and type dependent

ambiguity. Section 2.6 concludes. The appendix contains some of the proofs.
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2.2 Model

I begin by describing the class of games studied here. Although all of the results

apply to games with any finite number of players, to simplify notation, I consider

games with two players, player 1 and player 2.2 Player i’s value for a prize, vi, comes

from the interval [v, v], with v ≥ 0. Upon learning their own values, both players

simultaneously submit a bid. Let bi ≥ 0 be player i’s bid. The allocation function,

xi(b1, b2), determines the probability that player i receives the prize. In addition,

each player i has a transfer function, τi(b1, b2), which is player i’s expenditure as a

function of the bids.

I will restrict attention to a specific, well studied class of allocation and transfer

functions which includes the all-pay auction and war of attrition[3].

xi(b1, b2) =



1, if bi > bj

1/2, if bi = bj

0, otherwise

(2.1)

τi(b1, b2) =


(1− p)bi + pbj, if bi > bj

bi, otherwise

(2.2)

Where p ∈ [0, 1). When p = 0, the transfer function is that of the all-pay auction.

When p = 1, the game is a static version of the war of attrition. The usual interpre-

2The main savings occurs when I describe beliefs. With multiple players the relevant
distribution for calculating expected utility is the distribution of the highest bid of the n−1
other players.See the companion paper for generalization of this environment to multiple
units and multiple players with single unit demands.
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tation of the war of attrition is that players expend resources over time until one side

concedes at which point the game terminates instantly. In a dynamic setting, p < 1

captures a situation in which a player does not learn about an opponent’s concession

immediately[3]. p could also be thought of as the probability that the winner pays

the losing bid.3

The ex post utility of player i is given by the following utility function.

ui(b1, b2, vi) = xi(b1, b2)vi − τi(b1, b2). (2.3)

This utility is known as the risk-neutral, private values model. To better understand

the role of ambiguity aversion I restrict attention to this benchmark model of ex post

utility.4

Now I define the interim utility, which is the utility at the point where each

player knows his own value but not the other player’s value. This is modeled by the

maxmin expected utility of Gilboa and Schmeidler[41]. A player’s ambiguous belief

is a set of distributions over the other player’s value. The player’s utility is the lowest

expected utility generated by any distribution in the set.

Let ∆i(vi) be the belief set for player i with a value of vi. The expected utility,

3See Bulow and Klemper[25] for some natural ways to extend this description to more
than two players.

4This model can handle asymmetric information regarding both costs and values.
That is, the model also includes the seemingly more general case that ũi(b1, b2, vi, ci) =
xi(b1, b2)vi − ciτi(b1, b2) where ci is interpreted as the marginal cost of expenditure. Using
an affine transformation ũ becomes ui(b1, b2, vi/ci) = xi(b1, b2)vi/ci − τi(b1, b2), which is
equivalent to the original model as long as ci > 0.
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with respect to distribution G, for player i with value vi and bid bi is defined as

Ũi(bi; vi, s, G) ≡
∫ v

v

ui(bi, s(vj), vi)g(vj)dvj (2.4)

where s : [v, v]→ R+ is a measurable strategy and G is a distribution over [v, v], with

density g. The maxmin expected utility is given by

Ṽi(bi; vi, s) ≡ inf
G∈∆i(vi)

Ũ(bi; vi, s, G). (2.5)

If ∆i(vi) is singleton, then the utility corresponds to SEU; otherwise, the player is

said to be ambiguity averse.

An equilibrium of the game is analogous to an equilibrium in a game with

subjective expected utility; each player’s strategy maximizes his utility given the

other player’s strategy.

Definition 2.2.1. A pure strategy equilibrium is a pair of measurable strategies

(s1, s2) such that for each player i ∈ {1, 2} and j 6= i and for every vi ∈ [v, v],

Ṽi(si(vi), vi; sj) ≥ Ṽi(bi, vi; sj)

for all bi ≥ 0.

I will further restrict attention to equilibria which are increasing. For the

rest of the paper, when I refer to an increasing strategy I mean a strategy which is

strictly increasing in the player’s value. That is if v > v′, then s(v) > s(v′) for all

v, v′ ∈ [v, v]. There are several reasons for focusing on increasing strategies. First,

when the environment is symmetric, the symmetric, increasing equilibria are the ex
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post efficient equilibria. Also, if ∆ is singleton the unique equilibrium is in increasing

strategies[3][93].

For an increasing strategy s and for each bid b ∈ [s(v), s(v)], there is at most

one value z ∈ [v, v] such that b = s(z). Thus, it will be notationally convenient

to think of the players as choosing the value that corresponds to a bid rather than

choosing a bid. If a player chooses bid b this is equivalent to choosing z = s−1(b) when

the other player is using the continuous, increasing strategy s. Now, with continuous,

increasing strategies and this notation, write the expected utility of a player with

value vi who bids sj(z) as

Ui(z; vi, s, G) ≡ Ũi(sj(z); vi, sj, G) = viG(z)− p
∫ z

v

sj(t)g(t)dt− (1− pG(z))sj(z).

(2.6)

This follows since with an increasing strategy the probability that a player pays his

own bid is given by 1− pG(z). With the complementary probability the player pays

the other player’s bid. From the point of view of a player, the other player’s bid is

a random variable determined by the strategy and distribution of the other player’s

value. The maxmin expected utility is similarly defined as a function of z and is

denoted by Vi(z; vi, s).

A. 6. ∆i(vi) = ∆ for all vi ∈ [v, v], for i = 1, 2.

This assumption makes the model as close as possible to the benchmark SEU

model in which values are independent and identically distributed. A.6 says that

the beliefs for both players are the same and that those beliefs do not depend on
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the player’s value. By focusing on this simple model the role of ambiguity aversion

is most transparent. I discuss making the beliefs of the players dependent on the

player’s value in Section 2.5. Because I focus on a symmetric environment the player

subscript is often omitted.5

A. 7. ∆ is a set of continuously differentiable, strictly increasing distributions on

[v, v]. ∆ is convex and compact in the sense that the densities form a compact set

with respect to the uniform topology.6

At this stage, note that A.7 insures that there is a distribution in ∆ that

minimizes the expected utility. This follows because the expected utility will be

continuous in the distribution of the other player’s value. Throughout this paper,

A.6 and A.7 are implicitly assumed unless otherwise stated.

2.3 Type Dependent Minimizing Distributions

In many instances the analysis of games is facilitated by the assumption that

there is a distribution in ∆ which first order stochastic dominates(FOSD) the others.

Define FM(v) ≡ minG∈∆G(v). The FOSD assumption is the following.

A. 8. FM ∈ ∆.

Note that with this assumption FM minimizes the probability of winning at

any bid. Furthermore, because the payment is a weakly increasing function of the

5For a discussion of asymmetry with SEU see Amann and Leininger[3]

6For continuously differentiable distributions this is the same as the topology induced

by the norm max
{

supv∈[v,v] |F (v)|, supv∈[v,v] |f(v)|
}

(Abbott p.164 2001[1], Rudin p.152

1976[99]).
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other player’s type, when the other player uses an increasing strategy, the expected

payment is maximized by FM . Thus FM minimizes the expected utility for any

increasing strategy, and this fact does not depend on the player’s type or bid.

However, for some applications, A.8 may be too restrictive. If ∆ is interpreted

as a belief, there are many natural ways for the belief to be formed that would not

satisfy this assumption.

For instance, A.8 may not be appropriate when players are uncertain about

the dispersion in the distribution of types.7 One application in which the level of

variance may be ambiguous is labor strikes. Kennan and Wilson[58] model labor

strikes as war of attrition in which each side is uncertain of the other side’s cost of

conceding in a labor dispute. The variance of the firm’s cost can be affected by market

conditions or by decisions made by the managers.8 If the union faces ambiguity about

the variance of the firms costs, the first order stochastic dominance assumption may

not adequately model the union’s information.

2.3.1 Characterization

I show that, with a general form of ∆, the set of equilibria can be analyzed

in a way analogous to games with SEU. With SEU, an increasing equilibrium must

be a solution to a differential equation. This equation is defined by observing that

the derivative of the expected utility must be zero at the equilibrium bid. There

7Konrad and Kovenock[64] study the effects of variability in the distribution of types on
behavior for some contest environments.

8There is a growing literature that studies the strategic importance of risk taking. See
Kräkel[67] and Suzuki[111] and the references therein for recent references.
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are a couple of difficulties to overcome to apply this method to MEU. The first is to

show that the MEU is sufficiently differentiable. This requires an envelope theorem

which insures differentiability and gives a formula for the derivative. I show that in

equilibrium MEU is right-hand and left-hand differentiable almost everywhere, and

that in some sense, which will be made precise, the derivative can be set to zero at the

equilibrium bid.9 Since the derivative of the utility is not uniquely defined at some

points, it is useful to think of an equilibrium strategy as a solution to a differential

inclusion.

For this section, assumption A.7 is used to insure that the set of minimizing

distributions has convenient properties. Since the expected utility is continuous in the

distribution and ∆ is compact, the set of minimizers Gv,z,s ≡ {G ∈ ∆ : U(z; v, s,G) =

V (z; v, s)} is nonempty. The convexity of ∆ insures that Gv,z,s is convex valued.

Additionally, it is convenient to note that the compactness of ∆ implies that all of

the densities of the distributions in ∆ have a common upper bound g.

As a matter of notation, the subscript on the player’s value is often suppressed

since I will be focused on a symmetric environment. A selection of the correspondence

Gv,z,s is a function Gs : [v, v]× [v, v]→ ∆ such that Gv,z,s ∈ Gv,z,s for all v, z ∈ [v, v].

The first step to characterizing an equilibrium is to establish the differentia-

bility of the equilibrium utility. One can only hope to establish differentiability of

the utility if players are using sufficiently smooth strategies. The following lemma

says that any increasing, symmetric equilibrium strategy is a Lipschitz continuous

9All references to a measure refer to the Lebesgue measure.



36

function.

Lemma 2.3.1. If β is an increasing, symmetric equilibrium strategy, then β is Lips-

chitz continuous with constant M = vg/(1− p)2.

In the proof, it is shown that if the strategy is not Lipschitz continuous, there is

a profitable deviation for a positive measure of values. Since the equilibrium strategies

are Lipschitz continuous, I restrict attention to such strategies without any loss of

generality.

The following envelope condition establishes the differentiability of the mini-

mum expected utility, V , and provides a formula for the derivative.

Proposition 2.3.2. [Envelope Theorem] Let s(v) be a strictly increasing strategy

which is Lipschitz continuous with constant M = vg/(1− p)2.

1. V (z; v, s)) is absolutely continuous in z.

2. V is right-hand and left-hand differentiable in z at v for almost all v ∈ [v, v].

3. Let Gv,z,s ∈ Gv,z,s be given. If z > v and V (.; v, s) is left-hand differentiable

at z, then V ′−(z; v, s) ≥ U ′(z; v, s,Gv,z,s). If z < v and V (.; v, s) is right-hand

differentiable at z, then V ′+(z; v, s) ≤ U ′(z; v, s,Gv,z,s). If z ∈ (v, v) and V (.; v, s)

is differentiable at z, then V ′(z; v, s) = U ′(z; v, s,Gv,z,s).

The proof applies the envelope theorems in Milgrom and Segal [83]. If V (.; v, s)

is differentiable at z, the derivative of the expected utility is given by

V ′(z; v, s) = vgv,z,s(z)− (1− pGv,z,s(z))s′(z). (2.7)
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Setting this derivative to zero at the equilibrium bid motivates the expression in the

statement of Theorem 2.3.3. This is only a heuristic motivation because the envelope

theorem does not say that the MEU is differentiable at the equilibrium bid.

Theorem 2.3.3. If β is an increasing, symmetric equilibrium, then there exists a

selection Gz,v,β ∈ Gz,v,β for all z, v ∈ [v, v] such that

β(v) =

∫ v

v

tgt,t,β(t)

1− pGt,t,β(t)
. (2.8)

The main idea of the proof is that, for a strategy to be a symmetric equilib-

rium, the equilibrium bid must be a local maximum. The envelope theorem implies

that the left-hand derivative of V is non negative and the right-hand derivative is non

positive in equilibrium for almost all values of v. The convexity of the set of minimiz-

ing distributions implies that, at almost all equilibrium bids, there is a minimizing

distribution, Ǧ, such that the derivative of the expected utility, U ′(v; v, β, Ǧ), is zero.

It is in this sense that, at the equilibrium bid, the derivative is equal to zero almost

everywhere.10

The condition in the theorem is only a necessary condition. A priori, there

seem to be two possible ways for an efficient equilibrium to fail to exist. One is that

all strategies satisfying the necessary condition do not identify a global maximum.

The other is that there may fail to be a strategy that satisfies (2.8). Since the set of

minimizing distributions depends on the strategy played, and the strategy is defined

10Ghirardato and Siniscalchi[40] discusses differentiation of ambiguous preferences using
set valued derivatives. The additional structure here allows for explicit expressions for the
derivatives.
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using a selection from the set of minimizing distributions it is not obvious that such

a strategy exists.

The existence of a solution to the necessary condition can be understood as

the existence of a solution to the following differential inclusion.

β′(v) ∈
{
λ ∈ R : λ =

vgv,v,β(v)

1− pGv,v,β(v)
for Gv,v,β ∈ Gv,v,β

}
(2.8′)

A restatement of Theorem 2.3.3 is that an equilibrium strategy must be a solution to

this differential inclusion.11 As stated in Proposition 2.3.4, there is always a solution

to (2.8′). That is, there is always a strategy which satisfies the necessary condition.

Thus, if there is no efficient equilibrium it is because every solution to the necessary

condition fails to identify a global maximum.

Proposition 2.3.4. There exists a strategy β and a selection Gz,v,β ∈ Gz,v,β for all

z, v ∈ [v, v] such that

β(v) =

∫ v

v

tgt,t,β(t)

1− pGt,t,β(t)
.

2.3.2 Existence

Existence of an equilibrium can be established by checking each strategy in the

set of strategies that satisfy the necessary condition. For each strategy that satisfies

the characterization in Theorem 2.3.3, the utility of submitting a bid can be rewritten

under the assumption that the other player uses the candidate strategy. Let β and

11The usual form of a differential inclusion problem is to find an absolutely continuous
function x : I → R such that x′(t) ∈ F (x(t), t) for almost all t in an interval I where
F : R× I → 2R is potentially multivalued. In this case, I seek a solution to an inclusion of
the form x′(t) ∈ F̂ (x(t), t, x(.)) where F̂ : R× I × C(I)→ 2R.
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Gv,z,β be as in Theorem 2.3.3.

V (z; v, β) = vGv,z,β(z)− p
∫ z

v

β(t)gv,z,β(t)dt− (1− pGv,z,β(z))β(z)

= vGv,z,β(z) + p

∫ z

v

β′(t)Gv,z,β(t)dt− β(z)

=

∫ z

v

{
vgv,z,β(t)

1− pGv,z,β(t)
− tgt,t,β(t)

1− pGt,t,β(t)

}
(1− pGv,z,β(t))dt (2.9)

The second line follows from integration by parts and the third follows by applying

(2.8).

This is similar to an expression that arises in Krishna and Morgan[69] with

subjective expected utility and affiliated distributions. By making assumptions about

the unique prior distribution of values they insure that (2.9) is increasing in z for z < v

and decreasing for z > v. Thus it seems natural to look for conditions under which

the same is true with MEU. However, is it is difficult to establish quasi-concavity of

(2.9) because the minimizing distribution may depend on v and this dependence is

endogenous.

Proposition 2.3.5 below gives a condition under which, in equilibrium, the

minimizing distribution is independent of the player’s value. A.8 implies that the

minimizing distribution is independent of the player’s value regardless of the increas-

ing strategy that the other player uses. Proposition 2.3.5 gives a weaker condition

than FOSD that insures that, in equilibrium, the minimizing distribution is the same

for any bid and value.

Proposition 2.3.5. If there is a G∗ ∈ ∆ such that for all G ∈ ∆ and z ∈ [v, v]

v (G∗(z)−G(z)) ≤ p

∫ z

v

tg∗(t)

1− pG∗(t)
(G(t)−G∗(t))dt, (2.10)
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then there is a symmetric equilibrium with the strategy given by

β(v) =

∫ v

v

tg∗(t)

1− pG∗(t)
dt. (2.11)

Condition (2.10) can be derived directly from (2.9) by starting with strategy

(2.11) and imposing that, for any bid and value, G∗ is the minimizing distribution.

The condition implies a stochastic order which is weaker than FOSD when p > 0 and

they are equivalent when p = 0. This stochastic order allows distributions in ∆ to

cross G∗. However, G∗ must be sufficiently below the others on the lower segments

of the support.

2.4 Example

In this section I provide an example where a symmetric, increasing equilibrium

does not exist. Using Theorem 2.3.3, I construct a strategy which is the unique

strategy that satisfies the necessary condition. For this strategy, the minimizing

distribution for a given bid depends on the value of the player. The dependence is

such that although the bid prescribed by the candidate strategy is a local maximum

it is not a global maximum for some types.

Let the values come from the interval [0, 1]. Let ∆ = {G,H} contain two

distributions G(v) = .5 sin(π(v − .5)) + .5 and H(v) = v.12 Furthermore, let p = .9.

To construct the unique candidate equilibrium strategy, suppose that β satis-

fies the conditions of Theorem 2.3.3. Define the strategy βF (v) ≡
∫ v

0
tl(t)

1−L(t)
dt for any

12I could also let ∆ be the convex hull of these two distributions; by the linearity of the
expectations operator nothing would change.
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Figure 2.1: Set of Distributions:∆ = {H(v) = v,G(v) = .5 sin(π(v − .5)) + .5}

distribution L ∈ ∆. Since G is below H on the interval (0, .5), U(z; v, β,G) <

U(z; v, β,H) for all z ∈ (0, .5). This follows since the probability of winning is

minimized and the expected payment is maximized by G when the player bids

z ∈ [0, .5]. Since G minimizes the expected utility on [0, .5], it follows from The-

orem 2.3.3 that β(v) = βG(v) for all v ∈ [0, .5]. Define v∗ as the lowest value such

that U(v∗; v∗, βG, G) ≤ U(v∗; v∗, βG, H). This crossing is shown in Figure 2.2. Since

G continues to minimize the expected utility on [0, v∗], it follows from Theorem 2.3.3

that β(v) = βG(v) for all v ∈ [0, v∗]. In the proof of Proposition 2.4.1, I show that if

β is an equilibrium, H is the minimizing distribution for a player with value above

v∗. From Theorem 2.3.3, this implies that the only candidate for an equilibrium is

the strategy defined in the following proposition.

Proposition 2.4.1. The unique strategy that satisfies the condition of Theorem 2.3.3
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is given by

β(v) =


βG(v) for v ∈ [0, v∗]

βG(v∗)− βH(v∗) + βH(v) for v ∈ (v∗, 1].

(2.12)

Figure 2.2: Definition of v∗

To see that there is no equilibrium, by straightforward calculation one can

show that a player with value just above v∗ strictly prefers to bid lower than β(v∗),

when the other player follows strategy β. The reason is that although a player with

value v∗ gets the same expected utility from G and H at v∗, a player with a value just

above v∗ gets a strictly lower expected utility from H at v∗. This is the case because

a player with a higher value cares more about the probability of winning. This means

that for a player with value above v∗ the MEU can be decreasing for transformed
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bids less than v∗. In this case, this provides a profitable deviation for some values.

This situation is depicted in Figure 2.3. The local maximum of U(z; v∗ + .02, β,H)

on the right is the MEU at the candidate equilibrium bid. However, the point of

intersection of the two curves provides a higher utility. The source of the profitable

deviation is that the minimizing distribution changes with the player’s value such

that the minimum expected utility is not quasi-concave.

Figure 2.3: The Minimum Expected Utility: V (z; v∗ + .02, β) is the minimum of the

two curves depicted.

This example contrasts the results of a closely related paper by Bodoh-Creed[21].

He analyzes mechanism design problems with general ambiguous beliefs. If ∆ ⊂ ∆̃

the reserve price for the revenue maximizing mechanism is lower for ∆̃. Also, if an
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ex ante balanced budget bilateral trade mechanism maximizes the seller’s revenue,

efficient trade increases the more ambiguity the buyer and seller face. If a bilateral

trade mechanism is efficient, increasing ambiguity will decrease the ex ante budget

deficit. The observation is that increasing ambiguity improves efficiency in a mecha-

nism design environment. In contrast, I show that a fixed mechanism may cease to

have an efficient equilibrium if the players’ ambiguity is increased.13

2.5 Extensions

2.5.1 Smooth Ambiguity Aversion

In the MEU model, I find that without making restrictive assumptions, there

may not be an increasing, symmetric equilibrium. The reason for this result is that

the minimizing distribution can depend on the value of the player in an endogenous

way. This section argues that this result is robust to other specifications of ambiguity

aversion. I extend the analysis to the smooth ambiguity aversion model formalized by

Klibanoff, Marinacci, and Mukerji[59]. A comprehensive study of games with smooth

ambiguity aversion is beyond the scope of this paper; however, I will show how the

intuition gained from games with MEU applies to the smooth ambiguity aversion

model.

To illustrate the potential issues involved, I describe the smooth ambigu-

ity aversion model as it applies to the class of games studied above. Let ∆ =

{F (.; θ)}θ∈[0,1] be a parametrized set of distributions on [v, v] where F is measurable

13Also in the context of general equilibrium theory, ambiguity aversion tends to improve
the efficiency of outcomes as shown by Castro, Pesce, and Yannelis[27].
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in θ. Define the expected utility

Uθ(z; v) ≡ vF (z; θ)− p
∫ z

v

β(t)f(t; θ)dt− (1− pF (z; θ))β(z) (2.13)

for an increasing strategy β. The player’s interim utility from bidding like a player

with value z is

W (z; v) =

∫ 1

0

ψ[Uθ(z; v)]dθ. (2.14)

If ψ : R → R is concave, the player is said to be ambiguity averse. The concavity

of ψ means that the lower expected utilities are weighted more heavily in the utility

function. It is helpful to write the derivative of the utility function.

W ′(z; v) =

∫ 1

0

ψ′[Uθ(z; v)]{vf(z; θ)− (1− pF (z; θ))β′(z)}dθ (2.15)

ψ′[Uθ(z; v)] is a weighting function that weights distributions which yield low expected

utility more heavily. Let φ(z, v) ≡ ψ′[Uθ(z; v)] denote this weighting function and

note that since the expected utility depends on the other player’s strategy the weight

depends on the strategy.

If a symmetric, increasing equilibrium, β, exists and solves the FOC,

β′(v) =

∫ 1

0
φ(v; v)vf(v; θ)dθ∫ 1

0
φ(v; v)(1− pF (v; θ))dθ

. (2.16)

Substituting (2.16) into (2.15) yields that

W ′(z; v) = (

∫ 1

0
φ(z; v)vf(z; θ)dθ∫ 1

0
φ(z; v)(1− pF (z; θ))dθ

−
∫ 1

0
φ(z; z)zf(z; θ)dθ∫ 1

0
φ(z; z)(1− pF (z; θ))dθ

)×

∫ 1

0

φ(z; v)(1− pF (z; θ))dθ

(2.17)

To insure the quasi-concavity of W , one must make some assumptions regarding

the parametrized family of distributions and ψ. In the special case that p = 0 and
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ψ(x) = 1− e−ax, (2.17) simplifies to the following expression which does not depend

on the bid strategy.

W ′(z; v) =

(∫ 1

0
e−avF (z;θ)vf(z; θ)dθ∫ 1

0
e−avF (z;θ)dθ

−
∫ 1

0
e−azF (z;θ)zf(z; θ)dθ∫ 1

0
e−azF (z;θ)dθ

)∫ 1

0

ψ′[Uθ(z; v)]dθ.

(2.18)

This motivates the following proposition.

Proposition 2.5.1. In the all-pay auction with ψ(x) = 1− e−ax, if

γ(v, z) =

∫ 1

0
e−avF (z;θ)vf(z; θ)dθ∫ 1

0
e−avF (z;θ)dθ

(2.19)

is increasing in v for all z, then

β(v) =

∫ v

v

∫ 1

0
e−atF (t;θ)tf(t; θ)dθ∫ 1

0
e−atF (t;θ)dθ

dt (2.20)

is an equilibrium strategy.

The condition is analogous to the condition developed in Krishna and Morgan[69]

in the context of affiliated values. The reason for assuming that γ(v, z) is increasing,

is to establish the quasi-concavity of equilibrium utility. Furthermore, in this partic-

ular case the sufficient condition depends only on the parameters, which include a

and the parametrized set of distributions.

In general one might want

γ̂(v, z) =

∫ 1

0
φ(z; v)vf(z; θ)dθ∫ 1

0
φ(z; v)(1− pF (z; θ))dθ

(2.21)

to be increasing in v for all z. However, it is not obvious what condition would insure

this since the function φ depends on the strategy being played and thus is determined
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in equilibrium. Further work is needed to discover if there are more general conditions

that can establish existence of an increasing equilibrium with the smooth ambiguity

model.

The reasons for non existence of an increasing equilibrium in both the smooth

ambiguity aversion model and MEU are similar. With smooth ambiguity aversion the

weighting function φ depends on the player’s value. MEU is simply the extreme case

where weight is only given to the distributions which minimize the expected utility.

In either case, restrictions on these weights are needed to insure the existence of an

equilibrium. The main difficulty is that the weighting function is usually endogenous.

2.5.2 Type Dependent Ambiguity

The analysis can be extended to allow for ambiguity which depends on the

value of the player. This can be used to model an environment where a player may

believe that if his own value is relatively high the other player’s value will tend to be

high as well. To be formal suppose that ∆(v) is not constant in v. The necessary

condition continues to hold as long as the following additional assumptions hold.

A. 9. ∆(v) is continuous in v.

A. 10. The conditions of A.7 hold for ∆(v) for all v ∈ [v, v].

For the purposes of Theorem 2.3.3 and Proposition 2.3.4 it is sufficient that the

set of minimizing distributions is upper semicontinuous and this additional assump-

tion is sufficient for that conclusion. However, to write sufficient conditions for the

existence of an increasing equilibrium one must take special care since the minimizing
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distribution will usually depend on the player’s value.

To be more concrete, consider the following model of type dependent ambiguity

aversion. Let Π be a set of symmetric joint distributions over the values of the two

players. Π can be thought of as a set of priors that players have ex ante. Assume that

the distributions in Π are twice differentiable in both arguments. For F ∈ Π, let f(.|v)

be the distribution of a player’s value conditional on the other player’s value being v.

Let ∆(v) = {G ∈ C1([v, v])|g = f(.|v) for some F ∈ Π}. This means that ∆(v) arises

from prior by prior updating of the priors in Π.14 From the discussion in Section 2.3,

it seems natural to look for conditions under which there is a distribution GM ∈ Π

such that GM(.|v) is the minimizing distribution in ∆(v) for any bid. In addition,

as in Krishna and Morgan[69] one must be sure that GM(.|v) depends on v in such

a way that an increasing equilibrium exists. The following proposition provides such

conditions.

Proposition 2.5.2. Suppose that there is a GM ∈ Π such that

1. GM(.|v) FOSD G(.|v) for all G ∈ Π and for all v ∈ [v, v]

2. and

vgM(z|v)

1− pGM(z|v)

is increasing in v for all z ∈ [v, v],

14There are many other ways to model how beliefs depend on v. The appropriate choice
of updating rules is beyond the scope of this paper. For an axiomatization of the rule of
updating each prior by Bayes rule see Pires[92]
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then there exists a symmetric, increasing equilibrium given by

β(v) =

∫ v

v

tgM(t|t)
1− pGM(t|t)

(2.22)

I give a brief outline of the proof as the argument is similar to the discussion

in Section 2.3. Condition 1 of Proposition 2.5.2 guarantees that for any z or v,

GM(.|v) will be an expected utility minimizing distribution. Using a straightforward

generalization of Theorem 2.3.3, the only candidate equilibrium is given by (2.22).

Condition 2 is sufficient to insure that the equilibrium MEU, which has the same

form as equation (2.9), is maximized by the candidate equilibrium bid.

2.6 Conclusion

This paper discusses efficiency in a class of games with MEU. In sharp con-

trast to games with SEU, games with MEU may not have an increasing, symmetric

equilibrium. This is because even though ∆, which is interpreted as the ambiguous

belief, is independent of the value, the minimizing distribution may depend on the

value. This can be resolved if ∆ contains a worst distribution according to the rel-

evant stochastic order. In that case there is an equilibrium in which the worst case

distribution is the same for all values.

Some may see non existence of efficient equilibrium as a deficiency of the MEU

model since increasing equilibria have many convenient properties: they are easy

to understand for players, they can be easily characterized, and they are efficient.

However, the non existence of an increasing equilibrium illustrates the complexity of

games in which the expected utility of a bid does not depend solely on the probability
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of having the highest bid. When players with limited probabilistic knowledge need

to weigh other aspects, such as the expected value of the other player’s bid, it is

not sufficient to only consider increasing strategies. The potential complexity and

the inefficiency which results may explain why, when the mechanism can be chosen,

mechanisms such as the first-price auction are prevalent.

It should be noted that this paper illustrates a method that can be used in

other environments. For instance, the ambiguity could be made type dependent so

that ∆(v) depends continuously on the type of the player. Here I study only mono-

tone strategies. Thus, games with monotone equilibria in the SEU environment are

candidates for this method. A straightforward generalization is the class of contests

with spillovers described in Baye, Kovenock, and de Vries[12]. Also, games with a

common value component as in Milgrom and Weber[85] can be studied in this way.

An interesting question for future research is the existence of an efficient equi-

librium in other models of ambiguity aversion. Using the model of smooth ambiguity

aversion by Klibanoff, Marinacci, and Mukerji[59], I provide an example in which

assumptions based on the parameters of the model can be used to establish existence.

It would also be interesting, to study other models such as the Choquet expected

utility[102] model used by Salo and Weber[101] to study the first-price auction.
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CHAPTER 3
ELIMINATION CONTESTS WITH ENDOGENOUS BUDGETS

3.1 Introduction

We introduce a sequential model of competition with budgets that are endoge-

nously determined. In classical consumer and producer theory, resource constraints

have played a central role. Despite their importance, in many models of strategic

interaction, budgets have received little attention. When budgets are considered,

they are frequently modeled as exogenous parameters. However, we are interested in

applications where budgets are determined by the choices of economic agents.

We have in mind strategic situations in which competitors expend resources

to influence an outcome, and the resources they spend are provided by other strategic

players. Examples include research departments that compete using funds provided

by their institutions, military commanders that depend on their civilian governments

for supplies, and politicians that depend on campaign contributions. Two aspects of

these examples are that both the competitors and those providing the resources are

interested in the outcome of the competition, and competitors and those providing

the resources may value the resources or the outcome differently.

We focus on a sequential form of competition called an elimination contest. In

an elimination contest, two pairs of contestants compete in two preliminary contests.

The winners of the preliminary contests compete for a prize in a final contest. This

contest structure is common in sports, political competitions, and labor promotion
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tournaments.

Contestants in the elimination contest depend on a set of strategic players

called backers to provide the resources that will be expended in the contest. Each

contestant’s objective is to spend resources to maximize the probability of winning the

final contest, while taking into account the other players’ strategies. Each contestant’s

spending is constrained by the resources they receive. Backers would like to increase

the chance of their contestant winning, but the increased probability of winning is

weighed against the cost of providing resources.

A leading application for this model is political campaigns. We believe that, in

order to understand the effect of rules governing the timing of elections and campaign

finance laws, it is necessary to model the strategic behavior of donors. In our model,

donors take into account the spending behavior of their preferred candidate’s cam-

paign when making contributions. They are also competing against other campaigns

and donors. By modeling these interactions, we are able to describe the equilibrium

effect of changes in campaign rules on spending.

We analyze two models; one in which backers provide resources to contestants

only at the beginning of the game and another in which backers are permitted to

provide resources at each stage of the contest. In a symmetric model, we find that

expenditure is lowest when backers can provide resources throughout the contest.

This result suggests that spending will be lower if a sufficient amount of time is

provided between stages for contestants to raise more donations.

Unspent budgets can occur in the elimination contest when a contestant loses
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the preliminary contest and has some remaining budget. In political contests, the way

unspent campaign funds are used after the campaign is often regulated. Although

donations can be returned to donors, more often they are spent in a way that is an

imperfect substitute for a refund. For example, the funds may be donated to a charity,

another campaign, or a political party. In an elimination contest where resources are

only provided at the beginning of the game, spending is increasing in the fraction of

unspent resources that are returned to backers.

3.1.1 Related Literature

The elimination contest is an example of a contest in which the outcome is

determined by the outcome of a number of component contests. Borel’s formulation

of the Colonel Blotto game is an example of such a contest[22]. In the Colonel Blotto

game two players allocate resources from a fixed budget to a number of battle fields

in order to try to win as many as possible. Borel’s game is restricted in application

to situations in which sequential ordering of the component contests is not present or

is unimportant.1

An important consideration is how spending affects the probability of winning

a component contest. We model the probability of winning using the lottery success

function proposed by Tullock[113]. In the model, the probability of a player winning

the component contest is the contestants expenditure divided by the sum of all of the

contestants’ expenditures in that component contest.

1See Roberson and Kovenock[66] for survey of static contests with multiple component
contests.



54

In the literature on elimination contests Harbaugh and Klumpp[46] study a

closely related model. Their model includes budget constrained contestants whose

objective is to win the final contest. Their main result is that, in equilibrium, dis-

advantaged players spend more resources in early rounds than do the advantaged

players. This contrasts the case of linear costly effort where the advantaged player

spends more resources in both rounds. Stein and Rapoport[108] also study the role of

budgets in an elimination contest but with contestants who face a cost of expending

resources. In both papers budgets are exogenously provided at the beginning of the

game. Because of this they cannot study the effect of policy changes on the budgets

as we do in this paper.

Friedman[37] studies a related model with endogenous budgets. The contes-

tants’ budgets are endogenously determined by strategic players, as in this paper, and

the contestants are constrained by the budget. However, in Friedman’s model players

allocate the budget over a number of contests simultaneously, in order to maximize

the sum of contests won. Thus the sequential nature of competition is not present,

and players face a different objective.

3.2 Elimination Contest Model

Four contestants compete for a prize in a two stage elimination contest. Let

i =1, 2, 3, 4 index the contestants. Contestant 1 competes with contestant 2 and

contestant 3 competes with contestant 4 in preliminary contests. The winners of

the preliminary contests compete in a final contest to determine who wins the prize.
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Contestants compete by expending resources in each contest. The probability of

winning a component contest is increasing in the contestant’s expenditure as modeled

by Tullock. Denote contestant i’s expenditure, also called a bid, in the preliminary

and final contest as bi and Bi, respectively. Expenditures are constrained to be non

negative. The probability that contestant i wins a preliminary contest given both

contestants’ expenditures is

Pi(bi, bj) =


bi

bi+bj
if bi + bj > 0

1/2 otherwise

. (3.1)

The contest success function in the final contest, as a function of the final contest

expenditures, is the same.

Each contestant’s expenditure is constrained by a budget in each stage. Con-

testant i’s budget in the preliminary and final contest is given by wi and Wi, respec-

tively. In each stage, contestants may choose any expenditure between zero and the

budget.

The novel contribution of this paper is to analyze a game in which the budgets

arise endogenously in the game. This is done by introducing a set of players called

backers. There are four backers each of which is paired up with a contestant. The

set of players containing contestant i and backer i is called team i. Contestants can

only spend the resources that their backers provide in the game. The resources that

backer i provides before the preliminary round and before the final round are given

by ei and Ei, respectively. Backers are assumed to not be budget constrained and

thus can provide any non negative amount of resources. The resources that backers
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provide are called contributions.

The relationship between contributions, bids, and budgets is the following.

The budget available in the preliminary contest, wi, is the backer’s initial contribu-

tion, wi = ei. The budget in the final contest, Wi is the budget in the preliminary

contest less the contestant’s preliminary bid plus any addition contribution after the

preliminary contest, Wi = ei − bi + Ei.

It is assumed that contestants are only concerned with maximizing the prob-

ability of winning the prize. Suppose that contestants i and j compete together and

contestants k and l compete together in the preliminary contests. Contestant i’s

probability of winning is

Qi = Pi(bi, bj) (Pk(bk, bl)Pi(Bi, Bk) + Pl(bl, bk)Pi(Bi, Bl)) . (3.2)

This is defined analogously for the other players.

Backers face a tradeoff between the probability of winning and the expected

cost of contributing. The expected cost is a function of how much backers contribute

and it may be a function of how much the competitor spends. An important consid-

eration is how contributions that are not spent in the elimination contest are used.

The leftover budget for competitor i is.

Li = (1− Pi(bi, bj))(ei − bi) + Pi(bi, bj)(Wi −Bi). (3.3)

The first part is the leftover budget carried over from the preliminary contest times

the probability that the contestant loses at the preliminary stage. The second part

is the unspent budget at the end of the final contest times the probability of arriving
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at the final stage. On one extreme the unspent resources may be entirely a sunk cost

to the backer. The other extreme is that backers recuperate all of the resources that

are unspent. In practice there may be some intermediate value that is recuperated.

In general, the expected cost is given by

Ci = ei + Pi(bi, bj)Ei − rLi. (3.4)

The constant r ∈ [0, 1] can be thought of as the fraction of unspent resources that

the backer can recuperate.

Backer i’s tradeoff between the expected cost and probability of winning is

determined by backer i’s value of team i winning. The backer’s value of winning is

vi. Backer i’s utility is

Ui = viQi − Ci. (3.5)

The behavior of the players is modeled by subgame perfect Nash equilibrium.

The elimination contest has the following information structure. In the pre-

liminary round backers make contributions simultaneously. Contestants then observe

only their own budgets and choose their bids. The winners of the preliminary contest

are determined. Each of the backers in the final contest make contributions after

observing all of the bids and contributions in the previous stage. The contestants

then submit final bids.

3.3 Analysis

The most simple case to study is when all of the teams are symmetric. That

is, each backer has the same value of winning v. In this section, we focus on this case.
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3.3.1 Fixed Budget Game

This section restricts attention to a situation in which backers can only con-

tribute at the beginning of the game. That is, for each backer i, Ei is constrained to

be zero. This is called the fixed budget game. In such a game, contestants only need

to decide how to split the budget between the two stages of the elimination contest.

Because of the form of the function P , it is never an equilibrium for both

contestants to bid zero at any stage since there would always be a gain to shifting some

resources to that stage to insure a win there. Also, in the final contest, contestants

always bid their entire remaining budgets. This follows since contestants maximize

the probability of winning, and spending more in the last period will always weakly

increase the probability of winning. These facts will be used in the derivation of the

equilibrium,

Proposition 3.3.1. There is a unique symmetric equilibrium of the fixed budget

game in which backers provide the same contribution

e =
2v

8− r
. (3.6)

Contestants split the budgets evenly over the two stages, that is bi = Bi = e/2 for all

i.

Proof: First, I show that if three of the contestants bid the same amount in

all stages the other contestant’s unique best response is to split its budget evenly

between the stages.

Lemma 3.3.2. WLOG, let b2 = b3 = b4 = B2 = B3 = B4 = b. In the fixed budget
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elimination contest, b1 = B1 = w1/2 maximizes Q1 for any w1 ≥ 0.

Proof: Contestant 1 solves

max
b1∈[0,w1]

b1

b1 + b

w1 − b1

w1 − b1 + b
. (3.7)

Any solution is interior and the first order condition is

b

(b1 + b)2

w1 − b1

w1 − b1 + b
− b1

b1 + b

b

(w1 − b1 + b)2
= 0 (3.8)

The unique solution to the first order condition is w1/2. �

Next I derive the unique e such that the equilibrium is as in the proposi-

tion. To do so I look for the contribution such that if every backer uses the same

contribution no backer has an incentive to deviate. Lemma 3.3.2 implies that if all

backers use the same contribution an equilibrium of the subsequent subgame is for

the contestants to split the budget evenly between stages. Furthermore, if one backer

should unilaterally deviate, the contestants will continue to split their budgets evenly.

This follows because only the contestant whose backer deviates observes the deviation

when preliminary bids are made.

WLOG suppose that e2 = e3 = e4. Using lemma 3.3.2 backer 1 solves

max
e1≥0

v

(
e1

e1 + e2

)2

− e1 + r
e2

e1 + e2

e1

2
(3.9)

since contestants divide the budgets evenly. The first part is the probability of win-

ning times the value of winning. The expected cost is the contribution minus the

recuperated contribution; contributions are only recuperated in equilibrium if the

contestant loses the preliminary contest which happens with probability e2/(e1 + e2).
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The first order condition is

2
ve1e2

(e1 + e2)3
− 1 +

re2

2(e1 + e2)
− re2e1

2(e1 + e2)2
= 0. (3.10)

Next solve for the e such that if all backers contribute e it is optimal for backer 1 to

contribute e. This is the solution to

(1/4)v − e+ (1/4)re− (1/8)re = 0 (3.11)

Which is solved uniquely by

e =
2v

8− r
. (3.12)

�

An important consideration in many applications is the expected cost of the

contest measured as the expected expenditure. One relevant factor is the level of

reimbursement. For a fixed contribution level the expected cost to the backer will

be decreasing in the reimbursement rate. However, as seen above the contribution

level and spending is increasing in the reimbursement. (The intuition for this is that

the marginal cost of contributing is decreasing in the reimbursement rate.) Thus the

overall effect of reimbursement on the cost to backers is not obvious. The corollary

shows that the the increased fraction of reimbursement compensates the backers for

the increased contributions.

Corollary 3.3.3. In the symmetric equilibrium of the fixed budget game, expected

cost is decreasing in the reimbursement rate, r.

Proof: Expected cost in equilibrium is given by

2v

8− r
− .5r v

8− r
(3.13)
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Differentiating with respect to r yields

2v

(8− r)2
− .5v(8− r) + .5rv

(8− r)2
(3.14)

=
−2v

(8− r)2
. (3.15)

Which is negative for r ∈ [0, 1]. �

3.3.2 Varying Budgets Game

We now turn our attention to the game in which backers may provide ad-

ditional resources after the preliminary contest. This is called the varying budgets

game. In many applications, there is nothing to prevent the backers from providing

more resources in the final contest.

This problem is related to a game in which backers directly control expenditure

so that the contestants are not part of the model. Such a game would be equivalent to

the game studied by Stein and Rapoport[108] when contestants do not have binding

budgets and the cost of expenditure is linear. The solution is found through backward

induction. Starting from the final contest the value of winning is the value of the prize.

At this stage the backers solve

max
bi≥0

vi
bi

bi + bj
− bi (3.16)

The first order condition yields the best response bri(bj) = max{0,
√
vibj − bj}. The

unique equilibrium is to bid v/4. Since both sides use the same strategy, each wins

with probability half. Thus, the value of competing in the final contest is v/4. This

means that the value of winning the preliminary contest is v/4. So, using a similar ar-
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gument, in the preliminary stage all teams bid v/16. This is all under the assumption

that backers can directly control the bid.

When backers are symmetric in their value of winning they can induce the

same bids as above, even if they do not directly control the bids. That is, if backers

provide contributions equal to the unconstrained equilibrium bids, contestants will

bid their entire budgets in each round. Furthermore, backers have no incentive to

deviate from this strategy.

Proposition 3.3.4. In the unique symmetric equilibrium of the varying budgets

game, ei = bi = v/16 and Ei = Bi = v/4 for all i = 1, 2, 3, 4.

The main section of the proof shows that there is no profitable deviation from

the described actions. The contestants will not have any incentive to save in the

preliminary round since they can expect to receive, in the final contest, much more

than what they could save. The backers have no incentive to deviate since they would

need to provide too large of a budget in order to induce contestants to save. To finish

the proof I show there is no symmetric equilibrium in which all contestants split their

budgets.

Now that the equilibrium actions have been described in the fixed and varying

budgets games, the two games can be compared. Of particular interest is the expected

cost to backers in the two games. The total expected expenditure in the varying

budget game is 3v/4.2 In the fixed budget game, with full reimbursement of unspent

2This is the same expected expenditure as in a game in which four players compete for
the prize in a single contest.[113]
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funds, the total expected expenditure is given by 6v/7; when funds are not fully

reimbursed the total expenditure can be as high as v. Thus, the varying budget game

has significantly lower equilibrium costs than the fixed budget game.

3.4 Conclusion

We have introduced a model of endogenous budgets for a dynamic contest

structure. In the symmetric case, we find sharp predictions about the expected ex-

penditure in the two games. The expenditure is lower when backers can contribute

throughout the game than when backers only contribute at the beginning. In the

elimination contest, we see that total spending increases as the fraction of unused

resources returned increases. However, the expected cost to a backer decreases in the

fraction returned.
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CHAPTER 4
ALL-PAY AUCTIONS WITH TIES

4.1 Introduction

The all-pay auction[90] has been used to model a wide range of competitive

environments. In the standard all-pay auction, the player with the highest bid receives

a prize and the others do not receive a prize. In equilibrium, ties happen with zero

probability(Amann and Leininger[3], Parreras and Rubinchik[93], Baye, Kovenock,

and De Vries[11]). However, in many applications ties are not uncommon.

In battles over territory, capturing territory could be considered a win; losing

territory is a loss; if the same boundaries persist, the outcome is a tie. In such conflicts,

there are barriers that tend to support the status quo. These barriers may be physical,

such as a wall, or they may be politically enforced by outside entities. For instance, the

boundary between Russia and Ukraine is partially enforced by international norms.

In order for one side to claim any new territory, it must expend significantly more

than the opposing side; otherwise, the status quo remains. During the spring of 2014,

Russia expended much more resources than Ukraine did in a contest over Crimea.

As a result Russia gained the territory. In other parts of Ukraine, Russia faces both

civilian and military opposition. The outcome seems likely to resemble a tie that

gives Russia more regional influence but not complete control.

In political competition, controls are often put into place that maintain the

status quo. For instance, to change the Constitution of the United States, a two thirds
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majority vote in Congress and ratification by three fourths of the states is required.

As a result, amendments are rarely even proposed, despite the diverse opinions of law

makers. Less stringent super majority rules exist for changing many laws.

Ties are also common in sports. In the World Cup, during group games, teams

collect points in order to qualify for the tournament. A win provides 3 points, a tie

1 point, and a loss 0 points. Many other examples in sports exist where the margin

of victory or loss affects rankings.

We model the contest as an incomplete information all-pay auction in which, if

a player’s bid exceeds the competitor’s by a large enough margin, the player receives

a winning prize. If the player’s bid is near the competitor’s bid, both receive a prize

for tying. If the bid is too low relative to the competitor’s, the player does not get

a prize. The bids represent sunk expenditure of resources or efforts which cannot be

recuperated, regardless of the outcome of the game.

Behavior in all-pay auctions with ties is qualitatively different from standard

all-pay auctions. Bidders may all use the same action with positive probability, and

there may be gaps in the bid support. This paper provides preliminary results for the

analysis of such games. The analysis is demonstrated by characterizing the equilibria

for games where the tying region is sufficiently large.

This work is related to a number of complete information pricing games includ-

ing Shilony[107], Fisher and Wilson[36], and Szech and Weinschenk[112]. A common

result is that there can be gaps in the bid support as a result of intermediate outcomes.

Another closely related strand of literature deals with the Tullock Contests[113]
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with incomplete information(Fey[34], Ryvkin[100] and Wasser[117]). The usual inter-

pretation of the Tullock Contest is that the probability of winning a prize is given by

the player’s bid divided by the sum of all of the players’ bids. Alternatively, the size

of the prize is determined by the ratio. Thus, the Tullock Contest could be thought

of as a game with a continuum of intermediate outcomes; whereas, we study a game

with a discrete number of outcomes.

4.2 General Model

Players 1 and 2 simultaneously submit bids b1 ≥ 0 and b2 ≥ 0. Players may

differ by parameters vi ∈ [v, v] and ci ∈ [c, c] with v, c ≥ 0, i = 1, 2. The payoff of

player i given the bids is

ui(b1, b2) =



vi − cibi if bi ≥ bj+δ

α

βvi − cibi if αbj − δ < bi <
bj+δ

α

−cibi if bi ≤ αbj − δ

(4.1)

It is assumed that δ ≥ 0, β ∈ (0, 1), and α ∈ (0, 1].

A natural interpretation of the model is that if bi ≥ bj+δ

α
, player i wins and

receives a prize valued at vi. If αbj − δ < bi <
bj+δ

α
, then player i ties and receives

an intermediate prize of value βvi. The value of losing is normalized to 0. ci is the

unit cost of expending effort or resources in competing for a prize. Alternatively, one

could normalize the value of the intermediate outcome to 0 in which case the value

of winning is (1− β)vi and the value of losing is −βvi. This normalization would not

change the behavior.
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If we divide the utility function ui by the unit cost ci, we get the new utility

function

ũi(b1, b2) =



vi
ci
− bi if bi ≥ bj+δ

α

β vi
ci
− bi if αbj − δ < bi <

bj+δ

α

−bi if bi ≤ αbj − δ

(4.2)

Since this monotonic transformation preserves the preferences of the players, it is

without loss of generality to only consider unit costs of one and allow vi to capture

the heterogeneity. For the remainder of this paper, ci = 1 for i = 1, 2.

The players’ values are drawn independently from the distribution F with

density f . The distribution F is atomless and has a density bounded below by f and

above by f on the support [v, v]. Each player learns his own value for the prize before

submitting a bid. Each player’s value is private information. Behavior is modeled as

Bayesian-Nash equilibrium.

Let V (b; sj) be the supremum of the set of types of player j that bids bj ≤ b,

according to strategy sj. V (b; sj) ≡ sup {v ∈ [v, v] : sj(v) ≤ b}. Let V (b; sj) be the

infimum of types of player j that bid bj ≥ b, according to strategy sj. V (b; sj) ≡

inf {v ∈ [v, v] : sj(v) ≥ b}. Let γ(b) = b+δ
α

. The probability that player i wins with a

bid of bi is

P (bi ≥ γ(bj)|sj) =

∫ V (γ−1(bi);sj)

v

f(t)dt. (4.3)

The probability that player i does not lose with a bid of bi is

P (bi > γ−1(bj)|sj) =

∫ V (γ(bi);sj)

v

f(t)dt (4.4)
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The expected utility from bidding bi, for player i, with value vi, given that

player j uses the nondecreasing strategy sj, is

Ui(bi; vi, sj) = viP (bi ≥ γ(bj)|sj) + βvi
(
P (bi > γ−1(bj)|sj)− P (bi ≥ γ(bj)|sj)

)
− bi

(4.5)

= (vi − βvi)P (bi ≥ γ(bj)|sj) + βviP (bi > γ−1(bj)|sj)− bi.

Definition 4.2.1. h : R2 → R is supermodular if, for all x, y ∈ R2,

h(max{x1, y1},max{x2, y2})h(min{x1, y1},min{x2, y2}) ≥ h(x1, x2)h(y1, y2).

Note that when player j uses increasing strategy sj, Ui(bi; vi, sj) is supermodu-

lar in (bi, vi). This follows from the fact that h(x, y) = g1(x)g2(y) with nondecreasing

g1 and g2 is supermodular, the sum of supermodular functions is supermodular, and

the probabilities of winning or not losing are increasing in the bid, for any nonde-

creasing strategy. In the class of games studied in Athey[5], supermodularity of the

expected utility is sufficient for existence of an equilibrium in nondecreasing strate-

gies. In games with intermediate outcomes as described here, the existence of an

increasing equilibrium can be established with minor modifications to the arguments.

Athey[5] shows that there is an equilibrium with no mass point in the bid distribution

except maybe at zero. In fact, this holds for any equilibrium.

Lemma 4.2.2. There are no mass points above zero in an equilibrium bid distribu-

tion.

Given that the strategies are strictly increase except that there may be a set
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of types [v, v0] that bids zero, the generalized inverse strategy

s−1
i (b) ≡ inf {v ∈ [v, v] : si(v) ≥ b}

is well defined and continuous for b ∈ (max{0, si(v)}, si(v]. Define

s−1
i (0) ≡ sup {v ∈ [v, v] : si(v) = 0}

when there is a type that bids zero. If b < s(v) let F (s−1(b)) = 0 and f(s−1(b)) = 0.

The expected utility can be written as

U(bi; vi) = (vi − βvi)F (s−1
j (γ−1(bi))) + βviF (s−1

j (γ(bi)))− bi. (4.6)

Unlike the all-pay auctions without ties, the strategies need not be continu-

ous.1 However, the inverse strategies are well behave. In fact the inverse strategies

are Lipschitz continuous. Thus equilibria can be studied using differential equation

methods.

Lemma 4.2.3. The inverse equilibrium strategies are Lipschitz continuous.

It follows that if si and sj are equilibrium strategies, for almost all types of

player i that do not bid zero

α(vi − βvi)f(s−1
j (αsi(vi)− δ))(s−1

j )′(αsi(vi)− δ)

+
βvi
α
f

(
s−1
j (

si(vi) + δ

α
)

)
(s−1
j )′(

si(vi) + δ

α
) = 1.

(4.7)

This equation is used in the following section to characterize a type of symmetric

equilibrium and provide conditions for the existence of such an equilibrium.

1The next section shows an example of such an equilibrium.
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4.3 Equilibria Bounded by 2δ

In this section, we will discuss symmetric, increasing equilibria which are

bounded above by 2δ. We will further restrict α = 1. All such equilibria have a

specific form described below. Conditions are provided that insure that δ is suffi-

ciently large for such an equilibrium to exist.

The differential equation argument will use the following technical assumption.

A. 11. The density f is Lipschitz continuous.

We have already seen that there cannot be a mass point above zero in equi-

librium. Lemma 4.3.1 describes the gaps in the bid distribution, in other words, the

discontinuities in the equilibrium strategies. Define a gap in the bid distribution to

be an interval, (c, d), such that for all ε > 0, both (c− ε, c] and [d, d+ ε) intersect the

support of the bid distribution but (c, d) does not intersect the support. Let b be the

least-upper bound of the bid distribution. This is well defined since any bid above v

is strictly dominated.

Lemma 4.3.1. If in an equilibrium bid distribution b < 2δ, then there is exactly one

gap in the bid distribution given by (b− δ, δ), and the support contains zero.

This lemma implies that in any increasing equilibrium with b < 2δ, there may

be a set of types that bid zero, the rest of the bid strategy is strictly increasing and

continuous except for possibly one jump discontinuity. Let v0 be the infimum of the

set of types bidding above 0, and let v1 be the type that bids δ. The lemma implies
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that an symmetric equilibrium strategy must be of the following form.

s(v) =



0 for v ∈ [v, v0)

s2(v) for v ∈ [v0, v1)

s1(v) for v ∈ [v1, v]

(4.8)

Where s1 and s2 must be continuous and strictly increasing. Furthermore, lemma

4.3.1 implies that s1(v1) = δ, and limv→v1− s2(v) = b− δ.

To derive such a symmetric equilibrium I rewrite equation 4.7 as

(1− β)vf(s−1(s(v)− δ)))(s−1)′(s(v)− δ) = 1 (4.9)

for v ∈ [v1, v] and

βvf(s−1(s(v) + δ)))(s−1)′(s(v) + δ) = 1 (4.10)

for v ∈ [v0, v1]. This follows because types in [v0, v1] bid in the interval [0, δ) and thus

never bid high enough to win. When b ≤ 2δ, types in [v1, v] bid in [δ, 2δ] and so never

lose.

A solution to equations 4.9 and 4.10 that satisfies the intial conditions s1(v1) =

δ and limv→v1− s2(v) = b − δ is said to be a solution to the equilibrium first order

condition.

For an arbitrary b, there may not be a strategy that solves the equilibrium

first order condition and satisfies s(v) = 0, as required by equilibrium. This is likely

to occur if δ is relatively small and b is close to 2δ.

In addition, for a strategy s(v) to be an equilibrium, there are two types of

potentially profitable deviations that must be ruled out. One type of deviation that
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must be ruled out is one in which a player with type v bids another bid within the

convex hull of the bid distribution. I will call these local deviations because they can

be ruled out using local arguments. Local deviation are ruled out as long as v1 is

indifferent between bidding b− δ and δ. This insures that players with values below

v1 have no incentive to increase their bid to δ and players with values above v1 do

not prefer to bid b− δ. The indifference condition is

βs−1(δ)− (b− δ) = s−1(δ)F (s−1(0)) + βv1(b)(1− F (s−1(0))− δ. (4.11)

Condition 4.11 must hold in equilibrium. To the contrary, types near v1 would have

an incentive to deviate either down to b− δ or up to δ.

x(.; 2δ) is defined as the fixed point of the operator in Lemma C.2.2 of the

appendix. x(., 2δ) is constructed such that if the equilibrium first order conditions

have a solution for b = 2δ such that the solution s(.; 2δ) satisfies s(v′; 2δ) = 0 for some

v′ ≥ 0, then x(.; 2δ) = s−1(v; 2δ) for all v > v′. If for b = 2δ there is no solution such

that some type bids zero, x(.; 2δ) is defined to be v at the lower bids, and it coincide

with s−1(.; 2δ) where the inverse is well defined.

Proposition 4.3.2. If δ < (1 − β)v and x(0; 2δ) = v, there exists a nondecreas-

ing strategy s(.) that satisfies equation 4.11 and solves the equilibrium first order

conditions.

Intuitively, the condition that x(0; 2δ) = v implies that δ is large enough so

that the equilibrium first order condition will not allow the strategy to stretch from

s(v) = 2δ down to 0 within the bid support. The proof of this proposition starts
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by constructing an inverse strategy that coincides with the solution to the first order

conditions, when such a strategy exists with s(v) = 0. This inverse strategy is defined

for any b ∈ [δ, 2δ]. The proof shows that b can be chosen to satisfy condition 4.11.

δ < (1 − β)v insures that if b = δ, bidders prefer to bid δ rather than b − δ = 0. If

x(0; 2δ) = v there is a b such that the opposite is true. By establishing the continuous

dependence of x(., b) on b the result is established because b can be chosen to make

players indifferent between bidding δ and b− δ.

Another type of deviation, that must be ruled out, is deviations to bids above

b. In analogous games without intermediate outcomes, this type of deviation is never

profitable because by bidding above b a player increases the bid without increasing

the probability of winning. With intermediate outcomes, increasing the bid in the

interval (2δ, b + δ) does increase the probability of winning. To rule out this type of

deviation, when β ≤ .5, it is sufficient to check that type v has no incentive to bid

b+ δ. Otherwise, one must check all deviations in the interval b ∈ [2δ, b+ δ].

Proposition 4.3.3. A strategy s(.) with upper bound b < 2δ is a symmetric in-

creasing equilibrium if and only if it solves the equilibrium first order conditions and

satisfies condition 4.11 and either

1. β ≤ .5 and (1− β)vF (s−1(δ)) + βv − b ≥ v − b− δ or

2. β > .5 and (1− β)vF (s−1(δ)) + βv− b ≥ (1− β)vF (s−1(b− δ)) + βv− b for all

b ∈ [2δ, b+ δ].

The proof in the appendix shows the following. If b is such that condition 4.11

and the equilibrium first order condition can be satisfied, then the strategy which
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solves these conditions is an equilibrium of a game in which bids are constrained to

be in the interval [0, b]. If either condition 1 or 2 of Proposition 4.3.3 is satisfied, no

player has an incentive to unilaterally deviate from this strategy when the bids are

not constrained.

The conditions of Proposition 4.3.2 are not too far from the model primitives.

But checking the existence of an equilibrium using conditions 1 or 2 of Proposition

4.3.3 may require the construction of the strategies that satisfy the equilibrium first

order conditions and condition 4.11. In the following example, we use the conditions of

Propositions 4.3.2 and 4.3.3 to find simple bounds on the parameters, which guarantee

existence of an equilibrium.

4.4 Example

In this example, let each player’s value be distributed uniformly over the in-

terval [v, 1]. Assume that β ≤ .5 and δ ≤ (1 − β)v. Without solving a differential

equation we show how Proposition 4.3.3 can be used to identify simple sufficient

conditions for the existence of an equilibrium of the type described.

First, we look for conditions under which x(0, 2δ) > v. Since, s(., 2δ) must

solve equations 4.9 and 4.10 we can place an upper bound on the slope of the strategy.

Using equations 4.9 and 4.10 and that the density is f = 1/(1 − v), it can be seen

that

x′(b, 2δ) ≥ 1− v
1− β

(4.12)
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for b ∈ [0, 2δ]. Thus the slope of s(., 2δ) is less than (1− β)/(1− v). If

1− β
1− v

(1− v) ≤ 2δ, (4.13)

then s(., 2δ) changes by less that 2δ over the interval [v, 1]. Therefore, the condition

of Proposition 4.3.2 is satisfied.

Lastly, we can guarantee that the first condition of Proposition 4.3.3 is satis-

fied. This condition can be written in this case as

(1− β)
s−1(δ)

1− v
+ β ≥ 1− δ. (4.14)

This is implied by

(1− β)
v

1− v
+ β ≥ 1− δ. (4.15)

Simplifying yields the condition

(1− β)
1− 2v

1− v
≤ δ (4.16)

To summarize, using Proposition 4.3.3 we can find a region where an equi-

librium of the type described exists. Furthermore, these conditions did not require

solving a differential equation. The condition that δ ∈ [(1− β)/2, 1− β] insures that

there is a non trivial strategy in which there is no profitable deviation within the bid

support. When β ≤ .5, the condition (1 − β)1−2v
1−v ≤ δ guarantees that, for such a

strategy, there is no benefit from deviating to a bid above the support.

It should be noted that these conditions are sufficient but stronger than neces-

sary. More generally the conditions of the proposition can be checked by solving the

relevant differential equation. Below I provide parameters under which an equilibrium

strategy can be solved for explicitly.
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Restrict the parameters to v = 0, β = .5, and δ = .25. δ is chosen so that

there is an equilibrium such that the bid support can be contained in the interval

[0, 2δ]. Lemmas 4.2.2 and 4.3.1 show that we can restrict attention to equilibria in

which the bid strategy is strictly increasing everywhere except that there may be a

mass of types at the bottom bidding 0.

I will derive a symmetric increasing strategy s which is piecewise quadratic

except where it is zero. Specifically the strategy is of the following form.

s(v) =



0 for v ∈ [0, v0)

s2(v) ≡ a2v
2 + d2 for v ∈ [v0, v1)

s1(v) ≡ a1v
2 + d1 for v ∈ [v1, 1]

(4.17)

There are several observations that are used to derive the parameters of this

equilibrium.

1. s2(v1) + δ = s1(1)

2. s1(v1) = δ

3. s2(v0) = 0

4. v1v0 + βv1(1− v0)− δ = βv1 − s(v1)

The first three conditions follow from Lemmas 4.2.2 and 4.3.1. They are

necessary for the equilibrium bid support to be of the form [0, b− δ]
⋃

[δ, b]. The last

condition is simply the indifference condition 4.11.

Two other conditions arise from the equilibrium FOC of players with valua-

tions in [v0, v1] and [v1, 1]. These conditions relate c1 to c2 and d1 to d2. Using the
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Figure 4.1: Example:Uniform(0, 1) distribution, β = .5, and δ = .25

hypothesized functional form, equations 4.9 and 4.10 are equivalent to

.5v

2c2

√
s1(v)−δ−d2

c2

= 1 (4.18)

.5v

2c1

√
s2(v)+δ−d1

c1

= 1. (4.19)

If s1 and s2 are quadratic, then following two condition must be satisfied.

5. d1 = d2 + δ

6. 16c1c2 = 1

The parameters are solved for using these six conditions. It is straightforward

to verify that the conditions of Proposition 4.3.3 are satisfied. Figure 4.1 graphs this

equilibrium strategy.
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4.5 Conclusion

We have introduced a model of competition with intermediate outcomes. Gen-

eral existence and properties of equilibrium are discuss. We characterize the class of

equilibria which are increasing and symmetric and bounded by 2δ. The method for

calculating an equilibrium is to solve a differential equation. If δ is large enough,

shooting methods can be used to find an b so that the solution satisfies local con-

straints.

The main difficulty in studying games with ties is that local constraints are

not always sufficient. In standard all-pay auctions it is sufficient to satisfy the ini-

tial condition and local constraints. With intermediate outcomes it is not hard to

construct examples where local constraints are satisfied, but there is an incentive to

deviate to a bid above the support of the strategies.
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APPENDIX A
APPENDIX FOR CHAPTER 2

A.1 First Order Conditions

Proof of Lemma 2.3.1: Proceed by contradiction. Let β be an increasing

equilibrium strategy and suppose that there exist v, z ∈ [v, v] such that |β(v)−β(z)| >

M |v − z| where M = vg
(1−p)2 . WLOG let v > z. The strategy subscript on the

minimizing distributions is suppressed to avoid notational clutter.

V (v; v, β)− V (z; v, β) = U(v; v, β,Gv,v)− U(z; v, β,Gv,z)

≤ U(v; v, β,Gv,z)− U(z; v, β,Gv,z)

= v(Gv,z(v)−Gv,z(z))− p
∫ v

z

β(t)gv,z(t)dt− (1− pGv,z(v))β(v) + (1− p(Gv,z(v)+

Gv,z(z)−Gv,z(v)))β(z)

= v(Gv,z(v)−Gv,z(z))− p
∫ v

z

β(t)gv,z(t)dt− (1− pGv,z(v))(β(v)− β(z))+

p(Gv,z(v)−Gv,z(z))β(z)

≤ vg(v − z)− (1− p)(β(v)− β(z)) + pg(v − z)
v

1− p

=
vg

1− p
(v − z)− (1− p)(β(v)− β(z)) < 0

The first inequality follows from the definition of Gv,z. The weak inequality on

the fourth line follows because the densities are bounded by g, and β(v) ≤ v
1−p for all

v. The bound on β follows since with probability 1− p each player pays his bid so it

is a dominated strategy to bid above v
1−p . The strict inequality follows from the first
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supposition. Thus any equilibrium is Lipschitz continuous with constant M = vg
(1−p)2 .

Because the last inequality is strict there is a positive measure of types that have a

profitable deviation. This contradicts that β is an equilibrium.

�

Proof of Envelope Theorem: The proof uses the envelope theorems of Milgrom

and Segal[83] (hereafter MS).

Part 1: U(z; v, s,G) is absolutely continuous in z since each G ∈ ∆ is abso-

lutely continuous and s is absolutely continuous. By MS Theorem 2 to prove (1) it

is sufficient to show that there exists B > 0 such that |U ′(z; v, s,G)| ≤ B for almost

all z ∈ [v, v] and for all G ∈ ∆.

Suppose s(.) is differentiable at z. For all G ∈ ∆,

|U ′(z; v, s,G)| = |vg(z)− (1− pG(z))s′(z)| ≤ vg

(1− p)2
. (A.1)

The inequality follows since s is Lipschitz continuous with constant M = vg
(1−p)2 and

g is bounded by g. Since s is differentiable almost everywhere the result is proved.

The following definition is used in proving Part 2.

Definition A.1.1. The collection of functions {l(.;G)}G∈∆ is equidifferentiable at z

if

l(z′;G)− l(z;G)

z′ − z
(A.2)

converges uniformly as z′ → z.

This condition is satisfied for instance if {l′(.;G)}G∈∆ is an equicontinuous

collection. Suppose {l(.;G)}G∈∆ and {h(.;G)}G∈∆ are equidifferentiable at v and f(.)
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is differentiable at v. Then {l(.;G) + h(.;G)}G∈∆ and {l(.;G)f(.)}G∈∆ are equidiffer-

entiable at v.

Part 2: From MS Theorem 3, it is sufficient to show that {U(.; v, s,G) : G ∈ ∆}

is equidifferentiable at v wherever s is differentiable. Since ∆ is compact in the

sense that the densities form a compact set in C([v, v]), by the Arzelà-Ascoli the-

orem the densities of the distributions in ∆ are an equicontinuous set. Thus, ∆

is equidifferentiable. Since s is bounded and g is bounded above by g for all G ∈

∆,
{∫ z

v
s(t)g(t)dt

}
G∈∆

is equidifferentiable. {(1− pG(.))s(.)}G∈∆ is equidifferen-

tiable at v whenever s is differentiable at v. Since equidifferentiability respects sums

{U(.; v, s,G)}G∈∆ is equidifferentiable at v whenever s is differentiable at v. Since s

is differentiable almost everywhere the result follows from MS.

Part 3: is a direct consequence of Theorem 1 in MS.

�

Lemma A.1.2. G : [v, v]×[v, v]×IBC([v, v])→ 2∆ is upper semicontinuous, compact

valued, and convex valued. Here IBC([v, v]) is the space of increasing, continuous

functions on [v, v] which are bounded by v
1−p and it is endowed with the uniform

topology.

Proof: First I show that

U(z; v, β,G) = vG(z)−
∫ z

v

pβ(t)g(t)dt− (1− pG(z))β(z) (A.3)

is continuous in all of its arguments. Focus on the middle summand as continuity of

the rest follows easily.
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Let |z − ẑ| < ε1 and ‖g − ĝ‖∞ < ε2 and ‖β − β̂‖∞ < ε3. WLOG let z > ẑ∣∣∣∣∫ z

v

pβ(t)g(t)dt−
∫ ẑ

v

pβ̂(t)ĝ(t)dt

∣∣∣∣
≤
∣∣∣∣∫ ẑ

v

pβ(t)g(t)− pβ̂(t)ĝ(t)dt

∣∣∣∣+

∣∣∣∣∫ z

ẑ

pβ(t)g(t)dt

∣∣∣∣
=

∣∣∣∣∫ ẑ

v

pβ(t)g(t)− β̂(t)g(t) + β̂(t)g(t)− pβ̂(t)ĝ(t)dt

∣∣∣∣+

∣∣∣∣∫ z

ẑ

pβ(t)g(t)dt

∣∣∣∣
≤
∫ ẑ

v

pg(t)
∣∣∣β(t)− β̂(t)

∣∣∣ dt+

∫ ẑ

v

pβ̂(t) |g(t)− ĝ(t)| dt+

∣∣∣∣∫ z

ẑ

pβ(t)g(t)dt

∣∣∣∣
< pgε3(v − v) +

pv

(1− p)2
ε2(v − v) +

pvg

(1− p)2
ε1

By making ε1, ε2 and ε3 small enough the result is obtained. Berge’s maximum the-

orem establishes that Gv,z;s ≡ arg minG∈∆ U(v; z, s,G) is u.s.c. and compact valued.

That Gv,b;s is convex valued follows from the convexity of ∆ and the linearity

of U(v; z, s,G) as a function of G.

�

Proof of Theorem 2.3.3: Let β, an increasing, symmetric equilibrium, be dif-

ferentiable at v. It follows from the proof of the envelope theorem that V ′+(.; v, β) and

V ′−(.; v, β) both exist at v. Since β(v) is an equilibrium V ′+(v; v, β) ≥ 0 ≥ V ′−(v; v, β).

Furthermore, by MS Theorem 3

V ′+(v; v, β) = lim
z→v+

vgv,z(v)− (1− pGv,z(v))β′(v) (A.4)

and

V ′−(v; v, β) = lim
z→v−

vgv,z(v)− (1− pGv,z(v))β′(v). (A.5)

Since Gv,z;β is upper semicontinuous and since vg(v)−(1−pG(v))β′(v) is a continuous

function of G, there is a Ĝ ∈ Gv,z;β such that V ′+(v; v, β) = vĝ(v)− (1− pĜ(v))β′(v).
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There is also a G ∈ Gv,z;β such that V ′−(v; v, β) = vg(v)−(1−pG(v))β′(v). Since Gv,z;β

is convex valued there exists a Ǧ ∈ Gv,z;β such that vǧ(v)−(1−pǦ(v))β′(v) = 0. Thus

there is a selection Gv,z,β of Gv,z,β such that β′(v) =
vgv,v;β(v)

1−pGv,v,β(v)
a.e. v ∈ [v, v]. By

Lemma2.3.1, β is absolutely continuous and can thus be written as in the theorem.

�

A.2 Main Theorem

Definition A.2.1.

λ(v, z; s) ≡
{
λ ∈ R : λ =

vg(z)

1− pG(z)
for some G ∈ Gv,z,s

}
(A.6)

Lemma A.2.2. λ(v, z; s) is upper semicontinuous and has compact, convex values.

Proof:

λ̂(v,G) ≡ vg(v)

1− pG(v)
(A.7)

By the continuity of λ̂ and Lemma A.2, λ(v, b; s) is upper semicontinuous and compact

valued. The continuity of λ̂(v, .) implies that λ(v, b; s) is convex valued since Gv,z,s is

convex valued. �

The proof of Proposition 2.3.4 uses a convergence result which is useful in the

study of differential inclusions. For reference, I state a version of the theorem which

is proved in Aubin and Cellina[6].

Proposition A.2.3. [Convergence Theorem] Let F be a u.s.c. map from R2 to

the closed, convex subsets of R. Let I be an interval of R and xk(.) and yk(.) be
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measurable functions from I to R2 and R, respectively, satisfying for almost all t ∈ I,

for every ε-ball, Bε(0), in R2 × R there is a k0 ≡ k0(t, ε) such that for all k ≥ k0,

(xk(t), yk(t)) ∈ graph(F ) +Bε(0).

If

• xk(.) converges almost everywhere to a function x(.) from I to R2,

• yk(.) belongs to L1(I,R) and converges weakly to y(.) in L1(I,R),

then for almost all t ∈ I, (x(t), y(t)) ∈ graph(F), i.e. y(t) ∈ F (x(t)).

Proof of Proposition 2.3.4:

The proof follows the technique in Aubin and Cellina (pages 128-129, [6]). For

completeness and since the differential inclusion here is slightly different from theirs,

I include the details. Let M = vg
(1−p)2 .

K = {x ∈ C([v, v]) : x is Lipschitz with constant M and x(v) = 0} (A.8)

K is compact by the Arzelà-Ascoli Theorem.

J (s) ≡ {z ∈ K : z′(v) ∈ λ(v, s(v); s)} (A.9)

A fixed point of J satisfies the conditions for the type of strategy described in the

statement of the theorem.

I now show that the Kakutani-Glicksberg-Fan fixed point theorem applies to

J (.). First I argue that J (.) is non empty. For any continuous s(.), λ(v, s(v); s) is

u.s.c. as a function of v. Thus λ(v, s(v); s) has a measurable selection. If w(.) is such

a selection, then
∫ v
v
w(t)dt is in J (x). That J (.) is convex valued is straight forward

since λ(v, s(v); s) is convex valued.
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To establish upper semicontinuity, since K is compact it is sufficient to show

that J has a closed graph. This is done through the convergence theorem. Let

xk ∈ K and zk ∈ J (xk) be such that xk → x and zk → z. Let yk = z′k for all k. Since

||yk||∞ ≤M for all k, by the Banach-Alaoglu theorem there is a subsequence of {yk}

and y such that ||y||∞ ≤ M and
∫ v
v
yk(t)φ(t)dt →

∫ v
v
y(t)φ(t)dt for all φ ∈ L1[v, v].

Since L∞[v, v] is a subset of L1[v, v], {yk} converges to y weakly as a sequence in

L1[v, v].

Since yk converges weakly it converges pointwise almost everywhere. yk(v) ∈

λ(v, xk(v);xk) so by the u.s.c. of λ in all of its arguments there exists a k0(v, ε) s.t.

for all k ≥ k0, (xk(v), yk(v)) ∈ graph(λ(v, .;x)) + Bε(0) for almost all v ∈ [v, v]. By

the convergence theorem y(v) ∈ λ(v, x(v);x) for almost all v ∈ [v, v].

Since y = z′, J(.) is upper semicontinuous. By the Kakutani-Glicksberg-Fan

fixed point theorem, there exists a strategy β ∈ J(β). Such a strategy satisfies the

conditions of the proposition.

�

A.3 Existence

Proof of Proposition 2.3.5: I will first prove that if β is the strategy played by the

other player, then G∗ is the worst case distribution. To that end, suppose that for

some v and z in [v, v] there is another distribution which gives a strictly lower expected

utility. Using a similar expression to (2.9), the previous statement is equivalent to

∫ z

v

{
vg∗(t)

1− pG∗(t)
− tg∗(t)

1− pG∗(t)

}
(1− pG∗(t))dt
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>

∫ z

v

{
vg(t)

1− pG(t)
− tg∗(t)

1− pG∗(t)

}
(1− pG(t))dt

For some G ∈ ∆.

By canceling and collecting terms this implies

v(G∗(z)−G(z)) >

∫ z

v

tg∗(t)

(
1− 1− pG(t)

1− pG∗(t)

)
dt (A.10)

However this contradicts the hypothesis about G∗. Since z and v where arbitrary G∗

always minimizes the expected utility. So, β satisfies the necessary condition. For β,

(2.9) reduces to ∫ z

v

(v − t)g∗(t)dt (A.11)

which is clearly maximized at v. �

Proof of Proposition 2.4.1 I first show that, in a neighborhood above v∗, H is the

minimizing distribution for any equilibrium strategy. By calculation, it is can be

shown that H continues the be the minimizing distribution thereafter.

Observe that h(v∗) < g(v∗) and H(v∗) < G(v∗) together imply that β′H(v∗) <

β′G(v∗). Let β satisfy the conditions of Theorem 2.3.3 and let β̂ be as in Proposition

2.4.1. By Theorem 2.3.3, βH(v) ≤ β(v) ≤ βG(v) for all v ∈ [v∗, v∗∗] where v∗∗ is

such that h(v) < g(v) and H(v) < G(v) both continue to hold on the interval. This

implies that U(v; v, β,G) ≥ U(v; v, βG, G) and U(v; v, β̂, H) ≥ U(v; v, β,H) for all

v ∈ [v∗, v∗∗). Define Ũ(v; s, F ) ≡ U(v; v, s, F ) for all F ∈ ∆.

Ũ ′(v; βG, G) = G(v) ≥ H(v) = Ũ ′(v; β̂, H) (A.12)

for all v ∈ (v∗, v∗∗]. Since U(v∗; v∗, βG, G) = U(v∗; v∗, β̂, H) and the expected utilities

are absolutely continuous on (v∗, v∗∗], U(v∗; v∗, βG, G) ≥ U(v∗; v∗, β̂, H) for all v ∈
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(v∗, v∗∗]. Thus, H is the worst case distribution when both players follow β. By direct

calculation v∗∗ can be taken to be v.
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APPENDIX B
APPENDIX FOR CHAPTER 3

B.1 Proof of Proposition 3.3.4:

We first show that the actions described are part of an equilibrium.

There is no profitable deviation from the prescribed equilibrium behavior in

the final stage of the contest. The contestants will always bid the entire budget in

the last round. Conditional on the players following the strategies in the preliminary

round the unique equilibrium of the final subgame is for both backers to contribute

v/4.

In order to show that there are not profitable deviations in the preliminary

round we must consider the behavior in the final round following a unilateral devia-

tion in the preliminary stage. The final stage subgames are completely described by

the amount of resources each contestant who wins carries over to the final. These

subgames will be represented by the pair (w1 − b1, w2 − b2).

We are only interested in unilateral deviations so WLOG suppose that the

other backers and contestants used the prescribed bids and thus arrive at the final

stage with no resources. Thus we are interested in subgames of the type (w1− b1, 0).

Backer i’s best response to Wj j 6= i is

ei(Wj) = max
{

0,
√
vWj −Wj − (wi − bi)

}
(B.1)

Thus the Nash equilibrium of subgame (w1−b1, 0) is ε1 = v/4−(w1−e1) and ε2 = v/4

if w1−b1 ≤ v/4; if w1−b1 > v/4, e1 = 0 and e2 = max
{

0,
√
v(w1 − b1)− (w1 − b1)

}
.
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Contestants spend their entire budgets.

The only way that saving resources can benefit contestant 1 is if the amount

of saved resources exceeds the resources backer 1 would have provided in the final.

If players follow the prescribed strategies, there is no incentive for contestants to

save. This follows because ei = v/16 for all i so if a contestant saves it decreases the

probability of winning the preliminary contest without increasing the probability of

winning the final since v/16 < v/4.

Now focus on the backer’s preliminary strategy. To do so we will need to

describe contestant 1’s behavior after backer 1 one deviates. It will be useful to

introduce the following transformation: ε1 = w1 = αv for α ≥ 0. Using this notation,

if contestant 1 saves resources in the preliminary stage, the optimal allocation solves

max
0≤b1≤αv

b1

b1 + v/16

√
αv − b1√

v
. (B.2)

The FOC is

v/16

(b1 + v/16)2

√
αv − b1√

v
− b1

b1 + v/16

1

2
√
v(αv − b1)

= 0 (B.3)

which is equivalent to

v

8
(αv − b1) = b1(b1 + v/16). (B.4)

This has the unique positive root

b1(α) = v

√
9 + 128α− 3

32
. (B.5)

Now let us derive contestant 1’s best response to α. First, we identify the value

of α such that the contestant is indifferent between splitting the budget and bidding
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the entire budget. The value of spending the entire budget is .5 ∗ αv/(αv + v/16),

since in the final round both contests with spend the same amount v/4. Thus the α

that solves

αv

2(αv + v/16)
=

b1(a)

b1(a) + v/16

√
(av − b1(a))/v (B.6)

is the indifference point. Equation B.6 has a unique solution at α′ ≈ .545.

Additionally, there is no incentive to save more than v into the final round,

since at any bid higher than v, contestant 1’s competitor would bid 0 in the last

round. Thus the best response is

BR1(α) =


max

{
v
√

9+128α−3
32

, αv − v
}

for α > α′

αv otherwise.

(B.7)

Let α′′ satisfy

b1(α′′) = α′′v − v. (B.8)

α′′ = (
√

(129) + 31)/32 which is approximately 1.327. This is the point where for an

α ≥ α′′ the contestant saves exactly v.

Now we check deviations in which backer 1 provides enough resources that

contestant 1 does not spend everything in the prelim. We have already shown that

if contestant 1 does not save it is better for backer 1 to bid v/16. There is never an

incentive to contribute such that α > α′′ since doing so only increases the preliminary

round bid and the utility is decreasing for preliminary bids great than 3/16 when the

final contribution is 1.

We focus on the following maximization problem.
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max
α′≤α≤α′′

vb1(α)

b1(α) + v/16

√
αv − b1(a)√

v
− αv + r(αv − b1(a))

v/16

b1(α) + v/16
(B.9)

It is sufficient to focus on the case that r = 1 since the backer’s utility from inducing

the contestant to save is always highest when any remaining resources are returned

in the event of a loss.

The objective function has exactly 3 roots given by 0, .0172, and .527. Using

these facts it can be easily shown that the objective is negative above .527. In fact

α′ maximizes the objective on the relevant range. Contributing α′ yields a utility

of ≈ −.00475v which is much less than the equilibrium utility of contributing v/16.

Since there is no incentive to give more than v/16 when r = 1, there is no incentive

for smaller r.

It is also straightforward to rule out symmetric equilibria in which contestants

split their budgets. It follows from Lemma 3.3.2 that if all the backers provide the

same budget and contestants split the budget the split is half in each stage. If ei < v/2

and contestants save less than v/4 into the next stage, then in the equilibrium of the

final subgame all of the backers would increase the budget to v/4. However, by

subgame perfection arguments, if this is the case, a contestant is better off spending

the whole budget in the preliminary round since he will receive v/4 in the last round.

But in a symmetric equilibrium if ei > v/2 the backer’s utility is

Ui = vi/4− ei + rei/2 < 0. (B.10)

Which contradicts equilibrium since e1 = E1 = 0 yields a utility of 0. �
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APPENDIX C
APPENDIX FOR CHAPTER 4

C.1 Preliminaries

Proof of lemma 4.2.2: Suppose that there is a mass point at b > 0 in the equilibrium

bid distribution for some player. It follows that there is a gap below both b− δ and

b+ δ. If this were not so, there would be a profitable deviation for those bidding near

αb−δ or b+δ
α

to increase the bid an arbitrarily small amount to increase the probability

of winning or tying by a discrete amount. So there cannot be types bidding just below

αb−δ and b+δ
α

. But if there are gaps below αb−δ and b+δ
α

, then types bidding at b can

decrease their bid without decreasing the probabilities of tying or winning. Therefore,

this cannot be an equilibrium bid distribution. �

Proof of Lemma 4.2.3 I will call a trivial equilibrium one in which all types bid 0. By

the definition of the inverse given in the text the result is trivial in this case.

Let b > 0 be the least-upper bound of a players bid support. This is well

defined since bidding more than v is a dominated strategy. WLOG let player j’s

equilibrium bid strategy be sj.

By way of contradiction suppose that |s−1
j (b)− s−1

j (b̂)| > M |b− b̂| where M =

max
{

α
(v−βv)f

, 1
αβvf

}
+ 1. Without any loss we can let b and b̂ be in the bid support.

This follows because the generalized inverse is constant outside of the support. WLOG

let b > b̂.

Let supp represent the equilibrium bid support. I will prove the following
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statement. Either (case 1) there is a positive measure of types that bid in (αb̂ −

δ − ε, αb̂ − δ]
⋂

supp or (case 2) there is a positive measure of types that bid in

( b̂+δ
a
−ε, b̂+δ

a
]
⋂

supp, for all ε > 0. If not there would be an ε > 0 such that decreasing

the bid would not decrease the probability of winning or tying. This would contradict

that b̂ is in the bid support.

Case 1 Since b > b̂, αb− δ > 0. Let bn ∈ (αb̂− δ−1/n, αb̂− δ]
⋂

supp. This sequence

is well defined since there are no mass points above zero, and if αb̂ − δ = 0, {bn} is

the zero sequence. It follows that bn → αb̂ − δ. Since the inverse is continuous by

construction v̂n = s−1
j (bn) has a limit. Let the limit be v̂. Since each bn is in the bid

support, sj(v̂n) = bn.

U(αb− δ, v̂)− U(αb̂− δ, v̂) = (v − βv)
[
F
(
s−1
j (b)

)
− F

(
s−1
j (b̂)

)]
+

βv
[
F
(
s−1
j (α(αb− δ)− δ)

)
− F

(
s−1
j (α(αb̂− δ)− δ)

)]
− α(b− b̂)

(C.1)

≥ (v − βv)fM(b− b̂)− α(b− b̂) > 0

Note that the expected utility is continuous in the bid and value except at

the bid δ/α. If αb̂ − δ = 0 the above contradicts equilibrium. This is true because

sj(v̂) = 0, and the inequality implies that a bid of αb− δ is strictly preferred to 0 by

type v̂.

If αb̂ − δ > 0 this yields a contradiction because sj(vn) = bn for all n > 0.

So by definition of equilibrium U(αb − δ, v̂n) − U(bn, v̂n) ≤ 0. But by continuity

U(αb− δ, v̂n)− U(bn, v̂n)→ U(αb− δ, v̂)− U(αb̂− δ, v̂) > 0 which is impossible.

Case 2: Now let bn ∈ ( b̂+δ
α
− 1/n, b̂+δ

α
]
⋂

supp. Now bn → b̂+δ
α

. Similarly, redefine
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v̂n = s−1
j (bn) and define the limit to be v̂.

By a similar argument as above.

U(
b+ δ

α
, v̂)− U(

b̂+ δ

α
, v̂) ≥ βv(f)M(b− b̂)− (b− b̂)

α
> 0 (C.2)

By a similar argument to Case 1 this is a contradiction.

�

Proof of Lemma 4.3.1: Suppose that (c, d) is a gap in the bid distribution. If

c ≤ δ, then there must also be a gap containing (c + δ, d + δ). This follows because

decreasing the bid in (c + δ, d + δ) does not decrease the probability of winning or

tying. Similarly, if c ≥ δ, there must also be a gap at (c − δ, d − δ). By a similar

argument, there must be a gap in the bid distribution at (b− δ, δ).

By lemma 4.2.2, there is not a mass point at d, d+δ, and d−δ unless d−δ = 0.

By continuity of the bid distribution, if d − δ 6= 0, there is an ε > 0 such that if G

is the bid distribution v(G(d + ε) − G(d)) < d − c. This implies that a bid of c is

strictly preferred to any bid in (c, d+ ε). This follows because the decrease in utility

caused by either an increase in the probability of tying and decrease in the probability

of winning or a decrease in the probability of tying with no accompanying increase

in probability of winning is offset by a significant decrease in the payments when a

player decreases the bid from d+ ε to c.

But then if d−δ 6= 0, [d, d+ε) cannot intersect the equilibrium bid distribution.

However, this would contradict that (c, d) is a gap. Thus (b− δ, δ) is the only gap. �
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C.2 Characterization

It is useful to solve for the equilibrium strategies by analyzing the inverse of

the strategy wherever the strategy is strictly increasing. We make the change of

variables x(b; b) = s−1(b), where b is the upper bound of s. Using this transformation

we rewrite equations 4.9 and 4.10 as

x′(b; b) =
1

(1− β)x(b+ δ; b)f(x(b; b))
(C.3)

for b ∈ [0, b− δ] and

x′(b; b) =
1

βx(b− δ; b)f(x(b; b))
(C.4)

for b ∈ [δ, b). In addition, the initial conditions x(b; b) = v and x(b − δ; b) = x(δ; b)

must be satisfied. These conditions are necessary for the increasing strategy to pre-

scribe a bid for each type and are analogous to the initial conditions of the equilibrium

first order conditions.

It is also convenient to rewrite equation 4.11, which says that a player with

type x(δ; b) must be indifferent between bidding b− δ and δ. Using the new notation

this can be written

βx(δ; b)− b+ δ = x(δ; b)F (x(0; b)) + βx(δ; b)(1− F (x(0; b)))− δ (C.5)

→ (1− β)x(δ; b)F (x(0; b)) = 2δ − b. (C.6)

The existence of a solution to equations C.3 and C.4 given the initial conditions

can be established for any value of b using functional analysis arguments. The first

step is to reformulate the problem as an integral equation. This equation will define
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x(., b) over the entire interval [0, 2δ]. This continuous extension will be such that the

x(., b) is flat over the intervals (b− δ, δ) and (b, 2δ).

Define x−(b; b) ≡ x(b− δ; b) and x+(b; b) ≡ x(b+ δ; b).

Lemma C.2.1. An increasing, absolutely continuous function x(.; b) satisfies the first

order conditions C.4 and C.3 and the initial conditions x(b; b) = v and x(b − δ; b) =

x(δ; b) if and only if

x(b; b) = v −
∫ b

b

g(t, x(t), x−(t), x+(t); b)dt (C.7)

where

g(b, x, x−, x+; b) =



1
(1−β)f(x)x+

for b ∈ [0, b− δ]

0 for b ∈ (b− δ, δ)

1
βf(x)x−

for b ∈ [δ, b]

0 for b ∈ (b, 2δ]

(C.8)

For an arbitrary b ∈ [δ, 2δ] there is no guarantee that there is a strategy

satisfying the equilibrium first order conditions such that x(0, b) ≥ 0; however, this is

a prerequisite for an equilibrium as shown by Lemma 4.3.1. Since it will be useful to

define a strategy for every b, the following lemma proves the existence and uniqueness

of a function x(.; b) which maps [0, 2δ] into [v, v]. When x(0; b) > v, this function will

solve the equation in lemma C.2.1.

Lemma C.2.2. Assuming A.11, the mapping T : C([0, 2δ]2) → C([0, 2δ]2) defined

by

T (x)(b; b) = max

{
v, v −

∫ b

b

g(t, x(t), x−(t), x+(t); b)dt

}
(C.9)
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has a unique fixed point x(b, b). Furthermore, the fixed point depends continuously

on b.

Proof: The proof uses the contraction mapping theorem to show, using stan-

dard methods, that T : CB([0, 2δ]2)→ CB([0, 2δ]2) as defined above is a contraction

mapping(Wolfgang Walter, 1998[115]). Let CB([0, 2δ]2) be defined as the space of

continuous functions that map [0, 2δ]× [0, 2δ] into the interval [v, v].

The first step in the argument is to observe that g(.) as defined in Lemma

C.2.1 satisfies Lipschitz condition that there is an L > 0 such that

|g(b, x, x−, x+; b)− g(b, y, y−, y+; b)| ≤ Lmax {|x, y|, |x− − y−|, |x+ − y+|} (C.10)

for all b and b in [0, 2δ] and for all y, y−, y+, x, x−, and x+ in [v, v]. This follows

from boundedness and Lipschitz continuity(LC) of the density f and from the fact

that the product of bounded LC functions is LC.

Let the Euclidean norm |x − y|3 = max {|x, y|, |x− − y−|, |x+ − y+|} for x =

(x, x−, x+) and y = (y, y−, y+).

CB([0, 2δ]2) endowed with the norm given by

||z|| = sup
(u,v)∈[0,2δ]2

|z(u, v)|e−2L(|v−u|)

is a Banach space. This follows because the norm ||.|| is equivalent to the sup norm.1

To shorten notation let x(b; b) ≡ (x(b; b), x−(b; b), x+(b; b)).

1Two norms ||.||A and ||.||B are equivalent if there are C,D > 0 such that C||x||A ≤
||x||B ≤ D||x||A for all x. e−2(v−v)||x||sup ≤ ||x|| ≤ ||x||sup for all x ∈ CB([v, v]2).
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|Tx(b, b)− Ty(b, b)| ≤
∫ b

b

|g(t,x(t; b); b)− g(t,y(t; b); b)|dt

By LC of g the right hand side is bounded above by

L

∫ b

b

|x(t; b)− y(t; b|3dt.

≤ L

∫ b

b

e2L(b−t)||x− y||dt ≤ 1

2
||x− y||e2L(b−b).

Since b is arbitrary this shows that

||Tx− Ty|| ≤ 1

2
||x− y||.

By the contraction mapping theorem, T (.) has a unique fixed point in CB([0, 2δ]2).

�

Proof of Proposition 4.3.2: If δ < (1−β)v, then when b = δ, a type with value x(δ, δ)

strictly prefers to bid δ. That is from C.6

(1− β)x(δ, b)F (x(0), δ) = (1− β)v > δ = 2δ − b.

Let b′ = sup{b ∈ [0, 2δ] : x(b; 2δ) = v}. If b′ = 0, the condition is satisfied by b = 2δ.

Suppose that b′ > 0. By the continuous dependence of x(.; b) on b, there is an

∆ > 0 such that if b
′
= 2δ−∆, x(0, b

′
) = v. For b

′
, a bidder with type x(δ, b

′
) strictly

prefers to bid b
′ − δ rather than δ. That is

(1− β)x(δ, b
′
)F (x(0, b

′
)) = 0 < ∆ = 2δ − b′.

By continuous dependence, there must be a b such that equation C.6 holds.
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Proof of Proposition 4.3.3

Necessity follows from the discussion in the text. I will show sufficiency.

By substituting into the FOC, it is straightforward to verify that at a bid

b ∈ (0, b−δ)
⋃

(δ, b], if v > x(b; b), the utility is increasing in the bid, and if v < x(b; b),

the utility is decreasing in the bid. Proposition 4.3.2 insures that a player with

value x(δ, b) is indifferent between bidding δ and b − δ. However, a player with a

higher(lower) value strictly prefers to bid δ(respectively b− δ). Thus no type has an

incentive to deviate from the equilibrium to a bid in [0, b].

Clearly, no type can benefit by unilaterally deviating to a bid above b + δ,

since by bidding b + δ a player wins with certainty. Bidding in (b, 2δ) is worse than

bidding b as argued in lemma 4.3.1.

Furthermore, if β ≤ .5, b + δ is preferred to any bid in (2δ, b + δ). To prove

this last assertion, for almost all b ∈ (0, b− δ).

U ′(b;x(b; b)) = βx(b, b)f(x(b+ δ, b))x′(b+ δ, b)− 1 = 0

This implies that for v,

U ′(b; v) = βvf(x(b+ δ, b))x′(b+ δ, b)− 1 > 0.

Now

U ′(b+ 2δ; v) = (1− β)vf(x(b+ δ, b))x′(b+ δ, b)− 1

is sure to be positive if β ≤ .5. Thus the utility is increasing in the bid on the interval

(2δ, b+ δ). The first condition of the proposition insures that b is preferred to b+ δ.



100

If β > .5, the utility may not be increasing over the interval (2δ, b+ δ). Thus

it is necessary to check that there is no bid in (2δ, b+ δ) which is preferred to b by a

player with type v. This is insured by condition 2. �



101

REFERENCES

[1] Stephen Abbott. Understanding analysis. Springer New York, 2001.

[2] Charalambos D. Aliprantis. Infinite dimensional analysis : a hitchhiker’s guide.
Berlin ; New York : Springer, 1999.

[3] Erwin Amann and Wolfgang Leininger. Asymmetric all-pay auctions with in-
complete information: The two-player case. Games and Economic Behavior,
14(1):1 – 18, 1996.

[4] Masaki Aoyagi. Information feedback in a dynamic tournament. Games and
Economic Behavior, 70(2):242 – 260, 2010.

[5] Susan Athey. Single crossing properties and the existence of pure strategy
equilibria in games of incomplete information. Econometrica, 69(4):861–869,
2001.

[6] J. Aubin and A. Cellina. Differential Inclusions: Set-Valued Maps and Viability
Theory. Grundlehren Der Mathematischen Wissenschaften. Springer, 2012.

[7] Yaron Azrieli and Roee Teper. Uncertainty aversion and equilibrium existence in
games with incomplete information. Games and Economic Behavior, 73(2):310
– 317, 2011.

[8] Sophie Bade. Electoral competition with uncertainty averse parties. Games
and Economic Behavior, 72(1):12–29, 2011.
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